summaryrefslogtreecommitdiffstats
path: root/modules/godot_physics_3d/godot_collision_solver_3d.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'modules/godot_physics_3d/godot_collision_solver_3d.cpp')
-rw-r--r--modules/godot_physics_3d/godot_collision_solver_3d.cpp589
1 files changed, 589 insertions, 0 deletions
diff --git a/modules/godot_physics_3d/godot_collision_solver_3d.cpp b/modules/godot_physics_3d/godot_collision_solver_3d.cpp
new file mode 100644
index 0000000000..db48111eea
--- /dev/null
+++ b/modules/godot_physics_3d/godot_collision_solver_3d.cpp
@@ -0,0 +1,589 @@
+/**************************************************************************/
+/* godot_collision_solver_3d.cpp */
+/**************************************************************************/
+/* This file is part of: */
+/* GODOT ENGINE */
+/* https://godotengine.org */
+/**************************************************************************/
+/* Copyright (c) 2014-present Godot Engine contributors (see AUTHORS.md). */
+/* Copyright (c) 2007-2014 Juan Linietsky, Ariel Manzur. */
+/* */
+/* Permission is hereby granted, free of charge, to any person obtaining */
+/* a copy of this software and associated documentation files (the */
+/* "Software"), to deal in the Software without restriction, including */
+/* without limitation the rights to use, copy, modify, merge, publish, */
+/* distribute, sublicense, and/or sell copies of the Software, and to */
+/* permit persons to whom the Software is furnished to do so, subject to */
+/* the following conditions: */
+/* */
+/* The above copyright notice and this permission notice shall be */
+/* included in all copies or substantial portions of the Software. */
+/* */
+/* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, */
+/* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF */
+/* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. */
+/* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY */
+/* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, */
+/* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE */
+/* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */
+/**************************************************************************/
+
+#include "godot_collision_solver_3d.h"
+
+#include "godot_collision_solver_3d_sat.h"
+#include "godot_soft_body_3d.h"
+
+#include "gjk_epa.h"
+
+#define collision_solver sat_calculate_penetration
+//#define collision_solver gjk_epa_calculate_penetration
+
+bool GodotCollisionSolver3D::solve_static_world_boundary(const GodotShape3D *p_shape_A, const Transform3D &p_transform_A, const GodotShape3D *p_shape_B, const Transform3D &p_transform_B, CallbackResult p_result_callback, void *p_userdata, bool p_swap_result, real_t p_margin) {
+ const GodotWorldBoundaryShape3D *world_boundary = static_cast<const GodotWorldBoundaryShape3D *>(p_shape_A);
+ if (p_shape_B->get_type() == PhysicsServer3D::SHAPE_WORLD_BOUNDARY) {
+ return false;
+ }
+ Plane p = p_transform_A.xform(world_boundary->get_plane());
+
+ static const int max_supports = 16;
+ Vector3 supports[max_supports];
+ int support_count;
+ GodotShape3D::FeatureType support_type = GodotShape3D::FeatureType::FEATURE_POINT;
+ p_shape_B->get_supports(p_transform_B.basis.xform_inv(-p.normal).normalized(), max_supports, supports, support_count, support_type);
+
+ if (support_type == GodotShape3D::FEATURE_CIRCLE) {
+ ERR_FAIL_COND_V(support_count != 3, false);
+
+ Vector3 circle_pos = supports[0];
+ Vector3 circle_axis_1 = supports[1] - circle_pos;
+ Vector3 circle_axis_2 = supports[2] - circle_pos;
+
+ // Use 3 equidistant points on the circle.
+ for (int i = 0; i < 3; ++i) {
+ Vector3 vertex_pos = circle_pos;
+ vertex_pos += circle_axis_1 * Math::cos(2.0 * Math_PI * i / 3.0);
+ vertex_pos += circle_axis_2 * Math::sin(2.0 * Math_PI * i / 3.0);
+ supports[i] = vertex_pos;
+ }
+ }
+
+ bool found = false;
+
+ for (int i = 0; i < support_count; i++) {
+ supports[i] += p_margin * supports[i].normalized();
+ supports[i] = p_transform_B.xform(supports[i]);
+ if (p.distance_to(supports[i]) >= 0) {
+ continue;
+ }
+ found = true;
+
+ Vector3 support_A = p.project(supports[i]);
+
+ if (p_result_callback) {
+ if (p_swap_result) {
+ Vector3 normal = (support_A - supports[i]).normalized();
+ p_result_callback(supports[i], 0, support_A, 0, normal, p_userdata);
+ } else {
+ Vector3 normal = (supports[i] - support_A).normalized();
+ p_result_callback(support_A, 0, supports[i], 0, normal, p_userdata);
+ }
+ }
+ }
+
+ return found;
+}
+
+bool GodotCollisionSolver3D::solve_separation_ray(const GodotShape3D *p_shape_A, const Transform3D &p_transform_A, const GodotShape3D *p_shape_B, const Transform3D &p_transform_B, CallbackResult p_result_callback, void *p_userdata, bool p_swap_result, real_t p_margin) {
+ const GodotSeparationRayShape3D *ray = static_cast<const GodotSeparationRayShape3D *>(p_shape_A);
+
+ Vector3 from = p_transform_A.origin;
+ Vector3 to = from + p_transform_A.basis.get_column(2) * (ray->get_length() + p_margin);
+ Vector3 support_A = to;
+
+ Transform3D ai = p_transform_B.affine_inverse();
+
+ from = ai.xform(from);
+ to = ai.xform(to);
+
+ Vector3 p, n;
+ int fi = -1;
+ if (!p_shape_B->intersect_segment(from, to, p, n, fi, true)) {
+ return false;
+ }
+
+ // Discard contacts when the ray is fully contained inside the shape.
+ if (n == Vector3()) {
+ return false;
+ }
+
+ // Discard contacts in the wrong direction.
+ if (n.dot(from - to) < CMP_EPSILON) {
+ return false;
+ }
+
+ Vector3 support_B = p_transform_B.xform(p);
+ if (ray->get_slide_on_slope()) {
+ Vector3 global_n = ai.basis.xform_inv(n).normalized();
+ support_B = support_A + (support_B - support_A).length() * global_n;
+ }
+
+ if (p_result_callback) {
+ Vector3 normal = (support_B - support_A).normalized();
+ if (p_swap_result) {
+ p_result_callback(support_B, 0, support_A, 0, -normal, p_userdata);
+ } else {
+ p_result_callback(support_A, 0, support_B, 0, normal, p_userdata);
+ }
+ }
+ return true;
+}
+
+struct _SoftBodyContactCollisionInfo {
+ int node_index = 0;
+ GodotCollisionSolver3D::CallbackResult result_callback = nullptr;
+ void *userdata = nullptr;
+ bool swap_result = false;
+ int contact_count = 0;
+};
+
+void GodotCollisionSolver3D::soft_body_contact_callback(const Vector3 &p_point_A, int p_index_A, const Vector3 &p_point_B, int p_index_B, const Vector3 &normal, void *p_userdata) {
+ _SoftBodyContactCollisionInfo &cinfo = *(static_cast<_SoftBodyContactCollisionInfo *>(p_userdata));
+
+ ++cinfo.contact_count;
+
+ if (!cinfo.result_callback) {
+ return;
+ }
+
+ if (cinfo.swap_result) {
+ cinfo.result_callback(p_point_B, cinfo.node_index, p_point_A, p_index_A, -normal, cinfo.userdata);
+ } else {
+ cinfo.result_callback(p_point_A, p_index_A, p_point_B, cinfo.node_index, normal, cinfo.userdata);
+ }
+}
+
+struct _SoftBodyQueryInfo {
+ GodotSoftBody3D *soft_body = nullptr;
+ const GodotShape3D *shape_A = nullptr;
+ const GodotShape3D *shape_B = nullptr;
+ Transform3D transform_A;
+ Transform3D node_transform;
+ _SoftBodyContactCollisionInfo contact_info;
+#ifdef DEBUG_ENABLED
+ int node_query_count = 0;
+ int convex_query_count = 0;
+#endif
+};
+
+bool GodotCollisionSolver3D::soft_body_query_callback(uint32_t p_node_index, void *p_userdata) {
+ _SoftBodyQueryInfo &query_cinfo = *(static_cast<_SoftBodyQueryInfo *>(p_userdata));
+
+ Vector3 node_position = query_cinfo.soft_body->get_node_position(p_node_index);
+
+ Transform3D transform_B;
+ transform_B.origin = query_cinfo.node_transform.xform(node_position);
+
+ query_cinfo.contact_info.node_index = p_node_index;
+ bool collided = solve_static(query_cinfo.shape_A, query_cinfo.transform_A, query_cinfo.shape_B, transform_B, soft_body_contact_callback, &query_cinfo.contact_info);
+
+#ifdef DEBUG_ENABLED
+ ++query_cinfo.node_query_count;
+#endif
+
+ // Stop at first collision if contacts are not needed.
+ return (collided && !query_cinfo.contact_info.result_callback);
+}
+
+bool GodotCollisionSolver3D::soft_body_concave_callback(void *p_userdata, GodotShape3D *p_convex) {
+ _SoftBodyQueryInfo &query_cinfo = *(static_cast<_SoftBodyQueryInfo *>(p_userdata));
+
+ query_cinfo.shape_A = p_convex;
+
+ // Calculate AABB for internal soft body query (in world space).
+ AABB shape_aabb;
+ for (int i = 0; i < 3; i++) {
+ Vector3 axis;
+ axis[i] = 1.0;
+
+ real_t smin, smax;
+ p_convex->project_range(axis, query_cinfo.transform_A, smin, smax);
+
+ shape_aabb.position[i] = smin;
+ shape_aabb.size[i] = smax - smin;
+ }
+
+ shape_aabb.grow_by(query_cinfo.soft_body->get_collision_margin());
+
+ query_cinfo.soft_body->query_aabb(shape_aabb, soft_body_query_callback, &query_cinfo);
+
+ bool collided = (query_cinfo.contact_info.contact_count > 0);
+
+#ifdef DEBUG_ENABLED
+ ++query_cinfo.convex_query_count;
+#endif
+
+ // Stop at first collision if contacts are not needed.
+ return (collided && !query_cinfo.contact_info.result_callback);
+}
+
+bool GodotCollisionSolver3D::solve_soft_body(const GodotShape3D *p_shape_A, const Transform3D &p_transform_A, const GodotShape3D *p_shape_B, const Transform3D &p_transform_B, CallbackResult p_result_callback, void *p_userdata, bool p_swap_result) {
+ const GodotSoftBodyShape3D *soft_body_shape_B = static_cast<const GodotSoftBodyShape3D *>(p_shape_B);
+
+ GodotSoftBody3D *soft_body = soft_body_shape_B->get_soft_body();
+ const Transform3D &world_to_local = soft_body->get_inv_transform();
+
+ const real_t collision_margin = soft_body->get_collision_margin();
+
+ GodotSphereShape3D sphere_shape;
+ sphere_shape.set_data(collision_margin);
+
+ _SoftBodyQueryInfo query_cinfo;
+ query_cinfo.contact_info.result_callback = p_result_callback;
+ query_cinfo.contact_info.userdata = p_userdata;
+ query_cinfo.contact_info.swap_result = p_swap_result;
+ query_cinfo.soft_body = soft_body;
+ query_cinfo.node_transform = p_transform_B * world_to_local;
+ query_cinfo.shape_A = p_shape_A;
+ query_cinfo.transform_A = p_transform_A;
+ query_cinfo.shape_B = &sphere_shape;
+
+ if (p_shape_A->is_concave()) {
+ // In case of concave shape, query convex shapes first.
+ const GodotConcaveShape3D *concave_shape_A = static_cast<const GodotConcaveShape3D *>(p_shape_A);
+
+ AABB soft_body_aabb = soft_body->get_bounds();
+ soft_body_aabb.grow_by(collision_margin);
+
+ // Calculate AABB for internal concave shape query (in local space).
+ AABB local_aabb;
+ for (int i = 0; i < 3; i++) {
+ Vector3 axis(p_transform_A.basis.get_column(i));
+ real_t axis_scale = 1.0 / axis.length();
+
+ real_t smin = soft_body_aabb.position[i];
+ real_t smax = smin + soft_body_aabb.size[i];
+
+ smin *= axis_scale;
+ smax *= axis_scale;
+
+ local_aabb.position[i] = smin;
+ local_aabb.size[i] = smax - smin;
+ }
+
+ concave_shape_A->cull(local_aabb, soft_body_concave_callback, &query_cinfo, true);
+ } else {
+ AABB shape_aabb = p_transform_A.xform(p_shape_A->get_aabb());
+ shape_aabb.grow_by(collision_margin);
+
+ soft_body->query_aabb(shape_aabb, soft_body_query_callback, &query_cinfo);
+ }
+
+ return (query_cinfo.contact_info.contact_count > 0);
+}
+
+struct _ConcaveCollisionInfo {
+ const Transform3D *transform_A = nullptr;
+ const GodotShape3D *shape_A = nullptr;
+ const Transform3D *transform_B = nullptr;
+ GodotCollisionSolver3D::CallbackResult result_callback = nullptr;
+ void *userdata = nullptr;
+ bool swap_result = false;
+ bool collided = false;
+ int aabb_tests = 0;
+ int collisions = 0;
+ bool tested = false;
+ real_t margin_A = 0.0f;
+ real_t margin_B = 0.0f;
+ Vector3 close_A;
+ Vector3 close_B;
+};
+
+bool GodotCollisionSolver3D::concave_callback(void *p_userdata, GodotShape3D *p_convex) {
+ _ConcaveCollisionInfo &cinfo = *(static_cast<_ConcaveCollisionInfo *>(p_userdata));
+ cinfo.aabb_tests++;
+
+ bool collided = collision_solver(cinfo.shape_A, *cinfo.transform_A, p_convex, *cinfo.transform_B, cinfo.result_callback, cinfo.userdata, cinfo.swap_result, nullptr, cinfo.margin_A, cinfo.margin_B);
+ if (!collided) {
+ return false;
+ }
+
+ cinfo.collided = true;
+ cinfo.collisions++;
+
+ // Stop at first collision if contacts are not needed.
+ return !cinfo.result_callback;
+}
+
+bool GodotCollisionSolver3D::solve_concave(const GodotShape3D *p_shape_A, const Transform3D &p_transform_A, const GodotShape3D *p_shape_B, const Transform3D &p_transform_B, CallbackResult p_result_callback, void *p_userdata, bool p_swap_result, real_t p_margin_A, real_t p_margin_B) {
+ const GodotConcaveShape3D *concave_B = static_cast<const GodotConcaveShape3D *>(p_shape_B);
+
+ _ConcaveCollisionInfo cinfo;
+ cinfo.transform_A = &p_transform_A;
+ cinfo.shape_A = p_shape_A;
+ cinfo.transform_B = &p_transform_B;
+ cinfo.result_callback = p_result_callback;
+ cinfo.userdata = p_userdata;
+ cinfo.swap_result = p_swap_result;
+ cinfo.collided = false;
+ cinfo.collisions = 0;
+ cinfo.margin_A = p_margin_A;
+ cinfo.margin_B = p_margin_B;
+
+ cinfo.aabb_tests = 0;
+
+ Transform3D rel_transform = p_transform_A;
+ rel_transform.origin -= p_transform_B.origin;
+
+ //quickly compute a local AABB
+
+ AABB local_aabb;
+ for (int i = 0; i < 3; i++) {
+ Vector3 axis(p_transform_B.basis.get_column(i));
+ real_t axis_scale = 1.0 / axis.length();
+ axis *= axis_scale;
+
+ real_t smin = 0.0, smax = 0.0;
+ p_shape_A->project_range(axis, rel_transform, smin, smax);
+ smin -= p_margin_A;
+ smax += p_margin_A;
+ smin *= axis_scale;
+ smax *= axis_scale;
+
+ local_aabb.position[i] = smin;
+ local_aabb.size[i] = smax - smin;
+ }
+
+ concave_B->cull(local_aabb, concave_callback, &cinfo, false);
+
+ return cinfo.collided;
+}
+
+bool GodotCollisionSolver3D::solve_static(const GodotShape3D *p_shape_A, const Transform3D &p_transform_A, const GodotShape3D *p_shape_B, const Transform3D &p_transform_B, CallbackResult p_result_callback, void *p_userdata, Vector3 *r_sep_axis, real_t p_margin_A, real_t p_margin_B) {
+ PhysicsServer3D::ShapeType type_A = p_shape_A->get_type();
+ PhysicsServer3D::ShapeType type_B = p_shape_B->get_type();
+ bool concave_A = p_shape_A->is_concave();
+ bool concave_B = p_shape_B->is_concave();
+
+ bool swap = false;
+
+ if (type_A > type_B) {
+ SWAP(type_A, type_B);
+ SWAP(concave_A, concave_B);
+ swap = true;
+ }
+
+ if (type_A == PhysicsServer3D::SHAPE_WORLD_BOUNDARY) {
+ if (type_B == PhysicsServer3D::SHAPE_WORLD_BOUNDARY) {
+ WARN_PRINT_ONCE("Collisions between world boundaries are not supported.");
+ return false;
+ }
+ if (type_B == PhysicsServer3D::SHAPE_SEPARATION_RAY) {
+ WARN_PRINT_ONCE("Collisions between world boundaries and rays are not supported.");
+ return false;
+ }
+ if (type_B == PhysicsServer3D::SHAPE_SOFT_BODY) {
+ WARN_PRINT_ONCE("Collisions between world boundaries and soft bodies are not supported.");
+ return false;
+ }
+
+ if (swap) {
+ return solve_static_world_boundary(p_shape_B, p_transform_B, p_shape_A, p_transform_A, p_result_callback, p_userdata, true, p_margin_A);
+ } else {
+ return solve_static_world_boundary(p_shape_A, p_transform_A, p_shape_B, p_transform_B, p_result_callback, p_userdata, false, p_margin_B);
+ }
+
+ } else if (type_A == PhysicsServer3D::SHAPE_SEPARATION_RAY) {
+ if (type_B == PhysicsServer3D::SHAPE_SEPARATION_RAY) {
+ WARN_PRINT_ONCE("Collisions between rays are not supported.");
+ return false;
+ }
+
+ if (swap) {
+ return solve_separation_ray(p_shape_B, p_transform_B, p_shape_A, p_transform_A, p_result_callback, p_userdata, true, p_margin_B);
+ } else {
+ return solve_separation_ray(p_shape_A, p_transform_A, p_shape_B, p_transform_B, p_result_callback, p_userdata, false, p_margin_A);
+ }
+
+ } else if (type_B == PhysicsServer3D::SHAPE_SOFT_BODY) {
+ if (type_A == PhysicsServer3D::SHAPE_SOFT_BODY) {
+ WARN_PRINT_ONCE("Collisions between soft bodies are not supported.");
+ return false;
+ }
+
+ if (swap) {
+ return solve_soft_body(p_shape_B, p_transform_B, p_shape_A, p_transform_A, p_result_callback, p_userdata, true);
+ } else {
+ return solve_soft_body(p_shape_A, p_transform_A, p_shape_B, p_transform_B, p_result_callback, p_userdata, false);
+ }
+
+ } else if (concave_B) {
+ if (concave_A) {
+ WARN_PRINT_ONCE("Collisions between two concave shapes are not supported.");
+ return false;
+ }
+
+ if (!swap) {
+ return solve_concave(p_shape_A, p_transform_A, p_shape_B, p_transform_B, p_result_callback, p_userdata, false, p_margin_A, p_margin_B);
+ } else {
+ return solve_concave(p_shape_B, p_transform_B, p_shape_A, p_transform_A, p_result_callback, p_userdata, true, p_margin_A, p_margin_B);
+ }
+
+ } else {
+ return collision_solver(p_shape_A, p_transform_A, p_shape_B, p_transform_B, p_result_callback, p_userdata, false, r_sep_axis, p_margin_A, p_margin_B);
+ }
+}
+
+bool GodotCollisionSolver3D::concave_distance_callback(void *p_userdata, GodotShape3D *p_convex) {
+ _ConcaveCollisionInfo &cinfo = *(static_cast<_ConcaveCollisionInfo *>(p_userdata));
+ cinfo.aabb_tests++;
+
+ Vector3 close_A, close_B;
+ cinfo.collided = !gjk_epa_calculate_distance(cinfo.shape_A, *cinfo.transform_A, p_convex, *cinfo.transform_B, close_A, close_B);
+
+ if (cinfo.collided) {
+ // No need to process any more result.
+ return true;
+ }
+
+ if (!cinfo.tested || close_A.distance_squared_to(close_B) < cinfo.close_A.distance_squared_to(cinfo.close_B)) {
+ cinfo.close_A = close_A;
+ cinfo.close_B = close_B;
+ cinfo.tested = true;
+ }
+
+ cinfo.collisions++;
+ return false;
+}
+
+bool GodotCollisionSolver3D::solve_distance_world_boundary(const GodotShape3D *p_shape_A, const Transform3D &p_transform_A, const GodotShape3D *p_shape_B, const Transform3D &p_transform_B, Vector3 &r_point_A, Vector3 &r_point_B) {
+ const GodotWorldBoundaryShape3D *world_boundary = static_cast<const GodotWorldBoundaryShape3D *>(p_shape_A);
+ if (p_shape_B->get_type() == PhysicsServer3D::SHAPE_WORLD_BOUNDARY) {
+ return false;
+ }
+ Plane p = p_transform_A.xform(world_boundary->get_plane());
+
+ static const int max_supports = 16;
+ Vector3 supports[max_supports];
+ int support_count;
+ GodotShape3D::FeatureType support_type;
+ Vector3 support_direction = p_transform_B.basis.xform_inv(-p.normal).normalized();
+
+ p_shape_B->get_supports(support_direction, max_supports, supports, support_count, support_type);
+
+ if (support_count == 0) { // This is a poor man's way to detect shapes that don't implement get_supports, such as GodotMotionShape3D.
+ Vector3 support_B = p_transform_B.xform(p_shape_B->get_support(support_direction));
+ r_point_A = p.project(support_B);
+ r_point_B = support_B;
+ bool collided = p.distance_to(support_B) <= 0;
+ return collided;
+ }
+
+ if (support_type == GodotShape3D::FEATURE_CIRCLE) {
+ ERR_FAIL_COND_V(support_count != 3, false);
+
+ Vector3 circle_pos = supports[0];
+ Vector3 circle_axis_1 = supports[1] - circle_pos;
+ Vector3 circle_axis_2 = supports[2] - circle_pos;
+
+ // Use 3 equidistant points on the circle.
+ for (int i = 0; i < 3; ++i) {
+ Vector3 vertex_pos = circle_pos;
+ vertex_pos += circle_axis_1 * Math::cos(2.0 * Math_PI * i / 3.0);
+ vertex_pos += circle_axis_2 * Math::sin(2.0 * Math_PI * i / 3.0);
+ supports[i] = vertex_pos;
+ }
+ }
+
+ bool collided = false;
+ Vector3 closest;
+ real_t closest_d = 0;
+
+ for (int i = 0; i < support_count; i++) {
+ supports[i] = p_transform_B.xform(supports[i]);
+ real_t d = p.distance_to(supports[i]);
+ if (i == 0 || d < closest_d) {
+ closest = supports[i];
+ closest_d = d;
+ if (d <= 0) {
+ collided = true;
+ }
+ }
+ }
+
+ r_point_A = p.project(closest);
+ r_point_B = closest;
+
+ return collided;
+}
+
+bool GodotCollisionSolver3D::solve_distance(const GodotShape3D *p_shape_A, const Transform3D &p_transform_A, const GodotShape3D *p_shape_B, const Transform3D &p_transform_B, Vector3 &r_point_A, Vector3 &r_point_B, const AABB &p_concave_hint, Vector3 *r_sep_axis) {
+ if (p_shape_B->get_type() == PhysicsServer3D::SHAPE_WORLD_BOUNDARY) {
+ Vector3 a, b;
+ bool col = solve_distance_world_boundary(p_shape_B, p_transform_B, p_shape_A, p_transform_A, a, b);
+ r_point_A = b;
+ r_point_B = a;
+ return !col;
+
+ } else if (p_shape_B->is_concave()) {
+ if (p_shape_A->is_concave()) {
+ return false;
+ }
+
+ const GodotConcaveShape3D *concave_B = static_cast<const GodotConcaveShape3D *>(p_shape_B);
+
+ _ConcaveCollisionInfo cinfo;
+ cinfo.transform_A = &p_transform_A;
+ cinfo.shape_A = p_shape_A;
+ cinfo.transform_B = &p_transform_B;
+ cinfo.result_callback = nullptr;
+ cinfo.userdata = nullptr;
+ cinfo.swap_result = false;
+ cinfo.collided = false;
+ cinfo.collisions = 0;
+ cinfo.aabb_tests = 0;
+ cinfo.tested = false;
+
+ Transform3D rel_transform = p_transform_A;
+ rel_transform.origin -= p_transform_B.origin;
+
+ //quickly compute a local AABB
+
+ bool use_cc_hint = p_concave_hint != AABB();
+ AABB cc_hint_aabb;
+ if (use_cc_hint) {
+ cc_hint_aabb = p_concave_hint;
+ cc_hint_aabb.position -= p_transform_B.origin;
+ }
+
+ AABB local_aabb;
+ for (int i = 0; i < 3; i++) {
+ Vector3 axis(p_transform_B.basis.get_column(i));
+ real_t axis_scale = ((real_t)1.0) / axis.length();
+ axis *= axis_scale;
+
+ real_t smin, smax;
+
+ if (use_cc_hint) {
+ cc_hint_aabb.project_range_in_plane(Plane(axis), smin, smax);
+ } else {
+ p_shape_A->project_range(axis, rel_transform, smin, smax);
+ }
+
+ smin *= axis_scale;
+ smax *= axis_scale;
+
+ local_aabb.position[i] = smin;
+ local_aabb.size[i] = smax - smin;
+ }
+
+ concave_B->cull(local_aabb, concave_distance_callback, &cinfo, false);
+ if (!cinfo.collided) {
+ r_point_A = cinfo.close_A;
+ r_point_B = cinfo.close_B;
+ }
+
+ return !cinfo.collided;
+ } else {
+ return gjk_epa_calculate_distance(p_shape_A, p_transform_A, p_shape_B, p_transform_B, r_point_A, r_point_B); //should pass sepaxis..
+ }
+}