diff options
Diffstat (limited to 'core/math/basis.cpp')
-rw-r--r-- | core/math/basis.cpp | 341 |
1 files changed, 267 insertions, 74 deletions
diff --git a/core/math/basis.cpp b/core/math/basis.cpp index cbfd09810c..5c42213e61 100644 --- a/core/math/basis.cpp +++ b/core/math/basis.cpp @@ -5,8 +5,8 @@ /* GODOT ENGINE */ /* https://godotengine.org */ /*************************************************************************/ -/* Copyright (c) 2007-2020 Juan Linietsky, Ariel Manzur. */ -/* Copyright (c) 2014-2020 Godot Engine contributors (cf. AUTHORS.md). */ +/* Copyright (c) 2007-2021 Juan Linietsky, Ariel Manzur. */ +/* Copyright (c) 2014-2021 Godot Engine contributors (cf. AUTHORS.md). */ /* */ /* Permission is hereby granted, free of charge, to any person obtaining */ /* a copy of this software and associated documentation files (the */ @@ -31,8 +31,7 @@ #include "basis.h" #include "core/math/math_funcs.h" -#include "core/os/copymem.h" -#include "core/print_string.h" +#include "core/string/print_string.h" #define cofac(row1, col1, row2, col2) \ (elements[row1][col1] * elements[row2][col2] - elements[row1][col2] * elements[row2][col1]) @@ -110,26 +109,29 @@ bool Basis::is_diagonal() const { } bool Basis::is_rotation() const { - return Math::is_equal_approx(determinant(), 1, UNIT_EPSILON) && is_orthogonal(); + return Math::is_equal_approx(determinant(), 1, (real_t)UNIT_EPSILON) && is_orthogonal(); } +#ifdef MATH_CHECKS +// This method is only used once, in diagonalize. If it's desired elsewhere, feel free to remove the #ifdef. bool Basis::is_symmetric() const { - if (!Math::is_equal_approx_ratio(elements[0][1], elements[1][0], UNIT_EPSILON)) { + if (!Math::is_equal_approx(elements[0][1], elements[1][0])) { return false; } - if (!Math::is_equal_approx_ratio(elements[0][2], elements[2][0], UNIT_EPSILON)) { + if (!Math::is_equal_approx(elements[0][2], elements[2][0])) { return false; } - if (!Math::is_equal_approx_ratio(elements[1][2], elements[2][1], UNIT_EPSILON)) { + if (!Math::is_equal_approx(elements[1][2], elements[2][1])) { return false; } return true; } +#endif Basis Basis::diagonalize() { //NOTE: only implemented for symmetric matrices -//with the Jacobi iterative method method +//with the Jacobi iterative method #ifdef MATH_CHECKS ERR_FAIL_COND_V(!is_symmetric(), Basis()); #endif @@ -314,7 +316,7 @@ Vector3 Basis::rotref_posscale_decomposition(Basis &rotref) const { // Multiplies the matrix from left by the rotation matrix: M -> R.M // Note that this does *not* rotate the matrix itself. // -// The main use of Basis is as Transform.basis, which is used a the transformation matrix +// The main use of Basis is as Transform.basis, which is used by the transformation matrix // of 3D object. Rotate here refers to rotation of the object (which is R * (*this)), // not the matrix itself (which is R * (*this) * R.transposed()). Basis Basis::rotated(const Vector3 &p_axis, real_t p_phi) const { @@ -343,12 +345,12 @@ void Basis::rotate(const Vector3 &p_euler) { *this = rotated(p_euler); } -Basis Basis::rotated(const Quat &p_quat) const { - return Basis(p_quat) * (*this); +Basis Basis::rotated(const Quaternion &p_quaternion) const { + return Basis(p_quaternion) * (*this); } -void Basis::rotate(const Quat &p_quat) { - *this = rotated(p_quat); +void Basis::rotate(const Quaternion &p_quaternion) { + *this = rotated(p_quaternion); } Vector3 Basis::get_rotation_euler() const { @@ -365,7 +367,7 @@ Vector3 Basis::get_rotation_euler() const { return m.get_euler(); } -Quat Basis::get_rotation_quat() const { +Quaternion Basis::get_rotation_quaternion() const { // Assumes that the matrix can be decomposed into a proper rotation and scaling matrix as M = R.S, // and returns the Euler angles corresponding to the rotation part, complementing get_scale(). // See the comment in get_scale() for further information. @@ -376,7 +378,19 @@ Quat Basis::get_rotation_quat() const { m.scale(Vector3(-1, -1, -1)); } - return m.get_quat(); + return m.get_quaternion(); +} + +void Basis::rotate_to_align(Vector3 p_start_direction, Vector3 p_end_direction) { + // Takes two vectors and rotates the basis from the first vector to the second vector. + // Adopted from: https://gist.github.com/kevinmoran/b45980723e53edeb8a5a43c49f134724 + const Vector3 axis = p_start_direction.cross(p_end_direction).normalized(); + if (axis.length_squared() != 0) { + real_t dot = p_start_direction.dot(p_end_direction); + dot = CLAMP(dot, -1.0, 1.0); + const real_t angle_rads = Math::acos(dot); + set_axis_angle(axis, angle_rads); + } } void Basis::get_rotation_axis_angle(Vector3 &p_axis, real_t &p_angle) const { @@ -428,12 +442,9 @@ Vector3 Basis::get_euler_xyz() const { // -cx*cz*sy+sx*sz cz*sx+cx*sy*sz cx*cy Vector3 euler; -#ifdef MATH_CHECKS - ERR_FAIL_COND_V(!is_rotation(), euler); -#endif real_t sy = elements[0][2]; - if (sy < 1.0) { - if (sy > -1.0) { + if (sy < (1.0 - CMP_EPSILON)) { + if (sy > -(1.0 - CMP_EPSILON)) { // is this a pure Y rotation? if (elements[1][0] == 0.0 && elements[0][1] == 0.0 && elements[1][2] == 0 && elements[2][1] == 0 && elements[1][1] == 1) { // return the simplest form (human friendlier in editor and scripts) @@ -446,12 +457,12 @@ Vector3 Basis::get_euler_xyz() const { euler.z = Math::atan2(-elements[0][1], elements[0][0]); } } else { - euler.x = -Math::atan2(elements[0][1], elements[1][1]); + euler.x = Math::atan2(elements[2][1], elements[1][1]); euler.y = -Math_PI / 2.0; euler.z = 0.0; } } else { - euler.x = Math::atan2(elements[0][1], elements[1][1]); + euler.x = Math::atan2(elements[2][1], elements[1][1]); euler.y = Math_PI / 2.0; euler.z = 0.0; } @@ -481,15 +492,106 @@ void Basis::set_euler_xyz(const Vector3 &p_euler) { *this = xmat * (ymat * zmat); } +Vector3 Basis::get_euler_xzy() const { + // Euler angles in XZY convention. + // See https://en.wikipedia.org/wiki/Euler_angles#Rotation_matrix + // + // rot = cz*cy -sz cz*sy + // sx*sy+cx*cy*sz cx*cz cx*sz*sy-cy*sx + // cy*sx*sz cz*sx cx*cy+sx*sz*sy + + Vector3 euler; + real_t sz = elements[0][1]; + if (sz < (1.0 - CMP_EPSILON)) { + if (sz > -(1.0 - CMP_EPSILON)) { + euler.x = Math::atan2(elements[2][1], elements[1][1]); + euler.y = Math::atan2(elements[0][2], elements[0][0]); + euler.z = Math::asin(-sz); + } else { + // It's -1 + euler.x = -Math::atan2(elements[1][2], elements[2][2]); + euler.y = 0.0; + euler.z = Math_PI / 2.0; + } + } else { + // It's 1 + euler.x = -Math::atan2(elements[1][2], elements[2][2]); + euler.y = 0.0; + euler.z = -Math_PI / 2.0; + } + return euler; +} + +void Basis::set_euler_xzy(const Vector3 &p_euler) { + real_t c, s; + + c = Math::cos(p_euler.x); + s = Math::sin(p_euler.x); + Basis xmat(1.0, 0.0, 0.0, 0.0, c, -s, 0.0, s, c); + + c = Math::cos(p_euler.y); + s = Math::sin(p_euler.y); + Basis ymat(c, 0.0, s, 0.0, 1.0, 0.0, -s, 0.0, c); + + c = Math::cos(p_euler.z); + s = Math::sin(p_euler.z); + Basis zmat(c, -s, 0.0, s, c, 0.0, 0.0, 0.0, 1.0); + + *this = xmat * zmat * ymat; +} + +Vector3 Basis::get_euler_yzx() const { + // Euler angles in YZX convention. + // See https://en.wikipedia.org/wiki/Euler_angles#Rotation_matrix + // + // rot = cy*cz sy*sx-cy*cx*sz cx*sy+cy*sz*sx + // sz cz*cx -cz*sx + // -cz*sy cy*sx+cx*sy*sz cy*cx-sy*sz*sx + + Vector3 euler; + real_t sz = elements[1][0]; + if (sz < (1.0 - CMP_EPSILON)) { + if (sz > -(1.0 - CMP_EPSILON)) { + euler.x = Math::atan2(-elements[1][2], elements[1][1]); + euler.y = Math::atan2(-elements[2][0], elements[0][0]); + euler.z = Math::asin(sz); + } else { + // It's -1 + euler.x = Math::atan2(elements[2][1], elements[2][2]); + euler.y = 0.0; + euler.z = -Math_PI / 2.0; + } + } else { + // It's 1 + euler.x = Math::atan2(elements[2][1], elements[2][2]); + euler.y = 0.0; + euler.z = Math_PI / 2.0; + } + return euler; +} + +void Basis::set_euler_yzx(const Vector3 &p_euler) { + real_t c, s; + + c = Math::cos(p_euler.x); + s = Math::sin(p_euler.x); + Basis xmat(1.0, 0.0, 0.0, 0.0, c, -s, 0.0, s, c); + + c = Math::cos(p_euler.y); + s = Math::sin(p_euler.y); + Basis ymat(c, 0.0, s, 0.0, 1.0, 0.0, -s, 0.0, c); + + c = Math::cos(p_euler.z); + s = Math::sin(p_euler.z); + Basis zmat(c, -s, 0.0, s, c, 0.0, 0.0, 0.0, 1.0); + + *this = ymat * zmat * xmat; +} + // get_euler_yxz returns a vector containing the Euler angles in the YXZ convention, // as in first-Z, then-X, last-Y. The angles for X, Y, and Z rotations are returned // as the x, y, and z components of a Vector3 respectively. Vector3 Basis::get_euler_yxz() const { - /* checking this is a bad idea, because obtaining from scaled transform is a valid use case -#ifdef MATH_CHECKS - ERR_FAIL_COND(!is_rotation()); -#endif -*/ // Euler angles in YXZ convention. // See https://en.wikipedia.org/wiki/Euler_angles#Rotation_matrix // @@ -501,8 +603,8 @@ Vector3 Basis::get_euler_yxz() const { real_t m12 = elements[1][2]; - if (m12 < 1) { - if (m12 > -1) { + if (m12 < (1 - CMP_EPSILON)) { + if (m12 > -(1 - CMP_EPSILON)) { // is this a pure X rotation? if (elements[1][0] == 0 && elements[0][1] == 0 && elements[0][2] == 0 && elements[2][0] == 0 && elements[0][0] == 1) { // return the simplest form (human friendlier in editor and scripts) @@ -516,12 +618,12 @@ Vector3 Basis::get_euler_yxz() const { } } else { // m12 == -1 euler.x = Math_PI * 0.5; - euler.y = -atan2(-elements[0][1], elements[0][0]); + euler.y = atan2(elements[0][1], elements[0][0]); euler.z = 0; } } else { // m12 == 1 euler.x = -Math_PI * 0.5; - euler.y = -atan2(-elements[0][1], elements[0][0]); + euler.y = -atan2(elements[0][1], elements[0][0]); euler.z = 0; } @@ -551,20 +653,102 @@ void Basis::set_euler_yxz(const Vector3 &p_euler) { *this = ymat * xmat * zmat; } -bool Basis::is_equal_approx(const Basis &p_basis) const { - return elements[0].is_equal_approx(p_basis.elements[0]) && elements[1].is_equal_approx(p_basis.elements[1]) && elements[2].is_equal_approx(p_basis.elements[2]); +Vector3 Basis::get_euler_zxy() const { + // Euler angles in ZXY convention. + // See https://en.wikipedia.org/wiki/Euler_angles#Rotation_matrix + // + // rot = cz*cy-sz*sx*sy -cx*sz cz*sy+cy*sz*sx + // cy*sz+cz*sx*sy cz*cx sz*sy-cz*cy*sx + // -cx*sy sx cx*cy + Vector3 euler; + real_t sx = elements[2][1]; + if (sx < (1.0 - CMP_EPSILON)) { + if (sx > -(1.0 - CMP_EPSILON)) { + euler.x = Math::asin(sx); + euler.y = Math::atan2(-elements[2][0], elements[2][2]); + euler.z = Math::atan2(-elements[0][1], elements[1][1]); + } else { + // It's -1 + euler.x = -Math_PI / 2.0; + euler.y = Math::atan2(elements[0][2], elements[0][0]); + euler.z = 0; + } + } else { + // It's 1 + euler.x = Math_PI / 2.0; + euler.y = Math::atan2(elements[0][2], elements[0][0]); + euler.z = 0; + } + return euler; } -bool Basis::is_equal_approx_ratio(const Basis &a, const Basis &b, real_t p_epsilon) const { - for (int i = 0; i < 3; i++) { - for (int j = 0; j < 3; j++) { - if (!Math::is_equal_approx_ratio(a.elements[i][j], b.elements[i][j], p_epsilon)) { - return false; - } +void Basis::set_euler_zxy(const Vector3 &p_euler) { + real_t c, s; + + c = Math::cos(p_euler.x); + s = Math::sin(p_euler.x); + Basis xmat(1.0, 0.0, 0.0, 0.0, c, -s, 0.0, s, c); + + c = Math::cos(p_euler.y); + s = Math::sin(p_euler.y); + Basis ymat(c, 0.0, s, 0.0, 1.0, 0.0, -s, 0.0, c); + + c = Math::cos(p_euler.z); + s = Math::sin(p_euler.z); + Basis zmat(c, -s, 0.0, s, c, 0.0, 0.0, 0.0, 1.0); + + *this = zmat * xmat * ymat; +} + +Vector3 Basis::get_euler_zyx() const { + // Euler angles in ZYX convention. + // See https://en.wikipedia.org/wiki/Euler_angles#Rotation_matrix + // + // rot = cz*cy cz*sy*sx-cx*sz sz*sx+cz*cx*cy + // cy*sz cz*cx+sz*sy*sx cx*sz*sy-cz*sx + // -sy cy*sx cy*cx + Vector3 euler; + real_t sy = elements[2][0]; + if (sy < (1.0 - CMP_EPSILON)) { + if (sy > -(1.0 - CMP_EPSILON)) { + euler.x = Math::atan2(elements[2][1], elements[2][2]); + euler.y = Math::asin(-sy); + euler.z = Math::atan2(elements[1][0], elements[0][0]); + } else { + // It's -1 + euler.x = 0; + euler.y = Math_PI / 2.0; + euler.z = -Math::atan2(elements[0][1], elements[1][1]); } + } else { + // It's 1 + euler.x = 0; + euler.y = -Math_PI / 2.0; + euler.z = -Math::atan2(elements[0][1], elements[1][1]); } + return euler; +} - return true; +void Basis::set_euler_zyx(const Vector3 &p_euler) { + real_t c, s; + + c = Math::cos(p_euler.x); + s = Math::sin(p_euler.x); + Basis xmat(1.0, 0.0, 0.0, 0.0, c, -s, 0.0, s, c); + + c = Math::cos(p_euler.y); + s = Math::sin(p_euler.y); + Basis ymat(c, 0.0, s, 0.0, 1.0, 0.0, -s, 0.0, c); + + c = Math::cos(p_euler.z); + s = Math::sin(p_euler.z); + Basis zmat(c, -s, 0.0, s, c, 0.0, 0.0, 0.0, 1.0); + + *this = zmat * ymat * xmat; +} + +bool Basis::is_equal_approx(const Basis &p_basis) const { + return elements[0].is_equal_approx(p_basis.elements[0]) && elements[1].is_equal_approx(p_basis.elements[1]) && elements[2].is_equal_approx(p_basis.elements[2]); } bool Basis::operator==(const Basis &p_matrix) const { @@ -584,23 +768,14 @@ bool Basis::operator!=(const Basis &p_matrix) const { } Basis::operator String() const { - String mtx; - for (int i = 0; i < 3; i++) { - for (int j = 0; j < 3; j++) { - if (i != 0 || j != 0) { - mtx += ", "; - } - - mtx += rtos(elements[i][j]); - } - } - - return mtx; + return "[X: " + get_axis(0).operator String() + + ", Y: " + get_axis(1).operator String() + + ", Z: " + get_axis(2).operator String() + "]"; } -Quat Basis::get_quat() const { +Quaternion Basis::get_quaternion() const { #ifdef MATH_CHECKS - ERR_FAIL_COND_V_MSG(!is_rotation(), Quat(), "Basis must be normalized in order to be casted to a Quaternion. Use get_rotation_quat() or call orthonormalized() instead."); + ERR_FAIL_COND_V_MSG(!is_rotation(), Quaternion(), "Basis must be normalized in order to be casted to a Quaternion. Use get_rotation_quaternion() or call orthonormalized() instead."); #endif /* Allow getting a quaternion from an unnormalized transform */ Basis m = *this; @@ -617,8 +792,8 @@ Quat Basis::get_quat() const { temp[2] = ((m.elements[1][0] - m.elements[0][1]) * s); } else { int i = m.elements[0][0] < m.elements[1][1] ? - (m.elements[1][1] < m.elements[2][2] ? 2 : 1) : - (m.elements[0][0] < m.elements[2][2] ? 2 : 0); + (m.elements[1][1] < m.elements[2][2] ? 2 : 1) : + (m.elements[0][0] < m.elements[2][2] ? 2 : 0); int j = (i + 1) % 3; int k = (i + 2) % 3; @@ -631,7 +806,7 @@ Quat Basis::get_quat() const { temp[k] = (m.elements[k][i] + m.elements[i][k]) * s; } - return Quat(temp[0], temp[1], temp[2], temp[3]); + return Quaternion(temp[0], temp[1], temp[2], temp[3]); } static const Basis _ortho_bases[24] = { @@ -708,7 +883,7 @@ void Basis::get_axis_angle(Vector3 &r_axis, real_t &r_angle) const { if ((Math::abs(elements[1][0] - elements[0][1]) < epsilon) && (Math::abs(elements[2][0] - elements[0][2]) < epsilon) && (Math::abs(elements[2][1] - elements[1][2]) < epsilon)) { // singularity found // first check for identity matrix which must have +1 for all terms - // in leading diagonaland zero in other terms + // in leading diagonal and zero in other terms if ((Math::abs(elements[1][0] + elements[0][1]) < epsilon2) && (Math::abs(elements[2][0] + elements[0][2]) < epsilon2) && (Math::abs(elements[2][1] + elements[1][2]) < epsilon2) && (Math::abs(elements[0][0] + elements[1][1] + elements[2][2] - 3) < epsilon2)) { // this singularity is identity matrix so angle = 0 r_axis = Vector3(0, 1, 0); @@ -773,13 +948,13 @@ void Basis::get_axis_angle(Vector3 &r_axis, real_t &r_angle) const { r_angle = angle; } -void Basis::set_quat(const Quat &p_quat) { - real_t d = p_quat.length_squared(); +void Basis::set_quaternion(const Quaternion &p_quaternion) { + real_t d = p_quaternion.length_squared(); real_t s = 2.0 / d; - real_t xs = p_quat.x * s, ys = p_quat.y * s, zs = p_quat.z * s; - real_t wx = p_quat.w * xs, wy = p_quat.w * ys, wz = p_quat.w * zs; - real_t xx = p_quat.x * xs, xy = p_quat.x * ys, xz = p_quat.x * zs; - real_t yy = p_quat.y * ys, yz = p_quat.y * zs, zz = p_quat.z * zs; + real_t xs = p_quaternion.x * s, ys = p_quaternion.y * s, zs = p_quaternion.z * s; + real_t wx = p_quaternion.w * xs, wy = p_quaternion.w * ys, wz = p_quaternion.w * zs; + real_t xx = p_quaternion.x * xs, xy = p_quaternion.x * ys, xz = p_quaternion.x * zs; + real_t yy = p_quaternion.y * ys, yz = p_quaternion.y * zs, zz = p_quaternion.z * zs; set(1.0 - (yy + zz), xy - wz, xz + wy, xy + wz, 1.0 - (xx + zz), yz - wx, xz - wy, yz + wx, 1.0 - (xx + yy)); @@ -825,9 +1000,9 @@ void Basis::set_euler_scale(const Vector3 &p_euler, const Vector3 &p_scale) { rotate(p_euler); } -void Basis::set_quat_scale(const Quat &p_quat, const Vector3 &p_scale) { +void Basis::set_quaternion_scale(const Quaternion &p_quaternion, const Vector3 &p_scale) { set_diagonal(p_scale); - rotate(p_quat); + rotate(p_quaternion); } void Basis::set_diagonal(const Vector3 &p_diag) { @@ -844,15 +1019,15 @@ void Basis::set_diagonal(const Vector3 &p_diag) { elements[2][2] = p_diag.z; } -Basis Basis::slerp(const Basis &target, const real_t &t) const { +Basis Basis::slerp(const Basis &p_to, const real_t &p_weight) const { //consider scale - Quat from(*this); - Quat to(target); + Quaternion from(*this); + Quaternion to(p_to); - Basis b(from.slerp(to, t)); - b.elements[0] *= Math::lerp(elements[0].length(), target.elements[0].length(), t); - b.elements[1] *= Math::lerp(elements[1].length(), target.elements[1].length(), t); - b.elements[2] *= Math::lerp(elements[2].length(), target.elements[2].length(), t); + Basis b(from.slerp(to, p_weight)); + b.elements[0] *= Math::lerp(elements[0].length(), p_to.elements[0].length(), p_weight); + b.elements[1] *= Math::lerp(elements[1].length(), p_to.elements[1].length(), p_weight); + b.elements[2] *= Math::lerp(elements[2].length(), p_to.elements[2].length(), p_weight); return b; } @@ -966,3 +1141,21 @@ void Basis::rotate_sh(real_t *p_values) { p_values[7] = -d3; p_values[8] = d4 * s_scale_dst4; } + +Basis Basis::looking_at(const Vector3 &p_target, const Vector3 &p_up) { +#ifdef MATH_CHECKS + ERR_FAIL_COND_V_MSG(p_target.is_equal_approx(Vector3()), Basis(), "The target vector can't be zero."); + ERR_FAIL_COND_V_MSG(p_up.is_equal_approx(Vector3()), Basis(), "The up vector can't be zero."); +#endif + Vector3 v_z = -p_target.normalized(); + Vector3 v_x = p_up.cross(v_z); +#ifdef MATH_CHECKS + ERR_FAIL_COND_V_MSG(v_x.is_equal_approx(Vector3()), Basis(), "The target vector and up vector can't be parallel to each other."); +#endif + v_x.normalize(); + Vector3 v_y = v_z.cross(v_x); + + Basis basis; + basis.set(v_x, v_y, v_z); + return basis; +} |