summaryrefslogtreecommitdiffstats
path: root/scene/3d/baked_light_instance.cpp
diff options
context:
space:
mode:
authorJuan Linietsky <reduzio@gmail.com>2017-01-02 19:12:25 -0300
committerJuan Linietsky <reduzio@gmail.com>2017-01-02 19:12:25 -0300
commitce26eb74bca48f16e9a34b4eb1c34e50dfc5daae (patch)
tree5f9c387037d0142d40f7275575436483dc0a7237 /scene/3d/baked_light_instance.cpp
parentab4126f51061277e87b41c48b40e7b54942d4eca (diff)
parent45c5c89de961357a7042d9e1f063e288d7a510cf (diff)
downloadredot-engine-ce26eb74bca48f16e9a34b4eb1c34e50dfc5daae.tar.gz
Merge branch 'master' of https://github.com/godotengine/godot
Diffstat (limited to 'scene/3d/baked_light_instance.cpp')
-rw-r--r--scene/3d/baked_light_instance.cpp1726
1 files changed, 1691 insertions, 35 deletions
diff --git a/scene/3d/baked_light_instance.cpp b/scene/3d/baked_light_instance.cpp
index ca3a309568..051256deb4 100644
--- a/scene/3d/baked_light_instance.cpp
+++ b/scene/3d/baked_light_instance.cpp
@@ -5,7 +5,7 @@
/* GODOT ENGINE */
/* http://www.godotengine.org */
/*************************************************************************/
-/* Copyright (c) 2007-2016 Juan Linietsky, Ariel Manzur. */
+/* Copyright (c) 2007-2017 Juan Linietsky, Ariel Manzur. */
/* */
/* Permission is hereby granted, free of charge, to any person obtaining */
/* a copy of this software and associated documentation files (the */
@@ -28,82 +28,1737 @@
/*************************************************************************/
#include "baked_light_instance.h"
#include "scene/scene_string_names.h"
+#include "mesh_instance.h"
+#include "light.h"
+#include "math.h"
+#define FINDMINMAX(x0,x1,x2,min,max) \
+ min = max = x0; \
+ if(x1<min) min=x1;\
+ if(x1>max) max=x1;\
+ if(x2<min) min=x2;\
+ if(x2>max) max=x2;
-RID BakedLightInstance::get_baked_light_instance() const {
+static bool planeBoxOverlap(Vector3 normal,float d, Vector3 maxbox)
+{
+ int q;
+ Vector3 vmin,vmax;
+ for(q=0;q<=2;q++)
+ {
+ if(normal[q]>0.0f)
+ {
+ vmin[q]=-maxbox[q];
+ vmax[q]=maxbox[q];
+ }
+ else
+ {
+ vmin[q]=maxbox[q];
+ vmax[q]=-maxbox[q];
+ }
+ }
+ if(normal.dot(vmin)+d>0.0f) return false;
+ if(normal.dot(vmax)+d>=0.0f) return true;
- if (baked_light.is_null())
- return RID();
- else
- return get_instance();
+ return false;
+}
+
+
+/*======================== X-tests ========================*/
+#define AXISTEST_X01(a, b, fa, fb) \
+ p0 = a*v0.y - b*v0.z; \
+ p2 = a*v2.y - b*v2.z; \
+ if(p0<p2) {min=p0; max=p2;} else {min=p2; max=p0;} \
+ rad = fa * boxhalfsize.y + fb * boxhalfsize.z; \
+ if(min>rad || max<-rad) return false;
+
+#define AXISTEST_X2(a, b, fa, fb) \
+ p0 = a*v0.y - b*v0.z; \
+ p1 = a*v1.y - b*v1.z; \
+ if(p0<p1) {min=p0; max=p1;} else {min=p1; max=p0;} \
+ rad = fa * boxhalfsize.y + fb * boxhalfsize.z; \
+ if(min>rad || max<-rad) return false;
+
+/*======================== Y-tests ========================*/
+#define AXISTEST_Y02(a, b, fa, fb) \
+ p0 = -a*v0.x + b*v0.z; \
+ p2 = -a*v2.x + b*v2.z; \
+ if(p0<p2) {min=p0; max=p2;} else {min=p2; max=p0;} \
+ rad = fa * boxhalfsize.x + fb * boxhalfsize.z; \
+ if(min>rad || max<-rad) return false;
+
+#define AXISTEST_Y1(a, b, fa, fb) \
+ p0 = -a*v0.x + b*v0.z; \
+ p1 = -a*v1.x + b*v1.z; \
+ if(p0<p1) {min=p0; max=p1;} else {min=p1; max=p0;} \
+ rad = fa * boxhalfsize.x + fb * boxhalfsize.z; \
+ if(min>rad || max<-rad) return false;
+
+/*======================== Z-tests ========================*/
+
+#define AXISTEST_Z12(a, b, fa, fb) \
+ p1 = a*v1.x - b*v1.y; \
+ p2 = a*v2.x - b*v2.y; \
+ if(p2<p1) {min=p2; max=p1;} else {min=p1; max=p2;} \
+ rad = fa * boxhalfsize.x + fb * boxhalfsize.y; \
+ if(min>rad || max<-rad) return false;
+
+#define AXISTEST_Z0(a, b, fa, fb) \
+ p0 = a*v0.x - b*v0.y; \
+ p1 = a*v1.x - b*v1.y; \
+ if(p0<p1) {min=p0; max=p1;} else {min=p1; max=p0;} \
+ rad = fa * boxhalfsize.x + fb * boxhalfsize.y; \
+ if(min>rad || max<-rad) return false;
+
+static bool fast_tri_box_overlap(const Vector3& boxcenter,const Vector3 boxhalfsize,const Vector3 *triverts) {
+
+ /* use separating axis theorem to test overlap between triangle and box */
+ /* need to test for overlap in these directions: */
+ /* 1) the {x,y,z}-directions (actually, since we use the AABB of the triangle */
+ /* we do not even need to test these) */
+ /* 2) normal of the triangle */
+ /* 3) crossproduct(edge from tri, {x,y,z}-directin) */
+ /* this gives 3x3=9 more tests */
+ Vector3 v0,v1,v2;
+ float min,max,d,p0,p1,p2,rad,fex,fey,fez;
+ Vector3 normal,e0,e1,e2;
+
+ /* This is the fastest branch on Sun */
+ /* move everything so that the boxcenter is in (0,0,0) */
+
+ v0=triverts[0]-boxcenter;
+ v1=triverts[1]-boxcenter;
+ v2=triverts[2]-boxcenter;
+
+ /* compute triangle edges */
+ e0=v1-v0; /* tri edge 0 */
+ e1=v2-v1; /* tri edge 1 */
+ e2=v0-v2; /* tri edge 2 */
+
+ /* Bullet 3: */
+ /* test the 9 tests first (this was faster) */
+ fex = Math::abs(e0.x);
+ fey = Math::abs(e0.y);
+ fez = Math::abs(e0.z);
+ AXISTEST_X01(e0.z, e0.y, fez, fey);
+ AXISTEST_Y02(e0.z, e0.x, fez, fex);
+ AXISTEST_Z12(e0.y, e0.x, fey, fex);
+
+ fex = Math::abs(e1.x);
+ fey = Math::abs(e1.y);
+ fez = Math::abs(e1.z);
+ AXISTEST_X01(e1.z, e1.y, fez, fey);
+ AXISTEST_Y02(e1.z, e1.x, fez, fex);
+ AXISTEST_Z0(e1.y, e1.x, fey, fex);
+
+ fex = Math::abs(e2.x);
+ fey = Math::abs(e2.y);
+ fez = Math::abs(e2.z);
+ AXISTEST_X2(e2.z, e2.y, fez, fey);
+ AXISTEST_Y1(e2.z, e2.x, fez, fex);
+ AXISTEST_Z12(e2.y, e2.x, fey, fex);
+
+ /* Bullet 1: */
+ /* first test overlap in the {x,y,z}-directions */
+ /* find min, max of the triangle each direction, and test for overlap in */
+ /* that direction -- this is equivalent to testing a minimal AABB around */
+ /* the triangle against the AABB */
+
+ /* test in X-direction */
+ FINDMINMAX(v0.x,v1.x,v2.x,min,max);
+ if(min>boxhalfsize.x || max<-boxhalfsize.x) return false;
+
+ /* test in Y-direction */
+ FINDMINMAX(v0.y,v1.y,v2.y,min,max);
+ if(min>boxhalfsize.y || max<-boxhalfsize.y) return false;
+
+ /* test in Z-direction */
+ FINDMINMAX(v0.z,v1.z,v2.z,min,max);
+ if(min>boxhalfsize.z || max<-boxhalfsize.z) return false;
+
+ /* Bullet 2: */
+ /* test if the box intersects the plane of the triangle */
+ /* compute plane equation of triangle: normal*x+d=0 */
+ normal=e0.cross(e1);
+ d=-normal.dot(v0); /* plane eq: normal.x+d=0 */
+ if(!planeBoxOverlap(normal,d,boxhalfsize)) return false;
+
+ return true; /* box and triangle overlaps */
+}
+
+
+Vector<Color> BakedLight::_get_bake_texture(Image &p_image,const Color& p_color) {
+
+ Vector<Color> ret;
+
+ if (p_image.empty()) {
+
+ ret.resize(bake_texture_size*bake_texture_size);
+ for(int i=0;i<bake_texture_size*bake_texture_size;i++) {
+ ret[i]=p_color;
+ }
+
+ return ret;
+ }
+
+ p_image.convert(Image::FORMAT_RGBA8);
+ p_image.resize(bake_texture_size,bake_texture_size,Image::INTERPOLATE_CUBIC);
+
+
+ DVector<uint8_t>::Read r = p_image.get_data().read();
+ ret.resize(bake_texture_size*bake_texture_size);
+
+ for(int i=0;i<bake_texture_size*bake_texture_size;i++) {
+ Color c;
+ c.r = r[i*4+0]/255.0;
+ c.g = r[i*4+1]/255.0;
+ c.b = r[i*4+2]/255.0;
+ c.a = r[i*4+3]/255.0;
+ ret[i]=c;
+
+ }
+
+ return ret;
+}
+
+
+BakedLight::MaterialCache BakedLight::_get_material_cache(Ref<Material> p_material) {
+
+ //this way of obtaining materials is inaccurate and also does not support some compressed formats very well
+ Ref<FixedSpatialMaterial> mat = p_material;
+
+ Ref<Material> material = mat; //hack for now
+
+ if (material_cache.has(material)) {
+ return material_cache[material];
+ }
+
+ MaterialCache mc;
+
+ if (mat.is_valid()) {
+
+
+ Ref<ImageTexture> albedo_tex = mat->get_texture(FixedSpatialMaterial::TEXTURE_ALBEDO);
+
+ Image img_albedo;
+ if (albedo_tex.is_valid()) {
+
+ img_albedo = albedo_tex->get_data();
+ }
+
+ mc.albedo=_get_bake_texture(img_albedo,mat->get_albedo());
+
+ Ref<ImageTexture> emission_tex = mat->get_texture(FixedSpatialMaterial::TEXTURE_EMISSION);
+
+ Color emission_col = mat->get_emission();
+ emission_col.r*=mat->get_emission_energy();
+ emission_col.g*=mat->get_emission_energy();
+ emission_col.b*=mat->get_emission_energy();
+
+ Image img_emission;
+
+ if (emission_tex.is_valid()) {
+
+ img_emission = emission_tex->get_data();
+ }
+
+ mc.emission=_get_bake_texture(img_emission,emission_col);
+
+ } else {
+ Image empty;
+
+ mc.albedo=_get_bake_texture(empty,Color(0.7,0.7,0.7));
+ mc.emission=_get_bake_texture(empty,Color(0,0,0));
+
+
+ }
+
+ material_cache[p_material]=mc;
+ return mc;
+
+
+}
+
+
+
+static _FORCE_INLINE_ Vector2 get_uv(const Vector3& p_pos, const Vector3 *p_vtx, const Vector2* p_uv) {
+
+ if (p_pos.distance_squared_to(p_vtx[0])<CMP_EPSILON2)
+ return p_uv[0];
+ if (p_pos.distance_squared_to(p_vtx[1])<CMP_EPSILON2)
+ return p_uv[1];
+ if (p_pos.distance_squared_to(p_vtx[2])<CMP_EPSILON2)
+ return p_uv[2];
+
+ Vector3 v0 = p_vtx[1] - p_vtx[0];
+ Vector3 v1 = p_vtx[2] - p_vtx[0];
+ Vector3 v2 = p_pos - p_vtx[0];
+
+ float d00 = v0.dot( v0);
+ float d01 = v0.dot( v1);
+ float d11 = v1.dot( v1);
+ float d20 = v2.dot( v0);
+ float d21 = v2.dot( v1);
+ float denom = (d00 * d11 - d01 * d01);
+ if (denom==0)
+ return p_uv[0];
+ float v = (d11 * d20 - d01 * d21) / denom;
+ float w = (d00 * d21 - d01 * d20) / denom;
+ float u = 1.0f - v - w;
+
+ return p_uv[0]*u + p_uv[1]*v + p_uv[2]*w;
+}
+
+void BakedLight::_plot_face(int p_idx, int p_level, const Vector3 *p_vtx, const Vector2* p_uv, const MaterialCache& p_material, const AABB &p_aabb) {
+
+
+
+ if (p_level==cell_subdiv-1) {
+ //plot the face by guessing it's albedo and emission value
+
+ //find best axis to map to, for scanning values
+ int closest_axis;
+ float closest_dot;
+
+ Vector3 normal = Plane(p_vtx[0],p_vtx[1],p_vtx[2]).normal;
+
+ for(int i=0;i<3;i++) {
+
+ Vector3 axis;
+ axis[i]=1.0;
+ float dot=ABS(normal.dot(axis));
+ if (i==0 || dot>closest_dot) {
+ closest_axis=i;
+ closest_dot=dot;
+ }
+ }
+
+ Vector3 axis;
+ axis[closest_axis]=1.0;
+ Vector3 t1;
+ t1[(closest_axis+1)%3]=1.0;
+ Vector3 t2;
+ t2[(closest_axis+2)%3]=1.0;
+
+ t1*=p_aabb.size[(closest_axis+1)%3]/float(color_scan_cell_width);
+ t2*=p_aabb.size[(closest_axis+2)%3]/float(color_scan_cell_width);
+
+ Color albedo_accum;
+ Color emission_accum;
+ float alpha=0.0;
+
+ //map to a grid average in the best axis for this face
+ for(int i=0;i<color_scan_cell_width;i++) {
+
+ Vector3 ofs_i=float(i)*t1;
+
+ for(int j=0;j<color_scan_cell_width;j++) {
+
+ Vector3 ofs_j=float(j)*t2;
+
+ Vector3 from = p_aabb.pos+ofs_i+ofs_j;
+ Vector3 to = from + t1 + t2 + axis * p_aabb.size[closest_axis];
+ Vector3 half = (to-from)*0.5;
+
+ //is in this cell?
+ if (!fast_tri_box_overlap(from+half,half,p_vtx)) {
+ continue; //face does not span this cell
+ }
+
+ //go from -size to +size*2 to avoid skipping collisions
+ Vector3 ray_from = from + (t1+t2)*0.5 - axis * p_aabb.size[closest_axis];
+ Vector3 ray_to = ray_from + axis * p_aabb.size[closest_axis]*2;
+
+ Vector3 intersection;
+
+ if (!Geometry::ray_intersects_triangle(ray_from,ray_to,p_vtx[0],p_vtx[1],p_vtx[2],&intersection)) {
+ //no intersect? look in edges
+
+ float closest_dist=1e20;
+ for(int j=0;j<3;j++) {
+ Vector3 c;
+ Vector3 inters;
+ Geometry::get_closest_points_between_segments(p_vtx[j],p_vtx[(j+1)%3],ray_from,ray_to,inters,c);
+ float d=c.distance_to(intersection);
+ if (j==0 || d<closest_dist) {
+ closest_dist=d;
+ intersection=inters;
+ }
+ }
+ }
+
+ Vector2 uv = get_uv(intersection,p_vtx,p_uv);
+
+
+ int uv_x = CLAMP(Math::fposmod(uv.x,1.0)*bake_texture_size,0,bake_texture_size-1);
+ int uv_y = CLAMP(Math::fposmod(uv.y,1.0)*bake_texture_size,0,bake_texture_size-1);
+
+ int ofs = uv_y*bake_texture_size+uv_x;
+ albedo_accum.r+=p_material.albedo[ofs].r;
+ albedo_accum.g+=p_material.albedo[ofs].g;
+ albedo_accum.b+=p_material.albedo[ofs].b;
+ albedo_accum.a+=p_material.albedo[ofs].a;
+
+ emission_accum.r+=p_material.emission[ofs].r;
+ emission_accum.g+=p_material.emission[ofs].g;
+ emission_accum.b+=p_material.emission[ofs].b;
+ alpha+=1.0;
+
+ }
+ }
+
+
+ if (alpha==0) {
+ //could not in any way get texture information.. so use closest point to center
+
+ Face3 f( p_vtx[0],p_vtx[1],p_vtx[2]);
+ Vector3 inters = f.get_closest_point_to(p_aabb.pos+p_aabb.size*0.5);
+
+ Vector2 uv = get_uv(inters,p_vtx,p_uv);
+
+ int uv_x = CLAMP(Math::fposmod(uv.x,1.0)*bake_texture_size,0,bake_texture_size-1);
+ int uv_y = CLAMP(Math::fposmod(uv.y,1.0)*bake_texture_size,0,bake_texture_size-1);
+
+ int ofs = uv_y*bake_texture_size+uv_x;
+
+ alpha = 1.0/(color_scan_cell_width*color_scan_cell_width);
+
+ albedo_accum.r=p_material.albedo[ofs].r*alpha;
+ albedo_accum.g=p_material.albedo[ofs].g*alpha;
+ albedo_accum.b=p_material.albedo[ofs].b*alpha;
+ albedo_accum.a=p_material.albedo[ofs].a*alpha;
+
+ emission_accum.r=p_material.emission[ofs].r*alpha;
+ emission_accum.g=p_material.emission[ofs].g*alpha;
+ emission_accum.b=p_material.emission[ofs].b*alpha;
+
+
+ zero_alphas++;
+ } else {
+
+ float accdiv = 1.0/(color_scan_cell_width*color_scan_cell_width);
+ alpha*=accdiv;
+
+ albedo_accum.r*=accdiv;
+ albedo_accum.g*=accdiv;
+ albedo_accum.b*=accdiv;
+ albedo_accum.a*=accdiv;
+
+ emission_accum.r*=accdiv;
+ emission_accum.g*=accdiv;
+ emission_accum.b*=accdiv;
+ }
+
+ //put this temporarily here, corrected in a later step
+ bake_cells_write[p_idx].albedo[0]+=albedo_accum.r;
+ bake_cells_write[p_idx].albedo[1]+=albedo_accum.g;
+ bake_cells_write[p_idx].albedo[2]+=albedo_accum.b;
+ bake_cells_write[p_idx].light[0]+=emission_accum.r;
+ bake_cells_write[p_idx].light[1]+=emission_accum.g;
+ bake_cells_write[p_idx].light[2]+=emission_accum.b;
+ bake_cells_write[p_idx].alpha+=alpha;
+
+ static const Vector3 side_normals[6]={
+ Vector3(-1, 0, 0),
+ Vector3( 1, 0, 0),
+ Vector3( 0,-1, 0),
+ Vector3( 0, 1, 0),
+ Vector3( 0, 0,-1),
+ Vector3( 0, 0, 1),
+ };
+
+ for(int i=0;i<6;i++) {
+ if (normal.dot(side_normals[i])>CMP_EPSILON) {
+ bake_cells_write[p_idx].used_sides|=(1<<i);
+ }
+ }
+
+
+ } else {
+ //go down
+ for(int i=0;i<8;i++) {
+
+ AABB aabb=p_aabb;
+ aabb.size*=0.5;
+
+ if (i&1)
+ aabb.pos.x+=aabb.size.x;
+ if (i&2)
+ aabb.pos.y+=aabb.size.y;
+ if (i&4)
+ aabb.pos.z+=aabb.size.z;
+
+ {
+ AABB test_aabb=aabb;
+ //test_aabb.grow_by(test_aabb.get_longest_axis_size()*0.05); //grow a bit to avoid numerical error in real-time
+ Vector3 qsize = test_aabb.size*0.5; //quarter size, for fast aabb test
+
+ if (!fast_tri_box_overlap(test_aabb.pos+qsize,qsize,p_vtx)) {
+ //if (!Face3(p_vtx[0],p_vtx[1],p_vtx[2]).intersects_aabb2(aabb)) {
+ //does not fit in child, go on
+ continue;
+ }
+
+ }
+
+ if (bake_cells_write[p_idx].childs[i]==CHILD_EMPTY) {
+ //sub cell must be created
+
+ if (bake_cells_used==(1<<bake_cells_alloc)) {
+ //exhausted cells, creating more space
+ bake_cells_alloc++;
+ bake_cells_write=DVector<BakeCell>::Write();
+ bake_cells.resize(1<<bake_cells_alloc);
+ bake_cells_write=bake_cells.write();
+ }
+
+ bake_cells_write[p_idx].childs[i]=bake_cells_used;
+ bake_cells_level_used[p_level+1]++;
+ bake_cells_used++;
+
+
+ }
+
+
+ _plot_face(bake_cells_write[p_idx].childs[i],p_level+1,p_vtx,p_uv,p_material,aabb);
+ }
+ }
+}
+
+
+
+void BakedLight::_fixup_plot(int p_idx, int p_level,int p_x,int p_y, int p_z) {
+
+
+
+ if (p_level==cell_subdiv-1) {
+
+
+ float alpha = bake_cells_write[p_idx].alpha;
+
+ bake_cells_write[p_idx].albedo[0]/=alpha;
+ bake_cells_write[p_idx].albedo[1]/=alpha;
+ bake_cells_write[p_idx].albedo[2]/=alpha;
+
+ //transfer emission to light
+ bake_cells_write[p_idx].light[0]/=alpha;
+ bake_cells_write[p_idx].light[1]/=alpha;
+ bake_cells_write[p_idx].light[2]/=alpha;
+
+ bake_cells_write[p_idx].alpha=1.0;
+
+ //remove neighbours from used sides
+
+ for(int n=0;n<6;n++) {
+
+ int ofs[3]={0,0,0};
+
+ ofs[n/2]=(n&1)?1:-1;
+
+ //convert to x,y,z on this level
+ int x=p_x;
+ int y=p_y;
+ int z=p_z;
+
+ x+=ofs[0];
+ y+=ofs[1];
+ z+=ofs[2];
+
+ int ofs_x=0;
+ int ofs_y=0;
+ int ofs_z=0;
+ int size = 1<<p_level;
+ int half=size/2;
+
+
+ if (x<0 || x>=size || y<0 || y>=size || z<0 || z>=size) {
+ //neighbour is out, can't use it
+ bake_cells_write[p_idx].used_sides&=~(1<<uint32_t(n));
+ continue;
+ }
+
+ uint32_t neighbour=0;
+
+ for(int i=0;i<cell_subdiv-1;i++) {
+
+ BakeCell *bc = &bake_cells_write[neighbour];
+
+ int child = 0;
+ if (x >= ofs_x + half) {
+ child|=1;
+ ofs_x+=half;
+ }
+ if (y >= ofs_y + half) {
+ child|=2;
+ ofs_y+=half;
+ }
+ if (z >= ofs_z + half) {
+ child|=4;
+ ofs_z+=half;
+ }
+
+ neighbour = bc->childs[child];
+ if (neighbour==CHILD_EMPTY) {
+ break;
+ }
+
+ half>>=1;
+ }
+
+ if (neighbour!=CHILD_EMPTY) {
+ bake_cells_write[p_idx].used_sides&=~(1<<uint32_t(n));
+ }
+ }
+ } else {
+
+
+ //go down
+
+ float alpha_average=0;
+ int half = cells_per_axis >> (p_level+1);
+ for(int i=0;i<8;i++) {
+
+ uint32_t child = bake_cells_write[p_idx].childs[i];
+
+ if (child==CHILD_EMPTY)
+ continue;
+
+
+ int nx=p_x;
+ int ny=p_y;
+ int nz=p_z;
+
+ if (i&1)
+ nx+=half;
+ if (i&2)
+ ny+=half;
+ if (i&4)
+ nz+=half;
+
+ _fixup_plot(child,p_level+1,nx,ny,nz);
+ alpha_average+=bake_cells_write[child].alpha;
+ }
+
+ bake_cells_write[p_idx].alpha=alpha_average/8.0;
+ bake_cells_write[p_idx].light[0]=0;
+ bake_cells_write[p_idx].light[1]=0;
+ bake_cells_write[p_idx].light[2]=0;
+ bake_cells_write[p_idx].albedo[0]=0;
+ bake_cells_write[p_idx].albedo[1]=0;
+ bake_cells_write[p_idx].albedo[2]=0;
+
+ }
+
+ //clean up light
+ bake_cells_write[p_idx].light_pass=0;
+ //find neighbours
+
+
+
+}
+
+
+void BakedLight::_bake_add_mesh(const Transform& p_xform,Ref<Mesh>& p_mesh) {
+
+
+ for(int i=0;i<p_mesh->get_surface_count();i++) {
+
+ if (p_mesh->surface_get_primitive_type(i)!=Mesh::PRIMITIVE_TRIANGLES)
+ continue; //only triangles
+
+ MaterialCache material = _get_material_cache(p_mesh->surface_get_material(i));
+
+ Array a = p_mesh->surface_get_arrays(i);
+
+
+ DVector<Vector3> vertices = a[Mesh::ARRAY_VERTEX];
+ DVector<Vector3>::Read vr=vertices.read();
+ DVector<Vector2> uv = a[Mesh::ARRAY_TEX_UV];
+ DVector<Vector2>::Read uvr;
+ DVector<int> index = a[Mesh::ARRAY_INDEX];
+
+ bool read_uv=false;
+
+ if (uv.size()) {
+
+ uvr=uv.read();
+ read_uv=true;
+ }
+
+ if (index.size()) {
+
+ int facecount = index.size()/3;
+ DVector<int>::Read ir=index.read();
+
+ for(int j=0;j<facecount;j++) {
+
+ Vector3 vtxs[3];
+ Vector2 uvs[3];
+
+ for(int k=0;k<3;k++) {
+ vtxs[k]=p_xform.xform(vr[ir[j*3+k]]);
+ }
+
+ if (read_uv) {
+ for(int k=0;k<3;k++) {
+ uvs[k]=uvr[ir[j*3+k]];
+ }
+ }
+
+ //plot face
+ _plot_face(0,0,vtxs,uvs,material,bounds);
+ }
+
+
+
+ } else {
+
+ int facecount = vertices.size()/3;
+
+ for(int j=0;j<facecount;j++) {
+
+ Vector3 vtxs[3];
+ Vector2 uvs[3];
+
+ for(int k=0;k<3;k++) {
+ vtxs[k]=p_xform.xform(vr[j*3+k]);
+ }
+
+ if (read_uv) {
+ for(int k=0;k<3;k++) {
+ uvs[k]=uvr[j*3+k];
+ }
+ }
+
+ //plot face
+ _plot_face(0,0,vtxs,uvs,material,bounds);
+ }
+
+ }
+ }
+}
+
+
+
+void BakedLight::_bake_add_to_aabb(const Transform& p_xform,Ref<Mesh>& p_mesh,bool &first) {
+
+ for(int i=0;i<p_mesh->get_surface_count();i++) {
+
+ if (p_mesh->surface_get_primitive_type(i)!=Mesh::PRIMITIVE_TRIANGLES)
+ continue; //only triangles
+
+ Array a = p_mesh->surface_get_arrays(i);
+ DVector<Vector3> vertices = a[Mesh::ARRAY_VERTEX];
+ int vc = vertices.size();
+ DVector<Vector3>::Read vr=vertices.read();
+
+ if (first) {
+ bounds.pos=p_xform.xform(vr[0]);
+ first=false;
+ }
+
+
+ for(int j=0;j<vc;j++) {
+ bounds.expand_to(p_xform.xform(vr[j]));
+ }
+ }
+}
+
+void BakedLight::bake() {
+
+
+ bake_cells_alloc=16;
+ bake_cells.resize(1<<bake_cells_alloc);
+ bake_cells_used=1;
+ cells_per_axis=(1<<(cell_subdiv-1));
+ zero_alphas=0;
+
+ bool aabb_first=true;
+ print_line("Generating AABB");
+
+ bake_cells_level_used.resize(cell_subdiv);
+ for(int i=0;i<cell_subdiv;i++) {
+ bake_cells_level_used[i]=0;
+ }
+
+ int count=0;
+ for (Set<GeometryInstance*>::Element *E=geometries.front();E;E=E->next()) {
+
+ print_line("aabb geom "+itos(count)+"/"+itos(geometries.size()));
+
+ GeometryInstance *geom = E->get();
+
+ if (geom->cast_to<MeshInstance>()) {
+
+ MeshInstance *mesh_instance = geom->cast_to<MeshInstance>();
+ Ref<Mesh> mesh = mesh_instance->get_mesh();
+ if (mesh.is_valid()) {
+
+ _bake_add_to_aabb(geom->get_relative_transform(this),mesh,aabb_first);
+ }
+ }
+ count++;
+ }
+
+ print_line("AABB: "+bounds);
+ ERR_FAIL_COND(aabb_first);
+
+ bake_cells_write = bake_cells.write();
+ count=0;
+
+ for (Set<GeometryInstance*>::Element *E=geometries.front();E;E=E->next()) {
+
+ GeometryInstance *geom = E->get();
+ print_line("plot geom "+itos(count)+"/"+itos(geometries.size()));
+
+ if (geom->cast_to<MeshInstance>()) {
+
+ MeshInstance *mesh_instance = geom->cast_to<MeshInstance>();
+ Ref<Mesh> mesh = mesh_instance->get_mesh();
+ if (mesh.is_valid()) {
+
+ _bake_add_mesh(geom->get_relative_transform(this),mesh);
+ }
+ }
+
+ count++;
+ }
+
+
+ _fixup_plot(0, 0,0,0,0);
+
+
+ bake_cells_write=DVector<BakeCell>::Write();
+
+ bake_cells.resize(bake_cells_used);
+
+
+
+ print_line("total bake cells used: "+itos(bake_cells_used));
+ for(int i=0;i<cell_subdiv;i++) {
+ print_line("level "+itos(i)+": "+itos(bake_cells_level_used[i]));
+ }
+ print_line("zero alphas: "+itos(zero_alphas));
+
+
+
+}
+
+
+
+void BakedLight::_bake_directional(int p_idx, int p_level, int p_x,int p_y,int p_z,const Vector3& p_dir,const Color& p_color,int p_sign) {
+
+
+
+
+ if (p_level==cell_subdiv-1) {
+
+ Vector3 end;
+ end.x = float(p_x+0.5) / cells_per_axis;
+ end.y = float(p_y+0.5) / cells_per_axis;
+ end.z = float(p_z+0.5) / cells_per_axis;
+
+ end = bounds.pos + bounds.size*end;
+
+ float max_ray_len = (bounds.size).length()*1.2;
+ Vector3 begin = end + max_ray_len*-p_dir;
+
+ //clip begin
+
+ for(int i=0;i<3;i++) {
+
+ if (ABS(p_dir[i])<CMP_EPSILON) {
+ continue; // parallel to axis, don't clip
+ }
+
+ Plane p;
+ p.normal[i]=1.0;
+ p.d=bounds.pos[i];
+ if (p_dir[i]<0) {
+ p.d+=bounds.size[i];
+ }
+
+ Vector3 inters;
+ if (p.intersects_segment(end,begin,&inters)) {
+ begin=inters;
+ }
+
+ }
+
+
+ int idx = _plot_ray(begin,end);
+
+ if (idx>=0 && light_pass!=bake_cells_write[idx].light_pass) {
+ //hit something, add or remove light to it
+
+ Color albedo = Color(bake_cells_write[idx].albedo[0],bake_cells_write[idx].albedo[1],bake_cells_write[idx].albedo[2]);
+ bake_cells_write[idx].light[0]+=albedo.r*p_color.r*p_sign;
+ bake_cells_write[idx].light[1]+=albedo.g*p_color.g*p_sign;
+ bake_cells_write[idx].light[2]+=albedo.b*p_color.b*p_sign;
+ bake_cells_write[idx].light_pass=light_pass;
+
+ }
+
+
+ } else {
+
+ int half = cells_per_axis >> (p_level+1);
+
+ //go down
+ for(int i=0;i<8;i++) {
+
+ uint32_t child = bake_cells_write[p_idx].childs[i];
+
+ if (child==CHILD_EMPTY)
+ continue;
+
+ int nx=p_x;
+ int ny=p_y;
+ int nz=p_z;
+
+ if (i&1)
+ nx+=half;
+ if (i&2)
+ ny+=half;
+ if (i&4)
+ nz+=half;
+
+
+ _bake_directional(child,p_level+1,nx,ny,nz,p_dir,p_color,p_sign);
+ }
+ }
+}
+
+
+
+
+void BakedLight::_bake_light(Light* p_light) {
+
+ if (p_light->cast_to<DirectionalLight>()) {
+
+ DirectionalLight * dl = p_light->cast_to<DirectionalLight>();
+
+ Transform rel_xf = dl->get_relative_transform(this);
+
+ Vector3 light_dir = -rel_xf.basis.get_axis(2);
+
+ Color color = dl->get_color();
+ float nrg = dl->get_param(Light::PARAM_ENERGY);;
+ color.r*=nrg;
+ color.g*=nrg;
+ color.b*=nrg;
+
+ light_pass++;
+ _bake_directional(0,0,0,0,0,light_dir,color,1);
+
+ }
+}
+
+
+void BakedLight::_upscale_light(int p_idx,int p_level) {
+
+
+ //go down
+
+ float light_accum[3]={0,0,0};
+ float alpha_accum=0;
+
+ bool check_children = p_level < (cell_subdiv -2);
+
+ for(int i=0;i<8;i++) {
+
+ uint32_t child = bake_cells_write[p_idx].childs[i];
+
+ if (child==CHILD_EMPTY)
+ continue;
+
+ if (check_children) {
+ _upscale_light(child,p_level+1);
+ }
+
+ light_accum[0]+=bake_cells_write[child].light[0];
+ light_accum[1]+=bake_cells_write[child].light[1];
+ light_accum[2]+=bake_cells_write[child].light[2];
+ alpha_accum+=bake_cells_write[child].alpha;
+
+ }
+
+ bake_cells_write[p_idx].light[0]=light_accum[0]/8.0;
+ bake_cells_write[p_idx].light[1]=light_accum[1]/8.0;
+ bake_cells_write[p_idx].light[2]=light_accum[2]/8.0;
+ bake_cells_write[p_idx].alpha=alpha_accum/8.0;
+
+}
+
+
+void BakedLight::bake_lights() {
+
+ ERR_FAIL_COND(bake_cells.size()==0);
+
+ bake_cells_write = bake_cells.write();
+
+ for(Set<Light*>::Element *E=lights.front();E;E=E->next()) {
+
+ _bake_light(E->get());
+ }
+
+
+ _upscale_light(0,0);
+
+ bake_cells_write=DVector<BakeCell>::Write();
+
+}
+
+
+
+Color BakedLight::_cone_trace(const Vector3& p_from, const Vector3& p_dir, float p_half_angle) {
+
+
+ Color color(0,0,0,0);
+ float tha = Math::tan(p_half_angle);//tan half angle
+ Vector3 from =(p_from-bounds.pos)/bounds.size; //convert to 0..1
+ from/=cells_per_axis; //convert to voxels of size 1
+ Vector3 dir = (p_dir/bounds.size).normalized();
+
+ float max_dist = Vector3(cells_per_axis,cells_per_axis,cells_per_axis).length();
+
+ float dist = 1.0;
+ // self occlusion in flat surfaces
+
+ float alpha=0;
+
+
+ while(dist < max_dist && alpha < 0.95) {
+
+#if 0
+ // smallest sample diameter possible is the voxel size
+ float diameter = MAX(1.0, 2.0 * tha * dist);
+ float lod = log2(diameter);
+
+ Vector3 sample_pos = from + dist * dir;
+
+
+ Color samples_base[2][8]={{Color(0,0,0,0),Color(0,0,0,0),Color(0,0,0,0),Color(0,0,0,0),Color(0,0,0,0),Color(0,0,0,0),Color(0,0,0,0),Color(0,0,0,0)},
+ {Color(0,0,0,0),Color(0,0,0,0),Color(0,0,0,0),Color(0,0,0,0),Color(0,0,0,0),Color(0,0,0,0),Color(0,0,0,0),Color(0,0,0,0)}};
+
+ float levelf = Math::fposmod(lod,1.0);
+ float fx = Math::fposmod(sample_pos.x,1.0);
+ float fy = Math::fposmod(sample_pos.y,1.0);
+ float fz = Math::fposmod(sample_pos.z,1.0);
+
+ for(int l=0;l<2;l++){
+
+ int bx = Math::floor(sample_pos.x);
+ int by = Math::floor(sample_pos.y);
+ int bz = Math::floor(sample_pos.z);
+
+ int lodn=int(Math::floor(lod))-l;
+
+ bx>>=lodn;
+ by>>=lodn;
+ bz>>=lodn;
+
+ int limit = MAX(0,cell_subdiv-lodn-1);
+
+ for(int c=0;c<8;c++) {
+
+ int x = bx;
+ int y = by;
+ int z = bz;
+
+ if (c&1) {
+ x+=1;
+ }
+ if (c&2) {
+ y+=1;
+ }
+ if (c&4) {
+ z+=1;
+ }
+
+ int ofs_x=0;
+ int ofs_y=0;
+ int ofs_z=0;
+ int size = cells_per_axis>>lodn;
+ int half=size/2;
+
+ bool outside=x<0 || x>=size || y<0 || y>=size || z<0 || z>=size;
+
+ if (outside)
+ continue;
+
+
+ uint32_t cell=0;
+
+ for(int i=0;i<limit;i++) {
+
+ BakeCell *bc = &bake_cells_write[cell];
+
+ int child = 0;
+ if (x >= ofs_x + half) {
+ child|=1;
+ ofs_x+=half;
+ }
+ if (y >= ofs_y + half) {
+ child|=2;
+ ofs_y+=half;
+ }
+ if (z >= ofs_z + half) {
+ child|=4;
+ ofs_z+=half;
+ }
+
+ cell = bc->childs[child];
+ if (cell==CHILD_EMPTY)
+ break;
+
+ half>>=1;
+ }
+
+ if (cell!=CHILD_EMPTY) {
+
+ samples_base[l][c].r=bake_cells_write[cell].light[0];
+ samples_base[l][c].g=bake_cells_write[cell].light[1];
+ samples_base[l][c].b=bake_cells_write[cell].light[2];
+ samples_base[l][c].a=bake_cells_write[cell].alpha;
+ }
+
+ }
+
+
+ }
+
+ Color m0x0 = samples_base[0][0].linear_interpolate(samples_base[0][1],fx);
+ Color m0x1 = samples_base[0][2].linear_interpolate(samples_base[0][3],fx);
+ Color m0y0 = m0x0.linear_interpolate(m0x1,fy);
+ m0x0 = samples_base[0][4].linear_interpolate(samples_base[0][5],fx);
+ m0x1 = samples_base[0][6].linear_interpolate(samples_base[0][7],fx);
+ Color m0y1 = m0x0.linear_interpolate(m0x1,fy);
+ Color m0z = m0y0.linear_interpolate(m0y1,fz);
+
+ Color m1x0 = samples_base[1][0].linear_interpolate(samples_base[1][1],fx);
+ Color m1x1 = samples_base[1][2].linear_interpolate(samples_base[1][3],fx);
+ Color m1y0 = m1x0.linear_interpolate(m1x1,fy);
+ m1x0 = samples_base[1][4].linear_interpolate(samples_base[1][5],fx);
+ m1x1 = samples_base[1][6].linear_interpolate(samples_base[1][7],fx);
+ Color m1y1 = m1x0.linear_interpolate(m1x1,fy);
+ Color m1z = m1y0.linear_interpolate(m1y1,fz);
+
+ Color m = m0z.linear_interpolate(m1z,levelf);
+#else
+ float diameter = 1.0;
+ Vector3 sample_pos = from + dist * dir;
+
+ Color m(0,0,0,0);
+ {
+ int x = Math::floor(sample_pos.x);
+ int y = Math::floor(sample_pos.y);
+ int z = Math::floor(sample_pos.z);
+
+ int ofs_x=0;
+ int ofs_y=0;
+ int ofs_z=0;
+ int size = cells_per_axis;
+ int half=size/2;
+
+ bool outside=x<0 || x>=size || y<0 || y>=size || z<0 || z>=size;
+
+ if (!outside) {
+
+
+ uint32_t cell=0;
+
+ for(int i=0;i<cell_subdiv-1;i++) {
+
+ BakeCell *bc = &bake_cells_write[cell];
+
+ int child = 0;
+ if (x >= ofs_x + half) {
+ child|=1;
+ ofs_x+=half;
+ }
+ if (y >= ofs_y + half) {
+ child|=2;
+ ofs_y+=half;
+ }
+ if (z >= ofs_z + half) {
+ child|=4;
+ ofs_z+=half;
+ }
+
+ cell = bc->childs[child];
+ if (cell==CHILD_EMPTY)
+ break;
+
+ half>>=1;
+ }
+
+ if (cell!=CHILD_EMPTY) {
+
+ m.r=bake_cells_write[cell].light[0];
+ m.g=bake_cells_write[cell].light[1];
+ m.b=bake_cells_write[cell].light[2];
+ m.a=bake_cells_write[cell].alpha;
+ }
+ }
+ }
+
+#endif
+ // front-to-back compositing
+ float a = (1.0 - alpha);
+ color.r += a * m.r;
+ color.g += a * m.g;
+ color.b += a * m.b;
+ alpha += a * m.a;
+ //occlusion += a * voxelColor.a;
+ //occlusion += (a * voxelColor.a) / (1.0 + 0.03 * diameter);
+ dist += diameter * 0.5; // smoother
+ //dist += diameter; // faster but misses more voxels
+ }
+
+ return color;
+}
+
+
+
+void BakedLight::_bake_radiance(int p_idx, int p_level, int p_x,int p_y,int p_z) {
+
+
+
+
+ if (p_level==cell_subdiv-1) {
+
+ const int NUM_CONES = 6;
+ Vector3 cone_directions[6] = {
+ Vector3(1, 0, 0),
+ Vector3(0.5, 0.866025, 0),
+ Vector3( 0.5, 0.267617, 0.823639),
+ Vector3( 0.5, -0.700629, 0.509037),
+ Vector3( 0.5, -0.700629, -0.509037),
+ Vector3( 0.5, 0.267617, -0.823639)
+ };
+ float coneWeights[6] = {0.25, 0.15, 0.15, 0.15, 0.15, 0.15};
+
+ Vector3 pos = (Vector3(p_x,p_y,p_z)/float(cells_per_axis))*bounds.size+bounds.pos;
+ Vector3 voxel_size = bounds.size/float(cells_per_axis);
+ pos+=voxel_size*0.5;
+
+ Color accum;
+
+ bake_cells_write[p_idx].light[0]=0;
+ bake_cells_write[p_idx].light[1]=0;
+ bake_cells_write[p_idx].light[2]=0;
+
+ int freepix=0;
+ for(int i=0;i<6;i++) {
+
+ if (!(bake_cells_write[p_idx].used_sides&(1<<i)))
+ continue;
+
+ if ((i&1)==0)
+ bake_cells_write[p_idx].light[i/2]=1.0;
+ freepix++;
+ continue;
+
+ int ofs = i/2;
+
+ Vector3 dir;
+ if ((i&1)==0)
+ dir[ofs]=1.0;
+ else
+ dir[ofs]=-1.0;
+
+ for(int j=0;j<1;j++) {
+
+
+ Vector3 cone_dir;
+ cone_dir.x = cone_directions[j][(ofs+0)%3];
+ cone_dir.y = cone_directions[j][(ofs+1)%3];
+ cone_dir.z = cone_directions[j][(ofs+2)%3];
+
+ cone_dir[ofs]*=dir[ofs];
+
+ Color res = _cone_trace(pos+dir*voxel_size,cone_dir,Math::deg2rad(29.9849));
+ accum.r+=res.r;//*coneWeights[j];
+ accum.g+=res.g;//*coneWeights[j];
+ accum.b+=res.b;//*coneWeights[j];
+ }
+
+
+ }
+#if 0
+ if (freepix==0) {
+ bake_cells_write[p_idx].light[0]=0;
+ bake_cells_write[p_idx].light[1]=0;
+ bake_cells_write[p_idx].light[2]=0;
+ }
+
+ if (freepix==1) {
+ bake_cells_write[p_idx].light[0]=1;
+ bake_cells_write[p_idx].light[1]=0;
+ bake_cells_write[p_idx].light[2]=0;
+ }
+
+ if (freepix==2) {
+ bake_cells_write[p_idx].light[0]=0;
+ bake_cells_write[p_idx].light[1]=1;
+ bake_cells_write[p_idx].light[2]=0;
+ }
+
+ if (freepix==3) {
+ bake_cells_write[p_idx].light[0]=1;
+ bake_cells_write[p_idx].light[1]=1;
+ bake_cells_write[p_idx].light[2]=0;
+ }
+
+ if (freepix==4) {
+ bake_cells_write[p_idx].light[0]=0;
+ bake_cells_write[p_idx].light[1]=0;
+ bake_cells_write[p_idx].light[2]=1;
+ }
+
+ if (freepix==5) {
+ bake_cells_write[p_idx].light[0]=1;
+ bake_cells_write[p_idx].light[1]=0;
+ bake_cells_write[p_idx].light[2]=1;
+ }
+
+ if (freepix==6) {
+ bake_cells_write[p_idx].light[0]=0;
+ bake_cells_write[p_idx].light[0]=1;
+ bake_cells_write[p_idx].light[0]=1;
+ }
+#endif
+ //bake_cells_write[p_idx].radiance[0]=accum.r;
+ //bake_cells_write[p_idx].radiance[1]=accum.g;
+ //bake_cells_write[p_idx].radiance[2]=accum.b;
+
+
+ } else {
+
+ int half = cells_per_axis >> (p_level+1);
+
+ //go down
+ for(int i=0;i<8;i++) {
+
+ uint32_t child = bake_cells_write[p_idx].childs[i];
+
+ if (child==CHILD_EMPTY)
+ continue;
+
+ int nx=p_x;
+ int ny=p_y;
+ int nz=p_z;
+
+ if (i&1)
+ nx+=half;
+ if (i&2)
+ ny+=half;
+ if (i&4)
+ nz+=half;
+
+
+ _bake_radiance(child,p_level+1,nx,ny,nz);
+ }
+ }
}
-void BakedLightInstance::set_baked_light(const Ref<BakedLight>& p_baked_light) {
+void BakedLight::bake_radiance() {
+
+ ERR_FAIL_COND(bake_cells.size()==0);
- baked_light=p_baked_light;
+ bake_cells_write = bake_cells.write();
+
+ _bake_radiance(0,0,0,0,0);
+
+ bake_cells_write=DVector<BakeCell>::Write();
+
+}
+int BakedLight::_find_cell(int x,int y, int z) {
- RID base_rid;
- if (baked_light.is_valid())
- base_rid=baked_light->get_rid();
- else
- base_rid=RID();
+ uint32_t cell=0;
- set_base(base_rid);
+ int ofs_x=0;
+ int ofs_y=0;
+ int ofs_z=0;
+ int size = cells_per_axis;
+ int half=size/2;
- if (is_inside_world()) {
+ if (x<0 || x>=size)
+ return -1;
+ if (y<0 || y>=size)
+ return -1;
+ if (z<0 || z>=size)
+ return -1;
- emit_signal(SceneStringNames::get_singleton()->baked_light_changed);
+ for(int i=0;i<cell_subdiv-1;i++) {
-// for (List<Node*>::Element *E=baked_geometry.front();E;E=E->next()) {
-// VS::get_singleton()->instance_geometry_set_baked_light(E->get()->get_instance(),baked_light.is_valid()?get_instance():RID());
-// }
+ BakeCell *bc = &bake_cells_write[cell];
+
+ int child = 0;
+ if (x >= ofs_x + half) {
+ child|=1;
+ ofs_x+=half;
+ }
+ if (y >= ofs_y + half) {
+ child|=2;
+ ofs_y+=half;
+ }
+ if (z >= ofs_z + half) {
+ child|=4;
+ ofs_z+=half;
+ }
+
+ cell = bc->childs[child];
+ if (cell==CHILD_EMPTY)
+ return -1;
+
+ half>>=1;
}
- update_configuration_warning();
+ return cell;
+
}
-Ref<BakedLight> BakedLightInstance::get_baked_light() const{
- return baked_light;
+int BakedLight::_plot_ray(const Vector3& p_from, const Vector3& p_to) {
+
+ Vector3 from = (p_from - bounds.pos) / bounds.size;
+ Vector3 to = (p_to - bounds.pos) / bounds.size;
+
+ int x1 = Math::floor(from.x*cells_per_axis);
+ int y1 = Math::floor(from.y*cells_per_axis);
+ int z1 = Math::floor(from.z*cells_per_axis);
+
+ int x2 = Math::floor(to.x*cells_per_axis);
+ int y2 = Math::floor(to.y*cells_per_axis);
+ int z2 = Math::floor(to.z*cells_per_axis);
+
+
+ int i, dx, dy, dz, l, m, n, x_inc, y_inc, z_inc, err_1, err_2, dx2, dy2, dz2;
+ int point[3];
+
+ point[0] = x1;
+ point[1] = y1;
+ point[2] = z1;
+ dx = x2 - x1;
+ dy = y2 - y1;
+ dz = z2 - z1;
+ x_inc = (dx < 0) ? -1 : 1;
+ l = ABS(dx);
+ y_inc = (dy < 0) ? -1 : 1;
+ m = ABS(dy);
+ z_inc = (dz < 0) ? -1 : 1;
+ n = ABS(dz);
+ dx2 = l << 1;
+ dy2 = m << 1;
+ dz2 = n << 1;
+
+ if ((l >= m) && (l >= n)) {
+ err_1 = dy2 - l;
+ err_2 = dz2 - l;
+ for (i = 0; i < l; i++) {
+ int cell = _find_cell(point[0],point[1],point[2]);
+ if (cell>=0)
+ return cell;
+
+ if (err_1 > 0) {
+ point[1] += y_inc;
+ err_1 -= dx2;
+ }
+ if (err_2 > 0) {
+ point[2] += z_inc;
+ err_2 -= dx2;
+ }
+ err_1 += dy2;
+ err_2 += dz2;
+ point[0] += x_inc;
+ }
+ } else if ((m >= l) && (m >= n)) {
+ err_1 = dx2 - m;
+ err_2 = dz2 - m;
+ for (i = 0; i < m; i++) {
+ int cell = _find_cell(point[0],point[1],point[2]);
+ if (cell>=0)
+ return cell;
+ if (err_1 > 0) {
+ point[0] += x_inc;
+ err_1 -= dy2;
+ }
+ if (err_2 > 0) {
+ point[2] += z_inc;
+ err_2 -= dy2;
+ }
+ err_1 += dx2;
+ err_2 += dz2;
+ point[1] += y_inc;
+ }
+ } else {
+ err_1 = dy2 - n;
+ err_2 = dx2 - n;
+ for (i = 0; i < n; i++) {
+ int cell = _find_cell(point[0],point[1],point[2]);
+ if (cell>=0)
+ return cell;
+
+ if (err_1 > 0) {
+ point[1] += y_inc;
+ err_1 -= dz2;
+ }
+ if (err_2 > 0) {
+ point[0] += x_inc;
+ err_2 -= dz2;
+ }
+ err_1 += dy2;
+ err_2 += dx2;
+ point[2] += z_inc;
+ }
+ }
+ return _find_cell(point[0],point[1],point[2]);
+
}
-AABB BakedLightInstance::get_aabb() const {
+
+void BakedLight::set_cell_subdiv(int p_subdiv) {
+
+ cell_subdiv=p_subdiv;
+
+// VS::get_singleton()->baked_light_set_subdivision(baked_light,p_subdiv);
+}
+
+int BakedLight::get_cell_subdiv() const {
+
+ return cell_subdiv;
+}
+
+
+
+AABB BakedLight::get_aabb() const {
return AABB(Vector3(0,0,0),Vector3(1,1,1));
}
-DVector<Face3> BakedLightInstance::get_faces(uint32_t p_usage_flags) const {
+DVector<Face3> BakedLight::get_faces(uint32_t p_usage_flags) const {
return DVector<Face3>();
}
-String BakedLightInstance::get_configuration_warning() const {
- if (get_baked_light().is_null()) {
- return TTR("BakedLightInstance does not contain a BakedLight resource.");
- }
+String BakedLight::get_configuration_warning() const {
return String();
}
-void BakedLightInstance::_bind_methods() {
+void BakedLight::_debug_mesh(int p_idx, int p_level, const AABB &p_aabb,DebugMode p_mode,Ref<MultiMesh> &p_multimesh,int &idx) {
+
+
+ if (p_level==cell_subdiv-1) {
+
+ Vector3 center = p_aabb.pos+p_aabb.size*0.5;
+ Transform xform;
+ xform.origin=center;
+ xform.basis.scale(p_aabb.size*0.5);
+ p_multimesh->set_instance_transform(idx,xform);
+ Color col;
+ switch(p_mode) {
+ case DEBUG_ALBEDO: {
+ col=Color(bake_cells_write[p_idx].albedo[0],bake_cells_write[p_idx].albedo[1],bake_cells_write[p_idx].albedo[2]);
+ } break;
+ case DEBUG_LIGHT: {
+ col=Color(bake_cells_write[p_idx].light[0],bake_cells_write[p_idx].light[1],bake_cells_write[p_idx].light[2]);
+ Color colr=Color(bake_cells_write[p_idx].radiance[0],bake_cells_write[p_idx].radiance[1],bake_cells_write[p_idx].radiance[2]);
+ col.r+=colr.r;
+ col.g+=colr.g;
+ col.b+=colr.b;
+ } break;
+
+ }
+ p_multimesh->set_instance_color(idx,col);
+
+
+ idx++;
+
+ } else {
- ObjectTypeDB::bind_method(_MD("set_baked_light","baked_light"),&BakedLightInstance::set_baked_light);
- ObjectTypeDB::bind_method(_MD("get_baked_light"),&BakedLightInstance::get_baked_light);
- ObjectTypeDB::bind_method(_MD("get_baked_light_instance"),&BakedLightInstance::get_baked_light_instance);
+ for(int i=0;i<8;i++) {
- ADD_PROPERTY(PropertyInfo(Variant::OBJECT,"baked_light",PROPERTY_HINT_RESOURCE_TYPE,"BakedLight"),_SCS("set_baked_light"),_SCS("get_baked_light"));
+ if (bake_cells_write[p_idx].childs[i]==CHILD_EMPTY)
+ continue;
+
+ AABB aabb=p_aabb;
+ aabb.size*=0.5;
+
+ if (i&1)
+ aabb.pos.x+=aabb.size.x;
+ if (i&2)
+ aabb.pos.y+=aabb.size.y;
+ if (i&4)
+ aabb.pos.z+=aabb.size.z;
+
+ _debug_mesh(bake_cells_write[p_idx].childs[i],p_level+1,aabb,p_mode,p_multimesh,idx);
+ }
+
+ }
+
+}
+
+
+void BakedLight::create_debug_mesh(DebugMode p_mode) {
+
+ Ref<MultiMesh> mm;
+ mm.instance();
+
+ mm->set_transform_format(MultiMesh::TRANSFORM_3D);
+ mm->set_color_format(MultiMesh::COLOR_8BIT);
+ mm->set_instance_count(bake_cells_level_used[cell_subdiv-1]);
+
+ Ref<Mesh> mesh;
+ mesh.instance();
+
+
+
+ {
+ Array arr;
+ arr.resize(Mesh::ARRAY_MAX);
+
+ DVector<Vector3> vertices;
+ DVector<Color> colors;
+
+ int vtx_idx=0;
+ #define ADD_VTX(m_idx);\
+ vertices.push_back( face_points[m_idx] );\
+ colors.push_back( Color(1,1,1,1) );\
+ vtx_idx++;\
+
+ for (int i=0;i<6;i++) {
+
+
+ Vector3 face_points[4];
+
+ for (int j=0;j<4;j++) {
+
+ float v[3];
+ v[0]=1.0;
+ v[1]=1-2*((j>>1)&1);
+ v[2]=v[1]*(1-2*(j&1));
+
+ for (int k=0;k<3;k++) {
+
+ if (i<3)
+ face_points[j][(i+k)%3]=v[k]*(i>=3?-1:1);
+ else
+ face_points[3-j][(i+k)%3]=v[k]*(i>=3?-1:1);
+ }
+ }
+
+ //tri 1
+ ADD_VTX(0);
+ ADD_VTX(1);
+ ADD_VTX(2);
+ //tri 2
+ ADD_VTX(2);
+ ADD_VTX(3);
+ ADD_VTX(0);
+
+ }
+
+
+ arr[Mesh::ARRAY_VERTEX]=vertices;
+ arr[Mesh::ARRAY_COLOR]=colors;
+ mesh->add_surface_from_arrays(Mesh::PRIMITIVE_TRIANGLES,arr);
+ }
+
+ {
+ Ref<FixedSpatialMaterial> fsm;
+ fsm.instance();
+ fsm->set_flag(FixedSpatialMaterial::FLAG_SRGB_VERTEX_COLOR,true);
+ fsm->set_flag(FixedSpatialMaterial::FLAG_ALBEDO_FROM_VERTEX_COLOR,true);
+ fsm->set_flag(FixedSpatialMaterial::FLAG_UNSHADED,true);
+ fsm->set_albedo(Color(1,1,1,1));
+
+ mesh->surface_set_material(0,fsm);
+ }
+
+ mm->set_mesh(mesh);
+
+
+ bake_cells_write = bake_cells.write();
+
+
+
+ int idx=0;
+ _debug_mesh(0,0,bounds,p_mode,mm,idx);
+
+ print_line("written: "+itos(idx)+" total: "+itos(bake_cells_level_used[cell_subdiv-1]));
+
+
+ MultiMeshInstance *mmi = memnew( MultiMeshInstance );
+ mmi->set_multimesh(mm);
+ add_child(mmi);
+ if (get_tree()->get_edited_scene_root()==this){
+ mmi->set_owner(this);
+ } else {
+ mmi->set_owner(get_owner());
+
+ }
+
+}
+
+void BakedLight::_debug_mesh_albedo() {
+ create_debug_mesh(DEBUG_ALBEDO);
+}
+
+void BakedLight::_debug_mesh_light() {
+ create_debug_mesh(DEBUG_LIGHT);
+}
+
+
+void BakedLight::_bind_methods() {
+
+ ObjectTypeDB::bind_method(_MD("set_cell_subdiv","steps"),&BakedLight::set_cell_subdiv);
+ ObjectTypeDB::bind_method(_MD("get_cell_subdiv"),&BakedLight::get_cell_subdiv);
+
+ ObjectTypeDB::bind_method(_MD("bake"),&BakedLight::bake);
+ ObjectTypeDB::set_method_flags(get_type_static(),_SCS("bake"),METHOD_FLAGS_DEFAULT|METHOD_FLAG_EDITOR);
+
+ ObjectTypeDB::bind_method(_MD("bake_lights"),&BakedLight::bake_lights);
+ ObjectTypeDB::set_method_flags(get_type_static(),_SCS("bake_lights"),METHOD_FLAGS_DEFAULT|METHOD_FLAG_EDITOR);
+
+ ObjectTypeDB::bind_method(_MD("bake_radiance"),&BakedLight::bake_radiance);
+ ObjectTypeDB::set_method_flags(get_type_static(),_SCS("bake_radiance"),METHOD_FLAGS_DEFAULT|METHOD_FLAG_EDITOR);
+
+ ObjectTypeDB::bind_method(_MD("debug_mesh_albedo"),&BakedLight::_debug_mesh_albedo);
+ ObjectTypeDB::set_method_flags(get_type_static(),_SCS("debug_mesh_albedo"),METHOD_FLAGS_DEFAULT|METHOD_FLAG_EDITOR);
+
+
+ ObjectTypeDB::bind_method(_MD("debug_mesh_light"),&BakedLight::_debug_mesh_light);
+ ObjectTypeDB::set_method_flags(get_type_static(),_SCS("debug_mesh_light"),METHOD_FLAGS_DEFAULT|METHOD_FLAG_EDITOR);
+
+ ADD_PROPERTY(PropertyInfo(Variant::INT,"cell_subdiv"),_SCS("set_cell_subdiv"),_SCS("get_cell_subdiv"));
ADD_SIGNAL( MethodInfo("baked_light_changed"));
+
}
-BakedLightInstance::BakedLightInstance() {
+BakedLight::BakedLight() {
+// baked_light=VisualServer::get_singleton()->baked_light_create();
+ VS::get_singleton()->instance_set_base(get_instance(),baked_light);
+ cell_subdiv=8;
+ bake_texture_size=128;
+ color_scan_cell_width=8;
+ light_pass=0;
}
-/////////////////////////
+BakedLight::~BakedLight() {
+
+ VS::get_singleton()->free(baked_light);
+}
+
+/////////////////////////
+
+#if 0
void BakedLightSampler::set_param(Param p_param,float p_value) {
ERR_FAIL_INDEX(p_param,PARAM_MAX);
params[p_param]=p_value;
@@ -179,3 +1834,4 @@ BakedLightSampler::~BakedLightSampler(){
VS::get_singleton()->free(base);
}
+#endif