#include "Quat.hpp" #include "Basis.hpp" #include "Defs.hpp" #include "Vector3.hpp" #include namespace godot { const Quat Quat::IDENTITY = Quat(); // set_euler_xyz expects a vector containing the Euler angles in the format // (ax,ay,az), where ax is the angle of rotation around x axis, // and similar for other axes. // This implementation uses XYZ convention (Z is the first rotation). void Quat::set_euler_xyz(const Vector3 &p_euler) { real_t half_a1 = p_euler.x * 0.5; real_t half_a2 = p_euler.y * 0.5; real_t half_a3 = p_euler.z * 0.5; // R = X(a1).Y(a2).Z(a3) convention for Euler angles. // Conversion to quaternion as listed in https://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/19770024290.pdf (page A-2) // a3 is the angle of the first rotation, following the notation in this reference. real_t cos_a1 = ::cos(half_a1); real_t sin_a1 = ::sin(half_a1); real_t cos_a2 = ::cos(half_a2); real_t sin_a2 = ::sin(half_a2); real_t cos_a3 = ::cos(half_a3); real_t sin_a3 = ::sin(half_a3); set(sin_a1 * cos_a2 * cos_a3 + sin_a2 * sin_a3 * cos_a1, -sin_a1 * sin_a3 * cos_a2 + sin_a2 * cos_a1 * cos_a3, sin_a1 * sin_a2 * cos_a3 + sin_a3 * cos_a1 * cos_a2, -sin_a1 * sin_a2 * sin_a3 + cos_a1 * cos_a2 * cos_a3); } // get_euler_xyz returns a vector containing the Euler angles in the format // (ax,ay,az), where ax is the angle of rotation around x axis, // and similar for other axes. // This implementation uses XYZ convention (Z is the first rotation). Vector3 Quat::get_euler_xyz() const { Basis m(*this); return m.get_euler_xyz(); } // set_euler_yxz expects a vector containing the Euler angles in the format // (ax,ay,az), where ax is the angle of rotation around x axis, // and similar for other axes. // This implementation uses YXZ convention (Z is the first rotation). void Quat::set_euler_yxz(const Vector3 &p_euler) { real_t half_a1 = p_euler.y * 0.5; real_t half_a2 = p_euler.x * 0.5; real_t half_a3 = p_euler.z * 0.5; // R = Y(a1).X(a2).Z(a3) convention for Euler angles. // Conversion to quaternion as listed in https://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/19770024290.pdf (page A-6) // a3 is the angle of the first rotation, following the notation in this reference. real_t cos_a1 = ::cos(half_a1); real_t sin_a1 = ::sin(half_a1); real_t cos_a2 = ::cos(half_a2); real_t sin_a2 = ::sin(half_a2); real_t cos_a3 = ::cos(half_a3); real_t sin_a3 = ::sin(half_a3); set(sin_a1 * cos_a2 * sin_a3 + cos_a1 * sin_a2 * cos_a3, sin_a1 * cos_a2 * cos_a3 - cos_a1 * sin_a2 * sin_a3, -sin_a1 * sin_a2 * cos_a3 + cos_a1 * sin_a2 * sin_a3, sin_a1 * sin_a2 * sin_a3 + cos_a1 * cos_a2 * cos_a3); } // get_euler_yxz returns a vector containing the Euler angles in the format // (ax,ay,az), where ax is the angle of rotation around x axis, // and similar for other axes. // This implementation uses YXZ convention (Z is the first rotation). Vector3 Quat::get_euler_yxz() const { Basis m(*this); return m.get_euler_yxz(); } real_t Quat::length() const { return ::sqrt(length_squared()); } void Quat::normalize() { *this /= length(); } Quat Quat::normalized() const { return *this / length(); } bool Quat::is_normalized() const { return std::abs(length_squared() - 1.0) < 0.00001; } Quat Quat::inverse() const { return Quat(-x, -y, -z, w); } Quat Quat::slerp(const Quat &q, const real_t &t) const { Quat to1; real_t omega, cosom, sinom, scale0, scale1; // calc cosine cosom = dot(q); // adjust signs (if necessary) if (cosom < 0.0) { cosom = -cosom; to1.x = -q.x; to1.y = -q.y; to1.z = -q.z; to1.w = -q.w; } else { to1.x = q.x; to1.y = q.y; to1.z = q.z; to1.w = q.w; } // calculate coefficients if ((1.0 - cosom) > CMP_EPSILON) { // standard case (slerp) omega = ::acos(cosom); sinom = ::sin(omega); scale0 = ::sin((1.0 - t) * omega) / sinom; scale1 = ::sin(t * omega) / sinom; } else { // "from" and "to" quaternions are very close // ... so we can do a linear interpolation scale0 = 1.0 - t; scale1 = t; } // calculate final values return Quat( scale0 * x + scale1 * to1.x, scale0 * y + scale1 * to1.y, scale0 * z + scale1 * to1.z, scale0 * w + scale1 * to1.w); } Quat Quat::slerpni(const Quat &q, const real_t &t) const { const Quat &from = *this; real_t dot = from.dot(q); if (::fabs(dot) > 0.9999) return from; real_t theta = ::acos(dot), sinT = 1.0 / ::sin(theta), newFactor = ::sin(t * theta) * sinT, invFactor = ::sin((1.0 - t) * theta) * sinT; return Quat(invFactor * from.x + newFactor * q.x, invFactor * from.y + newFactor * q.y, invFactor * from.z + newFactor * q.z, invFactor * from.w + newFactor * q.w); } Quat Quat::cubic_slerp(const Quat &q, const Quat &prep, const Quat &postq, const real_t &t) const { //the only way to do slerp :| real_t t2 = (1.0 - t) * t * 2; Quat sp = this->slerp(q, t); Quat sq = prep.slerpni(postq, t); return sp.slerpni(sq, t2); } void Quat::get_axis_and_angle(Vector3 &r_axis, real_t &r_angle) const { r_angle = 2 * ::acos(w); r_axis.x = x / ::sqrt(1 - w * w); r_axis.y = y / ::sqrt(1 - w * w); r_axis.z = z / ::sqrt(1 - w * w); } void Quat::set_axis_angle(const Vector3 &axis, const float angle) { ERR_FAIL_COND(!axis.is_normalized()); real_t d = axis.length(); if (d == 0) set(0, 0, 0, 0); else { real_t sin_angle = ::sin(angle * 0.5); real_t cos_angle = ::cos(angle * 0.5); real_t s = sin_angle / d; set(axis.x * s, axis.y * s, axis.z * s, cos_angle); } } Quat Quat::operator*(const Vector3 &v) const { return Quat(w * v.x + y * v.z - z * v.y, w * v.y + z * v.x - x * v.z, w * v.z + x * v.y - y * v.x, -x * v.x - y * v.y - z * v.z); } Vector3 Quat::xform(const Vector3 &v) const { Quat q = *this * v; q *= this->inverse(); return Vector3(q.x, q.y, q.z); } Quat::operator String() const { return String(); // @Todo } Quat::Quat(const Vector3 &axis, const real_t &angle) { real_t d = axis.length(); if (d == 0) set(0, 0, 0, 0); else { real_t sin_angle = ::sin(angle * 0.5); real_t cos_angle = ::cos(angle * 0.5); real_t s = sin_angle / d; set(axis.x * s, axis.y * s, axis.z * s, cos_angle); } } Quat::Quat(const Vector3 &v0, const Vector3 &v1) // shortest arc { Vector3 c = v0.cross(v1); real_t d = v0.dot(v1); if (d < -1.0 + CMP_EPSILON) { x = 0; y = 1; z = 0; w = 0; } else { real_t s = ::sqrt((1.0 + d) * 2.0); real_t rs = 1.0 / s; x = c.x * rs; y = c.y * rs; z = c.z * rs; w = s * 0.5; } } real_t Quat::dot(const Quat &q) const { return x * q.x + y * q.y + z * q.z + w * q.w; } real_t Quat::length_squared() const { return dot(*this); } void Quat::operator+=(const Quat &q) { x += q.x; y += q.y; z += q.z; w += q.w; } void Quat::operator-=(const Quat &q) { x -= q.x; y -= q.y; z -= q.z; w -= q.w; } void Quat::operator*=(const Quat &q) { set(w * q.x + x * q.w + y * q.z - z * q.y, w * q.y + y * q.w + z * q.x - x * q.z, w * q.z + z * q.w + x * q.y - y * q.x, w * q.w - x * q.x - y * q.y - z * q.z); } void Quat::operator*=(const real_t &s) { x *= s; y *= s; z *= s; w *= s; } void Quat::operator/=(const real_t &s) { *this *= 1.0 / s; } Quat Quat::operator+(const Quat &q2) const { const Quat &q1 = *this; return Quat(q1.x + q2.x, q1.y + q2.y, q1.z + q2.z, q1.w + q2.w); } Quat Quat::operator-(const Quat &q2) const { const Quat &q1 = *this; return Quat(q1.x - q2.x, q1.y - q2.y, q1.z - q2.z, q1.w - q2.w); } Quat Quat::operator*(const Quat &q2) const { Quat q1 = *this; q1 *= q2; return q1; } Quat Quat::operator-() const { const Quat &q2 = *this; return Quat(-q2.x, -q2.y, -q2.z, -q2.w); } Quat Quat::operator*(const real_t &s) const { return Quat(x * s, y * s, z * s, w * s); } Quat Quat::operator/(const real_t &s) const { return *this * (1.0 / s); } bool Quat::operator==(const Quat &p_quat) const { return x == p_quat.x && y == p_quat.y && z == p_quat.z && w == p_quat.w; } bool Quat::operator!=(const Quat &p_quat) const { return x != p_quat.x || y != p_quat.y || z != p_quat.z || w != p_quat.w; } } // namespace godot