#include #include #include namespace godot { // get_euler_xyz returns a vector containing the Euler angles in the format // (ax,ay,az), where ax is the angle of rotation around x axis, // and similar for other axes. // This implementation uses XYZ convention (Z is the first rotation). Vector3 Quaternion::get_euler_xyz() const { Basis m(*this); return m.get_euler_xyz(); } // get_euler_yxz returns a vector containing the Euler angles in the format // (ax,ay,az), where ax is the angle of rotation around x axis, // and similar for other axes. // This implementation uses YXZ convention (Z is the first rotation). Vector3 Quaternion::get_euler_yxz() const { #ifdef MATH_CHECKS ERR_FAIL_COND_V(!is_normalized(), Vector3(0, 0, 0)); #endif Basis m(*this); return m.get_euler_yxz(); } void Quaternion::operator*=(const Quaternion &p_q) { x = w * p_q.x + x * p_q.w + y * p_q.z - z * p_q.y; y = w * p_q.y + y * p_q.w + z * p_q.x - x * p_q.z; z = w * p_q.z + z * p_q.w + x * p_q.y - y * p_q.x; w = w * p_q.w - x * p_q.x - y * p_q.y - z * p_q.z; } Quaternion Quaternion::operator*(const Quaternion &p_q) const { Quaternion r = *this; r *= p_q; return r; } bool Quaternion::is_equal_approx(const Quaternion &p_quat) const { return Math::is_equal_approx(x, p_quat.x) && Math::is_equal_approx(y, p_quat.y) && Math::is_equal_approx(z, p_quat.z) && Math::is_equal_approx(w, p_quat.w); } real_t Quaternion::length() const { return Math::sqrt(length_squared()); } void Quaternion::normalize() { *this /= length(); } Quaternion Quaternion::normalized() const { return *this / length(); } bool Quaternion::is_normalized() const { return Math::is_equal_approx(length_squared(), 1.0, UNIT_EPSILON); //use less epsilon } Quaternion Quaternion::inverse() const { #ifdef MATH_CHECKS ERR_FAIL_COND_V(!is_normalized(), Quaternion()); #endif return Quaternion(-x, -y, -z, w); } Quaternion Quaternion::slerp(const Quaternion &p_to, const real_t &p_weight) const { #ifdef MATH_CHECKS ERR_FAIL_COND_V(!is_normalized(), Quaternion()); ERR_FAIL_COND_V(!p_to.is_normalized(), Quaternion()); #endif Quaternion to1; real_t omega, cosom, sinom, scale0, scale1; // calc cosine cosom = dot(p_to); // adjust signs (if necessary) if (cosom < 0.0) { cosom = -cosom; to1.x = -p_to.x; to1.y = -p_to.y; to1.z = -p_to.z; to1.w = -p_to.w; } else { to1.x = p_to.x; to1.y = p_to.y; to1.z = p_to.z; to1.w = p_to.w; } // calculate coefficients if ((1.0 - cosom) > CMP_EPSILON) { // standard case (slerp) omega = Math::acos(cosom); sinom = Math::sin(omega); scale0 = Math::sin((1.0 - p_weight) * omega) / sinom; scale1 = Math::sin(p_weight * omega) / sinom; } else { // "from" and "to" quaternions are very close // ... so we can do a linear interpolation scale0 = 1.0 - p_weight; scale1 = p_weight; } // calculate final values return Quaternion( scale0 * x + scale1 * to1.x, scale0 * y + scale1 * to1.y, scale0 * z + scale1 * to1.z, scale0 * w + scale1 * to1.w); } Quaternion Quaternion::slerpni(const Quaternion &p_to, const real_t &p_weight) const { #ifdef MATH_CHECKS ERR_FAIL_COND_V(!is_normalized(), Quaternion()); ERR_FAIL_COND_V(!p_to.is_normalized(), Quaternion()); #endif const Quaternion &from = *this; real_t dot = from.dot(p_to); if (Math::abs(dot) > 0.9999) { return from; } real_t theta = Math::acos(dot), sinT = 1.0 / Math::sin(theta), newFactor = Math::sin(p_weight * theta) * sinT, invFactor = Math::sin((1.0 - p_weight) * theta) * sinT; return Quaternion(invFactor * from.x + newFactor * p_to.x, invFactor * from.y + newFactor * p_to.y, invFactor * from.z + newFactor * p_to.z, invFactor * from.w + newFactor * p_to.w); } Quaternion Quaternion::cubic_slerp(const Quaternion &p_b, const Quaternion &p_pre_a, const Quaternion &p_post_b, const real_t &p_weight) const { #ifdef MATH_CHECKS ERR_FAIL_COND_V(!is_normalized(), Quaternion()); ERR_FAIL_COND_V(!p_b.is_normalized(), Quaternion()); #endif //the only way to do slerp :| real_t t2 = (1.0 - p_weight) * p_weight * 2; Quaternion sp = this->slerp(p_b, p_weight); Quaternion sq = p_pre_a.slerpni(p_post_b, p_weight); return sp.slerpni(sq, t2); } Quaternion::operator String() const { return String::num(x, 5) + ", " + String::num(y, 5) + ", " + String::num(z, 5) + ", " + String::num(w, 5); } Quaternion::Quaternion(const Vector3 &p_axis, real_t p_angle) { #ifdef MATH_CHECKS ERR_FAIL_COND(!p_axis.is_normalized()); #endif real_t d = p_axis.length(); if (d == 0) { x = 0; y = 0; z = 0; w = 0; } else { real_t sin_angle = Math::sin(p_angle * 0.5); real_t cos_angle = Math::cos(p_angle * 0.5); real_t s = sin_angle / d; x = p_axis.x * s; y = p_axis.y * s; z = p_axis.z * s; w = cos_angle; } } // Euler constructor expects a vector containing the Euler angles in the format // (ax, ay, az), where ax is the angle of rotation around x axis, // and similar for other axes. // This implementation uses YXZ convention (Z is the first rotation). Quaternion::Quaternion(const Vector3 &p_euler) { real_t half_a1 = p_euler.y * 0.5; real_t half_a2 = p_euler.x * 0.5; real_t half_a3 = p_euler.z * 0.5; // R = Y(a1).X(a2).Z(a3) convention for Euler angles. // Conversion to quaternion as listed in https://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/19770024290.pdf (page A-6) // a3 is the angle of the first rotation, following the notation in this reference. real_t cos_a1 = Math::cos(half_a1); real_t sin_a1 = Math::sin(half_a1); real_t cos_a2 = Math::cos(half_a2); real_t sin_a2 = Math::sin(half_a2); real_t cos_a3 = Math::cos(half_a3); real_t sin_a3 = Math::sin(half_a3); x = sin_a1 * cos_a2 * sin_a3 + cos_a1 * sin_a2 * cos_a3; y = sin_a1 * cos_a2 * cos_a3 - cos_a1 * sin_a2 * sin_a3; z = -sin_a1 * sin_a2 * cos_a3 + cos_a1 * cos_a2 * sin_a3; w = sin_a1 * sin_a2 * sin_a3 + cos_a1 * cos_a2 * cos_a3; } } // namespace godot