diff options
author | Juan Linietsky <reduzio@gmail.com> | 2014-02-09 22:10:30 -0300 |
---|---|---|
committer | Juan Linietsky <reduzio@gmail.com> | 2014-02-09 22:10:30 -0300 |
commit | 0b806ee0fc9097fa7bda7ac0109191c9c5e0a1ac (patch) | |
tree | 276c4d099e178eb67fbd14f61d77b05e3808e9e3 /core/pool_allocator.cpp | |
parent | 0e49da1687bc8192ed210947da52c9e5c5f301bb (diff) | |
download | redot-engine-0b806ee0fc9097fa7bda7ac0109191c9c5e0a1ac.tar.gz |
GODOT IS OPEN SOURCE
Diffstat (limited to 'core/pool_allocator.cpp')
-rw-r--r-- | core/pool_allocator.cpp | 658 |
1 files changed, 658 insertions, 0 deletions
diff --git a/core/pool_allocator.cpp b/core/pool_allocator.cpp new file mode 100644 index 0000000000..5af168ce82 --- /dev/null +++ b/core/pool_allocator.cpp @@ -0,0 +1,658 @@ +/*************************************************************************/ +/* pool_allocator.cpp */ +/*************************************************************************/ +/* This file is part of: */ +/* GODOT ENGINE */ +/* http://www.godotengine.org */ +/*************************************************************************/ +/* Copyright (c) 2007-2014 Juan Linietsky, Ariel Manzur. */ +/* */ +/* Permission is hereby granted, free of charge, to any person obtaining */ +/* a copy of this software and associated documentation files (the */ +/* "Software"), to deal in the Software without restriction, including */ +/* without limitation the rights to use, copy, modify, merge, publish, */ +/* distribute, sublicense, and/or sell copies of the Software, and to */ +/* permit persons to whom the Software is furnished to do so, subject to */ +/* the following conditions: */ +/* */ +/* The above copyright notice and this permission notice shall be */ +/* included in all copies or substantial portions of the Software. */ +/* */ +/* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, */ +/* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF */ +/* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.*/ +/* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY */ +/* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, */ +/* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE */ +/* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */ +/*************************************************************************/ +#include "pool_allocator.h" +#include "error_macros.h" +#include "core/os/os.h" +#include "os/memory.h" +#include "os/copymem.h" +#include "print_string.h" +#include <assert.h> +#define COMPACT_CHUNK( m_entry , m_to_pos ) \ +do { \ + void *_dst=&((unsigned char*)pool)[m_to_pos]; \ + void *_src=&((unsigned char*)pool)[(m_entry).pos]; \ + movemem(_dst,_src,aligned((m_entry).len)); \ + (m_entry).pos=m_to_pos; \ +} while (0); + +void PoolAllocator::mt_lock() const { + +} + +void PoolAllocator::mt_unlock() const { + +} + + +bool PoolAllocator::get_free_entry(EntryArrayPos* p_pos) { + + if (entry_count==entry_max) + return false; + + for (int i=0;i<entry_max;i++) { + + if (entry_array[i].len==0) { + *p_pos=i; + return true; + } + + } + + ERR_PRINT("Out of memory Chunks!"); + + return false; // +} + +/** + * Find a hole + * @param p_pos The hole is behind the block pointed by this variable upon return. if pos==entry_count, then allocate at end + * @param p_for_size hole size + * @return false if hole found, true if no hole found + */ +bool PoolAllocator::find_hole(EntryArrayPos *p_pos, int p_for_size) { + + /* position where previous entry ends. Defaults to zero (begin of pool) */ + + int prev_entry_end_pos=0; + + for (int i=0;i<entry_count;i++) { + + + Entry &entry=entry_array[ entry_indices[ i ] ]; + + /* determine hole size to previous entry */ + + int hole_size=entry.pos-prev_entry_end_pos; + + /* detemine if what we want fits in that hole */ + if (hole_size>=p_for_size) { + *p_pos=i; + return true; + } + + /* prepare for next one */ + prev_entry_end_pos=entry_end(entry); + } + + /* No holes between entrys, check at the end..*/ + + if ( (pool_size-prev_entry_end_pos)>=p_for_size ) { + *p_pos=entry_count; + return true; + } + + return false; + +} + + +void PoolAllocator::compact(int p_up_to) { + + uint32_t prev_entry_end_pos=0; + + if (p_up_to<0) + p_up_to=entry_count; + for (int i=0;i<p_up_to;i++) { + + + Entry &entry=entry_array[ entry_indices[ i ] ]; + + /* determine hole size to previous entry */ + + int hole_size=entry.pos-prev_entry_end_pos; + + /* if we can compact, do it */ + if (hole_size>0 && !entry.lock) { + + COMPACT_CHUNK(entry,prev_entry_end_pos); + + } + + /* prepare for next one */ + prev_entry_end_pos=entry_end(entry); + } + + +} + +void PoolAllocator::compact_up(int p_from) { + + uint32_t next_entry_end_pos=pool_size; // - static_area_size; + + for (int i=entry_count-1;i>=p_from;i--) { + + + Entry &entry=entry_array[ entry_indices[ i ] ]; + + /* determine hole size to nextious entry */ + + int hole_size=next_entry_end_pos-(entry.pos+aligned(entry.len)); + + /* if we can compact, do it */ + if (hole_size>0 && !entry.lock) { + + COMPACT_CHUNK(entry,(next_entry_end_pos-aligned(entry.len))); + + } + + /* prepare for next one */ + next_entry_end_pos=entry.pos; + } + +} + + +bool PoolAllocator::find_entry_index(EntryIndicesPos *p_map_pos,Entry *p_entry) { + + EntryArrayPos entry_pos=entry_max; + + for (int i=0;i<entry_count;i++) { + + if (&entry_array[ entry_indices[ i ] ]==p_entry) { + + entry_pos=i; + break; + } + } + + if (entry_pos==entry_max) + return false; + + *p_map_pos=entry_pos; + return true; + +} + +PoolAllocator::ID PoolAllocator::alloc(int p_size) { + + ERR_FAIL_COND_V(p_size<1,POOL_ALLOCATOR_INVALID_ID); +#ifdef DEBUG_ENABLED + if (p_size > free_mem) OS::get_singleton()->debug_break(); +#endif + ERR_FAIL_COND_V(p_size>free_mem,POOL_ALLOCATOR_INVALID_ID); + + mt_lock(); + + if (entry_count==entry_max) { + mt_unlock(); + ERR_PRINT("entry_count==entry_max"); + return POOL_ALLOCATOR_INVALID_ID; + } + + + int size_to_alloc=aligned(p_size); + + EntryIndicesPos new_entry_indices_pos; + + if (!find_hole(&new_entry_indices_pos, size_to_alloc)) { + /* No hole could be found, try compacting mem */ + compact(); + /* Then search again */ + + if (!find_hole(&new_entry_indices_pos, size_to_alloc)) { + + mt_unlock(); + ERR_PRINT("memory can't be compacted further"); + return POOL_ALLOCATOR_INVALID_ID; + } + } + + EntryArrayPos new_entry_array_pos; + + bool found_free_entry=get_free_entry(&new_entry_array_pos); + + if (!found_free_entry) { + mt_unlock(); + ERR_FAIL_COND_V( !found_free_entry , POOL_ALLOCATOR_INVALID_ID ); + } + + /* move all entry indices up, make room for this one */ + for (int i=entry_count;i>new_entry_indices_pos;i-- ) { + + entry_indices[i]=entry_indices[i-1]; + } + + entry_indices[new_entry_indices_pos]=new_entry_array_pos; + + entry_count++; + + Entry &entry=entry_array[ entry_indices[ new_entry_indices_pos ] ]; + + entry.len=p_size; + entry.pos=(new_entry_indices_pos==0)?0:entry_end(entry_array[ entry_indices[ new_entry_indices_pos-1 ] ]); //alloc either at begining or end of previous + entry.lock=0; + entry.check=(check_count++)&CHECK_MASK; + free_mem-=size_to_alloc; + if (free_mem<free_mem_peak) + free_mem_peak=free_mem; + + ID retval = (entry_indices[ new_entry_indices_pos ]<<CHECK_BITS)|entry.check; + mt_unlock(); + + //ERR_FAIL_COND_V( (uintptr_t)get(retval)%align != 0, retval ); + + return retval; + +} + +PoolAllocator::Entry * PoolAllocator::get_entry(ID p_mem) { + + unsigned int check=p_mem&CHECK_MASK; + int entry=p_mem>>CHECK_BITS; + ERR_FAIL_INDEX_V(entry,entry_max,NULL); + ERR_FAIL_COND_V(entry_array[entry].check!=check,NULL); + ERR_FAIL_COND_V(entry_array[entry].len==0,NULL); + + return &entry_array[entry]; +} + +const PoolAllocator::Entry * PoolAllocator::get_entry(ID p_mem) const { + + unsigned int check=p_mem&CHECK_MASK; + int entry=p_mem>>CHECK_BITS; + ERR_FAIL_INDEX_V(entry,entry_max,NULL); + ERR_FAIL_COND_V(entry_array[entry].check!=check,NULL); + ERR_FAIL_COND_V(entry_array[entry].len==0,NULL); + + return &entry_array[entry]; +} + +void PoolAllocator::free(ID p_mem) { + + mt_lock(); + Entry *e=get_entry(p_mem); + if (!e) { + mt_unlock(); + ERR_PRINT("!e"); + return; + } + if (e->lock) { + mt_unlock(); + ERR_PRINT("e->lock"); + return; + } + + EntryIndicesPos entry_indices_pos; + + bool index_found = find_entry_index(&entry_indices_pos,e); + if (!index_found) { + + mt_unlock(); + ERR_FAIL_COND(!index_found); + } + + + + for (int i=entry_indices_pos;i<(entry_count-1);i++) { + + entry_indices[ i ] = entry_indices[ i+1 ]; + } + + entry_count--; + free_mem+=aligned(e->len); + e->clear(); + mt_unlock(); +} + +int PoolAllocator::get_size(ID p_mem) const { + + int size; + mt_lock(); + + const Entry *e=get_entry(p_mem); + if (!e) { + + mt_unlock(); + ERR_PRINT("!e"); + return 0; + } + + size=e->len; + + mt_unlock(); + + return size; +} + +Error PoolAllocator::resize(ID p_mem,int p_new_size) { + + mt_lock(); + Entry *e=get_entry(p_mem); + + if (!e) { + mt_unlock(); + ERR_FAIL_COND_V(!e,ERR_INVALID_PARAMETER); + } + + if (needs_locking && e->lock) { + mt_unlock(); + ERR_FAIL_COND_V(e->lock,ERR_ALREADY_IN_USE); + } + + int alloc_size = aligned(p_new_size); + + if (aligned(e->len)==alloc_size) { + + e->len=p_new_size; + mt_unlock(); + return OK; + } else if (e->len>(uint32_t)p_new_size) { + + free_mem += aligned(e->len); + free_mem -= alloc_size; + e->len=p_new_size; + mt_unlock(); + return OK; + } + + //p_new_size = align(p_new_size) + int _total = pool_size; // - static_area_size; + int _free = free_mem; // - static_area_size; + + if ((_free + aligned(e->len)) - alloc_size < 0) { + mt_unlock(); + ERR_FAIL_V( ERR_OUT_OF_MEMORY ); + }; + + EntryIndicesPos entry_indices_pos; + + bool index_found = find_entry_index(&entry_indices_pos,e); + + if (!index_found) { + + mt_unlock(); + ERR_FAIL_COND_V(!index_found,ERR_BUG); + } + + //no need to move stuff around, it fits before the next block + int next_pos; + if (entry_indices_pos+1 == entry_count) { + next_pos = pool_size; // - static_area_size; + } else { + next_pos = entry_array[entry_indices[entry_indices_pos+1]].pos; + }; + + if ((next_pos - e->pos) > alloc_size) { + free_mem+=aligned(e->len); + e->len=p_new_size; + free_mem-=alloc_size; + mt_unlock(); + return OK; + } + //it doesn't fit, compact around BEFORE current index (make room behind) + + compact(entry_indices_pos+1); + + + if ((next_pos - e->pos) > alloc_size) { + //now fits! hooray! + free_mem+=aligned(e->len); + e->len=p_new_size; + free_mem-=alloc_size; + mt_unlock(); + if (free_mem<free_mem_peak) + free_mem_peak=free_mem; + return OK; + } + + //STILL doesn't fit, compact around AFTER current index (make room after) + + compact_up(entry_indices_pos+1); + + if ((entry_array[entry_indices[entry_indices_pos+1]].pos - e->pos) > alloc_size) { + //now fits! hooray! + free_mem+=aligned(e->len); + e->len=p_new_size; + free_mem-=alloc_size; + mt_unlock(); + if (free_mem<free_mem_peak) + free_mem_peak=free_mem; + return OK; + } + + mt_unlock(); + ERR_FAIL_V(ERR_OUT_OF_MEMORY); + +} + + +Error PoolAllocator::lock(ID p_mem) { + + if (!needs_locking) + return OK; + mt_lock(); + Entry *e=get_entry(p_mem); + if (!e) { + + mt_unlock(); + ERR_PRINT("!e"); + return ERR_INVALID_PARAMETER; + } + e->lock++; + mt_unlock(); + return OK; +} + +bool PoolAllocator::is_locked(ID p_mem) const { + + if (!needs_locking) + return false; + + mt_lock(); + const Entry *e=((PoolAllocator*)(this))->get_entry(p_mem); + if (!e) { + + mt_unlock(); + ERR_PRINT("!e"); + return false; + } + bool locked = e->lock; + mt_unlock(); + return locked; +} + +const void *PoolAllocator::get(ID p_mem) const { + + if (!needs_locking) { + + const Entry *e=get_entry(p_mem); + ERR_FAIL_COND_V(!e,NULL); + return &pool[e->pos]; + + } + + mt_lock(); + const Entry *e=get_entry(p_mem); + + if (!e) { + + mt_unlock(); + ERR_FAIL_COND_V(!e,NULL); + } + if (e->lock==0) { + + mt_unlock(); + ERR_PRINT( "e->lock == 0" ); + return NULL; + } + + if (e->pos<0 || (int)e->pos>=pool_size) { + + mt_unlock(); + ERR_PRINT("e->pos<0 || e->pos>=pool_size"); + return NULL; + } + const void *ptr=&pool[e->pos]; + + mt_unlock(); + + return ptr; + +} + +void *PoolAllocator::get(ID p_mem) { + + if (!needs_locking) { + + Entry *e=get_entry(p_mem); + if (!e) { + ERR_FAIL_COND_V(!e,NULL); + }; + return &pool[e->pos]; + + } + + mt_lock(); + Entry *e=get_entry(p_mem); + + if (!e) { + + mt_unlock(); + ERR_FAIL_COND_V(!e,NULL); + } + if (e->lock==0) { + + //assert(0); + mt_unlock(); + ERR_PRINT( "e->lock == 0" ); + return NULL; + } + + if (e->pos<0 || (int)e->pos>=pool_size) { + + mt_unlock(); + ERR_PRINT("e->pos<0 || e->pos>=pool_size"); + return NULL; + } + void *ptr=&pool[e->pos]; + + mt_unlock(); + + return ptr; + +} +void PoolAllocator::unlock(ID p_mem) { + + if (!needs_locking) + return; + mt_lock(); + Entry *e=get_entry(p_mem); + if (e->lock == 0 ) { + mt_unlock(); + ERR_PRINT( "e->lock == 0" ); + return; + } + e->lock--; + mt_unlock(); +} + +int PoolAllocator::get_used_mem() const { + + return pool_size-free_mem; +} + +int PoolAllocator::get_free_peak() { + + return free_mem_peak; +} + +int PoolAllocator::get_free_mem() { + + return free_mem; +} + +void PoolAllocator::create_pool(void * p_mem,int p_size,int p_max_entries) { + + pool=(uint8_t*)p_mem; + pool_size=p_size; + + entry_array = memnew_arr( Entry, p_max_entries ); + entry_indices = memnew_arr( int, p_max_entries ); + entry_max = p_max_entries; + entry_count=0; + + free_mem=p_size; + free_mem_peak=p_size; + + check_count=0; +} + +PoolAllocator::PoolAllocator(int p_size,bool p_needs_locking,int p_max_entries) { + + mem_ptr=Memory::alloc_static( p_size,"PoolAllocator()"); + ERR_FAIL_COND(!mem_ptr); + align=1; + create_pool(mem_ptr,p_size,p_max_entries); + needs_locking=p_needs_locking; + +} + +PoolAllocator::PoolAllocator(void * p_mem,int p_size, int p_align ,bool p_needs_locking,int p_max_entries) { + + if (p_align > 1) { + + uint8_t *mem8=(uint8_t*)p_mem; + uint64_t ofs = (uint64_t)mem8; + if (ofs%p_align) { + int dif = p_align-(ofs%p_align); + mem8+=p_align-(ofs%p_align); + p_size -= dif; + p_mem = (void*)mem8; + }; + }; + + create_pool( p_mem,p_size,p_max_entries); + needs_locking=p_needs_locking; + align=p_align; + mem_ptr=NULL; +} + +PoolAllocator::PoolAllocator(int p_align,int p_size,bool p_needs_locking,int p_max_entries) { + + ERR_FAIL_COND(p_align<1); + mem_ptr=Memory::alloc_static( p_size+p_align,"PoolAllocator()"); + uint8_t *mem8=(uint8_t*)mem_ptr; + uint64_t ofs = (uint64_t)mem8; + if (ofs%p_align) + mem8+=p_align-(ofs%p_align); + create_pool( mem8 ,p_size,p_max_entries); + needs_locking=p_needs_locking; + align=p_align; +} + +PoolAllocator::~PoolAllocator() { + + if (mem_ptr) + Memory::free_static( mem_ptr ); + + memdelete_arr( entry_array ); + memdelete_arr( entry_indices ); + +} + |