summaryrefslogtreecommitdiffstats
path: root/core/pool_allocator.cpp
diff options
context:
space:
mode:
authorJuan Linietsky <reduzio@gmail.com>2014-02-09 22:10:30 -0300
committerJuan Linietsky <reduzio@gmail.com>2014-02-09 22:10:30 -0300
commit0b806ee0fc9097fa7bda7ac0109191c9c5e0a1ac (patch)
tree276c4d099e178eb67fbd14f61d77b05e3808e9e3 /core/pool_allocator.cpp
parent0e49da1687bc8192ed210947da52c9e5c5f301bb (diff)
downloadredot-engine-0b806ee0fc9097fa7bda7ac0109191c9c5e0a1ac.tar.gz
GODOT IS OPEN SOURCE
Diffstat (limited to 'core/pool_allocator.cpp')
-rw-r--r--core/pool_allocator.cpp658
1 files changed, 658 insertions, 0 deletions
diff --git a/core/pool_allocator.cpp b/core/pool_allocator.cpp
new file mode 100644
index 0000000000..5af168ce82
--- /dev/null
+++ b/core/pool_allocator.cpp
@@ -0,0 +1,658 @@
+/*************************************************************************/
+/* pool_allocator.cpp */
+/*************************************************************************/
+/* This file is part of: */
+/* GODOT ENGINE */
+/* http://www.godotengine.org */
+/*************************************************************************/
+/* Copyright (c) 2007-2014 Juan Linietsky, Ariel Manzur. */
+/* */
+/* Permission is hereby granted, free of charge, to any person obtaining */
+/* a copy of this software and associated documentation files (the */
+/* "Software"), to deal in the Software without restriction, including */
+/* without limitation the rights to use, copy, modify, merge, publish, */
+/* distribute, sublicense, and/or sell copies of the Software, and to */
+/* permit persons to whom the Software is furnished to do so, subject to */
+/* the following conditions: */
+/* */
+/* The above copyright notice and this permission notice shall be */
+/* included in all copies or substantial portions of the Software. */
+/* */
+/* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, */
+/* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF */
+/* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.*/
+/* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY */
+/* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, */
+/* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE */
+/* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */
+/*************************************************************************/
+#include "pool_allocator.h"
+#include "error_macros.h"
+#include "core/os/os.h"
+#include "os/memory.h"
+#include "os/copymem.h"
+#include "print_string.h"
+#include <assert.h>
+#define COMPACT_CHUNK( m_entry , m_to_pos ) \
+do { \
+ void *_dst=&((unsigned char*)pool)[m_to_pos]; \
+ void *_src=&((unsigned char*)pool)[(m_entry).pos]; \
+ movemem(_dst,_src,aligned((m_entry).len)); \
+ (m_entry).pos=m_to_pos; \
+} while (0);
+
+void PoolAllocator::mt_lock() const {
+
+}
+
+void PoolAllocator::mt_unlock() const {
+
+}
+
+
+bool PoolAllocator::get_free_entry(EntryArrayPos* p_pos) {
+
+ if (entry_count==entry_max)
+ return false;
+
+ for (int i=0;i<entry_max;i++) {
+
+ if (entry_array[i].len==0) {
+ *p_pos=i;
+ return true;
+ }
+
+ }
+
+ ERR_PRINT("Out of memory Chunks!");
+
+ return false; //
+}
+
+/**
+ * Find a hole
+ * @param p_pos The hole is behind the block pointed by this variable upon return. if pos==entry_count, then allocate at end
+ * @param p_for_size hole size
+ * @return false if hole found, true if no hole found
+ */
+bool PoolAllocator::find_hole(EntryArrayPos *p_pos, int p_for_size) {
+
+ /* position where previous entry ends. Defaults to zero (begin of pool) */
+
+ int prev_entry_end_pos=0;
+
+ for (int i=0;i<entry_count;i++) {
+
+
+ Entry &entry=entry_array[ entry_indices[ i ] ];
+
+ /* determine hole size to previous entry */
+
+ int hole_size=entry.pos-prev_entry_end_pos;
+
+ /* detemine if what we want fits in that hole */
+ if (hole_size>=p_for_size) {
+ *p_pos=i;
+ return true;
+ }
+
+ /* prepare for next one */
+ prev_entry_end_pos=entry_end(entry);
+ }
+
+ /* No holes between entrys, check at the end..*/
+
+ if ( (pool_size-prev_entry_end_pos)>=p_for_size ) {
+ *p_pos=entry_count;
+ return true;
+ }
+
+ return false;
+
+}
+
+
+void PoolAllocator::compact(int p_up_to) {
+
+ uint32_t prev_entry_end_pos=0;
+
+ if (p_up_to<0)
+ p_up_to=entry_count;
+ for (int i=0;i<p_up_to;i++) {
+
+
+ Entry &entry=entry_array[ entry_indices[ i ] ];
+
+ /* determine hole size to previous entry */
+
+ int hole_size=entry.pos-prev_entry_end_pos;
+
+ /* if we can compact, do it */
+ if (hole_size>0 && !entry.lock) {
+
+ COMPACT_CHUNK(entry,prev_entry_end_pos);
+
+ }
+
+ /* prepare for next one */
+ prev_entry_end_pos=entry_end(entry);
+ }
+
+
+}
+
+void PoolAllocator::compact_up(int p_from) {
+
+ uint32_t next_entry_end_pos=pool_size; // - static_area_size;
+
+ for (int i=entry_count-1;i>=p_from;i--) {
+
+
+ Entry &entry=entry_array[ entry_indices[ i ] ];
+
+ /* determine hole size to nextious entry */
+
+ int hole_size=next_entry_end_pos-(entry.pos+aligned(entry.len));
+
+ /* if we can compact, do it */
+ if (hole_size>0 && !entry.lock) {
+
+ COMPACT_CHUNK(entry,(next_entry_end_pos-aligned(entry.len)));
+
+ }
+
+ /* prepare for next one */
+ next_entry_end_pos=entry.pos;
+ }
+
+}
+
+
+bool PoolAllocator::find_entry_index(EntryIndicesPos *p_map_pos,Entry *p_entry) {
+
+ EntryArrayPos entry_pos=entry_max;
+
+ for (int i=0;i<entry_count;i++) {
+
+ if (&entry_array[ entry_indices[ i ] ]==p_entry) {
+
+ entry_pos=i;
+ break;
+ }
+ }
+
+ if (entry_pos==entry_max)
+ return false;
+
+ *p_map_pos=entry_pos;
+ return true;
+
+}
+
+PoolAllocator::ID PoolAllocator::alloc(int p_size) {
+
+ ERR_FAIL_COND_V(p_size<1,POOL_ALLOCATOR_INVALID_ID);
+#ifdef DEBUG_ENABLED
+ if (p_size > free_mem) OS::get_singleton()->debug_break();
+#endif
+ ERR_FAIL_COND_V(p_size>free_mem,POOL_ALLOCATOR_INVALID_ID);
+
+ mt_lock();
+
+ if (entry_count==entry_max) {
+ mt_unlock();
+ ERR_PRINT("entry_count==entry_max");
+ return POOL_ALLOCATOR_INVALID_ID;
+ }
+
+
+ int size_to_alloc=aligned(p_size);
+
+ EntryIndicesPos new_entry_indices_pos;
+
+ if (!find_hole(&new_entry_indices_pos, size_to_alloc)) {
+ /* No hole could be found, try compacting mem */
+ compact();
+ /* Then search again */
+
+ if (!find_hole(&new_entry_indices_pos, size_to_alloc)) {
+
+ mt_unlock();
+ ERR_PRINT("memory can't be compacted further");
+ return POOL_ALLOCATOR_INVALID_ID;
+ }
+ }
+
+ EntryArrayPos new_entry_array_pos;
+
+ bool found_free_entry=get_free_entry(&new_entry_array_pos);
+
+ if (!found_free_entry) {
+ mt_unlock();
+ ERR_FAIL_COND_V( !found_free_entry , POOL_ALLOCATOR_INVALID_ID );
+ }
+
+ /* move all entry indices up, make room for this one */
+ for (int i=entry_count;i>new_entry_indices_pos;i-- ) {
+
+ entry_indices[i]=entry_indices[i-1];
+ }
+
+ entry_indices[new_entry_indices_pos]=new_entry_array_pos;
+
+ entry_count++;
+
+ Entry &entry=entry_array[ entry_indices[ new_entry_indices_pos ] ];
+
+ entry.len=p_size;
+ entry.pos=(new_entry_indices_pos==0)?0:entry_end(entry_array[ entry_indices[ new_entry_indices_pos-1 ] ]); //alloc either at begining or end of previous
+ entry.lock=0;
+ entry.check=(check_count++)&CHECK_MASK;
+ free_mem-=size_to_alloc;
+ if (free_mem<free_mem_peak)
+ free_mem_peak=free_mem;
+
+ ID retval = (entry_indices[ new_entry_indices_pos ]<<CHECK_BITS)|entry.check;
+ mt_unlock();
+
+ //ERR_FAIL_COND_V( (uintptr_t)get(retval)%align != 0, retval );
+
+ return retval;
+
+}
+
+PoolAllocator::Entry * PoolAllocator::get_entry(ID p_mem) {
+
+ unsigned int check=p_mem&CHECK_MASK;
+ int entry=p_mem>>CHECK_BITS;
+ ERR_FAIL_INDEX_V(entry,entry_max,NULL);
+ ERR_FAIL_COND_V(entry_array[entry].check!=check,NULL);
+ ERR_FAIL_COND_V(entry_array[entry].len==0,NULL);
+
+ return &entry_array[entry];
+}
+
+const PoolAllocator::Entry * PoolAllocator::get_entry(ID p_mem) const {
+
+ unsigned int check=p_mem&CHECK_MASK;
+ int entry=p_mem>>CHECK_BITS;
+ ERR_FAIL_INDEX_V(entry,entry_max,NULL);
+ ERR_FAIL_COND_V(entry_array[entry].check!=check,NULL);
+ ERR_FAIL_COND_V(entry_array[entry].len==0,NULL);
+
+ return &entry_array[entry];
+}
+
+void PoolAllocator::free(ID p_mem) {
+
+ mt_lock();
+ Entry *e=get_entry(p_mem);
+ if (!e) {
+ mt_unlock();
+ ERR_PRINT("!e");
+ return;
+ }
+ if (e->lock) {
+ mt_unlock();
+ ERR_PRINT("e->lock");
+ return;
+ }
+
+ EntryIndicesPos entry_indices_pos;
+
+ bool index_found = find_entry_index(&entry_indices_pos,e);
+ if (!index_found) {
+
+ mt_unlock();
+ ERR_FAIL_COND(!index_found);
+ }
+
+
+
+ for (int i=entry_indices_pos;i<(entry_count-1);i++) {
+
+ entry_indices[ i ] = entry_indices[ i+1 ];
+ }
+
+ entry_count--;
+ free_mem+=aligned(e->len);
+ e->clear();
+ mt_unlock();
+}
+
+int PoolAllocator::get_size(ID p_mem) const {
+
+ int size;
+ mt_lock();
+
+ const Entry *e=get_entry(p_mem);
+ if (!e) {
+
+ mt_unlock();
+ ERR_PRINT("!e");
+ return 0;
+ }
+
+ size=e->len;
+
+ mt_unlock();
+
+ return size;
+}
+
+Error PoolAllocator::resize(ID p_mem,int p_new_size) {
+
+ mt_lock();
+ Entry *e=get_entry(p_mem);
+
+ if (!e) {
+ mt_unlock();
+ ERR_FAIL_COND_V(!e,ERR_INVALID_PARAMETER);
+ }
+
+ if (needs_locking && e->lock) {
+ mt_unlock();
+ ERR_FAIL_COND_V(e->lock,ERR_ALREADY_IN_USE);
+ }
+
+ int alloc_size = aligned(p_new_size);
+
+ if (aligned(e->len)==alloc_size) {
+
+ e->len=p_new_size;
+ mt_unlock();
+ return OK;
+ } else if (e->len>(uint32_t)p_new_size) {
+
+ free_mem += aligned(e->len);
+ free_mem -= alloc_size;
+ e->len=p_new_size;
+ mt_unlock();
+ return OK;
+ }
+
+ //p_new_size = align(p_new_size)
+ int _total = pool_size; // - static_area_size;
+ int _free = free_mem; // - static_area_size;
+
+ if ((_free + aligned(e->len)) - alloc_size < 0) {
+ mt_unlock();
+ ERR_FAIL_V( ERR_OUT_OF_MEMORY );
+ };
+
+ EntryIndicesPos entry_indices_pos;
+
+ bool index_found = find_entry_index(&entry_indices_pos,e);
+
+ if (!index_found) {
+
+ mt_unlock();
+ ERR_FAIL_COND_V(!index_found,ERR_BUG);
+ }
+
+ //no need to move stuff around, it fits before the next block
+ int next_pos;
+ if (entry_indices_pos+1 == entry_count) {
+ next_pos = pool_size; // - static_area_size;
+ } else {
+ next_pos = entry_array[entry_indices[entry_indices_pos+1]].pos;
+ };
+
+ if ((next_pos - e->pos) > alloc_size) {
+ free_mem+=aligned(e->len);
+ e->len=p_new_size;
+ free_mem-=alloc_size;
+ mt_unlock();
+ return OK;
+ }
+ //it doesn't fit, compact around BEFORE current index (make room behind)
+
+ compact(entry_indices_pos+1);
+
+
+ if ((next_pos - e->pos) > alloc_size) {
+ //now fits! hooray!
+ free_mem+=aligned(e->len);
+ e->len=p_new_size;
+ free_mem-=alloc_size;
+ mt_unlock();
+ if (free_mem<free_mem_peak)
+ free_mem_peak=free_mem;
+ return OK;
+ }
+
+ //STILL doesn't fit, compact around AFTER current index (make room after)
+
+ compact_up(entry_indices_pos+1);
+
+ if ((entry_array[entry_indices[entry_indices_pos+1]].pos - e->pos) > alloc_size) {
+ //now fits! hooray!
+ free_mem+=aligned(e->len);
+ e->len=p_new_size;
+ free_mem-=alloc_size;
+ mt_unlock();
+ if (free_mem<free_mem_peak)
+ free_mem_peak=free_mem;
+ return OK;
+ }
+
+ mt_unlock();
+ ERR_FAIL_V(ERR_OUT_OF_MEMORY);
+
+}
+
+
+Error PoolAllocator::lock(ID p_mem) {
+
+ if (!needs_locking)
+ return OK;
+ mt_lock();
+ Entry *e=get_entry(p_mem);
+ if (!e) {
+
+ mt_unlock();
+ ERR_PRINT("!e");
+ return ERR_INVALID_PARAMETER;
+ }
+ e->lock++;
+ mt_unlock();
+ return OK;
+}
+
+bool PoolAllocator::is_locked(ID p_mem) const {
+
+ if (!needs_locking)
+ return false;
+
+ mt_lock();
+ const Entry *e=((PoolAllocator*)(this))->get_entry(p_mem);
+ if (!e) {
+
+ mt_unlock();
+ ERR_PRINT("!e");
+ return false;
+ }
+ bool locked = e->lock;
+ mt_unlock();
+ return locked;
+}
+
+const void *PoolAllocator::get(ID p_mem) const {
+
+ if (!needs_locking) {
+
+ const Entry *e=get_entry(p_mem);
+ ERR_FAIL_COND_V(!e,NULL);
+ return &pool[e->pos];
+
+ }
+
+ mt_lock();
+ const Entry *e=get_entry(p_mem);
+
+ if (!e) {
+
+ mt_unlock();
+ ERR_FAIL_COND_V(!e,NULL);
+ }
+ if (e->lock==0) {
+
+ mt_unlock();
+ ERR_PRINT( "e->lock == 0" );
+ return NULL;
+ }
+
+ if (e->pos<0 || (int)e->pos>=pool_size) {
+
+ mt_unlock();
+ ERR_PRINT("e->pos<0 || e->pos>=pool_size");
+ return NULL;
+ }
+ const void *ptr=&pool[e->pos];
+
+ mt_unlock();
+
+ return ptr;
+
+}
+
+void *PoolAllocator::get(ID p_mem) {
+
+ if (!needs_locking) {
+
+ Entry *e=get_entry(p_mem);
+ if (!e) {
+ ERR_FAIL_COND_V(!e,NULL);
+ };
+ return &pool[e->pos];
+
+ }
+
+ mt_lock();
+ Entry *e=get_entry(p_mem);
+
+ if (!e) {
+
+ mt_unlock();
+ ERR_FAIL_COND_V(!e,NULL);
+ }
+ if (e->lock==0) {
+
+ //assert(0);
+ mt_unlock();
+ ERR_PRINT( "e->lock == 0" );
+ return NULL;
+ }
+
+ if (e->pos<0 || (int)e->pos>=pool_size) {
+
+ mt_unlock();
+ ERR_PRINT("e->pos<0 || e->pos>=pool_size");
+ return NULL;
+ }
+ void *ptr=&pool[e->pos];
+
+ mt_unlock();
+
+ return ptr;
+
+}
+void PoolAllocator::unlock(ID p_mem) {
+
+ if (!needs_locking)
+ return;
+ mt_lock();
+ Entry *e=get_entry(p_mem);
+ if (e->lock == 0 ) {
+ mt_unlock();
+ ERR_PRINT( "e->lock == 0" );
+ return;
+ }
+ e->lock--;
+ mt_unlock();
+}
+
+int PoolAllocator::get_used_mem() const {
+
+ return pool_size-free_mem;
+}
+
+int PoolAllocator::get_free_peak() {
+
+ return free_mem_peak;
+}
+
+int PoolAllocator::get_free_mem() {
+
+ return free_mem;
+}
+
+void PoolAllocator::create_pool(void * p_mem,int p_size,int p_max_entries) {
+
+ pool=(uint8_t*)p_mem;
+ pool_size=p_size;
+
+ entry_array = memnew_arr( Entry, p_max_entries );
+ entry_indices = memnew_arr( int, p_max_entries );
+ entry_max = p_max_entries;
+ entry_count=0;
+
+ free_mem=p_size;
+ free_mem_peak=p_size;
+
+ check_count=0;
+}
+
+PoolAllocator::PoolAllocator(int p_size,bool p_needs_locking,int p_max_entries) {
+
+ mem_ptr=Memory::alloc_static( p_size,"PoolAllocator()");
+ ERR_FAIL_COND(!mem_ptr);
+ align=1;
+ create_pool(mem_ptr,p_size,p_max_entries);
+ needs_locking=p_needs_locking;
+
+}
+
+PoolAllocator::PoolAllocator(void * p_mem,int p_size, int p_align ,bool p_needs_locking,int p_max_entries) {
+
+ if (p_align > 1) {
+
+ uint8_t *mem8=(uint8_t*)p_mem;
+ uint64_t ofs = (uint64_t)mem8;
+ if (ofs%p_align) {
+ int dif = p_align-(ofs%p_align);
+ mem8+=p_align-(ofs%p_align);
+ p_size -= dif;
+ p_mem = (void*)mem8;
+ };
+ };
+
+ create_pool( p_mem,p_size,p_max_entries);
+ needs_locking=p_needs_locking;
+ align=p_align;
+ mem_ptr=NULL;
+}
+
+PoolAllocator::PoolAllocator(int p_align,int p_size,bool p_needs_locking,int p_max_entries) {
+
+ ERR_FAIL_COND(p_align<1);
+ mem_ptr=Memory::alloc_static( p_size+p_align,"PoolAllocator()");
+ uint8_t *mem8=(uint8_t*)mem_ptr;
+ uint64_t ofs = (uint64_t)mem8;
+ if (ofs%p_align)
+ mem8+=p_align-(ofs%p_align);
+ create_pool( mem8 ,p_size,p_max_entries);
+ needs_locking=p_needs_locking;
+ align=p_align;
+}
+
+PoolAllocator::~PoolAllocator() {
+
+ if (mem_ptr)
+ Memory::free_static( mem_ptr );
+
+ memdelete_arr( entry_array );
+ memdelete_arr( entry_indices );
+
+}
+