summaryrefslogtreecommitdiffstats
path: root/thirdparty/mbedtls/library/bignum_core.c
diff options
context:
space:
mode:
authorLyuma <xn.lyuma@gmail.com>2023-09-24 20:04:06 -0700
committerFabio Alessandrelli <fabio.alessandrelli@gmail.com>2024-04-10 21:19:22 +0200
commit40fa684c181d3138d8f86c70e5933fb0b3dcbac8 (patch)
tree4d104dfb95341e96ac2d98f9a9e3a85c5b7e55ca /thirdparty/mbedtls/library/bignum_core.c
parent6c579280630715ff7da8310d405ef34194847294 (diff)
downloadredot-engine-40fa684c181d3138d8f86c70e5933fb0b3dcbac8.tar.gz
mbedTLS: Update to new LTS v3.6.0
Keep module compatibility with mbedtls 2.x (old LTS branch). A patch has been added to allow compiling after removing all the `psa_*` files from the library folder (will look into upstreaming it). Note: mbedTLS 3.6 finally enabled TLSv1.3 by default, but it requires some module changes, and to enable PSA crypto (new "standard" API specification), so it might be best done in a separate commit/PR.
Diffstat (limited to 'thirdparty/mbedtls/library/bignum_core.c')
-rw-r--r--thirdparty/mbedtls/library/bignum_core.c895
1 files changed, 895 insertions, 0 deletions
diff --git a/thirdparty/mbedtls/library/bignum_core.c b/thirdparty/mbedtls/library/bignum_core.c
new file mode 100644
index 0000000000..1a3e0b9b6f
--- /dev/null
+++ b/thirdparty/mbedtls/library/bignum_core.c
@@ -0,0 +1,895 @@
+/*
+ * Core bignum functions
+ *
+ * Copyright The Mbed TLS Contributors
+ * SPDX-License-Identifier: Apache-2.0 OR GPL-2.0-or-later
+ */
+
+#include "common.h"
+
+#if defined(MBEDTLS_BIGNUM_C)
+
+#include <string.h>
+
+#include "mbedtls/error.h"
+#include "mbedtls/platform_util.h"
+#include "constant_time_internal.h"
+
+#include "mbedtls/platform.h"
+
+#include "bignum_core.h"
+#include "bn_mul.h"
+#include "constant_time_internal.h"
+
+size_t mbedtls_mpi_core_clz(mbedtls_mpi_uint a)
+{
+#if defined(__has_builtin)
+#if (MBEDTLS_MPI_UINT_MAX == UINT_MAX) && __has_builtin(__builtin_clz)
+ #define core_clz __builtin_clz
+#elif (MBEDTLS_MPI_UINT_MAX == ULONG_MAX) && __has_builtin(__builtin_clzl)
+ #define core_clz __builtin_clzl
+#elif (MBEDTLS_MPI_UINT_MAX == ULLONG_MAX) && __has_builtin(__builtin_clzll)
+ #define core_clz __builtin_clzll
+#endif
+#endif
+#if defined(core_clz)
+ return (size_t) core_clz(a);
+#else
+ size_t j;
+ mbedtls_mpi_uint mask = (mbedtls_mpi_uint) 1 << (biL - 1);
+
+ for (j = 0; j < biL; j++) {
+ if (a & mask) {
+ break;
+ }
+
+ mask >>= 1;
+ }
+
+ return j;
+#endif
+}
+
+size_t mbedtls_mpi_core_bitlen(const mbedtls_mpi_uint *A, size_t A_limbs)
+{
+ int i;
+ size_t j;
+
+ for (i = ((int) A_limbs) - 1; i >= 0; i--) {
+ if (A[i] != 0) {
+ j = biL - mbedtls_mpi_core_clz(A[i]);
+ return (i * biL) + j;
+ }
+ }
+
+ return 0;
+}
+
+static mbedtls_mpi_uint mpi_bigendian_to_host(mbedtls_mpi_uint a)
+{
+ if (MBEDTLS_IS_BIG_ENDIAN) {
+ /* Nothing to do on bigendian systems. */
+ return a;
+ } else {
+#if defined(MBEDTLS_HAVE_INT32)
+ return (mbedtls_mpi_uint) MBEDTLS_BSWAP32(a);
+#elif defined(MBEDTLS_HAVE_INT64)
+ return (mbedtls_mpi_uint) MBEDTLS_BSWAP64(a);
+#endif
+ }
+}
+
+void mbedtls_mpi_core_bigendian_to_host(mbedtls_mpi_uint *A,
+ size_t A_limbs)
+{
+ mbedtls_mpi_uint *cur_limb_left;
+ mbedtls_mpi_uint *cur_limb_right;
+ if (A_limbs == 0) {
+ return;
+ }
+
+ /*
+ * Traverse limbs and
+ * - adapt byte-order in each limb
+ * - swap the limbs themselves.
+ * For that, simultaneously traverse the limbs from left to right
+ * and from right to left, as long as the left index is not bigger
+ * than the right index (it's not a problem if limbs is odd and the
+ * indices coincide in the last iteration).
+ */
+ for (cur_limb_left = A, cur_limb_right = A + (A_limbs - 1);
+ cur_limb_left <= cur_limb_right;
+ cur_limb_left++, cur_limb_right--) {
+ mbedtls_mpi_uint tmp;
+ /* Note that if cur_limb_left == cur_limb_right,
+ * this code effectively swaps the bytes only once. */
+ tmp = mpi_bigendian_to_host(*cur_limb_left);
+ *cur_limb_left = mpi_bigendian_to_host(*cur_limb_right);
+ *cur_limb_right = tmp;
+ }
+}
+
+/* Whether min <= A, in constant time.
+ * A_limbs must be at least 1. */
+mbedtls_ct_condition_t mbedtls_mpi_core_uint_le_mpi(mbedtls_mpi_uint min,
+ const mbedtls_mpi_uint *A,
+ size_t A_limbs)
+{
+ /* min <= least significant limb? */
+ mbedtls_ct_condition_t min_le_lsl = mbedtls_ct_uint_ge(A[0], min);
+
+ /* limbs other than the least significant one are all zero? */
+ mbedtls_ct_condition_t msll_mask = MBEDTLS_CT_FALSE;
+ for (size_t i = 1; i < A_limbs; i++) {
+ msll_mask = mbedtls_ct_bool_or(msll_mask, mbedtls_ct_bool(A[i]));
+ }
+
+ /* min <= A iff the lowest limb of A is >= min or the other limbs
+ * are not all zero. */
+ return mbedtls_ct_bool_or(msll_mask, min_le_lsl);
+}
+
+mbedtls_ct_condition_t mbedtls_mpi_core_lt_ct(const mbedtls_mpi_uint *A,
+ const mbedtls_mpi_uint *B,
+ size_t limbs)
+{
+ mbedtls_ct_condition_t ret = MBEDTLS_CT_FALSE, cond = MBEDTLS_CT_FALSE, done = MBEDTLS_CT_FALSE;
+
+ for (size_t i = limbs; i > 0; i--) {
+ /*
+ * If B[i - 1] < A[i - 1] then A < B is false and the result must
+ * remain 0.
+ *
+ * Again even if we can make a decision, we just mark the result and
+ * the fact that we are done and continue looping.
+ */
+ cond = mbedtls_ct_uint_lt(B[i - 1], A[i - 1]);
+ done = mbedtls_ct_bool_or(done, cond);
+
+ /*
+ * If A[i - 1] < B[i - 1] then A < B is true.
+ *
+ * Again even if we can make a decision, we just mark the result and
+ * the fact that we are done and continue looping.
+ */
+ cond = mbedtls_ct_uint_lt(A[i - 1], B[i - 1]);
+ ret = mbedtls_ct_bool_or(ret, mbedtls_ct_bool_and(cond, mbedtls_ct_bool_not(done)));
+ done = mbedtls_ct_bool_or(done, cond);
+ }
+
+ /*
+ * If all the limbs were equal, then the numbers are equal, A < B is false
+ * and leaving the result 0 is correct.
+ */
+
+ return ret;
+}
+
+void mbedtls_mpi_core_cond_assign(mbedtls_mpi_uint *X,
+ const mbedtls_mpi_uint *A,
+ size_t limbs,
+ mbedtls_ct_condition_t assign)
+{
+ if (X == A) {
+ return;
+ }
+
+ /* This function is very performance-sensitive for RSA. For this reason
+ * we have the loop below, instead of calling mbedtls_ct_memcpy_if
+ * (this is more optimal since here we don't have to handle the case where
+ * we copy awkwardly sized data).
+ */
+ for (size_t i = 0; i < limbs; i++) {
+ X[i] = mbedtls_ct_mpi_uint_if(assign, A[i], X[i]);
+ }
+}
+
+void mbedtls_mpi_core_cond_swap(mbedtls_mpi_uint *X,
+ mbedtls_mpi_uint *Y,
+ size_t limbs,
+ mbedtls_ct_condition_t swap)
+{
+ if (X == Y) {
+ return;
+ }
+
+ for (size_t i = 0; i < limbs; i++) {
+ mbedtls_mpi_uint tmp = X[i];
+ X[i] = mbedtls_ct_mpi_uint_if(swap, Y[i], X[i]);
+ Y[i] = mbedtls_ct_mpi_uint_if(swap, tmp, Y[i]);
+ }
+}
+
+int mbedtls_mpi_core_read_le(mbedtls_mpi_uint *X,
+ size_t X_limbs,
+ const unsigned char *input,
+ size_t input_length)
+{
+ const size_t limbs = CHARS_TO_LIMBS(input_length);
+
+ if (X_limbs < limbs) {
+ return MBEDTLS_ERR_MPI_BUFFER_TOO_SMALL;
+ }
+
+ if (X != NULL) {
+ memset(X, 0, X_limbs * ciL);
+
+ for (size_t i = 0; i < input_length; i++) {
+ size_t offset = ((i % ciL) << 3);
+ X[i / ciL] |= ((mbedtls_mpi_uint) input[i]) << offset;
+ }
+ }
+
+ return 0;
+}
+
+int mbedtls_mpi_core_read_be(mbedtls_mpi_uint *X,
+ size_t X_limbs,
+ const unsigned char *input,
+ size_t input_length)
+{
+ const size_t limbs = CHARS_TO_LIMBS(input_length);
+
+ if (X_limbs < limbs) {
+ return MBEDTLS_ERR_MPI_BUFFER_TOO_SMALL;
+ }
+
+ /* If X_limbs is 0, input_length must also be 0 (from previous test).
+ * Nothing to do. */
+ if (X_limbs == 0) {
+ return 0;
+ }
+
+ memset(X, 0, X_limbs * ciL);
+
+ /* memcpy() with (NULL, 0) is undefined behaviour */
+ if (input_length != 0) {
+ size_t overhead = (X_limbs * ciL) - input_length;
+ unsigned char *Xp = (unsigned char *) X;
+ memcpy(Xp + overhead, input, input_length);
+ }
+
+ mbedtls_mpi_core_bigendian_to_host(X, X_limbs);
+
+ return 0;
+}
+
+int mbedtls_mpi_core_write_le(const mbedtls_mpi_uint *A,
+ size_t A_limbs,
+ unsigned char *output,
+ size_t output_length)
+{
+ size_t stored_bytes = A_limbs * ciL;
+ size_t bytes_to_copy;
+
+ if (stored_bytes < output_length) {
+ bytes_to_copy = stored_bytes;
+ } else {
+ bytes_to_copy = output_length;
+
+ /* The output buffer is smaller than the allocated size of A.
+ * However A may fit if its leading bytes are zero. */
+ for (size_t i = bytes_to_copy; i < stored_bytes; i++) {
+ if (GET_BYTE(A, i) != 0) {
+ return MBEDTLS_ERR_MPI_BUFFER_TOO_SMALL;
+ }
+ }
+ }
+
+ for (size_t i = 0; i < bytes_to_copy; i++) {
+ output[i] = GET_BYTE(A, i);
+ }
+
+ if (stored_bytes < output_length) {
+ /* Write trailing 0 bytes */
+ memset(output + stored_bytes, 0, output_length - stored_bytes);
+ }
+
+ return 0;
+}
+
+int mbedtls_mpi_core_write_be(const mbedtls_mpi_uint *X,
+ size_t X_limbs,
+ unsigned char *output,
+ size_t output_length)
+{
+ size_t stored_bytes;
+ size_t bytes_to_copy;
+ unsigned char *p;
+
+ stored_bytes = X_limbs * ciL;
+
+ if (stored_bytes < output_length) {
+ /* There is enough space in the output buffer. Write initial
+ * null bytes and record the position at which to start
+ * writing the significant bytes. In this case, the execution
+ * trace of this function does not depend on the value of the
+ * number. */
+ bytes_to_copy = stored_bytes;
+ p = output + output_length - stored_bytes;
+ memset(output, 0, output_length - stored_bytes);
+ } else {
+ /* The output buffer is smaller than the allocated size of X.
+ * However X may fit if its leading bytes are zero. */
+ bytes_to_copy = output_length;
+ p = output;
+ for (size_t i = bytes_to_copy; i < stored_bytes; i++) {
+ if (GET_BYTE(X, i) != 0) {
+ return MBEDTLS_ERR_MPI_BUFFER_TOO_SMALL;
+ }
+ }
+ }
+
+ for (size_t i = 0; i < bytes_to_copy; i++) {
+ p[bytes_to_copy - i - 1] = GET_BYTE(X, i);
+ }
+
+ return 0;
+}
+
+void mbedtls_mpi_core_shift_r(mbedtls_mpi_uint *X, size_t limbs,
+ size_t count)
+{
+ size_t i, v0, v1;
+ mbedtls_mpi_uint r0 = 0, r1;
+
+ v0 = count / biL;
+ v1 = count & (biL - 1);
+
+ if (v0 > limbs || (v0 == limbs && v1 > 0)) {
+ memset(X, 0, limbs * ciL);
+ return;
+ }
+
+ /*
+ * shift by count / limb_size
+ */
+ if (v0 > 0) {
+ for (i = 0; i < limbs - v0; i++) {
+ X[i] = X[i + v0];
+ }
+
+ for (; i < limbs; i++) {
+ X[i] = 0;
+ }
+ }
+
+ /*
+ * shift by count % limb_size
+ */
+ if (v1 > 0) {
+ for (i = limbs; i > 0; i--) {
+ r1 = X[i - 1] << (biL - v1);
+ X[i - 1] >>= v1;
+ X[i - 1] |= r0;
+ r0 = r1;
+ }
+ }
+}
+
+void mbedtls_mpi_core_shift_l(mbedtls_mpi_uint *X, size_t limbs,
+ size_t count)
+{
+ size_t i, v0, v1;
+ mbedtls_mpi_uint r0 = 0, r1;
+
+ v0 = count / (biL);
+ v1 = count & (biL - 1);
+
+ /*
+ * shift by count / limb_size
+ */
+ if (v0 > 0) {
+ for (i = limbs; i > v0; i--) {
+ X[i - 1] = X[i - v0 - 1];
+ }
+
+ for (; i > 0; i--) {
+ X[i - 1] = 0;
+ }
+ }
+
+ /*
+ * shift by count % limb_size
+ */
+ if (v1 > 0) {
+ for (i = v0; i < limbs; i++) {
+ r1 = X[i] >> (biL - v1);
+ X[i] <<= v1;
+ X[i] |= r0;
+ r0 = r1;
+ }
+ }
+}
+
+mbedtls_mpi_uint mbedtls_mpi_core_add(mbedtls_mpi_uint *X,
+ const mbedtls_mpi_uint *A,
+ const mbedtls_mpi_uint *B,
+ size_t limbs)
+{
+ mbedtls_mpi_uint c = 0;
+
+ for (size_t i = 0; i < limbs; i++) {
+ mbedtls_mpi_uint t = c + A[i];
+ c = (t < A[i]);
+ t += B[i];
+ c += (t < B[i]);
+ X[i] = t;
+ }
+
+ return c;
+}
+
+mbedtls_mpi_uint mbedtls_mpi_core_add_if(mbedtls_mpi_uint *X,
+ const mbedtls_mpi_uint *A,
+ size_t limbs,
+ unsigned cond)
+{
+ mbedtls_mpi_uint c = 0;
+
+ mbedtls_ct_condition_t do_add = mbedtls_ct_bool(cond);
+
+ for (size_t i = 0; i < limbs; i++) {
+ mbedtls_mpi_uint add = mbedtls_ct_mpi_uint_if_else_0(do_add, A[i]);
+ mbedtls_mpi_uint t = c + X[i];
+ c = (t < X[i]);
+ t += add;
+ c += (t < add);
+ X[i] = t;
+ }
+
+ return c;
+}
+
+mbedtls_mpi_uint mbedtls_mpi_core_sub(mbedtls_mpi_uint *X,
+ const mbedtls_mpi_uint *A,
+ const mbedtls_mpi_uint *B,
+ size_t limbs)
+{
+ mbedtls_mpi_uint c = 0;
+
+ for (size_t i = 0; i < limbs; i++) {
+ mbedtls_mpi_uint z = (A[i] < c);
+ mbedtls_mpi_uint t = A[i] - c;
+ c = (t < B[i]) + z;
+ X[i] = t - B[i];
+ }
+
+ return c;
+}
+
+mbedtls_mpi_uint mbedtls_mpi_core_mla(mbedtls_mpi_uint *d, size_t d_len,
+ const mbedtls_mpi_uint *s, size_t s_len,
+ mbedtls_mpi_uint b)
+{
+ mbedtls_mpi_uint c = 0; /* carry */
+ /*
+ * It is a documented precondition of this function that d_len >= s_len.
+ * If that's not the case, we swap these round: this turns what would be
+ * a buffer overflow into an incorrect result.
+ */
+ if (d_len < s_len) {
+ s_len = d_len;
+ }
+ size_t excess_len = d_len - s_len;
+ size_t steps_x8 = s_len / 8;
+ size_t steps_x1 = s_len & 7;
+
+ while (steps_x8--) {
+ MULADDC_X8_INIT
+ MULADDC_X8_CORE
+ MULADDC_X8_STOP
+ }
+
+ while (steps_x1--) {
+ MULADDC_X1_INIT
+ MULADDC_X1_CORE
+ MULADDC_X1_STOP
+ }
+
+ while (excess_len--) {
+ *d += c;
+ c = (*d < c);
+ d++;
+ }
+
+ return c;
+}
+
+void mbedtls_mpi_core_mul(mbedtls_mpi_uint *X,
+ const mbedtls_mpi_uint *A, size_t A_limbs,
+ const mbedtls_mpi_uint *B, size_t B_limbs)
+{
+ memset(X, 0, (A_limbs + B_limbs) * ciL);
+
+ for (size_t i = 0; i < B_limbs; i++) {
+ (void) mbedtls_mpi_core_mla(X + i, A_limbs + 1, A, A_limbs, B[i]);
+ }
+}
+
+/*
+ * Fast Montgomery initialization (thanks to Tom St Denis).
+ */
+mbedtls_mpi_uint mbedtls_mpi_core_montmul_init(const mbedtls_mpi_uint *N)
+{
+ mbedtls_mpi_uint x = N[0];
+
+ x += ((N[0] + 2) & 4) << 1;
+
+ for (unsigned int i = biL; i >= 8; i /= 2) {
+ x *= (2 - (N[0] * x));
+ }
+
+ return ~x + 1;
+}
+
+void mbedtls_mpi_core_montmul(mbedtls_mpi_uint *X,
+ const mbedtls_mpi_uint *A,
+ const mbedtls_mpi_uint *B,
+ size_t B_limbs,
+ const mbedtls_mpi_uint *N,
+ size_t AN_limbs,
+ mbedtls_mpi_uint mm,
+ mbedtls_mpi_uint *T)
+{
+ memset(T, 0, (2 * AN_limbs + 1) * ciL);
+
+ for (size_t i = 0; i < AN_limbs; i++) {
+ /* T = (T + u0*B + u1*N) / 2^biL */
+ mbedtls_mpi_uint u0 = A[i];
+ mbedtls_mpi_uint u1 = (T[0] + u0 * B[0]) * mm;
+
+ (void) mbedtls_mpi_core_mla(T, AN_limbs + 2, B, B_limbs, u0);
+ (void) mbedtls_mpi_core_mla(T, AN_limbs + 2, N, AN_limbs, u1);
+
+ T++;
+ }
+
+ /*
+ * The result we want is (T >= N) ? T - N : T.
+ *
+ * For better constant-time properties in this function, we always do the
+ * subtraction, with the result in X.
+ *
+ * We also look to see if there was any carry in the final additions in the
+ * loop above.
+ */
+
+ mbedtls_mpi_uint carry = T[AN_limbs];
+ mbedtls_mpi_uint borrow = mbedtls_mpi_core_sub(X, T, N, AN_limbs);
+
+ /*
+ * Using R as the Montgomery radix (auxiliary modulus) i.e. 2^(biL*AN_limbs):
+ *
+ * T can be in one of 3 ranges:
+ *
+ * 1) T < N : (carry, borrow) = (0, 1): we want T
+ * 2) N <= T < R : (carry, borrow) = (0, 0): we want X
+ * 3) T >= R : (carry, borrow) = (1, 1): we want X
+ *
+ * and (carry, borrow) = (1, 0) can't happen.
+ *
+ * So the correct return value is already in X if (carry ^ borrow) = 0,
+ * but is in (the lower AN_limbs limbs of) T if (carry ^ borrow) = 1.
+ */
+ mbedtls_ct_memcpy_if(mbedtls_ct_bool(carry ^ borrow),
+ (unsigned char *) X,
+ (unsigned char *) T,
+ NULL,
+ AN_limbs * sizeof(mbedtls_mpi_uint));
+}
+
+int mbedtls_mpi_core_get_mont_r2_unsafe(mbedtls_mpi *X,
+ const mbedtls_mpi *N)
+{
+ int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
+
+ MBEDTLS_MPI_CHK(mbedtls_mpi_lset(X, 1));
+ MBEDTLS_MPI_CHK(mbedtls_mpi_shift_l(X, N->n * 2 * biL));
+ MBEDTLS_MPI_CHK(mbedtls_mpi_mod_mpi(X, X, N));
+ MBEDTLS_MPI_CHK(mbedtls_mpi_shrink(X, N->n));
+
+cleanup:
+ return ret;
+}
+
+MBEDTLS_STATIC_TESTABLE
+void mbedtls_mpi_core_ct_uint_table_lookup(mbedtls_mpi_uint *dest,
+ const mbedtls_mpi_uint *table,
+ size_t limbs,
+ size_t count,
+ size_t index)
+{
+ for (size_t i = 0; i < count; i++, table += limbs) {
+ mbedtls_ct_condition_t assign = mbedtls_ct_uint_eq(i, index);
+ mbedtls_mpi_core_cond_assign(dest, table, limbs, assign);
+ }
+}
+
+/* Fill X with n_bytes random bytes.
+ * X must already have room for those bytes.
+ * The ordering of the bytes returned from the RNG is suitable for
+ * deterministic ECDSA (see RFC 6979 §3.3 and the specification of
+ * mbedtls_mpi_core_random()).
+ */
+int mbedtls_mpi_core_fill_random(
+ mbedtls_mpi_uint *X, size_t X_limbs,
+ size_t n_bytes,
+ int (*f_rng)(void *, unsigned char *, size_t), void *p_rng)
+{
+ int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
+ const size_t limbs = CHARS_TO_LIMBS(n_bytes);
+ const size_t overhead = (limbs * ciL) - n_bytes;
+
+ if (X_limbs < limbs) {
+ return MBEDTLS_ERR_MPI_BAD_INPUT_DATA;
+ }
+
+ memset(X, 0, overhead);
+ memset((unsigned char *) X + limbs * ciL, 0, (X_limbs - limbs) * ciL);
+ MBEDTLS_MPI_CHK(f_rng(p_rng, (unsigned char *) X + overhead, n_bytes));
+ mbedtls_mpi_core_bigendian_to_host(X, limbs);
+
+cleanup:
+ return ret;
+}
+
+int mbedtls_mpi_core_random(mbedtls_mpi_uint *X,
+ mbedtls_mpi_uint min,
+ const mbedtls_mpi_uint *N,
+ size_t limbs,
+ int (*f_rng)(void *, unsigned char *, size_t),
+ void *p_rng)
+{
+ mbedtls_ct_condition_t ge_lower = MBEDTLS_CT_TRUE, lt_upper = MBEDTLS_CT_FALSE;
+ size_t n_bits = mbedtls_mpi_core_bitlen(N, limbs);
+ size_t n_bytes = (n_bits + 7) / 8;
+ int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
+
+ /*
+ * When min == 0, each try has at worst a probability 1/2 of failing
+ * (the msb has a probability 1/2 of being 0, and then the result will
+ * be < N), so after 30 tries failure probability is a most 2**(-30).
+ *
+ * When N is just below a power of 2, as is the case when generating
+ * a random scalar on most elliptic curves, 1 try is enough with
+ * overwhelming probability. When N is just above a power of 2,
+ * as when generating a random scalar on secp224k1, each try has
+ * a probability of failing that is almost 1/2.
+ *
+ * The probabilities are almost the same if min is nonzero but negligible
+ * compared to N. This is always the case when N is crypto-sized, but
+ * it's convenient to support small N for testing purposes. When N
+ * is small, use a higher repeat count, otherwise the probability of
+ * failure is macroscopic.
+ */
+ int count = (n_bytes > 4 ? 30 : 250);
+
+ /*
+ * Match the procedure given in RFC 6979 §3.3 (deterministic ECDSA)
+ * when f_rng is a suitably parametrized instance of HMAC_DRBG:
+ * - use the same byte ordering;
+ * - keep the leftmost n_bits bits of the generated octet string;
+ * - try until result is in the desired range.
+ * This also avoids any bias, which is especially important for ECDSA.
+ */
+ do {
+ MBEDTLS_MPI_CHK(mbedtls_mpi_core_fill_random(X, limbs,
+ n_bytes,
+ f_rng, p_rng));
+ mbedtls_mpi_core_shift_r(X, limbs, 8 * n_bytes - n_bits);
+
+ if (--count == 0) {
+ ret = MBEDTLS_ERR_MPI_NOT_ACCEPTABLE;
+ goto cleanup;
+ }
+
+ ge_lower = mbedtls_mpi_core_uint_le_mpi(min, X, limbs);
+ lt_upper = mbedtls_mpi_core_lt_ct(X, N, limbs);
+ } while (mbedtls_ct_bool_and(ge_lower, lt_upper) == MBEDTLS_CT_FALSE);
+
+cleanup:
+ return ret;
+}
+
+static size_t exp_mod_get_window_size(size_t Ebits)
+{
+#if MBEDTLS_MPI_WINDOW_SIZE >= 6
+ return (Ebits > 671) ? 6 : (Ebits > 239) ? 5 : (Ebits > 79) ? 4 : 1;
+#elif MBEDTLS_MPI_WINDOW_SIZE == 5
+ return (Ebits > 239) ? 5 : (Ebits > 79) ? 4 : 1;
+#elif MBEDTLS_MPI_WINDOW_SIZE > 1
+ return (Ebits > 79) ? MBEDTLS_MPI_WINDOW_SIZE : 1;
+#else
+ (void) Ebits;
+ return 1;
+#endif
+}
+
+size_t mbedtls_mpi_core_exp_mod_working_limbs(size_t AN_limbs, size_t E_limbs)
+{
+ const size_t wsize = exp_mod_get_window_size(E_limbs * biL);
+ const size_t welem = ((size_t) 1) << wsize;
+
+ /* How big does each part of the working memory pool need to be? */
+ const size_t table_limbs = welem * AN_limbs;
+ const size_t select_limbs = AN_limbs;
+ const size_t temp_limbs = 2 * AN_limbs + 1;
+
+ return table_limbs + select_limbs + temp_limbs;
+}
+
+static void exp_mod_precompute_window(const mbedtls_mpi_uint *A,
+ const mbedtls_mpi_uint *N,
+ size_t AN_limbs,
+ mbedtls_mpi_uint mm,
+ const mbedtls_mpi_uint *RR,
+ size_t welem,
+ mbedtls_mpi_uint *Wtable,
+ mbedtls_mpi_uint *temp)
+{
+ /* W[0] = 1 (in Montgomery presentation) */
+ memset(Wtable, 0, AN_limbs * ciL);
+ Wtable[0] = 1;
+ mbedtls_mpi_core_montmul(Wtable, Wtable, RR, AN_limbs, N, AN_limbs, mm, temp);
+
+ /* W[1] = A (already in Montgomery presentation) */
+ mbedtls_mpi_uint *W1 = Wtable + AN_limbs;
+ memcpy(W1, A, AN_limbs * ciL);
+
+ /* W[i+1] = W[i] * W[1], i >= 2 */
+ mbedtls_mpi_uint *Wprev = W1;
+ for (size_t i = 2; i < welem; i++) {
+ mbedtls_mpi_uint *Wcur = Wprev + AN_limbs;
+ mbedtls_mpi_core_montmul(Wcur, Wprev, W1, AN_limbs, N, AN_limbs, mm, temp);
+ Wprev = Wcur;
+ }
+}
+
+/* Exponentiation: X := A^E mod N.
+ *
+ * A must already be in Montgomery form.
+ *
+ * As in other bignum functions, assume that AN_limbs and E_limbs are nonzero.
+ *
+ * RR must contain 2^{2*biL} mod N.
+ *
+ * The algorithm is a variant of Left-to-right k-ary exponentiation: HAC 14.82
+ * (The difference is that the body in our loop processes a single bit instead
+ * of a full window.)
+ */
+void mbedtls_mpi_core_exp_mod(mbedtls_mpi_uint *X,
+ const mbedtls_mpi_uint *A,
+ const mbedtls_mpi_uint *N,
+ size_t AN_limbs,
+ const mbedtls_mpi_uint *E,
+ size_t E_limbs,
+ const mbedtls_mpi_uint *RR,
+ mbedtls_mpi_uint *T)
+{
+ const size_t wsize = exp_mod_get_window_size(E_limbs * biL);
+ const size_t welem = ((size_t) 1) << wsize;
+
+ /* This is how we will use the temporary storage T, which must have space
+ * for table_limbs, select_limbs and (2 * AN_limbs + 1) for montmul. */
+ const size_t table_limbs = welem * AN_limbs;
+ const size_t select_limbs = AN_limbs;
+
+ /* Pointers to specific parts of the temporary working memory pool */
+ mbedtls_mpi_uint *const Wtable = T;
+ mbedtls_mpi_uint *const Wselect = Wtable + table_limbs;
+ mbedtls_mpi_uint *const temp = Wselect + select_limbs;
+
+ /*
+ * Window precomputation
+ */
+
+ const mbedtls_mpi_uint mm = mbedtls_mpi_core_montmul_init(N);
+
+ /* Set Wtable[i] = A^(2^i) (in Montgomery representation) */
+ exp_mod_precompute_window(A, N, AN_limbs,
+ mm, RR,
+ welem, Wtable, temp);
+
+ /*
+ * Fixed window exponentiation
+ */
+
+ /* X = 1 (in Montgomery presentation) initially */
+ memcpy(X, Wtable, AN_limbs * ciL);
+
+ /* We'll process the bits of E from most significant
+ * (limb_index=E_limbs-1, E_bit_index=biL-1) to least significant
+ * (limb_index=0, E_bit_index=0). */
+ size_t E_limb_index = E_limbs;
+ size_t E_bit_index = 0;
+ /* At any given time, window contains window_bits bits from E.
+ * window_bits can go up to wsize. */
+ size_t window_bits = 0;
+ mbedtls_mpi_uint window = 0;
+
+ do {
+ /* Square */
+ mbedtls_mpi_core_montmul(X, X, X, AN_limbs, N, AN_limbs, mm, temp);
+
+ /* Move to the next bit of the exponent */
+ if (E_bit_index == 0) {
+ --E_limb_index;
+ E_bit_index = biL - 1;
+ } else {
+ --E_bit_index;
+ }
+ /* Insert next exponent bit into window */
+ ++window_bits;
+ window <<= 1;
+ window |= (E[E_limb_index] >> E_bit_index) & 1;
+
+ /* Clear window if it's full. Also clear the window at the end,
+ * when we've finished processing the exponent. */
+ if (window_bits == wsize ||
+ (E_bit_index == 0 && E_limb_index == 0)) {
+ /* Select Wtable[window] without leaking window through
+ * memory access patterns. */
+ mbedtls_mpi_core_ct_uint_table_lookup(Wselect, Wtable,
+ AN_limbs, welem, window);
+ /* Multiply X by the selected element. */
+ mbedtls_mpi_core_montmul(X, X, Wselect, AN_limbs, N, AN_limbs, mm,
+ temp);
+ window = 0;
+ window_bits = 0;
+ }
+ } while (!(E_bit_index == 0 && E_limb_index == 0));
+}
+
+mbedtls_mpi_uint mbedtls_mpi_core_sub_int(mbedtls_mpi_uint *X,
+ const mbedtls_mpi_uint *A,
+ mbedtls_mpi_uint c, /* doubles as carry */
+ size_t limbs)
+{
+ for (size_t i = 0; i < limbs; i++) {
+ mbedtls_mpi_uint s = A[i];
+ mbedtls_mpi_uint t = s - c;
+ c = (t > s);
+ X[i] = t;
+ }
+
+ return c;
+}
+
+mbedtls_ct_condition_t mbedtls_mpi_core_check_zero_ct(const mbedtls_mpi_uint *A,
+ size_t limbs)
+{
+ volatile const mbedtls_mpi_uint *force_read_A = A;
+ mbedtls_mpi_uint bits = 0;
+
+ for (size_t i = 0; i < limbs; i++) {
+ bits |= force_read_A[i];
+ }
+
+ return mbedtls_ct_bool(bits);
+}
+
+void mbedtls_mpi_core_to_mont_rep(mbedtls_mpi_uint *X,
+ const mbedtls_mpi_uint *A,
+ const mbedtls_mpi_uint *N,
+ size_t AN_limbs,
+ mbedtls_mpi_uint mm,
+ const mbedtls_mpi_uint *rr,
+ mbedtls_mpi_uint *T)
+{
+ mbedtls_mpi_core_montmul(X, A, rr, AN_limbs, N, AN_limbs, mm, T);
+}
+
+void mbedtls_mpi_core_from_mont_rep(mbedtls_mpi_uint *X,
+ const mbedtls_mpi_uint *A,
+ const mbedtls_mpi_uint *N,
+ size_t AN_limbs,
+ mbedtls_mpi_uint mm,
+ mbedtls_mpi_uint *T)
+{
+ const mbedtls_mpi_uint Rinv = 1; /* 1/R in Mont. rep => 1 */
+
+ mbedtls_mpi_core_montmul(X, A, &Rinv, 1, N, AN_limbs, mm, T);
+}
+
+#endif /* MBEDTLS_BIGNUM_C */