diff options
Diffstat (limited to 'scene/3d/baked_light_instance.cpp')
-rw-r--r-- | scene/3d/baked_light_instance.cpp | 1726 |
1 files changed, 1691 insertions, 35 deletions
diff --git a/scene/3d/baked_light_instance.cpp b/scene/3d/baked_light_instance.cpp index ca3a309568..051256deb4 100644 --- a/scene/3d/baked_light_instance.cpp +++ b/scene/3d/baked_light_instance.cpp @@ -5,7 +5,7 @@ /* GODOT ENGINE */ /* http://www.godotengine.org */ /*************************************************************************/ -/* Copyright (c) 2007-2016 Juan Linietsky, Ariel Manzur. */ +/* Copyright (c) 2007-2017 Juan Linietsky, Ariel Manzur. */ /* */ /* Permission is hereby granted, free of charge, to any person obtaining */ /* a copy of this software and associated documentation files (the */ @@ -28,82 +28,1737 @@ /*************************************************************************/ #include "baked_light_instance.h" #include "scene/scene_string_names.h" +#include "mesh_instance.h" +#include "light.h" +#include "math.h" +#define FINDMINMAX(x0,x1,x2,min,max) \ + min = max = x0; \ + if(x1<min) min=x1;\ + if(x1>max) max=x1;\ + if(x2<min) min=x2;\ + if(x2>max) max=x2; -RID BakedLightInstance::get_baked_light_instance() const { +static bool planeBoxOverlap(Vector3 normal,float d, Vector3 maxbox) +{ + int q; + Vector3 vmin,vmax; + for(q=0;q<=2;q++) + { + if(normal[q]>0.0f) + { + vmin[q]=-maxbox[q]; + vmax[q]=maxbox[q]; + } + else + { + vmin[q]=maxbox[q]; + vmax[q]=-maxbox[q]; + } + } + if(normal.dot(vmin)+d>0.0f) return false; + if(normal.dot(vmax)+d>=0.0f) return true; - if (baked_light.is_null()) - return RID(); - else - return get_instance(); + return false; +} + + +/*======================== X-tests ========================*/ +#define AXISTEST_X01(a, b, fa, fb) \ + p0 = a*v0.y - b*v0.z; \ + p2 = a*v2.y - b*v2.z; \ + if(p0<p2) {min=p0; max=p2;} else {min=p2; max=p0;} \ + rad = fa * boxhalfsize.y + fb * boxhalfsize.z; \ + if(min>rad || max<-rad) return false; + +#define AXISTEST_X2(a, b, fa, fb) \ + p0 = a*v0.y - b*v0.z; \ + p1 = a*v1.y - b*v1.z; \ + if(p0<p1) {min=p0; max=p1;} else {min=p1; max=p0;} \ + rad = fa * boxhalfsize.y + fb * boxhalfsize.z; \ + if(min>rad || max<-rad) return false; + +/*======================== Y-tests ========================*/ +#define AXISTEST_Y02(a, b, fa, fb) \ + p0 = -a*v0.x + b*v0.z; \ + p2 = -a*v2.x + b*v2.z; \ + if(p0<p2) {min=p0; max=p2;} else {min=p2; max=p0;} \ + rad = fa * boxhalfsize.x + fb * boxhalfsize.z; \ + if(min>rad || max<-rad) return false; + +#define AXISTEST_Y1(a, b, fa, fb) \ + p0 = -a*v0.x + b*v0.z; \ + p1 = -a*v1.x + b*v1.z; \ + if(p0<p1) {min=p0; max=p1;} else {min=p1; max=p0;} \ + rad = fa * boxhalfsize.x + fb * boxhalfsize.z; \ + if(min>rad || max<-rad) return false; + +/*======================== Z-tests ========================*/ + +#define AXISTEST_Z12(a, b, fa, fb) \ + p1 = a*v1.x - b*v1.y; \ + p2 = a*v2.x - b*v2.y; \ + if(p2<p1) {min=p2; max=p1;} else {min=p1; max=p2;} \ + rad = fa * boxhalfsize.x + fb * boxhalfsize.y; \ + if(min>rad || max<-rad) return false; + +#define AXISTEST_Z0(a, b, fa, fb) \ + p0 = a*v0.x - b*v0.y; \ + p1 = a*v1.x - b*v1.y; \ + if(p0<p1) {min=p0; max=p1;} else {min=p1; max=p0;} \ + rad = fa * boxhalfsize.x + fb * boxhalfsize.y; \ + if(min>rad || max<-rad) return false; + +static bool fast_tri_box_overlap(const Vector3& boxcenter,const Vector3 boxhalfsize,const Vector3 *triverts) { + + /* use separating axis theorem to test overlap between triangle and box */ + /* need to test for overlap in these directions: */ + /* 1) the {x,y,z}-directions (actually, since we use the AABB of the triangle */ + /* we do not even need to test these) */ + /* 2) normal of the triangle */ + /* 3) crossproduct(edge from tri, {x,y,z}-directin) */ + /* this gives 3x3=9 more tests */ + Vector3 v0,v1,v2; + float min,max,d,p0,p1,p2,rad,fex,fey,fez; + Vector3 normal,e0,e1,e2; + + /* This is the fastest branch on Sun */ + /* move everything so that the boxcenter is in (0,0,0) */ + + v0=triverts[0]-boxcenter; + v1=triverts[1]-boxcenter; + v2=triverts[2]-boxcenter; + + /* compute triangle edges */ + e0=v1-v0; /* tri edge 0 */ + e1=v2-v1; /* tri edge 1 */ + e2=v0-v2; /* tri edge 2 */ + + /* Bullet 3: */ + /* test the 9 tests first (this was faster) */ + fex = Math::abs(e0.x); + fey = Math::abs(e0.y); + fez = Math::abs(e0.z); + AXISTEST_X01(e0.z, e0.y, fez, fey); + AXISTEST_Y02(e0.z, e0.x, fez, fex); + AXISTEST_Z12(e0.y, e0.x, fey, fex); + + fex = Math::abs(e1.x); + fey = Math::abs(e1.y); + fez = Math::abs(e1.z); + AXISTEST_X01(e1.z, e1.y, fez, fey); + AXISTEST_Y02(e1.z, e1.x, fez, fex); + AXISTEST_Z0(e1.y, e1.x, fey, fex); + + fex = Math::abs(e2.x); + fey = Math::abs(e2.y); + fez = Math::abs(e2.z); + AXISTEST_X2(e2.z, e2.y, fez, fey); + AXISTEST_Y1(e2.z, e2.x, fez, fex); + AXISTEST_Z12(e2.y, e2.x, fey, fex); + + /* Bullet 1: */ + /* first test overlap in the {x,y,z}-directions */ + /* find min, max of the triangle each direction, and test for overlap in */ + /* that direction -- this is equivalent to testing a minimal AABB around */ + /* the triangle against the AABB */ + + /* test in X-direction */ + FINDMINMAX(v0.x,v1.x,v2.x,min,max); + if(min>boxhalfsize.x || max<-boxhalfsize.x) return false; + + /* test in Y-direction */ + FINDMINMAX(v0.y,v1.y,v2.y,min,max); + if(min>boxhalfsize.y || max<-boxhalfsize.y) return false; + + /* test in Z-direction */ + FINDMINMAX(v0.z,v1.z,v2.z,min,max); + if(min>boxhalfsize.z || max<-boxhalfsize.z) return false; + + /* Bullet 2: */ + /* test if the box intersects the plane of the triangle */ + /* compute plane equation of triangle: normal*x+d=0 */ + normal=e0.cross(e1); + d=-normal.dot(v0); /* plane eq: normal.x+d=0 */ + if(!planeBoxOverlap(normal,d,boxhalfsize)) return false; + + return true; /* box and triangle overlaps */ +} + + +Vector<Color> BakedLight::_get_bake_texture(Image &p_image,const Color& p_color) { + + Vector<Color> ret; + + if (p_image.empty()) { + + ret.resize(bake_texture_size*bake_texture_size); + for(int i=0;i<bake_texture_size*bake_texture_size;i++) { + ret[i]=p_color; + } + + return ret; + } + + p_image.convert(Image::FORMAT_RGBA8); + p_image.resize(bake_texture_size,bake_texture_size,Image::INTERPOLATE_CUBIC); + + + DVector<uint8_t>::Read r = p_image.get_data().read(); + ret.resize(bake_texture_size*bake_texture_size); + + for(int i=0;i<bake_texture_size*bake_texture_size;i++) { + Color c; + c.r = r[i*4+0]/255.0; + c.g = r[i*4+1]/255.0; + c.b = r[i*4+2]/255.0; + c.a = r[i*4+3]/255.0; + ret[i]=c; + + } + + return ret; +} + + +BakedLight::MaterialCache BakedLight::_get_material_cache(Ref<Material> p_material) { + + //this way of obtaining materials is inaccurate and also does not support some compressed formats very well + Ref<FixedSpatialMaterial> mat = p_material; + + Ref<Material> material = mat; //hack for now + + if (material_cache.has(material)) { + return material_cache[material]; + } + + MaterialCache mc; + + if (mat.is_valid()) { + + + Ref<ImageTexture> albedo_tex = mat->get_texture(FixedSpatialMaterial::TEXTURE_ALBEDO); + + Image img_albedo; + if (albedo_tex.is_valid()) { + + img_albedo = albedo_tex->get_data(); + } + + mc.albedo=_get_bake_texture(img_albedo,mat->get_albedo()); + + Ref<ImageTexture> emission_tex = mat->get_texture(FixedSpatialMaterial::TEXTURE_EMISSION); + + Color emission_col = mat->get_emission(); + emission_col.r*=mat->get_emission_energy(); + emission_col.g*=mat->get_emission_energy(); + emission_col.b*=mat->get_emission_energy(); + + Image img_emission; + + if (emission_tex.is_valid()) { + + img_emission = emission_tex->get_data(); + } + + mc.emission=_get_bake_texture(img_emission,emission_col); + + } else { + Image empty; + + mc.albedo=_get_bake_texture(empty,Color(0.7,0.7,0.7)); + mc.emission=_get_bake_texture(empty,Color(0,0,0)); + + + } + + material_cache[p_material]=mc; + return mc; + + +} + + + +static _FORCE_INLINE_ Vector2 get_uv(const Vector3& p_pos, const Vector3 *p_vtx, const Vector2* p_uv) { + + if (p_pos.distance_squared_to(p_vtx[0])<CMP_EPSILON2) + return p_uv[0]; + if (p_pos.distance_squared_to(p_vtx[1])<CMP_EPSILON2) + return p_uv[1]; + if (p_pos.distance_squared_to(p_vtx[2])<CMP_EPSILON2) + return p_uv[2]; + + Vector3 v0 = p_vtx[1] - p_vtx[0]; + Vector3 v1 = p_vtx[2] - p_vtx[0]; + Vector3 v2 = p_pos - p_vtx[0]; + + float d00 = v0.dot( v0); + float d01 = v0.dot( v1); + float d11 = v1.dot( v1); + float d20 = v2.dot( v0); + float d21 = v2.dot( v1); + float denom = (d00 * d11 - d01 * d01); + if (denom==0) + return p_uv[0]; + float v = (d11 * d20 - d01 * d21) / denom; + float w = (d00 * d21 - d01 * d20) / denom; + float u = 1.0f - v - w; + + return p_uv[0]*u + p_uv[1]*v + p_uv[2]*w; +} + +void BakedLight::_plot_face(int p_idx, int p_level, const Vector3 *p_vtx, const Vector2* p_uv, const MaterialCache& p_material, const AABB &p_aabb) { + + + + if (p_level==cell_subdiv-1) { + //plot the face by guessing it's albedo and emission value + + //find best axis to map to, for scanning values + int closest_axis; + float closest_dot; + + Vector3 normal = Plane(p_vtx[0],p_vtx[1],p_vtx[2]).normal; + + for(int i=0;i<3;i++) { + + Vector3 axis; + axis[i]=1.0; + float dot=ABS(normal.dot(axis)); + if (i==0 || dot>closest_dot) { + closest_axis=i; + closest_dot=dot; + } + } + + Vector3 axis; + axis[closest_axis]=1.0; + Vector3 t1; + t1[(closest_axis+1)%3]=1.0; + Vector3 t2; + t2[(closest_axis+2)%3]=1.0; + + t1*=p_aabb.size[(closest_axis+1)%3]/float(color_scan_cell_width); + t2*=p_aabb.size[(closest_axis+2)%3]/float(color_scan_cell_width); + + Color albedo_accum; + Color emission_accum; + float alpha=0.0; + + //map to a grid average in the best axis for this face + for(int i=0;i<color_scan_cell_width;i++) { + + Vector3 ofs_i=float(i)*t1; + + for(int j=0;j<color_scan_cell_width;j++) { + + Vector3 ofs_j=float(j)*t2; + + Vector3 from = p_aabb.pos+ofs_i+ofs_j; + Vector3 to = from + t1 + t2 + axis * p_aabb.size[closest_axis]; + Vector3 half = (to-from)*0.5; + + //is in this cell? + if (!fast_tri_box_overlap(from+half,half,p_vtx)) { + continue; //face does not span this cell + } + + //go from -size to +size*2 to avoid skipping collisions + Vector3 ray_from = from + (t1+t2)*0.5 - axis * p_aabb.size[closest_axis]; + Vector3 ray_to = ray_from + axis * p_aabb.size[closest_axis]*2; + + Vector3 intersection; + + if (!Geometry::ray_intersects_triangle(ray_from,ray_to,p_vtx[0],p_vtx[1],p_vtx[2],&intersection)) { + //no intersect? look in edges + + float closest_dist=1e20; + for(int j=0;j<3;j++) { + Vector3 c; + Vector3 inters; + Geometry::get_closest_points_between_segments(p_vtx[j],p_vtx[(j+1)%3],ray_from,ray_to,inters,c); + float d=c.distance_to(intersection); + if (j==0 || d<closest_dist) { + closest_dist=d; + intersection=inters; + } + } + } + + Vector2 uv = get_uv(intersection,p_vtx,p_uv); + + + int uv_x = CLAMP(Math::fposmod(uv.x,1.0)*bake_texture_size,0,bake_texture_size-1); + int uv_y = CLAMP(Math::fposmod(uv.y,1.0)*bake_texture_size,0,bake_texture_size-1); + + int ofs = uv_y*bake_texture_size+uv_x; + albedo_accum.r+=p_material.albedo[ofs].r; + albedo_accum.g+=p_material.albedo[ofs].g; + albedo_accum.b+=p_material.albedo[ofs].b; + albedo_accum.a+=p_material.albedo[ofs].a; + + emission_accum.r+=p_material.emission[ofs].r; + emission_accum.g+=p_material.emission[ofs].g; + emission_accum.b+=p_material.emission[ofs].b; + alpha+=1.0; + + } + } + + + if (alpha==0) { + //could not in any way get texture information.. so use closest point to center + + Face3 f( p_vtx[0],p_vtx[1],p_vtx[2]); + Vector3 inters = f.get_closest_point_to(p_aabb.pos+p_aabb.size*0.5); + + Vector2 uv = get_uv(inters,p_vtx,p_uv); + + int uv_x = CLAMP(Math::fposmod(uv.x,1.0)*bake_texture_size,0,bake_texture_size-1); + int uv_y = CLAMP(Math::fposmod(uv.y,1.0)*bake_texture_size,0,bake_texture_size-1); + + int ofs = uv_y*bake_texture_size+uv_x; + + alpha = 1.0/(color_scan_cell_width*color_scan_cell_width); + + albedo_accum.r=p_material.albedo[ofs].r*alpha; + albedo_accum.g=p_material.albedo[ofs].g*alpha; + albedo_accum.b=p_material.albedo[ofs].b*alpha; + albedo_accum.a=p_material.albedo[ofs].a*alpha; + + emission_accum.r=p_material.emission[ofs].r*alpha; + emission_accum.g=p_material.emission[ofs].g*alpha; + emission_accum.b=p_material.emission[ofs].b*alpha; + + + zero_alphas++; + } else { + + float accdiv = 1.0/(color_scan_cell_width*color_scan_cell_width); + alpha*=accdiv; + + albedo_accum.r*=accdiv; + albedo_accum.g*=accdiv; + albedo_accum.b*=accdiv; + albedo_accum.a*=accdiv; + + emission_accum.r*=accdiv; + emission_accum.g*=accdiv; + emission_accum.b*=accdiv; + } + + //put this temporarily here, corrected in a later step + bake_cells_write[p_idx].albedo[0]+=albedo_accum.r; + bake_cells_write[p_idx].albedo[1]+=albedo_accum.g; + bake_cells_write[p_idx].albedo[2]+=albedo_accum.b; + bake_cells_write[p_idx].light[0]+=emission_accum.r; + bake_cells_write[p_idx].light[1]+=emission_accum.g; + bake_cells_write[p_idx].light[2]+=emission_accum.b; + bake_cells_write[p_idx].alpha+=alpha; + + static const Vector3 side_normals[6]={ + Vector3(-1, 0, 0), + Vector3( 1, 0, 0), + Vector3( 0,-1, 0), + Vector3( 0, 1, 0), + Vector3( 0, 0,-1), + Vector3( 0, 0, 1), + }; + + for(int i=0;i<6;i++) { + if (normal.dot(side_normals[i])>CMP_EPSILON) { + bake_cells_write[p_idx].used_sides|=(1<<i); + } + } + + + } else { + //go down + for(int i=0;i<8;i++) { + + AABB aabb=p_aabb; + aabb.size*=0.5; + + if (i&1) + aabb.pos.x+=aabb.size.x; + if (i&2) + aabb.pos.y+=aabb.size.y; + if (i&4) + aabb.pos.z+=aabb.size.z; + + { + AABB test_aabb=aabb; + //test_aabb.grow_by(test_aabb.get_longest_axis_size()*0.05); //grow a bit to avoid numerical error in real-time + Vector3 qsize = test_aabb.size*0.5; //quarter size, for fast aabb test + + if (!fast_tri_box_overlap(test_aabb.pos+qsize,qsize,p_vtx)) { + //if (!Face3(p_vtx[0],p_vtx[1],p_vtx[2]).intersects_aabb2(aabb)) { + //does not fit in child, go on + continue; + } + + } + + if (bake_cells_write[p_idx].childs[i]==CHILD_EMPTY) { + //sub cell must be created + + if (bake_cells_used==(1<<bake_cells_alloc)) { + //exhausted cells, creating more space + bake_cells_alloc++; + bake_cells_write=DVector<BakeCell>::Write(); + bake_cells.resize(1<<bake_cells_alloc); + bake_cells_write=bake_cells.write(); + } + + bake_cells_write[p_idx].childs[i]=bake_cells_used; + bake_cells_level_used[p_level+1]++; + bake_cells_used++; + + + } + + + _plot_face(bake_cells_write[p_idx].childs[i],p_level+1,p_vtx,p_uv,p_material,aabb); + } + } +} + + + +void BakedLight::_fixup_plot(int p_idx, int p_level,int p_x,int p_y, int p_z) { + + + + if (p_level==cell_subdiv-1) { + + + float alpha = bake_cells_write[p_idx].alpha; + + bake_cells_write[p_idx].albedo[0]/=alpha; + bake_cells_write[p_idx].albedo[1]/=alpha; + bake_cells_write[p_idx].albedo[2]/=alpha; + + //transfer emission to light + bake_cells_write[p_idx].light[0]/=alpha; + bake_cells_write[p_idx].light[1]/=alpha; + bake_cells_write[p_idx].light[2]/=alpha; + + bake_cells_write[p_idx].alpha=1.0; + + //remove neighbours from used sides + + for(int n=0;n<6;n++) { + + int ofs[3]={0,0,0}; + + ofs[n/2]=(n&1)?1:-1; + + //convert to x,y,z on this level + int x=p_x; + int y=p_y; + int z=p_z; + + x+=ofs[0]; + y+=ofs[1]; + z+=ofs[2]; + + int ofs_x=0; + int ofs_y=0; + int ofs_z=0; + int size = 1<<p_level; + int half=size/2; + + + if (x<0 || x>=size || y<0 || y>=size || z<0 || z>=size) { + //neighbour is out, can't use it + bake_cells_write[p_idx].used_sides&=~(1<<uint32_t(n)); + continue; + } + + uint32_t neighbour=0; + + for(int i=0;i<cell_subdiv-1;i++) { + + BakeCell *bc = &bake_cells_write[neighbour]; + + int child = 0; + if (x >= ofs_x + half) { + child|=1; + ofs_x+=half; + } + if (y >= ofs_y + half) { + child|=2; + ofs_y+=half; + } + if (z >= ofs_z + half) { + child|=4; + ofs_z+=half; + } + + neighbour = bc->childs[child]; + if (neighbour==CHILD_EMPTY) { + break; + } + + half>>=1; + } + + if (neighbour!=CHILD_EMPTY) { + bake_cells_write[p_idx].used_sides&=~(1<<uint32_t(n)); + } + } + } else { + + + //go down + + float alpha_average=0; + int half = cells_per_axis >> (p_level+1); + for(int i=0;i<8;i++) { + + uint32_t child = bake_cells_write[p_idx].childs[i]; + + if (child==CHILD_EMPTY) + continue; + + + int nx=p_x; + int ny=p_y; + int nz=p_z; + + if (i&1) + nx+=half; + if (i&2) + ny+=half; + if (i&4) + nz+=half; + + _fixup_plot(child,p_level+1,nx,ny,nz); + alpha_average+=bake_cells_write[child].alpha; + } + + bake_cells_write[p_idx].alpha=alpha_average/8.0; + bake_cells_write[p_idx].light[0]=0; + bake_cells_write[p_idx].light[1]=0; + bake_cells_write[p_idx].light[2]=0; + bake_cells_write[p_idx].albedo[0]=0; + bake_cells_write[p_idx].albedo[1]=0; + bake_cells_write[p_idx].albedo[2]=0; + + } + + //clean up light + bake_cells_write[p_idx].light_pass=0; + //find neighbours + + + +} + + +void BakedLight::_bake_add_mesh(const Transform& p_xform,Ref<Mesh>& p_mesh) { + + + for(int i=0;i<p_mesh->get_surface_count();i++) { + + if (p_mesh->surface_get_primitive_type(i)!=Mesh::PRIMITIVE_TRIANGLES) + continue; //only triangles + + MaterialCache material = _get_material_cache(p_mesh->surface_get_material(i)); + + Array a = p_mesh->surface_get_arrays(i); + + + DVector<Vector3> vertices = a[Mesh::ARRAY_VERTEX]; + DVector<Vector3>::Read vr=vertices.read(); + DVector<Vector2> uv = a[Mesh::ARRAY_TEX_UV]; + DVector<Vector2>::Read uvr; + DVector<int> index = a[Mesh::ARRAY_INDEX]; + + bool read_uv=false; + + if (uv.size()) { + + uvr=uv.read(); + read_uv=true; + } + + if (index.size()) { + + int facecount = index.size()/3; + DVector<int>::Read ir=index.read(); + + for(int j=0;j<facecount;j++) { + + Vector3 vtxs[3]; + Vector2 uvs[3]; + + for(int k=0;k<3;k++) { + vtxs[k]=p_xform.xform(vr[ir[j*3+k]]); + } + + if (read_uv) { + for(int k=0;k<3;k++) { + uvs[k]=uvr[ir[j*3+k]]; + } + } + + //plot face + _plot_face(0,0,vtxs,uvs,material,bounds); + } + + + + } else { + + int facecount = vertices.size()/3; + + for(int j=0;j<facecount;j++) { + + Vector3 vtxs[3]; + Vector2 uvs[3]; + + for(int k=0;k<3;k++) { + vtxs[k]=p_xform.xform(vr[j*3+k]); + } + + if (read_uv) { + for(int k=0;k<3;k++) { + uvs[k]=uvr[j*3+k]; + } + } + + //plot face + _plot_face(0,0,vtxs,uvs,material,bounds); + } + + } + } +} + + + +void BakedLight::_bake_add_to_aabb(const Transform& p_xform,Ref<Mesh>& p_mesh,bool &first) { + + for(int i=0;i<p_mesh->get_surface_count();i++) { + + if (p_mesh->surface_get_primitive_type(i)!=Mesh::PRIMITIVE_TRIANGLES) + continue; //only triangles + + Array a = p_mesh->surface_get_arrays(i); + DVector<Vector3> vertices = a[Mesh::ARRAY_VERTEX]; + int vc = vertices.size(); + DVector<Vector3>::Read vr=vertices.read(); + + if (first) { + bounds.pos=p_xform.xform(vr[0]); + first=false; + } + + + for(int j=0;j<vc;j++) { + bounds.expand_to(p_xform.xform(vr[j])); + } + } +} + +void BakedLight::bake() { + + + bake_cells_alloc=16; + bake_cells.resize(1<<bake_cells_alloc); + bake_cells_used=1; + cells_per_axis=(1<<(cell_subdiv-1)); + zero_alphas=0; + + bool aabb_first=true; + print_line("Generating AABB"); + + bake_cells_level_used.resize(cell_subdiv); + for(int i=0;i<cell_subdiv;i++) { + bake_cells_level_used[i]=0; + } + + int count=0; + for (Set<GeometryInstance*>::Element *E=geometries.front();E;E=E->next()) { + + print_line("aabb geom "+itos(count)+"/"+itos(geometries.size())); + + GeometryInstance *geom = E->get(); + + if (geom->cast_to<MeshInstance>()) { + + MeshInstance *mesh_instance = geom->cast_to<MeshInstance>(); + Ref<Mesh> mesh = mesh_instance->get_mesh(); + if (mesh.is_valid()) { + + _bake_add_to_aabb(geom->get_relative_transform(this),mesh,aabb_first); + } + } + count++; + } + + print_line("AABB: "+bounds); + ERR_FAIL_COND(aabb_first); + + bake_cells_write = bake_cells.write(); + count=0; + + for (Set<GeometryInstance*>::Element *E=geometries.front();E;E=E->next()) { + + GeometryInstance *geom = E->get(); + print_line("plot geom "+itos(count)+"/"+itos(geometries.size())); + + if (geom->cast_to<MeshInstance>()) { + + MeshInstance *mesh_instance = geom->cast_to<MeshInstance>(); + Ref<Mesh> mesh = mesh_instance->get_mesh(); + if (mesh.is_valid()) { + + _bake_add_mesh(geom->get_relative_transform(this),mesh); + } + } + + count++; + } + + + _fixup_plot(0, 0,0,0,0); + + + bake_cells_write=DVector<BakeCell>::Write(); + + bake_cells.resize(bake_cells_used); + + + + print_line("total bake cells used: "+itos(bake_cells_used)); + for(int i=0;i<cell_subdiv;i++) { + print_line("level "+itos(i)+": "+itos(bake_cells_level_used[i])); + } + print_line("zero alphas: "+itos(zero_alphas)); + + + +} + + + +void BakedLight::_bake_directional(int p_idx, int p_level, int p_x,int p_y,int p_z,const Vector3& p_dir,const Color& p_color,int p_sign) { + + + + + if (p_level==cell_subdiv-1) { + + Vector3 end; + end.x = float(p_x+0.5) / cells_per_axis; + end.y = float(p_y+0.5) / cells_per_axis; + end.z = float(p_z+0.5) / cells_per_axis; + + end = bounds.pos + bounds.size*end; + + float max_ray_len = (bounds.size).length()*1.2; + Vector3 begin = end + max_ray_len*-p_dir; + + //clip begin + + for(int i=0;i<3;i++) { + + if (ABS(p_dir[i])<CMP_EPSILON) { + continue; // parallel to axis, don't clip + } + + Plane p; + p.normal[i]=1.0; + p.d=bounds.pos[i]; + if (p_dir[i]<0) { + p.d+=bounds.size[i]; + } + + Vector3 inters; + if (p.intersects_segment(end,begin,&inters)) { + begin=inters; + } + + } + + + int idx = _plot_ray(begin,end); + + if (idx>=0 && light_pass!=bake_cells_write[idx].light_pass) { + //hit something, add or remove light to it + + Color albedo = Color(bake_cells_write[idx].albedo[0],bake_cells_write[idx].albedo[1],bake_cells_write[idx].albedo[2]); + bake_cells_write[idx].light[0]+=albedo.r*p_color.r*p_sign; + bake_cells_write[idx].light[1]+=albedo.g*p_color.g*p_sign; + bake_cells_write[idx].light[2]+=albedo.b*p_color.b*p_sign; + bake_cells_write[idx].light_pass=light_pass; + + } + + + } else { + + int half = cells_per_axis >> (p_level+1); + + //go down + for(int i=0;i<8;i++) { + + uint32_t child = bake_cells_write[p_idx].childs[i]; + + if (child==CHILD_EMPTY) + continue; + + int nx=p_x; + int ny=p_y; + int nz=p_z; + + if (i&1) + nx+=half; + if (i&2) + ny+=half; + if (i&4) + nz+=half; + + + _bake_directional(child,p_level+1,nx,ny,nz,p_dir,p_color,p_sign); + } + } +} + + + + +void BakedLight::_bake_light(Light* p_light) { + + if (p_light->cast_to<DirectionalLight>()) { + + DirectionalLight * dl = p_light->cast_to<DirectionalLight>(); + + Transform rel_xf = dl->get_relative_transform(this); + + Vector3 light_dir = -rel_xf.basis.get_axis(2); + + Color color = dl->get_color(); + float nrg = dl->get_param(Light::PARAM_ENERGY);; + color.r*=nrg; + color.g*=nrg; + color.b*=nrg; + + light_pass++; + _bake_directional(0,0,0,0,0,light_dir,color,1); + + } +} + + +void BakedLight::_upscale_light(int p_idx,int p_level) { + + + //go down + + float light_accum[3]={0,0,0}; + float alpha_accum=0; + + bool check_children = p_level < (cell_subdiv -2); + + for(int i=0;i<8;i++) { + + uint32_t child = bake_cells_write[p_idx].childs[i]; + + if (child==CHILD_EMPTY) + continue; + + if (check_children) { + _upscale_light(child,p_level+1); + } + + light_accum[0]+=bake_cells_write[child].light[0]; + light_accum[1]+=bake_cells_write[child].light[1]; + light_accum[2]+=bake_cells_write[child].light[2]; + alpha_accum+=bake_cells_write[child].alpha; + + } + + bake_cells_write[p_idx].light[0]=light_accum[0]/8.0; + bake_cells_write[p_idx].light[1]=light_accum[1]/8.0; + bake_cells_write[p_idx].light[2]=light_accum[2]/8.0; + bake_cells_write[p_idx].alpha=alpha_accum/8.0; + +} + + +void BakedLight::bake_lights() { + + ERR_FAIL_COND(bake_cells.size()==0); + + bake_cells_write = bake_cells.write(); + + for(Set<Light*>::Element *E=lights.front();E;E=E->next()) { + + _bake_light(E->get()); + } + + + _upscale_light(0,0); + + bake_cells_write=DVector<BakeCell>::Write(); + +} + + + +Color BakedLight::_cone_trace(const Vector3& p_from, const Vector3& p_dir, float p_half_angle) { + + + Color color(0,0,0,0); + float tha = Math::tan(p_half_angle);//tan half angle + Vector3 from =(p_from-bounds.pos)/bounds.size; //convert to 0..1 + from/=cells_per_axis; //convert to voxels of size 1 + Vector3 dir = (p_dir/bounds.size).normalized(); + + float max_dist = Vector3(cells_per_axis,cells_per_axis,cells_per_axis).length(); + + float dist = 1.0; + // self occlusion in flat surfaces + + float alpha=0; + + + while(dist < max_dist && alpha < 0.95) { + +#if 0 + // smallest sample diameter possible is the voxel size + float diameter = MAX(1.0, 2.0 * tha * dist); + float lod = log2(diameter); + + Vector3 sample_pos = from + dist * dir; + + + Color samples_base[2][8]={{Color(0,0,0,0),Color(0,0,0,0),Color(0,0,0,0),Color(0,0,0,0),Color(0,0,0,0),Color(0,0,0,0),Color(0,0,0,0),Color(0,0,0,0)}, + {Color(0,0,0,0),Color(0,0,0,0),Color(0,0,0,0),Color(0,0,0,0),Color(0,0,0,0),Color(0,0,0,0),Color(0,0,0,0),Color(0,0,0,0)}}; + + float levelf = Math::fposmod(lod,1.0); + float fx = Math::fposmod(sample_pos.x,1.0); + float fy = Math::fposmod(sample_pos.y,1.0); + float fz = Math::fposmod(sample_pos.z,1.0); + + for(int l=0;l<2;l++){ + + int bx = Math::floor(sample_pos.x); + int by = Math::floor(sample_pos.y); + int bz = Math::floor(sample_pos.z); + + int lodn=int(Math::floor(lod))-l; + + bx>>=lodn; + by>>=lodn; + bz>>=lodn; + + int limit = MAX(0,cell_subdiv-lodn-1); + + for(int c=0;c<8;c++) { + + int x = bx; + int y = by; + int z = bz; + + if (c&1) { + x+=1; + } + if (c&2) { + y+=1; + } + if (c&4) { + z+=1; + } + + int ofs_x=0; + int ofs_y=0; + int ofs_z=0; + int size = cells_per_axis>>lodn; + int half=size/2; + + bool outside=x<0 || x>=size || y<0 || y>=size || z<0 || z>=size; + + if (outside) + continue; + + + uint32_t cell=0; + + for(int i=0;i<limit;i++) { + + BakeCell *bc = &bake_cells_write[cell]; + + int child = 0; + if (x >= ofs_x + half) { + child|=1; + ofs_x+=half; + } + if (y >= ofs_y + half) { + child|=2; + ofs_y+=half; + } + if (z >= ofs_z + half) { + child|=4; + ofs_z+=half; + } + + cell = bc->childs[child]; + if (cell==CHILD_EMPTY) + break; + + half>>=1; + } + + if (cell!=CHILD_EMPTY) { + + samples_base[l][c].r=bake_cells_write[cell].light[0]; + samples_base[l][c].g=bake_cells_write[cell].light[1]; + samples_base[l][c].b=bake_cells_write[cell].light[2]; + samples_base[l][c].a=bake_cells_write[cell].alpha; + } + + } + + + } + + Color m0x0 = samples_base[0][0].linear_interpolate(samples_base[0][1],fx); + Color m0x1 = samples_base[0][2].linear_interpolate(samples_base[0][3],fx); + Color m0y0 = m0x0.linear_interpolate(m0x1,fy); + m0x0 = samples_base[0][4].linear_interpolate(samples_base[0][5],fx); + m0x1 = samples_base[0][6].linear_interpolate(samples_base[0][7],fx); + Color m0y1 = m0x0.linear_interpolate(m0x1,fy); + Color m0z = m0y0.linear_interpolate(m0y1,fz); + + Color m1x0 = samples_base[1][0].linear_interpolate(samples_base[1][1],fx); + Color m1x1 = samples_base[1][2].linear_interpolate(samples_base[1][3],fx); + Color m1y0 = m1x0.linear_interpolate(m1x1,fy); + m1x0 = samples_base[1][4].linear_interpolate(samples_base[1][5],fx); + m1x1 = samples_base[1][6].linear_interpolate(samples_base[1][7],fx); + Color m1y1 = m1x0.linear_interpolate(m1x1,fy); + Color m1z = m1y0.linear_interpolate(m1y1,fz); + + Color m = m0z.linear_interpolate(m1z,levelf); +#else + float diameter = 1.0; + Vector3 sample_pos = from + dist * dir; + + Color m(0,0,0,0); + { + int x = Math::floor(sample_pos.x); + int y = Math::floor(sample_pos.y); + int z = Math::floor(sample_pos.z); + + int ofs_x=0; + int ofs_y=0; + int ofs_z=0; + int size = cells_per_axis; + int half=size/2; + + bool outside=x<0 || x>=size || y<0 || y>=size || z<0 || z>=size; + + if (!outside) { + + + uint32_t cell=0; + + for(int i=0;i<cell_subdiv-1;i++) { + + BakeCell *bc = &bake_cells_write[cell]; + + int child = 0; + if (x >= ofs_x + half) { + child|=1; + ofs_x+=half; + } + if (y >= ofs_y + half) { + child|=2; + ofs_y+=half; + } + if (z >= ofs_z + half) { + child|=4; + ofs_z+=half; + } + + cell = bc->childs[child]; + if (cell==CHILD_EMPTY) + break; + + half>>=1; + } + + if (cell!=CHILD_EMPTY) { + + m.r=bake_cells_write[cell].light[0]; + m.g=bake_cells_write[cell].light[1]; + m.b=bake_cells_write[cell].light[2]; + m.a=bake_cells_write[cell].alpha; + } + } + } + +#endif + // front-to-back compositing + float a = (1.0 - alpha); + color.r += a * m.r; + color.g += a * m.g; + color.b += a * m.b; + alpha += a * m.a; + //occlusion += a * voxelColor.a; + //occlusion += (a * voxelColor.a) / (1.0 + 0.03 * diameter); + dist += diameter * 0.5; // smoother + //dist += diameter; // faster but misses more voxels + } + + return color; +} + + + +void BakedLight::_bake_radiance(int p_idx, int p_level, int p_x,int p_y,int p_z) { + + + + + if (p_level==cell_subdiv-1) { + + const int NUM_CONES = 6; + Vector3 cone_directions[6] = { + Vector3(1, 0, 0), + Vector3(0.5, 0.866025, 0), + Vector3( 0.5, 0.267617, 0.823639), + Vector3( 0.5, -0.700629, 0.509037), + Vector3( 0.5, -0.700629, -0.509037), + Vector3( 0.5, 0.267617, -0.823639) + }; + float coneWeights[6] = {0.25, 0.15, 0.15, 0.15, 0.15, 0.15}; + + Vector3 pos = (Vector3(p_x,p_y,p_z)/float(cells_per_axis))*bounds.size+bounds.pos; + Vector3 voxel_size = bounds.size/float(cells_per_axis); + pos+=voxel_size*0.5; + + Color accum; + + bake_cells_write[p_idx].light[0]=0; + bake_cells_write[p_idx].light[1]=0; + bake_cells_write[p_idx].light[2]=0; + + int freepix=0; + for(int i=0;i<6;i++) { + + if (!(bake_cells_write[p_idx].used_sides&(1<<i))) + continue; + + if ((i&1)==0) + bake_cells_write[p_idx].light[i/2]=1.0; + freepix++; + continue; + + int ofs = i/2; + + Vector3 dir; + if ((i&1)==0) + dir[ofs]=1.0; + else + dir[ofs]=-1.0; + + for(int j=0;j<1;j++) { + + + Vector3 cone_dir; + cone_dir.x = cone_directions[j][(ofs+0)%3]; + cone_dir.y = cone_directions[j][(ofs+1)%3]; + cone_dir.z = cone_directions[j][(ofs+2)%3]; + + cone_dir[ofs]*=dir[ofs]; + + Color res = _cone_trace(pos+dir*voxel_size,cone_dir,Math::deg2rad(29.9849)); + accum.r+=res.r;//*coneWeights[j]; + accum.g+=res.g;//*coneWeights[j]; + accum.b+=res.b;//*coneWeights[j]; + } + + + } +#if 0 + if (freepix==0) { + bake_cells_write[p_idx].light[0]=0; + bake_cells_write[p_idx].light[1]=0; + bake_cells_write[p_idx].light[2]=0; + } + + if (freepix==1) { + bake_cells_write[p_idx].light[0]=1; + bake_cells_write[p_idx].light[1]=0; + bake_cells_write[p_idx].light[2]=0; + } + + if (freepix==2) { + bake_cells_write[p_idx].light[0]=0; + bake_cells_write[p_idx].light[1]=1; + bake_cells_write[p_idx].light[2]=0; + } + + if (freepix==3) { + bake_cells_write[p_idx].light[0]=1; + bake_cells_write[p_idx].light[1]=1; + bake_cells_write[p_idx].light[2]=0; + } + + if (freepix==4) { + bake_cells_write[p_idx].light[0]=0; + bake_cells_write[p_idx].light[1]=0; + bake_cells_write[p_idx].light[2]=1; + } + + if (freepix==5) { + bake_cells_write[p_idx].light[0]=1; + bake_cells_write[p_idx].light[1]=0; + bake_cells_write[p_idx].light[2]=1; + } + + if (freepix==6) { + bake_cells_write[p_idx].light[0]=0; + bake_cells_write[p_idx].light[0]=1; + bake_cells_write[p_idx].light[0]=1; + } +#endif + //bake_cells_write[p_idx].radiance[0]=accum.r; + //bake_cells_write[p_idx].radiance[1]=accum.g; + //bake_cells_write[p_idx].radiance[2]=accum.b; + + + } else { + + int half = cells_per_axis >> (p_level+1); + + //go down + for(int i=0;i<8;i++) { + + uint32_t child = bake_cells_write[p_idx].childs[i]; + + if (child==CHILD_EMPTY) + continue; + + int nx=p_x; + int ny=p_y; + int nz=p_z; + + if (i&1) + nx+=half; + if (i&2) + ny+=half; + if (i&4) + nz+=half; + + + _bake_radiance(child,p_level+1,nx,ny,nz); + } + } } -void BakedLightInstance::set_baked_light(const Ref<BakedLight>& p_baked_light) { +void BakedLight::bake_radiance() { + + ERR_FAIL_COND(bake_cells.size()==0); - baked_light=p_baked_light; + bake_cells_write = bake_cells.write(); + + _bake_radiance(0,0,0,0,0); + + bake_cells_write=DVector<BakeCell>::Write(); + +} +int BakedLight::_find_cell(int x,int y, int z) { - RID base_rid; - if (baked_light.is_valid()) - base_rid=baked_light->get_rid(); - else - base_rid=RID(); + uint32_t cell=0; - set_base(base_rid); + int ofs_x=0; + int ofs_y=0; + int ofs_z=0; + int size = cells_per_axis; + int half=size/2; - if (is_inside_world()) { + if (x<0 || x>=size) + return -1; + if (y<0 || y>=size) + return -1; + if (z<0 || z>=size) + return -1; - emit_signal(SceneStringNames::get_singleton()->baked_light_changed); + for(int i=0;i<cell_subdiv-1;i++) { -// for (List<Node*>::Element *E=baked_geometry.front();E;E=E->next()) { -// VS::get_singleton()->instance_geometry_set_baked_light(E->get()->get_instance(),baked_light.is_valid()?get_instance():RID()); -// } + BakeCell *bc = &bake_cells_write[cell]; + + int child = 0; + if (x >= ofs_x + half) { + child|=1; + ofs_x+=half; + } + if (y >= ofs_y + half) { + child|=2; + ofs_y+=half; + } + if (z >= ofs_z + half) { + child|=4; + ofs_z+=half; + } + + cell = bc->childs[child]; + if (cell==CHILD_EMPTY) + return -1; + + half>>=1; } - update_configuration_warning(); + return cell; + } -Ref<BakedLight> BakedLightInstance::get_baked_light() const{ - return baked_light; +int BakedLight::_plot_ray(const Vector3& p_from, const Vector3& p_to) { + + Vector3 from = (p_from - bounds.pos) / bounds.size; + Vector3 to = (p_to - bounds.pos) / bounds.size; + + int x1 = Math::floor(from.x*cells_per_axis); + int y1 = Math::floor(from.y*cells_per_axis); + int z1 = Math::floor(from.z*cells_per_axis); + + int x2 = Math::floor(to.x*cells_per_axis); + int y2 = Math::floor(to.y*cells_per_axis); + int z2 = Math::floor(to.z*cells_per_axis); + + + int i, dx, dy, dz, l, m, n, x_inc, y_inc, z_inc, err_1, err_2, dx2, dy2, dz2; + int point[3]; + + point[0] = x1; + point[1] = y1; + point[2] = z1; + dx = x2 - x1; + dy = y2 - y1; + dz = z2 - z1; + x_inc = (dx < 0) ? -1 : 1; + l = ABS(dx); + y_inc = (dy < 0) ? -1 : 1; + m = ABS(dy); + z_inc = (dz < 0) ? -1 : 1; + n = ABS(dz); + dx2 = l << 1; + dy2 = m << 1; + dz2 = n << 1; + + if ((l >= m) && (l >= n)) { + err_1 = dy2 - l; + err_2 = dz2 - l; + for (i = 0; i < l; i++) { + int cell = _find_cell(point[0],point[1],point[2]); + if (cell>=0) + return cell; + + if (err_1 > 0) { + point[1] += y_inc; + err_1 -= dx2; + } + if (err_2 > 0) { + point[2] += z_inc; + err_2 -= dx2; + } + err_1 += dy2; + err_2 += dz2; + point[0] += x_inc; + } + } else if ((m >= l) && (m >= n)) { + err_1 = dx2 - m; + err_2 = dz2 - m; + for (i = 0; i < m; i++) { + int cell = _find_cell(point[0],point[1],point[2]); + if (cell>=0) + return cell; + if (err_1 > 0) { + point[0] += x_inc; + err_1 -= dy2; + } + if (err_2 > 0) { + point[2] += z_inc; + err_2 -= dy2; + } + err_1 += dx2; + err_2 += dz2; + point[1] += y_inc; + } + } else { + err_1 = dy2 - n; + err_2 = dx2 - n; + for (i = 0; i < n; i++) { + int cell = _find_cell(point[0],point[1],point[2]); + if (cell>=0) + return cell; + + if (err_1 > 0) { + point[1] += y_inc; + err_1 -= dz2; + } + if (err_2 > 0) { + point[0] += x_inc; + err_2 -= dz2; + } + err_1 += dy2; + err_2 += dx2; + point[2] += z_inc; + } + } + return _find_cell(point[0],point[1],point[2]); + } -AABB BakedLightInstance::get_aabb() const { + +void BakedLight::set_cell_subdiv(int p_subdiv) { + + cell_subdiv=p_subdiv; + +// VS::get_singleton()->baked_light_set_subdivision(baked_light,p_subdiv); +} + +int BakedLight::get_cell_subdiv() const { + + return cell_subdiv; +} + + + +AABB BakedLight::get_aabb() const { return AABB(Vector3(0,0,0),Vector3(1,1,1)); } -DVector<Face3> BakedLightInstance::get_faces(uint32_t p_usage_flags) const { +DVector<Face3> BakedLight::get_faces(uint32_t p_usage_flags) const { return DVector<Face3>(); } -String BakedLightInstance::get_configuration_warning() const { - if (get_baked_light().is_null()) { - return TTR("BakedLightInstance does not contain a BakedLight resource."); - } +String BakedLight::get_configuration_warning() const { return String(); } -void BakedLightInstance::_bind_methods() { +void BakedLight::_debug_mesh(int p_idx, int p_level, const AABB &p_aabb,DebugMode p_mode,Ref<MultiMesh> &p_multimesh,int &idx) { + + + if (p_level==cell_subdiv-1) { + + Vector3 center = p_aabb.pos+p_aabb.size*0.5; + Transform xform; + xform.origin=center; + xform.basis.scale(p_aabb.size*0.5); + p_multimesh->set_instance_transform(idx,xform); + Color col; + switch(p_mode) { + case DEBUG_ALBEDO: { + col=Color(bake_cells_write[p_idx].albedo[0],bake_cells_write[p_idx].albedo[1],bake_cells_write[p_idx].albedo[2]); + } break; + case DEBUG_LIGHT: { + col=Color(bake_cells_write[p_idx].light[0],bake_cells_write[p_idx].light[1],bake_cells_write[p_idx].light[2]); + Color colr=Color(bake_cells_write[p_idx].radiance[0],bake_cells_write[p_idx].radiance[1],bake_cells_write[p_idx].radiance[2]); + col.r+=colr.r; + col.g+=colr.g; + col.b+=colr.b; + } break; + + } + p_multimesh->set_instance_color(idx,col); + + + idx++; + + } else { - ObjectTypeDB::bind_method(_MD("set_baked_light","baked_light"),&BakedLightInstance::set_baked_light); - ObjectTypeDB::bind_method(_MD("get_baked_light"),&BakedLightInstance::get_baked_light); - ObjectTypeDB::bind_method(_MD("get_baked_light_instance"),&BakedLightInstance::get_baked_light_instance); + for(int i=0;i<8;i++) { - ADD_PROPERTY(PropertyInfo(Variant::OBJECT,"baked_light",PROPERTY_HINT_RESOURCE_TYPE,"BakedLight"),_SCS("set_baked_light"),_SCS("get_baked_light")); + if (bake_cells_write[p_idx].childs[i]==CHILD_EMPTY) + continue; + + AABB aabb=p_aabb; + aabb.size*=0.5; + + if (i&1) + aabb.pos.x+=aabb.size.x; + if (i&2) + aabb.pos.y+=aabb.size.y; + if (i&4) + aabb.pos.z+=aabb.size.z; + + _debug_mesh(bake_cells_write[p_idx].childs[i],p_level+1,aabb,p_mode,p_multimesh,idx); + } + + } + +} + + +void BakedLight::create_debug_mesh(DebugMode p_mode) { + + Ref<MultiMesh> mm; + mm.instance(); + + mm->set_transform_format(MultiMesh::TRANSFORM_3D); + mm->set_color_format(MultiMesh::COLOR_8BIT); + mm->set_instance_count(bake_cells_level_used[cell_subdiv-1]); + + Ref<Mesh> mesh; + mesh.instance(); + + + + { + Array arr; + arr.resize(Mesh::ARRAY_MAX); + + DVector<Vector3> vertices; + DVector<Color> colors; + + int vtx_idx=0; + #define ADD_VTX(m_idx);\ + vertices.push_back( face_points[m_idx] );\ + colors.push_back( Color(1,1,1,1) );\ + vtx_idx++;\ + + for (int i=0;i<6;i++) { + + + Vector3 face_points[4]; + + for (int j=0;j<4;j++) { + + float v[3]; + v[0]=1.0; + v[1]=1-2*((j>>1)&1); + v[2]=v[1]*(1-2*(j&1)); + + for (int k=0;k<3;k++) { + + if (i<3) + face_points[j][(i+k)%3]=v[k]*(i>=3?-1:1); + else + face_points[3-j][(i+k)%3]=v[k]*(i>=3?-1:1); + } + } + + //tri 1 + ADD_VTX(0); + ADD_VTX(1); + ADD_VTX(2); + //tri 2 + ADD_VTX(2); + ADD_VTX(3); + ADD_VTX(0); + + } + + + arr[Mesh::ARRAY_VERTEX]=vertices; + arr[Mesh::ARRAY_COLOR]=colors; + mesh->add_surface_from_arrays(Mesh::PRIMITIVE_TRIANGLES,arr); + } + + { + Ref<FixedSpatialMaterial> fsm; + fsm.instance(); + fsm->set_flag(FixedSpatialMaterial::FLAG_SRGB_VERTEX_COLOR,true); + fsm->set_flag(FixedSpatialMaterial::FLAG_ALBEDO_FROM_VERTEX_COLOR,true); + fsm->set_flag(FixedSpatialMaterial::FLAG_UNSHADED,true); + fsm->set_albedo(Color(1,1,1,1)); + + mesh->surface_set_material(0,fsm); + } + + mm->set_mesh(mesh); + + + bake_cells_write = bake_cells.write(); + + + + int idx=0; + _debug_mesh(0,0,bounds,p_mode,mm,idx); + + print_line("written: "+itos(idx)+" total: "+itos(bake_cells_level_used[cell_subdiv-1])); + + + MultiMeshInstance *mmi = memnew( MultiMeshInstance ); + mmi->set_multimesh(mm); + add_child(mmi); + if (get_tree()->get_edited_scene_root()==this){ + mmi->set_owner(this); + } else { + mmi->set_owner(get_owner()); + + } + +} + +void BakedLight::_debug_mesh_albedo() { + create_debug_mesh(DEBUG_ALBEDO); +} + +void BakedLight::_debug_mesh_light() { + create_debug_mesh(DEBUG_LIGHT); +} + + +void BakedLight::_bind_methods() { + + ObjectTypeDB::bind_method(_MD("set_cell_subdiv","steps"),&BakedLight::set_cell_subdiv); + ObjectTypeDB::bind_method(_MD("get_cell_subdiv"),&BakedLight::get_cell_subdiv); + + ObjectTypeDB::bind_method(_MD("bake"),&BakedLight::bake); + ObjectTypeDB::set_method_flags(get_type_static(),_SCS("bake"),METHOD_FLAGS_DEFAULT|METHOD_FLAG_EDITOR); + + ObjectTypeDB::bind_method(_MD("bake_lights"),&BakedLight::bake_lights); + ObjectTypeDB::set_method_flags(get_type_static(),_SCS("bake_lights"),METHOD_FLAGS_DEFAULT|METHOD_FLAG_EDITOR); + + ObjectTypeDB::bind_method(_MD("bake_radiance"),&BakedLight::bake_radiance); + ObjectTypeDB::set_method_flags(get_type_static(),_SCS("bake_radiance"),METHOD_FLAGS_DEFAULT|METHOD_FLAG_EDITOR); + + ObjectTypeDB::bind_method(_MD("debug_mesh_albedo"),&BakedLight::_debug_mesh_albedo); + ObjectTypeDB::set_method_flags(get_type_static(),_SCS("debug_mesh_albedo"),METHOD_FLAGS_DEFAULT|METHOD_FLAG_EDITOR); + + + ObjectTypeDB::bind_method(_MD("debug_mesh_light"),&BakedLight::_debug_mesh_light); + ObjectTypeDB::set_method_flags(get_type_static(),_SCS("debug_mesh_light"),METHOD_FLAGS_DEFAULT|METHOD_FLAG_EDITOR); + + ADD_PROPERTY(PropertyInfo(Variant::INT,"cell_subdiv"),_SCS("set_cell_subdiv"),_SCS("get_cell_subdiv")); ADD_SIGNAL( MethodInfo("baked_light_changed")); + } -BakedLightInstance::BakedLightInstance() { +BakedLight::BakedLight() { +// baked_light=VisualServer::get_singleton()->baked_light_create(); + VS::get_singleton()->instance_set_base(get_instance(),baked_light); + cell_subdiv=8; + bake_texture_size=128; + color_scan_cell_width=8; + light_pass=0; } -///////////////////////// +BakedLight::~BakedLight() { + + VS::get_singleton()->free(baked_light); +} + +///////////////////////// + +#if 0 void BakedLightSampler::set_param(Param p_param,float p_value) { ERR_FAIL_INDEX(p_param,PARAM_MAX); params[p_param]=p_value; @@ -179,3 +1834,4 @@ BakedLightSampler::~BakedLightSampler(){ VS::get_singleton()->free(base); } +#endif |