summaryrefslogtreecommitdiffstats
path: root/thirdparty/amd-fsr2/shaders
diff options
context:
space:
mode:
Diffstat (limited to 'thirdparty/amd-fsr2/shaders')
-rw-r--r--thirdparty/amd-fsr2/shaders/ffx_common_types.h429
-rw-r--r--thirdparty/amd-fsr2/shaders/ffx_core.h52
-rw-r--r--thirdparty/amd-fsr2/shaders/ffx_core_cpu.h332
-rw-r--r--thirdparty/amd-fsr2/shaders/ffx_core_glsl.h1669
-rw-r--r--thirdparty/amd-fsr2/shaders/ffx_core_gpu_common.h2784
-rw-r--r--thirdparty/amd-fsr2/shaders/ffx_core_gpu_common_half.h2978
-rw-r--r--thirdparty/amd-fsr2/shaders/ffx_core_hlsl.h1502
-rw-r--r--thirdparty/amd-fsr2/shaders/ffx_core_portability.h50
-rw-r--r--thirdparty/amd-fsr2/shaders/ffx_fsr1.h1250
-rw-r--r--thirdparty/amd-fsr2/shaders/ffx_fsr2_accumulate.h295
-rw-r--r--thirdparty/amd-fsr2/shaders/ffx_fsr2_accumulate_pass.glsl92
-rw-r--r--thirdparty/amd-fsr2/shaders/ffx_fsr2_autogen_reactive_pass.glsl93
-rw-r--r--thirdparty/amd-fsr2/shaders/ffx_fsr2_callbacks_glsl.h704
-rw-r--r--thirdparty/amd-fsr2/shaders/ffx_fsr2_callbacks_hlsl.h799
-rw-r--r--thirdparty/amd-fsr2/shaders/ffx_fsr2_common.h565
-rw-r--r--thirdparty/amd-fsr2/shaders/ffx_fsr2_compute_luminance_pyramid.h189
-rw-r--r--thirdparty/amd-fsr2/shaders/ffx_fsr2_compute_luminance_pyramid_pass.glsl134
-rw-r--r--thirdparty/amd-fsr2/shaders/ffx_fsr2_depth_clip.h258
-rw-r--r--thirdparty/amd-fsr2/shaders/ffx_fsr2_depth_clip_pass.glsl67
-rw-r--r--thirdparty/amd-fsr2/shaders/ffx_fsr2_force16_begin.h1
-rw-r--r--thirdparty/amd-fsr2/shaders/ffx_fsr2_force16_end.h1
-rw-r--r--thirdparty/amd-fsr2/shaders/ffx_fsr2_lock.h115
-rw-r--r--thirdparty/amd-fsr2/shaders/ffx_fsr2_lock_pass.glsl56
-rw-r--r--thirdparty/amd-fsr2/shaders/ffx_fsr2_postprocess_lock_status.h106
-rw-r--r--thirdparty/amd-fsr2/shaders/ffx_fsr2_rcas.h67
-rw-r--r--thirdparty/amd-fsr2/shaders/ffx_fsr2_rcas_pass.glsl80
-rw-r--r--thirdparty/amd-fsr2/shaders/ffx_fsr2_reconstruct_dilated_velocity_and_previous_depth.h145
-rw-r--r--thirdparty/amd-fsr2/shaders/ffx_fsr2_reconstruct_previous_depth_pass.glsl65
-rw-r--r--thirdparty/amd-fsr2/shaders/ffx_fsr2_reproject.h136
-rw-r--r--thirdparty/amd-fsr2/shaders/ffx_fsr2_resources.h105
-rw-r--r--thirdparty/amd-fsr2/shaders/ffx_fsr2_sample.h605
-rw-r--r--thirdparty/amd-fsr2/shaders/ffx_fsr2_tcr_autogen.h250
-rw-r--r--thirdparty/amd-fsr2/shaders/ffx_fsr2_tcr_autogen_pass.glsl122
-rw-r--r--thirdparty/amd-fsr2/shaders/ffx_fsr2_upsample.h194
-rw-r--r--thirdparty/amd-fsr2/shaders/ffx_spd.h936
35 files changed, 17226 insertions, 0 deletions
diff --git a/thirdparty/amd-fsr2/shaders/ffx_common_types.h b/thirdparty/amd-fsr2/shaders/ffx_common_types.h
new file mode 100644
index 0000000000..ddd17862b6
--- /dev/null
+++ b/thirdparty/amd-fsr2/shaders/ffx_common_types.h
@@ -0,0 +1,429 @@
+// This file is part of the FidelityFX SDK.
+//
+// Copyright (c) 2022-2023 Advanced Micro Devices, Inc. All rights reserved.
+//
+// Permission is hereby granted, free of charge, to any person obtaining a copy
+// of this software and associated documentation files (the "Software"), to deal
+// in the Software without restriction, including without limitation the rights
+// to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
+// copies of the Software, and to permit persons to whom the Software is
+// furnished to do so, subject to the following conditions:
+// The above copyright notice and this permission notice shall be included in
+// all copies or substantial portions of the Software.
+//
+// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
+// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
+// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
+// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
+// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
+// OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
+// THE SOFTWARE.
+#ifndef FFX_COMMON_TYPES_H
+#define FFX_COMMON_TYPES_H
+
+#if defined(FFX_CPU)
+#define FFX_PARAMETER_IN
+#define FFX_PARAMETER_OUT
+#define FFX_PARAMETER_INOUT
+#elif defined(FFX_HLSL)
+#define FFX_PARAMETER_IN in
+#define FFX_PARAMETER_OUT out
+#define FFX_PARAMETER_INOUT inout
+#elif defined(FFX_GLSL)
+#define FFX_PARAMETER_IN in
+#define FFX_PARAMETER_OUT out
+#define FFX_PARAMETER_INOUT inout
+#endif // #if defined(FFX_CPU)
+
+#if defined(FFX_CPU)
+/// A typedef for a boolean value.
+///
+/// @ingroup CPU
+typedef bool FfxBoolean;
+
+/// A typedef for a unsigned 8bit integer.
+///
+/// @ingroup CPU
+typedef uint8_t FfxUInt8;
+
+/// A typedef for a unsigned 16bit integer.
+///
+/// @ingroup CPU
+typedef uint16_t FfxUInt16;
+
+/// A typedef for a unsigned 32bit integer.
+///
+/// @ingroup CPU
+typedef uint32_t FfxUInt32;
+
+/// A typedef for a unsigned 64bit integer.
+///
+/// @ingroup CPU
+typedef uint64_t FfxUInt64;
+
+/// A typedef for a signed 8bit integer.
+///
+/// @ingroup CPU
+typedef int8_t FfxInt8;
+
+/// A typedef for a signed 16bit integer.
+///
+/// @ingroup CPU
+typedef int16_t FfxInt16;
+
+/// A typedef for a signed 32bit integer.
+///
+/// @ingroup CPU
+typedef int32_t FfxInt32;
+
+/// A typedef for a signed 64bit integer.
+///
+/// @ingroup CPU
+typedef int64_t FfxInt64;
+
+/// A typedef for a floating point value.
+///
+/// @ingroup CPU
+typedef float FfxFloat32;
+
+/// A typedef for a 2-dimensional floating point value.
+///
+/// @ingroup CPU
+typedef float FfxFloat32x2[2];
+
+/// A typedef for a 3-dimensional floating point value.
+///
+/// @ingroup CPU
+typedef float FfxFloat32x3[3];
+
+/// A typedef for a 4-dimensional floating point value.
+///
+/// @ingroup CPU
+typedef float FfxFloat32x4[4];
+
+/// A typedef for a 2-dimensional 32bit unsigned integer.
+///
+/// @ingroup CPU
+typedef uint32_t FfxUInt32x2[2];
+
+/// A typedef for a 3-dimensional 32bit unsigned integer.
+///
+/// @ingroup CPU
+typedef uint32_t FfxUInt32x3[3];
+
+/// A typedef for a 4-dimensional 32bit unsigned integer.
+///
+/// @ingroup CPU
+typedef uint32_t FfxUInt32x4[4];
+#endif // #if defined(FFX_CPU)
+
+#if defined(FFX_HLSL)
+/// A typedef for a boolean value.
+///
+/// @ingroup GPU
+typedef bool FfxBoolean;
+
+#if FFX_HLSL_6_2
+typedef float32_t FfxFloat32;
+typedef float32_t2 FfxFloat32x2;
+typedef float32_t3 FfxFloat32x3;
+typedef float32_t4 FfxFloat32x4;
+
+/// A typedef for a unsigned 32bit integer.
+///
+/// @ingroup GPU
+typedef uint32_t FfxUInt32;
+typedef uint32_t2 FfxUInt32x2;
+typedef uint32_t3 FfxUInt32x3;
+typedef uint32_t4 FfxUInt32x4;
+typedef int32_t FfxInt32;
+typedef int32_t2 FfxInt32x2;
+typedef int32_t3 FfxInt32x3;
+typedef int32_t4 FfxInt32x4;
+#else
+#define FfxFloat32 float
+#define FfxFloat32x2 float2
+#define FfxFloat32x3 float3
+#define FfxFloat32x4 float4
+
+/// A typedef for a unsigned 32bit integer.
+///
+/// @ingroup GPU
+typedef uint FfxUInt32;
+typedef uint2 FfxUInt32x2;
+typedef uint3 FfxUInt32x3;
+typedef uint4 FfxUInt32x4;
+typedef int FfxInt32;
+typedef int2 FfxInt32x2;
+typedef int3 FfxInt32x3;
+typedef int4 FfxInt32x4;
+#endif // #if defined(FFX_HLSL_6_2)
+
+#if FFX_HALF
+#if FFX_HLSL_6_2
+typedef float16_t FfxFloat16;
+typedef float16_t2 FfxFloat16x2;
+typedef float16_t3 FfxFloat16x3;
+typedef float16_t4 FfxFloat16x4;
+
+/// A typedef for an unsigned 16bit integer.
+///
+/// @ingroup GPU
+typedef uint16_t FfxUInt16;
+typedef uint16_t2 FfxUInt16x2;
+typedef uint16_t3 FfxUInt16x3;
+typedef uint16_t4 FfxUInt16x4;
+
+/// A typedef for a signed 16bit integer.
+///
+/// @ingroup GPU
+typedef int16_t FfxInt16;
+typedef int16_t2 FfxInt16x2;
+typedef int16_t3 FfxInt16x3;
+typedef int16_t4 FfxInt16x4;
+#else
+typedef min16float FfxFloat16;
+typedef min16float2 FfxFloat16x2;
+typedef min16float3 FfxFloat16x3;
+typedef min16float4 FfxFloat16x4;
+
+/// A typedef for an unsigned 16bit integer.
+///
+/// @ingroup GPU
+typedef min16uint FfxUInt16;
+typedef min16uint2 FfxUInt16x2;
+typedef min16uint3 FfxUInt16x3;
+typedef min16uint4 FfxUInt16x4;
+
+/// A typedef for a signed 16bit integer.
+///
+/// @ingroup GPU
+typedef min16int FfxInt16;
+typedef min16int2 FfxInt16x2;
+typedef min16int3 FfxInt16x3;
+typedef min16int4 FfxInt16x4;
+#endif // FFX_HLSL_6_2
+#endif // FFX_HALF
+#endif // #if defined(FFX_HLSL)
+
+#if defined(FFX_GLSL)
+/// A typedef for a boolean value.
+///
+/// @ingroup GPU
+#define FfxBoolean bool
+#define FfxFloat32 float
+#define FfxFloat32x2 vec2
+#define FfxFloat32x3 vec3
+#define FfxFloat32x4 vec4
+#define FfxUInt32 uint
+#define FfxUInt32x2 uvec2
+#define FfxUInt32x3 uvec3
+#define FfxUInt32x4 uvec4
+#define FfxInt32 int
+#define FfxInt32x2 ivec2
+#define FfxInt32x3 ivec3
+#define FfxInt32x4 ivec4
+#if FFX_HALF
+#define FfxFloat16 float16_t
+#define FfxFloat16x2 f16vec2
+#define FfxFloat16x3 f16vec3
+#define FfxFloat16x4 f16vec4
+#define FfxUInt16 uint16_t
+#define FfxUInt16x2 u16vec2
+#define FfxUInt16x3 u16vec3
+#define FfxUInt16x4 u16vec4
+#define FfxInt16 int16_t
+#define FfxInt16x2 i16vec2
+#define FfxInt16x3 i16vec3
+#define FfxInt16x4 i16vec4
+#endif // FFX_HALF
+#endif // #if defined(FFX_GLSL)
+
+// Global toggles:
+// #define FFX_HALF (1)
+// #define FFX_HLSL_6_2 (1)
+
+#if FFX_HALF
+
+#if FFX_HLSL_6_2
+
+#define FFX_MIN16_SCALAR( TypeName, BaseComponentType ) typedef BaseComponentType##16_t TypeName;
+#define FFX_MIN16_VECTOR( TypeName, BaseComponentType, COL ) typedef vector<BaseComponentType##16_t, COL> TypeName;
+#define FFX_MIN16_MATRIX( TypeName, BaseComponentType, ROW, COL ) typedef matrix<BaseComponentType##16_t, ROW, COL> TypeName;
+
+#define FFX_16BIT_SCALAR( TypeName, BaseComponentType ) typedef BaseComponentType##16_t TypeName;
+#define FFX_16BIT_VECTOR( TypeName, BaseComponentType, COL ) typedef vector<BaseComponentType##16_t, COL> TypeName;
+#define FFX_16BIT_MATRIX( TypeName, BaseComponentType, ROW, COL ) typedef matrix<BaseComponentType##16_t, ROW, COL> TypeName;
+
+#else //FFX_HLSL_6_2
+
+#define FFX_MIN16_SCALAR( TypeName, BaseComponentType ) typedef min16##BaseComponentType TypeName;
+#define FFX_MIN16_VECTOR( TypeName, BaseComponentType, COL ) typedef vector<min16##BaseComponentType, COL> TypeName;
+#define FFX_MIN16_MATRIX( TypeName, BaseComponentType, ROW, COL ) typedef matrix<min16##BaseComponentType, ROW, COL> TypeName;
+
+#define FFX_16BIT_SCALAR( TypeName, BaseComponentType ) FFX_MIN16_SCALAR( TypeName, BaseComponentType );
+#define FFX_16BIT_VECTOR( TypeName, BaseComponentType, COL ) FFX_MIN16_VECTOR( TypeName, BaseComponentType, COL );
+#define FFX_16BIT_MATRIX( TypeName, BaseComponentType, ROW, COL ) FFX_MIN16_MATRIX( TypeName, BaseComponentType, ROW, COL );
+
+#endif //FFX_HLSL_6_2
+
+#else //FFX_HALF
+
+#define FFX_MIN16_SCALAR( TypeName, BaseComponentType ) typedef BaseComponentType TypeName;
+#define FFX_MIN16_VECTOR( TypeName, BaseComponentType, COL ) typedef vector<BaseComponentType, COL> TypeName;
+#define FFX_MIN16_MATRIX( TypeName, BaseComponentType, ROW, COL ) typedef matrix<BaseComponentType, ROW, COL> TypeName;
+
+#define FFX_16BIT_SCALAR( TypeName, BaseComponentType ) typedef BaseComponentType TypeName;
+#define FFX_16BIT_VECTOR( TypeName, BaseComponentType, COL ) typedef vector<BaseComponentType, COL> TypeName;
+#define FFX_16BIT_MATRIX( TypeName, BaseComponentType, ROW, COL ) typedef matrix<BaseComponentType, ROW, COL> TypeName;
+
+#endif //FFX_HALF
+
+#if defined(FFX_GPU)
+// Common typedefs:
+#if defined(FFX_HLSL)
+FFX_MIN16_SCALAR( FFX_MIN16_F , float );
+FFX_MIN16_VECTOR( FFX_MIN16_F2, float, 2 );
+FFX_MIN16_VECTOR( FFX_MIN16_F3, float, 3 );
+FFX_MIN16_VECTOR( FFX_MIN16_F4, float, 4 );
+
+FFX_MIN16_SCALAR( FFX_MIN16_I, int );
+FFX_MIN16_VECTOR( FFX_MIN16_I2, int, 2 );
+FFX_MIN16_VECTOR( FFX_MIN16_I3, int, 3 );
+FFX_MIN16_VECTOR( FFX_MIN16_I4, int, 4 );
+
+FFX_MIN16_SCALAR( FFX_MIN16_U, uint );
+FFX_MIN16_VECTOR( FFX_MIN16_U2, uint, 2 );
+FFX_MIN16_VECTOR( FFX_MIN16_U3, uint, 3 );
+FFX_MIN16_VECTOR( FFX_MIN16_U4, uint, 4 );
+
+FFX_16BIT_SCALAR( FFX_F16_t , float );
+FFX_16BIT_VECTOR( FFX_F16_t2, float, 2 );
+FFX_16BIT_VECTOR( FFX_F16_t3, float, 3 );
+FFX_16BIT_VECTOR( FFX_F16_t4, float, 4 );
+
+FFX_16BIT_SCALAR( FFX_I16_t, int );
+FFX_16BIT_VECTOR( FFX_I16_t2, int, 2 );
+FFX_16BIT_VECTOR( FFX_I16_t3, int, 3 );
+FFX_16BIT_VECTOR( FFX_I16_t4, int, 4 );
+
+FFX_16BIT_SCALAR( FFX_U16_t, uint );
+FFX_16BIT_VECTOR( FFX_U16_t2, uint, 2 );
+FFX_16BIT_VECTOR( FFX_U16_t3, uint, 3 );
+FFX_16BIT_VECTOR( FFX_U16_t4, uint, 4 );
+
+#define TYPEDEF_MIN16_TYPES(Prefix) \
+typedef FFX_MIN16_F Prefix##_F; \
+typedef FFX_MIN16_F2 Prefix##_F2; \
+typedef FFX_MIN16_F3 Prefix##_F3; \
+typedef FFX_MIN16_F4 Prefix##_F4; \
+typedef FFX_MIN16_I Prefix##_I; \
+typedef FFX_MIN16_I2 Prefix##_I2; \
+typedef FFX_MIN16_I3 Prefix##_I3; \
+typedef FFX_MIN16_I4 Prefix##_I4; \
+typedef FFX_MIN16_U Prefix##_U; \
+typedef FFX_MIN16_U2 Prefix##_U2; \
+typedef FFX_MIN16_U3 Prefix##_U3; \
+typedef FFX_MIN16_U4 Prefix##_U4;
+
+#define TYPEDEF_16BIT_TYPES(Prefix) \
+typedef FFX_16BIT_F Prefix##_F; \
+typedef FFX_16BIT_F2 Prefix##_F2; \
+typedef FFX_16BIT_F3 Prefix##_F3; \
+typedef FFX_16BIT_F4 Prefix##_F4; \
+typedef FFX_16BIT_I Prefix##_I; \
+typedef FFX_16BIT_I2 Prefix##_I2; \
+typedef FFX_16BIT_I3 Prefix##_I3; \
+typedef FFX_16BIT_I4 Prefix##_I4; \
+typedef FFX_16BIT_U Prefix##_U; \
+typedef FFX_16BIT_U2 Prefix##_U2; \
+typedef FFX_16BIT_U3 Prefix##_U3; \
+typedef FFX_16BIT_U4 Prefix##_U4;
+
+#define TYPEDEF_FULL_PRECISION_TYPES(Prefix) \
+typedef FfxFloat32 Prefix##_F; \
+typedef FfxFloat32x2 Prefix##_F2; \
+typedef FfxFloat32x3 Prefix##_F3; \
+typedef FfxFloat32x4 Prefix##_F4; \
+typedef FfxInt32 Prefix##_I; \
+typedef FfxInt32x2 Prefix##_I2; \
+typedef FfxInt32x3 Prefix##_I3; \
+typedef FfxInt32x4 Prefix##_I4; \
+typedef FfxUInt32 Prefix##_U; \
+typedef FfxUInt32x2 Prefix##_U2; \
+typedef FfxUInt32x3 Prefix##_U3; \
+typedef FfxUInt32x4 Prefix##_U4;
+#endif // #if defined(FFX_HLSL)
+
+#if defined(FFX_GLSL)
+
+#if FFX_HALF
+
+#define FFX_MIN16_F float16_t
+#define FFX_MIN16_F2 f16vec2
+#define FFX_MIN16_F3 f16vec3
+#define FFX_MIN16_F4 f16vec4
+
+#define FFX_MIN16_I int16_t
+#define FFX_MIN16_I2 i16vec2
+#define FFX_MIN16_I3 i16vec3
+#define FFX_MIN16_I4 i16vec4
+
+#define FFX_MIN16_U uint16_t
+#define FFX_MIN16_U2 u16vec2
+#define FFX_MIN16_U3 u16vec3
+#define FFX_MIN16_U4 u16vec4
+
+#define FFX_16BIT_F float16_t
+#define FFX_16BIT_F2 f16vec2
+#define FFX_16BIT_F3 f16vec3
+#define FFX_16BIT_F4 f16vec4
+
+#define FFX_16BIT_I int16_t
+#define FFX_16BIT_I2 i16vec2
+#define FFX_16BIT_I3 i16vec3
+#define FFX_16BIT_I4 i16vec4
+
+#define FFX_16BIT_U uint16_t
+#define FFX_16BIT_U2 u16vec2
+#define FFX_16BIT_U3 u16vec3
+#define FFX_16BIT_U4 u16vec4
+
+#else // FFX_HALF
+
+#define FFX_MIN16_F float
+#define FFX_MIN16_F2 vec2
+#define FFX_MIN16_F3 vec3
+#define FFX_MIN16_F4 vec4
+
+#define FFX_MIN16_I int
+#define FFX_MIN16_I2 ivec2
+#define FFX_MIN16_I3 ivec3
+#define FFX_MIN16_I4 ivec4
+
+#define FFX_MIN16_U uint
+#define FFX_MIN16_U2 uvec2
+#define FFX_MIN16_U3 uvec3
+#define FFX_MIN16_U4 uvec4
+
+#define FFX_16BIT_F float
+#define FFX_16BIT_F2 vec2
+#define FFX_16BIT_F3 vec3
+#define FFX_16BIT_F4 vec4
+
+#define FFX_16BIT_I int
+#define FFX_16BIT_I2 ivec2
+#define FFX_16BIT_I3 ivec3
+#define FFX_16BIT_I4 ivec4
+
+#define FFX_16BIT_U uint
+#define FFX_16BIT_U2 uvec2
+#define FFX_16BIT_U3 uvec3
+#define FFX_16BIT_U4 uvec4
+
+#endif // FFX_HALF
+
+#endif // #if defined(FFX_GLSL)
+
+#endif // #if defined(FFX_GPU)
+#endif // #ifndef FFX_COMMON_TYPES_H
diff --git a/thirdparty/amd-fsr2/shaders/ffx_core.h b/thirdparty/amd-fsr2/shaders/ffx_core.h
new file mode 100644
index 0000000000..4e687d6e3d
--- /dev/null
+++ b/thirdparty/amd-fsr2/shaders/ffx_core.h
@@ -0,0 +1,52 @@
+// This file is part of the FidelityFX SDK.
+//
+// Copyright (c) 2022-2023 Advanced Micro Devices, Inc. All rights reserved.
+//
+// Permission is hereby granted, free of charge, to any person obtaining a copy
+// of this software and associated documentation files (the "Software"), to deal
+// in the Software without restriction, including without limitation the rights
+// to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
+// copies of the Software, and to permit persons to whom the Software is
+// furnished to do so, subject to the following conditions:
+// The above copyright notice and this permission notice shall be included in
+// all copies or substantial portions of the Software.
+//
+// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
+// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
+// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
+// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
+// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
+// OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
+// THE SOFTWARE.
+
+/// @defgroup Core
+/// @defgroup HLSL
+/// @defgroup GLSL
+/// @defgroup GPU
+/// @defgroup CPU
+/// @defgroup CAS
+/// @defgroup FSR1
+
+#if !defined(FFX_CORE_H)
+#define FFX_CORE_H
+
+#include "ffx_common_types.h"
+
+#if defined(FFX_CPU)
+ #include "ffx_core_cpu.h"
+#endif // #if defined(FFX_CPU)
+
+#if defined(FFX_GLSL) && defined(FFX_GPU)
+ #include "ffx_core_glsl.h"
+#endif // #if defined(FFX_GLSL) && defined(FFX_GPU)
+
+#if defined(FFX_HLSL) && defined(FFX_GPU)
+ #include "ffx_core_hlsl.h"
+#endif // #if defined(FFX_HLSL) && defined(FFX_GPU)
+
+#if defined(FFX_GPU)
+ #include "ffx_core_gpu_common.h"
+ #include "ffx_core_gpu_common_half.h"
+ #include "ffx_core_portability.h"
+#endif // #if defined(FFX_GPU)
+#endif // #if !defined(FFX_CORE_H) \ No newline at end of file
diff --git a/thirdparty/amd-fsr2/shaders/ffx_core_cpu.h b/thirdparty/amd-fsr2/shaders/ffx_core_cpu.h
new file mode 100644
index 0000000000..3bf0295bfc
--- /dev/null
+++ b/thirdparty/amd-fsr2/shaders/ffx_core_cpu.h
@@ -0,0 +1,332 @@
+// This file is part of the FidelityFX SDK.
+//
+// Copyright (c) 2022-2023 Advanced Micro Devices, Inc. All rights reserved.
+//
+// Permission is hereby granted, free of charge, to any person obtaining a copy
+// of this software and associated documentation files (the "Software"), to deal
+// in the Software without restriction, including without limitation the rights
+// to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
+// copies of the Software, and to permit persons to whom the Software is
+// furnished to do so, subject to the following conditions:
+// The above copyright notice and this permission notice shall be included in
+// all copies or substantial portions of the Software.
+//
+// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
+// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
+// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
+// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
+// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
+// OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
+// THE SOFTWARE.
+
+/// A define for a true value in a boolean expression.
+///
+/// @ingroup CPU
+#define FFX_TRUE (1)
+
+/// A define for a false value in a boolean expression.
+///
+/// @ingroup CPU
+#define FFX_FALSE (0)
+
+#if !defined(FFX_STATIC)
+/// A define to abstract declaration of static variables and functions.
+///
+/// @ingroup CPU
+#define FFX_STATIC static
+#endif // #if !defined(FFX_STATIC)
+
+#ifdef __clang__
+#pragma clang diagnostic ignored "-Wunused-variable"
+#endif
+
+/// Interpret the bit layout of an IEEE-754 floating point value as an unsigned integer.
+///
+/// @param [in] x A 32bit floating value.
+///
+/// @returns
+/// An unsigned 32bit integer value containing the bit pattern of <c><i>x</i></c>.
+///
+/// @ingroup CPU
+FFX_STATIC FfxUInt32 ffxAsUInt32(FfxFloat32 x)
+{
+ union
+ {
+ FfxFloat32 f;
+ FfxUInt32 u;
+ } bits;
+
+ bits.f = x;
+ return bits.u;
+}
+
+FFX_STATIC FfxFloat32 ffxDot2(FfxFloat32x2 a, FfxFloat32x2 b)
+{
+ return a[0] * b[0] + a[1] * b[1];
+}
+
+FFX_STATIC FfxFloat32 ffxDot3(FfxFloat32x3 a, FfxFloat32x3 b)
+{
+ return a[0] * b[0] + a[1] * b[1] + a[2] * b[2];
+}
+
+FFX_STATIC FfxFloat32 ffxDot4(FfxFloat32x4 a, FfxFloat32x4 b)
+{
+ return a[0] * b[0] + a[1] * b[1] + a[2] * b[2] + a[3] * b[3];
+}
+
+/// Compute the linear interopation between two values.
+///
+/// Implemented by calling the GLSL <c><i>mix</i></c> instrinsic function. Implements the
+/// following math:
+///
+/// (1 - t) * x + t * y
+///
+/// @param [in] x The first value to lerp between.
+/// @param [in] y The second value to lerp between.
+/// @param [in] t The value to determine how much of <c><i>x</i></c> and how much of <c><i>y</i></c>.
+///
+/// @returns
+/// A linearly interpolated value between <c><i>x</i></c> and <c><i>y</i></c> according to <c><i>t</i></c>.
+///
+/// @ingroup CPU
+FFX_STATIC FfxFloat32 ffxLerp(FfxFloat32 x, FfxFloat32 y, FfxFloat32 t)
+{
+ return y * t + (-x * t + x);
+}
+
+/// Compute the reciprocal of a value.
+///
+/// @param [in] x The value to compute the reciprocal for.
+///
+/// @returns
+/// The reciprocal value of <c><i>x</i></c>.
+///
+/// @ingroup CPU
+FFX_STATIC FfxFloat32 ffxReciprocal(FfxFloat32 a)
+{
+ return 1.0f / a;
+}
+
+/// Compute the square root of a value.
+///
+/// @param [in] x The first value to compute the min of.
+///
+/// @returns
+/// The the square root of <c><i>x</i></c>.
+///
+/// @ingroup CPU
+FFX_STATIC FfxFloat32 ffxSqrt(FfxFloat32 x)
+{
+ return sqrt(x);
+}
+
+FFX_STATIC FfxUInt32 AShrSU1(FfxUInt32 a, FfxUInt32 b)
+{
+ return FfxUInt32(FfxInt32(a) >> FfxInt32(b));
+}
+
+/// Compute the factional part of a decimal value.
+///
+/// This function calculates <c><i>x - floor(x)</i></c>.
+///
+/// @param [in] x The value to compute the fractional part from.
+///
+/// @returns
+/// The fractional part of <c><i>x</i></c>.
+///
+/// @ingroup CPU
+FFX_STATIC FfxFloat32 ffxFract(FfxFloat32 a)
+{
+ return a - floor(a);
+}
+
+/// Compute the reciprocal square root of a value.
+///
+/// @param [in] x The value to compute the reciprocal for.
+///
+/// @returns
+/// The reciprocal square root value of <c><i>x</i></c>.
+///
+/// @ingroup CPU
+FFX_STATIC FfxFloat32 rsqrt(FfxFloat32 a)
+{
+ return ffxReciprocal(ffxSqrt(a));
+}
+
+FFX_STATIC FfxFloat32 ffxMin(FfxFloat32 x, FfxFloat32 y)
+{
+ return x < y ? x : y;
+}
+
+FFX_STATIC FfxUInt32 ffxMin(FfxUInt32 x, FfxUInt32 y)
+{
+ return x < y ? x : y;
+}
+
+FFX_STATIC FfxFloat32 ffxMax(FfxFloat32 x, FfxFloat32 y)
+{
+ return x > y ? x : y;
+}
+
+FFX_STATIC FfxUInt32 ffxMax(FfxUInt32 x, FfxUInt32 y)
+{
+ return x > y ? x : y;
+}
+
+/// Clamp a value to a [0..1] range.
+///
+/// @param [in] x The value to clamp to [0..1] range.
+///
+/// @returns
+/// The clamped version of <c><i>x</i></c>.
+///
+/// @ingroup CPU
+FFX_STATIC FfxFloat32 ffxSaturate(FfxFloat32 a)
+{
+ return ffxMin(1.0f, ffxMax(0.0f, a));
+}
+
+////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
+////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
+
+FFX_STATIC void opAAddOneF3(FfxFloat32x3 d, FfxFloat32x3 a, FfxFloat32 b)
+{
+ d[0] = a[0] + b;
+ d[1] = a[1] + b;
+ d[2] = a[2] + b;
+ return;
+}
+
+FFX_STATIC void opACpyF3(FfxFloat32x3 d, FfxFloat32x3 a)
+{
+ d[0] = a[0];
+ d[1] = a[1];
+ d[2] = a[2];
+ return;
+}
+
+FFX_STATIC void opAMulF3(FfxFloat32x3 d, FfxFloat32x3 a, FfxFloat32x3 b)
+{
+ d[0] = a[0] * b[0];
+ d[1] = a[1] * b[1];
+ d[2] = a[2] * b[2];
+ return;
+}
+
+FFX_STATIC void opAMulOneF3(FfxFloat32x3 d, FfxFloat32x3 a, FfxFloat32 b)
+{
+ d[0] = a[0] * b;
+ d[1] = a[1] * b;
+ d[2] = a[2] * b;
+ return;
+}
+
+FFX_STATIC void opARcpF3(FfxFloat32x3 d, FfxFloat32x3 a)
+{
+ d[0] = ffxReciprocal(a[0]);
+ d[1] = ffxReciprocal(a[1]);
+ d[2] = ffxReciprocal(a[2]);
+ return;
+}
+
+/// Convert FfxFloat32 to half (in lower 16-bits of output).
+///
+/// This function implements the same fast technique that is documented here: ftp://ftp.fox-toolkit.org/pub/fasthalffloatconversion.pdf
+///
+/// The function supports denormals.
+///
+/// Some conversion rules are to make computations possibly "safer" on the GPU,
+/// -INF & -NaN -> -65504
+/// +INF & +NaN -> +65504
+///
+/// @param [in] f The 32bit floating point value to convert.
+///
+/// @returns
+/// The closest 16bit floating point value to <c><i>f</i></c>.
+///
+/// @ingroup CPU
+FFX_STATIC FfxUInt32 f32tof16(FfxFloat32 f)
+{
+ static FfxUInt16 base[512] = {
+ 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000,
+ 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000,
+ 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000,
+ 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000,
+ 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000,
+ 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0001, 0x0002, 0x0004, 0x0008, 0x0010, 0x0020, 0x0040, 0x0080, 0x0100, 0x0200, 0x0400,
+ 0x0800, 0x0c00, 0x1000, 0x1400, 0x1800, 0x1c00, 0x2000, 0x2400, 0x2800, 0x2c00, 0x3000, 0x3400, 0x3800, 0x3c00, 0x4000, 0x4400, 0x4800, 0x4c00, 0x5000,
+ 0x5400, 0x5800, 0x5c00, 0x6000, 0x6400, 0x6800, 0x6c00, 0x7000, 0x7400, 0x7800, 0x7bff, 0x7bff, 0x7bff, 0x7bff, 0x7bff, 0x7bff, 0x7bff, 0x7bff, 0x7bff,
+ 0x7bff, 0x7bff, 0x7bff, 0x7bff, 0x7bff, 0x7bff, 0x7bff, 0x7bff, 0x7bff, 0x7bff, 0x7bff, 0x7bff, 0x7bff, 0x7bff, 0x7bff, 0x7bff, 0x7bff, 0x7bff, 0x7bff,
+ 0x7bff, 0x7bff, 0x7bff, 0x7bff, 0x7bff, 0x7bff, 0x7bff, 0x7bff, 0x7bff, 0x7bff, 0x7bff, 0x7bff, 0x7bff, 0x7bff, 0x7bff, 0x7bff, 0x7bff, 0x7bff, 0x7bff,
+ 0x7bff, 0x7bff, 0x7bff, 0x7bff, 0x7bff, 0x7bff, 0x7bff, 0x7bff, 0x7bff, 0x7bff, 0x7bff, 0x7bff, 0x7bff, 0x7bff, 0x7bff, 0x7bff, 0x7bff, 0x7bff, 0x7bff,
+ 0x7bff, 0x7bff, 0x7bff, 0x7bff, 0x7bff, 0x7bff, 0x7bff, 0x7bff, 0x7bff, 0x7bff, 0x7bff, 0x7bff, 0x7bff, 0x7bff, 0x7bff, 0x7bff, 0x7bff, 0x7bff, 0x7bff,
+ 0x7bff, 0x7bff, 0x7bff, 0x7bff, 0x7bff, 0x7bff, 0x7bff, 0x7bff, 0x7bff, 0x7bff, 0x7bff, 0x7bff, 0x7bff, 0x7bff, 0x7bff, 0x7bff, 0x7bff, 0x7bff, 0x7bff,
+ 0x7bff, 0x7bff, 0x7bff, 0x7bff, 0x7bff, 0x7bff, 0x7bff, 0x7bff, 0x7bff, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000,
+ 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000,
+ 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000,
+ 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000,
+ 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000,
+ 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8001, 0x8002,
+ 0x8004, 0x8008, 0x8010, 0x8020, 0x8040, 0x8080, 0x8100, 0x8200, 0x8400, 0x8800, 0x8c00, 0x9000, 0x9400, 0x9800, 0x9c00, 0xa000, 0xa400, 0xa800, 0xac00,
+ 0xb000, 0xb400, 0xb800, 0xbc00, 0xc000, 0xc400, 0xc800, 0xcc00, 0xd000, 0xd400, 0xd800, 0xdc00, 0xe000, 0xe400, 0xe800, 0xec00, 0xf000, 0xf400, 0xf800,
+ 0xfbff, 0xfbff, 0xfbff, 0xfbff, 0xfbff, 0xfbff, 0xfbff, 0xfbff, 0xfbff, 0xfbff, 0xfbff, 0xfbff, 0xfbff, 0xfbff, 0xfbff, 0xfbff, 0xfbff, 0xfbff, 0xfbff,
+ 0xfbff, 0xfbff, 0xfbff, 0xfbff, 0xfbff, 0xfbff, 0xfbff, 0xfbff, 0xfbff, 0xfbff, 0xfbff, 0xfbff, 0xfbff, 0xfbff, 0xfbff, 0xfbff, 0xfbff, 0xfbff, 0xfbff,
+ 0xfbff, 0xfbff, 0xfbff, 0xfbff, 0xfbff, 0xfbff, 0xfbff, 0xfbff, 0xfbff, 0xfbff, 0xfbff, 0xfbff, 0xfbff, 0xfbff, 0xfbff, 0xfbff, 0xfbff, 0xfbff, 0xfbff,
+ 0xfbff, 0xfbff, 0xfbff, 0xfbff, 0xfbff, 0xfbff, 0xfbff, 0xfbff, 0xfbff, 0xfbff, 0xfbff, 0xfbff, 0xfbff, 0xfbff, 0xfbff, 0xfbff, 0xfbff, 0xfbff, 0xfbff,
+ 0xfbff, 0xfbff, 0xfbff, 0xfbff, 0xfbff, 0xfbff, 0xfbff, 0xfbff, 0xfbff, 0xfbff, 0xfbff, 0xfbff, 0xfbff, 0xfbff, 0xfbff, 0xfbff, 0xfbff, 0xfbff, 0xfbff,
+ 0xfbff, 0xfbff, 0xfbff, 0xfbff, 0xfbff, 0xfbff, 0xfbff, 0xfbff, 0xfbff, 0xfbff, 0xfbff, 0xfbff, 0xfbff, 0xfbff, 0xfbff, 0xfbff, 0xfbff, 0xfbff
+ };
+
+ static FfxUInt8 shift[512] = {
+ 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18,
+ 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18,
+ 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18,
+ 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18,
+ 0x18, 0x18, 0x18, 0x17, 0x16, 0x15, 0x14, 0x13, 0x12, 0x11, 0x10, 0x0f, 0x0e, 0x0d, 0x0d, 0x0d, 0x0d, 0x0d, 0x0d, 0x0d, 0x0d, 0x0d, 0x0d, 0x0d, 0x0d,
+ 0x0d, 0x0d, 0x0d, 0x0d, 0x0d, 0x0d, 0x0d, 0x0d, 0x0d, 0x0d, 0x0d, 0x0d, 0x0d, 0x0d, 0x0d, 0x0d, 0x0d, 0x0d, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18,
+ 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18,
+ 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18,
+ 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18,
+ 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18,
+ 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18,
+ 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18,
+ 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18,
+ 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18,
+ 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x17, 0x16, 0x15, 0x14, 0x13, 0x12, 0x11, 0x10, 0x0f, 0x0e, 0x0d, 0x0d, 0x0d, 0x0d, 0x0d, 0x0d,
+ 0x0d, 0x0d, 0x0d, 0x0d, 0x0d, 0x0d, 0x0d, 0x0d, 0x0d, 0x0d, 0x0d, 0x0d, 0x0d, 0x0d, 0x0d, 0x0d, 0x0d, 0x0d, 0x0d, 0x0d, 0x0d, 0x0d, 0x0d, 0x0d, 0x18,
+ 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18,
+ 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18,
+ 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18,
+ 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18,
+ 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18
+ };
+
+ union
+ {
+ FfxFloat32 f;
+ FfxUInt32 u;
+ } bits;
+
+ bits.f = f;
+ FfxUInt32 u = bits.u;
+ FfxUInt32 i = u >> 23;
+ return (FfxUInt32)(base[i]) + ((u & 0x7fffff) >> shift[i]);
+}
+
+/// Pack 2x32-bit floating point values in a single 32bit value.
+///
+/// This function first converts each component of <c><i>value</i></c> into their nearest 16-bit floating
+/// point representation, and then stores the X and Y components in the lower and upper 16 bits of the
+/// 32bit unsigned integer respectively.
+///
+/// @param [in] value A 2-dimensional floating point value to convert and pack.
+///
+/// @returns
+/// A packed 32bit value containing 2 16bit floating point values.
+///
+/// @ingroup CPU
+FFX_STATIC FfxUInt32 packHalf2x16(FfxFloat32x2 a)
+{
+ return f32tof16(a[0]) + (f32tof16(a[1]) << 16);
+}
diff --git a/thirdparty/amd-fsr2/shaders/ffx_core_glsl.h b/thirdparty/amd-fsr2/shaders/ffx_core_glsl.h
new file mode 100644
index 0000000000..6ec58f3c62
--- /dev/null
+++ b/thirdparty/amd-fsr2/shaders/ffx_core_glsl.h
@@ -0,0 +1,1669 @@
+// This file is part of the FidelityFX SDK.
+//
+// Copyright (c) 2022-2023 Advanced Micro Devices, Inc. All rights reserved.
+//
+// Permission is hereby granted, free of charge, to any person obtaining a copy
+// of this software and associated documentation files (the "Software"), to deal
+// in the Software without restriction, including without limitation the rights
+// to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
+// copies of the Software, and to permit persons to whom the Software is
+// furnished to do so, subject to the following conditions:
+// The above copyright notice and this permission notice shall be included in
+// all copies or substantial portions of the Software.
+//
+// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
+// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
+// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
+// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
+// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
+// OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
+// THE SOFTWARE.
+
+/// A define for abstracting shared memory between shading languages.
+///
+/// @ingroup GPU
+#define FFX_GROUPSHARED shared
+
+/// A define for abstracting compute memory barriers between shading languages.
+///
+/// @ingroup GPU
+#define FFX_GROUP_MEMORY_BARRIER() barrier()
+
+/// A define added to accept static markup on functions to aid CPU/GPU portability of code.
+///
+/// @ingroup GPU
+#define FFX_STATIC
+
+/// A define for abstracting loop unrolling between shading languages.
+///
+/// @ingroup GPU
+#define FFX_UNROLL
+
+/// A define for abstracting a 'greater than' comparison operator between two types.
+///
+/// @ingroup GPU
+#define FFX_GREATER_THAN(x, y) greaterThan(x, y)
+
+/// A define for abstracting a 'greater than or equal' comparison operator between two types.
+///
+/// @ingroup GPU
+#define FFX_GREATER_THAN_EQUAL(x, y) greaterThanEqual(x, y)
+
+/// A define for abstracting a 'less than' comparison operator between two types.
+///
+/// @ingroup GPU
+#define FFX_LESS_THAN(x, y) lessThan(x, y)
+
+/// A define for abstracting a 'less than or equal' comparison operator between two types.
+///
+/// @ingroup GPU
+#define FFX_LESS_THAN_EQUAL(x, y) lessThanEqual(x, y)
+
+/// A define for abstracting an 'equal' comparison operator between two types.
+///
+/// @ingroup GPU
+#define FFX_EQUAL(x, y) equal(x, y)
+
+/// A define for abstracting a 'not equal' comparison operator between two types.
+///
+/// @ingroup GPU
+#define FFX_NOT_EQUAL(x, y) notEqual(x, y)
+
+/// Broadcast a scalar value to a 1-dimensional floating point vector.
+///
+/// @ingroup GPU
+#define FFX_BROADCAST_FLOAT32(x) FfxFloat32(x)
+
+/// Broadcast a scalar value to a 2-dimensional floating point vector.
+///
+/// @ingroup GPU
+#define FFX_BROADCAST_FLOAT32X2(x) FfxFloat32x2(FfxFloat32(x))
+
+/// Broadcast a scalar value to a 3-dimensional floating point vector.
+///
+/// @ingroup GPU
+#define FFX_BROADCAST_FLOAT32X3(x) FfxFloat32x3(FfxFloat32(x))
+
+/// Broadcast a scalar value to a 4-dimensional floating point vector.
+///
+/// @ingroup GPU
+#define FFX_BROADCAST_FLOAT32X4(x) FfxFloat32x4(FfxFloat32(x))
+
+/// Broadcast a scalar value to a 1-dimensional unsigned integer vector.
+///
+/// @ingroup GPU
+#define FFX_BROADCAST_UINT32(x) FfxUInt32(x)
+
+/// Broadcast a scalar value to a 2-dimensional unsigned integer vector.
+///
+/// @ingroup GPU
+#define FFX_BROADCAST_UINT32X2(x) FfxUInt32x2(FfxUInt32(x))
+
+/// Broadcast a scalar value to a 3-dimensional unsigned integer vector.
+///
+/// @ingroup GPU
+#define FFX_BROADCAST_UINT32X3(x) FfxUInt32x3(FfxUInt32(x))
+
+/// Broadcast a scalar value to a 4-dimensional unsigned integer vector.
+///
+/// @ingroup GPU
+#define FFX_BROADCAST_UINT32X4(x) FfxUInt32x4(FfxUInt32(x))
+
+/// Broadcast a scalar value to a 1-dimensional signed integer vector.
+///
+/// @ingroup GPU
+#define FFX_BROADCAST_INT32(x) FfxInt32(x)
+
+/// Broadcast a scalar value to a 2-dimensional signed integer vector.
+///
+/// @ingroup GPU
+#define FFX_BROADCAST_INT32X2(x) FfxInt32x2(FfxInt32(x))
+
+/// Broadcast a scalar value to a 3-dimensional signed integer vector.
+///
+/// @ingroup GPU
+#define FFX_BROADCAST_INT32X3(x) FfxInt32x3(FfxInt32(x))
+
+/// Broadcast a scalar value to a 4-dimensional signed integer vector.
+///
+/// @ingroup GPU
+#define FFX_BROADCAST_INT32X4(x) FfxInt32x4(FfxInt32(x))
+
+/// Broadcast a scalar value to a 1-dimensional half-precision floating point vector.
+///
+/// @ingroup GPU
+#define FFX_BROADCAST_MIN_FLOAT16(x) FFX_MIN16_F(x)
+
+/// Broadcast a scalar value to a 2-dimensional half-precision floating point vector.
+///
+/// @ingroup GPU
+#define FFX_BROADCAST_MIN_FLOAT16X2(x) FFX_MIN16_F2(FFX_MIN16_F(x))
+
+/// Broadcast a scalar value to a 3-dimensional half-precision floating point vector.
+///
+/// @ingroup GPU
+#define FFX_BROADCAST_MIN_FLOAT16X3(x) FFX_MIN16_F3(FFX_MIN16_F(x))
+
+/// Broadcast a scalar value to a 4-dimensional half-precision floating point vector.
+///
+/// @ingroup GPU
+#define FFX_BROADCAST_MIN_FLOAT16X4(x) FFX_MIN16_F4(FFX_MIN16_F(x))
+
+/// Broadcast a scalar value to a 1-dimensional half-precision unsigned integer vector.
+///
+/// @ingroup GPU
+#define FFX_BROADCAST_MIN_UINT16(x) FFX_MIN16_U(x)
+
+/// Broadcast a scalar value to a 2-dimensional half-precision unsigned integer vector.
+///
+/// @ingroup GPU
+#define FFX_BROADCAST_MIN_UINT16X2(x) FFX_MIN16_U2(FFX_MIN16_U(x))
+
+/// Broadcast a scalar value to a 3-dimensional half-precision unsigned integer vector.
+///
+/// @ingroup GPU
+#define FFX_BROADCAST_MIN_UINT16X3(x) FFX_MIN16_U3(FFX_MIN16_U(x))
+
+/// Broadcast a scalar value to a 4-dimensional half-precision unsigned integer vector.
+///
+/// @ingroup GPU
+#define FFX_BROADCAST_MIN_UINT16X4(x) FFX_MIN16_U4(FFX_MIN16_U(x))
+
+/// Broadcast a scalar value to a 1-dimensional half-precision signed integer vector.
+///
+/// @ingroup GPU
+#define FFX_BROADCAST_MIN_INT16(x) FFX_MIN16_I(x)
+
+/// Broadcast a scalar value to a 2-dimensional half-precision signed integer vector.
+///
+/// @ingroup GPU
+#define FFX_BROADCAST_MIN_INT16X2(x) FFX_MIN16_I2(FFX_MIN16_I(x))
+
+/// Broadcast a scalar value to a 3-dimensional half-precision signed integer vector.
+///
+/// @ingroup GPU
+#define FFX_BROADCAST_MIN_INT16X3(x) FFX_MIN16_I3(FFX_MIN16_I(x))
+
+/// Broadcast a scalar value to a 4-dimensional half-precision signed integer vector.
+///
+/// @ingroup GPU
+#define FFX_BROADCAST_MIN_INT16X4(x) FFX_MIN16_I4(FFX_MIN16_I(x))
+
+#if !defined(FFX_SKIP_EXT)
+#if FFX_HALF
+ #extension GL_EXT_shader_16bit_storage : require
+ #extension GL_EXT_shader_explicit_arithmetic_types : require
+#endif // FFX_HALF
+
+#if defined(FFX_LONG)
+ #extension GL_ARB_gpu_shader_int64 : require
+ #extension GL_NV_shader_atomic_int64 : require
+#endif // #if defined(FFX_LONG)
+
+#if defined(FFX_WAVE)
+ #extension GL_KHR_shader_subgroup_arithmetic : require
+ #extension GL_KHR_shader_subgroup_ballot : require
+ #extension GL_KHR_shader_subgroup_quad : require
+ #extension GL_KHR_shader_subgroup_shuffle : require
+#endif // #if defined(FFX_WAVE)
+#endif // #if !defined(FFX_SKIP_EXT)
+
+// Forward declarations
+FfxFloat32 ffxSqrt(FfxFloat32 x);
+FfxFloat32x2 ffxSqrt(FfxFloat32x2 x);
+FfxFloat32x3 ffxSqrt(FfxFloat32x3 x);
+FfxFloat32x4 ffxSqrt(FfxFloat32x4 x);
+
+/// Interprets the bit pattern of x as a floating-point number.
+///
+/// @param [in] value The input value.
+///
+/// @returns
+/// The input interpreted as a floating-point number.
+///
+/// @ingroup GLSL
+FfxFloat32 ffxAsFloat(FfxUInt32 x)
+{
+ return uintBitsToFloat(x);
+}
+
+/// Interprets the bit pattern of x as a floating-point number.
+///
+/// @param [in] value The input value.
+///
+/// @returns
+/// The input interpreted as a floating-point number.
+///
+/// @ingroup GLSL
+FfxFloat32x2 ffxAsFloat(FfxUInt32x2 x)
+{
+ return uintBitsToFloat(x);
+}
+
+/// Interprets the bit pattern of x as a floating-point number.
+///
+/// @param [in] value The input value.
+///
+/// @returns
+/// The input interpreted as a floating-point number.
+///
+/// @ingroup GLSL
+FfxFloat32x3 ffxAsFloat(FfxUInt32x3 x)
+{
+ return uintBitsToFloat(x);
+}
+
+/// Interprets the bit pattern of x as a floating-point number.
+///
+/// @param [in] value The input value.
+///
+/// @returns
+/// The input interpreted as a floating-point number.
+///
+/// @ingroup GLSL
+FfxFloat32x4 ffxAsFloat(FfxUInt32x4 x)
+{
+ return uintBitsToFloat(x);
+}
+
+/// Interprets the bit pattern of x as an unsigned integer.
+///
+/// @param [in] value The input value.
+///
+/// @returns
+/// The input interpreted as an unsigned integer.
+///
+/// @ingroup GLSL
+FfxUInt32 ffxAsUInt32(FfxFloat32 x)
+{
+ return floatBitsToUint(x);
+}
+
+/// Interprets the bit pattern of x as an unsigned integer.
+///
+/// @param [in] value The input value.
+///
+/// @returns
+/// The input interpreted as an unsigned integer.
+///
+/// @ingroup GLSL
+FfxUInt32x2 ffxAsUInt32(FfxFloat32x2 x)
+{
+ return floatBitsToUint(x);
+}
+
+/// Interprets the bit pattern of x as an unsigned integer.
+///
+/// @param [in] value The input value.
+///
+/// @returns
+/// The input interpreted as an unsigned integer.
+///
+/// @ingroup GLSL
+FfxUInt32x3 ffxAsUInt32(FfxFloat32x3 x)
+{
+ return floatBitsToUint(x);
+}
+
+/// Interprets the bit pattern of x as an unsigned integer.
+///
+/// @param [in] value The input value.
+///
+/// @returns
+/// The input interpreted as an unsigned integer.
+///
+/// @ingroup GLSL
+FfxUInt32x4 ffxAsUInt32(FfxFloat32x4 x)
+{
+ return floatBitsToUint(x);
+}
+
+/// Convert a 32bit IEEE 754 floating point value to its nearest 16bit equivalent.
+///
+/// @param [in] value The value to convert.
+///
+/// @returns
+/// The nearest 16bit equivalent of <c><i>value</i></c>.
+///
+/// @ingroup GLSL
+FfxUInt32 f32tof16(FfxFloat32 value)
+{
+ return packHalf2x16(FfxFloat32x2(value, 0.0));
+}
+
+/// Broadcast a scalar value to a 2-dimensional floating point vector.
+///
+/// @param [in] value The value to to broadcast.
+///
+/// @returns
+/// A 2-dimensional floating point vector with <c><i>value</i></c> in each component.
+///
+/// @ingroup GLSL
+FfxFloat32x2 ffxBroadcast2(FfxFloat32 value)
+{
+ return FfxFloat32x2(value, value);
+}
+
+/// Broadcast a scalar value to a 3-dimensional floating point vector.
+///
+/// @param [in] value The value to to broadcast.
+///
+/// @returns
+/// A 3-dimensional floating point vector with <c><i>value</i></c> in each component.
+///
+/// @ingroup GLSL
+FfxFloat32x3 ffxBroadcast3(FfxFloat32 value)
+{
+ return FfxFloat32x3(value, value, value);
+}
+
+/// Broadcast a scalar value to a 4-dimensional floating point vector.
+///
+/// @param [in] value The value to to broadcast.
+///
+/// @returns
+/// A 4-dimensional floating point vector with <c><i>value</i></c> in each component.
+///
+/// @ingroup GLSL
+FfxFloat32x4 ffxBroadcast4(FfxFloat32 value)
+{
+ return FfxFloat32x4(value, value, value, value);
+}
+
+/// Broadcast a scalar value to a 2-dimensional signed integer vector.
+///
+/// @param [in] value The value to to broadcast.
+///
+/// @returns
+/// A 2-dimensional signed integer vector with <c><i>value</i></c> in each component.
+///
+/// @ingroup GLSL
+FfxInt32x2 ffxBroadcast2(FfxInt32 value)
+{
+ return FfxInt32x2(value, value);
+}
+
+/// Broadcast a scalar value to a 3-dimensional signed integer vector.
+///
+/// @param [in] value The value to to broadcast.
+///
+/// @returns
+/// A 3-dimensional signed integer vector with <c><i>value</i></c> in each component.
+///
+/// @ingroup GLSL
+FfxInt32x3 ffxBroadcast3(FfxInt32 value)
+{
+ return FfxInt32x3(value, value, value);
+}
+
+/// Broadcast a scalar value to a 4-dimensional signed integer vector.
+///
+/// @param [in] value The value to to broadcast.
+///
+/// @returns
+/// A 4-dimensional signed integer vector with <c><i>value</i></c> in each component.
+///
+/// @ingroup GLSL
+FfxInt32x4 ffxBroadcast4(FfxInt32 value)
+{
+ return FfxInt32x4(value, value, value, value);
+}
+
+/// Broadcast a scalar value to a 2-dimensional unsigned integer vector.
+///
+/// @param [in] value The value to to broadcast.
+///
+/// @returns
+/// A 2-dimensional unsigned integer vector with <c><i>value</i></c> in each component.
+///
+/// @ingroup GLSL
+FfxUInt32x2 ffxBroadcast2(FfxUInt32 value)
+{
+ return FfxUInt32x2(value, value);
+}
+
+/// Broadcast a scalar value to a 3-dimensional unsigned integer vector.
+///
+/// @param [in] value The value to to broadcast.
+///
+/// @returns
+/// A 3-dimensional unsigned integer vector with <c><i>value</i></c> in each component.
+///
+/// @ingroup GLSL
+FfxUInt32x3 ffxBroadcast3(FfxUInt32 value)
+{
+ return FfxUInt32x3(value, value, value);
+}
+
+/// Broadcast a scalar value to a 4-dimensional unsigned integer vector.
+///
+/// @param [in] value The value to to broadcast.
+///
+/// @returns
+/// A 4-dimensional unsigned integer vector with <c><i>value</i></c> in each component.
+///
+/// @ingroup GLSL
+FfxUInt32x4 ffxBroadcast4(FfxUInt32 value)
+{
+ return FfxUInt32x4(value, value, value, value);
+}
+
+///
+///
+/// @ingroup GLSL
+FfxUInt32 bitfieldExtract(FfxUInt32 src, FfxUInt32 off, FfxUInt32 bits)
+{
+ return bitfieldExtract(src, FfxInt32(off), FfxInt32(bits));
+}
+
+///
+///
+/// @ingroup GLSL
+FfxUInt32 bitfieldInsert(FfxUInt32 src, FfxUInt32 ins, FfxUInt32 mask)
+{
+ return (ins & mask) | (src & (~mask));
+}
+
+// Proxy for V_BFI_B32 where the 'mask' is set as 'bits', 'mask=(1<<bits)-1', and 'bits' needs to be an immediate.
+///
+///
+/// @ingroup GLSL
+FfxUInt32 bitfieldInsertMask(FfxUInt32 src, FfxUInt32 ins, FfxUInt32 bits)
+{
+ return bitfieldInsert(src, ins, 0, FfxInt32(bits));
+}
+
+/// Compute the linear interopation between two values.
+///
+/// Implemented by calling the GLSL <c><i>mix</i></c> instrinsic function. Implements the
+/// following math:
+///
+/// (1 - t) * x + t * y
+///
+/// @param [in] x The first value to lerp between.
+/// @param [in] y The second value to lerp between.
+/// @param [in] t The value to determine how much of <c><i>x</i></c> and how much of <c><i>y</i></c>.
+///
+/// @returns
+/// A linearly interpolated value between <c><i>x</i></c> and <c><i>y</i></c> according to <c><i>t</i></c>.
+///
+/// @ingroup GLSL
+FfxFloat32 ffxLerp(FfxFloat32 x, FfxFloat32 y, FfxFloat32 t)
+{
+ return mix(x, y, t);
+}
+
+/// Compute the linear interopation between two values.
+///
+/// Implemented by calling the GLSL <c><i>mix</i></c> instrinsic function. Implements the
+/// following math:
+///
+/// (1 - t) * x + t * y
+///
+/// @param [in] x The first value to lerp between.
+/// @param [in] y The second value to lerp between.
+/// @param [in] t The value to determine how much of <c><i>x</i></c> and how much of <c><i>y</i></c>.
+///
+/// @returns
+/// A linearly interpolated value between <c><i>x</i></c> and <c><i>y</i></c> according to <c><i>t</i></c>.
+///
+/// @ingroup GLSL
+FfxFloat32x2 ffxLerp(FfxFloat32x2 x, FfxFloat32x2 y, FfxFloat32 t)
+{
+ return mix(x, y, t);
+}
+
+/// Compute the linear interopation between two values.
+///
+/// Implemented by calling the GLSL <c><i>mix</i></c> instrinsic function. Implements the
+/// following math:
+///
+/// (1 - t) * x + t * y
+///
+/// @param [in] x The first value to lerp between.
+/// @param [in] y The second value to lerp between.
+/// @param [in] t The value to determine how much of <c><i>x</i></c> and how much of <c><i>y</i></c>.
+///
+/// @returns
+/// A linearly interpolated value between <c><i>x</i></c> and <c><i>y</i></c> according to <c><i>t</i></c>.
+///
+/// @ingroup GLSL
+FfxFloat32x2 ffxLerp(FfxFloat32x2 x, FfxFloat32x2 y, FfxFloat32x2 t)
+{
+ return mix(x, y, t);
+}
+
+/// Compute the linear interopation between two values.
+///
+/// Implemented by calling the GLSL <c><i>mix</i></c> instrinsic function. Implements the
+/// following math:
+///
+/// (1 - t) * x + t * y
+///
+/// @param [in] x The first value to lerp between.
+/// @param [in] y The second value to lerp between.
+/// @param [in] t The value to determine how much of <c><i>x</i></c> and how much of <c><i>y</i></c>.
+///
+/// @returns
+/// A linearly interpolated value between <c><i>x</i></c> and <c><i>y</i></c> according to <c><i>t</i></c>.
+///
+/// @ingroup GLSL
+FfxFloat32x3 ffxLerp(FfxFloat32x3 x, FfxFloat32x3 y, FfxFloat32 t)
+{
+ return mix(x, y, t);
+}
+
+/// Compute the linear interopation between two values.
+///
+/// Implemented by calling the GLSL <c><i>mix</i></c> instrinsic function. Implements the
+/// following math:
+///
+/// (1 - t) * x + t * y
+///
+/// @param [in] x The first value to lerp between.
+/// @param [in] y The second value to lerp between.
+/// @param [in] t The value to determine how much of <c><i>x</i></c> and how much of <c><i>y</i></c>.
+///
+/// @returns
+/// A linearly interpolated value between <c><i>x</i></c> and <c><i>y</i></c> according to <c><i>t</i></c>.
+///
+/// @ingroup GLSL
+FfxFloat32x3 ffxLerp(FfxFloat32x3 x, FfxFloat32x3 y, FfxFloat32x3 t)
+{
+ return mix(x, y, t);
+}
+
+/// Compute the linear interopation between two values.
+///
+/// Implemented by calling the GLSL <c><i>mix</i></c> instrinsic function. Implements the
+/// following math:
+///
+/// (1 - t) * x + t * y
+///
+/// @param [in] x The first value to lerp between.
+/// @param [in] y The second value to lerp between.
+/// @param [in] t The value to determine how much of <c><i>x</i></c> and how much of <c><i>y</i></c>.
+///
+/// @returns
+/// A linearly interpolated value between <c><i>x</i></c> and <c><i>y</i></c> according to <c><i>t</i></c>.
+///
+/// @ingroup GLSL
+FfxFloat32x4 ffxLerp(FfxFloat32x4 x, FfxFloat32x4 y, FfxFloat32 t)
+{
+ return mix(x, y, t);
+}
+
+/// Compute the linear interopation between two values.
+///
+/// Implemented by calling the GLSL <c><i>mix</i></c> instrinsic function. Implements the
+/// following math:
+///
+/// (1 - t) * x + t * y
+///
+/// @param [in] x The first value to lerp between.
+/// @param [in] y The second value to lerp between.
+/// @param [in] t The value to determine how much of <c><i>x</i></c> and how much of <c><i>y</i></c>.
+///
+/// @returns
+/// A linearly interpolated value between <c><i>x</i></c> and <c><i>y</i></c> according to <c><i>t</i></c>.
+///
+/// @ingroup GLSL
+FfxFloat32x4 ffxLerp(FfxFloat32x4 x, FfxFloat32x4 y, FfxFloat32x4 t)
+{
+ return mix(x, y, t);
+}
+
+/// Compute the maximum of three values.
+///
+/// NOTE: This function should compile down to a single V_MAX3_F32 operation on
+/// GCN or RDNA hardware.
+///
+/// @param [in] x The first value to include in the max calculation.
+/// @param [in] y The second value to include in the max calcuation.
+/// @param [in] z The third value to include in the max calcuation.
+///
+/// @returns
+/// The maximum value of <c><i>x</i></c>, <c><i>y</i></c>, and <c><i>z</i></c>.
+///
+/// @ingroup GLSL
+FfxFloat32 ffxMax3(FfxFloat32 x, FfxFloat32 y, FfxFloat32 z)
+{
+ return max(x, max(y, z));
+}
+
+/// Compute the maximum of three values.
+///
+/// NOTE: This function should compile down to a single <c><i>V_MAX3_F32</i></c> operation on
+/// GCN or RDNA hardware.
+///
+/// @param [in] x The first value to include in the max calculation.
+/// @param [in] y The second value to include in the max calcuation.
+/// @param [in] z The third value to include in the max calcuation.
+///
+/// @returns
+/// The maximum value of <c><i>x</i></c>, <c><i>y</i></c>, and <c><i>z</i></c>.
+///
+/// @ingroup GLSL
+FfxFloat32x2 ffxMax3(FfxFloat32x2 x, FfxFloat32x2 y, FfxFloat32x2 z)
+{
+ return max(x, max(y, z));
+}
+
+/// Compute the maximum of three values.
+///
+/// NOTE: This function should compile down to a single <c><i>V_MAX3_F32</i></c> operation on
+/// GCN or RDNA hardware.
+///
+/// @param [in] x The first value to include in the max calculation.
+/// @param [in] y The second value to include in the max calcuation.
+/// @param [in] z The third value to include in the max calcuation.
+///
+/// @returns
+/// The maximum value of <c><i>x</i></c>, <c><i>y</i></c>, and <c><i>z</i></c>.
+///
+/// @ingroup GLSL
+FfxFloat32x3 ffxMax3(FfxFloat32x3 x, FfxFloat32x3 y, FfxFloat32x3 z)
+{
+ return max(x, max(y, z));
+}
+
+/// Compute the maximum of three values.
+///
+/// NOTE: This function should compile down to a single <c><i>V_MAX3_F32</i></c> operation on
+/// GCN or RDNA hardware.
+///
+/// @param [in] x The first value to include in the max calculation.
+/// @param [in] y The second value to include in the max calcuation.
+/// @param [in] z The third value to include in the max calcuation.
+///
+/// @returns
+/// The maximum value of <c><i>x</i></c>, <c><i>y</i></c>, and <c><i>z</i></c>.
+///
+/// @ingroup GLSL
+FfxFloat32x4 ffxMax3(FfxFloat32x4 x, FfxFloat32x4 y, FfxFloat32x4 z)
+{
+ return max(x, max(y, z));
+}
+
+/// Compute the maximum of three values.
+///
+/// NOTE: This function should compile down to a single <c><i>V_MAX3_F32</i></c> operation on
+/// GCN or RDNA hardware.
+///
+/// @param [in] x The first value to include in the max calculation.
+/// @param [in] y The second value to include in the max calcuation.
+/// @param [in] z The third value to include in the max calcuation.
+///
+/// @returns
+/// The maximum value of <c><i>x</i></c>, <c><i>y</i></c>, and <c><i>z</i></c>.
+///
+/// @ingroup GLSL
+FfxUInt32 ffxMax3(FfxUInt32 x, FfxUInt32 y, FfxUInt32 z)
+{
+ return max(x, max(y, z));
+}
+
+/// Compute the maximum of three values.
+///
+/// NOTE: This function should compile down to a single <c><i>V_MAX3_F32</i></c> operation on
+/// GCN or RDNA hardware.
+///
+/// @param [in] x The first value to include in the max calculation.
+/// @param [in] y The second value to include in the max calcuation.
+/// @param [in] z The third value to include in the max calcuation.
+///
+/// @returns
+/// The maximum value of <c><i>x</i></c>, <c><i>y</i></c>, and <c><i>z</i></c>.
+///
+/// @ingroup GLSL
+FfxUInt32x2 ffxMax3(FfxUInt32x2 x, FfxUInt32x2 y, FfxUInt32x2 z)
+{
+ return max(x, max(y, z));
+}
+
+/// Compute the maximum of three values.
+///
+/// NOTE: This function should compile down to a single <c><i>V_MAX3_F32</i></c> operation on
+/// GCN/RDNA hardware.
+///
+/// @param [in] x The first value to include in the max calculation.
+/// @param [in] y The second value to include in the max calcuation.
+/// @param [in] z The third value to include in the max calcuation.
+///
+/// @returns
+/// The maximum value of <c><i>x</i></c>, <c><i>y</i></c>, and <c><i>z</i></c>.
+///
+/// @ingroup GLSL
+FfxUInt32x3 ffxMax3(FfxUInt32x3 x, FfxUInt32x3 y, FfxUInt32x3 z)
+{
+ return max(x, max(y, z));
+}
+
+/// Compute the maximum of three values.
+///
+/// NOTE: This function should compile down to a single <c><i>V_MAX3_F32</i></c> operation on
+/// GCN/RDNA hardware.
+///
+/// @param [in] x The first value to include in the max calculation.
+/// @param [in] y The second value to include in the max calcuation.
+/// @param [in] z The third value to include in the max calcuation.
+///
+/// @returns
+/// The maximum value of <c><i>x</i></c>, <c><i>y</i></c>, and <c><i>z</i></c>.
+///
+/// @ingroup GLSL
+FfxUInt32x4 ffxMax3(FfxUInt32x4 x, FfxUInt32x4 y, FfxUInt32x4 z)
+{
+ return max(x, max(y, z));
+}
+
+/// Compute the median of three values.
+///
+/// NOTE: This function should compile down to a single <c><i>V_MED3_F32</i></c> operation on
+/// GCN/RDNA hardware.
+///
+/// @param [in] x The first value to include in the median calculation.
+/// @param [in] y The second value to include in the median calcuation.
+/// @param [in] z The third value to include in the median calcuation.
+///
+/// @returns
+/// The median value of <c><i>x</i></c>, <c><i>y</i></c>, and <c><i>z</i></c>.
+///
+/// @ingroup GLSL
+FfxFloat32 ffxMed3(FfxFloat32 x, FfxFloat32 y, FfxFloat32 z)
+{
+ return max(min(x, y), min(max(x, y), z));
+}
+
+/// Compute the median of three values.
+///
+/// NOTE: This function should compile down to a single <c><i>V_MED3_F32</i></c> operation on
+/// GCN/RDNA hardware.
+///
+/// @param [in] x The first value to include in the median calculation.
+/// @param [in] y The second value to include in the median calcuation.
+/// @param [in] z The third value to include in the median calcuation.
+///
+/// @returns
+/// The median value of <c><i>x</i></c>, <c><i>y</i></c>, and <c><i>z</i></c>.
+///
+/// @ingroup GLSL
+FfxFloat32x2 ffxMed3(FfxFloat32x2 x, FfxFloat32x2 y, FfxFloat32x2 z)
+{
+ return max(min(x, y), min(max(x, y), z));
+}
+
+/// Compute the median of three values.
+///
+/// NOTE: This function should compile down to a single <c><i>V_MED3_F32</i></c> operation on
+/// GCN/RDNA hardware.
+///
+/// @param [in] x The first value to include in the median calculation.
+/// @param [in] y The second value to include in the median calcuation.
+/// @param [in] z The third value to include in the median calcuation.
+///
+/// @returns
+/// The median value of <c><i>x</i></c>, <c><i>y</i></c>, and <c><i>z</i></c>.
+///
+/// @ingroup GLSL
+FfxFloat32x3 ffxMed3(FfxFloat32x3 x, FfxFloat32x3 y, FfxFloat32x3 z)
+{
+ return max(min(x, y), min(max(x, y), z));
+}
+
+/// Compute the median of three values.
+///
+/// NOTE: This function should compile down to a single <c><i>V_MED3_F32</i></c> operation on
+/// GCN/RDNA hardware.
+///
+/// @param [in] x The first value to include in the median calculation.
+/// @param [in] y The second value to include in the median calcuation.
+/// @param [in] z The third value to include in the median calcuation.
+///
+/// @returns
+/// The median value of <c><i>x</i></c>, <c><i>y</i></c>, and <c><i>z</i></c>.
+///
+/// @ingroup GLSL
+FfxFloat32x4 ffxMed3(FfxFloat32x4 x, FfxFloat32x4 y, FfxFloat32x4 z)
+{
+ return max(min(x, y), min(max(x, y), z));
+}
+
+/// Compute the median of three values.
+///
+/// NOTE: This function should compile down to a single <c><i>V_MED3_I32</i></c> operation on
+/// GCN/RDNA hardware.
+///
+/// @param [in] x The first value to include in the median calculation.
+/// @param [in] y The second value to include in the median calcuation.
+/// @param [in] z The third value to include in the median calcuation.
+///
+/// @returns
+/// The median value of <c><i>x</i></c>, <c><i>y</i></c>, and <c><i>z</i></c>.
+///
+/// @ingroup GLSL
+FfxInt32 ffxMed3(FfxInt32 x, FfxInt32 y, FfxInt32 z)
+{
+ return max(min(x, y), min(max(x, y), z));
+}
+
+/// Compute the median of three values.
+///
+/// NOTE: This function should compile down to a single <c><i>V_MED3_I32</i></c> operation on
+/// GCN/RDNA hardware.
+///
+/// @param [in] x The first value to include in the median calculation.
+/// @param [in] y The second value to include in the median calcuation.
+/// @param [in] z The third value to include in the median calcuation.
+///
+/// @returns
+/// The median value of <c><i>x</i></c>, <c><i>y</i></c>, and <c><i>z</i></c>.
+///
+/// @ingroup GLSL
+FfxInt32x2 ffxMed3(FfxInt32x2 x, FfxInt32x2 y, FfxInt32x2 z)
+{
+ return max(min(x, y), min(max(x, y), z));
+}
+
+/// Compute the median of three values.
+///
+/// NOTE: This function should compile down to a single <c><i>V_MED3_I32</i></c> operation on
+/// GCN/RDNA hardware.
+///
+/// @param [in] x The first value to include in the median calculation.
+/// @param [in] y The second value to include in the median calcuation.
+/// @param [in] z The third value to include in the median calcuation.
+///
+/// @returns
+/// The median value of <c><i>x</i></c>, <c><i>y</i></c>, and <c><i>z</i></c>.
+///
+/// @ingroup GLSL
+FfxInt32x3 ffxMed3(FfxInt32x3 x, FfxInt32x3 y, FfxInt32x3 z)
+{
+ return max(min(x, y), min(max(x, y), z));
+}
+
+/// Compute the median of three values.
+///
+/// NOTE: This function should compile down to a single <c><i>V_MED3_I32</i></c> operation on
+/// GCN/RDNA hardware.
+///
+/// @param [in] x The first value to include in the median calculation.
+/// @param [in] y The second value to include in the median calcuation.
+/// @param [in] z The third value to include in the median calcuation.
+///
+/// @returns
+/// The median value of <c><i>x</i></c>, <c><i>y</i></c>, and <c><i>z</i></c>.
+///
+/// @ingroup GLSL
+FfxInt32x4 ffxMed3(FfxInt32x4 x, FfxInt32x4 y, FfxInt32x4 z)
+{
+ return max(min(x, y), min(max(x, y), z));
+}
+
+
+/// Compute the minimum of three values.
+///
+/// NOTE: This function should compile down to a single <c><i>V_MIN3_F32</i></c> operation on
+/// GCN and RDNA hardware.
+///
+/// @param [in] x The first value to include in the min calculation.
+/// @param [in] y The second value to include in the min calcuation.
+/// @param [in] z The third value to include in the min calcuation.
+///
+/// @returns
+/// The minimum value of <c><i>x</i></c>, <c><i>y</i></c>, and <c><i>z</i></c>.
+///
+/// @ingroup GLSL
+FfxFloat32 ffxMin3(FfxFloat32 x, FfxFloat32 y, FfxFloat32 z)
+{
+ return min(x, min(y, z));
+}
+
+/// Compute the minimum of three values.
+///
+/// NOTE: This function should compile down to a single V_MIN3_F32 operation on
+/// GCN/RDNA hardware.
+///
+/// @param [in] x The first value to include in the min calculation.
+/// @param [in] y The second value to include in the min calcuation.
+/// @param [in] z The third value to include in the min calcuation.
+///
+/// @returns
+/// The minimum value of <c><i>x</i></c>, <c><i>y</i></c>, and <c><i>z</i></c>.
+///
+/// @ingroup GLSL
+FfxFloat32x2 ffxMin3(FfxFloat32x2 x, FfxFloat32x2 y, FfxFloat32x2 z)
+{
+ return min(x, min(y, z));
+}
+
+/// Compute the minimum of three values.
+///
+/// NOTE: This function should compile down to a single V_MIN3_F32 operation on
+/// GCN/RDNA hardware.
+///
+/// @param [in] x The first value to include in the min calculation.
+/// @param [in] y The second value to include in the min calcuation.
+/// @param [in] z The third value to include in the min calcuation.
+///
+/// @returns
+/// The minimum value of <c><i>x</i></c>, <c><i>y</i></c>, and <c><i>z</i></c>.
+///
+/// @ingroup GLSL
+FfxFloat32x3 ffxMin3(FfxFloat32x3 x, FfxFloat32x3 y, FfxFloat32x3 z)
+{
+ return min(x, min(y, z));
+}
+
+/// Compute the minimum of three values.
+///
+/// NOTE: This function should compile down to a single V_MIN3_F32 operation on
+/// GCN/RDNA hardware.
+///
+/// @param [in] x The first value to include in the min calculation.
+/// @param [in] y The second value to include in the min calcuation.
+/// @param [in] z The third value to include in the min calcuation.
+///
+/// @returns
+/// The minimum value of <c><i>x</i></c>, <c><i>y</i></c>, and <c><i>z</i></c>.
+///
+/// @ingroup GLSL
+FfxFloat32x4 ffxMin3(FfxFloat32x4 x, FfxFloat32x4 y, FfxFloat32x4 z)
+{
+ return min(x, min(y, z));
+}
+
+/// Compute the minimum of three values.
+///
+/// NOTE: This function should compile down to a single V_MIN3_F32 operation on
+/// GCN/RDNA hardware.
+///
+/// @param [in] x The first value to include in the min calculation.
+/// @param [in] y The second value to include in the min calcuation.
+/// @param [in] z The third value to include in the min calcuation.
+///
+/// @returns
+/// The minimum value of <c><i>x</i></c>, <c><i>y</i></c>, and <c><i>z</i></c>.
+///
+/// @ingroup GLSL
+FfxUInt32 ffxMin3(FfxUInt32 x, FfxUInt32 y, FfxUInt32 z)
+{
+ return min(x, min(y, z));
+}
+
+/// Compute the minimum of three values.
+///
+/// NOTE: This function should compile down to a single V_MIN3_F32 operation on
+/// GCN/RDNA hardware.
+///
+/// @param [in] x The first value to include in the min calculation.
+/// @param [in] y The second value to include in the min calcuation.
+/// @param [in] z The third value to include in the min calcuation.
+///
+/// @returns
+/// The minimum value of <c><i>x</i></c>, <c><i>y</i></c>, and <c><i>z</i></c>.
+///
+/// @ingroup GLSL
+FfxUInt32x2 ffxMin3(FfxUInt32x2 x, FfxUInt32x2 y, FfxUInt32x2 z)
+{
+ return min(x, min(y, z));
+}
+
+/// Compute the minimum of three values.
+///
+/// NOTE: This function should compile down to a single V_MIN3_F32 operation on
+/// GCN/RDNA hardware.
+///
+/// @param [in] x The first value to include in the min calculation.
+/// @param [in] y The second value to include in the min calcuation.
+/// @param [in] z The third value to include in the min calcuation.
+///
+/// @returns
+/// The minimum value of <c><i>x</i></c>, <c><i>y</i></c>, and <c><i>z</i></c>.
+///
+/// @ingroup GLSL
+FfxUInt32x3 ffxMin3(FfxUInt32x3 x, FfxUInt32x3 y, FfxUInt32x3 z)
+{
+ return min(x, min(y, z));
+}
+
+/// Compute the minimum of three values.
+///
+/// NOTE: This function should compile down to a single V_MIN3_F32 operation on
+/// GCN/RDNA hardware.
+///
+/// @param [in] x The first value to include in the min calculation.
+/// @param [in] y The second value to include in the min calcuation.
+/// @param [in] z The third value to include in the min calcuation.
+///
+/// @returns
+/// The minimum value of <c><i>x</i></c>, <c><i>y</i></c>, and <c><i>z</i></c>.
+///
+/// @ingroup GLSL
+FfxUInt32x4 ffxMin3(FfxUInt32x4 x, FfxUInt32x4 y, FfxUInt32x4 z)
+{
+ return min(x, min(y, z));
+}
+
+/// Compute the reciprocal of a value.
+///
+/// NOTE: This function is only provided for GLSL. In HLSL the intrinsic function <c><i>rcp</i></c> can be used.
+///
+/// @param [in] x The value to compute the reciprocal for.
+///
+/// @returns
+/// The reciprocal value of <c><i>x</i></c>.
+///
+/// @ingroup GLSL
+FfxFloat32 rcp(FfxFloat32 x)
+{
+ return FfxFloat32(1.0) / x;
+}
+
+/// Compute the reciprocal of a value.
+///
+/// NOTE: This function is only provided for GLSL. In HLSL the intrinsic function <c><i>rcp</i></c> can be used.
+///
+/// @param [in] x The value to compute the reciprocal for.
+///
+/// @returns
+/// The reciprocal value of <c><i>x</i></c>.
+///
+/// @ingroup GLSL
+FfxFloat32x2 rcp(FfxFloat32x2 x)
+{
+ return ffxBroadcast2(1.0) / x;
+}
+
+/// Compute the reciprocal of a value.
+///
+/// NOTE: This function is only provided for GLSL. In HLSL the intrinsic function <c><i>rcp</i></c> can be used.
+///
+/// @param [in] x The value to compute the reciprocal for.
+///
+/// @returns
+/// The reciprocal value of <c><i>x</i></c>.
+///
+/// @ingroup GLSL
+FfxFloat32x3 rcp(FfxFloat32x3 x)
+{
+ return ffxBroadcast3(1.0) / x;
+}
+
+/// Compute the reciprocal of a value.
+///
+/// NOTE: This function is only provided for GLSL. In HLSL the intrinsic function <c><i>rcp</i></c> can be used.
+///
+/// @param [in] x The value to compute the reciprocal for.
+///
+/// @returns
+/// The reciprocal value of <c><i>x</i></c>.
+///
+/// @ingroup GLSL
+FfxFloat32x4 rcp(FfxFloat32x4 x)
+{
+ return ffxBroadcast4(1.0) / x;
+}
+
+/// Compute the reciprocal square root of a value.
+///
+/// NOTE: This function is only provided for GLSL. In HLSL the intrinsic function <c><i>rsqrt</i></c> can be used.
+///
+/// @param [in] x The value to compute the reciprocal for.
+///
+/// @returns
+/// The reciprocal square root value of <c><i>x</i></c>.
+///
+/// @ingroup GLSL
+FfxFloat32 rsqrt(FfxFloat32 x)
+{
+ return FfxFloat32(1.0) / ffxSqrt(x);
+}
+
+/// Compute the reciprocal square root of a value.
+///
+/// NOTE: This function is only provided for GLSL. In HLSL the intrinsic function <c><i>rsqrt</i></c> can be used.
+///
+/// @param [in] x The value to compute the reciprocal for.
+///
+/// @returns
+/// The reciprocal square root value of <c><i>x</i></c>.
+///
+/// @ingroup GLSL
+FfxFloat32x2 rsqrt(FfxFloat32x2 x)
+{
+ return ffxBroadcast2(1.0) / ffxSqrt(x);
+}
+
+/// Compute the reciprocal square root of a value.
+///
+/// NOTE: This function is only provided for GLSL. In HLSL the intrinsic function <c><i>rsqrt</i></c> can be used.
+///
+/// @param [in] x The value to compute the reciprocal for.
+///
+/// @returns
+/// The reciprocal square root value of <c><i>x</i></c>.
+///
+/// @ingroup GLSL
+FfxFloat32x3 rsqrt(FfxFloat32x3 x)
+{
+ return ffxBroadcast3(1.0) / ffxSqrt(x);
+}
+
+/// Compute the reciprocal square root of a value.
+///
+/// NOTE: This function is only provided for GLSL. In HLSL the intrinsic function <c><i>rsqrt</i></c> can be used.
+///
+/// @param [in] x The value to compute the reciprocal for.
+///
+/// @returns
+/// The reciprocal square root value of <c><i>x</i></c>.
+///
+/// @ingroup GLSL
+FfxFloat32x4 rsqrt(FfxFloat32x4 x)
+{
+ return ffxBroadcast4(1.0) / ffxSqrt(x);
+}
+
+/// Clamp a value to a [0..1] range.
+///
+/// @param [in] x The value to clamp to [0..1] range.
+///
+/// @returns
+/// The clamped version of <c><i>x</i></c>.
+///
+/// @ingroup GLSL
+FfxFloat32 ffxSaturate(FfxFloat32 x)
+{
+ return clamp(x, FfxFloat32(0.0), FfxFloat32(1.0));
+}
+
+/// Clamp a value to a [0..1] range.
+///
+/// @param [in] x The value to clamp to [0..1] range.
+///
+/// @returns
+/// The clamped version of <c><i>x</i></c>.
+///
+/// @ingroup GLSL
+FfxFloat32x2 ffxSaturate(FfxFloat32x2 x)
+{
+ return clamp(x, ffxBroadcast2(0.0), ffxBroadcast2(1.0));
+}
+
+/// Clamp a value to a [0..1] range.
+///
+/// @param [in] x The value to clamp to [0..1] range.
+///
+/// @returns
+/// The clamped version of <c><i>x</i></c>.
+///
+/// @ingroup GLSL
+FfxFloat32x3 ffxSaturate(FfxFloat32x3 x)
+{
+ return clamp(x, ffxBroadcast3(0.0), ffxBroadcast3(1.0));
+}
+
+/// Clamp a value to a [0..1] range.
+///
+/// @param [in] x The value to clamp to [0..1] range.
+///
+/// @returns
+/// The clamped version of <c><i>x</i></c>.
+///
+/// @ingroup GLSL
+FfxFloat32x4 ffxSaturate(FfxFloat32x4 x)
+{
+ return clamp(x, ffxBroadcast4(0.0), ffxBroadcast4(1.0));
+}
+
+/// Compute the factional part of a decimal value.
+///
+/// This function calculates <c><i>x - floor(x)</i></c>. Where <c><i>floor</i></c> is the intrinsic HLSL function.
+///
+/// NOTE: This function should compile down to a single <c><i>V_MAX3_F32</i></c> operation on GCN/RDNA hardware. It is
+/// worth further noting that this function is intentionally distinct from the HLSL <c><i>frac</i></c> intrinsic
+/// function.
+///
+/// @param [in] x The value to compute the fractional part from.
+///
+/// @returns
+/// The fractional part of <c><i>x</i></c>.
+///
+/// @ingroup HLSL
+FfxFloat32 ffxFract(FfxFloat32 x)
+{
+ return fract(x);
+}
+
+/// Compute the factional part of a decimal value.
+///
+/// This function calculates <c><i>x - floor(x)</i></c>. Where <c><i>floor</i></c> is the intrinsic HLSL function.
+///
+/// NOTE: This function should compile down to a single <c><i>V_MAX3_F32</i></c> operation on GCN/RDNA hardware. It is
+/// worth further noting that this function is intentionally distinct from the HLSL <c><i>frac</i></c> intrinsic
+/// function.
+///
+/// @param [in] x The value to compute the fractional part from.
+///
+/// @returns
+/// The fractional part of <c><i>x</i></c>.
+///
+/// @ingroup HLSL
+FfxFloat32x2 ffxFract(FfxFloat32x2 x)
+{
+ return fract(x);
+}
+
+/// Compute the factional part of a decimal value.
+///
+/// This function calculates <c><i>x - floor(x)</i></c>. Where <c><i>floor</i></c> is the intrinsic HLSL function.
+///
+/// NOTE: This function should compile down to a single <c><i>V_MAX3_F32</i></c> operation on GCN/RDNA hardware. It is
+/// worth further noting that this function is intentionally distinct from the HLSL <c><i>frac</i></c> intrinsic
+/// function.
+///
+/// @param [in] x The value to compute the fractional part from.
+///
+/// @returns
+/// The fractional part of <c><i>x</i></c>.
+///
+/// @ingroup HLSL
+FfxFloat32x3 ffxFract(FfxFloat32x3 x)
+{
+ return fract(x);
+}
+
+/// Compute the factional part of a decimal value.
+///
+/// This function calculates <c><i>x - floor(x)</i></c>. Where <c><i>floor</i></c> is the intrinsic HLSL function.
+///
+/// NOTE: This function should compile down to a single <c><i>V_MAX3_F32</i></c> operation on GCN/RDNA hardware. It is
+/// worth further noting that this function is intentionally distinct from the HLSL <c><i>frac</i></c> intrinsic
+/// function.
+///
+/// @param [in] x The value to compute the fractional part from.
+///
+/// @returns
+/// The fractional part of <c><i>x</i></c>.
+///
+/// @ingroup HLSL
+FfxFloat32x4 ffxFract(FfxFloat32x4 x)
+{
+ return fract(x);
+}
+
+FfxUInt32 AShrSU1(FfxUInt32 a, FfxUInt32 b)
+{
+ return FfxUInt32(FfxInt32(a) >> FfxInt32(b));
+}
+
+#if FFX_HALF
+
+#define FFX_UINT32_TO_FLOAT16X2(x) unpackFloat2x16(FfxUInt32(x))
+
+FfxFloat16x4 ffxUint32x2ToFloat16x4(FfxUInt32x2 x)
+{
+ return FfxFloat16x4(unpackFloat2x16(x.x), unpackFloat2x16(x.y));
+}
+#define FFX_UINT32X2_TO_FLOAT16X4(x) ffxUint32x2ToFloat16x4(FfxUInt32x2(x))
+#define FFX_UINT32_TO_UINT16X2(x) unpackUint2x16(FfxUInt32(x))
+#define FFX_UINT32X2_TO_UINT16X4(x) unpackUint4x16(pack64(FfxUInt32x2(x)))
+//------------------------------------------------------------------------------------------------------------------------------
+#define FFX_FLOAT16X2_TO_UINT32(x) packFloat2x16(FfxFloat16x2(x))
+FfxUInt32x2 ffxFloat16x4ToUint32x2(FfxFloat16x4 x)
+{
+ return FfxUInt32x2(packFloat2x16(x.xy), packFloat2x16(x.zw));
+}
+#define FFX_FLOAT16X4_TO_UINT32X2(x) ffxFloat16x4ToUint32x2(FfxFloat16x4(x))
+#define FFX_UINT16X2_TO_UINT32(x) packUint2x16(FfxUInt16x2(x))
+#define FFX_UINT16X4_TO_UINT32X2(x) unpack32(packUint4x16(FfxUInt16x4(x)))
+//==============================================================================================================================
+#define FFX_TO_UINT16(x) halfBitsToUint16(FfxFloat16(x))
+#define FFX_TO_UINT16X2(x) halfBitsToUint16(FfxFloat16x2(x))
+#define FFX_TO_UINT16X3(x) halfBitsToUint16(FfxFloat16x3(x))
+#define FFX_TO_UINT16X4(x) halfBitsToUint16(FfxFloat16x4(x))
+//------------------------------------------------------------------------------------------------------------------------------
+#define FFX_TO_FLOAT16(x) uint16BitsToHalf(FfxUInt16(x))
+#define FFX_TO_FLOAT16X2(x) uint16BitsToHalf(FfxUInt16x2(x))
+#define FFX_TO_FLOAT16X3(x) uint16BitsToHalf(FfxUInt16x3(x))
+#define FFX_TO_FLOAT16X4(x) uint16BitsToHalf(FfxUInt16x4(x))
+//==============================================================================================================================
+FfxFloat16 ffxBroadcastFloat16(FfxFloat16 a)
+{
+ return FfxFloat16(a);
+}
+FfxFloat16x2 ffxBroadcastFloat16x2(FfxFloat16 a)
+{
+ return FfxFloat16x2(a, a);
+}
+FfxFloat16x3 ffxBroadcastFloat16x3(FfxFloat16 a)
+{
+ return FfxFloat16x3(a, a, a);
+}
+FfxFloat16x4 ffxBroadcastFloat16x4(FfxFloat16 a)
+{
+ return FfxFloat16x4(a, a, a, a);
+}
+#define FFX_BROADCAST_FLOAT16(a) FfxFloat16(a)
+#define FFX_BROADCAST_FLOAT16X2(a) FfxFloat16x2(FfxFloat16(a))
+#define FFX_BROADCAST_FLOAT16X3(a) FfxFloat16x3(FfxFloat16(a))
+#define FFX_BROADCAST_FLOAT16X4(a) FfxFloat16x4(FfxFloat16(a))
+//------------------------------------------------------------------------------------------------------------------------------
+FfxInt16 ffxBroadcastInt16(FfxInt16 a)
+{
+ return FfxInt16(a);
+}
+FfxInt16x2 ffxBroadcastInt16x2(FfxInt16 a)
+{
+ return FfxInt16x2(a, a);
+}
+FfxInt16x3 ffxBroadcastInt16x3(FfxInt16 a)
+{
+ return FfxInt16x3(a, a, a);
+}
+FfxInt16x4 ffxBroadcastInt16x4(FfxInt16 a)
+{
+ return FfxInt16x4(a, a, a, a);
+}
+#define FFX_BROADCAST_INT16(a) FfxInt16(a)
+#define FFX_BROADCAST_INT16X2(a) FfxInt16x2(FfxInt16(a))
+#define FFX_BROADCAST_INT16X3(a) FfxInt16x3(FfxInt16(a))
+#define FFX_BROADCAST_INT16X4(a) FfxInt16x4(FfxInt16(a))
+//------------------------------------------------------------------------------------------------------------------------------
+FfxUInt16 ffxBroadcastUInt16(FfxUInt16 a)
+{
+ return FfxUInt16(a);
+}
+FfxUInt16x2 ffxBroadcastUInt16x2(FfxUInt16 a)
+{
+ return FfxUInt16x2(a, a);
+}
+FfxUInt16x3 ffxBroadcastUInt16x3(FfxUInt16 a)
+{
+ return FfxUInt16x3(a, a, a);
+}
+FfxUInt16x4 ffxBroadcastUInt16x4(FfxUInt16 a)
+{
+ return FfxUInt16x4(a, a, a, a);
+}
+#define FFX_BROADCAST_UINT16(a) FfxUInt16(a)
+#define FFX_BROADCAST_UINT16X2(a) FfxUInt16x2(FfxUInt16(a))
+#define FFX_BROADCAST_UINT16X3(a) FfxUInt16x3(FfxUInt16(a))
+#define FFX_BROADCAST_UINT16X4(a) FfxUInt16x4(FfxUInt16(a))
+//==============================================================================================================================
+FfxUInt16 ffxAbsHalf(FfxUInt16 a)
+{
+ return FfxUInt16(abs(FfxInt16(a)));
+}
+FfxUInt16x2 ffxAbsHalf(FfxUInt16x2 a)
+{
+ return FfxUInt16x2(abs(FfxInt16x2(a)));
+}
+FfxUInt16x3 ffxAbsHalf(FfxUInt16x3 a)
+{
+ return FfxUInt16x3(abs(FfxInt16x3(a)));
+}
+FfxUInt16x4 ffxAbsHalf(FfxUInt16x4 a)
+{
+ return FfxUInt16x4(abs(FfxInt16x4(a)));
+}
+//------------------------------------------------------------------------------------------------------------------------------
+FfxFloat16 ffxClampHalf(FfxFloat16 x, FfxFloat16 n, FfxFloat16 m)
+{
+ return clamp(x, n, m);
+}
+FfxFloat16x2 ffxClampHalf(FfxFloat16x2 x, FfxFloat16x2 n, FfxFloat16x2 m)
+{
+ return clamp(x, n, m);
+}
+FfxFloat16x3 ffxClampHalf(FfxFloat16x3 x, FfxFloat16x3 n, FfxFloat16x3 m)
+{
+ return clamp(x, n, m);
+}
+FfxFloat16x4 ffxClampHalf(FfxFloat16x4 x, FfxFloat16x4 n, FfxFloat16x4 m)
+{
+ return clamp(x, n, m);
+}
+//------------------------------------------------------------------------------------------------------------------------------
+FfxFloat16 ffxFract(FfxFloat16 x)
+{
+ return fract(x);
+}
+FfxFloat16x2 ffxFract(FfxFloat16x2 x)
+{
+ return fract(x);
+}
+FfxFloat16x3 ffxFract(FfxFloat16x3 x)
+{
+ return fract(x);
+}
+FfxFloat16x4 ffxFract(FfxFloat16x4 x)
+{
+ return fract(x);
+}
+//------------------------------------------------------------------------------------------------------------------------------
+FfxFloat16 ffxLerp(FfxFloat16 x, FfxFloat16 y, FfxFloat16 a)
+{
+ return mix(x, y, a);
+}
+FfxFloat16x2 ffxLerp(FfxFloat16x2 x, FfxFloat16x2 y, FfxFloat16 a)
+{
+ return mix(x, y, a);
+}
+FfxFloat16x2 ffxLerp(FfxFloat16x2 x, FfxFloat16x2 y, FfxFloat16x2 a)
+{
+ return mix(x, y, a);
+}
+FfxFloat16x3 ffxLerp(FfxFloat16x3 x, FfxFloat16x3 y, FfxFloat16x3 a)
+{
+ return mix(x, y, a);
+}
+FfxFloat16x3 ffxLerp(FfxFloat16x3 x, FfxFloat16x3 y, FfxFloat16 a)
+{
+ return mix(x, y, a);
+}
+FfxFloat16x4 ffxLerp(FfxFloat16x4 x, FfxFloat16x4 y, FfxFloat16 a)
+{
+ return mix(x, y, a);
+}
+FfxFloat16x4 ffxLerp(FfxFloat16x4 x, FfxFloat16x4 y, FfxFloat16x4 a)
+{
+ return mix(x, y, a);
+}
+//------------------------------------------------------------------------------------------------------------------------------
+// No packed version of ffxMid3.
+FfxFloat16 ffxMed3Half(FfxFloat16 x, FfxFloat16 y, FfxFloat16 z)
+{
+ return max(min(x, y), min(max(x, y), z));
+}
+FfxFloat16x2 ffxMed3Half(FfxFloat16x2 x, FfxFloat16x2 y, FfxFloat16x2 z)
+{
+ return max(min(x, y), min(max(x, y), z));
+}
+FfxFloat16x3 ffxMed3Half(FfxFloat16x3 x, FfxFloat16x3 y, FfxFloat16x3 z)
+{
+ return max(min(x, y), min(max(x, y), z));
+}
+FfxFloat16x4 ffxMed3Half(FfxFloat16x4 x, FfxFloat16x4 y, FfxFloat16x4 z)
+{
+ return max(min(x, y), min(max(x, y), z));
+}
+FfxInt16 ffxMed3Half(FfxInt16 x, FfxInt16 y, FfxInt16 z)
+{
+ return max(min(x, y), min(max(x, y), z));
+}
+FfxInt16x2 ffxMed3Half(FfxInt16x2 x, FfxInt16x2 y, FfxInt16x2 z)
+{
+ return max(min(x, y), min(max(x, y), z));
+}
+FfxInt16x3 ffxMed3Half(FfxInt16x3 x, FfxInt16x3 y, FfxInt16x3 z)
+{
+ return max(min(x, y), min(max(x, y), z));
+}
+FfxInt16x4 ffxMed3Half(FfxInt16x4 x, FfxInt16x4 y, FfxInt16x4 z)
+{
+ return max(min(x, y), min(max(x, y), z));
+}
+//------------------------------------------------------------------------------------------------------------------------------
+// No packed version of ffxMax3.
+FfxFloat16 ffxMax3Half(FfxFloat16 x, FfxFloat16 y, FfxFloat16 z)
+{
+ return max(x, max(y, z));
+}
+FfxFloat16x2 ffxMax3Half(FfxFloat16x2 x, FfxFloat16x2 y, FfxFloat16x2 z)
+{
+ return max(x, max(y, z));
+}
+FfxFloat16x3 ffxMax3Half(FfxFloat16x3 x, FfxFloat16x3 y, FfxFloat16x3 z)
+{
+ return max(x, max(y, z));
+}
+FfxFloat16x4 ffxMax3Half(FfxFloat16x4 x, FfxFloat16x4 y, FfxFloat16x4 z)
+{
+ return max(x, max(y, z));
+}
+//------------------------------------------------------------------------------------------------------------------------------
+// No packed version of ffxMin3.
+FfxFloat16 ffxMin3Half(FfxFloat16 x, FfxFloat16 y, FfxFloat16 z)
+{
+ return min(x, min(y, z));
+}
+FfxFloat16x2 ffxMin3Half(FfxFloat16x2 x, FfxFloat16x2 y, FfxFloat16x2 z)
+{
+ return min(x, min(y, z));
+}
+FfxFloat16x3 ffxMin3Half(FfxFloat16x3 x, FfxFloat16x3 y, FfxFloat16x3 z)
+{
+ return min(x, min(y, z));
+}
+FfxFloat16x4 ffxMin3Half(FfxFloat16x4 x, FfxFloat16x4 y, FfxFloat16x4 z)
+{
+ return min(x, min(y, z));
+}
+//------------------------------------------------------------------------------------------------------------------------------
+FfxFloat16 ffxReciprocalHalf(FfxFloat16 x)
+{
+ return FFX_BROADCAST_FLOAT16(1.0) / x;
+}
+FfxFloat16x2 ffxReciprocalHalf(FfxFloat16x2 x)
+{
+ return FFX_BROADCAST_FLOAT16X2(1.0) / x;
+}
+FfxFloat16x3 ffxReciprocalHalf(FfxFloat16x3 x)
+{
+ return FFX_BROADCAST_FLOAT16X3(1.0) / x;
+}
+FfxFloat16x4 ffxReciprocalHalf(FfxFloat16x4 x)
+{
+ return FFX_BROADCAST_FLOAT16X4(1.0) / x;
+}
+//------------------------------------------------------------------------------------------------------------------------------
+FfxFloat16 ffxReciprocalSquareRootHalf(FfxFloat16 x)
+{
+ return FFX_BROADCAST_FLOAT16(1.0) / sqrt(x);
+}
+FfxFloat16x2 ffxReciprocalSquareRootHalf(FfxFloat16x2 x)
+{
+ return FFX_BROADCAST_FLOAT16X2(1.0) / sqrt(x);
+}
+FfxFloat16x3 ffxReciprocalSquareRootHalf(FfxFloat16x3 x)
+{
+ return FFX_BROADCAST_FLOAT16X3(1.0) / sqrt(x);
+}
+FfxFloat16x4 ffxReciprocalSquareRootHalf(FfxFloat16x4 x)
+{
+ return FFX_BROADCAST_FLOAT16X4(1.0) / sqrt(x);
+}
+//------------------------------------------------------------------------------------------------------------------------------
+FfxFloat16 ffxSaturate(FfxFloat16 x)
+{
+ return clamp(x, FFX_BROADCAST_FLOAT16(0.0), FFX_BROADCAST_FLOAT16(1.0));
+}
+FfxFloat16x2 ffxSaturate(FfxFloat16x2 x)
+{
+ return clamp(x, FFX_BROADCAST_FLOAT16X2(0.0), FFX_BROADCAST_FLOAT16X2(1.0));
+}
+FfxFloat16x3 ffxSaturate(FfxFloat16x3 x)
+{
+ return clamp(x, FFX_BROADCAST_FLOAT16X3(0.0), FFX_BROADCAST_FLOAT16X3(1.0));
+}
+FfxFloat16x4 ffxSaturate(FfxFloat16x4 x)
+{
+ return clamp(x, FFX_BROADCAST_FLOAT16X4(0.0), FFX_BROADCAST_FLOAT16X4(1.0));
+}
+//------------------------------------------------------------------------------------------------------------------------------
+FfxUInt16 ffxBitShiftRightHalf(FfxUInt16 a, FfxUInt16 b)
+{
+ return FfxUInt16(FfxInt16(a) >> FfxInt16(b));
+}
+FfxUInt16x2 ffxBitShiftRightHalf(FfxUInt16x2 a, FfxUInt16x2 b)
+{
+ return FfxUInt16x2(FfxInt16x2(a) >> FfxInt16x2(b));
+}
+FfxUInt16x3 ffxBitShiftRightHalf(FfxUInt16x3 a, FfxUInt16x3 b)
+{
+ return FfxUInt16x3(FfxInt16x3(a) >> FfxInt16x3(b));
+}
+FfxUInt16x4 ffxBitShiftRightHalf(FfxUInt16x4 a, FfxUInt16x4 b)
+{
+ return FfxUInt16x4(FfxInt16x4(a) >> FfxInt16x4(b));
+}
+#endif // FFX_HALF
+
+#if defined(FFX_WAVE)
+// Where 'x' must be a compile time literal.
+FfxFloat32 AWaveXorF1(FfxFloat32 v, FfxUInt32 x)
+{
+ return subgroupShuffleXor(v, x);
+}
+FfxFloat32x2 AWaveXorF2(FfxFloat32x2 v, FfxUInt32 x)
+{
+ return subgroupShuffleXor(v, x);
+}
+FfxFloat32x3 AWaveXorF3(FfxFloat32x3 v, FfxUInt32 x)
+{
+ return subgroupShuffleXor(v, x);
+}
+FfxFloat32x4 AWaveXorF4(FfxFloat32x4 v, FfxUInt32 x)
+{
+ return subgroupShuffleXor(v, x);
+}
+FfxUInt32 AWaveXorU1(FfxUInt32 v, FfxUInt32 x)
+{
+ return subgroupShuffleXor(v, x);
+}
+FfxUInt32x2 AWaveXorU2(FfxUInt32x2 v, FfxUInt32 x)
+{
+ return subgroupShuffleXor(v, x);
+}
+FfxUInt32x3 AWaveXorU3(FfxUInt32x3 v, FfxUInt32 x)
+{
+ return subgroupShuffleXor(v, x);
+}
+FfxUInt32x4 AWaveXorU4(FfxUInt32x4 v, FfxUInt32 x)
+{
+ return subgroupShuffleXor(v, x);
+}
+
+//------------------------------------------------------------------------------------------------------------------------------
+#if FFX_HALF
+FfxFloat16x2 ffxWaveXorFloat16x2(FfxFloat16x2 v, FfxUInt32 x)
+{
+ return FFX_UINT32_TO_FLOAT16X2(subgroupShuffleXor(FFX_FLOAT16X2_TO_UINT32(v), x));
+}
+FfxFloat16x4 ffxWaveXorFloat16x4(FfxFloat16x4 v, FfxUInt32 x)
+{
+ return FFX_UINT32X2_TO_FLOAT16X4(subgroupShuffleXor(FFX_FLOAT16X4_TO_UINT32X2(v), x));
+}
+FfxUInt16x2 ffxWaveXorUint16x2(FfxUInt16x2 v, FfxUInt32 x)
+{
+ return FFX_UINT32_TO_UINT16X2(subgroupShuffleXor(FFX_UINT16X2_TO_UINT32(v), x));
+}
+FfxUInt16x4 ffxWaveXorUint16x4(FfxUInt16x4 v, FfxUInt32 x)
+{
+ return FFX_UINT32X2_TO_UINT16X4(subgroupShuffleXor(FFX_UINT16X4_TO_UINT32X2(v), x));
+}
+#endif // FFX_HALF
+#endif // #if defined(FFX_WAVE)
diff --git a/thirdparty/amd-fsr2/shaders/ffx_core_gpu_common.h b/thirdparty/amd-fsr2/shaders/ffx_core_gpu_common.h
new file mode 100644
index 0000000000..ae07642f0d
--- /dev/null
+++ b/thirdparty/amd-fsr2/shaders/ffx_core_gpu_common.h
@@ -0,0 +1,2784 @@
+// This file is part of the FidelityFX SDK.
+//
+// Copyright (c) 2022-2023 Advanced Micro Devices, Inc. All rights reserved.
+//
+// Permission is hereby granted, free of charge, to any person obtaining a copy
+// of this software and associated documentation files (the "Software"), to deal
+// in the Software without restriction, including without limitation the rights
+// to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
+// copies of the Software, and to permit persons to whom the Software is
+// furnished to do so, subject to the following conditions:
+// The above copyright notice and this permission notice shall be included in
+// all copies or substantial portions of the Software.
+//
+// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
+// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
+// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
+// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
+// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
+// OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
+// THE SOFTWARE.
+
+/// A define for a true value in a boolean expression.
+///
+/// @ingroup GPU
+#define FFX_TRUE (true)
+
+/// A define for a false value in a boolean expression.
+///
+/// @ingroup GPU
+#define FFX_FALSE (false)
+
+/// A define value for positive infinity.
+///
+/// @ingroup GPU
+#define FFX_POSITIVE_INFINITY_FLOAT ffxAsFloat(0x7f800000u)
+
+/// A define value for negative infinity.
+///
+/// @ingroup GPU
+#define FFX_NEGATIVE_INFINITY_FLOAT ffxAsFloat(0xff800000u)
+
+/// A define value for PI.
+///
+/// @ingroup GPU
+#define FFX_PI (3.14159)
+
+
+/// Compute the reciprocal of <c><i>value</i></c>.
+///
+/// @param [in] value The value to compute the reciprocal of.
+///
+/// @returns
+/// The 1 / <c><i>value</i></c>.
+///
+/// @ingroup GPU
+FfxFloat32 ffxReciprocal(FfxFloat32 value)
+{
+ return rcp(value);
+}
+
+/// Compute the reciprocal of <c><i>value</i></c>.
+///
+/// @param [in] value The value to compute the reciprocal of.
+///
+/// @returns
+/// The 1 / <c><i>value</i></c>.
+///
+/// @ingroup GPU
+FfxFloat32x2 ffxReciprocal(FfxFloat32x2 value)
+{
+ return rcp(value);
+}
+
+/// Compute the reciprocal of <c><i>value</i></c>.
+///
+/// @param [in] value The value to compute the reciprocal of.
+///
+/// @returns
+/// The 1 / <c><i>value</i></c>.
+///
+/// @ingroup GPU
+FfxFloat32x3 ffxReciprocal(FfxFloat32x3 value)
+{
+ return rcp(value);
+}
+
+/// Compute the reciprocal of <c><i>value</i></c>.
+///
+/// @param [in] value The value to compute the reciprocal of.
+///
+/// @returns
+/// The 1 / <c><i>value</i></c>.
+///
+/// @ingroup GPU
+FfxFloat32x4 ffxReciprocal(FfxFloat32x4 value)
+{
+ return rcp(value);
+}
+
+/// Compute the min of two values.
+///
+/// @param [in] x The first value to compute the min of.
+/// @param [in] y The second value to compute the min of.
+///
+/// @returns
+/// The the lowest of two values.
+///
+/// @ingroup GPU
+FfxFloat32 ffxMin(FfxFloat32 x, FfxFloat32 y)
+{
+ return min(x, y);
+}
+
+/// Compute the min of two values.
+///
+/// @param [in] x The first value to compute the min of.
+/// @param [in] y The second value to compute the min of.
+///
+/// @returns
+/// The the lowest of two values.
+///
+/// @ingroup GPU
+FfxFloat32x2 ffxMin(FfxFloat32x2 x, FfxFloat32x2 y)
+{
+ return min(x, y);
+}
+
+/// Compute the min of two values.
+///
+/// @param [in] x The first value to compute the min of.
+/// @param [in] y The second value to compute the min of.
+///
+/// @returns
+/// The the lowest of two values.
+///
+/// @ingroup GPU
+FfxFloat32x3 ffxMin(FfxFloat32x3 x, FfxFloat32x3 y)
+{
+ return min(x, y);
+}
+
+/// Compute the min of two values.
+///
+/// @param [in] x The first value to compute the min of.
+/// @param [in] y The second value to compute the min of.
+///
+/// @returns
+/// The the lowest of two values.
+///
+/// @ingroup GPU
+FfxFloat32x4 ffxMin(FfxFloat32x4 x, FfxFloat32x4 y)
+{
+ return min(x, y);
+}
+
+/// Compute the min of two values.
+///
+/// @param [in] x The first value to compute the min of.
+/// @param [in] y The second value to compute the min of.
+///
+/// @returns
+/// The the lowest of two values.
+///
+/// @ingroup GPU
+FfxInt32 ffxMin(FfxInt32 x, FfxInt32 y)
+{
+ return min(x, y);
+}
+
+/// Compute the min of two values.
+///
+/// @param [in] x The first value to compute the min of.
+/// @param [in] y The second value to compute the min of.
+///
+/// @returns
+/// The the lowest of two values.
+///
+/// @ingroup GPU
+FfxInt32x2 ffxMin(FfxInt32x2 x, FfxInt32x2 y)
+{
+ return min(x, y);
+}
+
+/// Compute the min of two values.
+///
+/// @param [in] x The first value to compute the min of.
+/// @param [in] y The second value to compute the min of.
+///
+/// @returns
+/// The the lowest of two values.
+///
+/// @ingroup GPU
+FfxInt32x3 ffxMin(FfxInt32x3 x, FfxInt32x3 y)
+{
+ return min(x, y);
+}
+
+/// Compute the min of two values.
+///
+/// @param [in] x The first value to compute the min of.
+/// @param [in] y The second value to compute the min of.
+///
+/// @returns
+/// The the lowest of two values.
+///
+/// @ingroup GPU
+FfxInt32x4 ffxMin(FfxInt32x4 x, FfxInt32x4 y)
+{
+ return min(x, y);
+}
+
+/// Compute the min of two values.
+///
+/// @param [in] x The first value to compute the min of.
+/// @param [in] y The second value to compute the min of.
+///
+/// @returns
+/// The the lowest of two values.
+///
+/// @ingroup GPU
+FfxUInt32 ffxMin(FfxUInt32 x, FfxUInt32 y)
+{
+ return min(x, y);
+}
+
+/// Compute the min of two values.
+///
+/// @param [in] x The first value to compute the min of.
+/// @param [in] y The second value to compute the min of.
+///
+/// @returns
+/// The the lowest of two values.
+///
+/// @ingroup GPU
+FfxUInt32x2 ffxMin(FfxUInt32x2 x, FfxUInt32x2 y)
+{
+ return min(x, y);
+}
+
+/// Compute the min of two values.
+///
+/// @param [in] x The first value to compute the min of.
+/// @param [in] y The second value to compute the min of.
+///
+/// @returns
+/// The the lowest of two values.
+///
+/// @ingroup GPU
+FfxUInt32x3 ffxMin(FfxUInt32x3 x, FfxUInt32x3 y)
+{
+ return min(x, y);
+}
+
+/// Compute the min of two values.
+///
+/// @param [in] x The first value to compute the min of.
+/// @param [in] y The second value to compute the min of.
+///
+/// @returns
+/// The the lowest of two values.
+///
+/// @ingroup GPU
+FfxUInt32x4 ffxMin(FfxUInt32x4 x, FfxUInt32x4 y)
+{
+ return min(x, y);
+}
+
+/// Compute the max of two values.
+///
+/// @param [in] x The first value to compute the max of.
+/// @param [in] y The second value to compute the max of.
+///
+/// @returns
+/// The the lowest of two values.
+///
+/// @ingroup GPU
+FfxFloat32 ffxMax(FfxFloat32 x, FfxFloat32 y)
+{
+ return max(x, y);
+}
+
+/// Compute the max of two values.
+///
+/// @param [in] x The first value to compute the max of.
+/// @param [in] y The second value to compute the max of.
+///
+/// @returns
+/// The the lowest of two values.
+///
+/// @ingroup GPU
+FfxFloat32x2 ffxMax(FfxFloat32x2 x, FfxFloat32x2 y)
+{
+ return max(x, y);
+}
+
+/// Compute the max of two values.
+///
+/// @param [in] x The first value to compute the max of.
+/// @param [in] y The second value to compute the max of.
+///
+/// @returns
+/// The the lowest of two values.
+///
+/// @ingroup GPU
+FfxFloat32x3 ffxMax(FfxFloat32x3 x, FfxFloat32x3 y)
+{
+ return max(x, y);
+}
+
+/// Compute the max of two values.
+///
+/// @param [in] x The first value to compute the max of.
+/// @param [in] y The second value to compute the max of.
+///
+/// @returns
+/// The the lowest of two values.
+///
+/// @ingroup GPU
+FfxFloat32x4 ffxMax(FfxFloat32x4 x, FfxFloat32x4 y)
+{
+ return max(x, y);
+}
+
+/// Compute the max of two values.
+///
+/// @param [in] x The first value to compute the max of.
+/// @param [in] y The second value to compute the max of.
+///
+/// @returns
+/// The the lowest of two values.
+///
+/// @ingroup GPU
+FfxInt32 ffxMax(FfxInt32 x, FfxInt32 y)
+{
+ return max(x, y);
+}
+
+/// Compute the max of two values.
+///
+/// @param [in] x The first value to compute the max of.
+/// @param [in] y The second value to compute the max of.
+///
+/// @returns
+/// The the lowest of two values.
+///
+/// @ingroup GPU
+FfxInt32x2 ffxMax(FfxInt32x2 x, FfxInt32x2 y)
+{
+ return max(x, y);
+}
+
+/// Compute the max of two values.
+///
+/// @param [in] x The first value to compute the max of.
+/// @param [in] y The second value to compute the max of.
+///
+/// @returns
+/// The the lowest of two values.
+///
+/// @ingroup GPU
+FfxInt32x3 ffxMax(FfxInt32x3 x, FfxInt32x3 y)
+{
+ return max(x, y);
+}
+
+/// Compute the max of two values.
+///
+/// @param [in] x The first value to compute the max of.
+/// @param [in] y The second value to compute the max of.
+///
+/// @returns
+/// The the lowest of two values.
+///
+/// @ingroup GPU
+FfxInt32x4 ffxMax(FfxInt32x4 x, FfxInt32x4 y)
+{
+ return max(x, y);
+}
+
+/// Compute the max of two values.
+///
+/// @param [in] x The first value to compute the max of.
+/// @param [in] y The second value to compute the max of.
+///
+/// @returns
+/// The the lowest of two values.
+///
+/// @ingroup GPU
+FfxUInt32 ffxMax(FfxUInt32 x, FfxUInt32 y)
+{
+ return max(x, y);
+}
+
+/// Compute the max of two values.
+///
+/// @param [in] x The first value to compute the max of.
+/// @param [in] y The second value to compute the max of.
+///
+/// @returns
+/// The the lowest of two values.
+///
+/// @ingroup GPU
+FfxUInt32x2 ffxMax(FfxUInt32x2 x, FfxUInt32x2 y)
+{
+ return max(x, y);
+}
+
+/// Compute the max of two values.
+///
+/// @param [in] x The first value to compute the max of.
+/// @param [in] y The second value to compute the max of.
+///
+/// @returns
+/// The the lowest of two values.
+///
+/// @ingroup GPU
+FfxUInt32x3 ffxMax(FfxUInt32x3 x, FfxUInt32x3 y)
+{
+ return max(x, y);
+}
+
+/// Compute the max of two values.
+///
+/// @param [in] x The first value to compute the max of.
+/// @param [in] y The second value to compute the max of.
+///
+/// @returns
+/// The the lowest of two values.
+///
+/// @ingroup GPU
+FfxUInt32x4 ffxMax(FfxUInt32x4 x, FfxUInt32x4 y)
+{
+ return max(x, y);
+}
+
+/// Compute the value of the first parameter raised to the power of the second.
+///
+/// @param [in] x The value to raise to the power y.
+/// @param [in] y The power to which to raise x.
+///
+/// @returns
+/// The value of the first parameter raised to the power of the second.
+///
+/// @ingroup GPU
+FfxFloat32 ffxPow(FfxFloat32 x, FfxFloat32 y)
+{
+ return pow(x, y);
+}
+
+/// Compute the value of the first parameter raised to the power of the second.
+///
+/// @param [in] x The value to raise to the power y.
+/// @param [in] y The power to which to raise x.
+///
+/// @returns
+/// The value of the first parameter raised to the power of the second.
+///
+/// @ingroup GPU
+FfxFloat32x2 ffxPow(FfxFloat32x2 x, FfxFloat32x2 y)
+{
+ return pow(x, y);
+}
+
+/// Compute the value of the first parameter raised to the power of the second.
+///
+/// @param [in] x The value to raise to the power y.
+/// @param [in] y The power to which to raise x.
+///
+/// @returns
+/// The value of the first parameter raised to the power of the second.
+///
+/// @ingroup GPU
+FfxFloat32x3 ffxPow(FfxFloat32x3 x, FfxFloat32x3 y)
+{
+ return pow(x, y);
+}
+
+/// Compute the value of the first parameter raised to the power of the second.
+///
+/// @param [in] x The value to raise to the power y.
+/// @param [in] y The power to which to raise x.
+///
+/// @returns
+/// The value of the first parameter raised to the power of the second.
+///
+/// @ingroup GPU
+FfxFloat32x4 ffxPow(FfxFloat32x4 x, FfxFloat32x4 y)
+{
+ return pow(x, y);
+}
+
+/// Compute the square root of a value.
+///
+/// @param [in] x The first value to compute the min of.
+///
+/// @returns
+/// The the square root of <c><i>x</i></c>.
+///
+/// @ingroup GPU
+FfxFloat32 ffxSqrt(FfxFloat32 x)
+{
+ return sqrt(x);
+}
+
+/// Compute the square root of a value.
+///
+/// @param [in] x The first value to compute the min of.
+///
+/// @returns
+/// The the square root of <c><i>x</i></c>.
+///
+/// @ingroup GPU
+FfxFloat32x2 ffxSqrt(FfxFloat32x2 x)
+{
+ return sqrt(x);
+}
+
+/// Compute the square root of a value.
+///
+/// @param [in] x The first value to compute the min of.
+///
+/// @returns
+/// The the square root of <c><i>x</i></c>.
+///
+/// @ingroup GPU
+FfxFloat32x3 ffxSqrt(FfxFloat32x3 x)
+{
+ return sqrt(x);
+}
+
+/// Compute the square root of a value.
+///
+/// @param [in] x The first value to compute the min of.
+///
+/// @returns
+/// The the square root of <c><i>x</i></c>.
+///
+/// @ingroup GPU
+FfxFloat32x4 ffxSqrt(FfxFloat32x4 x)
+{
+ return sqrt(x);
+}
+
+/// Copy the sign bit from 's' to positive 'd'.
+///
+/// @param [in] d The value to copy the sign bit into.
+/// @param [in] s The value to copy the sign bit from.
+///
+/// @returns
+/// The value of <c><i>d</i></c> with the sign bit from <c><i>s</i></c>.
+///
+/// @ingroup GPU
+FfxFloat32 ffxCopySignBit(FfxFloat32 d, FfxFloat32 s)
+{
+ return ffxAsFloat(ffxAsUInt32(d) | (ffxAsUInt32(s) & FfxUInt32(0x80000000u)));
+}
+
+/// Copy the sign bit from 's' to positive 'd'.
+///
+/// @param [in] d The value to copy the sign bit into.
+/// @param [in] s The value to copy the sign bit from.
+///
+/// @returns
+/// The value of <c><i>d</i></c> with the sign bit from <c><i>s</i></c>.
+///
+/// @ingroup GPU
+FfxFloat32x2 ffxCopySignBit(FfxFloat32x2 d, FfxFloat32x2 s)
+{
+ return ffxAsFloat(ffxAsUInt32(d) | (ffxAsUInt32(s) & ffxBroadcast2(0x80000000u)));
+}
+
+/// Copy the sign bit from 's' to positive 'd'.
+///
+/// @param [in] d The value to copy the sign bit into.
+/// @param [in] s The value to copy the sign bit from.
+///
+/// @returns
+/// The value of <c><i>d</i></c> with the sign bit from <c><i>s</i></c>.
+///
+/// @ingroup GPU
+FfxFloat32x3 ffxCopySignBit(FfxFloat32x3 d, FfxFloat32x3 s)
+{
+ return ffxAsFloat(ffxAsUInt32(d) | (ffxAsUInt32(s) & ffxBroadcast3(0x80000000u)));
+}
+
+/// Copy the sign bit from 's' to positive 'd'.
+///
+/// @param [in] d The value to copy the sign bit into.
+/// @param [in] s The value to copy the sign bit from.
+///
+/// @returns
+/// The value of <c><i>d</i></c> with the sign bit from <c><i>s</i></c>.
+///
+/// @ingroup GPU
+FfxFloat32x4 ffxCopySignBit(FfxFloat32x4 d, FfxFloat32x4 s)
+{
+ return ffxAsFloat(ffxAsUInt32(d) | (ffxAsUInt32(s) & ffxBroadcast4(0x80000000u)));
+}
+
+/// A single operation to return the following:
+/// m = NaN := 0
+/// m >= 0 := 0
+/// m < 0 := 1
+///
+/// Uses the following useful floating point logic,
+/// saturate(+a*(-INF)==-INF) := 0
+/// saturate( 0*(-INF)== NaN) := 0
+/// saturate(-a*(-INF)==+INF) := 1
+///
+/// This function is useful when creating masks for branch-free logic.
+///
+/// @param [in] m The value to test against 0.
+///
+/// @returns
+/// 1.0 when the value is negative, or 0.0 when the value is 0 or position.
+///
+/// @ingroup GPU
+FfxFloat32 ffxIsSigned(FfxFloat32 m)
+{
+ return ffxSaturate(m * FfxFloat32(FFX_NEGATIVE_INFINITY_FLOAT));
+}
+
+/// A single operation to return the following:
+/// m = NaN := 0
+/// m >= 0 := 0
+/// m < 0 := 1
+///
+/// Uses the following useful floating point logic,
+/// saturate(+a*(-INF)==-INF) := 0
+/// saturate( 0*(-INF)== NaN) := 0
+/// saturate(-a*(-INF)==+INF) := 1
+///
+/// This function is useful when creating masks for branch-free logic.
+///
+/// @param [in] m The value to test against 0.
+///
+/// @returns
+/// 1.0 when the value is negative, or 0.0 when the value is 0 or position.
+///
+/// @ingroup GPU
+FfxFloat32x2 ffxIsSigned(FfxFloat32x2 m)
+{
+ return ffxSaturate(m * ffxBroadcast2(FFX_NEGATIVE_INFINITY_FLOAT));
+}
+
+/// A single operation to return the following:
+/// m = NaN := 0
+/// m >= 0 := 0
+/// m < 0 := 1
+///
+/// Uses the following useful floating point logic,
+/// saturate(+a*(-INF)==-INF) := 0
+/// saturate( 0*(-INF)== NaN) := 0
+/// saturate(-a*(-INF)==+INF) := 1
+///
+/// This function is useful when creating masks for branch-free logic.
+///
+/// @param [in] m The value to test against 0.
+///
+/// @returns
+/// 1.0 when the value is negative, or 0.0 when the value is 0 or position.
+///
+/// @ingroup GPU
+FfxFloat32x3 ffxIsSigned(FfxFloat32x3 m)
+{
+ return ffxSaturate(m * ffxBroadcast3(FFX_NEGATIVE_INFINITY_FLOAT));
+}
+
+/// A single operation to return the following:
+/// m = NaN := 0
+/// m >= 0 := 0
+/// m < 0 := 1
+///
+/// Uses the following useful floating point logic,
+/// saturate(+a*(-INF)==-INF) := 0
+/// saturate( 0*(-INF)== NaN) := 0
+/// saturate(-a*(-INF)==+INF) := 1
+///
+/// This function is useful when creating masks for branch-free logic.
+///
+/// @param [in] m The value to test against for have the sign set.
+///
+/// @returns
+/// 1.0 when the value is negative, or 0.0 when the value is 0 or positive.
+///
+/// @ingroup GPU
+FfxFloat32x4 ffxIsSigned(FfxFloat32x4 m)
+{
+ return ffxSaturate(m * ffxBroadcast4(FFX_NEGATIVE_INFINITY_FLOAT));
+}
+
+/// A single operation to return the following:
+/// m = NaN := 1
+/// m > 0 := 0
+/// m <= 0 := 1
+///
+/// This function is useful when creating masks for branch-free logic.
+///
+/// @param [in] m The value to test against zero.
+///
+/// @returns
+/// 1.0 when the value is position, or 0.0 when the value is 0 or negative.
+///
+/// @ingroup GPU
+FfxFloat32 ffxIsGreaterThanZero(FfxFloat32 m)
+{
+ return ffxSaturate(m * FfxFloat32(FFX_POSITIVE_INFINITY_FLOAT));
+}
+
+/// A single operation to return the following:
+/// m = NaN := 1
+/// m > 0 := 0
+/// m <= 0 := 1
+///
+/// This function is useful when creating masks for branch-free logic.
+///
+/// @param [in] m The value to test against zero.
+///
+/// @returns
+/// 1.0 when the value is position, or 0.0 when the value is 0 or negative.
+///
+/// @ingroup GPU
+FfxFloat32x2 ffxIsGreaterThanZero(FfxFloat32x2 m)
+{
+ return ffxSaturate(m * ffxBroadcast2(FFX_POSITIVE_INFINITY_FLOAT));
+}
+
+/// A single operation to return the following:
+/// m = NaN := 1
+/// m > 0 := 0
+/// m <= 0 := 1
+///
+/// This function is useful when creating masks for branch-free logic.
+///
+/// @param [in] m The value to test against zero.
+///
+/// @returns
+/// 1.0 when the value is position, or 0.0 when the value is 0 or negative.
+///
+/// @ingroup GPU
+FfxFloat32x3 ffxIsGreaterThanZero(FfxFloat32x3 m)
+{
+ return ffxSaturate(m * ffxBroadcast3(FFX_POSITIVE_INFINITY_FLOAT));
+}
+
+/// A single operation to return the following:
+/// m = NaN := 1
+/// m > 0 := 0
+/// m <= 0 := 1
+///
+/// This function is useful when creating masks for branch-free logic.
+///
+/// @param [in] m The value to test against zero.
+///
+/// @returns
+/// 1.0 when the value is position, or 0.0 when the value is 0 or negative.
+///
+/// @ingroup GPU
+FfxFloat32x4 ffxIsGreaterThanZero(FfxFloat32x4 m)
+{
+ return ffxSaturate(m * ffxBroadcast4(FFX_POSITIVE_INFINITY_FLOAT));
+}
+
+/// Convert a 32bit floating point value to sortable integer.
+///
+/// - If sign bit=0, flip the sign bit (positives).
+/// - If sign bit=1, flip all bits (negatives).
+///
+/// The function has the side effects that:
+/// - Larger integers are more positive values.
+/// - Float zero is mapped to center of integers (so clear to integer zero is a nice default for atomic max usage).
+///
+/// @param [in] value The floating point value to make sortable.
+///
+/// @returns
+/// The sortable integer value.
+///
+/// @ingroup GPU
+FfxUInt32 ffxFloatToSortableInteger(FfxUInt32 value)
+{
+ return value ^ ((AShrSU1(value, FfxUInt32(31))) | FfxUInt32(0x80000000));
+}
+
+/// Convert a sortable integer to a 32bit floating point value.
+///
+/// The function has the side effects that:
+/// - If sign bit=1, flip the sign bit (positives).
+/// - If sign bit=0, flip all bits (negatives).
+///
+/// @param [in] value The floating point value to make sortable.
+///
+/// @returns
+/// The sortable integer value.
+///
+/// @ingroup GPU
+FfxUInt32 ffxSortableIntegerToFloat(FfxUInt32 value)
+{
+ return value ^ ((~AShrSU1(value, FfxUInt32(31))) | FfxUInt32(0x80000000));
+}
+
+/// Calculate a low-quality approximation for the square root of a value.
+///
+/// For additional information on the approximation family of functions, you can refer to Michal Drobot's excellent
+/// presentation materials:
+///
+/// - https://michaldrobot.files.wordpress.com/2014/05/gcn_alu_opt_digitaldragons2014.pdf
+/// - https://github.com/michaldrobot/ShaderFastLibs/blob/master/ShaderFastMathLib.h
+///
+/// @param [in] value The value to calculate an approximate to the square root for.
+///
+/// @returns
+/// An approximation of the square root, estimated to low quality.
+///
+/// @ingroup GPU
+FfxFloat32 ffxApproximateSqrt(FfxFloat32 a)
+{
+ return ffxAsFloat((ffxAsUInt32(a) >> FfxUInt32(1)) + FfxUInt32(0x1fbc4639));
+}
+
+/// Calculate a low-quality approximation for the reciprocal of a value.
+///
+/// For additional information on the approximation family of functions, you can refer to Michal Drobot's excellent
+/// presentation materials:
+///
+/// - https://michaldrobot.files.wordpress.com/2014/05/gcn_alu_opt_digitaldragons2014.pdf
+/// - https://github.com/michaldrobot/ShaderFastLibs/blob/master/ShaderFastMathLib.h
+///
+/// @param [in] value The value to calculate an approximate to the reciprocal for.
+///
+/// @returns
+/// An approximation of the reciprocal, estimated to low quality.
+///
+/// @ingroup GPU
+FfxFloat32 ffxApproximateReciprocal(FfxFloat32 a)
+{
+ return ffxAsFloat(FfxUInt32(0x7ef07ebb) - ffxAsUInt32(a));
+}
+
+/// Calculate a medium-quality approximation for the reciprocal of a value.
+///
+/// For additional information on the approximation family of functions, you can refer to Michal Drobot's excellent
+/// presentation materials:
+///
+/// - https://michaldrobot.files.wordpress.com/2014/05/gcn_alu_opt_digitaldragons2014.pdf
+/// - https://github.com/michaldrobot/ShaderFastLibs/blob/master/ShaderFastMathLib.h
+///
+/// @param [in] value The value to calculate an approximate to the reciprocal for.
+///
+/// @returns
+/// An approximation of the reciprocal, estimated to medium quality.
+///
+/// @ingroup GPU
+FfxFloat32 ffxApproximateReciprocalMedium(FfxFloat32 value)
+{
+ FfxFloat32 b = ffxAsFloat(FfxUInt32(0x7ef19fff) - ffxAsUInt32(value));
+ return b * (-b * value + FfxFloat32(2.0));
+}
+
+/// Calculate a low-quality approximation for the reciprocal of a value.
+///
+/// For additional information on the approximation family of functions, you can refer to Michal Drobot's excellent
+/// presentation materials:
+///
+/// - https://michaldrobot.files.wordpress.com/2014/05/gcn_alu_opt_digitaldragons2014.pdf
+/// - https://github.com/michaldrobot/ShaderFastLibs/blob/master/ShaderFastMathLib.h
+///
+/// @param [in] value The value to calculate an approximate to the reciprocal square root for.
+///
+/// @returns
+/// An approximation of the reciprocal square root, estimated to low quality.
+///
+/// @ingroup GPU
+FfxFloat32 ffxApproximateReciprocalSquareRoot(FfxFloat32 a)
+{
+ return ffxAsFloat(FfxUInt32(0x5f347d74) - (ffxAsUInt32(a) >> FfxUInt32(1)));
+}
+
+/// Calculate a low-quality approximation for the square root of a value.
+///
+/// For additional information on the approximation family of functions, you can refer to Michal Drobot's excellent
+/// presentation materials:
+///
+/// - https://michaldrobot.files.wordpress.com/2014/05/gcn_alu_opt_digitaldragons2014.pdf
+/// - https://github.com/michaldrobot/ShaderFastLibs/blob/master/ShaderFastMathLib.h
+///
+/// @param [in] value The value to calculate an approximate to the square root for.
+///
+/// @returns
+/// An approximation of the square root, estimated to low quality.
+///
+/// @ingroup GPU
+FfxFloat32x2 ffxApproximateSqrt(FfxFloat32x2 a)
+{
+ return ffxAsFloat((ffxAsUInt32(a) >> ffxBroadcast2(1u)) + ffxBroadcast2(0x1fbc4639u));
+}
+
+/// Calculate a low-quality approximation for the reciprocal of a value.
+///
+/// For additional information on the approximation family of functions, you can refer to Michal Drobot's excellent
+/// presentation materials:
+///
+/// - https://michaldrobot.files.wordpress.com/2014/05/gcn_alu_opt_digitaldragons2014.pdf
+/// - https://github.com/michaldrobot/ShaderFastLibs/blob/master/ShaderFastMathLib.h
+///
+/// @param [in] value The value to calculate an approximate to the reciprocal for.
+///
+/// @returns
+/// An approximation of the reciprocal, estimated to low quality.
+///
+/// @ingroup GPU
+FfxFloat32x2 ffxApproximateReciprocal(FfxFloat32x2 a)
+{
+ return ffxAsFloat(ffxBroadcast2(0x7ef07ebbu) - ffxAsUInt32(a));
+}
+
+/// Calculate a medium-quality approximation for the reciprocal of a value.
+///
+/// For additional information on the approximation family of functions, you can refer to Michal Drobot's excellent
+/// presentation materials:
+///
+/// - https://michaldrobot.files.wordpress.com/2014/05/gcn_alu_opt_digitaldragons2014.pdf
+/// - https://github.com/michaldrobot/ShaderFastLibs/blob/master/ShaderFastMathLib.h
+///
+/// @param [in] value The value to calculate an approximate to the reciprocal for.
+///
+/// @returns
+/// An approximation of the reciprocal, estimated to medium quality.
+///
+/// @ingroup GPU
+FfxFloat32x2 ffxApproximateReciprocalMedium(FfxFloat32x2 a)
+{
+ FfxFloat32x2 b = ffxAsFloat(ffxBroadcast2(0x7ef19fffu) - ffxAsUInt32(a));
+ return b * (-b * a + ffxBroadcast2(2.0f));
+}
+
+/// Calculate a low-quality approximation for the square root of a value.
+///
+/// For additional information on the approximation family of functions, you can refer to Michal Drobot's excellent
+/// presentation materials:
+///
+/// - https://michaldrobot.files.wordpress.com/2014/05/gcn_alu_opt_digitaldragons2014.pdf
+/// - https://github.com/michaldrobot/ShaderFastLibs/blob/master/ShaderFastMathLib.h
+///
+/// @param [in] value The value to calculate an approximate to the square root for.
+///
+/// @returns
+/// An approximation of the square root, estimated to low quality.
+///
+/// @ingroup GPU
+FfxFloat32x2 ffxApproximateReciprocalSquareRoot(FfxFloat32x2 a)
+{
+ return ffxAsFloat(ffxBroadcast2(0x5f347d74u) - (ffxAsUInt32(a) >> ffxBroadcast2(1u)));
+}
+
+/// Calculate a low-quality approximation for the square root of a value.
+///
+/// For additional information on the approximation family of functions, you can refer to Michal Drobot's excellent
+/// presentation materials:
+///
+/// - https://michaldrobot.files.wordpress.com/2014/05/gcn_alu_opt_digitaldragons2014.pdf
+/// - https://github.com/michaldrobot/ShaderFastLibs/blob/master/ShaderFastMathLib.h
+///
+/// @param [in] value The value to calculate an approximate to the square root for.
+///
+/// @returns
+/// An approximation of the square root, estimated to low quality.
+///
+/// @ingroup GPU
+FfxFloat32x3 ffxApproximateSqrt(FfxFloat32x3 a)
+{
+ return ffxAsFloat((ffxAsUInt32(a) >> ffxBroadcast3(1u)) + ffxBroadcast3(0x1fbc4639u));
+}
+
+/// Calculate a low-quality approximation for the reciprocal of a value.
+///
+/// For additional information on the approximation family of functions, you can refer to Michal Drobot's excellent
+/// presentation materials:
+///
+/// - https://michaldrobot.files.wordpress.com/2014/05/gcn_alu_opt_digitaldragons2014.pdf
+/// - https://github.com/michaldrobot/ShaderFastLibs/blob/master/ShaderFastMathLib.h
+///
+/// @param [in] value The value to calculate an approximate to the reciprocal for.
+///
+/// @returns
+/// An approximation of the reciprocal, estimated to low quality.
+///
+/// @ingroup GPU
+FfxFloat32x3 ffxApproximateReciprocal(FfxFloat32x3 a)
+{
+ return ffxAsFloat(ffxBroadcast3(0x7ef07ebbu) - ffxAsUInt32(a));
+}
+
+/// Calculate a medium-quality approximation for the reciprocal of a value.
+///
+/// For additional information on the approximation family of functions, you can refer to Michal Drobot's excellent
+/// presentation materials:
+///
+/// - https://michaldrobot.files.wordpress.com/2014/05/gcn_alu_opt_digitaldragons2014.pdf
+/// - https://github.com/michaldrobot/ShaderFastLibs/blob/master/ShaderFastMathLib.h
+///
+/// @param [in] value The value to calculate an approximate to the reciprocal for.
+///
+/// @returns
+/// An approximation of the reciprocal, estimated to medium quality.
+///
+/// @ingroup GPU
+FfxFloat32x3 ffxApproximateReciprocalMedium(FfxFloat32x3 a)
+{
+ FfxFloat32x3 b = ffxAsFloat(ffxBroadcast3(0x7ef19fffu) - ffxAsUInt32(a));
+ return b * (-b * a + ffxBroadcast3(2.0f));
+}
+
+/// Calculate a low-quality approximation for the square root of a value.
+///
+/// For additional information on the approximation family of functions, you can refer to Michal Drobot's excellent
+/// presentation materials:
+///
+/// - https://michaldrobot.files.wordpress.com/2014/05/gcn_alu_opt_digitaldragons2014.pdf
+/// - https://github.com/michaldrobot/ShaderFastLibs/blob/master/ShaderFastMathLib.h
+///
+/// @param [in] value The value to calculate an approximate to the square root for.
+///
+/// @returns
+/// An approximation of the square root, estimated to low quality.
+///
+/// @ingroup GPU
+FfxFloat32x3 ffxApproximateReciprocalSquareRoot(FfxFloat32x3 a)
+{
+ return ffxAsFloat(ffxBroadcast3(0x5f347d74u) - (ffxAsUInt32(a) >> ffxBroadcast3(1u)));
+}
+
+/// Calculate a low-quality approximation for the square root of a value.
+///
+/// For additional information on the approximation family of functions, you can refer to Michal Drobot's excellent
+/// presentation materials:
+///
+/// - https://michaldrobot.files.wordpress.com/2014/05/gcn_alu_opt_digitaldragons2014.pdf
+/// - https://github.com/michaldrobot/ShaderFastLibs/blob/master/ShaderFastMathLib.h
+///
+/// @param [in] value The value to calculate an approximate to the square root for.
+///
+/// @returns
+/// An approximation of the square root, estimated to low quality.
+///
+/// @ingroup GPU
+FfxFloat32x4 ffxApproximateSqrt(FfxFloat32x4 a)
+{
+ return ffxAsFloat((ffxAsUInt32(a) >> ffxBroadcast4(1u)) + ffxBroadcast4(0x1fbc4639u));
+}
+
+/// Calculate a low-quality approximation for the reciprocal of a value.
+///
+/// For additional information on the approximation family of functions, you can refer to Michal Drobot's excellent
+/// presentation materials:
+///
+/// - https://michaldrobot.files.wordpress.com/2014/05/gcn_alu_opt_digitaldragons2014.pdf
+/// - https://github.com/michaldrobot/ShaderFastLibs/blob/master/ShaderFastMathLib.h
+///
+/// @param [in] value The value to calculate an approximate to the reciprocal for.
+///
+/// @returns
+/// An approximation of the reciprocal, estimated to low quality.
+///
+/// @ingroup GPU
+FfxFloat32x4 ffxApproximateReciprocal(FfxFloat32x4 a)
+{
+ return ffxAsFloat(ffxBroadcast4(0x7ef07ebbu) - ffxAsUInt32(a));
+}
+
+/// Calculate a medium-quality approximation for the reciprocal of a value.
+///
+/// For additional information on the approximation family of functions, you can refer to Michal Drobot's excellent
+/// presentation materials:
+///
+/// - https://michaldrobot.files.wordpress.com/2014/05/gcn_alu_opt_digitaldragons2014.pdf
+/// - https://github.com/michaldrobot/ShaderFastLibs/blob/master/ShaderFastMathLib.h
+///
+/// @param [in] value The value to calculate an approximate to the reciprocal for.
+///
+/// @returns
+/// An approximation of the reciprocal, estimated to medium quality.
+///
+/// @ingroup GPU
+FfxFloat32x4 ffxApproximateReciprocalMedium(FfxFloat32x4 a)
+{
+ FfxFloat32x4 b = ffxAsFloat(ffxBroadcast4(0x7ef19fffu) - ffxAsUInt32(a));
+ return b * (-b * a + ffxBroadcast4(2.0f));
+}
+
+/// Calculate a low-quality approximation for the square root of a value.
+///
+/// For additional information on the approximation family of functions, you can refer to Michal Drobot's excellent
+/// presentation materials:
+///
+/// - https://michaldrobot.files.wordpress.com/2014/05/gcn_alu_opt_digitaldragons2014.pdf
+/// - https://github.com/michaldrobot/ShaderFastLibs/blob/master/ShaderFastMathLib.h
+///
+/// @param [in] value The value to calculate an approximate to the square root for.
+///
+/// @returns
+/// An approximation of the square root, estimated to low quality.
+///
+/// @ingroup GPU
+FfxFloat32x4 ffxApproximateReciprocalSquareRoot(FfxFloat32x4 a)
+{
+ return ffxAsFloat(ffxBroadcast4(0x5f347d74u) - (ffxAsUInt32(a) >> ffxBroadcast4(1u)));
+}
+
+/// Calculate dot product of 'a' and 'b'.
+///
+/// @param [in] a First vector input.
+/// @param [in] b Second vector input.
+///
+/// @returns
+/// The value of <c><i>a</i></c> dot <c><i>b</i></c>.
+///
+/// @ingroup GPU
+FfxFloat32 ffxDot2(FfxFloat32x2 a, FfxFloat32x2 b)
+{
+ return dot(a, b);
+}
+
+/// Calculate dot product of 'a' and 'b'.
+///
+/// @param [in] a First vector input.
+/// @param [in] b Second vector input.
+///
+/// @returns
+/// The value of <c><i>a</i></c> dot <c><i>b</i></c>.
+///
+/// @ingroup GPU
+FfxFloat32 ffxDot3(FfxFloat32x3 a, FfxFloat32x3 b)
+{
+ return dot(a, b);
+}
+
+/// Calculate dot product of 'a' and 'b'.
+///
+/// @param [in] a First vector input.
+/// @param [in] b Second vector input.
+///
+/// @returns
+/// The value of <c><i>a</i></c> dot <c><i>b</i></c>.
+///
+/// @ingroup GPU
+FfxFloat32 ffxDot4(FfxFloat32x4 a, FfxFloat32x4 b)
+{
+ return dot(a, b);
+}
+
+
+/// Compute an approximate conversion from PQ to Gamma2 space.
+///
+/// PQ is very close to x^(1/8). The functions below Use the fast FfxFloat32 approximation method to do
+/// PQ conversions to and from Gamma2 (4th power and fast 4th root), and PQ to and from Linear
+/// (8th power and fast 8th root). The maximum error is approximately 0.2%.
+///
+/// @param a The value to convert between PQ and Gamma2.
+///
+/// @returns
+/// The value <c><i>a</i></c> converted into Gamma2.
+///
+/// @ingroup GPU
+FfxFloat32 ffxApproximatePQToGamma2Medium(FfxFloat32 a)
+{
+ return a * a * a * a;
+}
+
+/// Compute an approximate conversion from PQ to linear space.
+///
+/// PQ is very close to x^(1/8). The functions below Use the fast FfxFloat32 approximation method to do
+/// PQ conversions to and from Gamma2 (4th power and fast 4th root), and PQ to and from Linear
+/// (8th power and fast 8th root). The maximum error is approximately 0.2%.
+///
+/// @param a The value to convert between PQ and linear.
+///
+/// @returns
+/// The value <c><i>a</i></c> converted into linear.
+///
+/// @ingroup GPU
+FfxFloat32 ffxApproximatePQToLinear(FfxFloat32 a)
+{
+ return a * a * a * a * a * a * a * a;
+}
+
+/// Compute an approximate conversion from gamma2 to PQ space.
+///
+/// PQ is very close to x^(1/8). The functions below Use the fast FfxFloat32 approximation method to do
+/// PQ conversions to and from Gamma2 (4th power and fast 4th root), and PQ to and from Linear
+/// (8th power and fast 8th root). The maximum error is approximately 0.2%.
+///
+/// @param a The value to convert between gamma2 and PQ.
+///
+/// @returns
+/// The value <c><i>a</i></c> converted into PQ.
+///
+/// @ingroup GPU
+FfxFloat32 ffxApproximateGamma2ToPQ(FfxFloat32 a)
+{
+ return ffxAsFloat((ffxAsUInt32(a) >> FfxUInt32(2)) + FfxUInt32(0x2F9A4E46));
+}
+
+/// Compute a more accurate approximate conversion from gamma2 to PQ space.
+///
+/// PQ is very close to x^(1/8). The functions below Use the fast FfxFloat32 approximation method to do
+/// PQ conversions to and from Gamma2 (4th power and fast 4th root), and PQ to and from Linear
+/// (8th power and fast 8th root). The maximum error is approximately 0.2%.
+///
+/// @param a The value to convert between gamma2 and PQ.
+///
+/// @returns
+/// The value <c><i>a</i></c> converted into PQ.
+///
+/// @ingroup GPU
+FfxFloat32 ffxApproximateGamma2ToPQMedium(FfxFloat32 a)
+{
+ FfxFloat32 b = ffxAsFloat((ffxAsUInt32(a) >> FfxUInt32(2)) + FfxUInt32(0x2F9A4E46));
+ FfxFloat32 b4 = b * b * b * b;
+ return b - b * (b4 - a) / (FfxFloat32(4.0) * b4);
+}
+
+/// Compute a high accuracy approximate conversion from gamma2 to PQ space.
+///
+/// PQ is very close to x^(1/8). The functions below Use the fast FfxFloat32 approximation method to do
+/// PQ conversions to and from Gamma2 (4th power and fast 4th root), and PQ to and from Linear
+/// (8th power and fast 8th root). The maximum error is approximately 0.2%.
+///
+/// @param a The value to convert between gamma2 and PQ.
+///
+/// @returns
+/// The value <c><i>a</i></c> converted into PQ.
+///
+/// @ingroup GPU
+FfxFloat32 ffxApproximateGamma2ToPQHigh(FfxFloat32 a)
+{
+ return ffxSqrt(ffxSqrt(a));
+}
+
+/// Compute an approximate conversion from linear to PQ space.
+///
+/// PQ is very close to x^(1/8). The functions below Use the fast FfxFloat32 approximation method to do
+/// PQ conversions to and from Gamma2 (4th power and fast 4th root), and PQ to and from Linear
+/// (8th power and fast 8th root). The maximum error is approximately 0.2%.
+///
+/// @param a The value to convert between linear and PQ.
+///
+/// @returns
+/// The value <c><i>a</i></c> converted into PQ.
+///
+/// @ingroup GPU
+FfxFloat32 ffxApproximateLinearToPQ(FfxFloat32 a)
+{
+ return ffxAsFloat((ffxAsUInt32(a) >> FfxUInt32(3)) + FfxUInt32(0x378D8723));
+}
+
+/// Compute a more accurate approximate conversion from linear to PQ space.
+///
+/// PQ is very close to x^(1/8). The functions below Use the fast FfxFloat32 approximation method to do
+/// PQ conversions to and from Gamma2 (4th power and fast 4th root), and PQ to and from Linear
+/// (8th power and fast 8th root). The maximum error is approximately 0.2%.
+///
+/// @param a The value to convert between linear and PQ.
+///
+/// @returns
+/// The value <c><i>a</i></c> converted into PQ.
+///
+/// @ingroup GPU
+FfxFloat32 ffxApproximateLinearToPQMedium(FfxFloat32 a)
+{
+ FfxFloat32 b = ffxAsFloat((ffxAsUInt32(a) >> FfxUInt32(3)) + FfxUInt32(0x378D8723));
+ FfxFloat32 b8 = b * b * b * b * b * b * b * b;
+ return b - b * (b8 - a) / (FfxFloat32(8.0) * b8);
+}
+
+/// Compute a very accurate approximate conversion from linear to PQ space.
+///
+/// PQ is very close to x^(1/8). The functions below Use the fast FfxFloat32 approximation method to do
+/// PQ conversions to and from Gamma2 (4th power and fast 4th root), and PQ to and from Linear
+/// (8th power and fast 8th root). The maximum error is approximately 0.2%.
+///
+/// @param a The value to convert between linear and PQ.
+///
+/// @returns
+/// The value <c><i>a</i></c> converted into PQ.
+///
+/// @ingroup GPU
+FfxFloat32 ffxApproximateLinearToPQHigh(FfxFloat32 a)
+{
+ return ffxSqrt(ffxSqrt(ffxSqrt(a)));
+}
+
+/// Compute an approximate conversion from PQ to Gamma2 space.
+///
+/// PQ is very close to x^(1/8). The functions below Use the fast FfxFloat32 approximation method to do
+/// PQ conversions to and from Gamma2 (4th power and fast 4th root), and PQ to and from Linear
+/// (8th power and fast 8th root). The maximum error is approximately 0.2%.
+///
+/// @param a The value to convert between PQ and Gamma2.
+///
+/// @returns
+/// The value <c><i>a</i></c> converted into Gamma2.
+///
+/// @ingroup GPU
+FfxFloat32x2 ffxApproximatePQToGamma2Medium(FfxFloat32x2 a)
+{
+ return a * a * a * a;
+}
+
+/// Compute an approximate conversion from PQ to linear space.
+///
+/// PQ is very close to x^(1/8). The functions below Use the fast FfxFloat32 approximation method to do
+/// PQ conversions to and from Gamma2 (4th power and fast 4th root), and PQ to and from Linear
+/// (8th power and fast 8th root). The maximum error is approximately 0.2%.
+///
+/// @param a The value to convert between PQ and linear.
+///
+/// @returns
+/// The value <c><i>a</i></c> converted into linear.
+///
+/// @ingroup GPU
+FfxFloat32x2 ffxApproximatePQToLinear(FfxFloat32x2 a)
+{
+ return a * a * a * a * a * a * a * a;
+}
+
+/// Compute an approximate conversion from gamma2 to PQ space.
+///
+/// PQ is very close to x^(1/8). The functions below Use the fast FfxFloat32 approximation method to do
+/// PQ conversions to and from Gamma2 (4th power and fast 4th root), and PQ to and from Linear
+/// (8th power and fast 8th root). The maximum error is approximately 0.2%.
+///
+/// @param a The value to convert between gamma2 and PQ.
+///
+/// @returns
+/// The value <c><i>a</i></c> converted into PQ.
+///
+/// @ingroup GPU
+FfxFloat32x2 ffxApproximateGamma2ToPQ(FfxFloat32x2 a)
+{
+ return ffxAsFloat((ffxAsUInt32(a) >> ffxBroadcast2(2u)) + ffxBroadcast2(0x2F9A4E46u));
+}
+
+/// Compute a more accurate approximate conversion from gamma2 to PQ space.
+///
+/// PQ is very close to x^(1/8). The functions below Use the fast FfxFloat32 approximation method to do
+/// PQ conversions to and from Gamma2 (4th power and fast 4th root), and PQ to and from Linear
+/// (8th power and fast 8th root). The maximum error is approximately 0.2%.
+///
+/// @param a The value to convert between gamma2 and PQ.
+///
+/// @returns
+/// The value <c><i>a</i></c> converted into PQ.
+///
+/// @ingroup GPU
+FfxFloat32x2 ffxApproximateGamma2ToPQMedium(FfxFloat32x2 a)
+{
+ FfxFloat32x2 b = ffxAsFloat((ffxAsUInt32(a) >> ffxBroadcast2(2u)) + ffxBroadcast2(0x2F9A4E46u));
+ FfxFloat32x2 b4 = b * b * b * b;
+ return b - b * (b4 - a) / (FfxFloat32(4.0) * b4);
+}
+
+/// Compute a high accuracy approximate conversion from gamma2 to PQ space.
+///
+/// PQ is very close to x^(1/8). The functions below Use the fast FfxFloat32 approximation method to do
+/// PQ conversions to and from Gamma2 (4th power and fast 4th root), and PQ to and from Linear
+/// (8th power and fast 8th root). The maximum error is approximately 0.2%.
+///
+/// @param a The value to convert between gamma2 and PQ.
+///
+/// @returns
+/// The value <c><i>a</i></c> converted into PQ.
+///
+/// @ingroup GPU
+FfxFloat32x2 ffxApproximateGamma2ToPQHigh(FfxFloat32x2 a)
+{
+ return ffxSqrt(ffxSqrt(a));
+}
+
+/// Compute an approximate conversion from linear to PQ space.
+///
+/// PQ is very close to x^(1/8). The functions below Use the fast FfxFloat32 approximation method to do
+/// PQ conversions to and from Gamma2 (4th power and fast 4th root), and PQ to and from Linear
+/// (8th power and fast 8th root). The maximum error is approximately 0.2%.
+///
+/// @param a The value to convert between linear and PQ.
+///
+/// @returns
+/// The value <c><i>a</i></c> converted into PQ.
+///
+/// @ingroup GPU
+FfxFloat32x2 ffxApproximateLinearToPQ(FfxFloat32x2 a)
+{
+ return ffxAsFloat((ffxAsUInt32(a) >> ffxBroadcast2(3u)) + ffxBroadcast2(0x378D8723u));
+}
+
+/// Compute a more accurate approximate conversion from linear to PQ space.
+///
+/// PQ is very close to x^(1/8). The functions below Use the fast FfxFloat32 approximation method to do
+/// PQ conversions to and from Gamma2 (4th power and fast 4th root), and PQ to and from Linear
+/// (8th power and fast 8th root). The maximum error is approximately 0.2%.
+///
+/// @param a The value to convert between linear and PQ.
+///
+/// @returns
+/// The value <c><i>a</i></c> converted into PQ.
+///
+/// @ingroup GPU
+FfxFloat32x2 ffxApproximateLinearToPQMedium(FfxFloat32x2 a)
+{
+ FfxFloat32x2 b = ffxAsFloat((ffxAsUInt32(a) >> ffxBroadcast2(3u)) + ffxBroadcast2(0x378D8723u));
+ FfxFloat32x2 b8 = b * b * b * b * b * b * b * b;
+ return b - b * (b8 - a) / (FfxFloat32(8.0) * b8);
+}
+
+/// Compute a very accurate approximate conversion from linear to PQ space.
+///
+/// PQ is very close to x^(1/8). The functions below Use the fast FfxFloat32 approximation method to do
+/// PQ conversions to and from Gamma2 (4th power and fast 4th root), and PQ to and from Linear
+/// (8th power and fast 8th root). The maximum error is approximately 0.2%.
+///
+/// @param a The value to convert between linear and PQ.
+///
+/// @returns
+/// The value <c><i>a</i></c> converted into PQ.
+///
+/// @ingroup GPU
+FfxFloat32x2 ffxApproximateLinearToPQHigh(FfxFloat32x2 a)
+{
+ return ffxSqrt(ffxSqrt(ffxSqrt(a)));
+}
+
+/// Compute an approximate conversion from PQ to Gamma2 space.
+///
+/// PQ is very close to x^(1/8). The functions below Use the fast FfxFloat32 approximation method to do
+/// PQ conversions to and from Gamma2 (4th power and fast 4th root), and PQ to and from Linear
+/// (8th power and fast 8th root). The maximum error is approximately 0.2%.
+///
+/// @param a The value to convert between PQ and Gamma2.
+///
+/// @returns
+/// The value <c><i>a</i></c> converted into Gamma2.
+///
+/// @ingroup GPU
+FfxFloat32x3 ffxApproximatePQToGamma2Medium(FfxFloat32x3 a)
+{
+ return a * a * a * a;
+}
+
+/// Compute an approximate conversion from PQ to linear space.
+///
+/// PQ is very close to x^(1/8). The functions below Use the fast FfxFloat32 approximation method to do
+/// PQ conversions to and from Gamma2 (4th power and fast 4th root), and PQ to and from Linear
+/// (8th power and fast 8th root). The maximum error is approximately 0.2%.
+///
+/// @param a The value to convert between PQ and linear.
+///
+/// @returns
+/// The value <c><i>a</i></c> converted into linear.
+///
+/// @ingroup GPU
+FfxFloat32x3 ffxApproximatePQToLinear(FfxFloat32x3 a)
+{
+ return a * a * a * a * a * a * a * a;
+}
+
+/// Compute an approximate conversion from gamma2 to PQ space.
+///
+/// PQ is very close to x^(1/8). The functions below Use the fast FfxFloat32 approximation method to do
+/// PQ conversions to and from Gamma2 (4th power and fast 4th root), and PQ to and from Linear
+/// (8th power and fast 8th root). The maximum error is approximately 0.2%.
+///
+/// @param a The value to convert between gamma2 and PQ.
+///
+/// @returns
+/// The value <c><i>a</i></c> converted into PQ.
+///
+/// @ingroup GPU
+FfxFloat32x3 ffxApproximateGamma2ToPQ(FfxFloat32x3 a)
+{
+ return ffxAsFloat((ffxAsUInt32(a) >> ffxBroadcast3(2u)) + ffxBroadcast3(0x2F9A4E46u));
+}
+
+/// Compute a more accurate approximate conversion from gamma2 to PQ space.
+///
+/// PQ is very close to x^(1/8). The functions below Use the fast FfxFloat32 approximation method to do
+/// PQ conversions to and from Gamma2 (4th power and fast 4th root), and PQ to and from Linear
+/// (8th power and fast 8th root). The maximum error is approximately 0.2%.
+///
+/// @param a The value to convert between gamma2 and PQ.
+///
+/// @returns
+/// The value <c><i>a</i></c> converted into PQ.
+///
+/// @ingroup GPU
+FfxFloat32x3 ffxApproximateGamma2ToPQMedium(FfxFloat32x3 a)
+{
+ FfxFloat32x3 b = ffxAsFloat((ffxAsUInt32(a) >> ffxBroadcast3(2u)) + ffxBroadcast3(0x2F9A4E46u));
+ FfxFloat32x3 b4 = b * b * b * b;
+ return b - b * (b4 - a) / (FfxFloat32(4.0) * b4);
+}
+
+/// Compute a high accuracy approximate conversion from gamma2 to PQ space.
+///
+/// PQ is very close to x^(1/8). The functions below Use the fast FfxFloat32 approximation method to do
+/// PQ conversions to and from Gamma2 (4th power and fast 4th root), and PQ to and from Linear
+/// (8th power and fast 8th root). The maximum error is approximately 0.2%.
+///
+/// @param a The value to convert between gamma2 and PQ.
+///
+/// @returns
+/// The value <c><i>a</i></c> converted into PQ.
+///
+/// @ingroup GPU
+FfxFloat32x3 ffxApproximateGamma2ToPQHigh(FfxFloat32x3 a)
+{
+ return ffxSqrt(ffxSqrt(a));
+}
+
+/// Compute an approximate conversion from linear to PQ space.
+///
+/// PQ is very close to x^(1/8). The functions below Use the fast FfxFloat32 approximation method to do
+/// PQ conversions to and from Gamma2 (4th power and fast 4th root), and PQ to and from Linear
+/// (8th power and fast 8th root). The maximum error is approximately 0.2%.
+///
+/// @param a The value to convert between linear and PQ.
+///
+/// @returns
+/// The value <c><i>a</i></c> converted into PQ.
+///
+/// @ingroup GPU
+FfxFloat32x3 ffxApproximateLinearToPQ(FfxFloat32x3 a)
+{
+ return ffxAsFloat((ffxAsUInt32(a) >> ffxBroadcast3(3u)) + ffxBroadcast3(0x378D8723u));
+}
+
+/// Compute a more accurate approximate conversion from linear to PQ space.
+///
+/// PQ is very close to x^(1/8). The functions below Use the fast FfxFloat32 approximation method to do
+/// PQ conversions to and from Gamma2 (4th power and fast 4th root), and PQ to and from Linear
+/// (8th power and fast 8th root). The maximum error is approximately 0.2%.
+///
+/// @param a The value to convert between linear and PQ.
+///
+/// @returns
+/// The value <c><i>a</i></c> converted into PQ.
+///
+/// @ingroup GPU
+FfxFloat32x3 ffxApproximateLinearToPQMedium(FfxFloat32x3 a)
+{
+ FfxFloat32x3 b = ffxAsFloat((ffxAsUInt32(a) >> ffxBroadcast3(3u)) + ffxBroadcast3(0x378D8723u));
+ FfxFloat32x3 b8 = b * b * b * b * b * b * b * b;
+ return b - b * (b8 - a) / (FfxFloat32(8.0) * b8);
+}
+
+/// Compute a very accurate approximate conversion from linear to PQ space.
+///
+/// PQ is very close to x^(1/8). The functions below Use the fast FfxFloat32 approximation method to do
+/// PQ conversions to and from Gamma2 (4th power and fast 4th root), and PQ to and from Linear
+/// (8th power and fast 8th root). The maximum error is approximately 0.2%.
+///
+/// @param a The value to convert between linear and PQ.
+///
+/// @returns
+/// The value <c><i>a</i></c> converted into PQ.
+///
+/// @ingroup GPU
+FfxFloat32x3 ffxApproximateLinearToPQHigh(FfxFloat32x3 a)
+{
+ return ffxSqrt(ffxSqrt(ffxSqrt(a)));
+}
+
+/// Compute an approximate conversion from PQ to Gamma2 space.
+///
+/// PQ is very close to x^(1/8). The functions below Use the fast FfxFloat32 approximation method to do
+/// PQ conversions to and from Gamma2 (4th power and fast 4th root), and PQ to and from Linear
+/// (8th power and fast 8th root). The maximum error is approximately 0.2%.
+///
+/// @param a The value to convert between PQ and Gamma2.
+///
+/// @returns
+/// The value <c><i>a</i></c> converted into Gamma2.
+///
+/// @ingroup GPU
+FfxFloat32x4 ffxApproximatePQToGamma2Medium(FfxFloat32x4 a)
+{
+ return a * a * a * a;
+}
+
+/// Compute an approximate conversion from PQ to linear space.
+///
+/// PQ is very close to x^(1/8). The functions below Use the fast FfxFloat32 approximation method to do
+/// PQ conversions to and from Gamma2 (4th power and fast 4th root), and PQ to and from Linear
+/// (8th power and fast 8th root). The maximum error is approximately 0.2%.
+///
+/// @param a The value to convert between PQ and linear.
+///
+/// @returns
+/// The value <c><i>a</i></c> converted into linear.
+///
+/// @ingroup GPU
+FfxFloat32x4 ffxApproximatePQToLinear(FfxFloat32x4 a)
+{
+ return a * a * a * a * a * a * a * a;
+}
+
+/// Compute an approximate conversion from gamma2 to PQ space.
+///
+/// PQ is very close to x^(1/8). The functions below Use the fast FfxFloat32 approximation method to do
+/// PQ conversions to and from Gamma2 (4th power and fast 4th root), and PQ to and from Linear
+/// (8th power and fast 8th root). The maximum error is approximately 0.2%.
+///
+/// @param a The value to convert between gamma2 and PQ.
+///
+/// @returns
+/// The value <c><i>a</i></c> converted into PQ.
+///
+/// @ingroup GPU
+FfxFloat32x4 ffxApproximateGamma2ToPQ(FfxFloat32x4 a)
+{
+ return ffxAsFloat((ffxAsUInt32(a) >> ffxBroadcast4(2u)) + ffxBroadcast4(0x2F9A4E46u));
+}
+
+/// Compute a more accurate approximate conversion from gamma2 to PQ space.
+///
+/// PQ is very close to x^(1/8). The functions below Use the fast FfxFloat32 approximation method to do
+/// PQ conversions to and from Gamma2 (4th power and fast 4th root), and PQ to and from Linear
+/// (8th power and fast 8th root). The maximum error is approximately 0.2%.
+///
+/// @param a The value to convert between gamma2 and PQ.
+///
+/// @returns
+/// The value <c><i>a</i></c> converted into PQ.
+///
+/// @ingroup GPU
+FfxFloat32x4 ffxApproximateGamma2ToPQMedium(FfxFloat32x4 a)
+{
+ FfxFloat32x4 b = ffxAsFloat((ffxAsUInt32(a) >> ffxBroadcast4(2u)) + ffxBroadcast4(0x2F9A4E46u));
+ FfxFloat32x4 b4 = b * b * b * b * b * b * b * b;
+ return b - b * (b4 - a) / (FfxFloat32(4.0) * b4);
+}
+
+/// Compute a high accuracy approximate conversion from gamma2 to PQ space.
+///
+/// PQ is very close to x^(1/8). The functions below Use the fast FfxFloat32 approximation method to do
+/// PQ conversions to and from Gamma2 (4th power and fast 4th root), and PQ to and from Linear
+/// (8th power and fast 8th root). The maximum error is approximately 0.2%.
+///
+/// @param a The value to convert between gamma2 and PQ.
+///
+/// @returns
+/// The value <c><i>a</i></c> converted into PQ.
+///
+/// @ingroup GPU
+FfxFloat32x4 ffxApproximateGamma2ToPQHigh(FfxFloat32x4 a)
+{
+ return ffxSqrt(ffxSqrt(a));
+}
+
+/// Compute an approximate conversion from linear to PQ space.
+///
+/// PQ is very close to x^(1/8). The functions below Use the fast FfxFloat32 approximation method to do
+/// PQ conversions to and from Gamma2 (4th power and fast 4th root), and PQ to and from Linear
+/// (8th power and fast 8th root). The maximum error is approximately 0.2%.
+///
+/// @param a The value to convert between linear and PQ.
+///
+/// @returns
+/// The value <c><i>a</i></c> converted into PQ.
+///
+/// @ingroup GPU
+FfxFloat32x4 ffxApproximateLinearToPQ(FfxFloat32x4 a)
+{
+ return ffxAsFloat((ffxAsUInt32(a) >> ffxBroadcast4(3u)) + ffxBroadcast4(0x378D8723u));
+}
+
+/// Compute a more accurate approximate conversion from linear to PQ space.
+///
+/// PQ is very close to x^(1/8). The functions below Use the fast FfxFloat32 approximation method to do
+/// PQ conversions to and from Gamma2 (4th power and fast 4th root), and PQ to and from Linear
+/// (8th power and fast 8th root). The maximum error is approximately 0.2%.
+///
+/// @param a The value to convert between linear and PQ.
+///
+/// @returns
+/// The value <c><i>a</i></c> converted into PQ.
+///
+/// @ingroup GPU
+FfxFloat32x4 ffxApproximateLinearToPQMedium(FfxFloat32x4 a)
+{
+ FfxFloat32x4 b = ffxAsFloat((ffxAsUInt32(a) >> ffxBroadcast4(3u)) + ffxBroadcast4(0x378D8723u));
+ FfxFloat32x4 b8 = b * b * b * b * b * b * b * b;
+ return b - b * (b8 - a) / (FfxFloat32(8.0) * b8);
+}
+
+/// Compute a very accurate approximate conversion from linear to PQ space.
+///
+/// PQ is very close to x^(1/8). The functions below Use the fast FfxFloat32 approximation method to do
+/// PQ conversions to and from Gamma2 (4th power and fast 4th root), and PQ to and from Linear
+/// (8th power and fast 8th root). The maximum error is approximately 0.2%.
+///
+/// @param a The value to convert between linear and PQ.
+///
+/// @returns
+/// The value <c><i>a</i></c> converted into PQ.
+///
+/// @ingroup GPU
+FfxFloat32x4 ffxApproximateLinearToPQHigh(FfxFloat32x4 a)
+{
+ return ffxSqrt(ffxSqrt(ffxSqrt(a)));
+}
+
+// An approximation of sine.
+//
+// Valid input range is {-1 to 1} representing {0 to 2 pi}, and the output range
+// is {-1/4 to 1/4} representing {-1 to 1}.
+//
+// @param [in] value The value to calculate approximate sine for.
+//
+// @returns
+// The approximate sine of <c><i>value</i></c>.
+FfxFloat32 ffxParabolicSin(FfxFloat32 value)
+{
+ return value * abs(value) - value;
+}
+
+// An approximation of sine.
+//
+// Valid input range is {-1 to 1} representing {0 to 2 pi}, and the output range
+// is {-1/4 to 1/4} representing {-1 to 1}.
+//
+// @param [in] value The value to calculate approximate sine for.
+//
+// @returns
+// The approximate sine of <c><i>value</i></c>.
+FfxFloat32x2 ffxParabolicSin(FfxFloat32x2 x)
+{
+ return x * abs(x) - x;
+}
+
+// An approximation of cosine.
+//
+// Valid input range is {-1 to 1} representing {0 to 2 pi}, and the output range
+// is {-1/4 to 1/4} representing {-1 to 1}.
+//
+// @param [in] value The value to calculate approximate cosine for.
+//
+// @returns
+// The approximate cosine of <c><i>value</i></c>.
+FfxFloat32 ffxParabolicCos(FfxFloat32 x)
+{
+ x = ffxFract(x * FfxFloat32(0.5) + FfxFloat32(0.75));
+ x = x * FfxFloat32(2.0) - FfxFloat32(1.0);
+ return ffxParabolicSin(x);
+}
+
+// An approximation of cosine.
+//
+// Valid input range is {-1 to 1} representing {0 to 2 pi}, and the output range
+// is {-1/4 to 1/4} representing {-1 to 1}.
+//
+// @param [in] value The value to calculate approximate cosine for.
+//
+// @returns
+// The approximate cosine of <c><i>value</i></c>.
+FfxFloat32x2 ffxParabolicCos(FfxFloat32x2 x)
+{
+ x = ffxFract(x * ffxBroadcast2(0.5f) + ffxBroadcast2(0.75f));
+ x = x * ffxBroadcast2(2.0f) - ffxBroadcast2(1.0f);
+ return ffxParabolicSin(x);
+}
+
+// An approximation of both sine and cosine.
+//
+// Valid input range is {-1 to 1} representing {0 to 2 pi}, and the output range
+// is {-1/4 to 1/4} representing {-1 to 1}.
+//
+// @param [in] value The value to calculate approximate cosine for.
+//
+// @returns
+// A <c><i>FfxFloat32x2</i></c> containing approximations of both sine and cosine of <c><i>value</i></c>.
+FfxFloat32x2 ffxParabolicSinCos(FfxFloat32 x)
+{
+ FfxFloat32 y = ffxFract(x * FfxFloat32(0.5) + FfxFloat32(0.75));
+ y = y * FfxFloat32(2.0) - FfxFloat32(1.0);
+ return ffxParabolicSin(FfxFloat32x2(x, y));
+}
+
+/// Conditional free logic AND operation using values.
+///
+/// @param [in] x The first value to be fed into the AND operator.
+/// @param [in] y The second value to be fed into the AND operator.
+///
+/// @returns
+/// Result of the AND operation.
+///
+/// @ingroup GPU
+FfxUInt32 ffxZeroOneAnd(FfxUInt32 x, FfxUInt32 y)
+{
+ return min(x, y);
+}
+
+/// Conditional free logic AND operation using two values.
+///
+/// @param [in] x The first value to be fed into the AND operator.
+/// @param [in] y The second value to be fed into the AND operator.
+///
+/// @returns
+/// Result of the AND operation.
+///
+/// @ingroup GPU
+FfxUInt32x2 ffxZeroOneAnd(FfxUInt32x2 x, FfxUInt32x2 y)
+{
+ return min(x, y);
+}
+
+/// Conditional free logic AND operation using two values.
+///
+/// @param [in] x The first value to be fed into the AND operator.
+/// @param [in] y The second value to be fed into the AND operator.
+///
+/// @returns
+/// Result of the AND operation.
+///
+/// @ingroup GPU
+FfxUInt32x3 ffxZeroOneAnd(FfxUInt32x3 x, FfxUInt32x3 y)
+{
+ return min(x, y);
+}
+
+/// Conditional free logic AND operation using two values.
+///
+/// @param [in] x The first value to be fed into the AND operator.
+/// @param [in] y The second value to be fed into the AND operator.
+///
+/// @returns
+/// Result of the AND operation.
+///
+/// @ingroup GPU
+FfxUInt32x4 ffxZeroOneAnd(FfxUInt32x4 x, FfxUInt32x4 y)
+{
+ return min(x, y);
+}
+
+/// Conditional free logic NOT operation using two values.
+///
+/// @param [in] x The first value to be fed into the NOT operator.
+/// @param [in] y The second value to be fed into the NOT operator.
+///
+/// @returns
+/// Result of the NOT operation.
+///
+/// @ingroup GPU
+FfxUInt32 ffxZeroOneAnd(FfxUInt32 x)
+{
+ return x ^ FfxUInt32(1);
+}
+
+/// Conditional free logic NOT operation using two values.
+///
+/// @param [in] x The first value to be fed into the NOT operator.
+/// @param [in] y The second value to be fed into the NOT operator.
+///
+/// @returns
+/// Result of the NOT operation.
+///
+/// @ingroup GPU
+FfxUInt32x2 ffxZeroOneAnd(FfxUInt32x2 x)
+{
+ return x ^ ffxBroadcast2(1u);
+}
+
+/// Conditional free logic NOT operation using two values.
+///
+/// @param [in] x The first value to be fed into the NOT operator.
+/// @param [in] y The second value to be fed into the NOT operator.
+///
+/// @returns
+/// Result of the NOT operation.
+///
+/// @ingroup GPU
+FfxUInt32x3 ffxZeroOneAnd(FfxUInt32x3 x)
+{
+ return x ^ ffxBroadcast3(1u);
+}
+
+/// Conditional free logic NOT operation using two values.
+///
+/// @param [in] x The first value to be fed into the NOT operator.
+/// @param [in] y The second value to be fed into the NOT operator.
+///
+/// @returns
+/// Result of the NOT operation.
+///
+/// @ingroup GPU
+FfxUInt32x4 ffxZeroOneAnd(FfxUInt32x4 x)
+{
+ return x ^ ffxBroadcast4(1u);
+}
+
+/// Conditional free logic OR operation using two values.
+///
+/// @param [in] x The first value to be fed into the OR operator.
+/// @param [in] y The second value to be fed into the OR operator.
+///
+/// @returns
+/// Result of the OR operation.
+///
+/// @ingroup GPU
+FfxUInt32 ffxZeroOneOr(FfxUInt32 x, FfxUInt32 y)
+{
+ return max(x, y);
+}
+
+/// Conditional free logic OR operation using two values.
+///
+/// @param [in] x The first value to be fed into the OR operator.
+/// @param [in] y The second value to be fed into the OR operator.
+///
+/// @returns
+/// Result of the OR operation.
+///
+/// @ingroup GPU
+FfxUInt32x2 ffxZeroOneOr(FfxUInt32x2 x, FfxUInt32x2 y)
+{
+ return max(x, y);
+}
+
+/// Conditional free logic OR operation using two values.
+///
+/// @param [in] x The first value to be fed into the OR operator.
+/// @param [in] y The second value to be fed into the OR operator.
+///
+/// @returns
+/// Result of the OR operation.
+///
+/// @ingroup GPU
+FfxUInt32x3 ffxZeroOneOr(FfxUInt32x3 x, FfxUInt32x3 y)
+{
+ return max(x, y);
+}
+
+/// Conditional free logic OR operation using two values.
+///
+/// @param [in] x The first value to be fed into the OR operator.
+/// @param [in] y The second value to be fed into the OR operator.
+///
+/// @returns
+/// Result of the OR operation.
+///
+/// @ingroup GPU
+FfxUInt32x4 ffxZeroOneOr(FfxUInt32x4 x, FfxUInt32x4 y)
+{
+ return max(x, y);
+}
+
+/// Conditional free logic signed NOT operation using two half-precision FfxFloat32 values.
+///
+/// @param [in] x The first value to be fed into the AND OR operator.
+///
+/// @returns
+/// Result of the AND OR operation.
+///
+/// @ingroup GPU
+FfxUInt32 ffxZeroOneAndToU1(FfxFloat32 x)
+{
+ return FfxUInt32(FfxFloat32(1.0) - x);
+}
+
+/// Conditional free logic signed NOT operation using two half-precision FfxFloat32 values.
+///
+/// @param [in] x The first value to be fed into the AND OR operator.
+///
+/// @returns
+/// Result of the AND OR operation.
+///
+/// @ingroup GPU
+FfxUInt32x2 ffxZeroOneAndToU2(FfxFloat32x2 x)
+{
+ return FfxUInt32x2(ffxBroadcast2(1.0) - x);
+}
+
+/// Conditional free logic signed NOT operation using two half-precision FfxFloat32 values.
+///
+/// @param [in] x The first value to be fed into the AND OR operator.
+///
+/// @returns
+/// Result of the AND OR operation.
+///
+/// @ingroup GPU
+FfxUInt32x3 ffxZeroOneAndToU3(FfxFloat32x3 x)
+{
+ return FfxUInt32x3(ffxBroadcast3(1.0) - x);
+}
+
+/// Conditional free logic signed NOT operation using two half-precision FfxFloat32 values.
+///
+/// @param [in] x The first value to be fed into the AND OR operator.
+///
+/// @returns
+/// Result of the AND OR operation.
+///
+/// @ingroup GPU
+FfxUInt32x4 ffxZeroOneAndToU4(FfxFloat32x4 x)
+{
+ return FfxUInt32x4(ffxBroadcast4(1.0) - x);
+}
+
+/// Conditional free logic AND operation using two values followed by a NOT operation
+/// using the resulting value and a third value.
+///
+/// @param [in] x The first value to be fed into the AND operator.
+/// @param [in] y The second value to be fed into the AND operator.
+/// @param [in] z The second value to be fed into the OR operator.
+///
+/// @returns
+/// Result of the AND OR operation.
+///
+/// @ingroup GPU
+FfxFloat32 ffxZeroOneAndOr(FfxFloat32 x, FfxFloat32 y, FfxFloat32 z)
+{
+ return ffxSaturate(x * y + z);
+}
+
+/// Conditional free logic AND operation using two values followed by a NOT operation
+/// using the resulting value and a third value.
+///
+/// @param [in] x The first value to be fed into the AND operator.
+/// @param [in] y The second value to be fed into the AND operator.
+/// @param [in] z The second value to be fed into the OR operator.
+///
+/// @returns
+/// Result of the AND OR operation.
+///
+/// @ingroup GPU
+FfxFloat32x2 ffxZeroOneAndOr(FfxFloat32x2 x, FfxFloat32x2 y, FfxFloat32x2 z)
+{
+ return ffxSaturate(x * y + z);
+}
+
+/// Conditional free logic AND operation using two values followed by a NOT operation
+/// using the resulting value and a third value.
+///
+/// @param [in] x The first value to be fed into the AND operator.
+/// @param [in] y The second value to be fed into the AND operator.
+/// @param [in] z The second value to be fed into the OR operator.
+///
+/// @returns
+/// Result of the AND OR operation.
+///
+/// @ingroup GPU
+FfxFloat32x3 ffxZeroOneAndOr(FfxFloat32x3 x, FfxFloat32x3 y, FfxFloat32x3 z)
+{
+ return ffxSaturate(x * y + z);
+}
+
+/// Conditional free logic AND operation using two values followed by a NOT operation
+/// using the resulting value and a third value.
+///
+/// @param [in] x The first value to be fed into the AND operator.
+/// @param [in] y The second value to be fed into the AND operator.
+/// @param [in] z The second value to be fed into the OR operator.
+///
+/// @returns
+/// Result of the AND OR operation.
+///
+/// @ingroup GPU
+FfxFloat32x4 ffxZeroOneAndOr(FfxFloat32x4 x, FfxFloat32x4 y, FfxFloat32x4 z)
+{
+ return ffxSaturate(x * y + z);
+}
+
+/// Given a value, returns 1.0 if greater than zero and 0.0 if not.
+///
+/// @param [in] x The value to be compared.
+///
+/// @returns
+/// Result of the greater than zero comparison.
+///
+/// @ingroup GPU
+FfxFloat32 ffxZeroOneIsGreaterThanZero(FfxFloat32 x)
+{
+ return ffxSaturate(x * FfxFloat32(FFX_POSITIVE_INFINITY_FLOAT));
+}
+
+/// Given a value, returns 1.0 if greater than zero and 0.0 if not.
+///
+/// @param [in] x The value to be compared.
+///
+/// @returns
+/// Result of the greater than zero comparison.
+///
+/// @ingroup GPU
+FfxFloat32x2 ffxZeroOneIsGreaterThanZero(FfxFloat32x2 x)
+{
+ return ffxSaturate(x * ffxBroadcast2(FFX_POSITIVE_INFINITY_FLOAT));
+}
+
+/// Given a value, returns 1.0 if greater than zero and 0.0 if not.
+///
+/// @param [in] x The value to be compared.
+///
+/// @returns
+/// Result of the greater than zero comparison.
+///
+/// @ingroup GPU
+FfxFloat32x3 ffxZeroOneIsGreaterThanZero(FfxFloat32x3 x)
+{
+ return ffxSaturate(x * ffxBroadcast3(FFX_POSITIVE_INFINITY_FLOAT));
+}
+
+/// Given a value, returns 1.0 if greater than zero and 0.0 if not.
+///
+/// @param [in] x The value to be compared.
+///
+/// @returns
+/// Result of the greater than zero comparison.
+///
+/// @ingroup GPU
+FfxFloat32x4 ffxZeroOneIsGreaterThanZero(FfxFloat32x4 x)
+{
+ return ffxSaturate(x * ffxBroadcast4(FFX_POSITIVE_INFINITY_FLOAT));
+}
+
+/// Conditional free logic signed NOT operation using two FfxFloat32 values.
+///
+/// @param [in] x The first value to be fed into the AND OR operator.
+///
+/// @returns
+/// Result of the AND OR operation.
+///
+/// @ingroup GPU
+FfxFloat32 ffxZeroOneAnd(FfxFloat32 x)
+{
+ return FfxFloat32(1.0) - x;
+}
+
+/// Conditional free logic signed NOT operation using two FfxFloat32 values.
+///
+/// @param [in] x The first value to be fed into the AND OR operator.
+///
+/// @returns
+/// Result of the AND OR operation.
+///
+/// @ingroup GPU
+FfxFloat32x2 ffxZeroOneAnd(FfxFloat32x2 x)
+{
+ return ffxBroadcast2(1.0) - x;
+}
+
+/// Conditional free logic signed NOT operation using two FfxFloat32 values.
+///
+/// @param [in] x The first value to be fed into the AND OR operator.
+///
+/// @returns
+/// Result of the AND OR operation.
+///
+/// @ingroup GPU
+FfxFloat32x3 ffxZeroOneAnd(FfxFloat32x3 x)
+{
+ return ffxBroadcast3(1.0) - x;
+}
+
+/// Conditional free logic signed NOT operation using two FfxFloat32 values.
+///
+/// @param [in] x The first value to be fed into the AND OR operator.
+///
+/// @returns
+/// Result of the AND OR operation.
+///
+/// @ingroup GPU
+FfxFloat32x4 ffxZeroOneAnd(FfxFloat32x4 x)
+{
+ return ffxBroadcast4(1.0) - x;
+}
+
+/// Conditional free logic OR operation using two FfxFloat32 values.
+///
+/// @param [in] x The first value to be fed into the OR operator.
+/// @param [in] y The second value to be fed into the OR operator.
+///
+/// @returns
+/// Result of the OR operation.
+///
+/// @ingroup GPU
+FfxFloat32 ffxZeroOneOr(FfxFloat32 x, FfxFloat32 y)
+{
+ return max(x, y);
+}
+
+/// Conditional free logic OR operation using two FfxFloat32 values.
+///
+/// @param [in] x The first value to be fed into the OR operator.
+/// @param [in] y The second value to be fed into the OR operator.
+///
+/// @returns
+/// Result of the OR operation.
+///
+/// @ingroup GPU
+FfxFloat32x2 ffxZeroOneOr(FfxFloat32x2 x, FfxFloat32x2 y)
+{
+ return max(x, y);
+}
+
+/// Conditional free logic OR operation using two FfxFloat32 values.
+///
+/// @param [in] x The first value to be fed into the OR operator.
+/// @param [in] y The second value to be fed into the OR operator.
+///
+/// @returns
+/// Result of the OR operation.
+///
+/// @ingroup GPU
+FfxFloat32x3 ffxZeroOneOr(FfxFloat32x3 x, FfxFloat32x3 y)
+{
+ return max(x, y);
+}
+
+/// Conditional free logic OR operation using two FfxFloat32 values.
+///
+/// @param [in] x The first value to be fed into the OR operator.
+/// @param [in] y The second value to be fed into the OR operator.
+///
+/// @returns
+/// Result of the OR operation.
+///
+/// @ingroup GPU
+FfxFloat32x4 ffxZeroOneOr(FfxFloat32x4 x, FfxFloat32x4 y)
+{
+ return max(x, y);
+}
+
+/// Choose between two FfxFloat32 values if the first paramter is greater than zero.
+///
+/// @param [in] x The value to compare against zero.
+/// @param [in] y The value to return if the comparision is greater than zero.
+/// @param [in] z The value to return if the comparision is less than or equal to zero.
+///
+/// @returns
+/// The selected value.
+///
+/// @ingroup GPU
+FfxFloat32 ffxZeroOneSelect(FfxFloat32 x, FfxFloat32 y, FfxFloat32 z)
+{
+ FfxFloat32 r = (-x) * z + z;
+ return x * y + r;
+}
+
+/// Choose between two FfxFloat32 values if the first paramter is greater than zero.
+///
+/// @param [in] x The value to compare against zero.
+/// @param [in] y The value to return if the comparision is greater than zero.
+/// @param [in] z The value to return if the comparision is less than or equal to zero.
+///
+/// @returns
+/// The selected value.
+///
+/// @ingroup GPU
+FfxFloat32x2 ffxZeroOneSelect(FfxFloat32x2 x, FfxFloat32x2 y, FfxFloat32x2 z)
+{
+ FfxFloat32x2 r = (-x) * z + z;
+ return x * y + r;
+}
+
+/// Choose between two FfxFloat32 values if the first paramter is greater than zero.
+///
+/// @param [in] x The value to compare against zero.
+/// @param [in] y The value to return if the comparision is greater than zero.
+/// @param [in] z The value to return if the comparision is less than or equal to zero.
+///
+/// @returns
+/// The selected value.
+///
+/// @ingroup GPU
+FfxFloat32x3 ffxZeroOneSelect(FfxFloat32x3 x, FfxFloat32x3 y, FfxFloat32x3 z)
+{
+ FfxFloat32x3 r = (-x) * z + z;
+ return x * y + r;
+}
+
+/// Choose between two FfxFloat32 values if the first paramter is greater than zero.
+///
+/// @param [in] x The value to compare against zero.
+/// @param [in] y The value to return if the comparision is greater than zero.
+/// @param [in] z The value to return if the comparision is less than or equal to zero.
+///
+/// @returns
+/// The selected value.
+///
+/// @ingroup GPU
+FfxFloat32x4 ffxZeroOneSelect(FfxFloat32x4 x, FfxFloat32x4 y, FfxFloat32x4 z)
+{
+ FfxFloat32x4 r = (-x) * z + z;
+ return x * y + r;
+}
+
+/// Given a value, returns 1.0 if less than zero and 0.0 if not.
+///
+/// @param [in] x The value to be compared.
+///
+/// @returns
+/// Result of the sign value.
+///
+/// @ingroup GPU
+FfxFloat32 ffxZeroOneIsSigned(FfxFloat32 x)
+{
+ return ffxSaturate(x * FfxFloat32(FFX_NEGATIVE_INFINITY_FLOAT));
+}
+
+/// Given a value, returns 1.0 if less than zero and 0.0 if not.
+///
+/// @param [in] x The value to be compared.
+///
+/// @returns
+/// Result of the sign value.
+///
+/// @ingroup GPU
+FfxFloat32x2 ffxZeroOneIsSigned(FfxFloat32x2 x)
+{
+ return ffxSaturate(x * ffxBroadcast2(FFX_NEGATIVE_INFINITY_FLOAT));
+}
+
+/// Given a value, returns 1.0 if less than zero and 0.0 if not.
+///
+/// @param [in] x The value to be compared.
+///
+/// @returns
+/// Result of the sign value.
+///
+/// @ingroup GPU
+FfxFloat32x3 ffxZeroOneIsSigned(FfxFloat32x3 x)
+{
+ return ffxSaturate(x * ffxBroadcast3(FFX_NEGATIVE_INFINITY_FLOAT));
+}
+
+/// Given a value, returns 1.0 if less than zero and 0.0 if not.
+///
+/// @param [in] x The value to be compared.
+///
+/// @returns
+/// Result of the sign value.
+///
+/// @ingroup GPU
+FfxFloat32x4 ffxZeroOneIsSigned(FfxFloat32x4 x)
+{
+ return ffxSaturate(x * ffxBroadcast4(FFX_NEGATIVE_INFINITY_FLOAT));
+}
+
+/// Compute a Rec.709 color space.
+///
+/// Rec.709 is used for some HDTVs.
+///
+/// Both Rec.709 and sRGB have a linear segment which as spec'ed would intersect the curved segment 2 times.
+/// (a.) For 8-bit sRGB, steps {0 to 10.3} are in the linear region (4% of the encoding range).
+/// (b.) For 8-bit 709, steps {0 to 20.7} are in the linear region (8% of the encoding range).
+///
+/// @param [in] color The color to convert to Rec. 709.
+///
+/// @returns
+/// The <c><i>color</i></c> in linear space.
+///
+/// @ingroup GPU
+FfxFloat32 ffxRec709FromLinear(FfxFloat32 color)
+{
+ FfxFloat32x3 j = FfxFloat32x3(0.018 * 4.5, 4.5, 0.45);
+ FfxFloat32x2 k = FfxFloat32x2(1.099, -0.099);
+ return clamp(j.x, color * j.y, pow(color, j.z) * k.x + k.y);
+}
+
+/// Compute a Rec.709 color space.
+///
+/// Rec.709 is used for some HDTVs.
+///
+/// Both Rec.709 and sRGB have a linear segment which as spec'ed would intersect the curved segment 2 times.
+/// (a.) For 8-bit sRGB, steps {0 to 10.3} are in the linear region (4% of the encoding range).
+/// (b.) For 8-bit 709, steps {0 to 20.7} are in the linear region (8% of the encoding range).
+///
+/// @param [in] color The color to convert to Rec. 709.
+///
+/// @returns
+/// The <c><i>color</i></c> in linear space.
+///
+/// @ingroup GPU
+FfxFloat32x2 ffxRec709FromLinear(FfxFloat32x2 color)
+{
+ FfxFloat32x3 j = FfxFloat32x3(0.018 * 4.5, 4.5, 0.45);
+ FfxFloat32x2 k = FfxFloat32x2(1.099, -0.099);
+ return clamp(j.xx, color * j.yy, pow(color, j.zz) * k.xx + k.yy);
+}
+
+/// Compute a Rec.709 color space.
+///
+/// Rec.709 is used for some HDTVs.
+///
+/// Both Rec.709 and sRGB have a linear segment which as spec'ed would intersect the curved segment 2 times.
+/// (a.) For 8-bit sRGB, steps {0 to 10.3} are in the linear region (4% of the encoding range).
+/// (b.) For 8-bit 709, steps {0 to 20.7} are in the linear region (8% of the encoding range).
+///
+/// @param [in] color The color to convert to Rec. 709.
+///
+/// @returns
+/// The <c><i>color</i></c> in linear space.
+///
+/// @ingroup GPU
+FfxFloat32x3 ffxRec709FromLinear(FfxFloat32x3 color)
+{
+ FfxFloat32x3 j = FfxFloat32x3(0.018 * 4.5, 4.5, 0.45);
+ FfxFloat32x2 k = FfxFloat32x2(1.099, -0.099);
+ return clamp(j.xxx, color * j.yyy, pow(color, j.zzz) * k.xxx + k.yyy);
+}
+
+/// Compute a gamma value from a linear value.
+///
+/// Typically 2.2 for some PC displays, or 2.4-2.5 for CRTs, or 2.2 FreeSync2 native.
+///
+/// Note: 'rcpX' is '1/x', where the 'x' is what would be used in <c><i>ffxLinearFromGamma</i></c>.
+///
+/// @param [in] value The value to convert to gamma space from linear.
+/// @param [in] power The reciprocal of power value used for the gamma curve.
+///
+/// @returns
+/// A value in gamma space.
+///
+/// @ingroup GPU
+FfxFloat32 ffxGammaFromLinear(FfxFloat32 color, FfxFloat32 rcpX)
+{
+ return pow(color, FfxFloat32(rcpX));
+}
+
+/// Compute a gamma value from a linear value.
+///
+/// Typically 2.2 for some PC displays, or 2.4-2.5 for CRTs, or 2.2 FreeSync2 native.
+///
+/// Note: 'rcpX' is '1/x', where the 'x' is what would be used in <c><i>ffxLinearFromGamma</i></c>.
+///
+/// @param [in] value The value to convert to gamma space from linear.
+/// @param [in] power The reciprocal of power value used for the gamma curve.
+///
+/// @returns
+/// A value in gamma space.
+///
+/// @ingroup GPU
+FfxFloat32x2 ffxGammaFromLinear(FfxFloat32x2 color, FfxFloat32 rcpX)
+{
+ return pow(color, ffxBroadcast2(rcpX));
+}
+
+/// Compute a gamma value from a linear value.
+///
+/// Typically 2.2 for some PC displays, or 2.4-2.5 for CRTs, or 2.2 FreeSync2 native.
+///
+/// Note: 'rcpX' is '1/x', where the 'x' is what would be used in <c><i>ffxLinearFromGamma</i></c>.
+///
+/// @param [in] value The value to convert to gamma space from linear.
+/// @param [in] power The reciprocal of power value used for the gamma curve.
+///
+/// @returns
+/// A value in gamma space.
+///
+/// @ingroup GPU
+FfxFloat32x3 ffxGammaFromLinear(FfxFloat32x3 color, FfxFloat32 rcpX)
+{
+ return pow(color, ffxBroadcast3(rcpX));
+}
+
+/// Compute a PQ value from a linear value.
+///
+/// @param [in] value The value to convert to PQ from linear.
+///
+/// @returns
+/// A value in linear space.
+///
+/// @ingroup GPU
+FfxFloat32 ffxPQToLinear(FfxFloat32 x)
+{
+ FfxFloat32 p = pow(x, FfxFloat32(0.159302));
+ return pow((FfxFloat32(0.835938) + FfxFloat32(18.8516) * p) / (FfxFloat32(1.0) + FfxFloat32(18.6875) * p), FfxFloat32(78.8438));
+}
+
+/// Compute a PQ value from a linear value.
+///
+/// @param [in] value The value to convert to PQ from linear.
+///
+/// @returns
+/// A value in linear space.
+///
+/// @ingroup GPU
+FfxFloat32x2 ffxPQToLinear(FfxFloat32x2 x)
+{
+ FfxFloat32x2 p = pow(x, ffxBroadcast2(0.159302));
+ return pow((ffxBroadcast2(0.835938) + ffxBroadcast2(18.8516) * p) / (ffxBroadcast2(1.0) + ffxBroadcast2(18.6875) * p), ffxBroadcast2(78.8438));
+}
+
+/// Compute a PQ value from a linear value.
+///
+/// @param [in] value The value to convert to PQ from linear.
+///
+/// @returns
+/// A value in linear space.
+///
+/// @ingroup GPU
+FfxFloat32x3 ffxPQToLinear(FfxFloat32x3 x)
+{
+ FfxFloat32x3 p = pow(x, ffxBroadcast3(0.159302));
+ return pow((ffxBroadcast3(0.835938) + ffxBroadcast3(18.8516) * p) / (ffxBroadcast3(1.0) + ffxBroadcast3(18.6875) * p), ffxBroadcast3(78.8438));
+}
+
+/// Compute a linear value from a SRGB value.
+///
+/// @param [in] value The value to convert to linear from SRGB.
+///
+/// @returns
+/// A value in SRGB space.
+///
+/// @ingroup GPU
+FfxFloat32 ffxSrgbToLinear(FfxFloat32 color)
+{
+ FfxFloat32x3 j = FfxFloat32x3(0.0031308 * 12.92, 12.92, 1.0 / 2.4);
+ FfxFloat32x2 k = FfxFloat32x2(1.055, -0.055);
+ return clamp(j.x, color * j.y, pow(color, j.z) * k.x + k.y);
+}
+
+/// Compute a linear value from a SRGB value.
+///
+/// @param [in] value The value to convert to linear from SRGB.
+///
+/// @returns
+/// A value in SRGB space.
+///
+/// @ingroup GPU
+FfxFloat32x2 ffxSrgbToLinear(FfxFloat32x2 color)
+{
+ FfxFloat32x3 j = FfxFloat32x3(0.0031308 * 12.92, 12.92, 1.0 / 2.4);
+ FfxFloat32x2 k = FfxFloat32x2(1.055, -0.055);
+ return clamp(j.xx, color * j.yy, pow(color, j.zz) * k.xx + k.yy);
+}
+
+/// Compute a linear value from a SRGB value.
+///
+/// @param [in] value The value to convert to linear from SRGB.
+///
+/// @returns
+/// A value in SRGB space.
+///
+/// @ingroup GPU
+FfxFloat32x3 ffxSrgbToLinear(FfxFloat32x3 color)
+{
+ FfxFloat32x3 j = FfxFloat32x3(0.0031308 * 12.92, 12.92, 1.0 / 2.4);
+ FfxFloat32x2 k = FfxFloat32x2(1.055, -0.055);
+ return clamp(j.xxx, color * j.yyy, pow(color, j.zzz) * k.xxx + k.yyy);
+}
+
+/// Compute a linear value from a REC.709 value.
+///
+/// @param [in] color The value to convert to linear from REC.709.
+///
+/// @returns
+/// A value in linear space.
+///
+/// @ingroup GPU
+FfxFloat32 ffxLinearFromRec709(FfxFloat32 color)
+{
+ FfxFloat32x3 j = FfxFloat32x3(0.081 / 4.5, 1.0 / 4.5, 1.0 / 0.45);
+ FfxFloat32x2 k = FfxFloat32x2(1.0 / 1.099, 0.099 / 1.099);
+ return ffxZeroOneSelect(ffxZeroOneIsSigned(color - j.x), color * j.y, pow(color * k.x + k.y, j.z));
+}
+
+/// Compute a linear value from a REC.709 value.
+///
+/// @param [in] color The value to convert to linear from REC.709.
+///
+/// @returns
+/// A value in linear space.
+///
+/// @ingroup GPU
+FfxFloat32x2 ffxLinearFromRec709(FfxFloat32x2 color)
+{
+ FfxFloat32x3 j = FfxFloat32x3(0.081 / 4.5, 1.0 / 4.5, 1.0 / 0.45);
+ FfxFloat32x2 k = FfxFloat32x2(1.0 / 1.099, 0.099 / 1.099);
+ return ffxZeroOneSelect(ffxZeroOneIsSigned(color - j.xx), color * j.yy, pow(color * k.xx + k.yy, j.zz));
+}
+
+/// Compute a linear value from a REC.709 value.
+///
+/// @param [in] color The value to convert to linear from REC.709.
+///
+/// @returns
+/// A value in linear space.
+///
+/// @ingroup GPU
+FfxFloat32x3 ffxLinearFromRec709(FfxFloat32x3 color)
+{
+ FfxFloat32x3 j = FfxFloat32x3(0.081 / 4.5, 1.0 / 4.5, 1.0 / 0.45);
+ FfxFloat32x2 k = FfxFloat32x2(1.0 / 1.099, 0.099 / 1.099);
+ return ffxZeroOneSelect(ffxZeroOneIsSigned(color - j.xxx), color * j.yyy, pow(color * k.xxx + k.yyy, j.zzz));
+}
+
+/// Compute a linear value from a value in a gamma space.
+///
+/// Typically 2.2 for some PC displays, or 2.4-2.5 for CRTs, or 2.2 FreeSync2 native.
+///
+/// @param [in] color The value to convert to linear in gamma space.
+/// @param [in] power The power value used for the gamma curve.
+///
+/// @returns
+/// A value in linear space.
+///
+/// @ingroup GPU
+FfxFloat32 ffxLinearFromGamma(FfxFloat32 color, FfxFloat32 power)
+{
+ return pow(color, FfxFloat32(power));
+}
+
+/// Compute a linear value from a value in a gamma space.
+///
+/// Typically 2.2 for some PC displays, or 2.4-2.5 for CRTs, or 2.2 FreeSync2 native.
+///
+/// @param [in] color The value to convert to linear in gamma space.
+/// @param [in] power The power value used for the gamma curve.
+///
+/// @returns
+/// A value in linear space.
+///
+/// @ingroup GPU
+FfxFloat32x2 ffxLinearFromGamma(FfxFloat32x2 color, FfxFloat32 power)
+{
+ return pow(color, ffxBroadcast2(power));
+}
+
+/// Compute a linear value from a value in a gamma space.
+///
+/// Typically 2.2 for some PC displays, or 2.4-2.5 for CRTs, or 2.2 FreeSync2 native.
+///
+/// @param [in] color The value to convert to linear in gamma space.
+/// @param [in] power The power value used for the gamma curve.
+///
+/// @returns
+/// A value in linear space.
+///
+/// @ingroup GPU
+FfxFloat32x3 ffxLinearFromGamma(FfxFloat32x3 color, FfxFloat32 power)
+{
+ return pow(color, ffxBroadcast3(power));
+}
+
+/// Compute a linear value from a value in a PQ space.
+///
+/// Typically 2.2 for some PC displays, or 2.4-2.5 for CRTs, or 2.2 FreeSync2 native.
+///
+/// @param [in] value The value to convert to linear in PQ space.
+///
+/// @returns
+/// A value in linear space.
+///
+/// @ingroup GPU
+FfxFloat32 ffxLinearFromPQ(FfxFloat32 x)
+{
+ FfxFloat32 p = pow(x, FfxFloat32(0.0126833));
+ return pow(ffxSaturate(p - FfxFloat32(0.835938)) / (FfxFloat32(18.8516) - FfxFloat32(18.6875) * p), FfxFloat32(6.27739));
+}
+
+/// Compute a linear value from a value in a PQ space.
+///
+/// Typically 2.2 for some PC displays, or 2.4-2.5 for CRTs, or 2.2 FreeSync2 native.
+///
+/// @param [in] value The value to convert to linear in PQ space.
+///
+/// @returns
+/// A value in linear space.
+///
+/// @ingroup GPU
+FfxFloat32x2 ffxLinearFromPQ(FfxFloat32x2 x)
+{
+ FfxFloat32x2 p = pow(x, ffxBroadcast2(0.0126833));
+ return pow(ffxSaturate(p - ffxBroadcast2(0.835938)) / (ffxBroadcast2(18.8516) - ffxBroadcast2(18.6875) * p), ffxBroadcast2(6.27739));
+}
+
+/// Compute a linear value from a value in a PQ space.
+///
+/// Typically 2.2 for some PC displays, or 2.4-2.5 for CRTs, or 2.2 FreeSync2 native.
+///
+/// @param [in] value The value to convert to linear in PQ space.
+///
+/// @returns
+/// A value in linear space.
+///
+/// @ingroup GPU
+FfxFloat32x3 ffxLinearFromPQ(FfxFloat32x3 x)
+{
+ FfxFloat32x3 p = pow(x, ffxBroadcast3(0.0126833));
+ return pow(ffxSaturate(p - ffxBroadcast3(0.835938)) / (ffxBroadcast3(18.8516) - ffxBroadcast3(18.6875) * p), ffxBroadcast3(6.27739));
+}
+
+/// Compute a linear value from a value in a SRGB space.
+///
+/// Typically 2.2 for some PC displays, or 2.4-2.5 for CRTs, or 2.2 FreeSync2 native.
+///
+/// @param [in] value The value to convert to linear in SRGB space.
+///
+/// @returns
+/// A value in linear space.
+///
+/// @ingroup GPU
+FfxFloat32 ffxLinearFromSrgb(FfxFloat32 color)
+{
+ FfxFloat32x3 j = FfxFloat32x3(0.04045 / 12.92, 1.0 / 12.92, 2.4);
+ FfxFloat32x2 k = FfxFloat32x2(1.0 / 1.055, 0.055 / 1.055);
+ return ffxZeroOneSelect(ffxZeroOneIsSigned(color - j.x), color * j.y, pow(color * k.x + k.y, j.z));
+}
+
+/// Compute a linear value from a value in a SRGB space.
+///
+/// Typically 2.2 for some PC displays, or 2.4-2.5 for CRTs, or 2.2 FreeSync2 native.
+///
+/// @param [in] value The value to convert to linear in SRGB space.
+///
+/// @returns
+/// A value in linear space.
+///
+/// @ingroup GPU
+FfxFloat32x2 ffxLinearFromSrgb(FfxFloat32x2 color)
+{
+ FfxFloat32x3 j = FfxFloat32x3(0.04045 / 12.92, 1.0 / 12.92, 2.4);
+ FfxFloat32x2 k = FfxFloat32x2(1.0 / 1.055, 0.055 / 1.055);
+ return ffxZeroOneSelect(ffxZeroOneIsSigned(color - j.xx), color * j.yy, pow(color * k.xx + k.yy, j.zz));
+}
+
+/// Compute a linear value from a value in a SRGB space.
+///
+/// Typically 2.2 for some PC displays, or 2.4-2.5 for CRTs, or 2.2 FreeSync2 native.
+///
+/// @param [in] value The value to convert to linear in SRGB space.
+///
+/// @returns
+/// A value in linear space.
+///
+/// @ingroup GPU
+FfxFloat32x3 ffxLinearFromSrgb(FfxFloat32x3 color)
+{
+ FfxFloat32x3 j = FfxFloat32x3(0.04045 / 12.92, 1.0 / 12.92, 2.4);
+ FfxFloat32x2 k = FfxFloat32x2(1.0 / 1.055, 0.055 / 1.055);
+ return ffxZeroOneSelect(ffxZeroOneIsSigned(color - j.xxx), color * j.yyy, pow(color * k.xxx + k.yyy, j.zzz));
+}
+
+/// A remapping of 64x1 to 8x8 imposing rotated 2x2 pixel quads in quad linear.
+///
+/// 543210
+/// ======
+/// ..xxx.
+/// yy...y
+///
+/// @param [in] a The input 1D coordinates to remap.
+///
+/// @returns
+/// The remapped 2D coordinates.
+///
+/// @ingroup GPU
+FfxUInt32x2 ffxRemapForQuad(FfxUInt32 a)
+{
+ return FfxUInt32x2(bitfieldExtract(a, 1u, 3u), bitfieldInsertMask(bitfieldExtract(a, 3u, 3u), a, 1u));
+}
+
+/// A helper function performing a remap 64x1 to 8x8 remapping which is necessary for 2D wave reductions.
+///
+/// The 64-wide lane indices to 8x8 remapping is performed as follows:
+///
+/// 00 01 08 09 10 11 18 19
+/// 02 03 0a 0b 12 13 1a 1b
+/// 04 05 0c 0d 14 15 1c 1d
+/// 06 07 0e 0f 16 17 1e 1f
+/// 20 21 28 29 30 31 38 39
+/// 22 23 2a 2b 32 33 3a 3b
+/// 24 25 2c 2d 34 35 3c 3d
+/// 26 27 2e 2f 36 37 3e 3f
+///
+/// @param [in] a The input 1D coordinate to remap.
+///
+/// @returns
+/// The remapped 2D coordinates.
+///
+/// @ingroup GPU
+FfxUInt32x2 ffxRemapForWaveReduction(FfxUInt32 a)
+{
+ return FfxUInt32x2(bitfieldInsertMask(bitfieldExtract(a, 2u, 3u), a, 1u), bitfieldInsertMask(bitfieldExtract(a, 3u, 3u), bitfieldExtract(a, 1u, 2u), 2u));
+}
diff --git a/thirdparty/amd-fsr2/shaders/ffx_core_gpu_common_half.h b/thirdparty/amd-fsr2/shaders/ffx_core_gpu_common_half.h
new file mode 100644
index 0000000000..c46ccb3657
--- /dev/null
+++ b/thirdparty/amd-fsr2/shaders/ffx_core_gpu_common_half.h
@@ -0,0 +1,2978 @@
+// This file is part of the FidelityFX SDK.
+//
+// Copyright (c) 2022-2023 Advanced Micro Devices, Inc. All rights reserved.
+//
+// Permission is hereby granted, free of charge, to any person obtaining a copy
+// of this software and associated documentation files (the "Software"), to deal
+// in the Software without restriction, including without limitation the rights
+// to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
+// copies of the Software, and to permit persons to whom the Software is
+// furnished to do so, subject to the following conditions:
+// The above copyright notice and this permission notice shall be included in
+// all copies or substantial portions of the Software.
+//
+// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
+// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
+// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
+// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
+// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
+// OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
+// THE SOFTWARE.
+
+#if FFX_HALF
+#if FFX_HLSL_6_2
+/// A define value for 16bit positive infinity.
+///
+/// @ingroup GPU
+#define FFX_POSITIVE_INFINITY_HALF FFX_TO_FLOAT16((uint16_t)0x7c00u)
+
+/// A define value for 16bit negative infinity.
+///
+/// @ingroup GPU
+#define FFX_NEGATIVE_INFINITY_HALF FFX_TO_FLOAT16((uint16_t)0xfc00u)
+#else
+/// A define value for 16bit positive infinity.
+///
+/// @ingroup GPU
+#define FFX_POSITIVE_INFINITY_HALF FFX_TO_FLOAT16(0x7c00u)
+
+/// A define value for 16bit negative infinity.
+///
+/// @ingroup GPU
+#define FFX_NEGATIVE_INFINITY_HALF FFX_TO_FLOAT16(0xfc00u)
+#endif // FFX_HLSL_6_2
+
+/// Compute the min of two values.
+///
+/// @param [in] x The first value to compute the min of.
+/// @param [in] y The second value to compute the min of.
+///
+/// @returns
+/// The the lowest of two values.
+///
+/// @ingroup GPU
+FfxFloat16 ffxMin(FfxFloat16 x, FfxFloat16 y)
+{
+ return min(x, y);
+}
+
+/// Compute the min of two values.
+///
+/// @param [in] x The first value to compute the min of.
+/// @param [in] y The second value to compute the min of.
+///
+/// @returns
+/// The the lowest of two values.
+///
+/// @ingroup GPU
+FfxFloat16x2 ffxMin(FfxFloat16x2 x, FfxFloat16x2 y)
+{
+ return min(x, y);
+}
+
+/// Compute the min of two values.
+///
+/// @param [in] x The first value to compute the min of.
+/// @param [in] y The second value to compute the min of.
+///
+/// @returns
+/// The the lowest of two values.
+///
+/// @ingroup GPU
+FfxFloat16x3 ffxMin(FfxFloat16x3 x, FfxFloat16x3 y)
+{
+ return min(x, y);
+}
+
+/// Compute the min of two values.
+///
+/// @param [in] x The first value to compute the min of.
+/// @param [in] y The second value to compute the min of.
+///
+/// @returns
+/// The the lowest of two values.
+///
+/// @ingroup GPU
+FfxFloat16x4 ffxMin(FfxFloat16x4 x, FfxFloat16x4 y)
+{
+ return min(x, y);
+}
+
+/// Compute the min of two values.
+///
+/// @param [in] x The first value to compute the min of.
+/// @param [in] y The second value to compute the min of.
+///
+/// @returns
+/// The the lowest of two values.
+///
+/// @ingroup GPU
+FfxInt16 ffxMin(FfxInt16 x, FfxInt16 y)
+{
+ return min(x, y);
+}
+
+/// Compute the min of two values.
+///
+/// @param [in] x The first value to compute the min of.
+/// @param [in] y The second value to compute the min of.
+///
+/// @returns
+/// The the lowest of two values.
+///
+/// @ingroup GPU
+FfxInt16x2 ffxMin(FfxInt16x2 x, FfxInt16x2 y)
+{
+ return min(x, y);
+}
+
+/// Compute the min of two values.
+///
+/// @param [in] x The first value to compute the min of.
+/// @param [in] y The second value to compute the min of.
+///
+/// @returns
+/// The the lowest of two values.
+///
+/// @ingroup GPU
+FfxInt16x3 ffxMin(FfxInt16x3 x, FfxInt16x3 y)
+{
+ return min(x, y);
+}
+
+/// Compute the min of two values.
+///
+/// @param [in] x The first value to compute the min of.
+/// @param [in] y The second value to compute the min of.
+///
+/// @returns
+/// The the lowest of two values.
+///
+/// @ingroup GPU
+FfxInt16x4 ffxMin(FfxInt16x4 x, FfxInt16x4 y)
+{
+ return min(x, y);
+}
+
+/// Compute the min of two values.
+///
+/// @param [in] x The first value to compute the min of.
+/// @param [in] y The second value to compute the min of.
+///
+/// @returns
+/// The the lowest of two values.
+///
+/// @ingroup GPU
+FfxUInt16 ffxMin(FfxUInt16 x, FfxUInt16 y)
+{
+ return min(x, y);
+}
+
+/// Compute the min of two values.
+///
+/// @param [in] x The first value to compute the min of.
+/// @param [in] y The second value to compute the min of.
+///
+/// @returns
+/// The the lowest of two values.
+///
+/// @ingroup GPU
+FfxUInt16x2 ffxMin(FfxUInt16x2 x, FfxUInt16x2 y)
+{
+ return min(x, y);
+}
+
+/// Compute the min of two values.
+///
+/// @param [in] x The first value to compute the min of.
+/// @param [in] y The second value to compute the min of.
+///
+/// @returns
+/// The the lowest of two values.
+///
+/// @ingroup GPU
+FfxUInt16x3 ffxMin(FfxUInt16x3 x, FfxUInt16x3 y)
+{
+ return min(x, y);
+}
+
+/// Compute the min of two values.
+///
+/// @param [in] x The first value to compute the min of.
+/// @param [in] y The second value to compute the min of.
+///
+/// @returns
+/// The the lowest of two values.
+///
+/// @ingroup GPU
+FfxUInt16x4 ffxMin(FfxUInt16x4 x, FfxUInt16x4 y)
+{
+ return min(x, y);
+}
+
+/// Compute the max of two values.
+///
+/// @param [in] x The first value to compute the max of.
+/// @param [in] y The second value to compute the max of.
+///
+/// @returns
+/// The the lowest of two values.
+///
+/// @ingroup GPU
+FfxFloat16 ffxMax(FfxFloat16 x, FfxFloat16 y)
+{
+ return max(x, y);
+}
+
+/// Compute the max of two values.
+///
+/// @param [in] x The first value to compute the max of.
+/// @param [in] y The second value to compute the max of.
+///
+/// @returns
+/// The the lowest of two values.
+///
+/// @ingroup GPU
+FfxFloat16x2 ffxMax(FfxFloat16x2 x, FfxFloat16x2 y)
+{
+ return max(x, y);
+}
+
+/// Compute the max of two values.
+///
+/// @param [in] x The first value to compute the max of.
+/// @param [in] y The second value to compute the max of.
+///
+/// @returns
+/// The the lowest of two values.
+///
+/// @ingroup GPU
+FfxFloat16x3 ffxMax(FfxFloat16x3 x, FfxFloat16x3 y)
+{
+ return max(x, y);
+}
+
+/// Compute the max of two values.
+///
+/// @param [in] x The first value to compute the max of.
+/// @param [in] y The second value to compute the max of.
+///
+/// @returns
+/// The the lowest of two values.
+///
+/// @ingroup GPU
+FfxFloat16x4 ffxMax(FfxFloat16x4 x, FfxFloat16x4 y)
+{
+ return max(x, y);
+}
+
+/// Compute the max of two values.
+///
+/// @param [in] x The first value to compute the max of.
+/// @param [in] y The second value to compute the max of.
+///
+/// @returns
+/// The the lowest of two values.
+///
+/// @ingroup GPU
+FfxInt16 ffxMax(FfxInt16 x, FfxInt16 y)
+{
+ return max(x, y);
+}
+
+/// Compute the max of two values.
+///
+/// @param [in] x The first value to compute the max of.
+/// @param [in] y The second value to compute the max of.
+///
+/// @returns
+/// The the lowest of two values.
+///
+/// @ingroup GPU
+FfxInt16x2 ffxMax(FfxInt16x2 x, FfxInt16x2 y)
+{
+ return max(x, y);
+}
+
+/// Compute the max of two values.
+///
+/// @param [in] x The first value to compute the max of.
+/// @param [in] y The second value to compute the max of.
+///
+/// @returns
+/// The the lowest of two values.
+///
+/// @ingroup GPU
+FfxInt16x3 ffxMax(FfxInt16x3 x, FfxInt16x3 y)
+{
+ return max(x, y);
+}
+
+/// Compute the max of two values.
+///
+/// @param [in] x The first value to compute the max of.
+/// @param [in] y The second value to compute the max of.
+///
+/// @returns
+/// The the lowest of two values.
+///
+/// @ingroup GPU
+FfxInt16x4 ffxMax(FfxInt16x4 x, FfxInt16x4 y)
+{
+ return max(x, y);
+}
+
+/// Compute the max of two values.
+///
+/// @param [in] x The first value to compute the max of.
+/// @param [in] y The second value to compute the max of.
+///
+/// @returns
+/// The the lowest of two values.
+///
+/// @ingroup GPU
+FfxUInt16 ffxMax(FfxUInt16 x, FfxUInt16 y)
+{
+ return max(x, y);
+}
+
+/// Compute the max of two values.
+///
+/// @param [in] x The first value to compute the max of.
+/// @param [in] y The second value to compute the max of.
+///
+/// @returns
+/// The the lowest of two values.
+///
+/// @ingroup GPU
+FfxUInt16x2 ffxMax(FfxUInt16x2 x, FfxUInt16x2 y)
+{
+ return max(x, y);
+}
+
+/// Compute the max of two values.
+///
+/// @param [in] x The first value to compute the max of.
+/// @param [in] y The second value to compute the max of.
+///
+/// @returns
+/// The the lowest of two values.
+///
+/// @ingroup GPU
+FfxUInt16x3 ffxMax(FfxUInt16x3 x, FfxUInt16x3 y)
+{
+ return max(x, y);
+}
+
+/// Compute the max of two values.
+///
+/// @param [in] x The first value to compute the max of.
+/// @param [in] y The second value to compute the max of.
+///
+/// @returns
+/// The the lowest of two values.
+///
+/// @ingroup GPU
+FfxUInt16x4 ffxMax(FfxUInt16x4 x, FfxUInt16x4 y)
+{
+ return max(x, y);
+}
+
+/// Compute the value of the first parameter raised to the power of the second.
+///
+/// @param [in] x The value to raise to the power y.
+/// @param [in] y The power to which to raise x.
+///
+/// @returns
+/// The value of the first parameter raised to the power of the second.
+///
+/// @ingroup GPU
+FfxFloat16 ffxPow(FfxFloat16 x, FfxFloat16 y)
+{
+ return pow(x, y);
+}
+
+/// Compute the value of the first parameter raised to the power of the second.
+///
+/// @param [in] x The value to raise to the power y.
+/// @param [in] y The power to which to raise x.
+///
+/// @returns
+/// The value of the first parameter raised to the power of the second.
+///
+/// @ingroup GPU
+FfxFloat16x2 ffxPow(FfxFloat16x2 x, FfxFloat16x2 y)
+{
+ return pow(x, y);
+}
+
+/// Compute the value of the first parameter raised to the power of the second.
+///
+/// @param [in] x The value to raise to the power y.
+/// @param [in] y The power to which to raise x.
+///
+/// @returns
+/// The value of the first parameter raised to the power of the second.
+///
+/// @ingroup GPU
+FfxFloat16x3 ffxPow(FfxFloat16x3 x, FfxFloat16x3 y)
+{
+ return pow(x, y);
+}
+
+/// Compute the value of the first parameter raised to the power of the second.
+///
+/// @param [in] x The value to raise to the power y.
+/// @param [in] y The power to which to raise x.
+///
+/// @returns
+/// The value of the first parameter raised to the power of the second.
+///
+/// @ingroup GPU
+FfxFloat16x4 ffxPow(FfxFloat16x4 x, FfxFloat16x4 y)
+{
+ return pow(x, y);
+}
+
+/// Compute the square root of a value.
+///
+/// @param [in] x The first value to compute the min of.
+///
+/// @returns
+/// The the square root of <c><i>x</i></c>.
+///
+/// @ingroup GPU
+FfxFloat16 ffxSqrt(FfxFloat16 x)
+{
+ return sqrt(x);
+}
+
+/// Compute the square root of a value.
+///
+/// @param [in] x The first value to compute the min of.
+///
+/// @returns
+/// The the square root of <c><i>x</i></c>.
+///
+/// @ingroup GPU
+FfxFloat16x2 ffxSqrt(FfxFloat16x2 x)
+{
+ return sqrt(x);
+}
+
+/// Compute the square root of a value.
+///
+/// @param [in] x The first value to compute the min of.
+///
+/// @returns
+/// The the square root of <c><i>x</i></c>.
+///
+/// @ingroup GPU
+FfxFloat16x3 ffxSqrt(FfxFloat16x3 x)
+{
+ return sqrt(x);
+}
+
+/// Compute the square root of a value.
+///
+/// @param [in] x The first value to compute the min of.
+///
+/// @returns
+/// The the square root of <c><i>x</i></c>.
+///
+/// @ingroup GPU
+FfxFloat16x4 ffxSqrt(FfxFloat16x4 x)
+{
+ return sqrt(x);
+}
+
+/// Copy the sign bit from 's' to positive 'd'.
+///
+/// @param [in] d The value to copy the sign bit into.
+/// @param [in] s The value to copy the sign bit from.
+///
+/// @returns
+/// The value of <c><i>d</i></c> with the sign bit from <c><i>s</i></c>.
+///
+/// @ingroup GPU
+FfxFloat16 ffxCopySignBitHalf(FfxFloat16 d, FfxFloat16 s)
+{
+ return FFX_TO_FLOAT16(FFX_TO_UINT16(d) | (FFX_TO_UINT16(s) & FFX_BROADCAST_UINT16(0x8000u)));
+}
+
+/// Copy the sign bit from 's' to positive 'd'.
+///
+/// @param [in] d The value to copy the sign bit into.
+/// @param [in] s The value to copy the sign bit from.
+///
+/// @returns
+/// The value of <c><i>d</i></c> with the sign bit from <c><i>s</i></c>.
+///
+/// @ingroup GPU
+FfxFloat16x2 ffxCopySignBitHalf(FfxFloat16x2 d, FfxFloat16x2 s)
+{
+ return FFX_TO_FLOAT16X2(FFX_TO_UINT16X2(d) | (FFX_TO_UINT16X2(s) & FFX_BROADCAST_UINT16X2(0x8000u)));
+}
+
+/// Copy the sign bit from 's' to positive 'd'.
+///
+/// @param [in] d The value to copy the sign bit into.
+/// @param [in] s The value to copy the sign bit from.
+///
+/// @returns
+/// The value of <c><i>d</i></c> with the sign bit from <c><i>s</i></c>.
+///
+/// @ingroup GPU
+FfxFloat16x3 ffxCopySignBitHalf(FfxFloat16x3 d, FfxFloat16x3 s)
+{
+ return FFX_TO_FLOAT16X3(FFX_TO_UINT16X3(d) | (FFX_TO_UINT16X3(s) & FFX_BROADCAST_UINT16X3(0x8000u)));
+}
+
+/// Copy the sign bit from 's' to positive 'd'.
+///
+/// @param [in] d The value to copy the sign bit into.
+/// @param [in] s The value to copy the sign bit from.
+///
+/// @returns
+/// The value of <c><i>d</i></c> with the sign bit from <c><i>s</i></c>.
+///
+/// @ingroup GPU
+FfxFloat16x4 ffxCopySignBitHalf(FfxFloat16x4 d, FfxFloat16x4 s)
+{
+ return FFX_TO_FLOAT16X4(FFX_TO_UINT16X4(d) | (FFX_TO_UINT16X4(s) & FFX_BROADCAST_UINT16X4(0x8000u)));
+}
+
+/// A single operation to return the following:
+/// m = NaN := 0
+/// m >= 0 := 0
+/// m < 0 := 1
+///
+/// Uses the following useful floating point logic,
+/// saturate(+a*(-INF)==-INF) := 0
+/// saturate( 0*(-INF)== NaN) := 0
+/// saturate(-a*(-INF)==+INF) := 1
+///
+/// This function is useful when creating masks for branch-free logic.
+///
+/// @param [in] m The value to test against 0.
+///
+/// @returns
+/// 1.0 when the value is negative, or 0.0 when the value is 0 or position.
+///
+/// @ingroup GPU
+FfxFloat16 ffxIsSignedHalf(FfxFloat16 m)
+{
+ return ffxSaturate(m * FFX_BROADCAST_FLOAT16(FFX_NEGATIVE_INFINITY_HALF));
+}
+
+/// A single operation to return the following:
+/// m = NaN := 0
+/// m >= 0 := 0
+/// m < 0 := 1
+///
+/// Uses the following useful floating point logic,
+/// saturate(+a*(-INF)==-INF) := 0
+/// saturate( 0*(-INF)== NaN) := 0
+/// saturate(-a*(-INF)==+INF) := 1
+///
+/// This function is useful when creating masks for branch-free logic.
+///
+/// @param [in] m The value to test against 0.
+///
+/// @returns
+/// 1.0 when the value is negative, or 0.0 when the value is 0 or position.
+///
+/// @ingroup GPU
+FfxFloat16x2 ffxIsSignedHalf(FfxFloat16x2 m)
+{
+ return ffxSaturate(m * FFX_BROADCAST_FLOAT16X2(FFX_NEGATIVE_INFINITY_HALF));
+}
+
+/// A single operation to return the following:
+/// m = NaN := 0
+/// m >= 0 := 0
+/// m < 0 := 1
+///
+/// Uses the following useful floating point logic,
+/// saturate(+a*(-INF)==-INF) := 0
+/// saturate( 0*(-INF)== NaN) := 0
+/// saturate(-a*(-INF)==+INF) := 1
+///
+/// This function is useful when creating masks for branch-free logic.
+///
+/// @param [in] m The value to test against 0.
+///
+/// @returns
+/// 1.0 when the value is negative, or 0.0 when the value is 0 or position.
+///
+/// @ingroup GPU
+FfxFloat16x3 ffxIsSignedHalf(FfxFloat16x3 m)
+{
+ return ffxSaturate(m * FFX_BROADCAST_FLOAT16X3(FFX_NEGATIVE_INFINITY_HALF));
+}
+
+/// A single operation to return the following:
+/// m = NaN := 0
+/// m >= 0 := 0
+/// m < 0 := 1
+///
+/// Uses the following useful floating point logic,
+/// saturate(+a*(-INF)==-INF) := 0
+/// saturate( 0*(-INF)== NaN) := 0
+/// saturate(-a*(-INF)==+INF) := 1
+///
+/// This function is useful when creating masks for branch-free logic.
+///
+/// @param [in] m The value to test against 0.
+///
+/// @returns
+/// 1.0 when the value is negative, or 0.0 when the value is 0 or position.
+///
+/// @ingroup GPU
+FfxFloat16x4 ffxIsSignedHalf(FfxFloat16x4 m)
+{
+ return ffxSaturate(m * FFX_BROADCAST_FLOAT16X4(FFX_NEGATIVE_INFINITY_HALF));
+}
+
+/// A single operation to return the following:
+/// m = NaN := 1
+/// m > 0 := 0
+/// m <= 0 := 1
+///
+/// This function is useful when creating masks for branch-free logic.
+///
+/// @param [in] m The value to test against zero.
+///
+/// @returns
+/// 1.0 when the value is position, or 0.0 when the value is 0 or negative.
+///
+/// @ingroup GPU
+FfxFloat16 ffxIsGreaterThanZeroHalf(FfxFloat16 m)
+{
+ return ffxSaturate(m * FFX_BROADCAST_FLOAT16(FFX_POSITIVE_INFINITY_HALF));
+}
+
+/// A single operation to return the following:
+/// m = NaN := 1
+/// m > 0 := 0
+/// m <= 0 := 1
+///
+/// This function is useful when creating masks for branch-free logic.
+///
+/// @param [in] m The value to test against zero.
+///
+/// @returns
+/// 1.0 when the value is position, or 0.0 when the value is 0 or negative.
+///
+/// @ingroup GPU
+FfxFloat16x2 ffxIsGreaterThanZeroHalf(FfxFloat16x2 m)
+{
+ return ffxSaturate(m * FFX_BROADCAST_FLOAT16X2(FFX_POSITIVE_INFINITY_HALF));
+}
+
+/// A single operation to return the following:
+/// m = NaN := 1
+/// m > 0 := 0
+/// m <= 0 := 1
+///
+/// This function is useful when creating masks for branch-free logic.
+///
+/// @param [in] m The value to test against zero.
+///
+/// @returns
+/// 1.0 when the value is position, or 0.0 when the value is 0 or negative.
+///
+/// @ingroup GPU
+FfxFloat16x3 ffxIsGreaterThanZeroHalf(FfxFloat16x3 m)
+{
+ return ffxSaturate(m * FFX_BROADCAST_FLOAT16X3(FFX_POSITIVE_INFINITY_HALF));
+}
+
+/// A single operation to return the following:
+/// m = NaN := 1
+/// m > 0 := 0
+/// m <= 0 := 1
+///
+/// This function is useful when creating masks for branch-free logic.
+///
+/// @param [in] m The value to test against zero.
+///
+/// @returns
+/// 1.0 when the value is position, or 0.0 when the value is 0 or negative.
+///
+/// @ingroup GPU
+FfxFloat16x4 ffxIsGreaterThanZeroHalf(FfxFloat16x4 m)
+{
+ return ffxSaturate(m * FFX_BROADCAST_FLOAT16X4(FFX_POSITIVE_INFINITY_HALF));
+}
+
+/// Convert a 16bit floating point value to sortable integer.
+///
+/// - If sign bit=0, flip the sign bit (positives).
+/// - If sign bit=1, flip all bits (negatives).
+///
+/// The function has the side effects that:
+/// - Larger integers are more positive values.
+/// - Float zero is mapped to center of integers (so clear to integer zero is a nice default for atomic max usage).
+///
+/// @param [in] x The floating point value to make sortable.
+///
+/// @returns
+/// The sortable integer value.
+///
+/// @ingroup GPU
+FfxUInt16 ffxFloatToSortableIntegerHalf(FfxUInt16 x)
+{
+ return x ^ ((ffxBitShiftRightHalf(x, FFX_BROADCAST_UINT16(15))) | FFX_BROADCAST_UINT16(0x8000));
+}
+
+/// Convert a sortable integer to a 16bit floating point value.
+///
+/// The function has the side effects that:
+/// - If sign bit=1, flip the sign bit (positives).
+/// - If sign bit=0, flip all bits (negatives).
+///
+/// @param [in] x The sortable integer value to make floating point.
+///
+/// @returns
+/// The floating point value.
+///
+/// @ingroup GPU
+FfxUInt16 ffxSortableIntegerToFloatHalf(FfxUInt16 x)
+{
+ return x ^ ((~ffxBitShiftRightHalf(x, FFX_BROADCAST_UINT16(15))) | FFX_BROADCAST_UINT16(0x8000));
+}
+
+/// Convert a pair of 16bit floating point values to a pair of sortable integers.
+///
+/// - If sign bit=0, flip the sign bit (positives).
+/// - If sign bit=1, flip all bits (negatives).
+///
+/// The function has the side effects that:
+/// - Larger integers are more positive values.
+/// - Float zero is mapped to center of integers (so clear to integer zero is a nice default for atomic max usage).
+///
+/// @param [in] x The floating point values to make sortable.
+///
+/// @returns
+/// The sortable integer values.
+///
+/// @ingroup GPU
+FfxUInt16x2 ffxFloatToSortableIntegerHalf(FfxUInt16x2 x)
+{
+ return x ^ ((ffxBitShiftRightHalf(x, FFX_BROADCAST_UINT16X2(15))) | FFX_BROADCAST_UINT16X2(0x8000));
+}
+
+/// Convert a pair of sortable integers to a pair of 16bit floating point values.
+///
+/// The function has the side effects that:
+/// - If sign bit=1, flip the sign bit (positives).
+/// - If sign bit=0, flip all bits (negatives).
+///
+/// @param [in] x The sortable integer values to make floating point.
+///
+/// @returns
+/// The floating point values.
+///
+/// @ingroup GPU
+FfxUInt16x2 ffxSortableIntegerToFloatHalf(FfxUInt16x2 x)
+{
+ return x ^ ((~ffxBitShiftRightHalf(x, FFX_BROADCAST_UINT16X2(15))) | FFX_BROADCAST_UINT16X2(0x8000));
+}
+
+/// Packs the bytes from the X and Y components of a FfxUInt32x2 into a single 32-bit integer.
+///
+/// The resulting integer will contain bytes in the following order, from most to least significant:
+/// [Zero] Y0 [Zero] X0
+///
+/// @param [in] i The integer pair to pack.
+///
+/// @returns
+/// The packed integer value.
+///
+/// @ingroup GPU
+FfxUInt32 ffxPackBytesZeroY0ZeroX0(FfxUInt32x2 i)
+{
+ return ((i.x) & 0xffu) | ((i.y << 16) & 0xff0000u);
+}
+
+/// Packs the bytes from the X and Y components of a FfxUInt32x2 into a single 32-bit integer.
+///
+/// The resulting integer will contain bytes in the following order, from most to least significant:
+/// [Zero] Y1 [Zero] X1
+///
+/// @param [in] i The integer pair to pack.
+///
+/// @returns
+/// The packed integer value.
+///
+/// @ingroup GPU
+FfxUInt32 ffxPackBytesZeroY1ZeroX1(FfxUInt32x2 i)
+{
+ return ((i.x >> 8) & 0xffu) | ((i.y << 8) & 0xff0000u);
+}
+
+/// Packs the bytes from the X and Y components of a FfxUInt32x2 into a single 32-bit integer.
+///
+/// The resulting integer will contain bytes in the following order, from most to least significant:
+/// [Zero] Y2 [Zero] X2
+///
+/// @param [in] i The integer pair to pack.
+///
+/// @returns
+/// The packed integer value.
+///
+/// @ingroup GPU
+FfxUInt32 ffxPackBytesZeroY2ZeroX2(FfxUInt32x2 i)
+{
+ return ((i.x >> 16) & 0xffu) | ((i.y) & 0xff0000u);
+}
+
+/// Packs the bytes from the X and Y components of a FfxUInt32x2 into a single 32-bit integer.
+///
+/// The resulting integer will contain bytes in the following order, from most to least significant:
+/// [Zero] Y3 [Zero] X3
+///
+/// @param [in] i The integer pair to pack.
+///
+/// @returns
+/// The packed integer value.
+///
+/// @ingroup GPU
+FfxUInt32 ffxPackBytesZeroY3ZeroX3(FfxUInt32x2 i)
+{
+ return ((i.x >> 24) & 0xffu) | ((i.y >> 8) & 0xff0000u);
+}
+
+/// Packs the bytes from the X and Y components of a FfxUInt32x2 into a single 32-bit integer.
+///
+/// The resulting integer will contain bytes in the following order, from most to least significant:
+/// Y3 Y2 Y1 X0
+///
+/// @param [in] i The integer pair to pack.
+///
+/// @returns
+/// The packed integer value.
+///
+/// @ingroup GPU
+FfxUInt32 ffxPackBytesY3Y2Y1X0(FfxUInt32x2 i)
+{
+ return ((i.x) & 0x000000ffu) | (i.y & 0xffffff00u);
+}
+
+/// Packs the bytes from the X and Y components of a FfxUInt32x2 into a single 32-bit integer.
+///
+/// The resulting integer will contain bytes in the following order, from most to least significant:
+/// Y3 Y2 Y1 X2
+///
+/// @param [in] i The integer pair to pack.
+///
+/// @returns
+/// The packed integer value.
+///
+/// @ingroup GPU
+FfxUInt32 ffxPackBytesY3Y2Y1X2(FfxUInt32x2 i)
+{
+ return ((i.x >> 16) & 0x000000ffu) | (i.y & 0xffffff00u);
+}
+
+/// Packs the bytes from the X and Y components of a FfxUInt32x2 into a single 32-bit integer.
+///
+/// The resulting integer will contain bytes in the following order, from most to least significant:
+/// Y3 Y2 X0 Y0
+///
+/// @param [in] i The integer pair to pack.
+///
+/// @returns
+/// The packed integer value.
+///
+/// @ingroup GPU
+FfxUInt32 ffxPackBytesY3Y2X0Y0(FfxUInt32x2 i)
+{
+ return ((i.x << 8) & 0x0000ff00u) | (i.y & 0xffff00ffu);
+}
+
+/// Packs the bytes from the X and Y components of a FfxUInt32x2 into a single 32-bit integer.
+///
+/// The resulting integer will contain bytes in the following order, from most to least significant:
+/// Y3 Y2 X2 Y0
+///
+/// @param [in] i The integer pair to pack.
+///
+/// @returns
+/// The packed integer value.
+///
+/// @ingroup GPU
+FfxUInt32 ffxPackBytesY3Y2X2Y0(FfxUInt32x2 i)
+{
+ return ((i.x >> 8) & 0x0000ff00u) | (i.y & 0xffff00ffu);
+}
+
+/// Packs the bytes from the X and Y components of a FfxUInt32x2 into a single 32-bit integer.
+///
+/// The resulting integer will contain bytes in the following order, from most to least significant:
+/// Y3 X0 Y1 Y0
+///
+/// @param [in] i The integer pair to pack.
+///
+/// @returns
+/// The packed integer value.
+///
+/// @ingroup GPU
+FfxUInt32 ffxPackBytesY3X0Y1Y0(FfxUInt32x2 i)
+{
+ return ((i.x << 16) & 0x00ff0000u) | (i.y & 0xff00ffffu);
+}
+
+/// Packs the bytes from the X and Y components of a FfxUInt32x2 into a single 32-bit integer.
+///
+/// The resulting integer will contain bytes in the following order, from most to least significant:
+/// Y3 X2 Y1 Y0
+///
+/// @param [in] i The integer pair to pack.
+///
+/// @returns
+/// The packed integer value.
+///
+/// @ingroup GPU
+FfxUInt32 ffxPackBytesY3X2Y1Y0(FfxUInt32x2 i)
+{
+ return ((i.x) & 0x00ff0000u) | (i.y & 0xff00ffffu);
+}
+
+/// Packs the bytes from the X and Y components of a FfxUInt32x2 into a single 32-bit integer.
+///
+/// The resulting integer will contain bytes in the following order, from most to least significant:
+/// X0 Y2 Y1 Y0
+///
+/// @param [in] i The integer pair to pack.
+///
+/// @returns
+/// The packed integer value.
+///
+/// @ingroup GPU
+FfxUInt32 ffxPackBytesX0Y2Y1Y0(FfxUInt32x2 i)
+{
+ return ((i.x << 24) & 0xff000000u) | (i.y & 0x00ffffffu);
+}
+
+/// Packs the bytes from the X and Y components of a FfxUInt32x2 into a single 32-bit integer.
+///
+/// The resulting integer will contain bytes in the following order, from most to least significant:
+/// X2 Y2 Y1 Y0
+///
+/// @param [in] i The integer pair to pack.
+///
+/// @returns
+/// The packed integer value.
+///
+/// @ingroup GPU
+FfxUInt32 ffxPackBytesX2Y2Y1Y0(FfxUInt32x2 i)
+{
+ return ((i.x << 8) & 0xff000000u) | (i.y & 0x00ffffffu);
+}
+
+/// Packs the bytes from the X and Y components of a FfxUInt32x2 into a single 32-bit integer.
+///
+/// The resulting integer will contain bytes in the following order, from most to least significant:
+/// Y2 X2 Y0 X0
+///
+/// @param [in] i The integer pair to pack.
+///
+/// @returns
+/// The packed integer value.
+///
+/// @ingroup GPU
+FfxUInt32 ffxPackBytesY2X2Y0X0(FfxUInt32x2 i)
+{
+ return ((i.x) & 0x00ff00ffu) | ((i.y << 8) & 0xff00ff00u);
+}
+
+/// Packs the bytes from the X and Y components of a FfxUInt32x2 into a single 32-bit integer.
+///
+/// The resulting integer will contain bytes in the following order, from most to least significant:
+/// Y2 Y0 X2 X0
+///
+/// @param [in] i The integer pair to pack.
+///
+/// @returns
+/// The packed integer value.
+///
+/// @ingroup GPU
+FfxUInt32 ffxPackBytesY2Y0X2X0(FfxUInt32x2 i)
+{
+ return (((i.x) & 0xffu) | ((i.x >> 8) & 0xff00u) | ((i.y << 16) & 0xff0000u) | ((i.y << 8) & 0xff000000u));
+}
+
+/// Takes two Float16x2 values x and y, normalizes them and builds a single Uint16x2 value in the format {{x0,y0},{x1,y1}}.
+///
+/// @param [in] x The first float16x2 value to pack.
+/// @param [in] y The second float16x2 value to pack.
+///
+/// @returns
+/// The packed FfxUInt32x2 value.
+///
+/// @ingroup GPU
+FfxUInt16x2 ffxPackX0Y0X1Y1UnsignedToUint16x2(FfxFloat16x2 x, FfxFloat16x2 y)
+{
+ x *= FFX_BROADCAST_FLOAT16X2(1.0 / 32768.0);
+ y *= FFX_BROADCAST_FLOAT16X2(1.0 / 32768.0);
+ return FFX_UINT32_TO_UINT16X2(ffxPackBytesY2X2Y0X0(FfxUInt32x2(FFX_UINT16X2_TO_UINT32(FFX_TO_UINT16X2(x)), FFX_UINT16X2_TO_UINT32(FFX_TO_UINT16X2(y)))));
+}
+
+/// Given a FfxUInt32x2 value d, Float16x2 value i and a resulting FfxUInt32x2 value r, this function packs d.x[0:7] into r.x[0:7],
+/// d.y[0:7] into r.y[0:7], i.x[8:15] into r.x[8:15], r.y[8:15] and i.y[0:15] into r.x[16:31], r.y[16:31] using 3 ops.
+///
+/// r=ffxPermuteUByte0Float16x2ToUint2(d,i)
+/// Where 'k0' is an SGPR with {1.0/32768.0} packed into the lower 16-bits
+/// Where 'k1' is an SGPR with 0x????
+/// Where 'k2' is an SGPR with 0x????
+/// V_PK_FMA_F16 i,i,k0.x,0
+/// V_PERM_B32 r.x,i,i,k1
+/// V_PERM_B32 r.y,i,i,k2
+///
+/// @param [in] d The FfxUInt32x2 value to be packed.
+/// @param [in] i The FfxFloat16x2 value to be packed.
+///
+/// @returns
+/// The packed FfxUInt32x2 value.
+///
+/// @ingroup GPU
+FfxUInt32x2 ffxPermuteUByte0Float16x2ToUint2(FfxUInt32x2 d, FfxFloat16x2 i)
+{
+ FfxUInt32 b = FFX_UINT16X2_TO_UINT32(FFX_TO_UINT16X2(i * FFX_BROADCAST_FLOAT16X2(1.0 / 32768.0)));
+ return FfxUInt32x2(ffxPackBytesY3Y2Y1X0(FfxUInt32x2(d.x, b)), ffxPackBytesY3Y2Y1X2(FfxUInt32x2(d.y, b)));
+}
+
+/// Given a FfxUInt32x2 value d, Float16x2 value i and a resulting FfxUInt32x2 value r, this function packs d.x[0:7] into r.x[8:15],
+/// d.y[0:7] into r.y[8:15], i.x[0:7] into r.x[0:7], r.y[0:7] and i.y[0:15] into r.x[16:31], r.y[16:31] using 3 ops.
+///
+/// r=ffxPermuteUByte1Float16x2ToUint2(d,i)
+/// Where 'k0' is an SGPR with {1.0/32768.0} packed into the lower 16-bits
+/// Where 'k1' is an SGPR with 0x????
+/// Where 'k2' is an SGPR with 0x????
+/// V_PK_FMA_F16 i,i,k0.x,0
+/// V_PERM_B32 r.x,i,i,k1
+/// V_PERM_B32 r.y,i,i,k2
+///
+/// @param [in] d The FfxUInt32x2 value to be packed.
+/// @param [in] i The FfxFloat16x2 value to be packed.
+///
+/// @returns
+/// The packed FfxUInt32x2 value.
+///
+/// @ingroup GPU
+FfxUInt32x2 ffxPermuteUByte1Float16x2ToUint2(FfxUInt32x2 d, FfxFloat16x2 i)
+{
+ FfxUInt32 b = FFX_UINT16X2_TO_UINT32(FFX_TO_UINT16X2(i * FFX_BROADCAST_FLOAT16X2(1.0 / 32768.0)));
+ return FfxUInt32x2(ffxPackBytesY3Y2X0Y0(FfxUInt32x2(d.x, b)), ffxPackBytesY3Y2X2Y0(FfxUInt32x2(d.y, b)));
+}
+
+/// Given a FfxUInt32x2 value d, Float16x2 value i and a resulting FfxUInt32x2 value r, this function packs d.x[0:7] into r.x[16:23],
+/// d.y[0:7] into r.y[16:23], i.x[0:15] into r.x[0:15], r.y[0:15] and i.y[8:15] into r.x[24:31], r.y[24:31] using 3 ops.
+///
+/// r=ffxPermuteUByte2Float16x2ToUint2(d,i)
+/// Where 'k0' is an SGPR with {1.0/32768.0} packed into the lower 16-bits
+/// Where 'k1' is an SGPR with 0x????
+/// Where 'k2' is an SGPR with 0x????
+/// V_PK_FMA_F16 i,i,k0.x,0
+/// V_PERM_B32 r.x,i,i,k1
+/// V_PERM_B32 r.y,i,i,k2
+///
+/// @param [in] d The FfxUInt32x2 value to be packed.
+/// @param [in] i The FfxFloat16x2 value to be packed.
+///
+/// @returns
+/// The packed FfxUInt32x2 value.
+///
+/// @ingroup GPU
+FfxUInt32x2 ffxPermuteUByte2Float16x2ToUint2(FfxUInt32x2 d, FfxFloat16x2 i)
+{
+ FfxUInt32 b = FFX_UINT16X2_TO_UINT32(FFX_TO_UINT16X2(i * FFX_BROADCAST_FLOAT16X2(1.0 / 32768.0)));
+ return FfxUInt32x2(ffxPackBytesY3X0Y1Y0(FfxUInt32x2(d.x, b)), ffxPackBytesY3X2Y1Y0(FfxUInt32x2(d.y, b)));
+}
+
+/// Given a FfxUInt32x2 value d, Float16x2 value i and a resulting FfxUInt32x2 value r, this function packs d.x[0:7] into r.x[24:31],
+/// d.y[0:7] into r.y[24:31], i.x[0:15] into r.x[0:15], r.y[0:15] and i.y[0:7] into r.x[16:23], r.y[16:23] using 3 ops.
+///
+/// r=ffxPermuteUByte3Float16x2ToUint2(d,i)
+/// Where 'k0' is an SGPR with {1.0/32768.0} packed into the lower 16-bits
+/// Where 'k1' is an SGPR with 0x????
+/// Where 'k2' is an SGPR with 0x????
+/// V_PK_FMA_F16 i,i,k0.x,0
+/// V_PERM_B32 r.x,i,i,k1
+/// V_PERM_B32 r.y,i,i,k2
+///
+/// @param [in] d The FfxUInt32x2 value to be packed.
+/// @param [in] i The FfxFloat16x2 value to be packed.
+///
+/// @returns
+/// The packed FfxUInt32x2 value.
+///
+/// @ingroup GPU
+FfxUInt32x2 ffxPermuteUByte3Float16x2ToUint2(FfxUInt32x2 d, FfxFloat16x2 i)
+{
+ FfxUInt32 b = FFX_UINT16X2_TO_UINT32(FFX_TO_UINT16X2(i * FFX_BROADCAST_FLOAT16X2(1.0 / 32768.0)));
+ return FfxUInt32x2(ffxPackBytesX0Y2Y1Y0(FfxUInt32x2(d.x, b)), ffxPackBytesX2Y2Y1Y0(FfxUInt32x2(d.y, b)));
+}
+
+/// Given a FfxUInt32x2 value i and a resulting Float16x2 value r, this function packs i.x[0:7] into r.x[0:7] and i.y[0:7] into r.y[0:7] using 2 ops.
+///
+/// @param [in] i The FfxUInt32x2 value to be unpacked.
+///
+/// @returns
+/// The unpacked FfxFloat16x2.
+///
+/// @ingroup GPU
+FfxFloat16x2 ffxPermuteUByte0Uint2ToFloat16x2(FfxUInt32x2 i)
+{
+ return FFX_TO_FLOAT16X2(FFX_UINT32_TO_UINT16X2(ffxPackBytesZeroY0ZeroX0(i))) * FFX_BROADCAST_FLOAT16X2(32768.0);
+}
+
+/// Given a FfxUInt32x2 value i and a resulting Float16x2 value r, this function packs i.x[8:15] into r.x[0:7] and i.y[8:15] into r.y[0:7] using 2 ops.
+///
+/// @param [in] i The FfxUInt32x2 value to be unpacked.
+///
+/// @returns
+/// The unpacked FfxFloat16x2.
+///
+/// @ingroup GPU
+FfxFloat16x2 ffxPermuteUByte1Uint2ToFloat16x2(FfxUInt32x2 i)
+{
+ return FFX_TO_FLOAT16X2(FFX_UINT32_TO_UINT16X2(ffxPackBytesZeroY1ZeroX1(i))) * FFX_BROADCAST_FLOAT16X2(32768.0);
+}
+
+/// Given a FfxUInt32x2 value i and a resulting Float16x2 value r, this function packs i.x[16:23] into r.x[0:7] and i.y[16:23] into r.y[0:7] using 2 ops.
+///
+/// @param [in] i The FfxUInt32x2 value to be unpacked.
+///
+/// @returns
+/// The unpacked FfxFloat16x2.
+///
+/// @ingroup GPU
+FfxFloat16x2 ffxPermuteUByte2Uint2ToFloat16x2(FfxUInt32x2 i)
+{
+ return FFX_TO_FLOAT16X2(FFX_UINT32_TO_UINT16X2(ffxPackBytesZeroY2ZeroX2(i))) * FFX_BROADCAST_FLOAT16X2(32768.0);
+}
+
+/// Given a FfxUInt32x2 value i and a resulting Float16x2 value r, this function packs i.x[24:31] into r.x[0:7] and i.y[24:31] into r.y[0:7] using 2 ops.
+///
+/// @param [in] i The FfxUInt32x2 value to be unpacked.
+///
+/// @returns
+/// The unpacked FfxFloat16x2.
+///
+/// @ingroup GPU
+FfxFloat16x2 ffxPermuteUByte3Uint2ToFloat16x2(FfxUInt32x2 i)
+{
+ return FFX_TO_FLOAT16X2(FFX_UINT32_TO_UINT16X2(ffxPackBytesZeroY3ZeroX3(i))) * FFX_BROADCAST_FLOAT16X2(32768.0);
+}
+
+/// Takes two Float16x2 values x and y, normalizes them and builds a single Uint16x2 value in the format {{x0,y0},{x1,y1}}.
+///
+/// @param [in] x The first float16x2 value to pack.
+/// @param [in] y The second float16x2 value to pack.
+///
+/// @returns
+/// The packed FfxUInt32x2 value.
+///
+/// @ingroup GPU
+FfxUInt16x2 ffxPackX0Y0X1Y1SignedToUint16x2(FfxFloat16x2 x, FfxFloat16x2 y)
+{
+ x = x * FFX_BROADCAST_FLOAT16X2(1.0 / 32768.0) + FFX_BROADCAST_FLOAT16X2(0.25 / 32768.0);
+ y = y * FFX_BROADCAST_FLOAT16X2(1.0 / 32768.0) + FFX_BROADCAST_FLOAT16X2(0.25 / 32768.0);
+ return FFX_UINT32_TO_UINT16X2(ffxPackBytesY2X2Y0X0(FfxUInt32x2(FFX_UINT16X2_TO_UINT32(FFX_TO_UINT16X2(x)), FFX_UINT16X2_TO_UINT32(FFX_TO_UINT16X2(y)))));
+}
+
+/// Given a FfxUInt32x2 value d, Float16x2 value i and a resulting FfxUInt32x2 value r, this function packs d.x[0:7] into r.x[0:7],
+/// d.y[0:7] into r.y[0:7], i.x[8:15] into r.x[8:15], r.y[8:15] and i.y[0:15] into r.x[16:31], r.y[16:31] using 3 ops.
+///
+/// Handles signed byte values.
+///
+/// @param [in] d The FfxUInt32x2 value to be packed.
+/// @param [in] i The FfxFloat16x2 value to be packed.
+///
+/// @returns
+/// The packed FfxUInt32x2 value.
+///
+/// @ingroup GPU
+FfxUInt32x2 ffxPermuteSByte0Float16x2ToUint2(FfxUInt32x2 d, FfxFloat16x2 i)
+{
+ FfxUInt32 b = FFX_UINT16X2_TO_UINT32(FFX_TO_UINT16X2(i * FFX_BROADCAST_FLOAT16X2(1.0 / 32768.0) + FFX_BROADCAST_FLOAT16X2(0.25 / 32768.0)));
+ return FfxUInt32x2(ffxPackBytesY3Y2Y1X0(FfxUInt32x2(d.x, b)), ffxPackBytesY3Y2Y1X2(FfxUInt32x2(d.y, b)));
+}
+
+/// Given a FfxUInt32x2 value d, Float16x2 value i and a resulting FfxUInt32x2 value r, this function packs d.x[0:7] into r.x[8:15],
+/// d.y[0:7] into r.y[8:15], i.x[0:7] into r.x[0:7], r.y[0:7] and i.y[0:15] into r.x[16:31], r.y[16:31] using 3 ops.
+///
+/// Handles signed byte values.
+///
+/// @param [in] d The FfxUInt32x2 value to be packed.
+/// @param [in] i The FfxFloat16x2 value to be packed.
+///
+/// @returns
+/// The packed FfxUInt32x2 value.
+///
+/// @ingroup GPU
+FfxUInt32x2 ffxPermuteSByte1Float16x2ToUint2(FfxUInt32x2 d, FfxFloat16x2 i)
+{
+ FfxUInt32 b = FFX_UINT16X2_TO_UINT32(FFX_TO_UINT16X2(i * FFX_BROADCAST_FLOAT16X2(1.0 / 32768.0) + FFX_BROADCAST_FLOAT16X2(0.25 / 32768.0)));
+ return FfxUInt32x2(ffxPackBytesY3Y2X0Y0(FfxUInt32x2(d.x, b)), ffxPackBytesY3Y2X2Y0(FfxUInt32x2(d.y, b)));
+}
+
+/// Given a FfxUInt32x2 value d, Float16x2 value i and a resulting FfxUInt32x2 value r, this function packs d.x[0:7] into r.x[16:23],
+/// d.y[0:7] into r.y[16:23], i.x[0:15] into r.x[0:15], r.y[0:15] and i.y[8:15] into r.x[24:31], r.y[24:31] using 3 ops.
+///
+/// Handles signed byte values.
+///
+/// @param [in] d The FfxUInt32x2 value to be packed.
+/// @param [in] i The FfxFloat16x2 value to be packed.
+///
+/// @returns
+/// The packed FfxUInt32x2 value.
+///
+/// @ingroup GPU
+FfxUInt32x2 ffxPermuteSByte2Float16x2ToUint2(FfxUInt32x2 d, FfxFloat16x2 i)
+{
+ FfxUInt32 b = FFX_UINT16X2_TO_UINT32(FFX_TO_UINT16X2(i * FFX_BROADCAST_FLOAT16X2(1.0 / 32768.0) + FFX_BROADCAST_FLOAT16X2(0.25 / 32768.0)));
+ return FfxUInt32x2(ffxPackBytesY3X0Y1Y0(FfxUInt32x2(d.x, b)), ffxPackBytesY3X2Y1Y0(FfxUInt32x2(d.y, b)));
+}
+
+/// Given a FfxUInt32x2 value d, Float16x2 value i and a resulting FfxUInt32x2 value r, this function packs d.x[0:7] into r.x[24:31],
+/// d.y[0:7] into r.y[24:31], i.x[0:15] into r.x[0:15], r.y[0:15] and i.y[0:7] into r.x[16:23], r.y[16:23] using 3 ops.
+///
+/// Handles signed byte values.
+///
+/// @param [in] d The FfxUInt32x2 value to be packed.
+/// @param [in] i The FfxFloat16x2 value to be packed.
+///
+/// @returns
+/// The packed FfxUInt32x2 value.
+///
+/// @ingroup GPU
+FfxUInt32x2 ffxPermuteSByte3Float16x2ToUint2(FfxUInt32x2 d, FfxFloat16x2 i)
+{
+ FfxUInt32 b = FFX_UINT16X2_TO_UINT32(FFX_TO_UINT16X2(i * FFX_BROADCAST_FLOAT16X2(1.0 / 32768.0) + FFX_BROADCAST_FLOAT16X2(0.25 / 32768.0)));
+ return FfxUInt32x2(ffxPackBytesX0Y2Y1Y0(FfxUInt32x2(d.x, b)), ffxPackBytesX2Y2Y1Y0(FfxUInt32x2(d.y, b)));
+}
+
+/// Given a FfxUInt32x2 value d, Float16x2 value i and a resulting FfxUInt32x2 value r, this function packs d.x[0:7] into r.x[0:7],
+/// d.y[0:7] into r.y[0:7], i.x[8:15] into r.x[8:15], r.y[8:15] and i.y[0:15] into r.x[16:31], r.y[16:31] using 3 ops.
+///
+/// Zero-based flips the MSB bit of the byte (making 128 "exact zero" actually zero).
+/// This is useful if there is a desire for cleared values to decode as zero.
+///
+/// Handles signed byte values.
+///
+/// @param [in] d The FfxUInt32x2 value to be packed.
+/// @param [in] i The FfxFloat16x2 value to be packed.
+///
+/// @returns
+/// The packed FfxUInt32x2 value.
+///
+/// @ingroup GPU
+FfxUInt32x2 ffxPermuteZeroBasedSByte0Float16x2ToUint2(FfxUInt32x2 d, FfxFloat16x2 i)
+{
+ FfxUInt32 b = FFX_UINT16X2_TO_UINT32(FFX_TO_UINT16X2(i * FFX_BROADCAST_FLOAT16X2(1.0 / 32768.0) + FFX_BROADCAST_FLOAT16X2(0.25 / 32768.0))) ^ 0x00800080u;
+ return FfxUInt32x2(ffxPackBytesY3Y2Y1X0(FfxUInt32x2(d.x, b)), ffxPackBytesY3Y2Y1X2(FfxUInt32x2(d.y, b)));
+}
+
+/// Given a FfxUInt32x2 value d, Float16x2 value i and a resulting FfxUInt32x2 value r, this function packs d.x[0:7] into r.x[8:15],
+/// d.y[0:7] into r.y[8:15], i.x[0:7] into r.x[0:7], r.y[0:7] and i.y[0:15] into r.x[16:31], r.y[16:31] using 3 ops.
+///
+/// Zero-based flips the MSB bit of the byte (making 128 "exact zero" actually zero).
+/// This is useful if there is a desire for cleared values to decode as zero.
+///
+/// Handles signed byte values.
+///
+/// @param [in] d The FfxUInt32x2 value to be packed.
+/// @param [in] i The FfxFloat16x2 value to be packed.
+///
+/// @returns
+/// The packed FfxUInt32x2 value.
+///
+/// @ingroup GPU
+FfxUInt32x2 ffxPermuteZeroBasedSByte1Float16x2ToUint2(FfxUInt32x2 d, FfxFloat16x2 i)
+{
+ FfxUInt32 b = FFX_UINT16X2_TO_UINT32(FFX_TO_UINT16X2(i * FFX_BROADCAST_FLOAT16X2(1.0 / 32768.0) + FFX_BROADCAST_FLOAT16X2(0.25 / 32768.0))) ^ 0x00800080u;
+ return FfxUInt32x2(ffxPackBytesY3Y2X0Y0(FfxUInt32x2(d.x, b)), ffxPackBytesY3Y2X2Y0(FfxUInt32x2(d.y, b)));
+}
+
+/// Given a FfxUInt32x2 value d, Float16x2 value i and a resulting FfxUInt32x2 value r, this function packs d.x[0:7] into r.x[16:23],
+/// d.y[0:7] into r.y[16:23], i.x[0:15] into r.x[0:15], r.y[0:15] and i.y[8:15] into r.x[24:31], r.y[24:31] using 3 ops.
+///
+/// Zero-based flips the MSB bit of the byte (making 128 "exact zero" actually zero).
+/// This is useful if there is a desire for cleared values to decode as zero.
+///
+/// Handles signed byte values.
+///
+/// @param [in] d The FfxUInt32x2 value to be packed.
+/// @param [in] i The FfxFloat16x2 value to be packed.
+///
+/// @returns
+/// The packed FfxUInt32x2 value.
+///
+/// @ingroup GPU
+FfxUInt32x2 ffxPermuteZeroBasedSByte2Float16x2ToUint2(FfxUInt32x2 d, FfxFloat16x2 i)
+{
+ FfxUInt32 b = FFX_UINT16X2_TO_UINT32(FFX_TO_UINT16X2(i * FFX_BROADCAST_FLOAT16X2(1.0 / 32768.0) + FFX_BROADCAST_FLOAT16X2(0.25 / 32768.0))) ^ 0x00800080u;
+ return FfxUInt32x2(ffxPackBytesY3X0Y1Y0(FfxUInt32x2(d.x, b)), ffxPackBytesY3X2Y1Y0(FfxUInt32x2(d.y, b)));
+}
+
+/// Given a FfxUInt32x2 value d, Float16x2 value i and a resulting FfxUInt32x2 value r, this function packs d.x[0:7] into r.x[24:31],
+/// d.y[0:7] into r.y[24:31], i.x[0:15] into r.x[0:15], r.y[0:15] and i.y[0:7] into r.x[16:23], r.y[16:23] using 3 ops.
+///
+/// Zero-based flips the MSB bit of the byte (making 128 "exact zero" actually zero).
+/// This is useful if there is a desire for cleared values to decode as zero.
+///
+/// Handles signed byte values.
+///
+/// @param [in] d The FfxUInt32x2 value to be packed.
+/// @param [in] i The FfxFloat16x2 value to be packed.
+///
+/// @returns
+/// The packed FfxUInt32x2 value.
+///
+/// @ingroup GPU
+FfxUInt32x2 ffxPermuteZeroBasedSByte3Float16x2ToUint2(FfxUInt32x2 d, FfxFloat16x2 i)
+{
+ FfxUInt32 b = FFX_UINT16X2_TO_UINT32(FFX_TO_UINT16X2(i * FFX_BROADCAST_FLOAT16X2(1.0 / 32768.0) + FFX_BROADCAST_FLOAT16X2(0.25 / 32768.0))) ^ 0x00800080u;
+ return FfxUInt32x2(ffxPackBytesX0Y2Y1Y0(FfxUInt32x2(d.x, b)), ffxPackBytesX2Y2Y1Y0(FfxUInt32x2(d.y, b)));
+}
+
+/// Given a FfxUInt32x2 value i and a resulting Float16x2 value r, this function packs i.x[0:7] into r.x[0:7] and i.y[0:7] into r.y[0:7] using 2 ops.
+///
+/// Handles signed byte values.
+///
+/// @param [in] i The FfxUInt32x2 value to be unpacked.
+///
+/// @returns
+/// The unpacked FfxFloat16x2.
+///
+/// @ingroup GPU
+FfxFloat16x2 ffxPermuteSByte0Uint2ToFloat16x2(FfxUInt32x2 i)
+{
+ return FFX_TO_FLOAT16X2(FFX_UINT32_TO_UINT16X2(ffxPackBytesZeroY0ZeroX0(i))) * FFX_BROADCAST_FLOAT16X2(32768.0) - FFX_BROADCAST_FLOAT16X2(0.25);
+}
+
+/// Given a FfxUInt32x2 value i and a resulting Float16x2 value r, this function packs i.x[8:15] into r.x[0:7] and i.y[8:15] into r.y[0:7] using 2 ops.
+///
+/// Handles signed byte values.
+///
+/// @param [in] i The FfxUInt32x2 value to be unpacked.
+///
+/// @returns
+/// The unpacked FfxFloat16x2.
+///
+/// @ingroup GPU
+FfxFloat16x2 ffxPermuteSByte1Uint2ToFloat16x2(FfxUInt32x2 i)
+{
+ return FFX_TO_FLOAT16X2(FFX_UINT32_TO_UINT16X2(ffxPackBytesZeroY1ZeroX1(i))) * FFX_BROADCAST_FLOAT16X2(32768.0) - FFX_BROADCAST_FLOAT16X2(0.25);
+}
+
+/// Given a FfxUInt32x2 value i and a resulting Float16x2 value r, this function packs i.x[16:23] into r.x[0:7] and i.y[16:23] into r.y[0:7] using 2 ops.
+///
+/// Handles signed byte values.
+///
+/// @param [in] i The FfxUInt32x2 value to be unpacked.
+///
+/// @returns
+/// The unpacked FfxFloat16x2.
+///
+/// @ingroup GPU
+FfxFloat16x2 ffxPermuteSByte2Uint2ToFloat16x2(FfxUInt32x2 i)
+{
+ return FFX_TO_FLOAT16X2(FFX_UINT32_TO_UINT16X2(ffxPackBytesZeroY2ZeroX2(i))) * FFX_BROADCAST_FLOAT16X2(32768.0) - FFX_BROADCAST_FLOAT16X2(0.25);
+}
+
+/// Given a FfxUInt32x2 value i and a resulting Float16x2 value r, this function packs i.x[24:31] into r.x[0:7] and i.y[24:31] into r.y[0:7] using 2 ops.
+///
+/// Handles signed byte values.
+///
+/// @param [in] i The FfxUInt32x2 value to be unpacked.
+///
+/// @returns
+/// The unpacked FfxFloat16x2.
+///
+/// @ingroup GPU
+FfxFloat16x2 ffxPermuteSByte3Uint2ToFloat16x2(FfxUInt32x2 i)
+{
+ return FFX_TO_FLOAT16X2(FFX_UINT32_TO_UINT16X2(ffxPackBytesZeroY3ZeroX3(i))) * FFX_BROADCAST_FLOAT16X2(32768.0) - FFX_BROADCAST_FLOAT16X2(0.25);
+}
+
+/// Given a FfxUInt32x2 value i and a resulting Float16x2 value r, this function packs i.x[0:7] into r.x[0:7] and i.y[0:7] into r.y[0:7] using 2 ops.
+///
+/// Handles signed byte values.
+///
+/// @param [in] i The FfxUInt32x2 value to be unpacked.
+///
+/// @returns
+/// The unpacked FfxFloat16x2.
+///
+/// @ingroup GPU
+FfxFloat16x2 ffxPermuteZeroBasedSByte0Uint2ToFloat16x2(FfxUInt32x2 i)
+{
+ return FFX_TO_FLOAT16X2(FFX_UINT32_TO_UINT16X2(ffxPackBytesZeroY0ZeroX0(i) ^ 0x00800080u)) * FFX_BROADCAST_FLOAT16X2(32768.0) - FFX_BROADCAST_FLOAT16X2(0.25);
+}
+
+/// Given a FfxUInt32x2 value i and a resulting Float16x2 value r, this function packs i.x[8:15] into r.x[0:7] and i.y[8:15] into r.y[0:7] using 2 ops.
+///
+/// Handles signed byte values.
+///
+/// @param [in] i The FfxUInt32x2 value to be unpacked.
+///
+/// @returns
+/// The unpacked FfxFloat16x2.
+///
+/// @ingroup GPU
+FfxFloat16x2 ffxPermuteZeroBasedSByte1Uint2ToFloat16x2(FfxUInt32x2 i)
+{
+ return FFX_TO_FLOAT16X2(FFX_UINT32_TO_UINT16X2(ffxPackBytesZeroY1ZeroX1(i) ^ 0x00800080u)) * FFX_BROADCAST_FLOAT16X2(32768.0) - FFX_BROADCAST_FLOAT16X2(0.25);
+}
+
+/// Given a FfxUInt32x2 value i and a resulting Float16x2 value r, this function packs i.x[16:23] into r.x[0:7] and i.y[16:23] into r.y[0:7] using 2 ops.
+///
+/// Handles signed byte values.
+///
+/// @param [in] i The FfxUInt32x2 value to be unpacked.
+///
+/// @returns
+/// The unpacked FfxFloat16x2.
+///
+/// @ingroup GPU
+FfxFloat16x2 ffxPermuteZeroBasedSByte2Uint2ToFloat16x2(FfxUInt32x2 i)
+{
+ return FFX_TO_FLOAT16X2(FFX_UINT32_TO_UINT16X2(ffxPackBytesZeroY2ZeroX2(i) ^ 0x00800080u)) * FFX_BROADCAST_FLOAT16X2(32768.0) - FFX_BROADCAST_FLOAT16X2(0.25);
+}
+
+/// Given a FfxUInt32x2 value i and a resulting Float16x2 value r, this function packs i.x[24:31] into r.x[0:7] and i.y[24:31] into r.y[0:7] using 2 ops.
+///
+/// Handles signed byte values.
+///
+/// @param [in] i The FfxUInt32x2 value to be unpacked.
+///
+/// @returns
+/// The unpacked FfxFloat16x2.
+///
+/// @ingroup GPU
+FfxFloat16x2 ffxPermuteZeroBasedSByte3Uint2ToFloat16x2(FfxUInt32x2 i)
+{
+ return FFX_TO_FLOAT16X2(FFX_UINT32_TO_UINT16X2(ffxPackBytesZeroY3ZeroX3(i) ^ 0x00800080u)) * FFX_BROADCAST_FLOAT16X2(32768.0) - FFX_BROADCAST_FLOAT16X2(0.25);
+}
+
+/// Calculate a half-precision low-quality approximation for the square root of a value.
+///
+/// For additional information on the approximation family of functions, you can refer to Michal Drobot's excellent
+/// presentation materials:
+///
+/// - https://michaldrobot.files.wordpress.com/2014/05/gcn_alu_opt_digitaldragons2014.pdf
+/// - https://github.com/michaldrobot/ShaderFastLibs/blob/master/ShaderFastMathLib.h
+///
+/// @param [in] a The value to calculate an approximate to the square root for.
+///
+/// @returns
+/// An approximation of the square root, estimated to low quality.
+///
+/// @ingroup GPU
+FfxFloat16 ffxApproximateSqrtHalf(FfxFloat16 a)
+{
+ return FFX_TO_FLOAT16((FFX_TO_UINT16(a) >> FFX_BROADCAST_UINT16(1)) + FFX_BROADCAST_UINT16(0x1de2));
+}
+
+/// Calculate a half-precision low-quality approximation for the square root of a value.
+///
+/// For additional information on the approximation family of functions, you can refer to Michal Drobot's excellent
+/// presentation materials:
+///
+/// - https://michaldrobot.files.wordpress.com/2014/05/gcn_alu_opt_digitaldragons2014.pdf
+/// - https://github.com/michaldrobot/ShaderFastLibs/blob/master/ShaderFastMathLib.h
+///
+/// @param [in] a The value to calculate an approximate to the square root for.
+///
+/// @returns
+/// An approximation of the square root, estimated to low quality.
+///
+/// @ingroup GPU
+FfxFloat16x2 ffxApproximateSqrtHalf(FfxFloat16x2 a)
+{
+ return FFX_TO_FLOAT16X2((FFX_TO_UINT16X2(a) >> FFX_BROADCAST_UINT16X2(1)) + FFX_BROADCAST_UINT16X2(0x1de2));
+}
+
+/// Calculate a half-precision low-quality approximation for the square root of a value.
+///
+/// For additional information on the approximation family of functions, you can refer to Michal Drobot's excellent
+/// presentation materials:
+///
+/// - https://michaldrobot.files.wordpress.com/2014/05/gcn_alu_opt_digitaldragons2014.pdf
+/// - https://github.com/michaldrobot/ShaderFastLibs/blob/master/ShaderFastMathLib.h
+///
+/// @param [in] a The value to calculate an approximate to the square root for.
+///
+/// @returns
+/// An approximation of the square root, estimated to low quality.
+///
+/// @ingroup GPU
+FfxFloat16x3 ffxApproximateSqrtHalf(FfxFloat16x3 a)
+{
+ return FFX_TO_FLOAT16X3((FFX_TO_UINT16X3(a) >> FFX_BROADCAST_UINT16X3(1)) + FFX_BROADCAST_UINT16X3(0x1de2));
+}
+
+/// Calculate a half-precision low-quality approximation for the reciprocal of a value.
+///
+/// For additional information on the approximation family of functions, you can refer to Michal Drobot's excellent
+/// presentation materials:
+///
+/// - https://michaldrobot.files.wordpress.com/2014/05/gcn_alu_opt_digitaldragons2014.pdf
+/// - https://github.com/michaldrobot/ShaderFastLibs/blob/master/ShaderFastMathLib.h
+///
+/// @param [in] a The value to calculate an approximate to the reciprocal for.
+///
+/// @returns
+/// An approximation of the reciprocal, estimated to low quality.
+///
+/// @ingroup GPU
+FfxFloat16 ffxApproximateReciprocalHalf(FfxFloat16 a)
+{
+ return FFX_TO_FLOAT16(FFX_BROADCAST_UINT16(0x7784) - FFX_TO_UINT16(a));
+}
+
+/// Calculate a half-precision low-quality approximation for the reciprocal of a value.
+///
+/// For additional information on the approximation family of functions, you can refer to Michal Drobot's excellent
+/// presentation materials:
+///
+/// - https://michaldrobot.files.wordpress.com/2014/05/gcn_alu_opt_digitaldragons2014.pdf
+/// - https://github.com/michaldrobot/ShaderFastLibs/blob/master/ShaderFastMathLib.h
+///
+/// @param [in] a The value to calculate an approximate to the reciprocal for.
+///
+/// @returns
+/// An approximation of the reciprocal, estimated to low quality.
+///
+/// @ingroup GPU
+FfxFloat16x2 ffxApproximateReciprocalHalf(FfxFloat16x2 a)
+{
+ return FFX_TO_FLOAT16X2(FFX_BROADCAST_UINT16X2(0x7784) - FFX_TO_UINT16X2(a));
+}
+
+/// Calculate a half-precision low-quality approximation for the reciprocal of a value.
+///
+/// For additional information on the approximation family of functions, you can refer to Michal Drobot's excellent
+/// presentation materials:
+///
+/// - https://michaldrobot.files.wordpress.com/2014/05/gcn_alu_opt_digitaldragons2014.pdf
+/// - https://github.com/michaldrobot/ShaderFastLibs/blob/master/ShaderFastMathLib.h
+///
+/// @param [in] a The value to calculate an approximate to the reciprocal for.
+///
+/// @returns
+/// An approximation of the reciprocal, estimated to low quality.
+///
+/// @ingroup GPU
+FfxFloat16x3 ffxApproximateReciprocalHalf(FfxFloat16x3 a)
+{
+ return FFX_TO_FLOAT16X3(FFX_BROADCAST_UINT16X3(0x7784) - FFX_TO_UINT16X3(a));
+}
+
+/// Calculate a half-precision low-quality approximation for the reciprocal of a value.
+///
+/// For additional information on the approximation family of functions, you can refer to Michal Drobot's excellent
+/// presentation materials:
+///
+/// - https://michaldrobot.files.wordpress.com/2014/05/gcn_alu_opt_digitaldragons2014.pdf
+/// - https://github.com/michaldrobot/ShaderFastLibs/blob/master/ShaderFastMathLib.h
+///
+/// @param [in] a The value to calculate an approximate to the reciprocal for.
+///
+/// @returns
+/// An approximation of the reciprocal, estimated to low quality.
+///
+/// @ingroup GPU
+FfxFloat16x4 ffxApproximateReciprocalHalf(FfxFloat16x4 a)
+{
+ return FFX_TO_FLOAT16X4(FFX_BROADCAST_UINT16X4(0x7784) - FFX_TO_UINT16X4(a));
+}
+
+/// Calculate a half-precision medium-quality approximation for the reciprocal of a value.
+///
+/// For additional information on the approximation family of functions, you can refer to Michal Drobot's excellent
+/// presentation materials:
+///
+/// - https://michaldrobot.files.wordpress.com/2014/05/gcn_alu_opt_digitaldragons2014.pdf
+/// - https://github.com/michaldrobot/ShaderFastLibs/blob/master/ShaderFastMathLib.h
+///
+/// @param [in] a The value to calculate an approximate to the reciprocal for.
+///
+/// @returns
+/// An approximation of the reciprocal, estimated to medium quality.
+///
+/// @ingroup GPU
+FfxFloat16 ffxApproximateReciprocalMediumHalf(FfxFloat16 a)
+{
+ FfxFloat16 b = FFX_TO_FLOAT16(FFX_BROADCAST_UINT16(0x778d) - FFX_TO_UINT16(a));
+ return b * (-b * a + FFX_BROADCAST_FLOAT16(2.0));
+}
+
+/// Calculate a half-precision medium-quality approximation for the reciprocal of a value.
+///
+/// For additional information on the approximation family of functions, you can refer to Michal Drobot's excellent
+/// presentation materials:
+///
+/// - https://michaldrobot.files.wordpress.com/2014/05/gcn_alu_opt_digitaldragons2014.pdf
+/// - https://github.com/michaldrobot/ShaderFastLibs/blob/master/ShaderFastMathLib.h
+///
+/// @param [in] a The value to calculate an approximate to the reciprocal for.
+///
+/// @returns
+/// An approximation of the reciprocal, estimated to medium quality.
+///
+/// @ingroup GPU
+FfxFloat16x2 ffxApproximateReciprocalMediumHalf(FfxFloat16x2 a)
+{
+ FfxFloat16x2 b = FFX_TO_FLOAT16X2(FFX_BROADCAST_UINT16X2(0x778d) - FFX_TO_UINT16X2(a));
+ return b * (-b * a + FFX_BROADCAST_FLOAT16X2(2.0));
+}
+
+/// Calculate a half-precision medium-quality approximation for the reciprocal of a value.
+///
+/// For additional information on the approximation family of functions, you can refer to Michal Drobot's excellent
+/// presentation materials:
+///
+/// - https://michaldrobot.files.wordpress.com/2014/05/gcn_alu_opt_digitaldragons2014.pdf
+/// - https://github.com/michaldrobot/ShaderFastLibs/blob/master/ShaderFastMathLib.h
+///
+/// @param [in] a The value to calculate an approximate to the reciprocal for.
+///
+/// @returns
+/// An approximation of the reciprocal, estimated to medium quality.
+///
+/// @ingroup GPU
+FfxFloat16x3 ffxApproximateReciprocalMediumHalf(FfxFloat16x3 a)
+{
+ FfxFloat16x3 b = FFX_TO_FLOAT16X3(FFX_BROADCAST_UINT16X3(0x778d) - FFX_TO_UINT16X3(a));
+ return b * (-b * a + FFX_BROADCAST_FLOAT16X3(2.0));
+}
+
+/// Calculate a half-precision medium-quality approximation for the reciprocal of a value.
+///
+/// For additional information on the approximation family of functions, you can refer to Michal Drobot's excellent
+/// presentation materials:
+///
+/// - https://michaldrobot.files.wordpress.com/2014/05/gcn_alu_opt_digitaldragons2014.pdf
+/// - https://github.com/michaldrobot/ShaderFastLibs/blob/master/ShaderFastMathLib.h
+///
+/// @param [in] a The value to calculate an approximate to the reciprocal for.
+///
+/// @returns
+/// An approximation of the reciprocal, estimated to medium quality.
+///
+/// @ingroup GPU
+FfxFloat16x4 ffxApproximateReciprocalMediumHalf(FfxFloat16x4 a)
+{
+ FfxFloat16x4 b = FFX_TO_FLOAT16X4(FFX_BROADCAST_UINT16X4(0x778d) - FFX_TO_UINT16X4(a));
+ return b * (-b * a + FFX_BROADCAST_FLOAT16X4(2.0));
+}
+
+/// Calculate a half-precision low-quality approximation for the reciprocal of the square root of a value.
+///
+/// For additional information on the approximation family of functions, you can refer to Michal Drobot's excellent
+/// presentation materials:
+///
+/// - https://michaldrobot.files.wordpress.com/2014/05/gcn_alu_opt_digitaldragons2014.pdf
+/// - https://github.com/michaldrobot/ShaderFastLibs/blob/master/ShaderFastMathLib.h
+///
+/// @param [in] a The value to calculate an approximate to the reciprocal of the square root for.
+///
+/// @returns
+/// An approximation of the reciprocal of the square root, estimated to low quality.
+///
+/// @ingroup GPU
+FfxFloat16 ffxApproximateReciprocalSquareRootHalf(FfxFloat16 a)
+{
+ return FFX_TO_FLOAT16(FFX_BROADCAST_UINT16(0x59a3) - (FFX_TO_UINT16(a) >> FFX_BROADCAST_UINT16(1)));
+}
+
+/// Calculate a half-precision low-quality approximation for the reciprocal of the square root of a value.
+///
+/// For additional information on the approximation family of functions, you can refer to Michal Drobot's excellent
+/// presentation materials:
+///
+/// - https://michaldrobot.files.wordpress.com/2014/05/gcn_alu_opt_digitaldragons2014.pdf
+/// - https://github.com/michaldrobot/ShaderFastLibs/blob/master/ShaderFastMathLib.h
+///
+/// @param [in] a The value to calculate an approximate to the reciprocal of the square root for.
+///
+/// @returns
+/// An approximation of the reciprocal of the square root, estimated to low quality.
+///
+/// @ingroup GPU
+FfxFloat16x2 ffxApproximateReciprocalSquareRootHalf(FfxFloat16x2 a)
+{
+ return FFX_TO_FLOAT16X2(FFX_BROADCAST_UINT16X2(0x59a3) - (FFX_TO_UINT16X2(a) >> FFX_BROADCAST_UINT16X2(1)));
+}
+
+/// Calculate a half-precision low-quality approximation for the reciprocal of the square root of a value.
+///
+/// For additional information on the approximation family of functions, you can refer to Michal Drobot's excellent
+/// presentation materials:
+///
+/// - https://michaldrobot.files.wordpress.com/2014/05/gcn_alu_opt_digitaldragons2014.pdf
+/// - https://github.com/michaldrobot/ShaderFastLibs/blob/master/ShaderFastMathLib.h
+///
+/// @param [in] a The value to calculate an approximate to the reciprocal of the square root for.
+///
+/// @returns
+/// An approximation of the reciprocal of the square root, estimated to low quality.
+///
+/// @ingroup GPU
+FfxFloat16x3 ffxApproximateReciprocalSquareRootHalf(FfxFloat16x3 a)
+{
+ return FFX_TO_FLOAT16X3(FFX_BROADCAST_UINT16X3(0x59a3) - (FFX_TO_UINT16X3(a) >> FFX_BROADCAST_UINT16X3(1)));
+}
+
+/// Calculate a half-precision low-quality approximation for the reciprocal of the square root of a value.
+///
+/// For additional information on the approximation family of functions, you can refer to Michal Drobot's excellent
+/// presentation materials:
+///
+/// - https://michaldrobot.files.wordpress.com/2014/05/gcn_alu_opt_digitaldragons2014.pdf
+/// - https://github.com/michaldrobot/ShaderFastLibs/blob/master/ShaderFastMathLib.h
+///
+/// @param [in] a The value to calculate an approximate to the reciprocal of the square root for.
+///
+/// @returns
+/// An approximation of the reciprocal of the square root, estimated to low quality.
+///
+/// @ingroup GPU
+FfxFloat16x4 ffxApproximateReciprocalSquareRootHalf(FfxFloat16x4 a)
+{
+ return FFX_TO_FLOAT16X4(FFX_BROADCAST_UINT16X4(0x59a3) - (FFX_TO_UINT16X4(a) >> FFX_BROADCAST_UINT16X4(1)));
+}
+
+/// An approximation of sine.
+///
+/// Valid input range is {-1 to 1} representing {0 to 2 pi}, and the output range
+/// is {-1/4 to 1/4} representing {-1 to 1}.
+///
+/// @param [in] x The value to calculate approximate sine for.
+///
+/// @returns
+/// The approximate sine of <c><i>value</i></c>.
+FfxFloat16 ffxParabolicSinHalf(FfxFloat16 x)
+{
+ return x * abs(x) - x;
+}
+
+/// An approximation of sine.
+///
+/// Valid input range is {-1 to 1} representing {0 to 2 pi}, and the output range
+/// is {-1/4 to 1/4} representing {-1 to 1}.
+///
+/// @param [in] x The value to calculate approximate sine for.
+///
+/// @returns
+/// The approximate sine of <c><i>value</i></c>.
+FfxFloat16x2 ffxParabolicSinHalf(FfxFloat16x2 x)
+{
+ return x * abs(x) - x;
+}
+
+/// An approximation of cosine.
+///
+/// Valid input range is {-1 to 1} representing {0 to 2 pi}, and the output range
+/// is {-1/4 to 1/4} representing {-1 to 1}.
+///
+/// @param [in] x The value to calculate approximate cosine for.
+///
+/// @returns
+/// The approximate cosine of <c><i>value</i></c>.
+FfxFloat16 ffxParabolicCosHalf(FfxFloat16 x)
+{
+ x = ffxFract(x * FFX_BROADCAST_FLOAT16(0.5) + FFX_BROADCAST_FLOAT16(0.75));
+ x = x * FFX_BROADCAST_FLOAT16(2.0) - FFX_BROADCAST_FLOAT16(1.0);
+ return ffxParabolicSinHalf(x);
+}
+
+/// An approximation of cosine.
+///
+/// Valid input range is {-1 to 1} representing {0 to 2 pi}, and the output range
+/// is {-1/4 to 1/4} representing {-1 to 1}.
+///
+/// @param [in] x The value to calculate approximate cosine for.
+///
+/// @returns
+/// The approximate cosine of <c><i>value</i></c>.
+FfxFloat16x2 ffxParabolicCosHalf(FfxFloat16x2 x)
+{
+ x = ffxFract(x * FFX_BROADCAST_FLOAT16X2(0.5) + FFX_BROADCAST_FLOAT16X2(0.75));
+ x = x * FFX_BROADCAST_FLOAT16X2(2.0) - FFX_BROADCAST_FLOAT16X2(1.0);
+ return ffxParabolicSinHalf(x);
+}
+
+/// An approximation of both sine and cosine.
+///
+/// Valid input range is {-1 to 1} representing {0 to 2 pi}, and the output range
+/// is {-1/4 to 1/4} representing {-1 to 1}.
+///
+/// @param [in] x The value to calculate approximate cosine for.
+///
+/// @returns
+/// A <c><i>FfxFloat32x2</i></c> containing approximations of both sine and cosine of <c><i>value</i></c>.
+FfxFloat16x2 ffxParabolicSinCosHalf(FfxFloat16 x)
+{
+ FfxFloat16 y = ffxFract(x * FFX_BROADCAST_FLOAT16(0.5) + FFX_BROADCAST_FLOAT16(0.75));
+ y = y * FFX_BROADCAST_FLOAT16(2.0) - FFX_BROADCAST_FLOAT16(1.0);
+ return ffxParabolicSinHalf(FfxFloat16x2(x, y));
+}
+
+/// Conditional free logic AND operation using two half-precision values.
+///
+/// @param [in] x The first value to be fed into the AND operator.
+/// @param [in] y The second value to be fed into the AND operator.
+///
+/// @returns
+/// Result of the AND operation.
+///
+/// @ingroup GPU
+FfxUInt16 ffxZeroOneAndHalf(FfxUInt16 x, FfxUInt16 y)
+{
+ return min(x, y);
+}
+
+/// Conditional free logic AND operation using two half-precision values.
+///
+/// @param [in] x The first value to be fed into the AND operator.
+/// @param [in] y The second value to be fed into the AND operator.
+///
+/// @returns
+/// Result of the AND operation.
+///
+/// @ingroup GPU
+FfxUInt16x2 ffxZeroOneAndHalf(FfxUInt16x2 x, FfxUInt16x2 y)
+{
+ return min(x, y);
+}
+
+/// Conditional free logic AND operation using two half-precision values.
+///
+/// @param [in] x The first value to be fed into the AND operator.
+/// @param [in] y The second value to be fed into the AND operator.
+///
+/// @returns
+/// Result of the AND operation.
+///
+/// @ingroup GPU
+FfxUInt16x3 ffxZeroOneAndHalf(FfxUInt16x3 x, FfxUInt16x3 y)
+{
+ return min(x, y);
+}
+
+/// Conditional free logic AND operation using two half-precision values.
+///
+/// @param [in] x The first value to be fed into the AND operator.
+/// @param [in] y The second value to be fed into the AND operator.
+///
+/// @returns
+/// Result of the AND operation.
+///
+/// @ingroup GPU
+FfxUInt16x4 ffxZeroOneAndHalf(FfxUInt16x4 x, FfxUInt16x4 y)
+{
+ return min(x, y);
+}
+
+/// Conditional free logic NOT operation using two half-precision values.
+///
+/// @param [in] x The first value to be fed into the NOT operator.
+/// @param [in] y The second value to be fed into the NOT operator.
+///
+/// @returns
+/// Result of the NOT operation.
+///
+/// @ingroup GPU
+FfxUInt16 ffxZeroOneNotHalf(FfxUInt16 x)
+{
+ return x ^ FFX_BROADCAST_UINT16(1);
+}
+
+/// Conditional free logic NOT operation using two half-precision values.
+///
+/// @param [in] x The first value to be fed into the NOT operator.
+/// @param [in] y The second value to be fed into the NOT operator.
+///
+/// @returns
+/// Result of the NOT operation.
+///
+/// @ingroup GPU
+FfxUInt16x2 ffxZeroOneNotHalf(FfxUInt16x2 x)
+{
+ return x ^ FFX_BROADCAST_UINT16X2(1);
+}
+
+/// Conditional free logic NOT operation using two half-precision values.
+///
+/// @param [in] x The first value to be fed into the NOT operator.
+/// @param [in] y The second value to be fed into the NOT operator.
+///
+/// @returns
+/// Result of the NOT operation.
+///
+/// @ingroup GPU
+FfxUInt16x3 ffxZeroOneNotHalf(FfxUInt16x3 x)
+{
+ return x ^ FFX_BROADCAST_UINT16X3(1);
+}
+
+/// Conditional free logic NOT operation using two half-precision values.
+///
+/// @param [in] x The first value to be fed into the NOT operator.
+/// @param [in] y The second value to be fed into the NOT operator.
+///
+/// @returns
+/// Result of the NOT operation.
+///
+/// @ingroup GPU
+FfxUInt16x4 ffxZeroOneNotHalf(FfxUInt16x4 x)
+{
+ return x ^ FFX_BROADCAST_UINT16X4(1);
+}
+
+/// Conditional free logic OR operation using two half-precision values.
+///
+/// @param [in] x The first value to be fed into the OR operator.
+/// @param [in] y The second value to be fed into the OR operator.
+///
+/// @returns
+/// Result of the OR operation.
+///
+/// @ingroup GPU
+FfxUInt16 ffxZeroOneOrHalf(FfxUInt16 x, FfxUInt16 y)
+{
+ return max(x, y);
+}
+
+/// Conditional free logic OR operation using two half-precision values.
+///
+/// @param [in] x The first value to be fed into the OR operator.
+/// @param [in] y The second value to be fed into the OR operator.
+///
+/// @returns
+/// Result of the OR operation.
+///
+/// @ingroup GPU
+FfxUInt16x2 ffxZeroOneOrHalf(FfxUInt16x2 x, FfxUInt16x2 y)
+{
+ return max(x, y);
+}
+
+/// Conditional free logic OR operation using two half-precision values.
+///
+/// @param [in] x The first value to be fed into the OR operator.
+/// @param [in] y The second value to be fed into the OR operator.
+///
+/// @returns
+/// Result of the OR operation.
+///
+/// @ingroup GPU
+FfxUInt16x3 ffxZeroOneOrHalf(FfxUInt16x3 x, FfxUInt16x3 y)
+{
+ return max(x, y);
+}
+
+/// Conditional free logic OR operation using two half-precision values.
+///
+/// @param [in] x The first value to be fed into the OR operator.
+/// @param [in] y The second value to be fed into the OR operator.
+///
+/// @returns
+/// Result of the OR operation.
+///
+/// @ingroup GPU
+FfxUInt16x4 ffxZeroOneOrHalf(FfxUInt16x4 x, FfxUInt16x4 y)
+{
+ return max(x, y);
+}
+
+/// Convert a half-precision FfxFloat32 value between 0.0f and 1.0f to a half-precision Uint.
+///
+/// @param [in] x The value to converted to a Uint.
+///
+/// @returns
+/// The converted Uint value.
+///
+/// @ingroup GPU
+FfxUInt16 ffxZeroOneFloat16ToUint16(FfxFloat16 x)
+{
+ return FFX_TO_UINT16(x * FFX_TO_FLOAT16(FFX_TO_UINT16(1)));
+}
+
+/// Convert a half-precision FfxFloat32 value between 0.0f and 1.0f to a half-precision Uint.
+///
+/// @param [in] x The value to converted to a Uint.
+///
+/// @returns
+/// The converted Uint value.
+///
+/// @ingroup GPU
+FfxUInt16x2 ffxZeroOneFloat16x2ToUint16x2(FfxFloat16x2 x)
+{
+ return FFX_TO_UINT16X2(x * FFX_TO_FLOAT16X2(FfxUInt16x2(1, 1)));
+}
+
+/// Convert a half-precision FfxFloat32 value between 0.0f and 1.0f to a half-precision Uint.
+///
+/// @param [in] x The value to converted to a Uint.
+///
+/// @returns
+/// The converted Uint value.
+///
+/// @ingroup GPU
+FfxUInt16x3 ffxZeroOneFloat16x3ToUint16x3(FfxFloat16x3 x)
+{
+ return FFX_TO_UINT16X3(x * FFX_TO_FLOAT16X3(FfxUInt16x3(1, 1, 1)));
+}
+
+/// Convert a half-precision FfxFloat32 value between 0.0f and 1.0f to a half-precision Uint.
+///
+/// @param [in] x The value to converted to a Uint.
+///
+/// @returns
+/// The converted Uint value.
+///
+/// @ingroup GPU
+FfxUInt16x4 ffxZeroOneFloat16x4ToUint16x4(FfxFloat16x4 x)
+{
+ return FFX_TO_UINT16X4(x * FFX_TO_FLOAT16X4(FfxUInt16x4(1, 1, 1, 1)));
+}
+
+/// Convert a half-precision FfxUInt32 value between 0 and 1 to a half-precision FfxFloat32.
+///
+/// @param [in] x The value to converted to a half-precision FfxFloat32.
+///
+/// @returns
+/// The converted half-precision FfxFloat32 value.
+///
+/// @ingroup GPU
+FfxFloat16 ffxZeroOneUint16ToFloat16(FfxUInt16 x)
+{
+ return FFX_TO_FLOAT16(x * FFX_TO_UINT16(FFX_TO_FLOAT16(1.0)));
+}
+
+/// Convert a half-precision FfxUInt32 value between 0 and 1 to a half-precision FfxFloat32.
+///
+/// @param [in] x The value to converted to a half-precision FfxFloat32.
+///
+/// @returns
+/// The converted half-precision FfxFloat32 value.
+///
+/// @ingroup GPU
+FfxFloat16x2 ffxZeroOneUint16x2ToFloat16x2(FfxUInt16x2 x)
+{
+ return FFX_TO_FLOAT16X2(x * FFX_TO_UINT16X2(FfxUInt16x2(FFX_TO_FLOAT16(1.0), FFX_TO_FLOAT16(1.0))));
+}
+
+/// Convert a half-precision FfxUInt32 value between 0 and 1 to a half-precision FfxFloat32.
+///
+/// @param [in] x The value to converted to a half-precision FfxFloat32.
+///
+/// @returns
+/// The converted half-precision FfxFloat32 value.
+///
+/// @ingroup GPU
+FfxFloat16x3 ffxZeroOneUint16x3ToFloat16x3(FfxUInt16x3 x)
+{
+ return FFX_TO_FLOAT16X3(x * FFX_TO_UINT16X3(FfxUInt16x3(FFX_TO_FLOAT16(1.0), FFX_TO_FLOAT16(1.0), FFX_TO_FLOAT16(1.0))));
+}
+
+/// Convert a half-precision FfxUInt32 value between 0 and 1 to a half-precision FfxFloat32.
+///
+/// @param [in] x The value to converted to a half-precision FfxFloat32.
+///
+/// @returns
+/// The converted half-precision FfxFloat32 value.
+///
+/// @ingroup GPU
+FfxFloat16x4 ffxZeroOneUint16x4ToFloat16x4(FfxUInt16x4 x)
+{
+ return FFX_TO_FLOAT16X4(x * FFX_TO_UINT16X4(FfxUInt16x4(FFX_TO_FLOAT16(1.0), FFX_TO_FLOAT16(1.0), FFX_TO_FLOAT16(1.0), FFX_TO_FLOAT16(1.0))));
+}
+
+/// Conditional free logic AND operation using two half-precision values.
+///
+/// @param [in] x The first value to be fed into the AND operator.
+/// @param [in] y The second value to be fed into the AND operator.
+///
+/// @returns
+/// Result of the AND operation.
+///
+/// @ingroup GPU
+FfxFloat16 ffxZeroOneAndHalf(FfxFloat16 x, FfxFloat16 y)
+{
+ return min(x, y);
+}
+
+/// Conditional free logic AND operation using two half-precision values.
+///
+/// @param [in] x The first value to be fed into the AND operator.
+/// @param [in] y The second value to be fed into the AND operator.
+///
+/// @returns
+/// Result of the AND operation.
+///
+/// @ingroup GPU
+FfxFloat16x2 ffxZeroOneAndHalf(FfxFloat16x2 x, FfxFloat16x2 y)
+{
+ return min(x, y);
+}
+
+/// Conditional free logic AND operation using two half-precision values.
+///
+/// @param [in] x The first value to be fed into the AND operator.
+/// @param [in] y The second value to be fed into the AND operator.
+///
+/// @returns
+/// Result of the AND operation.
+///
+/// @ingroup GPU
+FfxFloat16x3 ffxZeroOneAndHalf(FfxFloat16x3 x, FfxFloat16x3 y)
+{
+ return min(x, y);
+}
+
+/// Conditional free logic AND operation using two half-precision values.
+///
+/// @param [in] x The first value to be fed into the AND operator.
+/// @param [in] y The second value to be fed into the AND operator.
+///
+/// @returns
+/// Result of the AND operation.
+///
+/// @ingroup GPU
+FfxFloat16x4 ffxZeroOneAndHalf(FfxFloat16x4 x, FfxFloat16x4 y)
+{
+ return min(x, y);
+}
+
+/// Conditional free logic AND NOT operation using two half-precision values.
+///
+/// @param [in] x The first value to be fed into the AND NOT operator.
+/// @param [in] y The second value to be fed into the AND NOT operator.
+///
+/// @returns
+/// Result of the AND NOT operation.
+///
+/// @ingroup GPU
+FfxFloat16 ffxSignedZeroOneAndOrHalf(FfxFloat16 x, FfxFloat16 y)
+{
+ return (-x) * y + FFX_BROADCAST_FLOAT16(1.0);
+}
+
+/// Conditional free logic AND NOT operation using two half-precision values.
+///
+/// @param [in] x The first value to be fed into the AND NOT operator.
+/// @param [in] y The second value to be fed into the AND NOT operator.
+///
+/// @returns
+/// Result of the AND NOT operation.
+///
+/// @ingroup GPU
+FfxFloat16x2 ffxSignedZeroOneAndOrHalf(FfxFloat16x2 x, FfxFloat16x2 y)
+{
+ return (-x) * y + FFX_BROADCAST_FLOAT16X2(1.0);
+}
+
+/// Conditional free logic AND NOT operation using two half-precision values.
+///
+/// @param [in] x The first value to be fed into the AND NOT operator.
+/// @param [in] y The second value to be fed into the AND NOT operator.
+///
+/// @returns
+/// Result of the AND NOT operation.
+///
+/// @ingroup GPU
+FfxFloat16x3 ffxSignedZeroOneAndOrHalf(FfxFloat16x3 x, FfxFloat16x3 y)
+{
+ return (-x) * y + FFX_BROADCAST_FLOAT16X3(1.0);
+}
+
+/// Conditional free logic AND NOT operation using two half-precision values.
+///
+/// @param [in] x The first value to be fed into the AND NOT operator.
+/// @param [in] y The second value to be fed into the AND NOT operator.
+///
+/// @returns
+/// Result of the AND NOT operation.
+///
+/// @ingroup GPU
+FfxFloat16x4 ffxSignedZeroOneAndOrHalf(FfxFloat16x4 x, FfxFloat16x4 y)
+{
+ return (-x) * y + FFX_BROADCAST_FLOAT16X4(1.0);
+}
+
+/// Conditional free logic AND operation using two half-precision values followed by
+/// a NOT operation using the resulting value and a third half-precision value.
+///
+/// @param [in] x The first value to be fed into the AND operator.
+/// @param [in] y The second value to be fed into the AND operator.
+/// @param [in] z The second value to be fed into the OR operator.
+///
+/// @returns
+/// Result of the AND OR operation.
+///
+/// @ingroup GPU
+FfxFloat16 ffxZeroOneAndOrHalf(FfxFloat16 x, FfxFloat16 y, FfxFloat16 z)
+{
+ return ffxSaturate(x * y + z);
+}
+
+/// Conditional free logic AND operation using two half-precision values followed by
+/// a NOT operation using the resulting value and a third half-precision value.
+///
+/// @param [in] x The first value to be fed into the AND operator.
+/// @param [in] y The second value to be fed into the AND operator.
+/// @param [in] z The second value to be fed into the OR operator.
+///
+/// @returns
+/// Result of the AND OR operation.
+///
+/// @ingroup GPU
+FfxFloat16x2 ffxZeroOneAndOrHalf(FfxFloat16x2 x, FfxFloat16x2 y, FfxFloat16x2 z)
+{
+ return ffxSaturate(x * y + z);
+}
+
+/// Conditional free logic AND operation using two half-precision values followed by
+/// a NOT operation using the resulting value and a third half-precision value.
+///
+/// @param [in] x The first value to be fed into the AND operator.
+/// @param [in] y The second value to be fed into the AND operator.
+/// @param [in] z The second value to be fed into the OR operator.
+///
+/// @returns
+/// Result of the AND OR operation.
+///
+/// @ingroup GPU
+FfxFloat16x3 ffxZeroOneAndOrHalf(FfxFloat16x3 x, FfxFloat16x3 y, FfxFloat16x3 z)
+{
+ return ffxSaturate(x * y + z);
+}
+
+/// Conditional free logic AND operation using two half-precision values followed by
+/// a NOT operation using the resulting value and a third half-precision value.
+///
+/// @param [in] x The first value to be fed into the AND operator.
+/// @param [in] y The second value to be fed into the AND operator.
+/// @param [in] z The second value to be fed into the OR operator.
+///
+/// @returns
+/// Result of the AND OR operation.
+///
+/// @ingroup GPU
+FfxFloat16x4 ffxZeroOneAndOrHalf(FfxFloat16x4 x, FfxFloat16x4 y, FfxFloat16x4 z)
+{
+ return ffxSaturate(x * y + z);
+}
+
+/// Given a half-precision value, returns 1.0 if greater than zero and 0.0 if not.
+///
+/// @param [in] x The value to be compared.
+///
+/// @returns
+/// Result of the greater than zero comparison.
+///
+/// @ingroup GPU
+FfxFloat16 ffxZeroOneIsGreaterThanZeroHalf(FfxFloat16 x)
+{
+ return ffxSaturate(x * FFX_BROADCAST_FLOAT16(FFX_POSITIVE_INFINITY_HALF));
+}
+
+/// Given a half-precision value, returns 1.0 if greater than zero and 0.0 if not.
+///
+/// @param [in] x The value to be compared.
+///
+/// @returns
+/// Result of the greater than zero comparison.
+///
+/// @ingroup GPU
+FfxFloat16x2 ffxZeroOneIsGreaterThanZeroHalf(FfxFloat16x2 x)
+{
+ return ffxSaturate(x * FFX_BROADCAST_FLOAT16X2(FFX_POSITIVE_INFINITY_HALF));
+}
+
+/// Given a half-precision value, returns 1.0 if greater than zero and 0.0 if not.
+///
+/// @param [in] x The value to be compared.
+///
+/// @returns
+/// Result of the greater than zero comparison.
+///
+/// @ingroup GPU
+FfxFloat16x3 ffxZeroOneIsGreaterThanZeroHalf(FfxFloat16x3 x)
+{
+ return ffxSaturate(x * FFX_BROADCAST_FLOAT16X3(FFX_POSITIVE_INFINITY_HALF));
+}
+
+/// Given a half-precision value, returns 1.0 if greater than zero and 0.0 if not.
+///
+/// @param [in] x The value to be compared.
+///
+/// @returns
+/// Result of the greater than zero comparison.
+///
+/// @ingroup GPU
+FfxFloat16x4 ffxZeroOneIsGreaterThanZeroHalf(FfxFloat16x4 x)
+{
+ return ffxSaturate(x * FFX_BROADCAST_FLOAT16X4(FFX_POSITIVE_INFINITY_HALF));
+}
+
+/// Conditional free logic signed NOT operation using two half-precision FfxFloat32 values.
+///
+/// @param [in] x The first value to be fed into the AND OR operator.
+///
+/// @returns
+/// Result of the AND OR operation.
+///
+/// @ingroup GPU
+FfxFloat16 ffxZeroOneNotHalf(FfxFloat16 x)
+{
+ return FFX_BROADCAST_FLOAT16(1.0) - x;
+}
+
+/// Conditional free logic signed NOT operation using two half-precision FfxFloat32 values.
+///
+/// @param [in] x The first value to be fed into the AND OR operator.
+///
+/// @returns
+/// Result of the AND OR operation.
+///
+/// @ingroup GPU
+FfxFloat16x2 ffxZeroOneNotHalf(FfxFloat16x2 x)
+{
+ return FFX_BROADCAST_FLOAT16X2(1.0) - x;
+}
+
+/// Conditional free logic signed NOT operation using two half-precision FfxFloat32 values.
+///
+/// @param [in] x The first value to be fed into the AND OR operator.
+///
+/// @returns
+/// Result of the AND OR operation.
+///
+/// @ingroup GPU
+FfxFloat16x3 ffxZeroOneNotHalf(FfxFloat16x3 x)
+{
+ return FFX_BROADCAST_FLOAT16X3(1.0) - x;
+}
+
+/// Conditional free logic signed NOT operation using two half-precision FfxFloat32 values.
+///
+/// @param [in] x The first value to be fed into the AND OR operator.
+///
+/// @returns
+/// Result of the AND OR operation.
+///
+/// @ingroup GPU
+FfxFloat16x4 ffxZeroOneNotHalf(FfxFloat16x4 x)
+{
+ return FFX_BROADCAST_FLOAT16X4(1.0) - x;
+}
+
+/// Conditional free logic OR operation using two half-precision FfxFloat32 values.
+///
+/// @param [in] x The first value to be fed into the OR operator.
+/// @param [in] y The second value to be fed into the OR operator.
+///
+/// @returns
+/// Result of the OR operation.
+///
+/// @ingroup GPU
+FfxFloat16 ffxZeroOneOrHalf(FfxFloat16 x, FfxFloat16 y)
+{
+ return max(x, y);
+}
+
+/// Conditional free logic OR operation using two half-precision FfxFloat32 values.
+///
+/// @param [in] x The first value to be fed into the OR operator.
+/// @param [in] y The second value to be fed into the OR operator.
+///
+/// @returns
+/// Result of the OR operation.
+///
+/// @ingroup GPU
+FfxFloat16x2 ffxZeroOneOrHalf(FfxFloat16x2 x, FfxFloat16x2 y)
+{
+ return max(x, y);
+}
+
+/// Conditional free logic OR operation using two half-precision FfxFloat32 values.
+///
+/// @param [in] x The first value to be fed into the OR operator.
+/// @param [in] y The second value to be fed into the OR operator.
+///
+/// @returns
+/// Result of the OR operation.
+///
+/// @ingroup GPU
+FfxFloat16x3 ffxZeroOneOrHalf(FfxFloat16x3 x, FfxFloat16x3 y)
+{
+ return max(x, y);
+}
+
+/// Conditional free logic OR operation using two half-precision FfxFloat32 values.
+///
+/// @param [in] x The first value to be fed into the OR operator.
+/// @param [in] y The second value to be fed into the OR operator.
+///
+/// @returns
+/// Result of the OR operation.
+///
+/// @ingroup GPU
+FfxFloat16x4 ffxZeroOneOrHalf(FfxFloat16x4 x, FfxFloat16x4 y)
+{
+ return max(x, y);
+}
+
+/// Choose between two half-precision FfxFloat32 values if the first paramter is greater than zero.
+///
+/// @param [in] x The value to compare against zero.
+/// @param [in] y The value to return if the comparision is greater than zero.
+/// @param [in] z The value to return if the comparision is less than or equal to zero.
+///
+/// @returns
+/// The selected value.
+///
+/// @ingroup GPU
+FfxFloat16 ffxZeroOneSelectHalf(FfxFloat16 x, FfxFloat16 y, FfxFloat16 z)
+{
+ FfxFloat16 r = (-x) * z + z;
+ return x * y + r;
+}
+
+/// Choose between two half-precision FfxFloat32 values if the first paramter is greater than zero.
+///
+/// @param [in] x The value to compare against zero.
+/// @param [in] y The value to return if the comparision is greater than zero.
+/// @param [in] z The value to return if the comparision is less than or equal to zero.
+///
+/// @returns
+/// The selected value.
+///
+/// @ingroup GPU
+FfxFloat16x2 ffxZeroOneSelectHalf(FfxFloat16x2 x, FfxFloat16x2 y, FfxFloat16x2 z)
+{
+ FfxFloat16x2 r = (-x) * z + z;
+ return x * y + r;
+}
+
+/// Choose between two half-precision FfxFloat32 values if the first paramter is greater than zero.
+///
+/// @param [in] x The value to compare against zero.
+/// @param [in] y The value to return if the comparision is greater than zero.
+/// @param [in] z The value to return if the comparision is less than or equal to zero.
+///
+/// @returns
+/// The selected value.
+///
+/// @ingroup GPU
+FfxFloat16x3 ffxZeroOneSelectHalf(FfxFloat16x3 x, FfxFloat16x3 y, FfxFloat16x3 z)
+{
+ FfxFloat16x3 r = (-x) * z + z;
+ return x * y + r;
+}
+
+/// Choose between two half-precision FfxFloat32 values if the first paramter is greater than zero.
+///
+/// @param [in] x The value to compare against zero.
+/// @param [in] y The value to return if the comparision is greater than zero.
+/// @param [in] z The value to return if the comparision is less than or equal to zero.
+///
+/// @returns
+/// The selected value.
+///
+/// @ingroup GPU
+FfxFloat16x4 ffxZeroOneSelectHalf(FfxFloat16x4 x, FfxFloat16x4 y, FfxFloat16x4 z)
+{
+ FfxFloat16x4 r = (-x) * z + z;
+ return x * y + r;
+}
+
+/// Given a half-precision value, returns 1.0 if less than zero and 0.0 if not.
+///
+/// @param [in] x The value to be compared.
+///
+/// @returns
+/// Result of the sign value.
+///
+/// @ingroup GPU
+FfxFloat16 ffxZeroOneIsSignedHalf(FfxFloat16 x)
+{
+ return ffxSaturate(x * FFX_BROADCAST_FLOAT16(FFX_NEGATIVE_INFINITY_HALF));
+}
+
+/// Given a half-precision value, returns 1.0 if less than zero and 0.0 if not.
+///
+/// @param [in] x The value to be compared.
+///
+/// @returns
+/// Result of the sign value.
+///
+/// @ingroup GPU
+FfxFloat16x2 ffxZeroOneIsSignedHalf(FfxFloat16x2 x)
+{
+ return ffxSaturate(x * FFX_BROADCAST_FLOAT16X2(FFX_NEGATIVE_INFINITY_HALF));
+}
+
+/// Given a half-precision value, returns 1.0 if less than zero and 0.0 if not.
+///
+/// @param [in] x The value to be compared.
+///
+/// @returns
+/// Result of the sign value.
+///
+/// @ingroup GPU
+FfxFloat16x3 ffxZeroOneIsSignedHalf(FfxFloat16x3 x)
+{
+ return ffxSaturate(x * FFX_BROADCAST_FLOAT16X3(FFX_NEGATIVE_INFINITY_HALF));
+}
+
+/// Given a half-precision value, returns 1.0 if less than zero and 0.0 if not.
+///
+/// @param [in] x The value to be compared.
+///
+/// @returns
+/// Result of the sign value.
+///
+/// @ingroup GPU
+FfxFloat16x4 ffxZeroOneIsSignedHalf(FfxFloat16x4 x)
+{
+ return ffxSaturate(x * FFX_BROADCAST_FLOAT16X4(FFX_NEGATIVE_INFINITY_HALF));
+}
+
+/// Compute a Rec.709 color space.
+///
+/// Rec.709 is used for some HDTVs.
+///
+/// Both Rec.709 and sRGB have a linear segment which as spec'ed would intersect the curved segment 2 times.
+/// (a.) For 8-bit sRGB, steps {0 to 10.3} are in the linear region (4% of the encoding range).
+/// (b.) For 8-bit 709, steps {0 to 20.7} are in the linear region (8% of the encoding range).
+///
+/// @param [in] c The color to convert to Rec. 709.
+///
+/// @returns
+/// The <c><i>color</i></c> in Rec.709 space.
+///
+/// @ingroup GPU
+FfxFloat16 ffxRec709FromLinearHalf(FfxFloat16 c)
+{
+ FfxFloat16x3 j = FfxFloat16x3(0.018 * 4.5, 4.5, 0.45);
+ FfxFloat16x2 k = FfxFloat16x2(1.099, -0.099);
+ return clamp(j.x, c * j.y, pow(c, j.z) * k.x + k.y);
+}
+
+/// Compute a Rec.709 color space.
+///
+/// Rec.709 is used for some HDTVs.
+///
+/// Both Rec.709 and sRGB have a linear segment which as spec'ed would intersect the curved segment 2 times.
+/// (a.) For 8-bit sRGB, steps {0 to 10.3} are in the linear region (4% of the encoding range).
+/// (b.) For 8-bit 709, steps {0 to 20.7} are in the linear region (8% of the encoding range).
+///
+/// @param [in] c The color to convert to Rec. 709.
+///
+/// @returns
+/// The <c><i>color</i></c> in Rec.709 space.
+///
+/// @ingroup GPU
+FfxFloat16x2 ffxRec709FromLinearHalf(FfxFloat16x2 c)
+{
+ FfxFloat16x3 j = FfxFloat16x3(0.018 * 4.5, 4.5, 0.45);
+ FfxFloat16x2 k = FfxFloat16x2(1.099, -0.099);
+ return clamp(j.xx, c * j.yy, pow(c, j.zz) * k.xx + k.yy);
+}
+
+/// Compute a Rec.709 color space.
+///
+/// Rec.709 is used for some HDTVs.
+///
+/// Both Rec.709 and sRGB have a linear segment which as spec'ed would intersect the curved segment 2 times.
+/// (a.) For 8-bit sRGB, steps {0 to 10.3} are in the linear region (4% of the encoding range).
+/// (b.) For 8-bit 709, steps {0 to 20.7} are in the linear region (8% of the encoding range).
+///
+/// @param [in] c The color to convert to Rec. 709.
+///
+/// @returns
+/// The <c><i>color</i></c> in Rec.709 space.
+///
+/// @ingroup GPU
+FfxFloat16x3 ffxRec709FromLinearHalf(FfxFloat16x3 c)
+{
+ FfxFloat16x3 j = FfxFloat16x3(0.018 * 4.5, 4.5, 0.45);
+ FfxFloat16x2 k = FfxFloat16x2(1.099, -0.099);
+ return clamp(j.xxx, c * j.yyy, pow(c, j.zzz) * k.xxx + k.yyy);
+}
+
+/// Compute a gamma value from a linear value.
+///
+/// Typically 2.2 for some PC displays, or 2.4-2.5 for CRTs, or 2.2 FreeSync2 native.
+///
+/// Note: 'rcpX' is '1/x', where the 'x' is what would be used in <c><i>ffxLinearFromGammaHalf</i></c>.
+///
+/// @param [in] c The value to convert to gamma space from linear.
+/// @param [in] rcpX The reciprocal of power value used for the gamma curve.
+///
+/// @returns
+/// A value in gamma space.
+///
+/// @ingroup GPU
+FfxFloat16 ffxGammaFromLinearHalf(FfxFloat16 c, FfxFloat16 rcpX)
+{
+ return pow(c, FFX_BROADCAST_FLOAT16(rcpX));
+}
+
+/// Compute a gamma value from a linear value.
+///
+/// Typically 2.2 for some PC displays, or 2.4-2.5 for CRTs, or 2.2 FreeSync2 native.
+///
+/// Note: 'rcpX' is '1/x', where the 'x' is what would be used in <c><i>ffxLinearFromGammaHalf</i></c>.
+///
+/// @param [in] c The value to convert to gamma space from linear.
+/// @param [in] rcpX The reciprocal of power value used for the gamma curve.
+///
+/// @returns
+/// A value in gamma space.
+///
+/// @ingroup GPU
+FfxFloat16x2 ffxGammaFromLinearHalf(FfxFloat16x2 c, FfxFloat16 rcpX)
+{
+ return pow(c, FFX_BROADCAST_FLOAT16X2(rcpX));
+}
+
+/// Compute a gamma value from a linear value.
+///
+/// Typically 2.2 for some PC displays, or 2.4-2.5 for CRTs, or 2.2 FreeSync2 native.
+///
+/// Note: 'rcpX' is '1/x', where the 'x' is what would be used in <c><i>ffxLinearFromGammaHalf</i></c>.
+///
+/// @param [in] c The value to convert to gamma space from linear.
+/// @param [in] rcpX The reciprocal of power value used for the gamma curve.
+///
+/// @returns
+/// A value in gamma space.
+///
+/// @ingroup GPU
+FfxFloat16x3 ffxGammaFromLinearHalf(FfxFloat16x3 c, FfxFloat16 rcpX)
+{
+ return pow(c, FFX_BROADCAST_FLOAT16X3(rcpX));
+}
+
+/// Compute an SRGB value from a linear value.
+///
+/// @param [in] c The value to convert to SRGB from linear.
+///
+/// @returns
+/// A value in SRGB space.
+///
+/// @ingroup GPU
+FfxFloat16 ffxSrgbFromLinearHalf(FfxFloat16 c)
+{
+ FfxFloat16x3 j = FfxFloat16x3(0.0031308 * 12.92, 12.92, 1.0 / 2.4);
+ FfxFloat16x2 k = FfxFloat16x2(1.055, -0.055);
+ return clamp(j.x, c * j.y, pow(c, j.z) * k.x + k.y);
+}
+
+/// Compute an SRGB value from a linear value.
+///
+/// @param [in] c The value to convert to SRGB from linear.
+///
+/// @returns
+/// A value in SRGB space.
+///
+/// @ingroup GPU
+FfxFloat16x2 ffxSrgbFromLinearHalf(FfxFloat16x2 c)
+{
+ FfxFloat16x3 j = FfxFloat16x3(0.0031308 * 12.92, 12.92, 1.0 / 2.4);
+ FfxFloat16x2 k = FfxFloat16x2(1.055, -0.055);
+ return clamp(j.xx, c * j.yy, pow(c, j.zz) * k.xx + k.yy);
+}
+
+/// Compute an SRGB value from a linear value.
+///
+/// @param [in] c The value to convert to SRGB from linear.
+///
+/// @returns
+/// A value in SRGB space.
+///
+/// @ingroup GPU
+FfxFloat16x3 ffxSrgbFromLinearHalf(FfxFloat16x3 c)
+{
+ FfxFloat16x3 j = FfxFloat16x3(0.0031308 * 12.92, 12.92, 1.0 / 2.4);
+ FfxFloat16x2 k = FfxFloat16x2(1.055, -0.055);
+ return clamp(j.xxx, c * j.yyy, pow(c, j.zzz) * k.xxx + k.yyy);
+}
+
+/// Compute the square root of a value.
+///
+/// @param [in] c The value to compute the square root for.
+///
+/// @returns
+/// A square root of the input value.
+///
+/// @ingroup GPU
+FfxFloat16 ffxSquareRootHalf(FfxFloat16 c)
+{
+ return sqrt(c);
+}
+
+/// Compute the square root of a value.
+///
+/// @param [in] c The value to compute the square root for.
+///
+/// @returns
+/// A square root of the input value.
+///
+/// @ingroup GPU
+FfxFloat16x2 ffxSquareRootHalf(FfxFloat16x2 c)
+{
+ return sqrt(c);
+}
+
+/// Compute the square root of a value.
+///
+/// @param [in] c The value to compute the square root for.
+///
+/// @returns
+/// A square root of the input value.
+///
+/// @ingroup GPU
+FfxFloat16x3 ffxSquareRootHalf(FfxFloat16x3 c)
+{
+ return sqrt(c);
+}
+
+/// Compute the cube root of a value.
+///
+/// @param [in] c The value to compute the cube root for.
+///
+/// @returns
+/// A cube root of the input value.
+///
+/// @ingroup GPU
+FfxFloat16 ffxCubeRootHalf(FfxFloat16 c)
+{
+ return pow(c, FFX_BROADCAST_FLOAT16(1.0 / 3.0));
+}
+
+/// Compute the cube root of a value.
+///
+/// @param [in] c The value to compute the cube root for.
+///
+/// @returns
+/// A cube root of the input value.
+///
+/// @ingroup GPU
+FfxFloat16x2 ffxCubeRootHalf(FfxFloat16x2 c)
+{
+ return pow(c, FFX_BROADCAST_FLOAT16X2(1.0 / 3.0));
+}
+
+/// Compute the cube root of a value.
+///
+/// @param [in] c The value to compute the cube root for.
+///
+/// @returns
+/// A cube root of the input value.
+///
+/// @ingroup GPU
+FfxFloat16x3 ffxCubeRootHalf(FfxFloat16x3 c)
+{
+ return pow(c, FFX_BROADCAST_FLOAT16X3(1.0 / 3.0));
+}
+
+/// Compute a linear value from a REC.709 value.
+///
+/// @param [in] c The value to convert to linear from REC.709.
+///
+/// @returns
+/// A value in linear space.
+///
+/// @ingroup GPU
+FfxFloat16 ffxLinearFromRec709Half(FfxFloat16 c)
+{
+ FfxFloat16x3 j = FfxFloat16x3(0.081 / 4.5, 1.0 / 4.5, 1.0 / 0.45);
+ FfxFloat16x2 k = FfxFloat16x2(1.0 / 1.099, 0.099 / 1.099);
+ return ffxZeroOneSelectHalf(ffxZeroOneIsSignedHalf(c - j.x), c * j.y, pow(c * k.x + k.y, j.z));
+}
+
+/// Compute a linear value from a REC.709 value.
+///
+/// @param [in] c The value to convert to linear from REC.709.
+///
+/// @returns
+/// A value in linear space.
+///
+/// @ingroup GPU
+FfxFloat16x2 ffxLinearFromRec709Half(FfxFloat16x2 c)
+{
+ FfxFloat16x3 j = FfxFloat16x3(0.081 / 4.5, 1.0 / 4.5, 1.0 / 0.45);
+ FfxFloat16x2 k = FfxFloat16x2(1.0 / 1.099, 0.099 / 1.099);
+ return ffxZeroOneSelectHalf(ffxZeroOneIsSignedHalf(c - j.xx), c * j.yy, pow(c * k.xx + k.yy, j.zz));
+}
+
+/// Compute a linear value from a REC.709 value.
+///
+/// @param [in] c The value to convert to linear from REC.709.
+///
+/// @returns
+/// A value in linear space.
+///
+/// @ingroup GPU
+FfxFloat16x3 ffxLinearFromRec709Half(FfxFloat16x3 c)
+{
+ FfxFloat16x3 j = FfxFloat16x3(0.081 / 4.5, 1.0 / 4.5, 1.0 / 0.45);
+ FfxFloat16x2 k = FfxFloat16x2(1.0 / 1.099, 0.099 / 1.099);
+ return ffxZeroOneSelectHalf(ffxZeroOneIsSignedHalf(c - j.xxx), c * j.yyy, pow(c * k.xxx + k.yyy, j.zzz));
+}
+
+/// Compute a linear value from a value in a gamma space.
+///
+/// Typically 2.2 for some PC displays, or 2.4-2.5 for CRTs, or 2.2 FreeSync2 native.
+///
+/// @param [in] c The value to convert to linear in gamma space.
+/// @param [in] x The power value used for the gamma curve.
+///
+/// @returns
+/// A value in linear space.
+///
+/// @ingroup GPU
+FfxFloat16 ffxLinearFromGammaHalf(FfxFloat16 c, FfxFloat16 x)
+{
+ return pow(c, FFX_BROADCAST_FLOAT16(x));
+}
+
+/// Compute a linear value from a value in a gamma space.
+///
+/// Typically 2.2 for some PC displays, or 2.4-2.5 for CRTs, or 2.2 FreeSync2 native.
+///
+/// @param [in] c The value to convert to linear in gamma space.
+/// @param [in] x The power value used for the gamma curve.
+///
+/// @returns
+/// A value in linear space.
+///
+/// @ingroup GPU
+FfxFloat16x2 ffxLinearFromGammaHalf(FfxFloat16x2 c, FfxFloat16 x)
+{
+ return pow(c, FFX_BROADCAST_FLOAT16X2(x));
+}
+
+/// Compute a linear value from a value in a gamma space.
+///
+/// Typically 2.2 for some PC displays, or 2.4-2.5 for CRTs, or 2.2 FreeSync2 native.
+///
+/// @param [in] c The value to convert to linear in gamma space.
+/// @param [in] x The power value used for the gamma curve.
+///
+/// @returns
+/// A value in linear space.
+///
+/// @ingroup GPU
+FfxFloat16x3 ffxLinearFromGammaHalf(FfxFloat16x3 c, FfxFloat16 x)
+{
+ return pow(c, FFX_BROADCAST_FLOAT16X3(x));
+}
+
+/// Compute a linear value from a value in a SRGB space.
+///
+/// Typically 2.2 for some PC displays, or 2.4-2.5 for CRTs, or 2.2 FreeSync2 native.
+///
+/// @param [in] c The value to convert to linear in SRGB space.
+///
+/// @returns
+/// A value in linear space.
+///
+/// @ingroup GPU
+FfxFloat16 ffxLinearFromSrgbHalf(FfxFloat16 c)
+{
+ FfxFloat16x3 j = FfxFloat16x3(0.04045 / 12.92, 1.0 / 12.92, 2.4);
+ FfxFloat16x2 k = FfxFloat16x2(1.0 / 1.055, 0.055 / 1.055);
+ return ffxZeroOneSelectHalf(ffxZeroOneIsSignedHalf(c - j.x), c * j.y, pow(c * k.x + k.y, j.z));
+}
+
+/// Compute a linear value from a value in a SRGB space.
+///
+/// Typically 2.2 for some PC displays, or 2.4-2.5 for CRTs, or 2.2 FreeSync2 native.
+///
+/// @param [in] c The value to convert to linear in SRGB space.
+///
+/// @returns
+/// A value in linear space.
+///
+/// @ingroup GPU
+FfxFloat16x2 ffxLinearFromSrgbHalf(FfxFloat16x2 c)
+{
+ FfxFloat16x3 j = FfxFloat16x3(0.04045 / 12.92, 1.0 / 12.92, 2.4);
+ FfxFloat16x2 k = FfxFloat16x2(1.0 / 1.055, 0.055 / 1.055);
+ return ffxZeroOneSelectHalf(ffxZeroOneIsSignedHalf(c - j.xx), c * j.yy, pow(c * k.xx + k.yy, j.zz));
+}
+
+/// Compute a linear value from a value in a SRGB space.
+///
+/// Typically 2.2 for some PC displays, or 2.4-2.5 for CRTs, or 2.2 FreeSync2 native.
+///
+/// @param [in] c The value to convert to linear in SRGB space.
+///
+/// @returns
+/// A value in linear space.
+///
+/// @ingroup GPU
+FfxFloat16x3 ffxLinearFromSrgbHalf(FfxFloat16x3 c)
+{
+ FfxFloat16x3 j = FfxFloat16x3(0.04045 / 12.92, 1.0 / 12.92, 2.4);
+ FfxFloat16x2 k = FfxFloat16x2(1.0 / 1.055, 0.055 / 1.055);
+ return ffxZeroOneSelectHalf(ffxZeroOneIsSignedHalf(c - j.xxx), c * j.yyy, pow(c * k.xxx + k.yyy, j.zzz));
+}
+
+/// A remapping of 64x1 to 8x8 imposing rotated 2x2 pixel quads in quad linear.
+///
+/// 543210
+/// ======
+/// ..xxx.
+/// yy...y
+///
+/// @param [in] a The input 1D coordinates to remap.
+///
+/// @returns
+/// The remapped 2D coordinates.
+///
+/// @ingroup GPU
+FfxUInt16x2 ffxRemapForQuadHalf(FfxUInt32 a)
+{
+ return FfxUInt16x2(bitfieldExtract(a, 1u, 3u), bitfieldInsertMask(bitfieldExtract(a, 3u, 3u), a, 1u));
+}
+
+/// A helper function performing a remap 64x1 to 8x8 remapping which is necessary for 2D wave reductions.
+///
+/// The 64-wide lane indices to 8x8 remapping is performed as follows:
+///
+/// 00 01 08 09 10 11 18 19
+/// 02 03 0a 0b 12 13 1a 1b
+/// 04 05 0c 0d 14 15 1c 1d
+/// 06 07 0e 0f 16 17 1e 1f
+/// 20 21 28 29 30 31 38 39
+/// 22 23 2a 2b 32 33 3a 3b
+/// 24 25 2c 2d 34 35 3c 3d
+/// 26 27 2e 2f 36 37 3e 3f
+///
+/// @param [in] a The input 1D coordinate to remap.
+///
+/// @returns
+/// The remapped 2D coordinates.
+///
+/// @ingroup GPU
+FfxUInt16x2 ffxRemapForWaveReductionHalf(FfxUInt32 a)
+{
+ return FfxUInt16x2(bitfieldInsertMask(bitfieldExtract(a, 2u, 3u), a, 1u), bitfieldInsertMask(bitfieldExtract(a, 3u, 3u), bitfieldExtract(a, 1u, 2u), 2u));
+}
+
+#endif // FFX_HALF
diff --git a/thirdparty/amd-fsr2/shaders/ffx_core_hlsl.h b/thirdparty/amd-fsr2/shaders/ffx_core_hlsl.h
new file mode 100644
index 0000000000..ad4ff6552d
--- /dev/null
+++ b/thirdparty/amd-fsr2/shaders/ffx_core_hlsl.h
@@ -0,0 +1,1502 @@
+// This file is part of the FidelityFX SDK.
+//
+// Copyright (c) 2022-2023 Advanced Micro Devices, Inc. All rights reserved.
+//
+// Permission is hereby granted, free of charge, to any person obtaining a copy
+// of this software and associated documentation files (the "Software"), to deal
+// in the Software without restriction, including without limitation the rights
+// to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
+// copies of the Software, and to permit persons to whom the Software is
+// furnished to do so, subject to the following conditions:
+// The above copyright notice and this permission notice shall be included in
+// all copies or substantial portions of the Software.
+//
+// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
+// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
+// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
+// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
+// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
+// OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
+// THE SOFTWARE.
+
+/// A define for abstracting shared memory between shading languages.
+///
+/// @ingroup GPU
+#define FFX_GROUPSHARED groupshared
+
+/// A define for abstracting compute memory barriers between shading languages.
+///
+/// @ingroup GPU
+#define FFX_GROUP_MEMORY_BARRIER GroupMemoryBarrierWithGroupSync
+
+/// A define added to accept static markup on functions to aid CPU/GPU portability of code.
+///
+/// @ingroup GPU
+#define FFX_STATIC static
+
+/// A define for abstracting loop unrolling between shading languages.
+///
+/// @ingroup GPU
+#define FFX_UNROLL [unroll]
+
+/// A define for abstracting a 'greater than' comparison operator between two types.
+///
+/// @ingroup GPU
+#define FFX_GREATER_THAN(x, y) x > y
+
+/// A define for abstracting a 'greater than or equal' comparison operator between two types.
+///
+/// @ingroup GPU
+#define FFX_GREATER_THAN_EQUAL(x, y) x >= y
+
+/// A define for abstracting a 'less than' comparison operator between two types.
+///
+/// @ingroup GPU
+#define FFX_LESS_THAN(x, y) x < y
+
+/// A define for abstracting a 'less than or equal' comparison operator between two types.
+///
+/// @ingroup GPU
+#define FFX_LESS_THAN_EQUAL(x, y) x <= y
+
+/// A define for abstracting an 'equal' comparison operator between two types.
+///
+/// @ingroup GPU
+#define FFX_EQUAL(x, y) x == y
+
+/// A define for abstracting a 'not equal' comparison operator between two types.
+///
+/// @ingroup GPU
+#define FFX_NOT_EQUAL(x, y) x != y
+
+/// Broadcast a scalar value to a 1-dimensional floating point vector.
+///
+/// @ingroup GPU
+#define FFX_BROADCAST_FLOAT32(x) FfxFloat32(x)
+
+/// Broadcast a scalar value to a 2-dimensional floating point vector.
+///
+/// @ingroup GPU
+#define FFX_BROADCAST_FLOAT32X2(x) FfxFloat32(x)
+
+/// Broadcast a scalar value to a 3-dimensional floating point vector.
+///
+/// @ingroup GPU
+#define FFX_BROADCAST_FLOAT32X3(x) FfxFloat32(x)
+
+/// Broadcast a scalar value to a 4-dimensional floating point vector.
+///
+/// @ingroup GPU
+#define FFX_BROADCAST_FLOAT32X4(x) FfxFloat32(x)
+
+/// Broadcast a scalar value to a 1-dimensional unsigned integer vector.
+///
+/// @ingroup GPU
+#define FFX_BROADCAST_UINT32(x) FfxUInt32(x)
+
+/// Broadcast a scalar value to a 2-dimensional unsigned integer vector.
+///
+/// @ingroup GPU
+#define FFX_BROADCAST_UINT32X2(x) FfxUInt32(x)
+
+/// Broadcast a scalar value to a 4-dimensional unsigned integer vector.
+///
+/// @ingroup GPU
+#define FFX_BROADCAST_UINT32X3(x) FfxUInt32(x)
+
+/// Broadcast a scalar value to a 4-dimensional unsigned integer vector.
+///
+/// @ingroup GPU
+#define FFX_BROADCAST_UINT32X4(x) FfxUInt32(x)
+
+/// Broadcast a scalar value to a 1-dimensional signed integer vector.
+///
+/// @ingroup GPU
+#define FFX_BROADCAST_INT32(x) FfxInt32(x)
+
+/// Broadcast a scalar value to a 2-dimensional signed integer vector.
+///
+/// @ingroup GPU
+#define FFX_BROADCAST_INT32X2(x) FfxInt32(x)
+
+/// Broadcast a scalar value to a 3-dimensional signed integer vector.
+///
+/// @ingroup GPU
+#define FFX_BROADCAST_INT32X3(x) FfxInt32(x)
+
+/// Broadcast a scalar value to a 4-dimensional signed integer vector.
+///
+/// @ingroup GPU
+#define FFX_BROADCAST_INT32X4(x) FfxInt32(x)
+
+/// Broadcast a scalar value to a 1-dimensional half-precision floating point vector.
+///
+/// @ingroup GPU
+#define FFX_BROADCAST_MIN_FLOAT16(a) FFX_MIN16_F(a)
+
+/// Broadcast a scalar value to a 2-dimensional half-precision floating point vector.
+///
+/// @ingroup GPU
+#define FFX_BROADCAST_MIN_FLOAT16X2(a) FFX_MIN16_F(a)
+
+/// Broadcast a scalar value to a 3-dimensional half-precision floating point vector.
+///
+/// @ingroup GPU
+#define FFX_BROADCAST_MIN_FLOAT16X3(a) FFX_MIN16_F(a)
+
+/// Broadcast a scalar value to a 4-dimensional half-precision floating point vector.
+///
+/// @ingroup GPU
+#define FFX_BROADCAST_MIN_FLOAT16X4(a) FFX_MIN16_F(a)
+
+/// Broadcast a scalar value to a 1-dimensional half-precision unsigned integer vector.
+///
+/// @ingroup GPU
+#define FFX_BROADCAST_MIN_UINT16(a) FFX_MIN16_U(a)
+
+/// Broadcast a scalar value to a 2-dimensional half-precision unsigned integer vector.
+///
+/// @ingroup GPU
+#define FFX_BROADCAST_MIN_UINT16X2(a) FFX_MIN16_U(a)
+
+/// Broadcast a scalar value to a 3-dimensional half-precision unsigned integer vector.
+///
+/// @ingroup GPU
+#define FFX_BROADCAST_MIN_UINT16X3(a) FFX_MIN16_U(a)
+
+/// Broadcast a scalar value to a 4-dimensional half-precision unsigned integer vector.
+///
+/// @ingroup GPU
+#define FFX_BROADCAST_MIN_UINT16X4(a) FFX_MIN16_U(a)
+
+/// Broadcast a scalar value to a 1-dimensional half-precision signed integer vector.
+///
+/// @ingroup GPU
+#define FFX_BROADCAST_MIN_INT16(a) FFX_MIN16_I(a)
+
+/// Broadcast a scalar value to a 2-dimensional half-precision signed integer vector.
+///
+/// @ingroup GPU
+#define FFX_BROADCAST_MIN_INT16X2(a) FFX_MIN16_I(a)
+
+/// Broadcast a scalar value to a 3-dimensional half-precision signed integer vector.
+///
+/// @ingroup GPU
+#define FFX_BROADCAST_MIN_INT16X3(a) FFX_MIN16_I(a)
+
+/// Broadcast a scalar value to a 4-dimensional half-precision signed integer vector.
+///
+/// @ingroup GPU
+#define FFX_BROADCAST_MIN_INT16X4(a) FFX_MIN16_I(a)
+
+/// Pack 2x32-bit floating point values in a single 32bit value.
+///
+/// This function first converts each component of <c><i>value</i></c> into their nearest 16-bit floating
+/// point representation, and then stores the X and Y components in the lower and upper 16 bits of the
+/// 32bit unsigned integer respectively.
+///
+/// @param [in] value A 2-dimensional floating point value to convert and pack.
+///
+/// @returns
+/// A packed 32bit value containing 2 16bit floating point values.
+///
+/// @ingroup HLSL
+FfxUInt32 packHalf2x16(FfxFloat32x2 value)
+{
+ return f32tof16(value.x) | (f32tof16(value.y) << 16);
+}
+
+/// Broadcast a scalar value to a 2-dimensional floating point vector.
+///
+/// @param [in] value The value to to broadcast.
+///
+/// @returns
+/// A 2-dimensional floating point vector with <c><i>value</i></c> in each component.
+///
+/// @ingroup HLSL
+FfxFloat32x2 ffxBroadcast2(FfxFloat32 value)
+{
+ return FfxFloat32x2(value, value);
+}
+
+/// Broadcast a scalar value to a 3-dimensional floating point vector.
+///
+/// @param [in] value The value to to broadcast.
+///
+/// @returns
+/// A 3-dimensional floating point vector with <c><i>value</i></c> in each component.
+///
+/// @ingroup HLSL
+FfxFloat32x3 ffxBroadcast3(FfxFloat32 value)
+{
+ return FfxFloat32x3(value, value, value);
+}
+
+/// Broadcast a scalar value to a 4-dimensional floating point vector.
+///
+/// @param [in] value The value to to broadcast.
+///
+/// @returns
+/// A 4-dimensional floating point vector with <c><i>value</i></c> in each component.
+///
+/// @ingroup HLSL
+FfxFloat32x4 ffxBroadcast4(FfxFloat32 value)
+{
+ return FfxFloat32x4(value, value, value, value);
+}
+
+/// Broadcast a scalar value to a 2-dimensional signed integer vector.
+///
+/// @param [in] value The value to to broadcast.
+///
+/// @returns
+/// A 2-dimensional signed integer vector with <c><i>value</i></c> in each component.
+///
+/// @ingroup HLSL
+FfxInt32x2 ffxBroadcast2(FfxInt32 value)
+{
+ return FfxInt32x2(value, value);
+}
+
+/// Broadcast a scalar value to a 3-dimensional signed integer vector.
+///
+/// @param [in] value The value to to broadcast.
+///
+/// @returns
+/// A 3-dimensional signed integer vector with <c><i>value</i></c> in each component.
+///
+/// @ingroup HLSL
+FfxUInt32x3 ffxBroadcast3(FfxInt32 value)
+{
+ return FfxUInt32x3(value, value, value);
+}
+
+/// Broadcast a scalar value to a 4-dimensional signed integer vector.
+///
+/// @param [in] value The value to to broadcast.
+///
+/// @returns
+/// A 4-dimensional signed integer vector with <c><i>value</i></c> in each component.
+///
+/// @ingroup HLSL
+FfxInt32x4 ffxBroadcast4(FfxInt32 value)
+{
+ return FfxInt32x4(value, value, value, value);
+}
+
+/// Broadcast a scalar value to a 2-dimensional unsigned integer vector.
+///
+/// @param [in] value The value to to broadcast.
+///
+/// @returns
+/// A 2-dimensional unsigned integer vector with <c><i>value</i></c> in each component.
+///
+/// @ingroup HLSL
+FfxUInt32x2 ffxBroadcast2(FfxUInt32 value)
+{
+ return FfxUInt32x2(value, value);
+}
+
+/// Broadcast a scalar value to a 3-dimensional unsigned integer vector.
+///
+/// @param [in] value The value to to broadcast.
+///
+/// @returns
+/// A 3-dimensional unsigned integer vector with <c><i>value</i></c> in each component.
+///
+/// @ingroup HLSL
+FfxUInt32x3 ffxBroadcast3(FfxUInt32 value)
+{
+ return FfxUInt32x3(value, value, value);
+}
+
+/// Broadcast a scalar value to a 4-dimensional unsigned integer vector.
+///
+/// @param [in] value The value to to broadcast.
+///
+/// @returns
+/// A 4-dimensional unsigned integer vector with <c><i>value</i></c> in each component.
+///
+/// @ingroup HLSL
+FfxUInt32x4 ffxBroadcast4(FfxUInt32 value)
+{
+ return FfxUInt32x4(value, value, value, value);
+}
+
+FfxUInt32 bitfieldExtract(FfxUInt32 src, FfxUInt32 off, FfxUInt32 bits)
+{
+ FfxUInt32 mask = (1u << bits) - 1;
+ return (src >> off) & mask;
+}
+
+FfxUInt32 bitfieldInsert(FfxUInt32 src, FfxUInt32 ins, FfxUInt32 mask)
+{
+ return (ins & mask) | (src & (~mask));
+}
+
+FfxUInt32 bitfieldInsertMask(FfxUInt32 src, FfxUInt32 ins, FfxUInt32 bits)
+{
+ FfxUInt32 mask = (1u << bits) - 1;
+ return (ins & mask) | (src & (~mask));
+}
+
+/// Interprets the bit pattern of x as an unsigned integer.
+///
+/// @param [in] value The input value.
+///
+/// @returns
+/// The input interpreted as an unsigned integer.
+///
+/// @ingroup HLSL
+FfxUInt32 ffxAsUInt32(FfxFloat32 x)
+{
+ return asuint(x);
+}
+
+/// Interprets the bit pattern of x as an unsigned integer.
+///
+/// @param [in] value The input value.
+///
+/// @returns
+/// The input interpreted as an unsigned integer.
+///
+/// @ingroup HLSL
+FfxUInt32x2 ffxAsUInt32(FfxFloat32x2 x)
+{
+ return asuint(x);
+}
+
+/// Interprets the bit pattern of x as an unsigned integer.
+///
+/// @param [in] value The input value.
+///
+/// @returns
+/// The input interpreted as an unsigned integer.
+///
+/// @ingroup HLSL
+FfxUInt32x3 ffxAsUInt32(FfxFloat32x3 x)
+{
+ return asuint(x);
+}
+
+/// Interprets the bit pattern of x as an unsigned integer.
+///
+/// @param [in] value The input value.
+///
+/// @returns
+/// The input interpreted as an unsigned integer.
+///
+/// @ingroup HLSL
+FfxUInt32x4 ffxAsUInt32(FfxFloat32x4 x)
+{
+ return asuint(x);
+}
+
+/// Interprets the bit pattern of x as a floating-point number.
+///
+/// @param [in] value The input value.
+///
+/// @returns
+/// The input interpreted as a floating-point number.
+///
+/// @ingroup HLSL
+FfxFloat32 ffxAsFloat(FfxUInt32 x)
+{
+ return asfloat(x);
+}
+
+/// Interprets the bit pattern of x as a floating-point number.
+///
+/// @param [in] value The input value.
+///
+/// @returns
+/// The input interpreted as a floating-point number.
+///
+/// @ingroup HLSL
+FfxFloat32x2 ffxAsFloat(FfxUInt32x2 x)
+{
+ return asfloat(x);
+}
+
+/// Interprets the bit pattern of x as a floating-point number.
+///
+/// @param [in] value The input value.
+///
+/// @returns
+/// The input interpreted as a floating-point number.
+///
+/// @ingroup HLSL
+FfxFloat32x3 ffxAsFloat(FfxUInt32x3 x)
+{
+ return asfloat(x);
+}
+
+/// Interprets the bit pattern of x as a floating-point number.
+///
+/// @param [in] value The input value.
+///
+/// @returns
+/// The input interpreted as a floating-point number.
+///
+/// @ingroup HLSL
+FfxFloat32x4 ffxAsFloat(FfxUInt32x4 x)
+{
+ return asfloat(x);
+}
+
+/// Compute the linear interopation between two values.
+///
+/// Implemented by calling the HLSL <c><i>mix</i></c> instrinsic function. Implements the
+/// following math:
+///
+/// (1 - t) * x + t * y
+///
+/// @param [in] x The first value to lerp between.
+/// @param [in] y The second value to lerp between.
+/// @param [in] t The value to determine how much of <c><i>x</i></c> and how much of <c><i>y</i></c>.
+///
+/// @returns
+/// A linearly interpolated value between <c><i>x</i></c> and <c><i>y</i></c> according to <c><i>t</i></c>.
+///
+/// @ingroup HLSL
+FfxFloat32 ffxLerp(FfxFloat32 x, FfxFloat32 y, FfxFloat32 t)
+{
+ return lerp(x, y, t);
+}
+
+/// Compute the linear interopation between two values.
+///
+/// Implemented by calling the HLSL <c><i>mix</i></c> instrinsic function. Implements the
+/// following math:
+///
+/// (1 - t) * x + t * y
+///
+/// @param [in] x The first value to lerp between.
+/// @param [in] y The second value to lerp between.
+/// @param [in] t The value to determine how much of <c><i>x</i></c> and how much of <c><i>y</i></c>.
+///
+/// @returns
+/// A linearly interpolated value between <c><i>x</i></c> and <c><i>y</i></c> according to <c><i>t</i></c>.
+///
+/// @ingroup HLSL
+FfxFloat32x2 ffxLerp(FfxFloat32x2 x, FfxFloat32x2 y, FfxFloat32 t)
+{
+ return lerp(x, y, t);
+}
+
+/// Compute the linear interopation between two values.
+///
+/// Implemented by calling the HLSL <c><i>mix</i></c> instrinsic function. Implements the
+/// following math:
+///
+/// (1 - t) * x + t * y
+///
+/// @param [in] x The first value to lerp between.
+/// @param [in] y The second value to lerp between.
+/// @param [in] t The value to determine how much of <c><i>x</i></c> and how much of <c><i>y</i></c>.
+///
+/// @returns
+/// A linearly interpolated value between <c><i>x</i></c> and <c><i>y</i></c> according to <c><i>t</i></c>.
+///
+/// @ingroup HLSL
+FfxFloat32x2 ffxLerp(FfxFloat32x2 x, FfxFloat32x2 y, FfxFloat32x2 t)
+{
+ return lerp(x, y, t);
+}
+
+/// Compute the linear interopation between two values.
+///
+/// Implemented by calling the HLSL <c><i>mix</i></c> instrinsic function. Implements the
+/// following math:
+///
+/// (1 - t) * x + t * y
+///
+/// @param [in] x The first value to lerp between.
+/// @param [in] y The second value to lerp between.
+/// @param [in] t The value to determine how much of <c><i>x</i></c> and how much of <c><i>y</i></c>.
+///
+/// @returns
+/// A linearly interpolated value between <c><i>x</i></c> and <c><i>y</i></c> according to <c><i>t</i></c>.
+///
+/// @ingroup HLSL
+FfxFloat32x3 ffxLerp(FfxFloat32x3 x, FfxFloat32x3 y, FfxFloat32 t)
+{
+ return lerp(x, y, t);
+}
+
+/// Compute the linear interopation between two values.
+///
+/// Implemented by calling the HLSL <c><i>mix</i></c> instrinsic function. Implements the
+/// following math:
+///
+/// (1 - t) * x + t * y
+///
+/// @param [in] x The first value to lerp between.
+/// @param [in] y The second value to lerp between.
+/// @param [in] t The value to determine how much of <c><i>x</i></c> and how much of <c><i>y</i></c>.
+///
+/// @returns
+/// A linearly interpolated value between <c><i>x</i></c> and <c><i>y</i></c> according to <c><i>t</i></c>.
+///
+/// @ingroup HLSL
+FfxFloat32x3 ffxLerp(FfxFloat32x3 x, FfxFloat32x3 y, FfxFloat32x3 t)
+{
+ return lerp(x, y, t);
+}
+
+/// Compute the linear interopation between two values.
+///
+/// Implemented by calling the HLSL <c><i>mix</i></c> instrinsic function. Implements the
+/// following math:
+///
+/// (1 - t) * x + t * y
+///
+/// @param [in] x The first value to lerp between.
+/// @param [in] y The second value to lerp between.
+/// @param [in] t The value to determine how much of <c><i>x</i></c> and how much of <c><i>y</i></c>.
+///
+/// @returns
+/// A linearly interpolated value between <c><i>x</i></c> and <c><i>y</i></c> according to <c><i>t</i></c>.
+///
+/// @ingroup HLSL
+FfxFloat32x4 ffxLerp(FfxFloat32x4 x, FfxFloat32x4 y, FfxFloat32 t)
+{
+ return lerp(x, y, t);
+}
+
+/// Compute the linear interopation between two values.
+///
+/// Implemented by calling the HLSL <c><i>mix</i></c> instrinsic function. Implements the
+/// following math:
+///
+/// (1 - t) * x + t * y
+///
+/// @param [in] x The first value to lerp between.
+/// @param [in] y The second value to lerp between.
+/// @param [in] t The value to determine how much of <c><i>x</i></c> and how much of <c><i>y</i></c>.
+///
+/// @returns
+/// A linearly interpolated value between <c><i>x</i></c> and <c><i>y</i></c> according to <c><i>t</i></c>.
+///
+/// @ingroup HLSL
+FfxFloat32x4 ffxLerp(FfxFloat32x4 x, FfxFloat32x4 y, FfxFloat32x4 t)
+{
+ return lerp(x, y, t);
+}
+
+/// Clamp a value to a [0..1] range.
+///
+/// @param [in] x The value to clamp to [0..1] range.
+///
+/// @returns
+/// The clamped version of <c><i>x</i></c>.
+///
+/// @ingroup HLSL
+FfxFloat32 ffxSaturate(FfxFloat32 x)
+{
+ return saturate(x);
+}
+
+/// Clamp a value to a [0..1] range.
+///
+/// @param [in] x The value to clamp to [0..1] range.
+///
+/// @returns
+/// The clamped version of <c><i>x</i></c>.
+///
+/// @ingroup HLSL
+FfxFloat32x2 ffxSaturate(FfxFloat32x2 x)
+{
+ return saturate(x);
+}
+
+/// Clamp a value to a [0..1] range.
+///
+/// @param [in] x The value to clamp to [0..1] range.
+///
+/// @returns
+/// The clamped version of <c><i>x</i></c>.
+///
+/// @ingroup HLSL
+FfxFloat32x3 ffxSaturate(FfxFloat32x3 x)
+{
+ return saturate(x);
+}
+
+/// Clamp a value to a [0..1] range.
+///
+/// @param [in] x The value to clamp to [0..1] range.
+///
+/// @returns
+/// The clamped version of <c><i>x</i></c>.
+///
+/// @ingroup HLSL
+FfxFloat32x4 ffxSaturate(FfxFloat32x4 x)
+{
+ return saturate(x);
+}
+
+/// Compute the factional part of a decimal value.
+///
+/// This function calculates <c><i>x - floor(x)</i></c>. Where <c><i>floor</i></c> is the intrinsic HLSL function.
+///
+/// NOTE: This function should compile down to a single <c><i>V_MAX3_F32</i></c> operation on GCN/RDNA hardware. It is
+/// worth further noting that this function is intentionally distinct from the HLSL <c><i>frac</i></c> intrinsic
+/// function.
+///
+/// @param [in] x The value to compute the fractional part from.
+///
+/// @returns
+/// The fractional part of <c><i>x</i></c>.
+///
+/// @ingroup HLSL
+FfxFloat32 ffxFract(FfxFloat32 x)
+{
+ return x - floor(x);
+}
+
+/// Compute the factional part of a decimal value.
+///
+/// This function calculates <c><i>x - floor(x)</i></c>. Where <c><i>floor</i></c> is the intrinsic HLSL function.
+///
+/// NOTE: This function should compile down to a single <c><i>V_MAX3_F32</i></c> operation on GCN/RDNA hardware. It is
+/// worth further noting that this function is intentionally distinct from the HLSL <c><i>frac</i></c> intrinsic
+/// function.
+///
+/// @param [in] x The value to compute the fractional part from.
+///
+/// @returns
+/// The fractional part of <c><i>x</i></c>.
+///
+/// @ingroup HLSL
+FfxFloat32x2 ffxFract(FfxFloat32x2 x)
+{
+ return x - floor(x);
+}
+
+/// Compute the factional part of a decimal value.
+///
+/// This function calculates <c><i>x - floor(x)</i></c>. Where <c><i>floor</i></c> is the intrinsic HLSL function.
+///
+/// NOTE: This function should compile down to a single <c><i>V_MAX3_F32</i></c> operation on GCN/RDNA hardware. It is
+/// worth further noting that this function is intentionally distinct from the HLSL <c><i>frac</i></c> intrinsic
+/// function.
+///
+/// @param [in] x The value to compute the fractional part from.
+///
+/// @returns
+/// The fractional part of <c><i>x</i></c>.
+///
+/// @ingroup HLSL
+FfxFloat32x3 ffxFract(FfxFloat32x3 x)
+{
+ return x - floor(x);
+}
+
+/// Compute the factional part of a decimal value.
+///
+/// This function calculates <c><i>x - floor(x)</i></c>. Where <c><i>floor</i></c> is the intrinsic HLSL function.
+///
+/// NOTE: This function should compile down to a single <c><i>V_MAX3_F32</i></c> operation on GCN/RDNA hardware. It is
+/// worth further noting that this function is intentionally distinct from the HLSL <c><i>frac</i></c> intrinsic
+/// function.
+///
+/// @param [in] x The value to compute the fractional part from.
+///
+/// @returns
+/// The fractional part of <c><i>x</i></c>.
+///
+/// @ingroup HLSL
+FfxFloat32x4 ffxFract(FfxFloat32x4 x)
+{
+ return x - floor(x);
+}
+
+/// Compute the maximum of three values.
+///
+/// NOTE: This function should compile down to a single <c><i>V_MAX3_F32</i></c> operation on GCN/RDNA hardware.
+///
+/// @param [in] x The first value to include in the max calculation.
+/// @param [in] y The second value to include in the max calcuation.
+/// @param [in] z The third value to include in the max calcuation.
+///
+/// @returns
+/// The maximum value of <c><i>x</i></c>, <c><i>y</i></c>, and <c><i>z</i></c>.
+///
+/// @ingroup HLSL
+FfxFloat32 ffxMax3(FfxFloat32 x, FfxFloat32 y, FfxFloat32 z)
+{
+ return max(x, max(y, z));
+}
+
+/// Compute the maximum of three values.
+///
+/// NOTE: This function should compile down to a single <c><i>V_MAX3_F32</i></c> operation on GCN/RDNA hardware.
+///
+/// @param [in] x The first value to include in the max calculation.
+/// @param [in] y The second value to include in the max calcuation.
+/// @param [in] z The third value to include in the max calcuation.
+///
+/// @returns
+/// The maximum value of <c><i>x</i></c>, <c><i>y</i></c>, and <c><i>z</i></c>.
+///
+/// @ingroup HLSL
+FfxFloat32x2 ffxMax3(FfxFloat32x2 x, FfxFloat32x2 y, FfxFloat32x2 z)
+{
+ return max(x, max(y, z));
+}
+
+/// Compute the maximum of three values.
+///
+/// NOTE: This function should compile down to a single <c><i>V_MAX3_F32</i></c> operation on GCN/RDNA hardware.
+///
+/// @param [in] x The first value to include in the max calculation.
+/// @param [in] y The second value to include in the max calcuation.
+/// @param [in] z The third value to include in the max calcuation.
+///
+/// @returns
+/// The maximum value of <c><i>x</i></c>, <c><i>y</i></c>, and <c><i>z</i></c>.
+///
+/// @ingroup HLSL
+FfxFloat32x3 ffxMax3(FfxFloat32x3 x, FfxFloat32x3 y, FfxFloat32x3 z)
+{
+ return max(x, max(y, z));
+}
+
+/// Compute the maximum of three values.
+///
+/// NOTE: This function should compile down to a single <c><i>V_MAX3_F32</i></c> operation on GCN/RDNA hardware.
+///
+/// @param [in] x The first value to include in the max calculation.
+/// @param [in] y The second value to include in the max calcuation.
+/// @param [in] z The third value to include in the max calcuation.
+///
+/// @returns
+/// The maximum value of <c><i>x</i></c>, <c><i>y</i></c>, and <c><i>z</i></c>.
+///
+/// @ingroup HLSL
+FfxFloat32x4 ffxMax3(FfxFloat32x4 x, FfxFloat32x4 y, FfxFloat32x4 z)
+{
+ return max(x, max(y, z));
+}
+
+/// Compute the maximum of three values.
+///
+/// NOTE: This function should compile down to a single <c><i>V_MAX3_F32</i></c> operation on GCN/RDNA hardware.
+///
+/// @param [in] x The first value to include in the max calculation.
+/// @param [in] y The second value to include in the max calcuation.
+/// @param [in] z The third value to include in the max calcuation.
+///
+/// @returns
+/// The maximum value of <c><i>x</i></c>, <c><i>y</i></c>, and <c><i>z</i></c>.
+///
+/// @ingroup HLSL
+FfxUInt32 ffxMax3(FfxUInt32 x, FfxUInt32 y, FfxUInt32 z)
+{
+ return max(x, max(y, z));
+}
+
+/// Compute the maximum of three values.
+///
+/// NOTE: This function should compile down to a single <c><i>V_MAX3_F32</i></c> operation on GCN/RDNA hardware.
+///
+/// @param [in] x The first value to include in the max calculation.
+/// @param [in] y The second value to include in the max calcuation.
+/// @param [in] z The third value to include in the max calcuation.
+///
+/// @returns
+/// The maximum value of <c><i>x</i></c>, <c><i>y</i></c>, and <c><i>z</i></c>.
+///
+/// @ingroup HLSL
+FfxUInt32x2 ffxMax3(FfxUInt32x2 x, FfxUInt32x2 y, FfxUInt32x2 z)
+{
+ return max(x, max(y, z));
+}
+
+/// Compute the maximum of three values.
+///
+/// NOTE: This function should compile down to a single <c><i>V_MAX3_F32</i></c> operation on GCN/RDNA hardware.
+///
+/// @param [in] x The first value to include in the max calculation.
+/// @param [in] y The second value to include in the max calcuation.
+/// @param [in] z The third value to include in the max calcuation.
+///
+/// @returns
+/// The maximum value of <c><i>x</i></c>, <c><i>y</i></c>, and <c><i>z</i></c>.
+///
+/// @ingroup HLSL
+FfxUInt32x3 ffxMax3(FfxUInt32x3 x, FfxUInt32x3 y, FfxUInt32x3 z)
+{
+ return max(x, max(y, z));
+}
+
+/// Compute the maximum of three values.
+///
+/// NOTE: This function should compile down to a single <c><i>V_MAX3_F32</i></c> operation on GCN/RDNA hardware.
+///
+/// @param [in] x The first value to include in the max calculation.
+/// @param [in] y The second value to include in the max calcuation.
+/// @param [in] z The third value to include in the max calcuation.
+///
+/// @returns
+/// The maximum value of <c><i>x</i></c>, <c><i>y</i></c>, and <c><i>z</i></c>.
+///
+/// @ingroup HLSL
+FfxUInt32x4 ffxMax3(FfxUInt32x4 x, FfxUInt32x4 y, FfxUInt32x4 z)
+{
+ return max(x, max(y, z));
+}
+
+/// Compute the median of three values.
+///
+/// NOTE: This function should compile down to a single <c><i>V_MED3_F32</i></c> operation on GCN/RDNA hardware.
+///
+/// @param [in] x The first value to include in the median calculation.
+/// @param [in] y The second value to include in the median calcuation.
+/// @param [in] z The third value to include in the median calcuation.
+///
+/// @returns
+/// The median value of <c><i>x</i></c>, <c><i>y</i></c>, and <c><i>z</i></c>.
+///
+/// @ingroup HLSL
+FfxFloat32 ffxMed3(FfxFloat32 x, FfxFloat32 y, FfxFloat32 z)
+{
+ return max(min(x, y), min(max(x, y), z));
+}
+
+/// Compute the median of three values.
+///
+/// NOTE: This function should compile down to a single <c><i>V_MED3_F32</i></c> operation on GCN/RDNA hardware.
+///
+/// @param [in] x The first value to include in the median calculation.
+/// @param [in] y The second value to include in the median calcuation.
+/// @param [in] z The third value to include in the median calcuation.
+///
+/// @returns
+/// The median value of <c><i>x</i></c>, <c><i>y</i></c>, and <c><i>z</i></c>.
+///
+/// @ingroup HLSL
+FfxFloat32x2 ffxMed3(FfxFloat32x2 x, FfxFloat32x2 y, FfxFloat32x2 z)
+{
+ return max(min(x, y), min(max(x, y), z));
+}
+
+/// Compute the median of three values.
+///
+/// NOTE: This function should compile down to a single <c><i>V_MED3_F32</i></c> operation on GCN/RDNA hardware.
+///
+/// @param [in] x The first value to include in the median calculation.
+/// @param [in] y The second value to include in the median calcuation.
+/// @param [in] z The third value to include in the median calcuation.
+///
+/// @returns
+/// The median value of <c><i>x</i></c>, <c><i>y</i></c>, and <c><i>z</i></c>.
+///
+/// @ingroup HLSL
+FfxFloat32x3 ffxMed3(FfxFloat32x3 x, FfxFloat32x3 y, FfxFloat32x3 z)
+{
+ return max(min(x, y), min(max(x, y), z));
+}
+
+/// Compute the median of three values.
+///
+/// NOTE: This function should compile down to a single <c><i>V_MED3_F32</i></c> operation on GCN/RDNA hardware.
+///
+/// @param [in] x The first value to include in the median calculation.
+/// @param [in] y The second value to include in the median calcuation.
+/// @param [in] z The third value to include in the median calcuation.
+///
+/// @returns
+/// The median value of <c><i>x</i></c>, <c><i>y</i></c>, and <c><i>z</i></c>.
+///
+/// @ingroup HLSL
+FfxFloat32x4 ffxMed3(FfxFloat32x4 x, FfxFloat32x4 y, FfxFloat32x4 z)
+{
+ return max(min(x, y), min(max(x, y), z));
+}
+
+/// Compute the median of three values.
+///
+/// NOTE: This function should compile down to a single <c><i>V_MED3_F32</i></c> operation on GCN/RDNA hardware.
+///
+/// @param [in] x The first value to include in the median calculation.
+/// @param [in] y The second value to include in the median calcuation.
+/// @param [in] z The third value to include in the median calcuation.
+///
+/// @returns
+/// The median value of <c><i>x</i></c>, <c><i>y</i></c>, and <c><i>z</i></c>.
+///
+/// @ingroup HLSL
+FfxInt32 ffxMed3(FfxInt32 x, FfxInt32 y, FfxInt32 z)
+{
+ return max(min(x, y), min(max(x, y), z));
+ // return min(max(min(y, z), x), max(y, z));
+ // return max(max(x, y), z) == x ? max(y, z) : (max(max(x, y), z) == y ? max(x, z) : max(x, y));
+}
+
+/// Compute the median of three values.
+///
+/// NOTE: This function should compile down to a single <c><i>V_MED3_F32</i></c> operation on GCN/RDNA hardware.
+///
+/// @param [in] x The first value to include in the median calculation.
+/// @param [in] y The second value to include in the median calcuation.
+/// @param [in] z The third value to include in the median calcuation.
+///
+/// @returns
+/// The median value of <c><i>x</i></c>, <c><i>y</i></c>, and <c><i>z</i></c>.
+///
+/// @ingroup HLSL
+FfxInt32x2 ffxMed3(FfxInt32x2 x, FfxInt32x2 y, FfxInt32x2 z)
+{
+ return max(min(x, y), min(max(x, y), z));
+ // return min(max(min(y, z), x), max(y, z));
+ // return max(max(x, y), z) == x ? max(y, z) : (max(max(x, y), z) == y ? max(x, z) : max(x, y));
+}
+
+/// Compute the median of three values.
+///
+/// NOTE: This function should compile down to a single <c><i>V_MED3_F32</i></c> operation on GCN/RDNA hardware.
+///
+/// @param [in] x The first value to include in the median calculation.
+/// @param [in] y The second value to include in the median calcuation.
+/// @param [in] z The third value to include in the median calcuation.
+///
+/// @returns
+/// The median value of <c><i>x</i></c>, <c><i>y</i></c>, and <c><i>z</i></c>.
+///
+/// @ingroup HLSL
+FfxInt32x3 ffxMed3(FfxInt32x3 x, FfxInt32x3 y, FfxInt32x3 z)
+{
+ return max(min(x, y), min(max(x, y), z));
+}
+
+/// Compute the median of three values.
+///
+/// NOTE: This function should compile down to a single <c><i>V_MED3_I32</i></c> operation on GCN/RDNA hardware.
+///
+/// @param [in] x The first value to include in the median calculation.
+/// @param [in] y The second value to include in the median calcuation.
+/// @param [in] z The third value to include in the median calcuation.
+///
+/// @returns
+/// The median value of <c><i>x</i></c>, <c><i>y</i></c>, and <c><i>z</i></c>.
+///
+/// @ingroup HLSL
+FfxInt32x4 ffxMed3(FfxInt32x4 x, FfxInt32x4 y, FfxInt32x4 z)
+{
+ return max(min(x, y), min(max(x, y), z));
+}
+
+/// Compute the minimum of three values.
+///
+/// NOTE: This function should compile down to a single <c><i>V_MIN3_I32</i></c> operation on GCN/RDNA hardware.
+///
+/// @param [in] x The first value to include in the min calculation.
+/// @param [in] y The second value to include in the min calcuation.
+/// @param [in] z The third value to include in the min calcuation.
+///
+/// @returns
+/// The minimum value of <c><i>x</i></c>, <c><i>y</i></c>, and <c><i>z</i></c>.
+///
+/// @ingroup HLSL
+FfxFloat32 ffxMin3(FfxFloat32 x, FfxFloat32 y, FfxFloat32 z)
+{
+ return min(x, min(y, z));
+}
+
+/// Compute the minimum of three values.
+///
+/// NOTE: This function should compile down to a single <c><i>V_MIN3_I32</i></c> operation on GCN/RDNA hardware.
+///
+/// @param [in] x The first value to include in the min calculation.
+/// @param [in] y The second value to include in the min calcuation.
+/// @param [in] z The third value to include in the min calcuation.
+///
+/// @returns
+/// The minimum value of <c><i>x</i></c>, <c><i>y</i></c>, and <c><i>z</i></c>.
+///
+/// @ingroup HLSL
+FfxFloat32x2 ffxMin3(FfxFloat32x2 x, FfxFloat32x2 y, FfxFloat32x2 z)
+{
+ return min(x, min(y, z));
+}
+
+/// Compute the minimum of three values.
+///
+/// NOTE: This function should compile down to a single <c><i>V_MIN3_I32</c></i> operation on GCN/RDNA hardware.
+///
+/// @param [in] x The first value to include in the min calculation.
+/// @param [in] y The second value to include in the min calcuation.
+/// @param [in] z The third value to include in the min calcuation.
+///
+/// @returns
+/// The minimum value of <c><i>x</i></c>, <c><i>y</i></c>, and <c><i>z</i></c>.
+///
+/// @ingroup HLSL
+FfxFloat32x3 ffxMin3(FfxFloat32x3 x, FfxFloat32x3 y, FfxFloat32x3 z)
+{
+ return min(x, min(y, z));
+}
+
+/// Compute the minimum of three values.
+///
+/// NOTE: This function should compile down to a single <c><i>V_MIN3_F32</c></i> operation on GCN/RDNA hardware.
+///
+/// @param [in] x The first value to include in the min calculation.
+/// @param [in] y The second value to include in the min calcuation.
+/// @param [in] z The third value to include in the min calcuation.
+///
+/// @returns
+/// The minimum value of <c><i>x</i></c>, <c><i>y</i></c>, and <c><i>z</i></c>.
+///
+/// @ingroup HLSL
+FfxFloat32x4 ffxMin3(FfxFloat32x4 x, FfxFloat32x4 y, FfxFloat32x4 z)
+{
+ return min(x, min(y, z));
+}
+
+/// Compute the minimum of three values.
+///
+/// NOTE: This function should compile down to a single <c><i>V_MIN3_F32</c></i> operation on GCN/RDNA hardware.
+///
+/// @param [in] x The first value to include in the min calculation.
+/// @param [in] y The second value to include in the min calcuation.
+/// @param [in] z The third value to include in the min calcuation.
+///
+/// @returns
+/// The minimum value of <c><i>x</i></c>, <c><i>y</i></c>, and <c><i>z</i></c>.
+///
+/// @ingroup HLSL
+FfxUInt32 ffxMin3(FfxUInt32 x, FfxUInt32 y, FfxUInt32 z)
+{
+ return min(x, min(y, z));
+}
+
+/// Compute the minimum of three values.
+///
+/// NOTE: This function should compile down to a single <c><i>V_MIN3_F32</c></i> operation on GCN/RDNA hardware.
+///
+/// @param [in] x The first value to include in the min calculation.
+/// @param [in] y The second value to include in the min calcuation.
+/// @param [in] z The third value to include in the min calcuation.
+///
+/// @returns
+/// The minimum value of <c><i>x</i></c>, <c><i>y</i></c>, and <c><i>z</i></c>.
+///
+/// @ingroup HLSL
+FfxUInt32x2 ffxMin3(FfxUInt32x2 x, FfxUInt32x2 y, FfxUInt32x2 z)
+{
+ return min(x, min(y, z));
+}
+
+/// Compute the minimum of three values.
+///
+/// NOTE: This function should compile down to a single <c><i>V_MIN3_F32</c></i> operation on GCN/RDNA hardware.
+///
+/// @param [in] x The first value to include in the min calculation.
+/// @param [in] y The second value to include in the min calcuation.
+/// @param [in] z The third value to include in the min calcuation.
+///
+/// @returns
+/// The minimum value of <c><i>x</i></c>, <c><i>y</i></c>, and <c><i>z</i></c>.
+///
+/// @ingroup HLSL
+FfxUInt32x3 ffxMin3(FfxUInt32x3 x, FfxUInt32x3 y, FfxUInt32x3 z)
+{
+ return min(x, min(y, z));
+}
+
+/// Compute the minimum of three values.
+///
+/// NOTE: This function should compile down to a single <c><i>V_MIN3_F32</c></i> operation on GCN/RDNA hardware.
+///
+/// @param [in] x The first value to include in the min calculation.
+/// @param [in] y The second value to include in the min calcuation.
+/// @param [in] z The third value to include in the min calcuation.
+///
+/// @returns
+/// The minimum value of <c><i>x</i></c>, <c><i>y</i></c>, and <c><i>z</i></c>.
+///
+/// @ingroup HLSL
+FfxUInt32x4 ffxMin3(FfxUInt32x4 x, FfxUInt32x4 y, FfxUInt32x4 z)
+{
+ return min(x, min(y, z));
+}
+
+
+FfxUInt32 AShrSU1(FfxUInt32 a, FfxUInt32 b)
+{
+ return FfxUInt32(FfxInt32(a) >> FfxInt32(b));
+}
+
+//==============================================================================================================================
+// HLSL HALF
+//==============================================================================================================================
+#if FFX_HALF
+
+//==============================================================================================================================
+// Need to use manual unpack to get optimal execution (don't use packed types in buffers directly).
+// Unpack requires this pattern: https://gpuopen.com/first-steps-implementing-fp16/
+FFX_MIN16_F2 ffxUint32ToFloat16x2(FfxUInt32 x)
+{
+ FfxFloat32x2 t = f16tof32(FfxUInt32x2(x & 0xFFFF, x >> 16));
+ return FFX_MIN16_F2(t);
+}
+FFX_MIN16_F4 ffxUint32x2ToFloat16x4(FfxUInt32x2 x)
+{
+ return FFX_MIN16_F4(ffxUint32ToFloat16x2(x.x), ffxUint32ToFloat16x2(x.y));
+}
+FFX_MIN16_U2 ffxUint32ToUint16x2(FfxUInt32 x)
+{
+ FfxUInt32x2 t = FfxUInt32x2(x & 0xFFFF, x >> 16);
+ return FFX_MIN16_U2(t);
+}
+FFX_MIN16_U4 ffxUint32x2ToUint16x4(FfxUInt32x2 x)
+{
+ return FFX_MIN16_U4(ffxUint32ToUint16x2(x.x), ffxUint32ToUint16x2(x.y));
+}
+#define FFX_UINT32_TO_FLOAT16X2(x) ffxUint32ToFloat16x2(FfxUInt32(x))
+#define FFX_UINT32X2_TO_FLOAT16X4(x) ffxUint32x2ToFloat16x4(FfxUInt32x2(x))
+#define FFX_UINT32_TO_UINT16X2(x) ffxUint32ToUint16x2(FfxUInt32(x))
+#define FFX_UINT32X2_TO_UINT16X4(x) ffxUint32x2ToUint16x4(FfxUInt32x2(x))
+//------------------------------------------------------------------------------------------------------------------------------
+FfxUInt32 FFX_MIN16_F2ToUint32(FFX_MIN16_F2 x)
+{
+ return f32tof16(x.x) + (f32tof16(x.y) << 16);
+}
+FfxUInt32x2 FFX_MIN16_F4ToUint32x2(FFX_MIN16_F4 x)
+{
+ return FfxUInt32x2(FFX_MIN16_F2ToUint32(x.xy), FFX_MIN16_F2ToUint32(x.zw));
+}
+FfxUInt32 FFX_MIN16_U2ToUint32(FFX_MIN16_U2 x)
+{
+ return FfxUInt32(x.x) + (FfxUInt32(x.y) << 16);
+}
+FfxUInt32x2 FFX_MIN16_U4ToUint32x2(FFX_MIN16_U4 x)
+{
+ return FfxUInt32x2(FFX_MIN16_U2ToUint32(x.xy), FFX_MIN16_U2ToUint32(x.zw));
+}
+#define FFX_FLOAT16X2_TO_UINT32(x) FFX_MIN16_F2ToUint32(FFX_MIN16_F2(x))
+#define FFX_FLOAT16X4_TO_UINT32X2(x) FFX_MIN16_F4ToUint32x2(FFX_MIN16_F4(x))
+#define FFX_UINT16X2_TO_UINT32(x) FFX_MIN16_U2ToUint32(FFX_MIN16_U2(x))
+#define FFX_UINT16X4_TO_UINT32X2(x) FFX_MIN16_U4ToUint32x2(FFX_MIN16_U4(x))
+
+#if defined(FFX_HLSL_6_2) && !defined(FFX_NO_16_BIT_CAST)
+#define FFX_TO_UINT16(x) asuint16(x)
+#define FFX_TO_UINT16X2(x) asuint16(x)
+#define FFX_TO_UINT16X3(x) asuint16(x)
+#define FFX_TO_UINT16X4(x) asuint16(x)
+#else
+#define FFX_TO_UINT16(a) FFX_MIN16_U(f32tof16(FfxFloat32(a)))
+#define FFX_TO_UINT16X2(a) FFX_MIN16_U2(FFX_TO_UINT16((a).x), FFX_TO_UINT16((a).y))
+#define FFX_TO_UINT16X3(a) FFX_MIN16_U3(FFX_TO_UINT16((a).x), FFX_TO_UINT16((a).y), FFX_TO_UINT16((a).z))
+#define FFX_TO_UINT16X4(a) FFX_MIN16_U4(FFX_TO_UINT16((a).x), FFX_TO_UINT16((a).y), FFX_TO_UINT16((a).z), FFX_TO_UINT16((a).w))
+#endif // #if defined(FFX_HLSL_6_2) && !defined(FFX_NO_16_BIT_CAST)
+
+#if defined(FFX_HLSL_6_2) && !defined(FFX_NO_16_BIT_CAST)
+#define FFX_TO_FLOAT16(x) asfloat16(x)
+#define FFX_TO_FLOAT16X2(x) asfloat16(x)
+#define FFX_TO_FLOAT16X3(x) asfloat16(x)
+#define FFX_TO_FLOAT16X4(x) asfloat16(x)
+#else
+#define FFX_TO_FLOAT16(a) FFX_MIN16_F(f16tof32(FfxUInt32(a)))
+#define FFX_TO_FLOAT16X2(a) FFX_MIN16_F2(FFX_TO_FLOAT16((a).x), FFX_TO_FLOAT16((a).y))
+#define FFX_TO_FLOAT16X3(a) FFX_MIN16_F3(FFX_TO_FLOAT16((a).x), FFX_TO_FLOAT16((a).y), FFX_TO_FLOAT16((a).z))
+#define FFX_TO_FLOAT16X4(a) FFX_MIN16_F4(FFX_TO_FLOAT16((a).x), FFX_TO_FLOAT16((a).y), FFX_TO_FLOAT16((a).z), FFX_TO_FLOAT16((a).w))
+#endif // #if defined(FFX_HLSL_6_2) && !defined(FFX_NO_16_BIT_CAST)
+
+//==============================================================================================================================
+#define FFX_BROADCAST_FLOAT16(a) FFX_MIN16_F(a)
+#define FFX_BROADCAST_FLOAT16X2(a) FFX_MIN16_F(a)
+#define FFX_BROADCAST_FLOAT16X3(a) FFX_MIN16_F(a)
+#define FFX_BROADCAST_FLOAT16X4(a) FFX_MIN16_F(a)
+
+//------------------------------------------------------------------------------------------------------------------------------
+#define FFX_BROADCAST_INT16(a) FFX_MIN16_I(a)
+#define FFX_BROADCAST_INT16X2(a) FFX_MIN16_I(a)
+#define FFX_BROADCAST_INT16X3(a) FFX_MIN16_I(a)
+#define FFX_BROADCAST_INT16X4(a) FFX_MIN16_I(a)
+
+//------------------------------------------------------------------------------------------------------------------------------
+#define FFX_BROADCAST_UINT16(a) FFX_MIN16_U(a)
+#define FFX_BROADCAST_UINT16X2(a) FFX_MIN16_U(a)
+#define FFX_BROADCAST_UINT16X3(a) FFX_MIN16_U(a)
+#define FFX_BROADCAST_UINT16X4(a) FFX_MIN16_U(a)
+
+//==============================================================================================================================
+FFX_MIN16_U ffxAbsHalf(FFX_MIN16_U a)
+{
+ return FFX_MIN16_U(abs(FFX_MIN16_I(a)));
+}
+FFX_MIN16_U2 ffxAbsHalf(FFX_MIN16_U2 a)
+{
+ return FFX_MIN16_U2(abs(FFX_MIN16_I2(a)));
+}
+FFX_MIN16_U3 ffxAbsHalf(FFX_MIN16_U3 a)
+{
+ return FFX_MIN16_U3(abs(FFX_MIN16_I3(a)));
+}
+FFX_MIN16_U4 ffxAbsHalf(FFX_MIN16_U4 a)
+{
+ return FFX_MIN16_U4(abs(FFX_MIN16_I4(a)));
+}
+//------------------------------------------------------------------------------------------------------------------------------
+FFX_MIN16_F ffxClampHalf(FFX_MIN16_F x, FFX_MIN16_F n, FFX_MIN16_F m)
+{
+ return max(n, min(x, m));
+}
+FFX_MIN16_F2 ffxClampHalf(FFX_MIN16_F2 x, FFX_MIN16_F2 n, FFX_MIN16_F2 m)
+{
+ return max(n, min(x, m));
+}
+FFX_MIN16_F3 ffxClampHalf(FFX_MIN16_F3 x, FFX_MIN16_F3 n, FFX_MIN16_F3 m)
+{
+ return max(n, min(x, m));
+}
+FFX_MIN16_F4 ffxClampHalf(FFX_MIN16_F4 x, FFX_MIN16_F4 n, FFX_MIN16_F4 m)
+{
+ return max(n, min(x, m));
+}
+//------------------------------------------------------------------------------------------------------------------------------
+// V_FRACT_F16 (note DX frac() is different).
+FFX_MIN16_F ffxFract(FFX_MIN16_F x)
+{
+ return x - floor(x);
+}
+FFX_MIN16_F2 ffxFract(FFX_MIN16_F2 x)
+{
+ return x - floor(x);
+}
+FFX_MIN16_F3 ffxFract(FFX_MIN16_F3 x)
+{
+ return x - floor(x);
+}
+FFX_MIN16_F4 ffxFract(FFX_MIN16_F4 x)
+{
+ return x - floor(x);
+}
+//------------------------------------------------------------------------------------------------------------------------------
+FFX_MIN16_F ffxLerp(FFX_MIN16_F x, FFX_MIN16_F y, FFX_MIN16_F a)
+{
+ return lerp(x, y, a);
+}
+FFX_MIN16_F2 ffxLerp(FFX_MIN16_F2 x, FFX_MIN16_F2 y, FFX_MIN16_F a)
+{
+ return lerp(x, y, a);
+}
+FFX_MIN16_F2 ffxLerp(FFX_MIN16_F2 x, FFX_MIN16_F2 y, FFX_MIN16_F2 a)
+{
+ return lerp(x, y, a);
+}
+FFX_MIN16_F3 ffxLerp(FFX_MIN16_F3 x, FFX_MIN16_F3 y, FFX_MIN16_F a)
+{
+ return lerp(x, y, a);
+}
+FFX_MIN16_F3 ffxLerp(FFX_MIN16_F3 x, FFX_MIN16_F3 y, FFX_MIN16_F3 a)
+{
+ return lerp(x, y, a);
+}
+FFX_MIN16_F4 ffxLerp(FFX_MIN16_F4 x, FFX_MIN16_F4 y, FFX_MIN16_F a)
+{
+ return lerp(x, y, a);
+}
+FFX_MIN16_F4 ffxLerp(FFX_MIN16_F4 x, FFX_MIN16_F4 y, FFX_MIN16_F4 a)
+{
+ return lerp(x, y, a);
+}
+//------------------------------------------------------------------------------------------------------------------------------
+FFX_MIN16_F ffxMax3Half(FFX_MIN16_F x, FFX_MIN16_F y, FFX_MIN16_F z)
+{
+ return max(x, max(y, z));
+}
+FFX_MIN16_F2 ffxMax3Half(FFX_MIN16_F2 x, FFX_MIN16_F2 y, FFX_MIN16_F2 z)
+{
+ return max(x, max(y, z));
+}
+FFX_MIN16_F3 ffxMax3Half(FFX_MIN16_F3 x, FFX_MIN16_F3 y, FFX_MIN16_F3 z)
+{
+ return max(x, max(y, z));
+}
+FFX_MIN16_F4 ffxMax3Half(FFX_MIN16_F4 x, FFX_MIN16_F4 y, FFX_MIN16_F4 z)
+{
+ return max(x, max(y, z));
+}
+//------------------------------------------------------------------------------------------------------------------------------
+FFX_MIN16_F ffxMin3Half(FFX_MIN16_F x, FFX_MIN16_F y, FFX_MIN16_F z)
+{
+ return min(x, min(y, z));
+}
+FFX_MIN16_F2 ffxMin3Half(FFX_MIN16_F2 x, FFX_MIN16_F2 y, FFX_MIN16_F2 z)
+{
+ return min(x, min(y, z));
+}
+FFX_MIN16_F3 ffxMin3Half(FFX_MIN16_F3 x, FFX_MIN16_F3 y, FFX_MIN16_F3 z)
+{
+ return min(x, min(y, z));
+}
+FFX_MIN16_F4 ffxMin3Half(FFX_MIN16_F4 x, FFX_MIN16_F4 y, FFX_MIN16_F4 z)
+{
+ return min(x, min(y, z));
+}
+//------------------------------------------------------------------------------------------------------------------------------
+FFX_MIN16_F ffxMed3Half(FFX_MIN16_F x, FFX_MIN16_F y, FFX_MIN16_F z)
+{
+ return max(min(x, y), min(max(x, y), z));
+}
+FFX_MIN16_F2 ffxMed3Half(FFX_MIN16_F2 x, FFX_MIN16_F2 y, FFX_MIN16_F2 z)
+{
+ return max(min(x, y), min(max(x, y), z));
+}
+FFX_MIN16_F3 ffxMed3Half(FFX_MIN16_F3 x, FFX_MIN16_F3 y, FFX_MIN16_F3 z)
+{
+ return max(min(x, y), min(max(x, y), z));
+}
+FFX_MIN16_F4 ffxMed3Half(FFX_MIN16_F4 x, FFX_MIN16_F4 y, FFX_MIN16_F4 z)
+{
+ return max(min(x, y), min(max(x, y), z));
+}
+//------------------------------------------------------------------------------------------------------------------------------
+FFX_MIN16_I ffxMed3Half(FFX_MIN16_I x, FFX_MIN16_I y, FFX_MIN16_I z)
+{
+ return max(min(x, y), min(max(x, y), z));
+}
+FFX_MIN16_I2 ffxMed3Half(FFX_MIN16_I2 x, FFX_MIN16_I2 y, FFX_MIN16_I2 z)
+{
+ return max(min(x, y), min(max(x, y), z));
+}
+FFX_MIN16_I3 ffxMed3Half(FFX_MIN16_I3 x, FFX_MIN16_I3 y, FFX_MIN16_I3 z)
+{
+ return max(min(x, y), min(max(x, y), z));
+}
+FFX_MIN16_I4 ffxMed3Half(FFX_MIN16_I4 x, FFX_MIN16_I4 y, FFX_MIN16_I4 z)
+{
+ return max(min(x, y), min(max(x, y), z));
+}
+//------------------------------------------------------------------------------------------------------------------------------
+FFX_MIN16_F ffxReciprocalHalf(FFX_MIN16_F x)
+{
+ return rcp(x);
+}
+FFX_MIN16_F2 ffxReciprocalHalf(FFX_MIN16_F2 x)
+{
+ return rcp(x);
+}
+FFX_MIN16_F3 ffxReciprocalHalf(FFX_MIN16_F3 x)
+{
+ return rcp(x);
+}
+FFX_MIN16_F4 ffxReciprocalHalf(FFX_MIN16_F4 x)
+{
+ return rcp(x);
+}
+//------------------------------------------------------------------------------------------------------------------------------
+FFX_MIN16_F ffxReciprocalSquareRootHalf(FFX_MIN16_F x)
+{
+ return rsqrt(x);
+}
+FFX_MIN16_F2 ffxReciprocalSquareRootHalf(FFX_MIN16_F2 x)
+{
+ return rsqrt(x);
+}
+FFX_MIN16_F3 ffxReciprocalSquareRootHalf(FFX_MIN16_F3 x)
+{
+ return rsqrt(x);
+}
+FFX_MIN16_F4 ffxReciprocalSquareRootHalf(FFX_MIN16_F4 x)
+{
+ return rsqrt(x);
+}
+//------------------------------------------------------------------------------------------------------------------------------
+FFX_MIN16_F ffxSaturate(FFX_MIN16_F x)
+{
+ return saturate(x);
+}
+FFX_MIN16_F2 ffxSaturate(FFX_MIN16_F2 x)
+{
+ return saturate(x);
+}
+FFX_MIN16_F3 ffxSaturate(FFX_MIN16_F3 x)
+{
+ return saturate(x);
+}
+FFX_MIN16_F4 ffxSaturate(FFX_MIN16_F4 x)
+{
+ return saturate(x);
+}
+//------------------------------------------------------------------------------------------------------------------------------
+FFX_MIN16_U ffxBitShiftRightHalf(FFX_MIN16_U a, FFX_MIN16_U b)
+{
+ return FFX_MIN16_U(FFX_MIN16_I(a) >> FFX_MIN16_I(b));
+}
+FFX_MIN16_U2 ffxBitShiftRightHalf(FFX_MIN16_U2 a, FFX_MIN16_U2 b)
+{
+ return FFX_MIN16_U2(FFX_MIN16_I2(a) >> FFX_MIN16_I2(b));
+}
+FFX_MIN16_U3 ffxBitShiftRightHalf(FFX_MIN16_U3 a, FFX_MIN16_U3 b)
+{
+ return FFX_MIN16_U3(FFX_MIN16_I3(a) >> FFX_MIN16_I3(b));
+}
+FFX_MIN16_U4 ffxBitShiftRightHalf(FFX_MIN16_U4 a, FFX_MIN16_U4 b)
+{
+ return FFX_MIN16_U4(FFX_MIN16_I4(a) >> FFX_MIN16_I4(b));
+}
+#endif // FFX_HALF
+
+//==============================================================================================================================
+// HLSL WAVE
+//==============================================================================================================================
+#if defined(FFX_WAVE)
+// Where 'x' must be a compile time literal.
+FfxFloat32 AWaveXorF1(FfxFloat32 v, FfxUInt32 x)
+{
+ return WaveReadLaneAt(v, WaveGetLaneIndex() ^ x);
+}
+FfxFloat32x2 AWaveXorF2(FfxFloat32x2 v, FfxUInt32 x)
+{
+ return WaveReadLaneAt(v, WaveGetLaneIndex() ^ x);
+}
+FfxFloat32x3 AWaveXorF3(FfxFloat32x3 v, FfxUInt32 x)
+{
+ return WaveReadLaneAt(v, WaveGetLaneIndex() ^ x);
+}
+FfxFloat32x4 AWaveXorF4(FfxFloat32x4 v, FfxUInt32 x)
+{
+ return WaveReadLaneAt(v, WaveGetLaneIndex() ^ x);
+}
+FfxUInt32 AWaveXorU1(FfxUInt32 v, FfxUInt32 x)
+{
+ return WaveReadLaneAt(v, WaveGetLaneIndex() ^ x);
+}
+FfxUInt32x2 AWaveXorU1(FfxUInt32x2 v, FfxUInt32 x)
+{
+ return WaveReadLaneAt(v, WaveGetLaneIndex() ^ x);
+}
+FfxUInt32x3 AWaveXorU1(FfxUInt32x3 v, FfxUInt32 x)
+{
+ return WaveReadLaneAt(v, WaveGetLaneIndex() ^ x);
+}
+FfxUInt32x4 AWaveXorU1(FfxUInt32x4 v, FfxUInt32 x)
+{
+ return WaveReadLaneAt(v, WaveGetLaneIndex() ^ x);
+}
+
+#if FFX_HALF
+FfxFloat16x2 ffxWaveXorFloat16x2(FfxFloat16x2 v, FfxUInt32 x)
+{
+ return FFX_UINT32_TO_FLOAT16X2(WaveReadLaneAt(FFX_FLOAT16X2_TO_UINT32(v), WaveGetLaneIndex() ^ x));
+}
+FfxFloat16x4 ffxWaveXorFloat16x4(FfxFloat16x4 v, FfxUInt32 x)
+{
+ return FFX_UINT32X2_TO_FLOAT16X4(WaveReadLaneAt(FFX_FLOAT16X4_TO_UINT32X2(v), WaveGetLaneIndex() ^ x));
+}
+FfxUInt16x2 ffxWaveXorUint16x2(FfxUInt16x2 v, FfxUInt32 x)
+{
+ return FFX_UINT32_TO_UINT16X2(WaveReadLaneAt(FFX_UINT16X2_TO_UINT32(v), WaveGetLaneIndex() ^ x));
+}
+FfxUInt16x4 ffxWaveXorUint16x4(FfxUInt16x4 v, FfxUInt32 x)
+{
+ return AW4_FFX_UINT32(WaveReadLaneAt(FFX_UINT32_AW4(v), WaveGetLaneIndex() ^ x));
+}
+#endif // FFX_HALF
+#endif // #if defined(FFX_WAVE)
diff --git a/thirdparty/amd-fsr2/shaders/ffx_core_portability.h b/thirdparty/amd-fsr2/shaders/ffx_core_portability.h
new file mode 100644
index 0000000000..45be05973a
--- /dev/null
+++ b/thirdparty/amd-fsr2/shaders/ffx_core_portability.h
@@ -0,0 +1,50 @@
+// This file is part of the FidelityFX SDK.
+//
+// Copyright (c) 2022-2023 Advanced Micro Devices, Inc. All rights reserved.
+//
+// Permission is hereby granted, free of charge, to any person obtaining a copy
+// of this software and associated documentation files (the "Software"), to deal
+// in the Software without restriction, including without limitation the rights
+// to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
+// copies of the Software, and to permit persons to whom the Software is
+// furnished to do so, subject to the following conditions:
+// The above copyright notice and this permission notice shall be included in
+// all copies or substantial portions of the Software.
+//
+// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
+// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
+// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
+// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
+// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
+// OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
+// THE SOFTWARE.
+
+FfxFloat32x3 opAAddOneF3(FfxFloat32x3 d, FfxFloat32x3 a, FfxFloat32 b)
+{
+ d = a + ffxBroadcast3(b);
+ return d;
+}
+
+FfxFloat32x3 opACpyF3(FfxFloat32x3 d, FfxFloat32x3 a)
+{
+ d = a;
+ return d;
+}
+
+FfxFloat32x3 opAMulF3(FfxFloat32x3 d, FfxFloat32x3 a, FfxFloat32x3 b)
+{
+ d = a * b;
+ return d;
+}
+
+FfxFloat32x3 opAMulOneF3(FfxFloat32x3 d, FfxFloat32x3 a, FfxFloat32 b)
+{
+ d = a * ffxBroadcast3(b);
+ return d;
+}
+
+FfxFloat32x3 opARcpF3(FfxFloat32x3 d, FfxFloat32x3 a)
+{
+ d = rcp(a);
+ return d;
+}
diff --git a/thirdparty/amd-fsr2/shaders/ffx_fsr1.h b/thirdparty/amd-fsr2/shaders/ffx_fsr1.h
new file mode 100644
index 0000000000..1ac23cf3de
--- /dev/null
+++ b/thirdparty/amd-fsr2/shaders/ffx_fsr1.h
@@ -0,0 +1,1250 @@
+// This file is part of the FidelityFX SDK.
+//
+// Copyright (c) 2022 Advanced Micro Devices, Inc. All rights reserved.
+//
+// Permission is hereby granted, free of charge, to any person obtaining a copy
+// of this software and associated documentation files (the "Software"), to deal
+// in the Software without restriction, including without limitation the rights
+// to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
+// copies of the Software, and to permit persons to whom the Software is
+// furnished to do so, subject to the following conditions:
+// The above copyright notice and this permission notice shall be included in
+// all copies or substantial portions of the Software.
+//
+// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
+// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
+// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
+// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
+// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
+// OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
+// THE SOFTWARE.
+
+#ifdef __clang__
+#pragma clang diagnostic ignored "-Wunused-variable"
+#endif
+
+/// Setup required constant values for EASU (works on CPU or GPU).
+///
+/// @param [out] con0
+/// @param [out] con1
+/// @param [out] con2
+/// @param [out] con3
+/// @param [in] inputViewportInPixelsX The rendered image resolution being upscaled in X dimension.
+/// @param [in] inputViewportInPixelsY The rendered image resolution being upscaled in Y dimension.
+/// @param [in] inputSizeInPixelsX The resolution of the resource containing the input image (useful for dynamic resolution) in X dimension.
+/// @param [in] inputSizeInPixelsY The resolution of the resource containing the input image (useful for dynamic resolution) in Y dimension.
+/// @param [in] outputSizeInPixelsX The display resolution which the input image gets upscaled to in X dimension.
+/// @param [in] outputSizeInPixelsY The display resolution which the input image gets upscaled to in Y dimension.
+///
+/// @ingroup FSR1
+FFX_STATIC void ffxFsrPopulateEasuConstants(
+ FFX_PARAMETER_INOUT FfxUInt32x4 con0,
+ FFX_PARAMETER_INOUT FfxUInt32x4 con1,
+ FFX_PARAMETER_INOUT FfxUInt32x4 con2,
+ FFX_PARAMETER_INOUT FfxUInt32x4 con3,
+ FFX_PARAMETER_IN FfxFloat32 inputViewportInPixelsX,
+ FFX_PARAMETER_IN FfxFloat32 inputViewportInPixelsY,
+ FFX_PARAMETER_IN FfxFloat32 inputSizeInPixelsX,
+ FFX_PARAMETER_IN FfxFloat32 inputSizeInPixelsY,
+ FFX_PARAMETER_IN FfxFloat32 outputSizeInPixelsX,
+ FFX_PARAMETER_IN FfxFloat32 outputSizeInPixelsY)
+{
+ // Output integer position to a pixel position in viewport.
+ con0[0] = ffxAsUInt32(inputViewportInPixelsX * ffxReciprocal(outputSizeInPixelsX));
+ con0[1] = ffxAsUInt32(inputViewportInPixelsY * ffxReciprocal(outputSizeInPixelsY));
+ con0[2] = ffxAsUInt32(FfxFloat32(0.5) * inputViewportInPixelsX * ffxReciprocal(outputSizeInPixelsX) - FfxFloat32(0.5));
+ con0[3] = ffxAsUInt32(FfxFloat32(0.5) * inputViewportInPixelsY * ffxReciprocal(outputSizeInPixelsY) - FfxFloat32(0.5));
+
+ // Viewport pixel position to normalized image space.
+ // This is used to get upper-left of 'F' tap.
+ con1[0] = ffxAsUInt32(ffxReciprocal(inputSizeInPixelsX));
+ con1[1] = ffxAsUInt32(ffxReciprocal(inputSizeInPixelsY));
+
+ // Centers of gather4, first offset from upper-left of 'F'.
+ // +---+---+
+ // | | |
+ // +--(0)--+
+ // | b | c |
+ // +---F---+---+---+
+ // | e | f | g | h |
+ // +--(1)--+--(2)--+
+ // | i | j | k | l |
+ // +---+---+---+---+
+ // | n | o |
+ // +--(3)--+
+ // | | |
+ // +---+---+
+ con1[2] = ffxAsUInt32(FfxFloat32(1.0) * ffxReciprocal(inputSizeInPixelsX));
+ con1[3] = ffxAsUInt32(FfxFloat32(-1.0) * ffxReciprocal(inputSizeInPixelsY));
+
+ // These are from (0) instead of 'F'.
+ con2[0] = ffxAsUInt32(FfxFloat32(-1.0) * ffxReciprocal(inputSizeInPixelsX));
+ con2[1] = ffxAsUInt32(FfxFloat32(2.0) * ffxReciprocal(inputSizeInPixelsY));
+ con2[2] = ffxAsUInt32(FfxFloat32(1.0) * ffxReciprocal(inputSizeInPixelsX));
+ con2[3] = ffxAsUInt32(FfxFloat32(2.0) * ffxReciprocal(inputSizeInPixelsY));
+ con3[0] = ffxAsUInt32(FfxFloat32(0.0) * ffxReciprocal(inputSizeInPixelsX));
+ con3[1] = ffxAsUInt32(FfxFloat32(4.0) * ffxReciprocal(inputSizeInPixelsY));
+ con3[2] = con3[3] = 0;
+}
+
+/// Setup required constant values for EASU (works on CPU or GPU).
+///
+/// @param [out] con0
+/// @param [out] con1
+/// @param [out] con2
+/// @param [out] con3
+/// @param [in] inputViewportInPixelsX The resolution of the input in the X dimension.
+/// @param [in] inputViewportInPixelsY The resolution of the input in the Y dimension.
+/// @param [in] inputSizeInPixelsX The input size in pixels in the X dimension.
+/// @param [in] inputSizeInPixelsY The input size in pixels in the Y dimension.
+/// @param [in] outputSizeInPixelsX The output size in pixels in the X dimension.
+/// @param [in] outputSizeInPixelsY The output size in pixels in the Y dimension.
+/// @param [in] inputOffsetInPixelsX The input image offset in the X dimension into the resource containing it (useful for dynamic resolution).
+/// @param [in] inputOffsetInPixelsY The input image offset in the Y dimension into the resource containing it (useful for dynamic resolution).
+///
+/// @ingroup FSR1
+FFX_STATIC void ffxFsrPopulateEasuConstantsOffset(
+ FFX_PARAMETER_INOUT FfxUInt32x4 con0,
+ FFX_PARAMETER_INOUT FfxUInt32x4 con1,
+ FFX_PARAMETER_INOUT FfxUInt32x4 con2,
+ FFX_PARAMETER_INOUT FfxUInt32x4 con3,
+ FFX_PARAMETER_IN FfxFloat32 inputViewportInPixelsX,
+ FFX_PARAMETER_IN FfxFloat32 inputViewportInPixelsY,
+ FFX_PARAMETER_IN FfxFloat32 inputSizeInPixelsX,
+ FFX_PARAMETER_IN FfxFloat32 inputSizeInPixelsY,
+ FFX_PARAMETER_IN FfxFloat32 outputSizeInPixelsX,
+ FFX_PARAMETER_IN FfxFloat32 outputSizeInPixelsY,
+ FFX_PARAMETER_IN FfxFloat32 inputOffsetInPixelsX,
+ FFX_PARAMETER_IN FfxFloat32 inputOffsetInPixelsY)
+{
+ ffxFsrPopulateEasuConstants(
+ con0,
+ con1,
+ con2,
+ con3,
+ inputViewportInPixelsX,
+ inputViewportInPixelsY,
+ inputSizeInPixelsX,
+ inputSizeInPixelsY,
+ outputSizeInPixelsX,
+ outputSizeInPixelsY);
+
+ // override
+ con0[2] = ffxAsUInt32(FfxFloat32(0.5) * inputViewportInPixelsX * ffxReciprocal(outputSizeInPixelsX) - FfxFloat32(0.5) + inputOffsetInPixelsX);
+ con0[3] = ffxAsUInt32(FfxFloat32(0.5) * inputViewportInPixelsY * ffxReciprocal(outputSizeInPixelsY) - FfxFloat32(0.5) + inputOffsetInPixelsY);
+}
+
+#if defined(FFX_GPU) && defined(FFX_FSR_EASU_FLOAT)
+// Input callback prototypes, need to be implemented by calling shader
+FfxFloat32x4 FsrEasuRF(FfxFloat32x2 p);
+FfxFloat32x4 FsrEasuGF(FfxFloat32x2 p);
+FfxFloat32x4 FsrEasuBF(FfxFloat32x2 p);
+
+// Filtering for a given tap for the scalar.
+void fsrEasuTapFloat(
+ FFX_PARAMETER_INOUT FfxFloat32x3 accumulatedColor, // Accumulated color, with negative lobe.
+ FFX_PARAMETER_INOUT FfxFloat32 accumulatedWeight, // Accumulated weight.
+ FFX_PARAMETER_IN FfxFloat32x2 pixelOffset, // Pixel offset from resolve position to tap.
+ FFX_PARAMETER_IN FfxFloat32x2 gradientDirection, // Gradient direction.
+ FFX_PARAMETER_IN FfxFloat32x2 length, // Length.
+ FFX_PARAMETER_IN FfxFloat32 negativeLobeStrength, // Negative lobe strength.
+ FFX_PARAMETER_IN FfxFloat32 clippingPoint, // Clipping point.
+ FFX_PARAMETER_IN FfxFloat32x3 color) // Tap color.
+{
+ // Rotate offset by direction.
+ FfxFloat32x2 rotatedOffset;
+ rotatedOffset.x = (pixelOffset.x * (gradientDirection.x)) + (pixelOffset.y * gradientDirection.y);
+ rotatedOffset.y = (pixelOffset.x * (-gradientDirection.y)) + (pixelOffset.y * gradientDirection.x);
+
+ // Anisotropy.
+ rotatedOffset *= length;
+
+ // Compute distance^2.
+ FfxFloat32 distanceSquared = rotatedOffset.x * rotatedOffset.x + rotatedOffset.y * rotatedOffset.y;
+
+ // Limit to the window as at corner, 2 taps can easily be outside.
+ distanceSquared = ffxMin(distanceSquared, clippingPoint);
+
+ // Approximation of lancos2 without sin() or rcp(), or sqrt() to get x.
+ // (25/16 * (2/5 * x^2 - 1)^2 - (25/16 - 1)) * (1/4 * x^2 - 1)^2
+ // |_______________________________________| |_______________|
+ // base window
+ // The general form of the 'base' is,
+ // (a*(b*x^2-1)^2-(a-1))
+ // Where 'a=1/(2*b-b^2)' and 'b' moves around the negative lobe.
+ FfxFloat32 weightB = FfxFloat32(2.0 / 5.0) * distanceSquared + FfxFloat32(-1.0);
+ FfxFloat32 weightA = negativeLobeStrength * distanceSquared + FfxFloat32(-1.0);
+ weightB *= weightB;
+ weightA *= weightA;
+ weightB = FfxFloat32(25.0 / 16.0) * weightB + FfxFloat32(-(25.0 / 16.0 - 1.0));
+ FfxFloat32 weight = weightB * weightA;
+
+ // Do weighted average.
+ accumulatedColor += color * weight;
+ accumulatedWeight += weight;
+}
+
+// Accumulate direction and length.
+void fsrEasuSetFloat(
+ FFX_PARAMETER_INOUT FfxFloat32x2 direction,
+ FFX_PARAMETER_INOUT FfxFloat32 length,
+ FFX_PARAMETER_IN FfxFloat32x2 pp,
+ FFX_PARAMETER_IN FfxBoolean biS,
+ FFX_PARAMETER_IN FfxBoolean biT,
+ FFX_PARAMETER_IN FfxBoolean biU,
+ FFX_PARAMETER_IN FfxBoolean biV,
+ FFX_PARAMETER_IN FfxFloat32 lA,
+ FFX_PARAMETER_IN FfxFloat32 lB,
+ FFX_PARAMETER_IN FfxFloat32 lC,
+ FFX_PARAMETER_IN FfxFloat32 lD,
+ FFX_PARAMETER_IN FfxFloat32 lE)
+{
+ // Compute bilinear weight, branches factor out as predicates are compiler time immediates.
+ // s t
+ // u v
+ FfxFloat32 weight = FfxFloat32(0.0);
+ if (biS)
+ weight = (FfxFloat32(1.0) - pp.x) * (FfxFloat32(1.0) - pp.y);
+ if (biT)
+ weight = pp.x * (FfxFloat32(1.0) - pp.y);
+ if (biU)
+ weight = (FfxFloat32(1.0) - pp.x) * pp.y;
+ if (biV)
+ weight = pp.x * pp.y;
+
+ // Direction is the '+' diff.
+ // a
+ // b c d
+ // e
+ // Then takes magnitude from abs average of both sides of 'c'.
+ // Length converts gradient reversal to 0, smoothly to non-reversal at 1, shaped, then adding horz and vert terms.
+ FfxFloat32 dc = lD - lC;
+ FfxFloat32 cb = lC - lB;
+ FfxFloat32 lengthX = max(abs(dc), abs(cb));
+ lengthX = ffxApproximateReciprocal(lengthX);
+ FfxFloat32 directionX = lD - lB;
+ direction.x += directionX * weight;
+ lengthX = ffxSaturate(abs(directionX) * lengthX);
+ lengthX *= lengthX;
+ length += lengthX * weight;
+
+ // Repeat for the y axis.
+ FfxFloat32 ec = lE - lC;
+ FfxFloat32 ca = lC - lA;
+ FfxFloat32 lengthY = max(abs(ec), abs(ca));
+ lengthY = ffxApproximateReciprocal(lengthY);
+ FfxFloat32 directionY = lE - lA;
+ direction.y += directionY * weight;
+ lengthY = ffxSaturate(abs(directionY) * lengthY);
+ lengthY *= lengthY;
+ length += lengthY * weight;
+}
+
+/// Apply edge-aware spatial upsampling using 32bit floating point precision calculations.
+///
+/// @param [out] outPixel The computed color of a pixel.
+/// @param [in] integerPosition Integer pixel position within the output.
+/// @param [in] con0 The first constant value generated by <c><i>ffxFsrPopulateEasuConstants</i></c>.
+/// @param [in] con1 The second constant value generated by <c><i>ffxFsrPopulateEasuConstants</i></c>.
+/// @param [in] con2 The third constant value generated by <c><i>ffxFsrPopulateEasuConstants</i></c>.
+/// @param [in] con3 The fourth constant value generated by <c><i>ffxFsrPopulateEasuConstants</i></c>.
+///
+/// @ingroup FSR
+void ffxFsrEasuFloat(
+ FFX_PARAMETER_OUT FfxFloat32x3 pix,
+ FFX_PARAMETER_IN FfxUInt32x2 ip,
+ FFX_PARAMETER_IN FfxUInt32x4 con0,
+ FFX_PARAMETER_IN FfxUInt32x4 con1,
+ FFX_PARAMETER_IN FfxUInt32x4 con2,
+ FFX_PARAMETER_IN FfxUInt32x4 con3)
+{
+ // Get position of 'f'.
+ FfxFloat32x2 pp = FfxFloat32x2(ip) * ffxAsFloat(con0.xy) + ffxAsFloat(con0.zw);
+ FfxFloat32x2 fp = floor(pp);
+ pp -= fp;
+
+ // 12-tap kernel.
+ // b c
+ // e f g h
+ // i j k l
+ // n o
+ // Gather 4 ordering.
+ // a b
+ // r g
+ // For packed FP16, need either {rg} or {ab} so using the following setup for gather in all versions,
+ // a b <- unused (z)
+ // r g
+ // a b a b
+ // r g r g
+ // a b
+ // r g <- unused (z)
+ // Allowing dead-code removal to remove the 'z's.
+ FfxFloat32x2 p0 = fp * ffxAsFloat(con1.xy) + ffxAsFloat(con1.zw);
+
+ // These are from p0 to avoid pulling two constants on pre-Navi hardware.
+ FfxFloat32x2 p1 = p0 + ffxAsFloat(con2.xy);
+ FfxFloat32x2 p2 = p0 + ffxAsFloat(con2.zw);
+ FfxFloat32x2 p3 = p0 + ffxAsFloat(con3.xy);
+ FfxFloat32x4 bczzR = FsrEasuRF(p0);
+ FfxFloat32x4 bczzG = FsrEasuGF(p0);
+ FfxFloat32x4 bczzB = FsrEasuBF(p0);
+ FfxFloat32x4 ijfeR = FsrEasuRF(p1);
+ FfxFloat32x4 ijfeG = FsrEasuGF(p1);
+ FfxFloat32x4 ijfeB = FsrEasuBF(p1);
+ FfxFloat32x4 klhgR = FsrEasuRF(p2);
+ FfxFloat32x4 klhgG = FsrEasuGF(p2);
+ FfxFloat32x4 klhgB = FsrEasuBF(p2);
+ FfxFloat32x4 zzonR = FsrEasuRF(p3);
+ FfxFloat32x4 zzonG = FsrEasuGF(p3);
+ FfxFloat32x4 zzonB = FsrEasuBF(p3);
+
+ // Simplest multi-channel approximate luma possible (luma times 2, in 2 FMA/MAD).
+ FfxFloat32x4 bczzL = bczzB * ffxBroadcast4(0.5) + (bczzR * ffxBroadcast4(0.5) + bczzG);
+ FfxFloat32x4 ijfeL = ijfeB * ffxBroadcast4(0.5) + (ijfeR * ffxBroadcast4(0.5) + ijfeG);
+ FfxFloat32x4 klhgL = klhgB * ffxBroadcast4(0.5) + (klhgR * ffxBroadcast4(0.5) + klhgG);
+ FfxFloat32x4 zzonL = zzonB * ffxBroadcast4(0.5) + (zzonR * ffxBroadcast4(0.5) + zzonG);
+
+ // Rename.
+ FfxFloat32 bL = bczzL.x;
+ FfxFloat32 cL = bczzL.y;
+ FfxFloat32 iL = ijfeL.x;
+ FfxFloat32 jL = ijfeL.y;
+ FfxFloat32 fL = ijfeL.z;
+ FfxFloat32 eL = ijfeL.w;
+ FfxFloat32 kL = klhgL.x;
+ FfxFloat32 lL = klhgL.y;
+ FfxFloat32 hL = klhgL.z;
+ FfxFloat32 gL = klhgL.w;
+ FfxFloat32 oL = zzonL.z;
+ FfxFloat32 nL = zzonL.w;
+
+ // Accumulate for bilinear interpolation.
+ FfxFloat32x2 dir = ffxBroadcast2(0.0);
+ FfxFloat32 len = FfxFloat32(0.0);
+ fsrEasuSetFloat(dir, len, pp, FFX_TRUE, FFX_FALSE, FFX_FALSE, FFX_FALSE, bL, eL, fL, gL, jL);
+ fsrEasuSetFloat(dir, len, pp, FFX_FALSE, FFX_TRUE, FFX_FALSE, FFX_FALSE, cL, fL, gL, hL, kL);
+ fsrEasuSetFloat(dir, len, pp, FFX_FALSE, FFX_FALSE, FFX_TRUE, FFX_FALSE, fL, iL, jL, kL, nL);
+ fsrEasuSetFloat(dir, len, pp, FFX_FALSE, FFX_FALSE, FFX_FALSE, FFX_TRUE, gL, jL, kL, lL, oL);
+
+ // Normalize with approximation, and cleanup close to zero.
+ FfxFloat32x2 dir2 = dir * dir;
+ FfxFloat32 dirR = dir2.x + dir2.y;
+ FfxUInt32 zro = dirR < FfxFloat32(1.0 / 32768.0);
+ dirR = ffxApproximateReciprocalSquareRoot(dirR);
+ dirR = zro ? FfxFloat32(1.0) : dirR;
+ dir.x = zro ? FfxFloat32(1.0) : dir.x;
+ dir *= ffxBroadcast2(dirR);
+
+ // Transform from {0 to 2} to {0 to 1} range, and shape with square.
+ len = len * FfxFloat32(0.5);
+ len *= len;
+
+ // Stretch kernel {1.0 vert|horz, to sqrt(2.0) on diagonal}.
+ FfxFloat32 stretch = (dir.x * dir.x + dir.y * dir.y) * ffxApproximateReciprocal(max(abs(dir.x), abs(dir.y)));
+
+ // Anisotropic length after rotation,
+ // x := 1.0 lerp to 'stretch' on edges
+ // y := 1.0 lerp to 2x on edges
+ FfxFloat32x2 len2 = FfxFloat32x2(FfxFloat32(1.0) + (stretch - FfxFloat32(1.0)) * len, FfxFloat32(1.0) + FfxFloat32(-0.5) * len);
+
+ // Based on the amount of 'edge',
+ // the window shifts from +/-{sqrt(2.0) to slightly beyond 2.0}.
+ FfxFloat32 lob = FfxFloat32(0.5) + FfxFloat32((1.0 / 4.0 - 0.04) - 0.5) * len;
+
+ // Set distance^2 clipping point to the end of the adjustable window.
+ FfxFloat32 clp = ffxApproximateReciprocal(lob);
+
+ // Accumulation mixed with min/max of 4 nearest.
+ // b c
+ // e f g h
+ // i j k l
+ // n o
+ FfxFloat32x3 min4 =
+ ffxMin(ffxMin3(FfxFloat32x3(ijfeR.z, ijfeG.z, ijfeB.z), FfxFloat32x3(klhgR.w, klhgG.w, klhgB.w), FfxFloat32x3(ijfeR.y, ijfeG.y, ijfeB.y)),
+ FfxFloat32x3(klhgR.x, klhgG.x, klhgB.x));
+ FfxFloat32x3 max4 =
+ max(ffxMax3(FfxFloat32x3(ijfeR.z, ijfeG.z, ijfeB.z), FfxFloat32x3(klhgR.w, klhgG.w, klhgB.w), FfxFloat32x3(ijfeR.y, ijfeG.y, ijfeB.y)), FfxFloat32x3(klhgR.x, klhgG.x, klhgB.x));
+
+ // Accumulation.
+ FfxFloat32x3 aC = ffxBroadcast3(0.0);
+ FfxFloat32 aW = FfxFloat32(0.0);
+ fsrEasuTapFloat(aC, aW, FfxFloat32x2(0.0, -1.0) - pp, dir, len2, lob, clp, FfxFloat32x3(bczzR.x, bczzG.x, bczzB.x)); // b
+ fsrEasuTapFloat(aC, aW, FfxFloat32x2(1.0, -1.0) - pp, dir, len2, lob, clp, FfxFloat32x3(bczzR.y, bczzG.y, bczzB.y)); // c
+ fsrEasuTapFloat(aC, aW, FfxFloat32x2(-1.0, 1.0) - pp, dir, len2, lob, clp, FfxFloat32x3(ijfeR.x, ijfeG.x, ijfeB.x)); // i
+ fsrEasuTapFloat(aC, aW, FfxFloat32x2(0.0, 1.0) - pp, dir, len2, lob, clp, FfxFloat32x3(ijfeR.y, ijfeG.y, ijfeB.y)); // j
+ fsrEasuTapFloat(aC, aW, FfxFloat32x2(0.0, 0.0) - pp, dir, len2, lob, clp, FfxFloat32x3(ijfeR.z, ijfeG.z, ijfeB.z)); // f
+ fsrEasuTapFloat(aC, aW, FfxFloat32x2(-1.0, 0.0) - pp, dir, len2, lob, clp, FfxFloat32x3(ijfeR.w, ijfeG.w, ijfeB.w)); // e
+ fsrEasuTapFloat(aC, aW, FfxFloat32x2(1.0, 1.0) - pp, dir, len2, lob, clp, FfxFloat32x3(klhgR.x, klhgG.x, klhgB.x)); // k
+ fsrEasuTapFloat(aC, aW, FfxFloat32x2(2.0, 1.0) - pp, dir, len2, lob, clp, FfxFloat32x3(klhgR.y, klhgG.y, klhgB.y)); // l
+ fsrEasuTapFloat(aC, aW, FfxFloat32x2(2.0, 0.0) - pp, dir, len2, lob, clp, FfxFloat32x3(klhgR.z, klhgG.z, klhgB.z)); // h
+ fsrEasuTapFloat(aC, aW, FfxFloat32x2(1.0, 0.0) - pp, dir, len2, lob, clp, FfxFloat32x3(klhgR.w, klhgG.w, klhgB.w)); // g
+ fsrEasuTapFloat(aC, aW, FfxFloat32x2(1.0, 2.0) - pp, dir, len2, lob, clp, FfxFloat32x3(zzonR.z, zzonG.z, zzonB.z)); // o
+ fsrEasuTapFloat(aC, aW, FfxFloat32x2(0.0, 2.0) - pp, dir, len2, lob, clp, FfxFloat32x3(zzonR.w, zzonG.w, zzonB.w)); // n
+
+ // Normalize and dering.
+ pix = ffxMin(max4, max(min4, aC * ffxBroadcast3(rcp(aW))));
+}
+#endif // #if defined(FFX_GPU) && defined(FFX_FSR_EASU_FLOAT)
+
+#if defined(FFX_GPU) && FFX_HALF == 1 && defined(FFX_FSR_EASU_HALF)
+// Input callback prototypes, need to be implemented by calling shader
+FfxFloat16x4 FsrEasuRH(FfxFloat32x2 p);
+FfxFloat16x4 FsrEasuGH(FfxFloat32x2 p);
+FfxFloat16x4 FsrEasuBH(FfxFloat32x2 p);
+
+// This runs 2 taps in parallel.
+void FsrEasuTapH(
+ FFX_PARAMETER_INOUT FfxFloat16x2 aCR,
+ FFX_PARAMETER_INOUT FfxFloat16x2 aCG,
+ FFX_PARAMETER_INOUT FfxFloat16x2 aCB,
+ FFX_PARAMETER_INOUT FfxFloat16x2 aW,
+ FFX_PARAMETER_IN FfxFloat16x2 offX,
+ FFX_PARAMETER_IN FfxFloat16x2 offY,
+ FFX_PARAMETER_IN FfxFloat16x2 dir,
+ FFX_PARAMETER_IN FfxFloat16x2 len,
+ FFX_PARAMETER_IN FfxFloat16 lob,
+ FFX_PARAMETER_IN FfxFloat16 clp,
+ FFX_PARAMETER_IN FfxFloat16x2 cR,
+ FFX_PARAMETER_IN FfxFloat16x2 cG,
+ FFX_PARAMETER_IN FfxFloat16x2 cB)
+{
+ FfxFloat16x2 vX, vY;
+ vX = offX * dir.xx + offY * dir.yy;
+ vY = offX * (-dir.yy) + offY * dir.xx;
+ vX *= len.x;
+ vY *= len.y;
+ FfxFloat16x2 d2 = vX * vX + vY * vY;
+ d2 = min(d2, FFX_BROADCAST_FLOAT16X2(clp));
+ FfxFloat16x2 wB = FFX_BROADCAST_FLOAT16X2(2.0 / 5.0) * d2 + FFX_BROADCAST_FLOAT16X2(-1.0);
+ FfxFloat16x2 wA = FFX_BROADCAST_FLOAT16X2(lob) * d2 + FFX_BROADCAST_FLOAT16X2(-1.0);
+ wB *= wB;
+ wA *= wA;
+ wB = FFX_BROADCAST_FLOAT16X2(25.0 / 16.0) * wB + FFX_BROADCAST_FLOAT16X2(-(25.0 / 16.0 - 1.0));
+ FfxFloat16x2 w = wB * wA;
+ aCR += cR * w;
+ aCG += cG * w;
+ aCB += cB * w;
+ aW += w;
+}
+
+// This runs 2 taps in parallel.
+void FsrEasuSetH(
+ FFX_PARAMETER_INOUT FfxFloat16x2 dirPX,
+ FFX_PARAMETER_INOUT FfxFloat16x2 dirPY,
+ FFX_PARAMETER_INOUT FfxFloat16x2 lenP,
+ FFX_PARAMETER_IN FfxFloat16x2 pp,
+ FFX_PARAMETER_IN FfxBoolean biST,
+ FFX_PARAMETER_IN FfxBoolean biUV,
+ FFX_PARAMETER_IN FfxFloat16x2 lA,
+ FFX_PARAMETER_IN FfxFloat16x2 lB,
+ FFX_PARAMETER_IN FfxFloat16x2 lC,
+ FFX_PARAMETER_IN FfxFloat16x2 lD,
+ FFX_PARAMETER_IN FfxFloat16x2 lE)
+{
+ FfxFloat16x2 w = FFX_BROADCAST_FLOAT16X2(0.0);
+
+ if (biST)
+ w = (FfxFloat16x2(1.0, 0.0) + FfxFloat16x2(-pp.x, pp.x)) * FFX_BROADCAST_FLOAT16X2(FFX_BROADCAST_FLOAT16(1.0) - pp.y);
+
+ if (biUV)
+ w = (FfxFloat16x2(1.0, 0.0) + FfxFloat16x2(-pp.x, pp.x)) * FFX_BROADCAST_FLOAT16X2(pp.y);
+
+ // ABS is not free in the packed FP16 path.
+ FfxFloat16x2 dc = lD - lC;
+ FfxFloat16x2 cb = lC - lB;
+ FfxFloat16x2 lenX = max(abs(dc), abs(cb));
+ lenX = ffxReciprocalHalf(lenX);
+
+ FfxFloat16x2 dirX = lD - lB;
+ dirPX += dirX * w;
+ lenX = ffxSaturate(abs(dirX) * lenX);
+ lenX *= lenX;
+ lenP += lenX * w;
+ FfxFloat16x2 ec = lE - lC;
+ FfxFloat16x2 ca = lC - lA;
+ FfxFloat16x2 lenY = max(abs(ec), abs(ca));
+ lenY = ffxReciprocalHalf(lenY);
+ FfxFloat16x2 dirY = lE - lA;
+ dirPY += dirY * w;
+ lenY = ffxSaturate(abs(dirY) * lenY);
+ lenY *= lenY;
+ lenP += lenY * w;
+}
+
+void FsrEasuH(
+ FFX_PARAMETER_OUT FfxFloat16x3 pix,
+ FFX_PARAMETER_IN FfxUInt32x2 ip,
+ FFX_PARAMETER_IN FfxUInt32x4 con0,
+ FFX_PARAMETER_IN FfxUInt32x4 con1,
+ FFX_PARAMETER_IN FfxUInt32x4 con2,
+ FFX_PARAMETER_IN FfxUInt32x4 con3)
+{
+ FfxFloat32x2 pp = FfxFloat32x2(ip) * ffxAsFloat(con0.xy) + ffxAsFloat(con0.zw);
+ FfxFloat32x2 fp = floor(pp);
+ pp -= fp;
+ FfxFloat16x2 ppp = FfxFloat16x2(pp);
+
+ FfxFloat32x2 p0 = fp * ffxAsFloat(con1.xy) + ffxAsFloat(con1.zw);
+ FfxFloat32x2 p1 = p0 + ffxAsFloat(con2.xy);
+ FfxFloat32x2 p2 = p0 + ffxAsFloat(con2.zw);
+ FfxFloat32x2 p3 = p0 + ffxAsFloat(con3.xy);
+ FfxFloat16x4 bczzR = FsrEasuRH(p0);
+ FfxFloat16x4 bczzG = FsrEasuGH(p0);
+ FfxFloat16x4 bczzB = FsrEasuBH(p0);
+ FfxFloat16x4 ijfeR = FsrEasuRH(p1);
+ FfxFloat16x4 ijfeG = FsrEasuGH(p1);
+ FfxFloat16x4 ijfeB = FsrEasuBH(p1);
+ FfxFloat16x4 klhgR = FsrEasuRH(p2);
+ FfxFloat16x4 klhgG = FsrEasuGH(p2);
+ FfxFloat16x4 klhgB = FsrEasuBH(p2);
+ FfxFloat16x4 zzonR = FsrEasuRH(p3);
+ FfxFloat16x4 zzonG = FsrEasuGH(p3);
+ FfxFloat16x4 zzonB = FsrEasuBH(p3);
+
+ FfxFloat16x4 bczzL = bczzB * FFX_BROADCAST_FLOAT16X4(0.5) + (bczzR * FFX_BROADCAST_FLOAT16X4(0.5) + bczzG);
+ FfxFloat16x4 ijfeL = ijfeB * FFX_BROADCAST_FLOAT16X4(0.5) + (ijfeR * FFX_BROADCAST_FLOAT16X4(0.5) + ijfeG);
+ FfxFloat16x4 klhgL = klhgB * FFX_BROADCAST_FLOAT16X4(0.5) + (klhgR * FFX_BROADCAST_FLOAT16X4(0.5) + klhgG);
+ FfxFloat16x4 zzonL = zzonB * FFX_BROADCAST_FLOAT16X4(0.5) + (zzonR * FFX_BROADCAST_FLOAT16X4(0.5) + zzonG);
+ FfxFloat16 bL = bczzL.x;
+ FfxFloat16 cL = bczzL.y;
+ FfxFloat16 iL = ijfeL.x;
+ FfxFloat16 jL = ijfeL.y;
+ FfxFloat16 fL = ijfeL.z;
+ FfxFloat16 eL = ijfeL.w;
+ FfxFloat16 kL = klhgL.x;
+ FfxFloat16 lL = klhgL.y;
+ FfxFloat16 hL = klhgL.z;
+ FfxFloat16 gL = klhgL.w;
+ FfxFloat16 oL = zzonL.z;
+ FfxFloat16 nL = zzonL.w;
+
+ // This part is different, accumulating 2 taps in parallel.
+ FfxFloat16x2 dirPX = FFX_BROADCAST_FLOAT16X2(0.0);
+ FfxFloat16x2 dirPY = FFX_BROADCAST_FLOAT16X2(0.0);
+ FfxFloat16x2 lenP = FFX_BROADCAST_FLOAT16X2(0.0);
+ FsrEasuSetH(dirPX,
+ dirPY,
+ lenP,
+ ppp,
+ FfxUInt32(true),
+ FfxUInt32(false),
+ FfxFloat16x2(bL, cL),
+ FfxFloat16x2(eL, fL),
+ FfxFloat16x2(fL, gL),
+ FfxFloat16x2(gL, hL),
+ FfxFloat16x2(jL, kL));
+ FsrEasuSetH(dirPX,
+ dirPY,
+ lenP,
+ ppp,
+ FfxUInt32(false),
+ FfxUInt32(true),
+ FfxFloat16x2(fL, gL),
+ FfxFloat16x2(iL, jL),
+ FfxFloat16x2(jL, kL),
+ FfxFloat16x2(kL, lL),
+ FfxFloat16x2(nL, oL));
+ FfxFloat16x2 dir = FfxFloat16x2(dirPX.r + dirPX.g, dirPY.r + dirPY.g);
+ FfxFloat16 len = lenP.r + lenP.g;
+
+ FfxFloat16x2 dir2 = dir * dir;
+ FfxFloat16 dirR = dir2.x + dir2.y;
+ FfxBoolean zro = FfxBoolean(dirR < FFX_BROADCAST_FLOAT16(1.0 / 32768.0));
+ dirR = ffxApproximateReciprocalSquareRootHalf(dirR);
+ dirR = (zro > 0) ? FFX_BROADCAST_FLOAT16(1.0) : dirR;
+ dir.x = (zro > 0) ? FFX_BROADCAST_FLOAT16(1.0) : dir.x;
+ dir *= FFX_BROADCAST_FLOAT16X2(dirR);
+ len = len * FFX_BROADCAST_FLOAT16(0.5);
+ len *= len;
+ FfxFloat16 stretch = (dir.x * dir.x + dir.y * dir.y) * ffxApproximateReciprocalHalf(max(abs(dir.x), abs(dir.y)));
+ FfxFloat16x2 len2 =
+ FfxFloat16x2(FFX_BROADCAST_FLOAT16(1.0) + (stretch - FFX_BROADCAST_FLOAT16(1.0)) * len, FFX_BROADCAST_FLOAT16(1.0) + FFX_BROADCAST_FLOAT16(-0.5) * len);
+ FfxFloat16 lob = FFX_BROADCAST_FLOAT16(0.5) + FFX_BROADCAST_FLOAT16((1.0 / 4.0 - 0.04) - 0.5) * len;
+ FfxFloat16 clp = ffxApproximateReciprocalHalf(lob);
+
+ // FP16 is different, using packed trick to do min and max in same operation.
+ FfxFloat16x2 bothR =
+ max(max(FfxFloat16x2(-ijfeR.z, ijfeR.z), FfxFloat16x2(-klhgR.w, klhgR.w)), max(FfxFloat16x2(-ijfeR.y, ijfeR.y), FfxFloat16x2(-klhgR.x, klhgR.x)));
+ FfxFloat16x2 bothG =
+ max(max(FfxFloat16x2(-ijfeG.z, ijfeG.z), FfxFloat16x2(-klhgG.w, klhgG.w)), max(FfxFloat16x2(-ijfeG.y, ijfeG.y), FfxFloat16x2(-klhgG.x, klhgG.x)));
+ FfxFloat16x2 bothB =
+ max(max(FfxFloat16x2(-ijfeB.z, ijfeB.z), FfxFloat16x2(-klhgB.w, klhgB.w)), max(FfxFloat16x2(-ijfeB.y, ijfeB.y), FfxFloat16x2(-klhgB.x, klhgB.x)));
+
+ // This part is different for FP16, working pairs of taps at a time.
+ FfxFloat16x2 pR = FFX_BROADCAST_FLOAT16X2(0.0);
+ FfxFloat16x2 pG = FFX_BROADCAST_FLOAT16X2(0.0);
+ FfxFloat16x2 pB = FFX_BROADCAST_FLOAT16X2(0.0);
+ FfxFloat16x2 pW = FFX_BROADCAST_FLOAT16X2(0.0);
+ FsrEasuTapH(pR, pG, pB, pW, FfxFloat16x2(0.0, 1.0) - ppp.xx, FfxFloat16x2(-1.0, -1.0) - ppp.yy, dir, len2, lob, clp, bczzR.xy, bczzG.xy, bczzB.xy);
+ FsrEasuTapH(pR, pG, pB, pW, FfxFloat16x2(-1.0, 0.0) - ppp.xx, FfxFloat16x2(1.0, 1.0) - ppp.yy, dir, len2, lob, clp, ijfeR.xy, ijfeG.xy, ijfeB.xy);
+ FsrEasuTapH(pR, pG, pB, pW, FfxFloat16x2(0.0, -1.0) - ppp.xx, FfxFloat16x2(0.0, 0.0) - ppp.yy, dir, len2, lob, clp, ijfeR.zw, ijfeG.zw, ijfeB.zw);
+ FsrEasuTapH(pR, pG, pB, pW, FfxFloat16x2(1.0, 2.0) - ppp.xx, FfxFloat16x2(1.0, 1.0) - ppp.yy, dir, len2, lob, clp, klhgR.xy, klhgG.xy, klhgB.xy);
+ FsrEasuTapH(pR, pG, pB, pW, FfxFloat16x2(2.0, 1.0) - ppp.xx, FfxFloat16x2(0.0, 0.0) - ppp.yy, dir, len2, lob, clp, klhgR.zw, klhgG.zw, klhgB.zw);
+ FsrEasuTapH(pR, pG, pB, pW, FfxFloat16x2(1.0, 0.0) - ppp.xx, FfxFloat16x2(2.0, 2.0) - ppp.yy, dir, len2, lob, clp, zzonR.zw, zzonG.zw, zzonB.zw);
+ FfxFloat16x3 aC = FfxFloat16x3(pR.x + pR.y, pG.x + pG.y, pB.x + pB.y);
+ FfxFloat16 aW = pW.x + pW.y;
+
+ // Slightly different for FP16 version due to combined min and max.
+ pix = min(FfxFloat16x3(bothR.y, bothG.y, bothB.y), max(-FfxFloat16x3(bothR.x, bothG.x, bothB.x), aC * FFX_BROADCAST_FLOAT16X3(ffxReciprocalHalf(aW))));
+}
+#endif // #if defined(FFX_GPU) && defined(FFX_HALF) && defined(FFX_FSR_EASU_HALF)
+
+////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
+////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
+////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
+////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
+//_____________________________________________________________/\_______________________________________________________________
+//==============================================================================================================================
+//
+// FSR - [RCAS] ROBUST CONTRAST ADAPTIVE SHARPENING
+//
+//------------------------------------------------------------------------------------------------------------------------------
+// CAS uses a simplified mechanism to convert local contrast into a variable amount of sharpness.
+// RCAS uses a more exact mechanism, solving for the maximum local sharpness possible before clipping.
+// RCAS also has a built in process to limit sharpening of what it detects as possible noise.
+// RCAS sharper does not support scaling, as it should be applied after EASU scaling.
+// Pass EASU output straight into RCAS, no color conversions necessary.
+//------------------------------------------------------------------------------------------------------------------------------
+// RCAS is based on the following logic.
+// RCAS uses a 5 tap filter in a cross pattern (same as CAS),
+// w n
+// w 1 w for taps w m e
+// w s
+// Where 'w' is the negative lobe weight.
+// output = (w*(n+e+w+s)+m)/(4*w+1)
+// RCAS solves for 'w' by seeing where the signal might clip out of the {0 to 1} input range,
+// 0 == (w*(n+e+w+s)+m)/(4*w+1) -> w = -m/(n+e+w+s)
+// 1 == (w*(n+e+w+s)+m)/(4*w+1) -> w = (1-m)/(n+e+w+s-4*1)
+// Then chooses the 'w' which results in no clipping, limits 'w', and multiplies by the 'sharp' amount.
+// This solution above has issues with MSAA input as the steps along the gradient cause edge detection issues.
+// So RCAS uses 4x the maximum and 4x the minimum (depending on equation)in place of the individual taps.
+// As well as switching from 'm' to either the minimum or maximum (depending on side), to help in energy conservation.
+// This stabilizes RCAS.
+// RCAS does a simple highpass which is normalized against the local contrast then shaped,
+// 0.25
+// 0.25 -1 0.25
+// 0.25
+// This is used as a noise detection filter, to reduce the effect of RCAS on grain, and focus on real edges.
+//
+// GLSL example for the required callbacks :
+//
+// FfxFloat16x4 FsrRcasLoadH(FfxInt16x2 p){return FfxFloat16x4(imageLoad(imgSrc,FfxInt32x2(p)));}
+// void FsrRcasInputH(inout FfxFloat16 r,inout FfxFloat16 g,inout FfxFloat16 b)
+// {
+// //do any simple input color conversions here or leave empty if none needed
+// }
+//
+// FsrRcasCon need to be called from the CPU or GPU to set up constants.
+// Including a GPU example here, the 'con' value would be stored out to a constant buffer.
+//
+// FfxUInt32x4 con;
+// FsrRcasCon(con,
+// 0.0); // The scale is {0.0 := maximum sharpness, to N>0, where N is the number of stops (halving) of the reduction of sharpness}.
+// ---------------
+// RCAS sharpening supports a CAS-like pass-through alpha via,
+// #define FSR_RCAS_PASSTHROUGH_ALPHA 1
+// RCAS also supports a define to enable a more expensive path to avoid some sharpening of noise.
+// Would suggest it is better to apply film grain after RCAS sharpening (and after scaling) instead of using this define,
+// #define FSR_RCAS_DENOISE 1
+//==============================================================================================================================
+// This is set at the limit of providing unnatural results for sharpening.
+#define FSR_RCAS_LIMIT (0.25-(1.0/16.0))
+////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
+////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
+//_____________________________________________________________/\_______________________________________________________________
+//==============================================================================================================================
+// CONSTANT SETUP
+//==============================================================================================================================
+// Call to setup required constant values (works on CPU or GPU).
+ FFX_STATIC void FsrRcasCon(FfxUInt32x4 con,
+ // The scale is {0.0 := maximum, to N>0, where N is the number of stops (halving) of the reduction of sharpness}.
+ FfxFloat32 sharpness)
+ {
+ // Transform from stops to linear value.
+ sharpness = exp2(-sharpness);
+ FfxFloat32x2 hSharp = {sharpness, sharpness};
+ con[0] = ffxAsUInt32(sharpness);
+ con[1] = packHalf2x16(hSharp);
+ con[2] = 0;
+ con[3] = 0;
+ }
+ ////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
+////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
+//_____________________________________________________________/\_______________________________________________________________
+//==============================================================================================================================
+// NON-PACKED 32-BIT VERSION
+//==============================================================================================================================
+#if defined(FFX_GPU)&&defined(FSR_RCAS_F)
+ // Input callback prototypes that need to be implemented by calling shader
+ FfxFloat32x4 FsrRcasLoadF(FfxInt32x2 p);
+ void FsrRcasInputF(inout FfxFloat32 r,inout FfxFloat32 g,inout FfxFloat32 b);
+//------------------------------------------------------------------------------------------------------------------------------
+ void FsrRcasF(out FfxFloat32 pixR, // Output values, non-vector so port between RcasFilter() and RcasFilterH() is easy.
+ out FfxFloat32 pixG,
+ out FfxFloat32 pixB,
+#ifdef FSR_RCAS_PASSTHROUGH_ALPHA
+ out FfxFloat32 pixA,
+#endif
+ FfxUInt32x2 ip, // Integer pixel position in output.
+ FfxUInt32x4 con)
+ { // Constant generated by RcasSetup().
+ // Algorithm uses minimal 3x3 pixel neighborhood.
+ // b
+ // d e f
+ // h
+ FfxInt32x2 sp = FfxInt32x2(ip);
+ FfxFloat32x3 b = FsrRcasLoadF(sp + FfxInt32x2(0, -1)).rgb;
+ FfxFloat32x3 d = FsrRcasLoadF(sp + FfxInt32x2(-1, 0)).rgb;
+#ifdef FSR_RCAS_PASSTHROUGH_ALPHA
+ FfxFloat32x4 ee = FsrRcasLoadF(sp);
+ FfxFloat32x3 e = ee.rgb;
+ pixA = ee.a;
+#else
+ FfxFloat32x3 e = FsrRcasLoadF(sp).rgb;
+#endif
+ FfxFloat32x3 f = FsrRcasLoadF(sp + FfxInt32x2(1, 0)).rgb;
+ FfxFloat32x3 h = FsrRcasLoadF(sp + FfxInt32x2(0, 1)).rgb;
+ // Rename (32-bit) or regroup (16-bit).
+ FfxFloat32 bR = b.r;
+ FfxFloat32 bG = b.g;
+ FfxFloat32 bB = b.b;
+ FfxFloat32 dR = d.r;
+ FfxFloat32 dG = d.g;
+ FfxFloat32 dB = d.b;
+ FfxFloat32 eR = e.r;
+ FfxFloat32 eG = e.g;
+ FfxFloat32 eB = e.b;
+ FfxFloat32 fR = f.r;
+ FfxFloat32 fG = f.g;
+ FfxFloat32 fB = f.b;
+ FfxFloat32 hR = h.r;
+ FfxFloat32 hG = h.g;
+ FfxFloat32 hB = h.b;
+ // Run optional input transform.
+ FsrRcasInputF(bR, bG, bB);
+ FsrRcasInputF(dR, dG, dB);
+ FsrRcasInputF(eR, eG, eB);
+ FsrRcasInputF(fR, fG, fB);
+ FsrRcasInputF(hR, hG, hB);
+ // Luma times 2.
+ FfxFloat32 bL = bB * FfxFloat32(0.5) + (bR * FfxFloat32(0.5) + bG);
+ FfxFloat32 dL = dB * FfxFloat32(0.5) + (dR * FfxFloat32(0.5) + dG);
+ FfxFloat32 eL = eB * FfxFloat32(0.5) + (eR * FfxFloat32(0.5) + eG);
+ FfxFloat32 fL = fB * FfxFloat32(0.5) + (fR * FfxFloat32(0.5) + fG);
+ FfxFloat32 hL = hB * FfxFloat32(0.5) + (hR * FfxFloat32(0.5) + hG);
+ // Noise detection.
+ FfxFloat32 nz = FfxFloat32(0.25) * bL + FfxFloat32(0.25) * dL + FfxFloat32(0.25) * fL + FfxFloat32(0.25) * hL - eL;
+ nz = ffxSaturate(abs(nz) * ffxApproximateReciprocalMedium(ffxMax3(ffxMax3(bL, dL, eL), fL, hL) - ffxMin3(ffxMin3(bL, dL, eL), fL, hL)));
+ nz = FfxFloat32(-0.5) * nz + FfxFloat32(1.0);
+ // Min and max of ring.
+ FfxFloat32 mn4R = ffxMin(ffxMin3(bR, dR, fR), hR);
+ FfxFloat32 mn4G = ffxMin(ffxMin3(bG, dG, fG), hG);
+ FfxFloat32 mn4B = ffxMin(ffxMin3(bB, dB, fB), hB);
+ FfxFloat32 mx4R = max(ffxMax3(bR, dR, fR), hR);
+ FfxFloat32 mx4G = max(ffxMax3(bG, dG, fG), hG);
+ FfxFloat32 mx4B = max(ffxMax3(bB, dB, fB), hB);
+ // Immediate constants for peak range.
+ FfxFloat32x2 peakC = FfxFloat32x2(1.0, -1.0 * 4.0);
+ // Limiters, these need to be high precision RCPs.
+ FfxFloat32 hitMinR = mn4R * rcp(FfxFloat32(4.0) * mx4R);
+ FfxFloat32 hitMinG = mn4G * rcp(FfxFloat32(4.0) * mx4G);
+ FfxFloat32 hitMinB = mn4B * rcp(FfxFloat32(4.0) * mx4B);
+ FfxFloat32 hitMaxR = (peakC.x - mx4R) * rcp(FfxFloat32(4.0) * mn4R + peakC.y);
+ FfxFloat32 hitMaxG = (peakC.x - mx4G) * rcp(FfxFloat32(4.0) * mn4G + peakC.y);
+ FfxFloat32 hitMaxB = (peakC.x - mx4B) * rcp(FfxFloat32(4.0) * mn4B + peakC.y);
+ FfxFloat32 lobeR = max(-hitMinR, hitMaxR);
+ FfxFloat32 lobeG = max(-hitMinG, hitMaxG);
+ FfxFloat32 lobeB = max(-hitMinB, hitMaxB);
+ FfxFloat32 lobe = max(FfxFloat32(-FSR_RCAS_LIMIT), ffxMin(ffxMax3(lobeR, lobeG, lobeB), FfxFloat32(0.0))) * ffxAsFloat
+ (con.x);
+ // Apply noise removal.
+#ifdef FSR_RCAS_DENOISE
+ lobe *= nz;
+#endif
+ // Resolve, which needs the medium precision rcp approximation to avoid visible tonality changes.
+ FfxFloat32 rcpL = ffxApproximateReciprocalMedium(FfxFloat32(4.0) * lobe + FfxFloat32(1.0));
+ pixR = (lobe * bR + lobe * dR + lobe * hR + lobe * fR + eR) * rcpL;
+ pixG = (lobe * bG + lobe * dG + lobe * hG + lobe * fG + eG) * rcpL;
+ pixB = (lobe * bB + lobe * dB + lobe * hB + lobe * fB + eB) * rcpL;
+ return;
+ }
+#endif
+////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
+////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
+//_____________________________________________________________/\_______________________________________________________________
+//==============================================================================================================================
+// NON-PACKED 16-BIT VERSION
+//==============================================================================================================================
+#if defined(FFX_GPU) && FFX_HALF == 1 && defined(FSR_RCAS_H)
+ // Input callback prototypes that need to be implemented by calling shader
+ FfxFloat16x4 FsrRcasLoadH(FfxInt16x2 p);
+ void FsrRcasInputH(inout FfxFloat16 r,inout FfxFloat16 g,inout FfxFloat16 b);
+//------------------------------------------------------------------------------------------------------------------------------
+ void FsrRcasH(
+ out FfxFloat16 pixR, // Output values, non-vector so port between RcasFilter() and RcasFilterH() is easy.
+ out FfxFloat16 pixG,
+ out FfxFloat16 pixB,
+ #ifdef FSR_RCAS_PASSTHROUGH_ALPHA
+ out FfxFloat16 pixA,
+ #endif
+ FfxUInt32x2 ip, // Integer pixel position in output.
+ FfxUInt32x4 con){ // Constant generated by RcasSetup().
+ // Sharpening algorithm uses minimal 3x3 pixel neighborhood.
+ // b
+ // d e f
+ // h
+ FfxInt16x2 sp=FfxInt16x2(ip);
+ FfxFloat16x3 b=FsrRcasLoadH(sp+FfxInt16x2( 0,-1)).rgb;
+ FfxFloat16x3 d=FsrRcasLoadH(sp+FfxInt16x2(-1, 0)).rgb;
+ #ifdef FSR_RCAS_PASSTHROUGH_ALPHA
+ FfxFloat16x4 ee=FsrRcasLoadH(sp);
+ FfxFloat16x3 e=ee.rgb;pixA=ee.a;
+ #else
+ FfxFloat16x3 e=FsrRcasLoadH(sp).rgb;
+ #endif
+ FfxFloat16x3 f=FsrRcasLoadH(sp+FfxInt16x2( 1, 0)).rgb;
+ FfxFloat16x3 h=FsrRcasLoadH(sp+FfxInt16x2( 0, 1)).rgb;
+ // Rename (32-bit) or regroup (16-bit).
+ FfxFloat16 bR=b.r;
+ FfxFloat16 bG=b.g;
+ FfxFloat16 bB=b.b;
+ FfxFloat16 dR=d.r;
+ FfxFloat16 dG=d.g;
+ FfxFloat16 dB=d.b;
+ FfxFloat16 eR=e.r;
+ FfxFloat16 eG=e.g;
+ FfxFloat16 eB=e.b;
+ FfxFloat16 fR=f.r;
+ FfxFloat16 fG=f.g;
+ FfxFloat16 fB=f.b;
+ FfxFloat16 hR=h.r;
+ FfxFloat16 hG=h.g;
+ FfxFloat16 hB=h.b;
+ // Run optional input transform.
+ FsrRcasInputH(bR,bG,bB);
+ FsrRcasInputH(dR,dG,dB);
+ FsrRcasInputH(eR,eG,eB);
+ FsrRcasInputH(fR,fG,fB);
+ FsrRcasInputH(hR,hG,hB);
+ // Luma times 2.
+ FfxFloat16 bL=bB*FFX_BROADCAST_FLOAT16(0.5)+(bR*FFX_BROADCAST_FLOAT16(0.5)+bG);
+ FfxFloat16 dL=dB*FFX_BROADCAST_FLOAT16(0.5)+(dR*FFX_BROADCAST_FLOAT16(0.5)+dG);
+ FfxFloat16 eL=eB*FFX_BROADCAST_FLOAT16(0.5)+(eR*FFX_BROADCAST_FLOAT16(0.5)+eG);
+ FfxFloat16 fL=fB*FFX_BROADCAST_FLOAT16(0.5)+(fR*FFX_BROADCAST_FLOAT16(0.5)+fG);
+ FfxFloat16 hL=hB*FFX_BROADCAST_FLOAT16(0.5)+(hR*FFX_BROADCAST_FLOAT16(0.5)+hG);
+ // Noise detection.
+ FfxFloat16 nz=FFX_BROADCAST_FLOAT16(0.25)*bL+FFX_BROADCAST_FLOAT16(0.25)*dL+FFX_BROADCAST_FLOAT16(0.25)*fL+FFX_BROADCAST_FLOAT16(0.25)*hL-eL;
+ nz=ffxSaturate(abs(nz)*ffxApproximateReciprocalMediumHalf(ffxMax3Half(ffxMax3Half(bL,dL,eL),fL,hL)-ffxMin3Half(ffxMin3Half(bL,dL,eL),fL,hL)));
+ nz=FFX_BROADCAST_FLOAT16(-0.5)*nz+FFX_BROADCAST_FLOAT16(1.0);
+ // Min and max of ring.
+ FfxFloat16 mn4R=min(ffxMin3Half(bR,dR,fR),hR);
+ FfxFloat16 mn4G=min(ffxMin3Half(bG,dG,fG),hG);
+ FfxFloat16 mn4B=min(ffxMin3Half(bB,dB,fB),hB);
+ FfxFloat16 mx4R=max(ffxMax3Half(bR,dR,fR),hR);
+ FfxFloat16 mx4G=max(ffxMax3Half(bG,dG,fG),hG);
+ FfxFloat16 mx4B=max(ffxMax3Half(bB,dB,fB),hB);
+ // Immediate constants for peak range.
+ FfxFloat16x2 peakC=FfxFloat16x2(1.0,-1.0*4.0);
+ // Limiters, these need to be high precision RCPs.
+ FfxFloat16 hitMinR=mn4R*ffxReciprocalHalf(FFX_BROADCAST_FLOAT16(4.0)*mx4R);
+ FfxFloat16 hitMinG=mn4G*ffxReciprocalHalf(FFX_BROADCAST_FLOAT16(4.0)*mx4G);
+ FfxFloat16 hitMinB=mn4B*ffxReciprocalHalf(FFX_BROADCAST_FLOAT16(4.0)*mx4B);
+ FfxFloat16 hitMaxR=(peakC.x-mx4R)*ffxReciprocalHalf(FFX_BROADCAST_FLOAT16(4.0)*mn4R+peakC.y);
+ FfxFloat16 hitMaxG=(peakC.x-mx4G)*ffxReciprocalHalf(FFX_BROADCAST_FLOAT16(4.0)*mn4G+peakC.y);
+ FfxFloat16 hitMaxB=(peakC.x-mx4B)*ffxReciprocalHalf(FFX_BROADCAST_FLOAT16(4.0)*mn4B+peakC.y);
+ FfxFloat16 lobeR=max(-hitMinR,hitMaxR);
+ FfxFloat16 lobeG=max(-hitMinG,hitMaxG);
+ FfxFloat16 lobeB=max(-hitMinB,hitMaxB);
+ FfxFloat16 lobe=max(FFX_BROADCAST_FLOAT16(-FSR_RCAS_LIMIT),min(ffxMax3Half(lobeR,lobeG,lobeB),FFX_BROADCAST_FLOAT16(0.0)))*FFX_UINT32_TO_FLOAT16X2(con.y).x;
+ // Apply noise removal.
+ #ifdef FSR_RCAS_DENOISE
+ lobe*=nz;
+ #endif
+ // Resolve, which needs the medium precision rcp approximation to avoid visible tonality changes.
+ FfxFloat16 rcpL=ffxApproximateReciprocalMediumHalf(FFX_BROADCAST_FLOAT16(4.0)*lobe+FFX_BROADCAST_FLOAT16(1.0));
+ pixR=(lobe*bR+lobe*dR+lobe*hR+lobe*fR+eR)*rcpL;
+ pixG=(lobe*bG+lobe*dG+lobe*hG+lobe*fG+eG)*rcpL;
+ pixB=(lobe*bB+lobe*dB+lobe*hB+lobe*fB+eB)*rcpL;
+}
+#endif
+////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
+////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
+//_____________________________________________________________/\_______________________________________________________________
+//==============================================================================================================================
+// PACKED 16-BIT VERSION
+//==============================================================================================================================
+#if defined(FFX_GPU)&& FFX_HALF == 1 && defined(FSR_RCAS_HX2)
+ // Input callback prototypes that need to be implemented by the calling shader
+ FfxFloat16x4 FsrRcasLoadHx2(FfxInt16x2 p);
+ void FsrRcasInputHx2(inout FfxFloat16x2 r,inout FfxFloat16x2 g,inout FfxFloat16x2 b);
+//------------------------------------------------------------------------------------------------------------------------------
+ // Can be used to convert from packed Structures of Arrays to Arrays of Structures for store.
+ void FsrRcasDepackHx2(out FfxFloat16x4 pix0,out FfxFloat16x4 pix1,FfxFloat16x2 pixR,FfxFloat16x2 pixG,FfxFloat16x2 pixB){
+ #ifdef FFX_HLSL
+ // Invoke a slower path for DX only, since it won't allow uninitialized values.
+ pix0.a=pix1.a=0.0;
+ #endif
+ pix0.rgb=FfxFloat16x3(pixR.x,pixG.x,pixB.x);
+ pix1.rgb=FfxFloat16x3(pixR.y,pixG.y,pixB.y);}
+//------------------------------------------------------------------------------------------------------------------------------
+ void FsrRcasHx2(
+ // Output values are for 2 8x8 tiles in a 16x8 region.
+ // pix<R,G,B>.x = left 8x8 tile
+ // pix<R,G,B>.y = right 8x8 tile
+ // This enables later processing to easily be packed as well.
+ out FfxFloat16x2 pixR,
+ out FfxFloat16x2 pixG,
+ out FfxFloat16x2 pixB,
+ #ifdef FSR_RCAS_PASSTHROUGH_ALPHA
+ out FfxFloat16x2 pixA,
+ #endif
+ FfxUInt32x2 ip, // Integer pixel position in output.
+ FfxUInt32x4 con){ // Constant generated by RcasSetup().
+ // No scaling algorithm uses minimal 3x3 pixel neighborhood.
+ FfxInt16x2 sp0=FfxInt16x2(ip);
+ FfxFloat16x3 b0=FsrRcasLoadHx2(sp0+FfxInt16x2( 0,-1)).rgb;
+ FfxFloat16x3 d0=FsrRcasLoadHx2(sp0+FfxInt16x2(-1, 0)).rgb;
+ #ifdef FSR_RCAS_PASSTHROUGH_ALPHA
+ FfxFloat16x4 ee0=FsrRcasLoadHx2(sp0);
+ FfxFloat16x3 e0=ee0.rgb;pixA.r=ee0.a;
+ #else
+ FfxFloat16x3 e0=FsrRcasLoadHx2(sp0).rgb;
+ #endif
+ FfxFloat16x3 f0=FsrRcasLoadHx2(sp0+FfxInt16x2( 1, 0)).rgb;
+ FfxFloat16x3 h0=FsrRcasLoadHx2(sp0+FfxInt16x2( 0, 1)).rgb;
+ FfxInt16x2 sp1=sp0+FfxInt16x2(8,0);
+ FfxFloat16x3 b1=FsrRcasLoadHx2(sp1+FfxInt16x2( 0,-1)).rgb;
+ FfxFloat16x3 d1=FsrRcasLoadHx2(sp1+FfxInt16x2(-1, 0)).rgb;
+ #ifdef FSR_RCAS_PASSTHROUGH_ALPHA
+ FfxFloat16x4 ee1=FsrRcasLoadHx2(sp1);
+ FfxFloat16x3 e1=ee1.rgb;pixA.g=ee1.a;
+ #else
+ FfxFloat16x3 e1=FsrRcasLoadHx2(sp1).rgb;
+ #endif
+ FfxFloat16x3 f1=FsrRcasLoadHx2(sp1+FfxInt16x2( 1, 0)).rgb;
+ FfxFloat16x3 h1=FsrRcasLoadHx2(sp1+FfxInt16x2( 0, 1)).rgb;
+ // Arrays of Structures to Structures of Arrays conversion.
+ FfxFloat16x2 bR=FfxFloat16x2(b0.r,b1.r);
+ FfxFloat16x2 bG=FfxFloat16x2(b0.g,b1.g);
+ FfxFloat16x2 bB=FfxFloat16x2(b0.b,b1.b);
+ FfxFloat16x2 dR=FfxFloat16x2(d0.r,d1.r);
+ FfxFloat16x2 dG=FfxFloat16x2(d0.g,d1.g);
+ FfxFloat16x2 dB=FfxFloat16x2(d0.b,d1.b);
+ FfxFloat16x2 eR=FfxFloat16x2(e0.r,e1.r);
+ FfxFloat16x2 eG=FfxFloat16x2(e0.g,e1.g);
+ FfxFloat16x2 eB=FfxFloat16x2(e0.b,e1.b);
+ FfxFloat16x2 fR=FfxFloat16x2(f0.r,f1.r);
+ FfxFloat16x2 fG=FfxFloat16x2(f0.g,f1.g);
+ FfxFloat16x2 fB=FfxFloat16x2(f0.b,f1.b);
+ FfxFloat16x2 hR=FfxFloat16x2(h0.r,h1.r);
+ FfxFloat16x2 hG=FfxFloat16x2(h0.g,h1.g);
+ FfxFloat16x2 hB=FfxFloat16x2(h0.b,h1.b);
+ // Run optional input transform.
+ FsrRcasInputHx2(bR,bG,bB);
+ FsrRcasInputHx2(dR,dG,dB);
+ FsrRcasInputHx2(eR,eG,eB);
+ FsrRcasInputHx2(fR,fG,fB);
+ FsrRcasInputHx2(hR,hG,hB);
+ // Luma times 2.
+ FfxFloat16x2 bL=bB*FFX_BROADCAST_FLOAT16X2(0.5)+(bR*FFX_BROADCAST_FLOAT16X2(0.5)+bG);
+ FfxFloat16x2 dL=dB*FFX_BROADCAST_FLOAT16X2(0.5)+(dR*FFX_BROADCAST_FLOAT16X2(0.5)+dG);
+ FfxFloat16x2 eL=eB*FFX_BROADCAST_FLOAT16X2(0.5)+(eR*FFX_BROADCAST_FLOAT16X2(0.5)+eG);
+ FfxFloat16x2 fL=fB*FFX_BROADCAST_FLOAT16X2(0.5)+(fR*FFX_BROADCAST_FLOAT16X2(0.5)+fG);
+ FfxFloat16x2 hL=hB*FFX_BROADCAST_FLOAT16X2(0.5)+(hR*FFX_BROADCAST_FLOAT16X2(0.5)+hG);
+ // Noise detection.
+ FfxFloat16x2 nz=FFX_BROADCAST_FLOAT16X2(0.25)*bL+FFX_BROADCAST_FLOAT16X2(0.25)*dL+FFX_BROADCAST_FLOAT16X2(0.25)*fL+FFX_BROADCAST_FLOAT16X2(0.25)*hL-eL;
+ nz=ffxSaturate(abs(nz)*ffxApproximateReciprocalMediumHalf(ffxMax3Half(ffxMax3Half(bL,dL,eL),fL,hL)-ffxMin3Half(ffxMin3Half(bL,dL,eL),fL,hL)));
+ nz=FFX_BROADCAST_FLOAT16X2(-0.5)*nz+FFX_BROADCAST_FLOAT16X2(1.0);
+ // Min and max of ring.
+ FfxFloat16x2 mn4R=min(ffxMin3Half(bR,dR,fR),hR);
+ FfxFloat16x2 mn4G=min(ffxMin3Half(bG,dG,fG),hG);
+ FfxFloat16x2 mn4B=min(ffxMin3Half(bB,dB,fB),hB);
+ FfxFloat16x2 mx4R=max(ffxMax3Half(bR,dR,fR),hR);
+ FfxFloat16x2 mx4G=max(ffxMax3Half(bG,dG,fG),hG);
+ FfxFloat16x2 mx4B=max(ffxMax3Half(bB,dB,fB),hB);
+ // Immediate constants for peak range.
+ FfxFloat16x2 peakC=FfxFloat16x2(1.0,-1.0*4.0);
+ // Limiters, these need to be high precision RCPs.
+ FfxFloat16x2 hitMinR=mn4R*ffxReciprocalHalf(FFX_BROADCAST_FLOAT16X2(4.0)*mx4R);
+ FfxFloat16x2 hitMinG=mn4G*ffxReciprocalHalf(FFX_BROADCAST_FLOAT16X2(4.0)*mx4G);
+ FfxFloat16x2 hitMinB=mn4B*ffxReciprocalHalf(FFX_BROADCAST_FLOAT16X2(4.0)*mx4B);
+ FfxFloat16x2 hitMaxR=(peakC.x-mx4R)*ffxReciprocalHalf(FFX_BROADCAST_FLOAT16X2(4.0)*mn4R+peakC.y);
+ FfxFloat16x2 hitMaxG=(peakC.x-mx4G)*ffxReciprocalHalf(FFX_BROADCAST_FLOAT16X2(4.0)*mn4G+peakC.y);
+ FfxFloat16x2 hitMaxB=(peakC.x-mx4B)*ffxReciprocalHalf(FFX_BROADCAST_FLOAT16X2(4.0)*mn4B+peakC.y);
+ FfxFloat16x2 lobeR=max(-hitMinR,hitMaxR);
+ FfxFloat16x2 lobeG=max(-hitMinG,hitMaxG);
+ FfxFloat16x2 lobeB=max(-hitMinB,hitMaxB);
+ FfxFloat16x2 lobe=max(FFX_BROADCAST_FLOAT16X2(-FSR_RCAS_LIMIT),min(ffxMax3Half(lobeR,lobeG,lobeB),FFX_BROADCAST_FLOAT16X2(0.0)))*FFX_BROADCAST_FLOAT16X2(FFX_UINT32_TO_FLOAT16X2(con.y).x);
+ // Apply noise removal.
+ #ifdef FSR_RCAS_DENOISE
+ lobe*=nz;
+ #endif
+ // Resolve, which needs the medium precision rcp approximation to avoid visible tonality changes.
+ FfxFloat16x2 rcpL=ffxApproximateReciprocalMediumHalf(FFX_BROADCAST_FLOAT16X2(4.0)*lobe+FFX_BROADCAST_FLOAT16X2(1.0));
+ pixR=(lobe*bR+lobe*dR+lobe*hR+lobe*fR+eR)*rcpL;
+ pixG=(lobe*bG+lobe*dG+lobe*hG+lobe*fG+eG)*rcpL;
+ pixB=(lobe*bB+lobe*dB+lobe*hB+lobe*fB+eB)*rcpL;}
+#endif
+////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
+////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
+////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
+////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
+//_____________________________________________________________/\_______________________________________________________________
+//==============================================================================================================================
+//
+// FSR - [LFGA] LINEAR FILM GRAIN APPLICATOR
+//
+//------------------------------------------------------------------------------------------------------------------------------
+// Adding output-resolution film grain after scaling is a good way to mask both rendering and scaling artifacts.
+// Suggest using tiled blue noise as film grain input, with peak noise frequency set for a specific look and feel.
+// The 'Lfga*()' functions provide a convenient way to introduce grain.
+// These functions limit grain based on distance to signal limits.
+// This is done so that the grain is temporally energy preserving, and thus won't modify image tonality.
+// Grain application should be done in a linear colorspace.
+// The grain should be temporally changing, but have a temporal sum per pixel that adds to zero (non-biased).
+//------------------------------------------------------------------------------------------------------------------------------
+// Usage,
+// FsrLfga*(
+// color, // In/out linear colorspace color {0 to 1} ranged.
+// grain, // Per pixel grain texture value {-0.5 to 0.5} ranged, input is 3-channel to support colored grain.
+// amount); // Amount of grain (0 to 1} ranged.
+//------------------------------------------------------------------------------------------------------------------------------
+// Example if grain texture is monochrome: 'FsrLfgaF(color,ffxBroadcast3(grain),amount)'
+//==============================================================================================================================
+#if defined(FFX_GPU)
+ // Maximum grain is the minimum distance to the signal limit.
+ void FsrLfgaF(inout FfxFloat32x3 c, FfxFloat32x3 t, FfxFloat32 a)
+ {
+ c += (t * ffxBroadcast3(a)) * ffxMin(ffxBroadcast3(1.0) - c, c);
+ }
+#endif
+//==============================================================================================================================
+#if defined(FFX_GPU)&& FFX_HALF == 1
+ // Half precision version (slower).
+ void FsrLfgaH(inout FfxFloat16x3 c, FfxFloat16x3 t, FfxFloat16 a)
+ {
+ c += (t * FFX_BROADCAST_FLOAT16X3(a)) * min(FFX_BROADCAST_FLOAT16X3(1.0) - c, c);
+ }
+ //------------------------------------------------------------------------------------------------------------------------------
+ // Packed half precision version (faster).
+ void FsrLfgaHx2(inout FfxFloat16x2 cR,inout FfxFloat16x2 cG,inout FfxFloat16x2 cB,FfxFloat16x2 tR,FfxFloat16x2 tG,FfxFloat16x2 tB,FfxFloat16 a){
+ cR+=(tR*FFX_BROADCAST_FLOAT16X2(a))*min(FFX_BROADCAST_FLOAT16X2(1.0)-cR,cR);cG+=(tG*FFX_BROADCAST_FLOAT16X2(a))*min(FFX_BROADCAST_FLOAT16X2(1.0)-cG,cG);cB+=(tB*FFX_BROADCAST_FLOAT16X2(a))*min(FFX_BROADCAST_FLOAT16X2(1.0)-cB,cB);}
+#endif
+////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
+////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
+////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
+////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
+//_____________________________________________________________/\_______________________________________________________________
+//==============================================================================================================================
+//
+// FSR - [SRTM] SIMPLE REVERSIBLE TONE-MAPPER
+//
+//------------------------------------------------------------------------------------------------------------------------------
+// This provides a way to take linear HDR color {0 to FP16_MAX} and convert it into a temporary {0 to 1} ranged post-tonemapped linear.
+// The tonemapper preserves RGB ratio, which helps maintain HDR color bleed during filtering.
+//------------------------------------------------------------------------------------------------------------------------------
+// Reversible tonemapper usage,
+// FsrSrtm*(color); // {0 to FP16_MAX} converted to {0 to 1}.
+// FsrSrtmInv*(color); // {0 to 1} converted into {0 to 32768, output peak safe for FP16}.
+//==============================================================================================================================
+#if defined(FFX_GPU)
+ void FsrSrtmF(inout FfxFloat32x3 c)
+ {
+ c *= ffxBroadcast3(rcp(ffxMax3(c.r, c.g, c.b) + FfxFloat32(1.0)));
+ }
+ // The extra max solves the c=1.0 case (which is a /0).
+ void FsrSrtmInvF(inout FfxFloat32x3 c){c*=ffxBroadcast3(rcp(max(FfxFloat32(1.0/32768.0),FfxFloat32(1.0)-ffxMax3(c.r,c.g,c.b))));}
+#endif
+//==============================================================================================================================
+#if defined(FFX_GPU )&& FFX_HALF == 1
+ void FsrSrtmH(inout FfxFloat16x3 c)
+ {
+ c *= FFX_BROADCAST_FLOAT16X3(ffxReciprocalHalf(ffxMax3Half(c.r, c.g, c.b) + FFX_BROADCAST_FLOAT16(1.0)));
+ }
+ void FsrSrtmInvH(inout FfxFloat16x3 c)
+ {
+ c *= FFX_BROADCAST_FLOAT16X3(ffxReciprocalHalf(max(FFX_BROADCAST_FLOAT16(1.0 / 32768.0), FFX_BROADCAST_FLOAT16(1.0) - ffxMax3Half(c.r, c.g, c.b))));
+ }
+ //------------------------------------------------------------------------------------------------------------------------------
+ void FsrSrtmHx2(inout FfxFloat16x2 cR, inout FfxFloat16x2 cG, inout FfxFloat16x2 cB)
+ {
+ FfxFloat16x2 rcp = ffxReciprocalHalf(ffxMax3Half(cR, cG, cB) + FFX_BROADCAST_FLOAT16X2(1.0));
+ cR *= rcp;
+ cG *= rcp;
+ cB *= rcp;
+ }
+ void FsrSrtmInvHx2(inout FfxFloat16x2 cR,inout FfxFloat16x2 cG,inout FfxFloat16x2 cB)
+ {
+ FfxFloat16x2 rcp=ffxReciprocalHalf(max(FFX_BROADCAST_FLOAT16X2(1.0/32768.0),FFX_BROADCAST_FLOAT16X2(1.0)-ffxMax3Half(cR,cG,cB)));
+ cR*=rcp;
+ cG*=rcp;
+ cB*=rcp;
+ }
+#endif
+////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
+////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
+////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
+////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
+//_____________________________________________________________/\_______________________________________________________________
+//==============================================================================================================================
+//
+// FSR - [TEPD] TEMPORAL ENERGY PRESERVING DITHER
+//
+//------------------------------------------------------------------------------------------------------------------------------
+// Temporally energy preserving dithered {0 to 1} linear to gamma 2.0 conversion.
+// Gamma 2.0 is used so that the conversion back to linear is just to square the color.
+// The conversion comes in 8-bit and 10-bit modes, designed for output to 8-bit UNORM or 10:10:10:2 respectively.
+// Given good non-biased temporal blue noise as dither input,
+// the output dither will temporally conserve energy.
+// This is done by choosing the linear nearest step point instead of perceptual nearest.
+// See code below for details.
+//------------------------------------------------------------------------------------------------------------------------------
+// DX SPEC RULES FOR FLOAT->UNORM 8-BIT CONVERSION
+// ===============================================
+// - Output is 'FfxUInt32(floor(saturate(n)*255.0+0.5))'.
+// - Thus rounding is to nearest.
+// - NaN gets converted to zero.
+// - INF is clamped to {0.0 to 1.0}.
+//==============================================================================================================================
+#if defined(FFX_GPU)
+ // Hand tuned integer position to dither value, with more values than simple checkerboard.
+ // Only 32-bit has enough precision for this compddation.
+ // Output is {0 to <1}.
+ FfxFloat32 FsrTepdDitF(FfxUInt32x2 p, FfxUInt32 f)
+ {
+ FfxFloat32 x = FfxFloat32(p.x + f);
+ FfxFloat32 y = FfxFloat32(p.y);
+ // The 1.61803 golden ratio.
+ FfxFloat32 a = FfxFloat32((1.0 + ffxSqrt(5.0f)) / 2.0);
+ // Number designed to provide a good visual pattern.
+ FfxFloat32 b = FfxFloat32(1.0 / 3.69);
+ x = x * a + (y * b);
+ return ffxFract(x);
+ }
+ //------------------------------------------------------------------------------------------------------------------------------
+ // This version is 8-bit gamma 2.0.
+ // The 'c' input is {0 to 1}.
+ // Output is {0 to 1} ready for image store.
+ void FsrTepdC8F(inout FfxFloat32x3 c, FfxFloat32 dit)
+ {
+ FfxFloat32x3 n = ffxSqrt(c);
+ n = floor(n * ffxBroadcast3(255.0)) * ffxBroadcast3(1.0 / 255.0);
+ FfxFloat32x3 a = n * n;
+ FfxFloat32x3 b = n + ffxBroadcast3(1.0 / 255.0);
+ b = b * b;
+ // Ratio of 'a' to 'b' required to produce 'c'.
+ // ffxApproximateReciprocal() won't work here (at least for very high dynamic ranges).
+ // ffxApproximateReciprocalMedium() is an IADD,FMA,MUL.
+ FfxFloat32x3 r = (c - b) * ffxApproximateReciprocalMedium(a - b);
+ // Use the ratio as a cutoff to choose 'a' or 'b'.
+ // ffxIsGreaterThanZero() is a MUL.
+ c = ffxSaturate(n + ffxIsGreaterThanZero(ffxBroadcast3(dit) - r) * ffxBroadcast3(1.0 / 255.0));
+ }
+ //------------------------------------------------------------------------------------------------------------------------------
+ // This version is 10-bit gamma 2.0.
+ // The 'c' input is {0 to 1}.
+ // Output is {0 to 1} ready for image store.
+ void FsrTepdC10F(inout FfxFloat32x3 c, FfxFloat32 dit)
+ {
+ FfxFloat32x3 n = ffxSqrt(c);
+ n = floor(n * ffxBroadcast3(1023.0)) * ffxBroadcast3(1.0 / 1023.0);
+ FfxFloat32x3 a = n * n;
+ FfxFloat32x3 b = n + ffxBroadcast3(1.0 / 1023.0);
+ b = b * b;
+ FfxFloat32x3 r = (c - b) * ffxApproximateReciprocalMedium(a - b);
+ c = ffxSaturate(n + ffxIsGreaterThanZero(ffxBroadcast3(dit) - r) * ffxBroadcast3(1.0 / 1023.0));
+ }
+#endif
+//==============================================================================================================================
+#if defined(FFX_GPU)&& FFX_HALF == 1
+ FfxFloat16 FsrTepdDitH(FfxUInt32x2 p, FfxUInt32 f)
+ {
+ FfxFloat32 x = FfxFloat32(p.x + f);
+ FfxFloat32 y = FfxFloat32(p.y);
+ FfxFloat32 a = FfxFloat32((1.0 + ffxSqrt(5.0f)) / 2.0);
+ FfxFloat32 b = FfxFloat32(1.0 / 3.69);
+ x = x * a + (y * b);
+ return FfxFloat16(ffxFract(x));
+ }
+ //------------------------------------------------------------------------------------------------------------------------------
+ void FsrTepdC8H(inout FfxFloat16x3 c, FfxFloat16 dit)
+ {
+ FfxFloat16x3 n = sqrt(c);
+ n = floor(n * FFX_BROADCAST_FLOAT16X3(255.0)) * FFX_BROADCAST_FLOAT16X3(1.0 / 255.0);
+ FfxFloat16x3 a = n * n;
+ FfxFloat16x3 b = n + FFX_BROADCAST_FLOAT16X3(1.0 / 255.0);
+ b = b * b;
+ FfxFloat16x3 r = (c - b) * ffxApproximateReciprocalMediumHalf(a - b);
+ c = ffxSaturate(n + ffxIsGreaterThanZeroHalf(FFX_BROADCAST_FLOAT16X3(dit) - r) * FFX_BROADCAST_FLOAT16X3(1.0 / 255.0));
+ }
+ //------------------------------------------------------------------------------------------------------------------------------
+ void FsrTepdC10H(inout FfxFloat16x3 c, FfxFloat16 dit)
+ {
+ FfxFloat16x3 n = sqrt(c);
+ n = floor(n * FFX_BROADCAST_FLOAT16X3(1023.0)) * FFX_BROADCAST_FLOAT16X3(1.0 / 1023.0);
+ FfxFloat16x3 a = n * n;
+ FfxFloat16x3 b = n + FFX_BROADCAST_FLOAT16X3(1.0 / 1023.0);
+ b = b * b;
+ FfxFloat16x3 r = (c - b) * ffxApproximateReciprocalMediumHalf(a - b);
+ c = ffxSaturate(n + ffxIsGreaterThanZeroHalf(FFX_BROADCAST_FLOAT16X3(dit) - r) * FFX_BROADCAST_FLOAT16X3(1.0 / 1023.0));
+ }
+ //==============================================================================================================================
+ // This computes dither for positions 'p' and 'p+{8,0}'.
+ FfxFloat16x2 FsrTepdDitHx2(FfxUInt32x2 p, FfxUInt32 f)
+ {
+ FfxFloat32x2 x;
+ x.x = FfxFloat32(p.x + f);
+ x.y = x.x + FfxFloat32(8.0);
+ FfxFloat32 y = FfxFloat32(p.y);
+ FfxFloat32 a = FfxFloat32((1.0 + ffxSqrt(5.0f)) / 2.0);
+ FfxFloat32 b = FfxFloat32(1.0 / 3.69);
+ x = x * ffxBroadcast2(a) + ffxBroadcast2(y * b);
+ return FfxFloat16x2(ffxFract(x));
+ }
+ //------------------------------------------------------------------------------------------------------------------------------
+ void FsrTepdC8Hx2(inout FfxFloat16x2 cR, inout FfxFloat16x2 cG, inout FfxFloat16x2 cB, FfxFloat16x2 dit)
+ {
+ FfxFloat16x2 nR = sqrt(cR);
+ FfxFloat16x2 nG = sqrt(cG);
+ FfxFloat16x2 nB = sqrt(cB);
+ nR = floor(nR * FFX_BROADCAST_FLOAT16X2(255.0)) * FFX_BROADCAST_FLOAT16X2(1.0 / 255.0);
+ nG = floor(nG * FFX_BROADCAST_FLOAT16X2(255.0)) * FFX_BROADCAST_FLOAT16X2(1.0 / 255.0);
+ nB = floor(nB * FFX_BROADCAST_FLOAT16X2(255.0)) * FFX_BROADCAST_FLOAT16X2(1.0 / 255.0);
+ FfxFloat16x2 aR = nR * nR;
+ FfxFloat16x2 aG = nG * nG;
+ FfxFloat16x2 aB = nB * nB;
+ FfxFloat16x2 bR = nR + FFX_BROADCAST_FLOAT16X2(1.0 / 255.0);
+ bR = bR * bR;
+ FfxFloat16x2 bG = nG + FFX_BROADCAST_FLOAT16X2(1.0 / 255.0);
+ bG = bG * bG;
+ FfxFloat16x2 bB = nB + FFX_BROADCAST_FLOAT16X2(1.0 / 255.0);
+ bB = bB * bB;
+ FfxFloat16x2 rR = (cR - bR) * ffxApproximateReciprocalMediumHalf(aR - bR);
+ FfxFloat16x2 rG = (cG - bG) * ffxApproximateReciprocalMediumHalf(aG - bG);
+ FfxFloat16x2 rB = (cB - bB) * ffxApproximateReciprocalMediumHalf(aB - bB);
+ cR = ffxSaturate(nR + ffxIsGreaterThanZeroHalf(dit - rR) * FFX_BROADCAST_FLOAT16X2(1.0 / 255.0));
+ cG = ffxSaturate(nG + ffxIsGreaterThanZeroHalf(dit - rG) * FFX_BROADCAST_FLOAT16X2(1.0 / 255.0));
+ cB = ffxSaturate(nB + ffxIsGreaterThanZeroHalf(dit - rB) * FFX_BROADCAST_FLOAT16X2(1.0 / 255.0));
+ }
+ //------------------------------------------------------------------------------------------------------------------------------
+ void FsrTepdC10Hx2(inout FfxFloat16x2 cR,inout FfxFloat16x2 cG,inout FfxFloat16x2 cB,FfxFloat16x2 dit){
+ FfxFloat16x2 nR=sqrt(cR);
+ FfxFloat16x2 nG=sqrt(cG);
+ FfxFloat16x2 nB=sqrt(cB);
+ nR=floor(nR*FFX_BROADCAST_FLOAT16X2(1023.0))*FFX_BROADCAST_FLOAT16X2(1.0/1023.0);
+ nG=floor(nG*FFX_BROADCAST_FLOAT16X2(1023.0))*FFX_BROADCAST_FLOAT16X2(1.0/1023.0);
+ nB=floor(nB*FFX_BROADCAST_FLOAT16X2(1023.0))*FFX_BROADCAST_FLOAT16X2(1.0/1023.0);
+ FfxFloat16x2 aR=nR*nR;
+ FfxFloat16x2 aG=nG*nG;
+ FfxFloat16x2 aB=nB*nB;
+ FfxFloat16x2 bR=nR+FFX_BROADCAST_FLOAT16X2(1.0/1023.0);bR=bR*bR;
+ FfxFloat16x2 bG=nG+FFX_BROADCAST_FLOAT16X2(1.0/1023.0);bG=bG*bG;
+ FfxFloat16x2 bB=nB+FFX_BROADCAST_FLOAT16X2(1.0/1023.0);bB=bB*bB;
+ FfxFloat16x2 rR=(cR-bR)*ffxApproximateReciprocalMediumHalf(aR-bR);
+ FfxFloat16x2 rG=(cG-bG)*ffxApproximateReciprocalMediumHalf(aG-bG);
+ FfxFloat16x2 rB=(cB-bB)*ffxApproximateReciprocalMediumHalf(aB-bB);
+ cR=ffxSaturate(nR+ffxIsGreaterThanZeroHalf(dit-rR)*FFX_BROADCAST_FLOAT16X2(1.0/1023.0));
+ cG=ffxSaturate(nG+ffxIsGreaterThanZeroHalf(dit-rG)*FFX_BROADCAST_FLOAT16X2(1.0/1023.0));
+ cB = ffxSaturate(nB + ffxIsGreaterThanZeroHalf(dit - rB) * FFX_BROADCAST_FLOAT16X2(1.0 / 1023.0));
+}
+#endif
diff --git a/thirdparty/amd-fsr2/shaders/ffx_fsr2_accumulate.h b/thirdparty/amd-fsr2/shaders/ffx_fsr2_accumulate.h
new file mode 100644
index 0000000000..7bd5892cb9
--- /dev/null
+++ b/thirdparty/amd-fsr2/shaders/ffx_fsr2_accumulate.h
@@ -0,0 +1,295 @@
+// This file is part of the FidelityFX SDK.
+//
+// Copyright (c) 2022-2023 Advanced Micro Devices, Inc. All rights reserved.
+//
+// Permission is hereby granted, free of charge, to any person obtaining a copy
+// of this software and associated documentation files (the "Software"), to deal
+// in the Software without restriction, including without limitation the rights
+// to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
+// copies of the Software, and to permit persons to whom the Software is
+// furnished to do so, subject to the following conditions:
+// The above copyright notice and this permission notice shall be included in
+// all copies or substantial portions of the Software.
+//
+// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
+// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
+// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
+// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
+// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
+// OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
+// THE SOFTWARE.
+
+#ifndef FFX_FSR2_ACCUMULATE_H
+#define FFX_FSR2_ACCUMULATE_H
+
+FfxFloat32 GetPxHrVelocity(FfxFloat32x2 fMotionVector)
+{
+ return length(fMotionVector * DisplaySize());
+}
+#if FFX_HALF
+FFX_MIN16_F GetPxHrVelocity(FFX_MIN16_F2 fMotionVector)
+{
+ return length(fMotionVector * FFX_MIN16_F2(DisplaySize()));
+}
+#endif
+
+void Accumulate(const AccumulationPassCommonParams params, FFX_PARAMETER_INOUT FfxFloat32x3 fHistoryColor, FfxFloat32x3 fAccumulation, FFX_PARAMETER_IN FfxFloat32x4 fUpsampledColorAndWeight)
+{
+ // Aviod invalid values when accumulation and upsampled weight is 0
+ fAccumulation = ffxMax(FSR2_EPSILON.xxx, fAccumulation + fUpsampledColorAndWeight.www);
+
+#if FFX_FSR2_OPTION_HDR_COLOR_INPUT
+ //YCoCg -> RGB -> Tonemap -> YCoCg (Use RGB tonemapper to avoid color desaturation)
+ fUpsampledColorAndWeight.xyz = RGBToYCoCg(Tonemap(YCoCgToRGB(fUpsampledColorAndWeight.xyz)));
+ fHistoryColor = RGBToYCoCg(Tonemap(YCoCgToRGB(fHistoryColor)));
+#endif
+
+ const FfxFloat32x3 fAlpha = fUpsampledColorAndWeight.www / fAccumulation;
+ fHistoryColor = ffxLerp(fHistoryColor, fUpsampledColorAndWeight.xyz, fAlpha);
+
+ fHistoryColor = YCoCgToRGB(fHistoryColor);
+
+#if FFX_FSR2_OPTION_HDR_COLOR_INPUT
+ fHistoryColor = InverseTonemap(fHistoryColor);
+#endif
+}
+
+void RectifyHistory(
+ const AccumulationPassCommonParams params,
+ RectificationBox clippingBox,
+ FFX_PARAMETER_INOUT FfxFloat32x3 fHistoryColor,
+ FFX_PARAMETER_INOUT FfxFloat32x3 fAccumulation,
+ FfxFloat32 fLockContributionThisFrame,
+ FfxFloat32 fTemporalReactiveFactor,
+ FfxFloat32 fLumaInstabilityFactor)
+{
+ FfxFloat32 fScaleFactorInfluence = ffxMin(20.0f, ffxPow(FfxFloat32(1.0f / length(DownscaleFactor().x * DownscaleFactor().y)), 3.0f));
+
+ const FfxFloat32 fVecolityFactor = ffxSaturate(params.fHrVelocity / 20.0f);
+ const FfxFloat32 fBoxScaleT = ffxMax(params.fDepthClipFactor, ffxMax(params.fAccumulationMask, fVecolityFactor));
+ FfxFloat32 fBoxScale = ffxLerp(fScaleFactorInfluence, 1.0f, fBoxScaleT);
+
+ FfxFloat32x3 fScaledBoxVec = clippingBox.boxVec * fBoxScale;
+ FfxFloat32x3 boxMin = clippingBox.boxCenter - fScaledBoxVec;
+ FfxFloat32x3 boxMax = clippingBox.boxCenter + fScaledBoxVec;
+ FfxFloat32x3 boxCenter = clippingBox.boxCenter;
+ FfxFloat32 boxVecSize = length(clippingBox.boxVec);
+
+ boxMin = ffxMax(clippingBox.aabbMin, boxMin);
+ boxMax = ffxMin(clippingBox.aabbMax, boxMax);
+
+ if (any(FFX_GREATER_THAN(boxMin, fHistoryColor)) || any(FFX_GREATER_THAN(fHistoryColor, boxMax))) {
+
+ const FfxFloat32x3 fClampedHistoryColor = clamp(fHistoryColor, boxMin, boxMax);
+
+ FfxFloat32x3 fHistoryContribution = ffxMax(fLumaInstabilityFactor, fLockContributionThisFrame).xxx;
+
+ const FfxFloat32 fReactiveFactor = params.fDilatedReactiveFactor;
+ const FfxFloat32 fReactiveContribution = 1.0f - ffxPow(fReactiveFactor, 1.0f / 2.0f);
+ fHistoryContribution *= fReactiveContribution;
+
+ // Scale history color using rectification info, also using accumulation mask to avoid potential invalid color protection
+ fHistoryColor = ffxLerp(fClampedHistoryColor, fHistoryColor, ffxSaturate(fHistoryContribution));
+
+ // Scale accumulation using rectification info
+ const FfxFloat32x3 fAccumulationMin = ffxMin(fAccumulation, FFX_BROADCAST_FLOAT32X3(0.1f));
+ fAccumulation = ffxLerp(fAccumulationMin, fAccumulation, ffxSaturate(fHistoryContribution));
+ }
+}
+
+void WriteUpscaledOutput(FfxInt32x2 iPxHrPos, FfxFloat32x3 fUpscaledColor)
+{
+ StoreUpscaledOutput(iPxHrPos, fUpscaledColor);
+}
+
+void FinalizeLockStatus(const AccumulationPassCommonParams params, FfxFloat32x2 fLockStatus, FfxFloat32 fUpsampledWeight)
+{
+ // we expect similar motion for next frame
+ // kill lock if that location is outside screen, avoid locks to be clamped to screen borders
+ FfxFloat32x2 fEstimatedUvNextFrame = params.fHrUv - params.fMotionVector;
+ if (IsUvInside(fEstimatedUvNextFrame) == false) {
+ KillLock(fLockStatus);
+ }
+ else {
+ // Decrease lock lifetime
+ const FfxFloat32 fLifetimeDecreaseLanczosMax = FfxFloat32(JitterSequenceLength()) * FfxFloat32(fAverageLanczosWeightPerFrame);
+ const FfxFloat32 fLifetimeDecrease = FfxFloat32(fUpsampledWeight / fLifetimeDecreaseLanczosMax);
+ fLockStatus[LOCK_LIFETIME_REMAINING] = ffxMax(FfxFloat32(0), fLockStatus[LOCK_LIFETIME_REMAINING] - fLifetimeDecrease);
+ }
+
+ StoreLockStatus(params.iPxHrPos, fLockStatus);
+}
+
+
+FfxFloat32x3 ComputeBaseAccumulationWeight(const AccumulationPassCommonParams params, FfxFloat32 fThisFrameReactiveFactor, FfxBoolean bInMotionLastFrame, FfxFloat32 fUpsampledWeight, LockState lockState)
+{
+ // Always assume max accumulation was reached
+ FfxFloat32 fBaseAccumulation = fMaxAccumulationLanczosWeight * FfxFloat32(params.bIsExistingSample) * (1.0f - fThisFrameReactiveFactor) * (1.0f - params.fDepthClipFactor);
+
+ fBaseAccumulation = ffxMin(fBaseAccumulation, ffxLerp(fBaseAccumulation, fUpsampledWeight * 10.0f, ffxMax(FfxFloat32(bInMotionLastFrame), ffxSaturate(params.fHrVelocity * FfxFloat32(10)))));
+
+ fBaseAccumulation = ffxMin(fBaseAccumulation, ffxLerp(fBaseAccumulation, fUpsampledWeight, ffxSaturate(params.fHrVelocity / FfxFloat32(20))));
+
+ return fBaseAccumulation.xxx;
+}
+
+FfxFloat32 ComputeLumaInstabilityFactor(const AccumulationPassCommonParams params, RectificationBox clippingBox, FfxFloat32 fThisFrameReactiveFactor, FfxFloat32 fLuminanceDiff)
+{
+ const FfxFloat32 fUnormThreshold = 1.0f / 255.0f;
+ const FfxInt32 N_MINUS_1 = 0;
+ const FfxInt32 N_MINUS_2 = 1;
+ const FfxInt32 N_MINUS_3 = 2;
+ const FfxInt32 N_MINUS_4 = 3;
+
+ FfxFloat32 fCurrentFrameLuma = clippingBox.boxCenter.x;
+
+#if FFX_FSR2_OPTION_HDR_COLOR_INPUT
+ fCurrentFrameLuma = fCurrentFrameLuma / (1.0f + ffxMax(0.0f, fCurrentFrameLuma));
+#endif
+
+ fCurrentFrameLuma = round(fCurrentFrameLuma * 255.0f) / 255.0f;
+
+ const FfxBoolean bSampleLumaHistory = (ffxMax(ffxMax(params.fDepthClipFactor, params.fAccumulationMask), fLuminanceDiff) < 0.1f) && (params.bIsNewSample == false);
+ FfxFloat32x4 fCurrentFrameLumaHistory = bSampleLumaHistory ? SampleLumaHistory(params.fReprojectedHrUv) : FFX_BROADCAST_FLOAT32X4(0.0f);
+
+ FfxFloat32 fLumaInstability = 0.0f;
+ FfxFloat32 fDiffs0 = (fCurrentFrameLuma - fCurrentFrameLumaHistory[N_MINUS_1]);
+
+ FfxFloat32 fMin = abs(fDiffs0);
+
+ if (fMin >= fUnormThreshold)
+ {
+ for (int i = N_MINUS_2; i <= N_MINUS_4; i++) {
+ FfxFloat32 fDiffs1 = (fCurrentFrameLuma - fCurrentFrameLumaHistory[i]);
+
+ if (sign(fDiffs0) == sign(fDiffs1)) {
+
+ // Scale difference to protect historically similar values
+ const FfxFloat32 fMinBias = 1.0f;
+ fMin = ffxMin(fMin, abs(fDiffs1) * fMinBias);
+ }
+ }
+
+ const FfxFloat32 fBoxSize = clippingBox.boxVec.x;
+ const FfxFloat32 fBoxSizeFactor = ffxPow(ffxSaturate(fBoxSize / 0.1f), 6.0f);
+
+ fLumaInstability = FfxFloat32(fMin != abs(fDiffs0)) * fBoxSizeFactor;
+ fLumaInstability = FfxFloat32(fLumaInstability > fUnormThreshold);
+
+ fLumaInstability *= 1.0f - ffxMax(params.fAccumulationMask, ffxPow(fThisFrameReactiveFactor, 1.0f / 6.0f));
+ }
+
+ //shift history
+ fCurrentFrameLumaHistory[N_MINUS_4] = fCurrentFrameLumaHistory[N_MINUS_3];
+ fCurrentFrameLumaHistory[N_MINUS_3] = fCurrentFrameLumaHistory[N_MINUS_2];
+ fCurrentFrameLumaHistory[N_MINUS_2] = fCurrentFrameLumaHistory[N_MINUS_1];
+ fCurrentFrameLumaHistory[N_MINUS_1] = fCurrentFrameLuma;
+
+ StoreLumaHistory(params.iPxHrPos, fCurrentFrameLumaHistory);
+
+ return fLumaInstability * FfxFloat32(fCurrentFrameLumaHistory[N_MINUS_4] != 0);
+}
+
+FfxFloat32 ComputeTemporalReactiveFactor(const AccumulationPassCommonParams params, FfxFloat32 fTemporalReactiveFactor)
+{
+ FfxFloat32 fNewFactor = ffxMin(0.99f, fTemporalReactiveFactor);
+
+ fNewFactor = ffxMax(fNewFactor, ffxLerp(fNewFactor, 0.4f, ffxSaturate(params.fHrVelocity)));
+
+ fNewFactor = ffxMax(fNewFactor * fNewFactor, ffxMax(params.fDepthClipFactor * 0.1f, params.fDilatedReactiveFactor));
+
+ // Force reactive factor for new samples
+ fNewFactor = params.bIsNewSample ? 1.0f : fNewFactor;
+
+ if (ffxSaturate(params.fHrVelocity * 10.0f) >= 1.0f) {
+ fNewFactor = ffxMax(FSR2_EPSILON, fNewFactor) * -1.0f;
+ }
+
+ return fNewFactor;
+}
+
+AccumulationPassCommonParams InitParams(FfxInt32x2 iPxHrPos)
+{
+ AccumulationPassCommonParams params;
+
+ params.iPxHrPos = iPxHrPos;
+ const FfxFloat32x2 fHrUv = (iPxHrPos + 0.5f) / DisplaySize();
+ params.fHrUv = fHrUv;
+
+ const FfxFloat32x2 fLrUvJittered = fHrUv + Jitter() / RenderSize();
+ params.fLrUv_HwSampler = ClampUv(fLrUvJittered, RenderSize(), MaxRenderSize());
+
+ params.fMotionVector = GetMotionVector(iPxHrPos, fHrUv);
+ params.fHrVelocity = GetPxHrVelocity(params.fMotionVector);
+
+ ComputeReprojectedUVs(params, params.fReprojectedHrUv, params.bIsExistingSample);
+
+ params.fDepthClipFactor = ffxSaturate(SampleDepthClip(params.fLrUv_HwSampler));
+
+ const FfxFloat32x2 fDilatedReactiveMasks = SampleDilatedReactiveMasks(params.fLrUv_HwSampler);
+ params.fDilatedReactiveFactor = fDilatedReactiveMasks.x;
+ params.fAccumulationMask = fDilatedReactiveMasks.y;
+ params.bIsResetFrame = (0 == FrameIndex());
+
+ params.bIsNewSample = (params.bIsExistingSample == false || params.bIsResetFrame);
+
+ return params;
+}
+
+void Accumulate(FfxInt32x2 iPxHrPos)
+{
+ const AccumulationPassCommonParams params = InitParams(iPxHrPos);
+
+ FfxFloat32x3 fHistoryColor = FfxFloat32x3(0, 0, 0);
+ FfxFloat32x2 fLockStatus;
+ InitializeNewLockSample(fLockStatus);
+
+ FfxFloat32 fTemporalReactiveFactor = 0.0f;
+ FfxBoolean bInMotionLastFrame = FFX_FALSE;
+ LockState lockState = { FFX_FALSE , FFX_FALSE };
+ if (params.bIsExistingSample && !params.bIsResetFrame) {
+ ReprojectHistoryColor(params, fHistoryColor, fTemporalReactiveFactor, bInMotionLastFrame);
+ lockState = ReprojectHistoryLockStatus(params, fLockStatus);
+ }
+
+ FfxFloat32 fThisFrameReactiveFactor = ffxMax(params.fDilatedReactiveFactor, fTemporalReactiveFactor);
+
+ FfxFloat32 fLuminanceDiff = 0.0f;
+ FfxFloat32 fLockContributionThisFrame = 0.0f;
+ UpdateLockStatus(params, fThisFrameReactiveFactor, lockState, fLockStatus, fLockContributionThisFrame, fLuminanceDiff);
+
+ // Load upsampled input color
+ RectificationBox clippingBox;
+ FfxFloat32x4 fUpsampledColorAndWeight = ComputeUpsampledColorAndWeight(params, clippingBox, fThisFrameReactiveFactor);
+
+ const FfxFloat32 fLumaInstabilityFactor = ComputeLumaInstabilityFactor(params, clippingBox, fThisFrameReactiveFactor, fLuminanceDiff);
+
+
+ FfxFloat32x3 fAccumulation = ComputeBaseAccumulationWeight(params, fThisFrameReactiveFactor, bInMotionLastFrame, fUpsampledColorAndWeight.w, lockState);
+
+ if (params.bIsNewSample) {
+ fHistoryColor = YCoCgToRGB(fUpsampledColorAndWeight.xyz);
+ }
+ else {
+ RectifyHistory(params, clippingBox, fHistoryColor, fAccumulation, fLockContributionThisFrame, fThisFrameReactiveFactor, fLumaInstabilityFactor);
+
+ Accumulate(params, fHistoryColor, fAccumulation, fUpsampledColorAndWeight);
+ }
+
+ fHistoryColor = UnprepareRgb(fHistoryColor, Exposure());
+
+ FinalizeLockStatus(params, fLockStatus, fUpsampledColorAndWeight.w);
+
+ // Get new temporal reactive factor
+ fTemporalReactiveFactor = ComputeTemporalReactiveFactor(params, fThisFrameReactiveFactor);
+
+ StoreInternalColorAndWeight(iPxHrPos, FfxFloat32x4(fHistoryColor, fTemporalReactiveFactor));
+
+ // Output final color when RCAS is disabled
+#if FFX_FSR2_OPTION_APPLY_SHARPENING == 0
+ WriteUpscaledOutput(iPxHrPos, fHistoryColor);
+#endif
+ StoreNewLocks(iPxHrPos, 0);
+}
+
+#endif // FFX_FSR2_ACCUMULATE_H
diff --git a/thirdparty/amd-fsr2/shaders/ffx_fsr2_accumulate_pass.glsl b/thirdparty/amd-fsr2/shaders/ffx_fsr2_accumulate_pass.glsl
new file mode 100644
index 0000000000..d2306fec4c
--- /dev/null
+++ b/thirdparty/amd-fsr2/shaders/ffx_fsr2_accumulate_pass.glsl
@@ -0,0 +1,92 @@
+// This file is part of the FidelityFX SDK.
+//
+// Copyright (c) 2022-2023 Advanced Micro Devices, Inc. All rights reserved.
+//
+// Permission is hereby granted, free of charge, to any person obtaining a copy
+// of this software and associated documentation files (the "Software"), to deal
+// in the Software without restriction, including without limitation the rights
+// to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
+// copies of the Software, and to permit persons to whom the Software is
+// furnished to do so, subject to the following conditions:
+// The above copyright notice and this permission notice shall be included in
+// all copies or substantial portions of the Software.
+//
+// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
+// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
+// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
+// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
+// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
+// OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
+// THE SOFTWARE.
+
+
+
+#extension GL_GOOGLE_include_directive : require
+#extension GL_EXT_samplerless_texture_functions : require
+// Needed for rw_upscaled_output declaration
+#extension GL_EXT_shader_image_load_formatted : require
+
+#define FSR2_BIND_SRV_INPUT_EXPOSURE 0
+#define FSR2_BIND_SRV_DILATED_REACTIVE_MASKS 1
+#if FFX_FSR2_OPTION_LOW_RESOLUTION_MOTION_VECTORS
+#define FSR2_BIND_SRV_DILATED_MOTION_VECTORS 2
+#else
+#define FSR2_BIND_SRV_INPUT_MOTION_VECTORS 2
+#endif
+#define FSR2_BIND_SRV_INTERNAL_UPSCALED 3
+#define FSR2_BIND_SRV_LOCK_STATUS 4
+#define FSR2_BIND_SRV_PREPARED_INPUT_COLOR 6
+#define FSR2_BIND_SRV_LUMA_INSTABILITY 7
+#define FSR2_BIND_SRV_LANCZOS_LUT 8
+#define FSR2_BIND_SRV_UPSCALE_MAXIMUM_BIAS_LUT 9
+#define FSR2_BIND_SRV_SCENE_LUMINANCE_MIPS 10
+#define FSR2_BIND_SRV_AUTO_EXPOSURE 11
+#define FSR2_BIND_SRV_LUMA_HISTORY 12
+
+#define FSR2_BIND_UAV_INTERNAL_UPSCALED 13
+#define FSR2_BIND_UAV_LOCK_STATUS 14
+#define FSR2_BIND_UAV_UPSCALED_OUTPUT 15
+#define FSR2_BIND_UAV_NEW_LOCKS 16
+#define FSR2_BIND_UAV_LUMA_HISTORY 17
+
+#define FSR2_BIND_CB_FSR2 18
+
+// -- GODOT start --
+#if FFX_FSR2_OPTION_GODOT_DERIVE_INVALID_MOTION_VECTORS
+#define FSR2_BIND_SRV_INPUT_DEPTH 5
+#endif
+// -- GODOT end --
+
+#include "ffx_fsr2_callbacks_glsl.h"
+#include "ffx_fsr2_common.h"
+#include "ffx_fsr2_sample.h"
+#include "ffx_fsr2_upsample.h"
+#include "ffx_fsr2_postprocess_lock_status.h"
+#include "ffx_fsr2_reproject.h"
+#include "ffx_fsr2_accumulate.h"
+
+#ifndef FFX_FSR2_THREAD_GROUP_WIDTH
+#define FFX_FSR2_THREAD_GROUP_WIDTH 8
+#endif // #ifndef FFX_FSR2_THREAD_GROUP_WIDTH
+#ifndef FFX_FSR2_THREAD_GROUP_HEIGHT
+#define FFX_FSR2_THREAD_GROUP_HEIGHT 8
+#endif // FFX_FSR2_THREAD_GROUP_HEIGHT
+#ifndef FFX_FSR2_THREAD_GROUP_DEPTH
+#define FFX_FSR2_THREAD_GROUP_DEPTH 1
+#endif // #ifndef FFX_FSR2_THREAD_GROUP_DEPTH
+#ifndef FFX_FSR2_NUM_THREADS
+#define FFX_FSR2_NUM_THREADS layout (local_size_x = FFX_FSR2_THREAD_GROUP_WIDTH, local_size_y = FFX_FSR2_THREAD_GROUP_HEIGHT, local_size_z = FFX_FSR2_THREAD_GROUP_DEPTH) in;
+
+#endif // #ifndef FFX_FSR2_NUM_THREADS
+
+FFX_FSR2_NUM_THREADS
+void main()
+{
+ uvec2 uGroupId = gl_WorkGroupID.xy;
+ const uint GroupRows = (uint(DisplaySize().y) + FFX_FSR2_THREAD_GROUP_HEIGHT - 1) / FFX_FSR2_THREAD_GROUP_HEIGHT;
+ uGroupId.y = GroupRows - uGroupId.y - 1;
+
+ uvec2 uDispatchThreadId = uGroupId * uvec2(FFX_FSR2_THREAD_GROUP_WIDTH, FFX_FSR2_THREAD_GROUP_HEIGHT) + gl_LocalInvocationID.xy;
+
+ Accumulate(ivec2(uDispatchThreadId));
+} \ No newline at end of file
diff --git a/thirdparty/amd-fsr2/shaders/ffx_fsr2_autogen_reactive_pass.glsl b/thirdparty/amd-fsr2/shaders/ffx_fsr2_autogen_reactive_pass.glsl
new file mode 100644
index 0000000000..e62b445924
--- /dev/null
+++ b/thirdparty/amd-fsr2/shaders/ffx_fsr2_autogen_reactive_pass.glsl
@@ -0,0 +1,93 @@
+// This file is part of the FidelityFX SDK.
+//
+// Copyright (c) 2022-2023 Advanced Micro Devices, Inc. All rights reserved.
+//
+// Permission is hereby granted, free of charge, to any person obtaining a copy
+// of this software and associated documentation files (the "Software"), to deal
+// in the Software without restriction, including without limitation the rights
+// to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
+// copies of the Software, and to permit persons to whom the Software is
+// furnished to do so, subject to the following conditions:
+// The above copyright notice and this permission notice shall be included in
+// all copies or substantial portions of the Software.
+//
+// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
+// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
+// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
+// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
+// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
+// OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
+// THE SOFTWARE.
+
+
+
+#extension GL_GOOGLE_include_directive : require
+#extension GL_EXT_samplerless_texture_functions : require
+
+#define FSR2_BIND_SRV_INPUT_OPAQUE_ONLY 0
+#define FSR2_BIND_SRV_INPUT_COLOR 1
+#define FSR2_BIND_UAV_AUTOREACTIVE 2
+#define FSR2_BIND_CB_REACTIVE 3
+#define FSR2_BIND_CB_FSR2 4
+
+#include "ffx_fsr2_callbacks_glsl.h"
+#include "ffx_fsr2_common.h"
+
+// layout (set = 1, binding = FSR2_BIND_SRV_PRE_ALPHA_COLOR) uniform texture2D r_input_color_pre_alpha;
+// layout (set = 1, binding = FSR2_BIND_SRV_POST_ALPHA_COLOR) uniform texture2D r_input_color_post_alpha;
+// layout (set = 1, binding = FSR2_BIND_UAV_REACTIVE, r8) uniform image2D rw_output_reactive_mask;
+
+
+#ifndef FFX_FSR2_THREAD_GROUP_WIDTH
+#define FFX_FSR2_THREAD_GROUP_WIDTH 8
+#endif // #ifndef FFX_FSR2_THREAD_GROUP_WIDTH
+#ifndef FFX_FSR2_THREAD_GROUP_HEIGHT
+#define FFX_FSR2_THREAD_GROUP_HEIGHT 8
+#endif // FFX_FSR2_THREAD_GROUP_HEIGHT
+#ifndef FFX_FSR2_THREAD_GROUP_DEPTH
+#define FFX_FSR2_THREAD_GROUP_DEPTH 1
+#endif // #ifndef FFX_FSR2_THREAD_GROUP_DEPTH
+#ifndef FFX_FSR2_NUM_THREADS
+#define FFX_FSR2_NUM_THREADS layout (local_size_x = FFX_FSR2_THREAD_GROUP_WIDTH, local_size_y = FFX_FSR2_THREAD_GROUP_HEIGHT, local_size_z = FFX_FSR2_THREAD_GROUP_DEPTH) in;
+#endif // #ifndef FFX_FSR2_NUM_THREADS
+
+#if defined(FSR2_BIND_CB_REACTIVE)
+layout (set = 1, binding = FSR2_BIND_CB_REACTIVE, std140) uniform cbGenerateReactive_t
+{
+ float scale;
+ float threshold;
+ float binaryValue;
+ uint flags;
+} cbGenerateReactive;
+#endif
+
+FFX_FSR2_NUM_THREADS
+void main()
+{
+ FfxUInt32x2 uDispatchThreadId = gl_GlobalInvocationID.xy;
+
+ FfxFloat32x3 ColorPreAlpha = LoadOpaqueOnly(FFX_MIN16_I2(uDispatchThreadId)).rgb;
+ FfxFloat32x3 ColorPostAlpha = LoadInputColor(FFX_MIN16_I2(uDispatchThreadId)).rgb;
+
+ if ((cbGenerateReactive.flags & FFX_FSR2_AUTOREACTIVEFLAGS_APPLY_TONEMAP) != 0)
+ {
+ ColorPreAlpha = Tonemap(ColorPreAlpha);
+ ColorPostAlpha = Tonemap(ColorPostAlpha);
+ }
+
+ if ((cbGenerateReactive.flags & FFX_FSR2_AUTOREACTIVEFLAGS_APPLY_INVERSETONEMAP) != 0)
+ {
+ ColorPreAlpha = InverseTonemap(ColorPreAlpha);
+ ColorPostAlpha = InverseTonemap(ColorPostAlpha);
+ }
+
+ FfxFloat32 out_reactive_value = 0.f;
+ FfxFloat32x3 delta = abs(ColorPostAlpha - ColorPreAlpha);
+
+ out_reactive_value = ((cbGenerateReactive.flags & FFX_FSR2_AUTOREACTIVEFLAGS_USE_COMPONENTS_MAX)!=0) ? max(delta.x, max(delta.y, delta.z)) : length(delta);
+ out_reactive_value *= cbGenerateReactive.scale;
+
+ out_reactive_value = ((cbGenerateReactive.flags & FFX_FSR2_AUTOREACTIVEFLAGS_APPLY_THRESHOLD)!=0) ? ((out_reactive_value < cbGenerateReactive.threshold) ? 0 : cbGenerateReactive.binaryValue) : out_reactive_value;
+
+ imageStore(rw_output_autoreactive, FfxInt32x2(uDispatchThreadId), vec4(out_reactive_value));
+}
diff --git a/thirdparty/amd-fsr2/shaders/ffx_fsr2_callbacks_glsl.h b/thirdparty/amd-fsr2/shaders/ffx_fsr2_callbacks_glsl.h
new file mode 100644
index 0000000000..45279bd357
--- /dev/null
+++ b/thirdparty/amd-fsr2/shaders/ffx_fsr2_callbacks_glsl.h
@@ -0,0 +1,704 @@
+// This file is part of the FidelityFX SDK.
+//
+// Copyright (c) 2022-2023 Advanced Micro Devices, Inc. All rights reserved.
+//
+// Permission is hereby granted, free of charge, to any person obtaining a copy
+// of this software and associated documentation files (the "Software"), to deal
+// in the Software without restriction, including without limitation the rights
+// to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
+// copies of the Software, and to permit persons to whom the Software is
+// furnished to do so, subject to the following conditions:
+// The above copyright notice and this permission notice shall be included in
+// all copies or substantial portions of the Software.
+//
+// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
+// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
+// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
+// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
+// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
+// OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
+// THE SOFTWARE.
+#include "ffx_fsr2_resources.h"
+
+#if defined(FFX_GPU)
+#include "ffx_core.h"
+#endif // #if defined(FFX_GPU)
+
+#if defined(FFX_GPU)
+#ifndef FFX_FSR2_PREFER_WAVE64
+#define FFX_FSR2_PREFER_WAVE64
+#endif // #if defined(FFX_GPU)
+
+#if defined(FSR2_BIND_CB_FSR2)
+ layout (set = 1, binding = FSR2_BIND_CB_FSR2, std140) uniform cbFSR2_t
+ {
+ FfxInt32x2 iRenderSize;
+ FfxInt32x2 iMaxRenderSize;
+ FfxInt32x2 iDisplaySize;
+ FfxInt32x2 iInputColorResourceDimensions;
+ FfxInt32x2 iLumaMipDimensions;
+ FfxInt32 iLumaMipLevelToUse;
+ FfxInt32 iFrameIndex;
+
+ FfxFloat32x4 fDeviceToViewDepth;
+ FfxFloat32x2 fJitter;
+ FfxFloat32x2 fMotionVectorScale;
+ FfxFloat32x2 fDownscaleFactor;
+ FfxFloat32x2 fMotionVectorJitterCancellation;
+ FfxFloat32 fPreExposure;
+ FfxFloat32 fPreviousFramePreExposure;
+ FfxFloat32 fTanHalfFOV;
+ FfxFloat32 fJitterSequenceLength;
+ FfxFloat32 fDeltaTime;
+ FfxFloat32 fDynamicResChangeFactor;
+ FfxFloat32 fViewSpaceToMetersFactor;
+
+ // -- GODOT start --
+ FfxFloat32 fPad;
+ mat4 mReprojectionMatrix;
+ // -- GODOT end --
+ } cbFSR2;
+#endif
+
+FfxInt32x2 RenderSize()
+{
+ return cbFSR2.iRenderSize;
+}
+
+FfxInt32x2 MaxRenderSize()
+{
+ return cbFSR2.iMaxRenderSize;
+}
+
+FfxInt32x2 DisplaySize()
+{
+ return cbFSR2.iDisplaySize;
+}
+
+FfxInt32x2 InputColorResourceDimensions()
+{
+ return cbFSR2.iInputColorResourceDimensions;
+}
+
+FfxInt32x2 LumaMipDimensions()
+{
+ return cbFSR2.iLumaMipDimensions;
+}
+
+FfxInt32 LumaMipLevelToUse()
+{
+ return cbFSR2.iLumaMipLevelToUse;
+}
+
+FfxInt32 FrameIndex()
+{
+ return cbFSR2.iFrameIndex;
+}
+
+FfxFloat32x4 DeviceToViewSpaceTransformFactors()
+{
+ return cbFSR2.fDeviceToViewDepth;
+}
+
+FfxFloat32x2 Jitter()
+{
+ return cbFSR2.fJitter;
+}
+
+FfxFloat32x2 MotionVectorScale()
+{
+ return cbFSR2.fMotionVectorScale;
+}
+
+FfxFloat32x2 DownscaleFactor()
+{
+ return cbFSR2.fDownscaleFactor;
+}
+
+FfxFloat32x2 MotionVectorJitterCancellation()
+{
+ return cbFSR2.fMotionVectorJitterCancellation;
+}
+
+FfxFloat32 PreExposure()
+{
+ return cbFSR2.fPreExposure;
+}
+
+FfxFloat32 PreviousFramePreExposure()
+{
+ return cbFSR2.fPreviousFramePreExposure;
+}
+
+FfxFloat32 TanHalfFoV()
+{
+ return cbFSR2.fTanHalfFOV;
+}
+
+FfxFloat32 JitterSequenceLength()
+{
+ return cbFSR2.fJitterSequenceLength;
+}
+
+FfxFloat32 DeltaTime()
+{
+ return cbFSR2.fDeltaTime;
+}
+
+FfxFloat32 DynamicResChangeFactor()
+{
+ return cbFSR2.fDynamicResChangeFactor;
+}
+
+FfxFloat32 ViewSpaceToMetersFactor()
+{
+ return cbFSR2.fViewSpaceToMetersFactor;
+}
+
+layout (set = 0, binding = 0) uniform sampler s_PointClamp;
+layout (set = 0, binding = 1) uniform sampler s_LinearClamp;
+
+// SRVs
+#if defined(FSR2_BIND_SRV_INPUT_OPAQUE_ONLY)
+ layout (set = 1, binding = FSR2_BIND_SRV_INPUT_OPAQUE_ONLY) uniform texture2D r_input_opaque_only;
+#endif
+#if defined(FSR2_BIND_SRV_INPUT_COLOR)
+ layout (set = 1, binding = FSR2_BIND_SRV_INPUT_COLOR) uniform texture2D r_input_color_jittered;
+#endif
+#if defined(FSR2_BIND_SRV_INPUT_MOTION_VECTORS)
+ layout (set = 1, binding = FSR2_BIND_SRV_INPUT_MOTION_VECTORS) uniform texture2D r_input_motion_vectors;
+#endif
+#if defined(FSR2_BIND_SRV_INPUT_DEPTH)
+ layout (set = 1, binding = FSR2_BIND_SRV_INPUT_DEPTH) uniform texture2D r_input_depth;
+#endif
+#if defined(FSR2_BIND_SRV_INPUT_EXPOSURE)
+ layout (set = 1, binding = FSR2_BIND_SRV_INPUT_EXPOSURE) uniform texture2D r_input_exposure;
+#endif
+#if defined(FSR2_BIND_SRV_AUTO_EXPOSURE)
+ layout(set = 1, binding = FSR2_BIND_SRV_AUTO_EXPOSURE) uniform texture2D r_auto_exposure;
+#endif
+#if defined(FSR2_BIND_SRV_REACTIVE_MASK)
+ layout (set = 1, binding = FSR2_BIND_SRV_REACTIVE_MASK) uniform texture2D r_reactive_mask;
+#endif
+#if defined(FSR2_BIND_SRV_TRANSPARENCY_AND_COMPOSITION_MASK)
+ layout (set = 1, binding = FSR2_BIND_SRV_TRANSPARENCY_AND_COMPOSITION_MASK) uniform texture2D r_transparency_and_composition_mask;
+#endif
+#if defined(FSR2_BIND_SRV_RECONSTRUCTED_PREV_NEAREST_DEPTH)
+ layout (set = 1, binding = FSR2_BIND_SRV_RECONSTRUCTED_PREV_NEAREST_DEPTH) uniform utexture2D r_reconstructed_previous_nearest_depth;
+#endif
+#if defined(FSR2_BIND_SRV_DILATED_MOTION_VECTORS)
+ layout (set = 1, binding = FSR2_BIND_SRV_DILATED_MOTION_VECTORS) uniform texture2D r_dilated_motion_vectors;
+#endif
+#if defined (FSR2_BIND_SRV_PREVIOUS_DILATED_MOTION_VECTORS)
+ layout(set = 1, binding = FSR2_BIND_SRV_PREVIOUS_DILATED_MOTION_VECTORS) uniform texture2D r_previous_dilated_motion_vectors;
+#endif
+#if defined(FSR2_BIND_SRV_DILATED_DEPTH)
+ layout (set = 1, binding = FSR2_BIND_SRV_DILATED_DEPTH) uniform texture2D r_dilatedDepth;
+#endif
+#if defined(FSR2_BIND_SRV_INTERNAL_UPSCALED)
+ layout (set = 1, binding = FSR2_BIND_SRV_INTERNAL_UPSCALED) uniform texture2D r_internal_upscaled_color;
+#endif
+#if defined(FSR2_BIND_SRV_LOCK_STATUS)
+ layout (set = 1, binding = FSR2_BIND_SRV_LOCK_STATUS) uniform texture2D r_lock_status;
+#endif
+#if defined(FSR2_BIND_SRV_LOCK_INPUT_LUMA)
+ layout (set = 1, binding = FSR2_BIND_SRV_LOCK_INPUT_LUMA) uniform texture2D r_lock_input_luma;
+#endif
+#if defined(FSR2_BIND_SRV_NEW_LOCKS)
+ layout(set = 1, binding = FSR2_BIND_SRV_NEW_LOCKS) uniform texture2D r_new_locks;
+#endif
+#if defined(FSR2_BIND_SRV_PREPARED_INPUT_COLOR)
+ layout (set = 1, binding = FSR2_BIND_SRV_PREPARED_INPUT_COLOR) uniform texture2D r_prepared_input_color;
+#endif
+#if defined(FSR2_BIND_SRV_LUMA_HISTORY)
+ layout (set = 1, binding = FSR2_BIND_SRV_LUMA_HISTORY) uniform texture2D r_luma_history;
+#endif
+#if defined(FSR2_BIND_SRV_RCAS_INPUT)
+ layout (set = 1, binding = FSR2_BIND_SRV_RCAS_INPUT) uniform texture2D r_rcas_input;
+#endif
+#if defined(FSR2_BIND_SRV_LANCZOS_LUT)
+ layout (set = 1, binding = FSR2_BIND_SRV_LANCZOS_LUT) uniform texture2D r_lanczos_lut;
+#endif
+#if defined(FSR2_BIND_SRV_SCENE_LUMINANCE_MIPS)
+ layout (set = 1, binding = FSR2_BIND_SRV_SCENE_LUMINANCE_MIPS) uniform texture2D r_imgMips;
+#endif
+#if defined(FSR2_BIND_SRV_UPSCALE_MAXIMUM_BIAS_LUT)
+ layout (set = 1, binding = FSR2_BIND_SRV_UPSCALE_MAXIMUM_BIAS_LUT) uniform texture2D r_upsample_maximum_bias_lut;
+#endif
+#if defined(FSR2_BIND_SRV_DILATED_REACTIVE_MASKS)
+ layout (set = 1, binding = FSR2_BIND_SRV_DILATED_REACTIVE_MASKS) uniform texture2D r_dilated_reactive_masks;
+#endif
+#if defined(FSR2_BIND_SRV_PREV_PRE_ALPHA_COLOR)
+ layout(set = 1, binding = FSR2_BIND_SRV_PREV_PRE_ALPHA_COLOR) uniform texture2D r_input_prev_color_pre_alpha;
+#endif
+#if defined(FSR2_BIND_SRV_PREV_POST_ALPHA_COLOR)
+ layout(set = 1, binding = FSR2_BIND_SRV_PREV_POST_ALPHA_COLOR) uniform texture2D r_input_prev_color_post_alpha;
+#endif
+
+// UAV
+#if defined FSR2_BIND_UAV_RECONSTRUCTED_PREV_NEAREST_DEPTH
+ layout (set = 1, binding = FSR2_BIND_UAV_RECONSTRUCTED_PREV_NEAREST_DEPTH, r32ui) uniform uimage2D rw_reconstructed_previous_nearest_depth;
+#endif
+#if defined FSR2_BIND_UAV_DILATED_MOTION_VECTORS
+ layout (set = 1, binding = FSR2_BIND_UAV_DILATED_MOTION_VECTORS, rg16f) writeonly uniform image2D rw_dilated_motion_vectors;
+#endif
+#if defined FSR2_BIND_UAV_DILATED_DEPTH
+ layout (set = 1, binding = FSR2_BIND_UAV_DILATED_DEPTH, r16f) writeonly uniform image2D rw_dilatedDepth;
+#endif
+#if defined FSR2_BIND_UAV_INTERNAL_UPSCALED
+ layout (set = 1, binding = FSR2_BIND_UAV_INTERNAL_UPSCALED, rgba16f) writeonly uniform image2D rw_internal_upscaled_color;
+#endif
+#if defined FSR2_BIND_UAV_LOCK_STATUS
+ layout (set = 1, binding = FSR2_BIND_UAV_LOCK_STATUS, rg16f) uniform image2D rw_lock_status;
+#endif
+#if defined(FSR2_BIND_UAV_LOCK_INPUT_LUMA)
+ layout(set = 1, binding = FSR2_BIND_UAV_LOCK_INPUT_LUMA, r16f) writeonly uniform image2D rw_lock_input_luma;
+#endif
+#if defined FSR2_BIND_UAV_NEW_LOCKS
+ layout(set = 1, binding = FSR2_BIND_UAV_NEW_LOCKS, r8) uniform image2D rw_new_locks;
+#endif
+#if defined FSR2_BIND_UAV_PREPARED_INPUT_COLOR
+ layout (set = 1, binding = FSR2_BIND_UAV_PREPARED_INPUT_COLOR, rgba16) writeonly uniform image2D rw_prepared_input_color;
+#endif
+#if defined FSR2_BIND_UAV_LUMA_HISTORY
+ layout (set = 1, binding = FSR2_BIND_UAV_LUMA_HISTORY, rgba8) uniform image2D rw_luma_history;
+#endif
+#if defined FSR2_BIND_UAV_UPSCALED_OUTPUT
+ layout (set = 1, binding = FSR2_BIND_UAV_UPSCALED_OUTPUT /* app controlled format */) writeonly uniform image2D rw_upscaled_output;
+#endif
+#if defined FSR2_BIND_UAV_EXPOSURE_MIP_LUMA_CHANGE
+ layout (set = 1, binding = FSR2_BIND_UAV_EXPOSURE_MIP_LUMA_CHANGE, r16f) coherent uniform image2D rw_img_mip_shading_change;
+#endif
+#if defined FSR2_BIND_UAV_EXPOSURE_MIP_5
+ layout (set = 1, binding = FSR2_BIND_UAV_EXPOSURE_MIP_5, r16f) coherent uniform image2D rw_img_mip_5;
+#endif
+#if defined FSR2_BIND_UAV_DILATED_REACTIVE_MASKS
+ layout (set = 1, binding = FSR2_BIND_UAV_DILATED_REACTIVE_MASKS, rg8) writeonly uniform image2D rw_dilated_reactive_masks;
+#endif
+#if defined FSR2_BIND_UAV_EXPOSURE
+ layout (set = 1, binding = FSR2_BIND_UAV_EXPOSURE, rg32f) uniform image2D rw_exposure;
+#endif
+#if defined FSR2_BIND_UAV_AUTO_EXPOSURE
+ layout(set = 1, binding = FSR2_BIND_UAV_AUTO_EXPOSURE, rg32f) uniform image2D rw_auto_exposure;
+#endif
+#if defined FSR2_BIND_UAV_SPD_GLOBAL_ATOMIC
+ layout (set = 1, binding = FSR2_BIND_UAV_SPD_GLOBAL_ATOMIC, r32ui) coherent uniform uimage2D rw_spd_global_atomic;
+#endif
+
+#if defined FSR2_BIND_UAV_AUTOREACTIVE
+ layout(set = 1, binding = FSR2_BIND_UAV_AUTOREACTIVE, r32f) uniform image2D rw_output_autoreactive;
+#endif
+#if defined FSR2_BIND_UAV_AUTOCOMPOSITION
+ layout(set = 1, binding = FSR2_BIND_UAV_AUTOCOMPOSITION, r32f) uniform image2D rw_output_autocomposition;
+#endif
+#if defined FSR2_BIND_UAV_PREV_PRE_ALPHA_COLOR
+ layout(set = 1, binding = FSR2_BIND_UAV_PREV_PRE_ALPHA_COLOR, r11f_g11f_b10f) uniform image2D rw_output_prev_color_pre_alpha;
+#endif
+#if defined FSR2_BIND_UAV_PREV_POST_ALPHA_COLOR
+ layout(set = 1, binding = FSR2_BIND_UAV_PREV_POST_ALPHA_COLOR, r11f_g11f_b10f) uniform image2D rw_output_prev_color_post_alpha;
+#endif
+
+#if defined(FSR2_BIND_SRV_SCENE_LUMINANCE_MIPS)
+FfxFloat32 LoadMipLuma(FfxInt32x2 iPxPos, FfxInt32 mipLevel)
+{
+ return texelFetch(r_imgMips, iPxPos, FfxInt32(mipLevel)).r;
+}
+#endif
+
+#if defined(FSR2_BIND_SRV_SCENE_LUMINANCE_MIPS)
+FfxFloat32 SampleMipLuma(FfxFloat32x2 fUV, FfxInt32 mipLevel)
+{
+ return textureLod(sampler2D(r_imgMips, s_LinearClamp), fUV, FfxFloat32(mipLevel)).r;
+}
+#endif
+
+#if defined(FSR2_BIND_SRV_INPUT_DEPTH)
+FfxFloat32 LoadInputDepth(FfxInt32x2 iPxPos)
+{
+ return texelFetch(r_input_depth, iPxPos, 0).r;
+}
+#endif
+
+#if defined(FSR2_BIND_SRV_REACTIVE_MASK)
+FfxFloat32 LoadReactiveMask(FfxInt32x2 iPxPos)
+{
+// -- GODOT start --
+#if FFX_FSR2_OPTION_GODOT_REACTIVE_MASK_CLAMP
+ return min(texelFetch(r_reactive_mask, FfxInt32x2(iPxPos), 0).r, 0.9f);
+#else
+ return texelFetch(r_reactive_mask, FfxInt32x2(iPxPos), 0).r;
+#endif
+// -- GODOT end --
+}
+#endif
+
+#if defined(FSR2_BIND_SRV_TRANSPARENCY_AND_COMPOSITION_MASK)
+FfxFloat32 LoadTransparencyAndCompositionMask(FfxUInt32x2 iPxPos)
+{
+ return texelFetch(r_transparency_and_composition_mask, FfxInt32x2(iPxPos), 0).r;
+}
+#endif
+
+#if defined(FSR2_BIND_SRV_INPUT_COLOR)
+FfxFloat32x3 LoadInputColor(FfxInt32x2 iPxPos)
+{
+ return texelFetch(r_input_color_jittered, iPxPos, 0).rgb;
+}
+#endif
+
+#if defined(FSR2_BIND_SRV_INPUT_COLOR)
+FfxFloat32x3 SampleInputColor(FfxFloat32x2 fUV)
+{
+ return textureLod(sampler2D(r_input_color_jittered, s_LinearClamp), fUV, 0.0f).rgb;
+}
+#endif
+
+#if defined(FSR2_BIND_SRV_PREPARED_INPUT_COLOR)
+FfxFloat32x3 LoadPreparedInputColor(FfxInt32x2 iPxPos)
+{
+ return texelFetch(r_prepared_input_color, iPxPos, 0).xyz;
+}
+#endif
+
+#if defined(FSR2_BIND_SRV_INPUT_MOTION_VECTORS)
+FfxFloat32x2 LoadInputMotionVector(FfxInt32x2 iPxDilatedMotionVectorPos)
+{
+ FfxFloat32x2 fSrcMotionVector = texelFetch(r_input_motion_vectors, iPxDilatedMotionVectorPos, 0).xy;
+
+// -- GODOT start --
+#if FFX_FSR2_OPTION_GODOT_DERIVE_INVALID_MOTION_VECTORS
+ bool bInvalidMotionVector = all(lessThanEqual(fSrcMotionVector, vec2(-1.0f, -1.0f)));
+ if (bInvalidMotionVector)
+ {
+ FfxFloat32 fSrcDepth = LoadInputDepth(iPxDilatedMotionVectorPos);
+ FfxFloat32x2 fUv = (iPxDilatedMotionVectorPos + FfxFloat32(0.5)) / RenderSize();
+ fSrcMotionVector = FFX_FSR2_OPTION_GODOT_DERIVE_INVALID_MOTION_VECTORS_FUNCTION(fUv, fSrcDepth, cbFSR2.mReprojectionMatrix);
+ }
+#endif
+// -- GODOT end --
+
+ FfxFloat32x2 fUvMotionVector = fSrcMotionVector * MotionVectorScale();
+
+#if FFX_FSR2_OPTION_JITTERED_MOTION_VECTORS
+ fUvMotionVector -= MotionVectorJitterCancellation();
+#endif
+
+ return fUvMotionVector;
+}
+#endif
+
+#if defined(FSR2_BIND_SRV_INTERNAL_UPSCALED)
+FfxFloat32x4 LoadHistory(FfxInt32x2 iPxHistory)
+{
+ return texelFetch(r_internal_upscaled_color, iPxHistory, 0);
+}
+#endif
+
+#if defined(FSR2_BIND_UAV_LUMA_HISTORY)
+void StoreLumaHistory(FfxInt32x2 iPxPos, FfxFloat32x4 fLumaHistory)
+{
+ imageStore(rw_luma_history, FfxInt32x2(iPxPos), fLumaHistory);
+}
+#endif
+
+#if defined(FSR2_BIND_SRV_LUMA_HISTORY)
+FfxFloat32x4 SampleLumaHistory(FfxFloat32x2 fUV)
+{
+ return textureLod(sampler2D(r_luma_history, s_LinearClamp), fUV, 0.0f);
+}
+#endif
+
+#if defined(FSR2_BIND_UAV_INTERNAL_UPSCALED)
+void StoreReprojectedHistory(FfxInt32x2 iPxHistory, FfxFloat32x4 fHistory)
+{
+ imageStore(rw_internal_upscaled_color, iPxHistory, fHistory);
+}
+#endif
+
+#if defined(FSR2_BIND_UAV_INTERNAL_UPSCALED)
+void StoreInternalColorAndWeight(FfxInt32x2 iPxPos, FfxFloat32x4 fColorAndWeight)
+{
+ imageStore(rw_internal_upscaled_color, FfxInt32x2(iPxPos), fColorAndWeight);
+}
+#endif
+
+#if defined(FSR2_BIND_UAV_UPSCALED_OUTPUT)
+void StoreUpscaledOutput(FfxInt32x2 iPxPos, FfxFloat32x3 fColor)
+{
+ imageStore(rw_upscaled_output, FfxInt32x2(iPxPos), FfxFloat32x4(fColor, 1.f));
+}
+#endif
+
+#if defined(FSR2_BIND_SRV_LOCK_STATUS)
+FfxFloat32x2 LoadLockStatus(FfxInt32x2 iPxPos)
+{
+ FfxFloat32x2 fLockStatus = texelFetch(r_lock_status, iPxPos, 0).rg;
+
+ return fLockStatus;
+}
+#endif
+
+#if defined(FSR2_BIND_UAV_LOCK_STATUS)
+void StoreLockStatus(FfxInt32x2 iPxPos, FfxFloat32x2 fLockstatus)
+{
+ imageStore(rw_lock_status, iPxPos, vec4(fLockstatus, 0.0f, 0.0f));
+}
+#endif
+
+#if defined(FSR2_BIND_SRV_LOCK_INPUT_LUMA)
+FfxFloat32 LoadLockInputLuma(FfxInt32x2 iPxPos)
+{
+ return texelFetch(r_lock_input_luma, iPxPos, 0).r;
+}
+#endif
+
+#if defined(FSR2_BIND_UAV_LOCK_INPUT_LUMA)
+void StoreLockInputLuma(FfxInt32x2 iPxPos, FfxFloat32 fLuma)
+{
+ imageStore(rw_lock_input_luma, iPxPos, vec4(fLuma, 0, 0, 0));
+}
+#endif
+
+#if defined(FSR2_BIND_SRV_NEW_LOCKS)
+FfxFloat32 LoadNewLocks(FfxInt32x2 iPxPos)
+{
+ return texelFetch(r_new_locks, iPxPos, 0).r;
+}
+#endif
+
+#if defined(FSR2_BIND_UAV_NEW_LOCKS)
+FfxFloat32 LoadRwNewLocks(FfxInt32x2 iPxPos)
+{
+ return imageLoad(rw_new_locks, iPxPos).r;
+}
+#endif
+
+#if defined(FSR2_BIND_UAV_NEW_LOCKS)
+void StoreNewLocks(FfxInt32x2 iPxPos, FfxFloat32 newLock)
+{
+ imageStore(rw_new_locks, iPxPos, vec4(newLock, 0, 0, 0));
+}
+#endif
+
+#if defined(FSR2_BIND_UAV_PREPARED_INPUT_COLOR)
+void StorePreparedInputColor(FFX_PARAMETER_IN FfxInt32x2 iPxPos, FFX_PARAMETER_IN FfxFloat32x4 fTonemapped)
+{
+ imageStore(rw_prepared_input_color, iPxPos, fTonemapped);
+}
+#endif
+
+#if defined(FSR2_BIND_SRV_PREPARED_INPUT_COLOR)
+FfxFloat32 SampleDepthClip(FfxFloat32x2 fUV)
+{
+ return textureLod(sampler2D(r_prepared_input_color, s_LinearClamp), fUV, 0.0f).w;
+}
+#endif
+
+#if defined(FSR2_BIND_SRV_LOCK_STATUS)
+FfxFloat32x2 SampleLockStatus(FfxFloat32x2 fUV)
+{
+ FfxFloat32x2 fLockStatus = textureLod(sampler2D(r_lock_status, s_LinearClamp), fUV, 0.0f).rg;
+ return fLockStatus;
+}
+#endif
+
+#if defined(FSR2_BIND_SRV_DEPTH)
+FfxFloat32 LoadSceneDepth(FfxInt32x2 iPxInput)
+{
+ return texelFetch(r_input_depth, iPxInput, 0).r;
+}
+#endif
+
+#if defined(FSR2_BIND_SRV_RECONSTRUCTED_PREV_NEAREST_DEPTH)
+FfxFloat32 LoadReconstructedPrevDepth(FfxInt32x2 iPxPos)
+{
+ return uintBitsToFloat(texelFetch(r_reconstructed_previous_nearest_depth, iPxPos, 0).r);
+}
+#endif
+
+#if defined(FSR2_BIND_UAV_RECONSTRUCTED_PREV_NEAREST_DEPTH)
+void StoreReconstructedDepth(FfxInt32x2 iPxSample, FfxFloat32 fDepth)
+{
+ FfxUInt32 uDepth = floatBitsToUint(fDepth);
+
+ #if FFX_FSR2_OPTION_INVERTED_DEPTH
+ imageAtomicMax(rw_reconstructed_previous_nearest_depth, iPxSample, uDepth);
+ #else
+ imageAtomicMin(rw_reconstructed_previous_nearest_depth, iPxSample, uDepth); // min for standard, max for inverted depth
+ #endif
+}
+#endif
+
+#if defined(FSR2_BIND_UAV_RECONSTRUCTED_PREV_NEAREST_DEPTH)
+void SetReconstructedDepth(FfxInt32x2 iPxSample, FfxUInt32 uValue)
+{
+ imageStore(rw_reconstructed_previous_nearest_depth, iPxSample, uvec4(uValue, 0, 0, 0));
+}
+#endif
+
+#if defined(FSR2_BIND_UAV_DILATED_DEPTH)
+void StoreDilatedDepth(FFX_PARAMETER_IN FfxInt32x2 iPxPos, FFX_PARAMETER_IN FfxFloat32 fDepth)
+{
+ //FfxUInt32 uDepth = f32tof16(fDepth);
+ imageStore(rw_dilatedDepth, iPxPos, vec4(fDepth, 0.0f, 0.0f, 0.0f));
+}
+#endif
+
+#if defined(FSR2_BIND_UAV_DILATED_MOTION_VECTORS)
+void StoreDilatedMotionVector(FFX_PARAMETER_IN FfxInt32x2 iPxPos, FFX_PARAMETER_IN FfxFloat32x2 fMotionVector)
+{
+ imageStore(rw_dilated_motion_vectors, iPxPos, vec4(fMotionVector, 0.0f, 0.0f));
+}
+#endif
+
+#if defined(FSR2_BIND_SRV_DILATED_MOTION_VECTORS)
+FfxFloat32x2 LoadDilatedMotionVector(FfxInt32x2 iPxInput)
+{
+ return texelFetch(r_dilated_motion_vectors, iPxInput, 0).rg;
+}
+#endif
+
+#if defined(FSR2_BIND_SRV_DILATED_MOTION_VECTORS)
+FfxFloat32x2 SampleDilatedMotionVector(FfxFloat32x2 fUV)
+{
+ return textureLod(sampler2D(r_dilated_motion_vectors, s_LinearClamp), fUV, 0.0f).rg;
+}
+#endif
+
+#if defined(FSR2_BIND_SRV_PREVIOUS_DILATED_MOTION_VECTORS)
+FfxFloat32x2 LoadPreviousDilatedMotionVector(FfxInt32x2 iPxInput)
+{
+ return texelFetch(r_previous_dilated_motion_vectors, iPxInput, 0).rg;
+}
+
+FfxFloat32x2 SamplePreviousDilatedMotionVector(FfxFloat32x2 fUV)
+{
+ return textureLod(sampler2D(r_previous_dilated_motion_vectors, s_LinearClamp), fUV, 0.0f).xy;
+}
+#endif
+
+#if defined(FSR2_BIND_SRV_DILATED_DEPTH)
+FfxFloat32 LoadDilatedDepth(FfxInt32x2 iPxInput)
+{
+ return texelFetch(r_dilatedDepth, iPxInput, 0).r;
+}
+#endif
+
+#if defined(FSR2_BIND_SRV_INPUT_EXPOSURE)
+FfxFloat32 Exposure()
+{
+ FfxFloat32 exposure = texelFetch(r_input_exposure, FfxInt32x2(0, 0), 0).x;
+
+ if (exposure == 0.0f) {
+ exposure = 1.0f;
+ }
+
+ return exposure;
+}
+#endif
+
+#if defined(FSR2_BIND_SRV_AUTO_EXPOSURE)
+FfxFloat32 AutoExposure()
+{
+ FfxFloat32 exposure = texelFetch(r_auto_exposure, FfxInt32x2(0, 0), 0).x;
+
+ if (exposure == 0.0f) {
+ exposure = 1.0f;
+ }
+
+ return exposure;
+}
+#endif
+
+FfxFloat32 SampleLanczos2Weight(FfxFloat32 x)
+{
+#if defined(FSR2_BIND_SRV_LANCZOS_LUT)
+ return textureLod(sampler2D(r_lanczos_lut, s_LinearClamp), FfxFloat32x2(x / 2.0f, 0.5f), 0.0f).x;
+#else
+ return 0.f;
+#endif
+}
+
+#if defined(FSR2_BIND_SRV_UPSCALE_MAXIMUM_BIAS_LUT)
+FfxFloat32 SampleUpsampleMaximumBias(FfxFloat32x2 uv)
+{
+ // Stored as a SNORM, so make sure to multiply by 2 to retrieve the actual expected range.
+ return FfxFloat32(2.0f) * FfxFloat32(textureLod(sampler2D(r_upsample_maximum_bias_lut, s_LinearClamp), abs(uv) * 2.0f, 0.0f).r);
+}
+#endif
+
+#if defined(FSR2_BIND_SRV_DILATED_REACTIVE_MASKS)
+FfxFloat32x2 SampleDilatedReactiveMasks(FfxFloat32x2 fUV)
+{
+ return textureLod(sampler2D(r_dilated_reactive_masks, s_LinearClamp), fUV, 0.0f).rg;
+}
+#endif
+
+#if defined(FSR2_BIND_SRV_DILATED_REACTIVE_MASKS)
+FfxFloat32x2 LoadDilatedReactiveMasks(FFX_PARAMETER_IN FfxInt32x2 iPxPos)
+{
+ return texelFetch(r_dilated_reactive_masks, iPxPos, 0).rg;
+}
+#endif
+
+#if defined(FSR2_BIND_UAV_DILATED_REACTIVE_MASKS)
+void StoreDilatedReactiveMasks(FFX_PARAMETER_IN FfxInt32x2 iPxPos, FFX_PARAMETER_IN FfxFloat32x2 fDilatedReactiveMasks)
+{
+ imageStore(rw_dilated_reactive_masks, iPxPos, vec4(fDilatedReactiveMasks, 0.0f, 0.0f));
+}
+#endif
+
+#if defined(FFX_INTERNAL)
+FfxFloat32x4 SampleDebug(FfxFloat32x2 fUV)
+{
+ return textureLod(sampler2D(r_debug_out, s_LinearClamp), fUV, 0.0f).rgba;
+}
+#endif
+
+#if defined(FSR2_BIND_SRV_INPUT_OPAQUE_ONLY)
+FfxFloat32x3 LoadOpaqueOnly(FFX_PARAMETER_IN FFX_MIN16_I2 iPxPos)
+{
+ return texelFetch(r_input_opaque_only, iPxPos, 0).xyz;
+}
+#endif
+
+#if defined(FSR2_BIND_SRV_PREV_PRE_ALPHA_COLOR)
+FfxFloat32x3 LoadPrevPreAlpha(FFX_PARAMETER_IN FFX_MIN16_I2 iPxPos)
+{
+ return texelFetch(r_input_prev_color_pre_alpha, iPxPos, 0).xyz;
+}
+#endif
+
+#if defined(FSR2_BIND_SRV_PREV_POST_ALPHA_COLOR)
+FfxFloat32x3 LoadPrevPostAlpha(FFX_PARAMETER_IN FFX_MIN16_I2 iPxPos)
+{
+ return texelFetch(r_input_prev_color_post_alpha, iPxPos, 0).xyz;
+}
+#endif
+
+#if defined(FSR2_BIND_UAV_AUTOREACTIVE)
+#if defined(FSR2_BIND_UAV_AUTOCOMPOSITION)
+void StoreAutoReactive(FFX_PARAMETER_IN FFX_MIN16_I2 iPxPos, FFX_PARAMETER_IN FFX_MIN16_F2 fReactive)
+{
+ imageStore(rw_output_autoreactive, iPxPos, vec4(FfxFloat32(fReactive.x), 0.0f, 0.0f, 0.0f));
+
+ imageStore(rw_output_autocomposition, iPxPos, vec4(FfxFloat32(fReactive.y), 0.0f, 0.0f, 0.0f));
+}
+#endif
+#endif
+
+#if defined(FSR2_BIND_UAV_PREV_PRE_ALPHA_COLOR)
+void StorePrevPreAlpha(FFX_PARAMETER_IN FFX_MIN16_I2 iPxPos, FFX_PARAMETER_IN FFX_MIN16_F3 color)
+{
+ imageStore(rw_output_prev_color_pre_alpha, iPxPos, vec4(color, 0.0f));
+}
+#endif
+
+#if defined(FSR2_BIND_UAV_PREV_POST_ALPHA_COLOR)
+void StorePrevPostAlpha(FFX_PARAMETER_IN FFX_MIN16_I2 iPxPos, FFX_PARAMETER_IN FFX_MIN16_F3 color)
+{
+ imageStore(rw_output_prev_color_post_alpha, iPxPos, vec4(color, 0.0f));
+}
+#endif
+
+#endif // #if defined(FFX_GPU)
diff --git a/thirdparty/amd-fsr2/shaders/ffx_fsr2_callbacks_hlsl.h b/thirdparty/amd-fsr2/shaders/ffx_fsr2_callbacks_hlsl.h
new file mode 100644
index 0000000000..fd722b307e
--- /dev/null
+++ b/thirdparty/amd-fsr2/shaders/ffx_fsr2_callbacks_hlsl.h
@@ -0,0 +1,799 @@
+// This file is part of the FidelityFX SDK.
+//
+// Copyright (c) 2022-2023 Advanced Micro Devices, Inc. All rights reserved.
+//
+// Permission is hereby granted, free of charge, to any person obtaining a copy
+// of this software and associated documentation files (the "Software"), to deal
+// in the Software without restriction, including without limitation the rights
+// to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
+// copies of the Software, and to permit persons to whom the Software is
+// furnished to do so, subject to the following conditions:
+// The above copyright notice and this permission notice shall be included in
+// all copies or substantial portions of the Software.
+//
+// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
+// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
+// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
+// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
+// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
+// OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
+// THE SOFTWARE.
+
+#include "ffx_fsr2_resources.h"
+
+#if defined(FFX_GPU)
+#ifdef __hlsl_dx_compiler
+#pragma dxc diagnostic push
+#pragma dxc diagnostic ignored "-Wambig-lit-shift"
+#endif //__hlsl_dx_compiler
+#include "ffx_core.h"
+#ifdef __hlsl_dx_compiler
+#pragma dxc diagnostic pop
+#endif //__hlsl_dx_compiler
+#endif // #if defined(FFX_GPU)
+
+#if defined(FFX_GPU)
+#ifndef FFX_FSR2_PREFER_WAVE64
+#define FFX_FSR2_PREFER_WAVE64
+#endif // #if defined(FFX_GPU)
+
+#if defined(FFX_GPU)
+#pragma warning(disable: 3205) // conversion from larger type to smaller
+#endif // #if defined(FFX_GPU)
+
+#define DECLARE_SRV_REGISTER(regIndex) t##regIndex
+#define DECLARE_UAV_REGISTER(regIndex) u##regIndex
+#define DECLARE_CB_REGISTER(regIndex) b##regIndex
+#define FFX_FSR2_DECLARE_SRV(regIndex) register(DECLARE_SRV_REGISTER(regIndex))
+#define FFX_FSR2_DECLARE_UAV(regIndex) register(DECLARE_UAV_REGISTER(regIndex))
+#define FFX_FSR2_DECLARE_CB(regIndex) register(DECLARE_CB_REGISTER(regIndex))
+
+#if defined(FSR2_BIND_CB_FSR2) || defined(FFX_INTERNAL)
+ cbuffer cbFSR2 : FFX_FSR2_DECLARE_CB(FSR2_BIND_CB_FSR2)
+ {
+ FfxInt32x2 iRenderSize;
+ FfxInt32x2 iMaxRenderSize;
+ FfxInt32x2 iDisplaySize;
+ FfxInt32x2 iInputColorResourceDimensions;
+ FfxInt32x2 iLumaMipDimensions;
+ FfxInt32 iLumaMipLevelToUse;
+ FfxInt32 iFrameIndex;
+
+ FfxFloat32x4 fDeviceToViewDepth;
+ FfxFloat32x2 fJitter;
+ FfxFloat32x2 fMotionVectorScale;
+ FfxFloat32x2 fDownscaleFactor;
+ FfxFloat32x2 fMotionVectorJitterCancellation;
+ FfxFloat32 fPreExposure;
+ FfxFloat32 fPreviousFramePreExposure;
+ FfxFloat32 fTanHalfFOV;
+ FfxFloat32 fJitterSequenceLength;
+ FfxFloat32 fDeltaTime;
+ FfxFloat32 fDynamicResChangeFactor;
+ FfxFloat32 fViewSpaceToMetersFactor;
+ };
+
+#define FFX_FSR2_CONSTANT_BUFFER_1_SIZE (sizeof(cbFSR2) / 4) // Number of 32-bit values. This must be kept in sync with the cbFSR2 size.
+#endif
+
+#if defined(FFX_GPU)
+#define FFX_FSR2_ROOTSIG_STRINGIFY(p) FFX_FSR2_ROOTSIG_STR(p)
+#define FFX_FSR2_ROOTSIG_STR(p) #p
+#define FFX_FSR2_ROOTSIG [RootSignature( "DescriptorTable(UAV(u0, numDescriptors = " FFX_FSR2_ROOTSIG_STRINGIFY(FFX_FSR2_RESOURCE_IDENTIFIER_COUNT) ")), " \
+ "DescriptorTable(SRV(t0, numDescriptors = " FFX_FSR2_ROOTSIG_STRINGIFY(FFX_FSR2_RESOURCE_IDENTIFIER_COUNT) ")), " \
+ "RootConstants(num32BitConstants=" FFX_FSR2_ROOTSIG_STRINGIFY(FFX_FSR2_CONSTANT_BUFFER_1_SIZE) ", b0), " \
+ "StaticSampler(s0, filter = FILTER_MIN_MAG_MIP_POINT, " \
+ "addressU = TEXTURE_ADDRESS_CLAMP, " \
+ "addressV = TEXTURE_ADDRESS_CLAMP, " \
+ "addressW = TEXTURE_ADDRESS_CLAMP, " \
+ "comparisonFunc = COMPARISON_NEVER, " \
+ "borderColor = STATIC_BORDER_COLOR_TRANSPARENT_BLACK), " \
+ "StaticSampler(s1, filter = FILTER_MIN_MAG_MIP_LINEAR, " \
+ "addressU = TEXTURE_ADDRESS_CLAMP, " \
+ "addressV = TEXTURE_ADDRESS_CLAMP, " \
+ "addressW = TEXTURE_ADDRESS_CLAMP, " \
+ "comparisonFunc = COMPARISON_NEVER, " \
+ "borderColor = STATIC_BORDER_COLOR_TRANSPARENT_BLACK)" )]
+
+#define FFX_FSR2_CONSTANT_BUFFER_2_SIZE 6 // Number of 32-bit values. This must be kept in sync with max( cbRCAS , cbSPD) size.
+
+#define FFX_FSR2_CB2_ROOTSIG [RootSignature( "DescriptorTable(UAV(u0, numDescriptors = " FFX_FSR2_ROOTSIG_STRINGIFY(FFX_FSR2_RESOURCE_IDENTIFIER_COUNT) ")), " \
+ "DescriptorTable(SRV(t0, numDescriptors = " FFX_FSR2_ROOTSIG_STRINGIFY(FFX_FSR2_RESOURCE_IDENTIFIER_COUNT) ")), " \
+ "RootConstants(num32BitConstants=" FFX_FSR2_ROOTSIG_STRINGIFY(FFX_FSR2_CONSTANT_BUFFER_1_SIZE) ", b0), " \
+ "RootConstants(num32BitConstants=" FFX_FSR2_ROOTSIG_STRINGIFY(FFX_FSR2_CONSTANT_BUFFER_2_SIZE) ", b1), " \
+ "StaticSampler(s0, filter = FILTER_MIN_MAG_MIP_POINT, " \
+ "addressU = TEXTURE_ADDRESS_CLAMP, " \
+ "addressV = TEXTURE_ADDRESS_CLAMP, " \
+ "addressW = TEXTURE_ADDRESS_CLAMP, " \
+ "comparisonFunc = COMPARISON_NEVER, " \
+ "borderColor = STATIC_BORDER_COLOR_TRANSPARENT_BLACK), " \
+ "StaticSampler(s1, filter = FILTER_MIN_MAG_MIP_LINEAR, " \
+ "addressU = TEXTURE_ADDRESS_CLAMP, " \
+ "addressV = TEXTURE_ADDRESS_CLAMP, " \
+ "addressW = TEXTURE_ADDRESS_CLAMP, " \
+ "comparisonFunc = COMPARISON_NEVER, " \
+ "borderColor = STATIC_BORDER_COLOR_TRANSPARENT_BLACK)" )]
+#if defined(FFX_FSR2_EMBED_ROOTSIG)
+#define FFX_FSR2_EMBED_ROOTSIG_CONTENT FFX_FSR2_ROOTSIG
+#define FFX_FSR2_EMBED_CB2_ROOTSIG_CONTENT FFX_FSR2_CB2_ROOTSIG
+#else
+#define FFX_FSR2_EMBED_ROOTSIG_CONTENT
+#define FFX_FSR2_EMBED_CB2_ROOTSIG_CONTENT
+#endif // #if FFX_FSR2_EMBED_ROOTSIG
+#endif // #if defined(FFX_GPU)
+
+/* Define getter functions in the order they are defined in the CB! */
+FfxInt32x2 RenderSize()
+{
+ return iRenderSize;
+}
+
+FfxInt32x2 MaxRenderSize()
+{
+ return iMaxRenderSize;
+}
+
+FfxInt32x2 DisplaySize()
+{
+ return iDisplaySize;
+}
+
+FfxInt32x2 InputColorResourceDimensions()
+{
+ return iInputColorResourceDimensions;
+}
+
+FfxInt32x2 LumaMipDimensions()
+{
+ return iLumaMipDimensions;
+}
+
+FfxInt32 LumaMipLevelToUse()
+{
+ return iLumaMipLevelToUse;
+}
+
+FfxInt32 FrameIndex()
+{
+ return iFrameIndex;
+}
+
+FfxFloat32x2 Jitter()
+{
+ return fJitter;
+}
+
+FfxFloat32x4 DeviceToViewSpaceTransformFactors()
+{
+ return fDeviceToViewDepth;
+}
+
+FfxFloat32x2 MotionVectorScale()
+{
+ return fMotionVectorScale;
+}
+
+FfxFloat32x2 DownscaleFactor()
+{
+ return fDownscaleFactor;
+}
+
+FfxFloat32x2 MotionVectorJitterCancellation()
+{
+ return fMotionVectorJitterCancellation;
+}
+
+FfxFloat32 PreExposure()
+{
+ return fPreExposure;
+}
+
+FfxFloat32 PreviousFramePreExposure()
+{
+ return fPreviousFramePreExposure;
+}
+
+FfxFloat32 TanHalfFoV()
+{
+ return fTanHalfFOV;
+}
+
+FfxFloat32 JitterSequenceLength()
+{
+ return fJitterSequenceLength;
+}
+
+FfxFloat32 DeltaTime()
+{
+ return fDeltaTime;
+}
+
+FfxFloat32 DynamicResChangeFactor()
+{
+ return fDynamicResChangeFactor;
+}
+
+FfxFloat32 ViewSpaceToMetersFactor()
+{
+ return fViewSpaceToMetersFactor;
+}
+
+
+SamplerState s_PointClamp : register(s0);
+SamplerState s_LinearClamp : register(s1);
+
+// SRVs
+#if defined(FFX_INTERNAL)
+ Texture2D<FfxFloat32x4> r_input_opaque_only : FFX_FSR2_DECLARE_SRV(FFX_FSR2_RESOURCE_IDENTIFIER_INPUT_OPAQUE_ONLY);
+ Texture2D<FfxFloat32x4> r_input_color_jittered : FFX_FSR2_DECLARE_SRV(FFX_FSR2_RESOURCE_IDENTIFIER_INPUT_COLOR);
+ Texture2D<FfxFloat32x4> r_input_motion_vectors : FFX_FSR2_DECLARE_SRV(FFX_FSR2_RESOURCE_IDENTIFIER_INPUT_MOTION_VECTORS);
+ Texture2D<FfxFloat32> r_input_depth : FFX_FSR2_DECLARE_SRV(FFX_FSR2_RESOURCE_IDENTIFIER_INPUT_DEPTH);
+ Texture2D<FfxFloat32x2> r_input_exposure : FFX_FSR2_DECLARE_SRV(FFX_FSR2_RESOURCE_IDENTIFIER_INPUT_EXPOSURE);
+ Texture2D<FfxFloat32x2> r_auto_exposure : FFX_FSR2_DECLARE_SRV(FFX_FSR2_RESOURCE_IDENTIFIER_AUTO_EXPOSURE);
+ Texture2D<FfxFloat32> r_reactive_mask : FFX_FSR2_DECLARE_SRV(FFX_FSR2_RESOURCE_IDENTIFIER_INPUT_REACTIVE_MASK);
+ Texture2D<FfxFloat32> r_transparency_and_composition_mask : FFX_FSR2_DECLARE_SRV(FFX_FSR2_RESOURCE_IDENTIFIER_INPUT_TRANSPARENCY_AND_COMPOSITION_MASK);
+ Texture2D<FfxUInt32> r_reconstructed_previous_nearest_depth : FFX_FSR2_DECLARE_SRV(FFX_FSR2_RESOURCE_IDENTIFIER_RECONSTRUCTED_PREVIOUS_NEAREST_DEPTH);
+ Texture2D<FfxFloat32x2> r_dilated_motion_vectors : FFX_FSR2_DECLARE_SRV(FFX_FSR2_RESOURCE_IDENTIFIER_DILATED_MOTION_VECTORS);
+ Texture2D<FfxFloat32x2> r_previous_dilated_motion_vectors : FFX_FSR2_DECLARE_SRV(FFX_FSR2_RESOURCE_IDENTIFIER_PREVIOUS_DILATED_MOTION_VECTORS);
+ Texture2D<FfxFloat32> r_dilatedDepth : FFX_FSR2_DECLARE_SRV(FFX_FSR2_RESOURCE_IDENTIFIER_DILATED_DEPTH);
+ Texture2D<FfxFloat32x4> r_internal_upscaled_color : FFX_FSR2_DECLARE_SRV(FFX_FSR2_RESOURCE_IDENTIFIER_INTERNAL_UPSCALED_COLOR);
+ Texture2D<unorm FfxFloat32x2> r_lock_status : FFX_FSR2_DECLARE_SRV(FFX_FSR2_RESOURCE_IDENTIFIER_LOCK_STATUS);
+ Texture2D<FfxFloat32> r_lock_input_luma : FFX_FSR2_DECLARE_SRV(FFX_FSR2_RESOURCE_IDENTIFIER_LOCK_INPUT_LUMA);
+ Texture2D<unorm FfxFloat32> r_new_locks : FFX_FSR2_DECLARE_SRV(FFX_FSR2_RESOURCE_IDENTIFIER_NEW_LOCKS);
+ Texture2D<FfxFloat32x4> r_prepared_input_color : FFX_FSR2_DECLARE_SRV(FFX_FSR2_RESOURCE_IDENTIFIER_PREPARED_INPUT_COLOR);
+ Texture2D<FfxFloat32x4> r_luma_history : FFX_FSR2_DECLARE_SRV(FFX_FSR2_RESOURCE_IDENTIFIER_LUMA_HISTORY);
+ Texture2D<FfxFloat32x4> r_rcas_input : FFX_FSR2_DECLARE_SRV(FFX_FSR2_RESOURCE_IDENTIFIER_RCAS_INPUT);
+ Texture2D<FfxFloat32> r_lanczos_lut : FFX_FSR2_DECLARE_SRV(FFX_FSR2_RESOURCE_IDENTIFIER_LANCZOS_LUT);
+ Texture2D<FfxFloat32> r_imgMips : FFX_FSR2_DECLARE_SRV(FFX_FSR2_RESOURCE_IDENTIFIER_SCENE_LUMINANCE);
+ Texture2D<FfxFloat32> r_upsample_maximum_bias_lut : FFX_FSR2_DECLARE_SRV(FFX_FSR2_RESOURCE_IDENTITIER_UPSAMPLE_MAXIMUM_BIAS_LUT);
+ Texture2D<unorm FfxFloat32x2> r_dilated_reactive_masks : FFX_FSR2_DECLARE_SRV(FFX_FSR2_RESOURCE_IDENTIFIER_DILATED_REACTIVE_MASKS);
+ Texture2D<float3> r_input_prev_color_pre_alpha : FFX_FSR2_DECLARE_SRV(FFX_FSR2_RESOURCE_IDENTIFIER_PREV_PRE_ALPHA_COLOR);
+ Texture2D<float3> r_input_prev_color_post_alpha : FFX_FSR2_DECLARE_SRV(FFX_FSR2_RESOURCE_IDENTIFIER_PREV_POST_ALPHA_COLOR);
+
+ Texture2D<FfxFloat32x4> r_debug_out : FFX_FSR2_DECLARE_SRV(FFX_FSR2_RESOURCE_IDENTIFIER_DEBUG_OUTPUT);
+
+ // UAV declarations
+ RWTexture2D<FfxUInt32> rw_reconstructed_previous_nearest_depth : FFX_FSR2_DECLARE_UAV(FFX_FSR2_RESOURCE_IDENTIFIER_RECONSTRUCTED_PREVIOUS_NEAREST_DEPTH);
+ RWTexture2D<FfxFloat32x2> rw_dilated_motion_vectors : FFX_FSR2_DECLARE_UAV(FFX_FSR2_RESOURCE_IDENTIFIER_DILATED_MOTION_VECTORS);
+ RWTexture2D<FfxFloat32> rw_dilatedDepth : FFX_FSR2_DECLARE_UAV(FFX_FSR2_RESOURCE_IDENTIFIER_DILATED_DEPTH);
+ RWTexture2D<FfxFloat32x4> rw_internal_upscaled_color : FFX_FSR2_DECLARE_UAV(FFX_FSR2_RESOURCE_IDENTIFIER_INTERNAL_UPSCALED_COLOR);
+ RWTexture2D<unorm FfxFloat32x2> rw_lock_status : FFX_FSR2_DECLARE_UAV(FFX_FSR2_RESOURCE_IDENTIFIER_LOCK_STATUS);
+ RWTexture2D<FfxFloat32> rw_lock_input_luma : FFX_FSR2_DECLARE_UAV(FFX_FSR2_RESOURCE_IDENTIFIER_LOCK_INPUT_LUMA);
+ RWTexture2D<unorm FfxFloat32> rw_new_locks : FFX_FSR2_DECLARE_UAV(FFX_FSR2_RESOURCE_IDENTIFIER_NEW_LOCKS);
+ RWTexture2D<FfxFloat32x4> rw_prepared_input_color : FFX_FSR2_DECLARE_UAV(FFX_FSR2_RESOURCE_IDENTIFIER_PREPARED_INPUT_COLOR);
+ RWTexture2D<FfxFloat32x4> rw_luma_history : FFX_FSR2_DECLARE_UAV(FFX_FSR2_RESOURCE_IDENTIFIER_LUMA_HISTORY);
+ RWTexture2D<FfxFloat32x4> rw_upscaled_output : FFX_FSR2_DECLARE_UAV(FFX_FSR2_RESOURCE_IDENTIFIER_UPSCALED_OUTPUT);
+
+ globallycoherent RWTexture2D<FfxFloat32> rw_img_mip_shading_change : FFX_FSR2_DECLARE_UAV(FFX_FSR2_RESOURCE_IDENTIFIER_SCENE_LUMINANCE_MIPMAP_SHADING_CHANGE);
+ globallycoherent RWTexture2D<FfxFloat32> rw_img_mip_5 : FFX_FSR2_DECLARE_UAV(FFX_FSR2_RESOURCE_IDENTIFIER_SCENE_LUMINANCE_MIPMAP_5);
+ RWTexture2D<unorm FfxFloat32x2> rw_dilated_reactive_masks : FFX_FSR2_DECLARE_UAV(FFX_FSR2_RESOURCE_IDENTIFIER_DILATED_REACTIVE_MASKS);
+ RWTexture2D<FfxFloat32x2> rw_auto_exposure : FFX_FSR2_DECLARE_UAV(FFX_FSR2_RESOURCE_IDENTIFIER_AUTO_EXPOSURE);
+ globallycoherent RWTexture2D<FfxUInt32> rw_spd_global_atomic : FFX_FSR2_DECLARE_UAV(FFX_FSR2_RESOURCE_IDENTIFIER_SPD_ATOMIC_COUNT);
+ RWTexture2D<FfxFloat32x4> rw_debug_out : FFX_FSR2_DECLARE_UAV(FFX_FSR2_RESOURCE_IDENTIFIER_DEBUG_OUTPUT);
+
+ RWTexture2D<float> rw_output_autoreactive : FFX_FSR2_DECLARE_UAV(FFX_FSR2_RESOURCE_IDENTIFIER_AUTOREACTIVE);
+ RWTexture2D<float> rw_output_autocomposition : FFX_FSR2_DECLARE_UAV(FFX_FSR2_RESOURCE_IDENTIFIER_AUTOCOMPOSITION);
+ RWTexture2D<float3> rw_output_prev_color_pre_alpha : FFX_FSR2_DECLARE_UAV(FFX_FSR2_RESOURCE_IDENTIFIER_PREV_PRE_ALPHA_COLOR);
+ RWTexture2D<float3> rw_output_prev_color_post_alpha : FFX_FSR2_DECLARE_UAV(FFX_FSR2_RESOURCE_IDENTIFIER_PREV_POST_ALPHA_COLOR);
+
+#else // #if defined(FFX_INTERNAL)
+ #if defined FSR2_BIND_SRV_INPUT_COLOR
+ Texture2D<FfxFloat32x4> r_input_color_jittered : FFX_FSR2_DECLARE_SRV(FSR2_BIND_SRV_INPUT_COLOR);
+ #endif
+ #if defined FSR2_BIND_SRV_INPUT_OPAQUE_ONLY
+ Texture2D<FfxFloat32x4> r_input_opaque_only : FFX_FSR2_DECLARE_SRV(FSR2_BIND_SRV_INPUT_OPAQUE_ONLY);
+ #endif
+ #if defined FSR2_BIND_SRV_INPUT_MOTION_VECTORS
+ Texture2D<FfxFloat32x4> r_input_motion_vectors : FFX_FSR2_DECLARE_SRV(FSR2_BIND_SRV_INPUT_MOTION_VECTORS);
+ #endif
+ #if defined FSR2_BIND_SRV_INPUT_DEPTH
+ Texture2D<FfxFloat32> r_input_depth : FFX_FSR2_DECLARE_SRV(FSR2_BIND_SRV_INPUT_DEPTH);
+ #endif
+ #if defined FSR2_BIND_SRV_INPUT_EXPOSURE
+ Texture2D<FfxFloat32x2> r_input_exposure : FFX_FSR2_DECLARE_SRV(FSR2_BIND_SRV_INPUT_EXPOSURE);
+ #endif
+ #if defined FSR2_BIND_SRV_AUTO_EXPOSURE
+ Texture2D<FfxFloat32x2> r_auto_exposure : FFX_FSR2_DECLARE_SRV(FSR2_BIND_SRV_AUTO_EXPOSURE);
+ #endif
+ #if defined FSR2_BIND_SRV_REACTIVE_MASK
+ Texture2D<FfxFloat32> r_reactive_mask : FFX_FSR2_DECLARE_SRV(FSR2_BIND_SRV_REACTIVE_MASK);
+ #endif
+ #if defined FSR2_BIND_SRV_TRANSPARENCY_AND_COMPOSITION_MASK
+ Texture2D<FfxFloat32> r_transparency_and_composition_mask : FFX_FSR2_DECLARE_SRV(FSR2_BIND_SRV_TRANSPARENCY_AND_COMPOSITION_MASK);
+ #endif
+ #if defined FSR2_BIND_SRV_RECONSTRUCTED_PREV_NEAREST_DEPTH
+ Texture2D<FfxUInt32> r_reconstructed_previous_nearest_depth : FFX_FSR2_DECLARE_SRV(FSR2_BIND_SRV_RECONSTRUCTED_PREV_NEAREST_DEPTH);
+ #endif
+ #if defined FSR2_BIND_SRV_DILATED_MOTION_VECTORS
+ Texture2D<FfxFloat32x2> r_dilated_motion_vectors : FFX_FSR2_DECLARE_SRV(FSR2_BIND_SRV_DILATED_MOTION_VECTORS);
+ #endif
+ #if defined FSR2_BIND_SRV_PREVIOUS_DILATED_MOTION_VECTORS
+ Texture2D<FfxFloat32x2> r_previous_dilated_motion_vectors : FFX_FSR2_DECLARE_SRV(FSR2_BIND_SRV_PREVIOUS_DILATED_MOTION_VECTORS);
+ #endif
+ #if defined FSR2_BIND_SRV_DILATED_DEPTH
+ Texture2D<FfxFloat32> r_dilatedDepth : FFX_FSR2_DECLARE_SRV(FSR2_BIND_SRV_DILATED_DEPTH);
+ #endif
+ #if defined FSR2_BIND_SRV_INTERNAL_UPSCALED
+ Texture2D<FfxFloat32x4> r_internal_upscaled_color : FFX_FSR2_DECLARE_SRV(FSR2_BIND_SRV_INTERNAL_UPSCALED);
+ #endif
+ #if defined FSR2_BIND_SRV_LOCK_STATUS
+ Texture2D<unorm FfxFloat32x2> r_lock_status : FFX_FSR2_DECLARE_SRV(FSR2_BIND_SRV_LOCK_STATUS);
+ #endif
+ #if defined FSR2_BIND_SRV_LOCK_INPUT_LUMA
+ Texture2D<FfxFloat32> r_lock_input_luma : FFX_FSR2_DECLARE_SRV(FSR2_BIND_SRV_LOCK_INPUT_LUMA);
+ #endif
+ #if defined FSR2_BIND_SRV_NEW_LOCKS
+ Texture2D<unorm FfxFloat32> r_new_locks : FFX_FSR2_DECLARE_SRV(FSR2_BIND_SRV_NEW_LOCKS);
+ #endif
+ #if defined FSR2_BIND_SRV_PREPARED_INPUT_COLOR
+ Texture2D<FfxFloat32x4> r_prepared_input_color : FFX_FSR2_DECLARE_SRV(FSR2_BIND_SRV_PREPARED_INPUT_COLOR);
+ #endif
+ #if defined FSR2_BIND_SRV_LUMA_HISTORY
+ Texture2D<unorm FfxFloat32x4> r_luma_history : FFX_FSR2_DECLARE_SRV(FSR2_BIND_SRV_LUMA_HISTORY);
+ #endif
+ #if defined FSR2_BIND_SRV_RCAS_INPUT
+ Texture2D<FfxFloat32x4> r_rcas_input : FFX_FSR2_DECLARE_SRV(FSR2_BIND_SRV_RCAS_INPUT);
+ #endif
+ #if defined FSR2_BIND_SRV_LANCZOS_LUT
+ Texture2D<FfxFloat32> r_lanczos_lut : FFX_FSR2_DECLARE_SRV(FSR2_BIND_SRV_LANCZOS_LUT);
+ #endif
+ #if defined FSR2_BIND_SRV_SCENE_LUMINANCE_MIPS
+ Texture2D<FfxFloat32> r_imgMips : FFX_FSR2_DECLARE_SRV(FSR2_BIND_SRV_SCENE_LUMINANCE_MIPS);
+ #endif
+ #if defined FSR2_BIND_SRV_UPSCALE_MAXIMUM_BIAS_LUT
+ Texture2D<FfxFloat32> r_upsample_maximum_bias_lut : FFX_FSR2_DECLARE_SRV(FSR2_BIND_SRV_UPSCALE_MAXIMUM_BIAS_LUT);
+ #endif
+ #if defined FSR2_BIND_SRV_DILATED_REACTIVE_MASKS
+ Texture2D<unorm FfxFloat32x2> r_dilated_reactive_masks : FFX_FSR2_DECLARE_SRV(FSR2_BIND_SRV_DILATED_REACTIVE_MASKS);
+ #endif
+
+ #if defined FSR2_BIND_SRV_PREV_PRE_ALPHA_COLOR
+ Texture2D<float3> r_input_prev_color_pre_alpha : FFX_FSR2_DECLARE_SRV(FFX_FSR2_RESOURCE_IDENTIFIER_PREV_PRE_ALPHA_COLOR);
+ #endif
+ #if defined FSR2_BIND_SRV_PREV_POST_ALPHA_COLOR
+ Texture2D<float3> r_input_prev_color_post_alpha : FFX_FSR2_DECLARE_SRV(FFX_FSR2_RESOURCE_IDENTIFIER_PREV_POST_ALPHA_COLOR);
+ #endif
+
+ // UAV declarations
+ #if defined FSR2_BIND_UAV_RECONSTRUCTED_PREV_NEAREST_DEPTH
+ RWTexture2D<FfxUInt32> rw_reconstructed_previous_nearest_depth : FFX_FSR2_DECLARE_UAV(FSR2_BIND_UAV_RECONSTRUCTED_PREV_NEAREST_DEPTH);
+ #endif
+ #if defined FSR2_BIND_UAV_DILATED_MOTION_VECTORS
+ RWTexture2D<FfxFloat32x2> rw_dilated_motion_vectors : FFX_FSR2_DECLARE_UAV(FSR2_BIND_UAV_DILATED_MOTION_VECTORS);
+ #endif
+ #if defined FSR2_BIND_UAV_DILATED_DEPTH
+ RWTexture2D<FfxFloat32> rw_dilatedDepth : FFX_FSR2_DECLARE_UAV(FSR2_BIND_UAV_DILATED_DEPTH);
+ #endif
+ #if defined FSR2_BIND_UAV_INTERNAL_UPSCALED
+ RWTexture2D<FfxFloat32x4> rw_internal_upscaled_color : FFX_FSR2_DECLARE_UAV(FSR2_BIND_UAV_INTERNAL_UPSCALED);
+ #endif
+ #if defined FSR2_BIND_UAV_LOCK_STATUS
+ RWTexture2D<unorm FfxFloat32x2> rw_lock_status : FFX_FSR2_DECLARE_UAV(FSR2_BIND_UAV_LOCK_STATUS);
+ #endif
+ #if defined FSR2_BIND_UAV_LOCK_INPUT_LUMA
+ RWTexture2D<FfxFloat32> rw_lock_input_luma : FFX_FSR2_DECLARE_UAV(FSR2_BIND_UAV_LOCK_INPUT_LUMA);
+ #endif
+ #if defined FSR2_BIND_UAV_NEW_LOCKS
+ RWTexture2D<unorm FfxFloat32> rw_new_locks : FFX_FSR2_DECLARE_UAV(FSR2_BIND_UAV_NEW_LOCKS);
+ #endif
+ #if defined FSR2_BIND_UAV_PREPARED_INPUT_COLOR
+ RWTexture2D<FfxFloat32x4> rw_prepared_input_color : FFX_FSR2_DECLARE_UAV(FSR2_BIND_UAV_PREPARED_INPUT_COLOR);
+ #endif
+ #if defined FSR2_BIND_UAV_LUMA_HISTORY
+ RWTexture2D<FfxFloat32x4> rw_luma_history : FFX_FSR2_DECLARE_UAV(FSR2_BIND_UAV_LUMA_HISTORY);
+ #endif
+ #if defined FSR2_BIND_UAV_UPSCALED_OUTPUT
+ RWTexture2D<FfxFloat32x4> rw_upscaled_output : FFX_FSR2_DECLARE_UAV(FSR2_BIND_UAV_UPSCALED_OUTPUT);
+ #endif
+ #if defined FSR2_BIND_UAV_EXPOSURE_MIP_LUMA_CHANGE
+ globallycoherent RWTexture2D<FfxFloat32> rw_img_mip_shading_change : FFX_FSR2_DECLARE_UAV(FSR2_BIND_UAV_EXPOSURE_MIP_LUMA_CHANGE);
+ #endif
+ #if defined FSR2_BIND_UAV_EXPOSURE_MIP_5
+ globallycoherent RWTexture2D<FfxFloat32> rw_img_mip_5 : FFX_FSR2_DECLARE_UAV(FSR2_BIND_UAV_EXPOSURE_MIP_5);
+ #endif
+ #if defined FSR2_BIND_UAV_DILATED_REACTIVE_MASKS
+ RWTexture2D<unorm FfxFloat32x2> rw_dilated_reactive_masks : FFX_FSR2_DECLARE_UAV(FSR2_BIND_UAV_DILATED_REACTIVE_MASKS);
+ #endif
+ #if defined FSR2_BIND_UAV_EXPOSURE
+ RWTexture2D<FfxFloat32x2> rw_exposure : FFX_FSR2_DECLARE_UAV(FSR2_BIND_UAV_EXPOSURE);
+ #endif
+ #if defined FSR2_BIND_UAV_AUTO_EXPOSURE
+ RWTexture2D<FfxFloat32x2> rw_auto_exposure : FFX_FSR2_DECLARE_UAV(FSR2_BIND_UAV_AUTO_EXPOSURE);
+ #endif
+ #if defined FSR2_BIND_UAV_SPD_GLOBAL_ATOMIC
+ globallycoherent RWTexture2D<FfxUInt32> rw_spd_global_atomic : FFX_FSR2_DECLARE_UAV(FSR2_BIND_UAV_SPD_GLOBAL_ATOMIC);
+ #endif
+
+ #if defined FSR2_BIND_UAV_AUTOREACTIVE
+ RWTexture2D<float> rw_output_autoreactive : FFX_FSR2_DECLARE_UAV(FSR2_BIND_UAV_AUTOREACTIVE);
+ #endif
+ #if defined FSR2_BIND_UAV_AUTOCOMPOSITION
+ RWTexture2D<float> rw_output_autocomposition : FFX_FSR2_DECLARE_UAV(FSR2_BIND_UAV_AUTOCOMPOSITION);
+ #endif
+ #if defined FSR2_BIND_UAV_PREV_PRE_ALPHA_COLOR
+ RWTexture2D<float3> rw_output_prev_color_pre_alpha : FFX_FSR2_DECLARE_UAV(FSR2_BIND_UAV_PREV_PRE_ALPHA_COLOR);
+ #endif
+ #if defined FSR2_BIND_UAV_PREV_POST_ALPHA_COLOR
+ RWTexture2D<float3> rw_output_prev_color_post_alpha : FFX_FSR2_DECLARE_UAV(FSR2_BIND_UAV_PREV_POST_ALPHA_COLOR);
+ #endif
+#endif // #if defined(FFX_INTERNAL)
+
+#if defined(FSR2_BIND_SRV_SCENE_LUMINANCE_MIPS) || defined(FFX_INTERNAL)
+FfxFloat32 LoadMipLuma(FfxUInt32x2 iPxPos, FfxUInt32 mipLevel)
+{
+ return r_imgMips.mips[mipLevel][iPxPos];
+}
+#endif
+
+#if defined(FSR2_BIND_SRV_SCENE_LUMINANCE_MIPS) || defined(FFX_INTERNAL)
+FfxFloat32 SampleMipLuma(FfxFloat32x2 fUV, FfxUInt32 mipLevel)
+{
+ return r_imgMips.SampleLevel(s_LinearClamp, fUV, mipLevel);
+}
+#endif
+
+#if defined(FSR2_BIND_SRV_INPUT_DEPTH) || defined(FFX_INTERNAL)
+FfxFloat32 LoadInputDepth(FfxUInt32x2 iPxPos)
+{
+ return r_input_depth[iPxPos];
+}
+#endif
+
+#if defined(FSR2_BIND_SRV_INPUT_DEPTH) || defined(FFX_INTERNAL)
+FfxFloat32 SampleInputDepth(FfxFloat32x2 fUV)
+{
+ return r_input_depth.SampleLevel(s_LinearClamp, fUV, 0).x;
+}
+#endif
+
+#if defined(FSR2_BIND_SRV_REACTIVE_MASK) || defined(FFX_INTERNAL)
+FfxFloat32 LoadReactiveMask(FfxUInt32x2 iPxPos)
+{
+ return r_reactive_mask[iPxPos];
+}
+#endif
+
+#if defined(FSR2_BIND_SRV_TRANSPARENCY_AND_COMPOSITION_MASK) || defined(FFX_INTERNAL)
+FfxFloat32 LoadTransparencyAndCompositionMask(FfxUInt32x2 iPxPos)
+{
+ return r_transparency_and_composition_mask[iPxPos];
+}
+#endif
+
+#if defined(FSR2_BIND_SRV_INPUT_COLOR) || defined(FFX_INTERNAL)
+FfxFloat32x3 LoadInputColor(FfxUInt32x2 iPxPos)
+{
+ return r_input_color_jittered[iPxPos].rgb;
+}
+#endif
+
+#if defined(FSR2_BIND_SRV_INPUT_COLOR) || defined(FFX_INTERNAL)
+FfxFloat32x3 SampleInputColor(FfxFloat32x2 fUV)
+{
+ return r_input_color_jittered.SampleLevel(s_LinearClamp, fUV, 0).rgb;
+}
+#endif
+
+#if defined(FSR2_BIND_SRV_PREPARED_INPUT_COLOR) || defined(FFX_INTERNAL)
+FfxFloat32x3 LoadPreparedInputColor(FfxUInt32x2 iPxPos)
+{
+ return r_prepared_input_color[iPxPos].xyz;
+}
+#endif
+
+#if defined(FSR2_BIND_SRV_INPUT_MOTION_VECTORS) || defined(FFX_INTERNAL)
+FfxFloat32x2 LoadInputMotionVector(FfxUInt32x2 iPxDilatedMotionVectorPos)
+{
+ FfxFloat32x2 fSrcMotionVector = r_input_motion_vectors[iPxDilatedMotionVectorPos].xy;
+
+ FfxFloat32x2 fUvMotionVector = fSrcMotionVector * MotionVectorScale();
+
+#if FFX_FSR2_OPTION_JITTERED_MOTION_VECTORS
+ fUvMotionVector -= MotionVectorJitterCancellation();
+#endif
+
+ return fUvMotionVector;
+}
+#endif
+
+#if defined(FSR2_BIND_SRV_INTERNAL_UPSCALED) || defined(FFX_INTERNAL)
+FfxFloat32x4 LoadHistory(FfxUInt32x2 iPxHistory)
+{
+ return r_internal_upscaled_color[iPxHistory];
+}
+#endif
+
+#if defined(FSR2_BIND_UAV_LUMA_HISTORY) || defined(FFX_INTERNAL)
+void StoreLumaHistory(FfxUInt32x2 iPxPos, FfxFloat32x4 fLumaHistory)
+{
+ rw_luma_history[iPxPos] = fLumaHistory;
+}
+#endif
+
+#if defined(FSR2_BIND_SRV_LUMA_HISTORY) || defined(FFX_INTERNAL)
+FfxFloat32x4 SampleLumaHistory(FfxFloat32x2 fUV)
+{
+ return r_luma_history.SampleLevel(s_LinearClamp, fUV, 0);
+}
+#endif
+
+#if defined(FFX_INTERNAL)
+FfxFloat32x4 SampleDebug(FfxFloat32x2 fUV)
+{
+ return r_debug_out.SampleLevel(s_LinearClamp, fUV, 0).w;
+}
+#endif
+
+#if defined(FSR2_BIND_UAV_INTERNAL_UPSCALED) || defined(FFX_INTERNAL)
+void StoreReprojectedHistory(FfxUInt32x2 iPxHistory, FfxFloat32x4 fHistory)
+{
+ rw_internal_upscaled_color[iPxHistory] = fHistory;
+}
+#endif
+
+#if defined(FSR2_BIND_UAV_INTERNAL_UPSCALED) || defined(FFX_INTERNAL)
+void StoreInternalColorAndWeight(FfxUInt32x2 iPxPos, FfxFloat32x4 fColorAndWeight)
+{
+ rw_internal_upscaled_color[iPxPos] = fColorAndWeight;
+}
+#endif
+
+#if defined(FSR2_BIND_UAV_UPSCALED_OUTPUT) || defined(FFX_INTERNAL)
+void StoreUpscaledOutput(FfxUInt32x2 iPxPos, FfxFloat32x3 fColor)
+{
+ rw_upscaled_output[iPxPos] = FfxFloat32x4(fColor, 1.f);
+}
+#endif
+
+//LOCK_LIFETIME_REMAINING == 0
+//Should make LockInitialLifetime() return a const 1.0f later
+#if defined(FSR2_BIND_SRV_LOCK_STATUS) || defined(FFX_INTERNAL)
+FfxFloat32x2 LoadLockStatus(FfxUInt32x2 iPxPos)
+{
+ return r_lock_status[iPxPos];
+}
+#endif
+
+#if defined(FSR2_BIND_UAV_LOCK_STATUS) || defined(FFX_INTERNAL)
+void StoreLockStatus(FfxUInt32x2 iPxPos, FfxFloat32x2 fLockStatus)
+{
+ rw_lock_status[iPxPos] = fLockStatus;
+}
+#endif
+
+#if defined(FSR2_BIND_SRV_LOCK_INPUT_LUMA) || defined(FFX_INTERNAL)
+FfxFloat32 LoadLockInputLuma(FfxUInt32x2 iPxPos)
+{
+ return r_lock_input_luma[iPxPos];
+}
+#endif
+
+#if defined(FSR2_BIND_UAV_LOCK_INPUT_LUMA) || defined(FFX_INTERNAL)
+void StoreLockInputLuma(FfxUInt32x2 iPxPos, FfxFloat32 fLuma)
+{
+ rw_lock_input_luma[iPxPos] = fLuma;
+}
+#endif
+
+#if defined(FSR2_BIND_SRV_NEW_LOCKS) || defined(FFX_INTERNAL)
+FfxFloat32 LoadNewLocks(FfxUInt32x2 iPxPos)
+{
+ return r_new_locks[iPxPos];
+}
+#endif
+
+#if defined(FSR2_BIND_UAV_NEW_LOCKS) || defined(FFX_INTERNAL)
+FfxFloat32 LoadRwNewLocks(FfxUInt32x2 iPxPos)
+{
+ return rw_new_locks[iPxPos];
+}
+#endif
+
+#if defined(FSR2_BIND_UAV_NEW_LOCKS) || defined(FFX_INTERNAL)
+void StoreNewLocks(FfxUInt32x2 iPxPos, FfxFloat32 newLock)
+{
+ rw_new_locks[iPxPos] = newLock;
+}
+#endif
+
+#if defined(FSR2_BIND_UAV_PREPARED_INPUT_COLOR) || defined(FFX_INTERNAL)
+void StorePreparedInputColor(FFX_PARAMETER_IN FfxUInt32x2 iPxPos, FFX_PARAMETER_IN FfxFloat32x4 fTonemapped)
+{
+ rw_prepared_input_color[iPxPos] = fTonemapped;
+}
+#endif
+
+#if defined(FSR2_BIND_SRV_PREPARED_INPUT_COLOR) || defined(FFX_INTERNAL)
+FfxFloat32 SampleDepthClip(FfxFloat32x2 fUV)
+{
+ return r_prepared_input_color.SampleLevel(s_LinearClamp, fUV, 0).w;
+}
+#endif
+
+#if defined(FSR2_BIND_SRV_LOCK_STATUS) || defined(FFX_INTERNAL)
+FfxFloat32x2 SampleLockStatus(FfxFloat32x2 fUV)
+{
+ FfxFloat32x2 fLockStatus = r_lock_status.SampleLevel(s_LinearClamp, fUV, 0);
+ return fLockStatus;
+}
+#endif
+
+#if defined(FSR2_BIND_SRV_RECONSTRUCTED_PREV_NEAREST_DEPTH) || defined(FFX_INTERNAL)
+FfxFloat32 LoadReconstructedPrevDepth(FfxUInt32x2 iPxPos)
+{
+ return asfloat(r_reconstructed_previous_nearest_depth[iPxPos]);
+}
+#endif
+
+#if defined(FSR2_BIND_UAV_RECONSTRUCTED_PREV_NEAREST_DEPTH) || defined(FFX_INTERNAL)
+void StoreReconstructedDepth(FfxUInt32x2 iPxSample, FfxFloat32 fDepth)
+{
+ FfxUInt32 uDepth = asuint(fDepth);
+
+ #if FFX_FSR2_OPTION_INVERTED_DEPTH
+ InterlockedMax(rw_reconstructed_previous_nearest_depth[iPxSample], uDepth);
+ #else
+ InterlockedMin(rw_reconstructed_previous_nearest_depth[iPxSample], uDepth); // min for standard, max for inverted depth
+ #endif
+}
+#endif
+
+#if defined(FSR2_BIND_UAV_RECONSTRUCTED_PREV_NEAREST_DEPTH) || defined(FFX_INTERNAL)
+void SetReconstructedDepth(FfxUInt32x2 iPxSample, const FfxUInt32 uValue)
+{
+ rw_reconstructed_previous_nearest_depth[iPxSample] = uValue;
+}
+#endif
+
+#if defined(FSR2_BIND_UAV_DILATED_DEPTH) || defined(FFX_INTERNAL)
+void StoreDilatedDepth(FFX_PARAMETER_IN FfxUInt32x2 iPxPos, FFX_PARAMETER_IN FfxFloat32 fDepth)
+{
+ rw_dilatedDepth[iPxPos] = fDepth;
+}
+#endif
+
+#if defined(FSR2_BIND_UAV_DILATED_MOTION_VECTORS) || defined(FFX_INTERNAL)
+void StoreDilatedMotionVector(FFX_PARAMETER_IN FfxUInt32x2 iPxPos, FFX_PARAMETER_IN FfxFloat32x2 fMotionVector)
+{
+ rw_dilated_motion_vectors[iPxPos] = fMotionVector;
+}
+#endif
+
+#if defined(FSR2_BIND_SRV_DILATED_MOTION_VECTORS) || defined(FFX_INTERNAL)
+FfxFloat32x2 LoadDilatedMotionVector(FfxUInt32x2 iPxInput)
+{
+ return r_dilated_motion_vectors[iPxInput].xy;
+}
+#endif
+
+#if defined(FSR2_BIND_SRV_PREVIOUS_DILATED_MOTION_VECTORS) || defined(FFX_INTERNAL)
+FfxFloat32x2 LoadPreviousDilatedMotionVector(FfxUInt32x2 iPxInput)
+{
+ return r_previous_dilated_motion_vectors[iPxInput].xy;
+}
+
+FfxFloat32x2 SamplePreviousDilatedMotionVector(FfxFloat32x2 uv)
+{
+ return r_previous_dilated_motion_vectors.SampleLevel(s_LinearClamp, uv, 0).xy;
+}
+#endif
+
+#if defined(FSR2_BIND_SRV_DILATED_DEPTH) || defined(FFX_INTERNAL)
+FfxFloat32 LoadDilatedDepth(FfxUInt32x2 iPxInput)
+{
+ return r_dilatedDepth[iPxInput];
+}
+#endif
+
+#if defined(FSR2_BIND_SRV_INPUT_EXPOSURE) || defined(FFX_INTERNAL)
+FfxFloat32 Exposure()
+{
+ FfxFloat32 exposure = r_input_exposure[FfxUInt32x2(0, 0)].x;
+
+ if (exposure == 0.0f) {
+ exposure = 1.0f;
+ }
+
+ return exposure;
+}
+#endif
+
+#if defined(FSR2_BIND_SRV_AUTO_EXPOSURE) || defined(FFX_INTERNAL)
+FfxFloat32 AutoExposure()
+{
+ FfxFloat32 exposure = r_auto_exposure[FfxUInt32x2(0, 0)].x;
+
+ if (exposure == 0.0f) {
+ exposure = 1.0f;
+ }
+
+ return exposure;
+}
+#endif
+
+FfxFloat32 SampleLanczos2Weight(FfxFloat32 x)
+{
+#if defined(FSR2_BIND_SRV_LANCZOS_LUT) || defined(FFX_INTERNAL)
+ return r_lanczos_lut.SampleLevel(s_LinearClamp, FfxFloat32x2(x / 2, 0.5f), 0);
+#else
+ return 0.f;
+#endif
+}
+
+#if defined(FSR2_BIND_SRV_UPSCALE_MAXIMUM_BIAS_LUT) || defined(FFX_INTERNAL)
+FfxFloat32 SampleUpsampleMaximumBias(FfxFloat32x2 uv)
+{
+ // Stored as a SNORM, so make sure to multiply by 2 to retrieve the actual expected range.
+ return FfxFloat32(2.0) * r_upsample_maximum_bias_lut.SampleLevel(s_LinearClamp, abs(uv) * 2.0, 0);
+}
+#endif
+
+#if defined(FSR2_BIND_SRV_DILATED_REACTIVE_MASKS) || defined(FFX_INTERNAL)
+FfxFloat32x2 SampleDilatedReactiveMasks(FfxFloat32x2 fUV)
+{
+ return r_dilated_reactive_masks.SampleLevel(s_LinearClamp, fUV, 0);
+}
+#endif
+
+#if defined(FSR2_BIND_SRV_DILATED_REACTIVE_MASKS) || defined(FFX_INTERNAL)
+FfxFloat32x2 LoadDilatedReactiveMasks(FFX_PARAMETER_IN FfxUInt32x2 iPxPos)
+{
+ return r_dilated_reactive_masks[iPxPos];
+}
+#endif
+
+#if defined(FSR2_BIND_UAV_DILATED_REACTIVE_MASKS) || defined(FFX_INTERNAL)
+void StoreDilatedReactiveMasks(FFX_PARAMETER_IN FfxUInt32x2 iPxPos, FFX_PARAMETER_IN FfxFloat32x2 fDilatedReactiveMasks)
+{
+ rw_dilated_reactive_masks[iPxPos] = fDilatedReactiveMasks;
+}
+#endif
+
+#if defined(FSR2_BIND_SRV_INPUT_OPAQUE_ONLY) || defined(FFX_INTERNAL)
+FfxFloat32x3 LoadOpaqueOnly(FFX_PARAMETER_IN FFX_MIN16_I2 iPxPos)
+{
+ return r_input_opaque_only[iPxPos].xyz;
+}
+#endif
+
+#if defined(FSR2_BIND_SRV_PREV_PRE_ALPHA_COLOR) || defined(FFX_INTERNAL)
+FfxFloat32x3 LoadPrevPreAlpha(FFX_PARAMETER_IN FFX_MIN16_I2 iPxPos)
+{
+ return r_input_prev_color_pre_alpha[iPxPos];
+}
+#endif
+
+#if defined(FSR2_BIND_SRV_PREV_POST_ALPHA_COLOR) || defined(FFX_INTERNAL)
+FfxFloat32x3 LoadPrevPostAlpha(FFX_PARAMETER_IN FFX_MIN16_I2 iPxPos)
+{
+ return r_input_prev_color_post_alpha[iPxPos];
+}
+#endif
+
+#if defined(FSR2_BIND_UAV_AUTOREACTIVE) || defined(FFX_INTERNAL)
+#if defined(FSR2_BIND_UAV_AUTOCOMPOSITION) || defined(FFX_INTERNAL)
+void StoreAutoReactive(FFX_PARAMETER_IN FFX_MIN16_I2 iPxPos, FFX_PARAMETER_IN FFX_MIN16_F2 fReactive)
+{
+ rw_output_autoreactive[iPxPos] = fReactive.x;
+
+ rw_output_autocomposition[iPxPos] = fReactive.y;
+}
+#endif
+#endif
+
+#if defined(FSR2_BIND_UAV_PREV_PRE_ALPHA_COLOR) || defined(FFX_INTERNAL)
+void StorePrevPreAlpha(FFX_PARAMETER_IN FFX_MIN16_I2 iPxPos, FFX_PARAMETER_IN FFX_MIN16_F3 color)
+{
+ rw_output_prev_color_pre_alpha[iPxPos] = color;
+
+}
+#endif
+
+#if defined(FSR2_BIND_UAV_PREV_POST_ALPHA_COLOR) || defined(FFX_INTERNAL)
+void StorePrevPostAlpha(FFX_PARAMETER_IN FFX_MIN16_I2 iPxPos, FFX_PARAMETER_IN FFX_MIN16_F3 color)
+{
+ rw_output_prev_color_post_alpha[iPxPos] = color;
+}
+#endif
+
+#endif // #if defined(FFX_GPU)
diff --git a/thirdparty/amd-fsr2/shaders/ffx_fsr2_common.h b/thirdparty/amd-fsr2/shaders/ffx_fsr2_common.h
new file mode 100644
index 0000000000..0c72aa8494
--- /dev/null
+++ b/thirdparty/amd-fsr2/shaders/ffx_fsr2_common.h
@@ -0,0 +1,565 @@
+// This file is part of the FidelityFX SDK.
+//
+// Copyright (c) 2022-2023 Advanced Micro Devices, Inc. All rights reserved.
+//
+// Permission is hereby granted, free of charge, to any person obtaining a copy
+// of this software and associated documentation files (the "Software"), to deal
+// in the Software without restriction, including without limitation the rights
+// to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
+// copies of the Software, and to permit persons to whom the Software is
+// furnished to do so, subject to the following conditions:
+// The above copyright notice and this permission notice shall be included in
+// all copies or substantial portions of the Software.
+//
+// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
+// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
+// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
+// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
+// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
+// OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
+// THE SOFTWARE.
+
+#if !defined(FFX_FSR2_COMMON_H)
+#define FFX_FSR2_COMMON_H
+
+#if defined(FFX_CPU) || defined(FFX_GPU)
+//Locks
+#define LOCK_LIFETIME_REMAINING 0
+#define LOCK_TEMPORAL_LUMA 1
+#endif // #if defined(FFX_CPU) || defined(FFX_GPU)
+
+#if defined(FFX_GPU)
+FFX_STATIC const FfxFloat32 FSR2_FP16_MIN = 6.10e-05f;
+FFX_STATIC const FfxFloat32 FSR2_FP16_MAX = 65504.0f;
+FFX_STATIC const FfxFloat32 FSR2_EPSILON = 1e-03f;
+FFX_STATIC const FfxFloat32 FSR2_TONEMAP_EPSILON = 1.0f / FSR2_FP16_MAX;
+FFX_STATIC const FfxFloat32 FSR2_FLT_MAX = 3.402823466e+38f;
+FFX_STATIC const FfxFloat32 FSR2_FLT_MIN = 1.175494351e-38f;
+
+// treat vector truncation warnings as errors
+#pragma warning(error: 3206)
+
+// suppress warnings
+#pragma warning(disable: 3205) // conversion from larger type to smaller
+#pragma warning(disable: 3571) // in ffxPow(f, e), f could be negative
+
+// Reconstructed depth usage
+FFX_STATIC const FfxFloat32 fReconstructedDepthBilinearWeightThreshold = 0.01f;
+
+// Accumulation
+FFX_STATIC const FfxFloat32 fUpsampleLanczosWeightScale = 1.0f / 12.0f;
+FFX_STATIC const FfxFloat32 fMaxAccumulationLanczosWeight = 1.0f;
+FFX_STATIC const FfxFloat32 fAverageLanczosWeightPerFrame = 0.74f * fUpsampleLanczosWeightScale; // Average lanczos weight for jitter accumulated samples
+FFX_STATIC const FfxFloat32 fAccumulationMaxOnMotion = 3.0f * fUpsampleLanczosWeightScale;
+
+// Auto exposure
+FFX_STATIC const FfxFloat32 resetAutoExposureAverageSmoothing = 1e8f;
+
+struct AccumulationPassCommonParams
+{
+ FfxInt32x2 iPxHrPos;
+ FfxFloat32x2 fHrUv;
+ FfxFloat32x2 fLrUv_HwSampler;
+ FfxFloat32x2 fMotionVector;
+ FfxFloat32x2 fReprojectedHrUv;
+ FfxFloat32 fHrVelocity;
+ FfxFloat32 fDepthClipFactor;
+ FfxFloat32 fDilatedReactiveFactor;
+ FfxFloat32 fAccumulationMask;
+
+ FfxBoolean bIsResetFrame;
+ FfxBoolean bIsExistingSample;
+ FfxBoolean bIsNewSample;
+};
+
+struct LockState
+{
+ FfxBoolean NewLock; //Set for both unique new and re-locked new
+ FfxBoolean WasLockedPrevFrame; //Set to identify if the pixel was already locked (relock)
+};
+
+void InitializeNewLockSample(FFX_PARAMETER_OUT FfxFloat32x2 fLockStatus)
+{
+ fLockStatus = FfxFloat32x2(0, 0);
+}
+
+#if FFX_HALF
+void InitializeNewLockSample(FFX_PARAMETER_OUT FFX_MIN16_F2 fLockStatus)
+{
+ fLockStatus = FFX_MIN16_F2(0, 0);
+}
+#endif
+
+
+void KillLock(FFX_PARAMETER_INOUT FfxFloat32x2 fLockStatus)
+{
+ fLockStatus[LOCK_LIFETIME_REMAINING] = 0;
+}
+
+#if FFX_HALF
+void KillLock(FFX_PARAMETER_INOUT FFX_MIN16_F2 fLockStatus)
+{
+ fLockStatus[LOCK_LIFETIME_REMAINING] = FFX_MIN16_F(0);
+}
+#endif
+
+struct RectificationBox
+{
+ FfxFloat32x3 boxCenter;
+ FfxFloat32x3 boxVec;
+ FfxFloat32x3 aabbMin;
+ FfxFloat32x3 aabbMax;
+ FfxFloat32 fBoxCenterWeight;
+};
+#if FFX_HALF
+struct RectificationBoxMin16
+{
+ FFX_MIN16_F3 boxCenter;
+ FFX_MIN16_F3 boxVec;
+ FFX_MIN16_F3 aabbMin;
+ FFX_MIN16_F3 aabbMax;
+ FFX_MIN16_F fBoxCenterWeight;
+};
+#endif
+
+void RectificationBoxReset(FFX_PARAMETER_INOUT RectificationBox rectificationBox)
+{
+ rectificationBox.fBoxCenterWeight = FfxFloat32(0);
+
+ rectificationBox.boxCenter = FfxFloat32x3(0, 0, 0);
+ rectificationBox.boxVec = FfxFloat32x3(0, 0, 0);
+ rectificationBox.aabbMin = FfxFloat32x3(FSR2_FLT_MAX, FSR2_FLT_MAX, FSR2_FLT_MAX);
+ rectificationBox.aabbMax = -FfxFloat32x3(FSR2_FLT_MAX, FSR2_FLT_MAX, FSR2_FLT_MAX);
+}
+#if FFX_HALF
+void RectificationBoxReset(FFX_PARAMETER_INOUT RectificationBoxMin16 rectificationBox)
+{
+ rectificationBox.fBoxCenterWeight = FFX_MIN16_F(0);
+
+ rectificationBox.boxCenter = FFX_MIN16_F3(0, 0, 0);
+ rectificationBox.boxVec = FFX_MIN16_F3(0, 0, 0);
+ rectificationBox.aabbMin = FFX_MIN16_F3(FSR2_FP16_MAX, FSR2_FP16_MAX, FSR2_FP16_MAX);
+ rectificationBox.aabbMax = -FFX_MIN16_F3(FSR2_FP16_MAX, FSR2_FP16_MAX, FSR2_FP16_MAX);
+}
+#endif
+
+void RectificationBoxAddInitialSample(FFX_PARAMETER_INOUT RectificationBox rectificationBox, const FfxFloat32x3 colorSample, const FfxFloat32 fSampleWeight)
+{
+ rectificationBox.aabbMin = colorSample;
+ rectificationBox.aabbMax = colorSample;
+
+ FfxFloat32x3 weightedSample = colorSample * fSampleWeight;
+ rectificationBox.boxCenter = weightedSample;
+ rectificationBox.boxVec = colorSample * weightedSample;
+ rectificationBox.fBoxCenterWeight = fSampleWeight;
+}
+
+void RectificationBoxAddSample(FfxBoolean bInitialSample, FFX_PARAMETER_INOUT RectificationBox rectificationBox, const FfxFloat32x3 colorSample, const FfxFloat32 fSampleWeight)
+{
+ if (bInitialSample) {
+ RectificationBoxAddInitialSample(rectificationBox, colorSample, fSampleWeight);
+ } else {
+ rectificationBox.aabbMin = ffxMin(rectificationBox.aabbMin, colorSample);
+ rectificationBox.aabbMax = ffxMax(rectificationBox.aabbMax, colorSample);
+
+ FfxFloat32x3 weightedSample = colorSample * fSampleWeight;
+ rectificationBox.boxCenter += weightedSample;
+ rectificationBox.boxVec += colorSample * weightedSample;
+ rectificationBox.fBoxCenterWeight += fSampleWeight;
+ }
+}
+#if FFX_HALF
+void RectificationBoxAddInitialSample(FFX_PARAMETER_INOUT RectificationBoxMin16 rectificationBox, const FFX_MIN16_F3 colorSample, const FFX_MIN16_F fSampleWeight)
+{
+ rectificationBox.aabbMin = colorSample;
+ rectificationBox.aabbMax = colorSample;
+
+ FFX_MIN16_F3 weightedSample = colorSample * fSampleWeight;
+ rectificationBox.boxCenter = weightedSample;
+ rectificationBox.boxVec = colorSample * weightedSample;
+ rectificationBox.fBoxCenterWeight = fSampleWeight;
+}
+
+void RectificationBoxAddSample(FfxBoolean bInitialSample, FFX_PARAMETER_INOUT RectificationBoxMin16 rectificationBox, const FFX_MIN16_F3 colorSample, const FFX_MIN16_F fSampleWeight)
+{
+ if (bInitialSample) {
+ RectificationBoxAddInitialSample(rectificationBox, colorSample, fSampleWeight);
+ } else {
+ rectificationBox.aabbMin = ffxMin(rectificationBox.aabbMin, colorSample);
+ rectificationBox.aabbMax = ffxMax(rectificationBox.aabbMax, colorSample);
+
+ FFX_MIN16_F3 weightedSample = colorSample * fSampleWeight;
+ rectificationBox.boxCenter += weightedSample;
+ rectificationBox.boxVec += colorSample * weightedSample;
+ rectificationBox.fBoxCenterWeight += fSampleWeight;
+ }
+}
+#endif
+
+void RectificationBoxComputeVarianceBoxData(FFX_PARAMETER_INOUT RectificationBox rectificationBox)
+{
+ rectificationBox.fBoxCenterWeight = (abs(rectificationBox.fBoxCenterWeight) > FfxFloat32(FSR2_EPSILON) ? rectificationBox.fBoxCenterWeight : FfxFloat32(1.f));
+ rectificationBox.boxCenter /= rectificationBox.fBoxCenterWeight;
+ rectificationBox.boxVec /= rectificationBox.fBoxCenterWeight;
+ FfxFloat32x3 stdDev = sqrt(abs(rectificationBox.boxVec - rectificationBox.boxCenter * rectificationBox.boxCenter));
+ rectificationBox.boxVec = stdDev;
+}
+#if FFX_HALF
+void RectificationBoxComputeVarianceBoxData(FFX_PARAMETER_INOUT RectificationBoxMin16 rectificationBox)
+{
+ rectificationBox.fBoxCenterWeight = (abs(rectificationBox.fBoxCenterWeight) > FFX_MIN16_F(FSR2_EPSILON) ? rectificationBox.fBoxCenterWeight : FFX_MIN16_F(1.f));
+ rectificationBox.boxCenter /= rectificationBox.fBoxCenterWeight;
+ rectificationBox.boxVec /= rectificationBox.fBoxCenterWeight;
+ FFX_MIN16_F3 stdDev = sqrt(abs(rectificationBox.boxVec - rectificationBox.boxCenter * rectificationBox.boxCenter));
+ rectificationBox.boxVec = stdDev;
+}
+#endif
+
+FfxFloat32x3 SafeRcp3(FfxFloat32x3 v)
+{
+ return (all(FFX_NOT_EQUAL(v, FfxFloat32x3(0, 0, 0)))) ? (FfxFloat32x3(1, 1, 1) / v) : FfxFloat32x3(0, 0, 0);
+}
+#if FFX_HALF
+FFX_MIN16_F3 SafeRcp3(FFX_MIN16_F3 v)
+{
+ return (all(FFX_NOT_EQUAL(v, FFX_MIN16_F3(0, 0, 0)))) ? (FFX_MIN16_F3(1, 1, 1) / v) : FFX_MIN16_F3(0, 0, 0);
+}
+#endif
+
+FfxFloat32 MinDividedByMax(const FfxFloat32 v0, const FfxFloat32 v1)
+{
+ const FfxFloat32 m = ffxMax(v0, v1);
+ return m != 0 ? ffxMin(v0, v1) / m : 0;
+}
+
+#if FFX_HALF
+FFX_MIN16_F MinDividedByMax(const FFX_MIN16_F v0, const FFX_MIN16_F v1)
+{
+ const FFX_MIN16_F m = ffxMax(v0, v1);
+ return m != FFX_MIN16_F(0) ? ffxMin(v0, v1) / m : FFX_MIN16_F(0);
+}
+#endif
+
+FfxFloat32x3 YCoCgToRGB(FfxFloat32x3 fYCoCg)
+{
+ FfxFloat32x3 fRgb;
+
+ fRgb = FfxFloat32x3(
+ fYCoCg.x + fYCoCg.y - fYCoCg.z,
+ fYCoCg.x + fYCoCg.z,
+ fYCoCg.x - fYCoCg.y - fYCoCg.z);
+
+ return fRgb;
+}
+#if FFX_HALF
+FFX_MIN16_F3 YCoCgToRGB(FFX_MIN16_F3 fYCoCg)
+{
+ FFX_MIN16_F3 fRgb;
+
+ fRgb = FFX_MIN16_F3(
+ fYCoCg.x + fYCoCg.y - fYCoCg.z,
+ fYCoCg.x + fYCoCg.z,
+ fYCoCg.x - fYCoCg.y - fYCoCg.z);
+
+ return fRgb;
+}
+#endif
+
+FfxFloat32x3 RGBToYCoCg(FfxFloat32x3 fRgb)
+{
+ FfxFloat32x3 fYCoCg;
+
+ fYCoCg = FfxFloat32x3(
+ 0.25f * fRgb.r + 0.5f * fRgb.g + 0.25f * fRgb.b,
+ 0.5f * fRgb.r - 0.5f * fRgb.b,
+ -0.25f * fRgb.r + 0.5f * fRgb.g - 0.25f * fRgb.b);
+
+ return fYCoCg;
+}
+#if FFX_HALF
+FFX_MIN16_F3 RGBToYCoCg(FFX_MIN16_F3 fRgb)
+{
+ FFX_MIN16_F3 fYCoCg;
+
+ fYCoCg = FFX_MIN16_F3(
+ 0.25 * fRgb.r + 0.5 * fRgb.g + 0.25 * fRgb.b,
+ 0.5 * fRgb.r - 0.5 * fRgb.b,
+ -0.25 * fRgb.r + 0.5 * fRgb.g - 0.25 * fRgb.b);
+
+ return fYCoCg;
+}
+#endif
+
+FfxFloat32 RGBToLuma(FfxFloat32x3 fLinearRgb)
+{
+ return dot(fLinearRgb, FfxFloat32x3(0.2126f, 0.7152f, 0.0722f));
+}
+#if FFX_HALF
+FFX_MIN16_F RGBToLuma(FFX_MIN16_F3 fLinearRgb)
+{
+ return dot(fLinearRgb, FFX_MIN16_F3(0.2126f, 0.7152f, 0.0722f));
+}
+#endif
+
+FfxFloat32 RGBToPerceivedLuma(FfxFloat32x3 fLinearRgb)
+{
+ FfxFloat32 fLuminance = RGBToLuma(fLinearRgb);
+
+ FfxFloat32 fPercievedLuminance = 0;
+ if (fLuminance <= 216.0f / 24389.0f) {
+ fPercievedLuminance = fLuminance * (24389.0f / 27.0f);
+ }
+ else {
+ fPercievedLuminance = ffxPow(fLuminance, 1.0f / 3.0f) * 116.0f - 16.0f;
+ }
+
+ return fPercievedLuminance * 0.01f;
+}
+#if FFX_HALF
+FFX_MIN16_F RGBToPerceivedLuma(FFX_MIN16_F3 fLinearRgb)
+{
+ FFX_MIN16_F fLuminance = RGBToLuma(fLinearRgb);
+
+ FFX_MIN16_F fPercievedLuminance = FFX_MIN16_F(0);
+ if (fLuminance <= FFX_MIN16_F(216.0f / 24389.0f)) {
+ fPercievedLuminance = fLuminance * FFX_MIN16_F(24389.0f / 27.0f);
+ }
+ else {
+ fPercievedLuminance = ffxPow(fLuminance, FFX_MIN16_F(1.0f / 3.0f)) * FFX_MIN16_F(116.0f) - FFX_MIN16_F(16.0f);
+ }
+
+ return fPercievedLuminance * FFX_MIN16_F(0.01f);
+}
+#endif
+
+FfxFloat32x3 Tonemap(FfxFloat32x3 fRgb)
+{
+ return fRgb / (ffxMax(ffxMax(0.f, fRgb.r), ffxMax(fRgb.g, fRgb.b)) + 1.f).xxx;
+}
+
+FfxFloat32x3 InverseTonemap(FfxFloat32x3 fRgb)
+{
+ return fRgb / ffxMax(FSR2_TONEMAP_EPSILON, 1.f - ffxMax(fRgb.r, ffxMax(fRgb.g, fRgb.b))).xxx;
+}
+
+#if FFX_HALF
+FFX_MIN16_F3 Tonemap(FFX_MIN16_F3 fRgb)
+{
+ return fRgb / (ffxMax(ffxMax(FFX_MIN16_F(0.f), fRgb.r), ffxMax(fRgb.g, fRgb.b)) + FFX_MIN16_F(1.f)).xxx;
+}
+
+FFX_MIN16_F3 InverseTonemap(FFX_MIN16_F3 fRgb)
+{
+ return fRgb / ffxMax(FFX_MIN16_F(FSR2_TONEMAP_EPSILON), FFX_MIN16_F(1.f) - ffxMax(fRgb.r, ffxMax(fRgb.g, fRgb.b))).xxx;
+}
+#endif
+
+FfxInt32x2 ClampLoad(FfxInt32x2 iPxSample, FfxInt32x2 iPxOffset, FfxInt32x2 iTextureSize)
+{
+ FfxInt32x2 result = iPxSample + iPxOffset;
+ result.x = (iPxOffset.x < 0) ? ffxMax(result.x, 0) : result.x;
+ result.x = (iPxOffset.x > 0) ? ffxMin(result.x, iTextureSize.x - 1) : result.x;
+ result.y = (iPxOffset.y < 0) ? ffxMax(result.y, 0) : result.y;
+ result.y = (iPxOffset.y > 0) ? ffxMin(result.y, iTextureSize.y - 1) : result.y;
+ return result;
+
+ // return ffxMed3(iPxSample + iPxOffset, FfxInt32x2(0, 0), iTextureSize - FfxInt32x2(1, 1));
+}
+#if FFX_HALF
+FFX_MIN16_I2 ClampLoad(FFX_MIN16_I2 iPxSample, FFX_MIN16_I2 iPxOffset, FFX_MIN16_I2 iTextureSize)
+{
+ FFX_MIN16_I2 result = iPxSample + iPxOffset;
+ result.x = (iPxOffset.x < 0) ? ffxMax(result.x, FFX_MIN16_I(0)) : result.x;
+ result.x = (iPxOffset.x > 0) ? ffxMin(result.x, iTextureSize.x - FFX_MIN16_I(1)) : result.x;
+ result.y = (iPxOffset.y < 0) ? ffxMax(result.y, FFX_MIN16_I(0)) : result.y;
+ result.y = (iPxOffset.y > 0) ? ffxMin(result.y, iTextureSize.y - FFX_MIN16_I(1)) : result.y;
+ return result;
+
+ // return ffxMed3Half(iPxSample + iPxOffset, FFX_MIN16_I2(0, 0), iTextureSize - FFX_MIN16_I2(1, 1));
+}
+#endif
+
+FfxFloat32x2 ClampUv(FfxFloat32x2 fUv, FfxInt32x2 iTextureSize, FfxInt32x2 iResourceSize)
+{
+ const FfxFloat32x2 fSampleLocation = fUv * iTextureSize;
+ const FfxFloat32x2 fClampedLocation = ffxMax(FfxFloat32x2(0.5f, 0.5f), ffxMin(fSampleLocation, FfxFloat32x2(iTextureSize) - FfxFloat32x2(0.5f, 0.5f)));
+ const FfxFloat32x2 fClampedUv = fClampedLocation / FfxFloat32x2(iResourceSize);
+
+ return fClampedUv;
+}
+
+FfxBoolean IsOnScreen(FfxInt32x2 pos, FfxInt32x2 size)
+{
+ return all(FFX_LESS_THAN(FfxUInt32x2(pos), FfxUInt32x2(size)));
+}
+#if FFX_HALF
+FfxBoolean IsOnScreen(FFX_MIN16_I2 pos, FFX_MIN16_I2 size)
+{
+ return all(FFX_LESS_THAN(FFX_MIN16_U2(pos), FFX_MIN16_U2(size)));
+}
+#endif
+
+FfxFloat32 ComputeAutoExposureFromLavg(FfxFloat32 Lavg)
+{
+ Lavg = exp(Lavg);
+
+ const FfxFloat32 S = 100.0f; //ISO arithmetic speed
+ const FfxFloat32 K = 12.5f;
+ FfxFloat32 ExposureISO100 = log2((Lavg * S) / K);
+
+ const FfxFloat32 q = 0.65f;
+ FfxFloat32 Lmax = (78.0f / (q * S)) * ffxPow(2.0f, ExposureISO100);
+
+ return 1 / Lmax;
+}
+#if FFX_HALF
+FFX_MIN16_F ComputeAutoExposureFromLavg(FFX_MIN16_F Lavg)
+{
+ Lavg = exp(Lavg);
+
+ const FFX_MIN16_F S = FFX_MIN16_F(100.0f); //ISO arithmetic speed
+ const FFX_MIN16_F K = FFX_MIN16_F(12.5f);
+ const FFX_MIN16_F ExposureISO100 = log2((Lavg * S) / K);
+
+ const FFX_MIN16_F q = FFX_MIN16_F(0.65f);
+ const FFX_MIN16_F Lmax = (FFX_MIN16_F(78.0f) / (q * S)) * ffxPow(FFX_MIN16_F(2.0f), ExposureISO100);
+
+ return FFX_MIN16_F(1) / Lmax;
+}
+#endif
+
+FfxInt32x2 ComputeHrPosFromLrPos(FfxInt32x2 iPxLrPos)
+{
+ FfxFloat32x2 fSrcJitteredPos = FfxFloat32x2(iPxLrPos) + 0.5f - Jitter();
+ FfxFloat32x2 fLrPosInHr = (fSrcJitteredPos / RenderSize()) * DisplaySize();
+ FfxInt32x2 iPxHrPos = FfxInt32x2(floor(fLrPosInHr));
+ return iPxHrPos;
+}
+#if FFX_HALF
+FFX_MIN16_I2 ComputeHrPosFromLrPos(FFX_MIN16_I2 iPxLrPos)
+{
+ FFX_MIN16_F2 fSrcJitteredPos = FFX_MIN16_F2(iPxLrPos) + FFX_MIN16_F(0.5f) - FFX_MIN16_F2(Jitter());
+ FFX_MIN16_F2 fLrPosInHr = (fSrcJitteredPos / FFX_MIN16_F2(RenderSize())) * FFX_MIN16_F2(DisplaySize());
+ FFX_MIN16_I2 iPxHrPos = FFX_MIN16_I2(floor(fLrPosInHr));
+ return iPxHrPos;
+}
+#endif
+
+FfxFloat32x2 ComputeNdc(FfxFloat32x2 fPxPos, FfxInt32x2 iSize)
+{
+ return fPxPos / FfxFloat32x2(iSize) * FfxFloat32x2(2.0f, -2.0f) + FfxFloat32x2(-1.0f, 1.0f);
+}
+
+FfxFloat32 GetViewSpaceDepth(FfxFloat32 fDeviceDepth)
+{
+ const FfxFloat32x4 fDeviceToViewDepth = DeviceToViewSpaceTransformFactors();
+
+ // fDeviceToViewDepth details found in ffx_fsr2.cpp
+ return (fDeviceToViewDepth[1] / (fDeviceDepth - fDeviceToViewDepth[0]));
+}
+
+FfxFloat32 GetViewSpaceDepthInMeters(FfxFloat32 fDeviceDepth)
+{
+ return GetViewSpaceDepth(fDeviceDepth) * ViewSpaceToMetersFactor();
+}
+
+FfxFloat32x3 GetViewSpacePosition(FfxInt32x2 iViewportPos, FfxInt32x2 iViewportSize, FfxFloat32 fDeviceDepth)
+{
+ const FfxFloat32x4 fDeviceToViewDepth = DeviceToViewSpaceTransformFactors();
+
+ const FfxFloat32 Z = GetViewSpaceDepth(fDeviceDepth);
+
+ const FfxFloat32x2 fNdcPos = ComputeNdc(iViewportPos, iViewportSize);
+ const FfxFloat32 X = fDeviceToViewDepth[2] * fNdcPos.x * Z;
+ const FfxFloat32 Y = fDeviceToViewDepth[3] * fNdcPos.y * Z;
+
+ return FfxFloat32x3(X, Y, Z);
+}
+
+FfxFloat32x3 GetViewSpacePositionInMeters(FfxInt32x2 iViewportPos, FfxInt32x2 iViewportSize, FfxFloat32 fDeviceDepth)
+{
+ return GetViewSpacePosition(iViewportPos, iViewportSize, fDeviceDepth) * ViewSpaceToMetersFactor();
+}
+
+FfxFloat32 GetMaxDistanceInMeters()
+{
+#if FFX_FSR2_OPTION_INVERTED_DEPTH
+ return GetViewSpaceDepth(0.0f) * ViewSpaceToMetersFactor();
+#else
+ return GetViewSpaceDepth(1.0f) * ViewSpaceToMetersFactor();
+#endif
+}
+
+FfxFloat32x3 PrepareRgb(FfxFloat32x3 fRgb, FfxFloat32 fExposure, FfxFloat32 fPreExposure)
+{
+ fRgb /= fPreExposure;
+ fRgb *= fExposure;
+
+ fRgb = clamp(fRgb, 0.0f, FSR2_FP16_MAX);
+
+ return fRgb;
+}
+
+FfxFloat32x3 UnprepareRgb(FfxFloat32x3 fRgb, FfxFloat32 fExposure)
+{
+ fRgb /= fExposure;
+ fRgb *= PreExposure();
+
+ return fRgb;
+}
+
+
+struct BilinearSamplingData
+{
+ FfxInt32x2 iOffsets[4];
+ FfxFloat32 fWeights[4];
+ FfxInt32x2 iBasePos;
+};
+
+BilinearSamplingData GetBilinearSamplingData(FfxFloat32x2 fUv, FfxInt32x2 iSize)
+{
+ BilinearSamplingData data;
+
+ FfxFloat32x2 fPxSample = (fUv * iSize) - FfxFloat32x2(0.5f, 0.5f);
+ data.iBasePos = FfxInt32x2(floor(fPxSample));
+ FfxFloat32x2 fPxFrac = ffxFract(fPxSample);
+
+ data.iOffsets[0] = FfxInt32x2(0, 0);
+ data.iOffsets[1] = FfxInt32x2(1, 0);
+ data.iOffsets[2] = FfxInt32x2(0, 1);
+ data.iOffsets[3] = FfxInt32x2(1, 1);
+
+ data.fWeights[0] = (1 - fPxFrac.x) * (1 - fPxFrac.y);
+ data.fWeights[1] = (fPxFrac.x) * (1 - fPxFrac.y);
+ data.fWeights[2] = (1 - fPxFrac.x) * (fPxFrac.y);
+ data.fWeights[3] = (fPxFrac.x) * (fPxFrac.y);
+
+ return data;
+}
+
+struct PlaneData
+{
+ FfxFloat32x3 fNormal;
+ FfxFloat32 fDistanceFromOrigin;
+};
+
+PlaneData GetPlaneFromPoints(FfxFloat32x3 fP0, FfxFloat32x3 fP1, FfxFloat32x3 fP2)
+{
+ PlaneData plane;
+
+ FfxFloat32x3 v0 = fP0 - fP1;
+ FfxFloat32x3 v1 = fP0 - fP2;
+ plane.fNormal = normalize(cross(v0, v1));
+ plane.fDistanceFromOrigin = -dot(fP0, plane.fNormal);
+
+ return plane;
+}
+
+FfxFloat32 PointToPlaneDistance(PlaneData plane, FfxFloat32x3 fPoint)
+{
+ return abs(dot(plane.fNormal, fPoint) + plane.fDistanceFromOrigin);
+}
+
+#endif // #if defined(FFX_GPU)
+
+#endif //!defined(FFX_FSR2_COMMON_H)
diff --git a/thirdparty/amd-fsr2/shaders/ffx_fsr2_compute_luminance_pyramid.h b/thirdparty/amd-fsr2/shaders/ffx_fsr2_compute_luminance_pyramid.h
new file mode 100644
index 0000000000..c63f1820e0
--- /dev/null
+++ b/thirdparty/amd-fsr2/shaders/ffx_fsr2_compute_luminance_pyramid.h
@@ -0,0 +1,189 @@
+// This file is part of the FidelityFX SDK.
+//
+// Copyright (c) 2022-2023 Advanced Micro Devices, Inc. All rights reserved.
+//
+// Permission is hereby granted, free of charge, to any person obtaining a copy
+// of this software and associated documentation files (the "Software"), to deal
+// in the Software without restriction, including without limitation the rights
+// to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
+// copies of the Software, and to permit persons to whom the Software is
+// furnished to do so, subject to the following conditions:
+// The above copyright notice and this permission notice shall be included in
+// all copies or substantial portions of the Software.
+//
+// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
+// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
+// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
+// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
+// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
+// OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
+// THE SOFTWARE.
+
+FFX_GROUPSHARED FfxUInt32 spdCounter;
+
+#ifndef SPD_PACKED_ONLY
+FFX_GROUPSHARED FfxFloat32 spdIntermediateR[16][16];
+FFX_GROUPSHARED FfxFloat32 spdIntermediateG[16][16];
+FFX_GROUPSHARED FfxFloat32 spdIntermediateB[16][16];
+FFX_GROUPSHARED FfxFloat32 spdIntermediateA[16][16];
+
+FfxFloat32x4 SpdLoadSourceImage(FfxFloat32x2 tex, FfxUInt32 slice)
+{
+ FfxFloat32x2 fUv = (tex + 0.5f + Jitter()) / RenderSize();
+ fUv = ClampUv(fUv, RenderSize(), InputColorResourceDimensions());
+ FfxFloat32x3 fRgb = SampleInputColor(fUv);
+
+ fRgb /= PreExposure();
+
+ //compute log luma
+ const FfxFloat32 fLogLuma = log(ffxMax(FSR2_EPSILON, RGBToLuma(fRgb)));
+
+ // Make sure out of screen pixels contribute no value to the end result
+ const FfxFloat32 result = all(FFX_LESS_THAN(tex, RenderSize())) ? fLogLuma : 0.0f;
+
+ return FfxFloat32x4(result, 0, 0, 0);
+}
+
+FfxFloat32x4 SpdLoad(FfxInt32x2 tex, FfxUInt32 slice)
+{
+ return SPD_LoadMipmap5(tex);
+}
+
+void SpdStore(FfxInt32x2 pix, FfxFloat32x4 outValue, FfxUInt32 index, FfxUInt32 slice)
+{
+ if (index == LumaMipLevelToUse() || index == 5)
+ {
+ SPD_SetMipmap(pix, index, outValue.r);
+ }
+
+ if (index == MipCount() - 1) { //accumulate on 1x1 level
+
+ if (all(FFX_EQUAL(pix, FfxInt32x2(0, 0))))
+ {
+ FfxFloat32 prev = SPD_LoadExposureBuffer().y;
+ FfxFloat32 result = outValue.r;
+
+ if (prev < resetAutoExposureAverageSmoothing) // Compare Lavg, so small or negative values
+ {
+ FfxFloat32 rate = 1.0f;
+ result = prev + (result - prev) * (1 - exp(-DeltaTime() * rate));
+ }
+ FfxFloat32x2 spdOutput = FfxFloat32x2(ComputeAutoExposureFromLavg(result), result);
+ SPD_SetExposureBuffer(spdOutput);
+ }
+ }
+}
+
+void SpdIncreaseAtomicCounter(FfxUInt32 slice)
+{
+ SPD_IncreaseAtomicCounter(spdCounter);
+}
+
+FfxUInt32 SpdGetAtomicCounter()
+{
+ return spdCounter;
+}
+
+void SpdResetAtomicCounter(FfxUInt32 slice)
+{
+ SPD_ResetAtomicCounter();
+}
+
+FfxFloat32x4 SpdLoadIntermediate(FfxUInt32 x, FfxUInt32 y)
+{
+ return FfxFloat32x4(
+ spdIntermediateR[x][y],
+ spdIntermediateG[x][y],
+ spdIntermediateB[x][y],
+ spdIntermediateA[x][y]);
+}
+void SpdStoreIntermediate(FfxUInt32 x, FfxUInt32 y, FfxFloat32x4 value)
+{
+ spdIntermediateR[x][y] = value.x;
+ spdIntermediateG[x][y] = value.y;
+ spdIntermediateB[x][y] = value.z;
+ spdIntermediateA[x][y] = value.w;
+}
+FfxFloat32x4 SpdReduce4(FfxFloat32x4 v0, FfxFloat32x4 v1, FfxFloat32x4 v2, FfxFloat32x4 v3)
+{
+ return (v0 + v1 + v2 + v3) * 0.25f;
+}
+#endif
+
+// define fetch and store functions Packed
+#if FFX_HALF
+#error Callback must be implemented
+
+FFX_GROUPSHARED FfxFloat16x2 spdIntermediateRG[16][16];
+FFX_GROUPSHARED FfxFloat16x2 spdIntermediateBA[16][16];
+
+FfxFloat16x4 SpdLoadSourceImageH(FfxFloat32x2 tex, FfxUInt32 slice)
+{
+ return FfxFloat16x4(imgDst[0][FfxFloat32x3(tex, slice)]);
+}
+FfxFloat16x4 SpdLoadH(FfxInt32x2 p, FfxUInt32 slice)
+{
+ return FfxFloat16x4(imgDst6[FfxUInt32x3(p, slice)]);
+}
+void SpdStoreH(FfxInt32x2 p, FfxFloat16x4 value, FfxUInt32 mip, FfxUInt32 slice)
+{
+ if (index == LumaMipLevelToUse() || index == 5)
+ {
+ imgDst6[FfxUInt32x3(p, slice)] = FfxFloat32x4(value);
+ return;
+ }
+ imgDst[mip + 1][FfxUInt32x3(p, slice)] = FfxFloat32x4(value);
+}
+void SpdIncreaseAtomicCounter(FfxUInt32 slice)
+{
+ InterlockedAdd(rw_spd_global_atomic[FfxInt16x2(0, 0)].counter[slice], 1, spdCounter);
+}
+FfxUInt32 SpdGetAtomicCounter()
+{
+ return spdCounter;
+}
+void SpdResetAtomicCounter(FfxUInt32 slice)
+{
+ rw_spd_global_atomic[FfxInt16x2(0, 0)].counter[slice] = 0;
+}
+FfxFloat16x4 SpdLoadIntermediateH(FfxUInt32 x, FfxUInt32 y)
+{
+ return FfxFloat16x4(
+ spdIntermediateRG[x][y].x,
+ spdIntermediateRG[x][y].y,
+ spdIntermediateBA[x][y].x,
+ spdIntermediateBA[x][y].y);
+}
+void SpdStoreIntermediateH(FfxUInt32 x, FfxUInt32 y, FfxFloat16x4 value)
+{
+ spdIntermediateRG[x][y] = value.xy;
+ spdIntermediateBA[x][y] = value.zw;
+}
+FfxFloat16x4 SpdReduce4H(FfxFloat16x4 v0, FfxFloat16x4 v1, FfxFloat16x4 v2, FfxFloat16x4 v3)
+{
+ return (v0 + v1 + v2 + v3) * FfxFloat16(0.25);
+}
+#endif
+
+#include "ffx_spd.h"
+
+void ComputeAutoExposure(FfxUInt32x3 WorkGroupId, FfxUInt32 LocalThreadIndex)
+{
+#if FFX_HALF
+ SpdDownsampleH(
+ FfxUInt32x2(WorkGroupId.xy),
+ FfxUInt32(LocalThreadIndex),
+ FfxUInt32(MipCount()),
+ FfxUInt32(NumWorkGroups()),
+ FfxUInt32(WorkGroupId.z),
+ FfxUInt32x2(WorkGroupOffset()));
+#else
+ SpdDownsample(
+ FfxUInt32x2(WorkGroupId.xy),
+ FfxUInt32(LocalThreadIndex),
+ FfxUInt32(MipCount()),
+ FfxUInt32(NumWorkGroups()),
+ FfxUInt32(WorkGroupId.z),
+ FfxUInt32x2(WorkGroupOffset()));
+#endif
+} \ No newline at end of file
diff --git a/thirdparty/amd-fsr2/shaders/ffx_fsr2_compute_luminance_pyramid_pass.glsl b/thirdparty/amd-fsr2/shaders/ffx_fsr2_compute_luminance_pyramid_pass.glsl
new file mode 100644
index 0000000000..088e425452
--- /dev/null
+++ b/thirdparty/amd-fsr2/shaders/ffx_fsr2_compute_luminance_pyramid_pass.glsl
@@ -0,0 +1,134 @@
+// This file is part of the FidelityFX SDK.
+//
+// Copyright (c) 2022-2023 Advanced Micro Devices, Inc. All rights reserved.
+//
+// Permission is hereby granted, free of charge, to any person obtaining a copy
+// of this software and associated documentation files (the "Software"), to deal
+// in the Software without restriction, including without limitation the rights
+// to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
+// copies of the Software, and to permit persons to whom the Software is
+// furnished to do so, subject to the following conditions:
+// The above copyright notice and this permission notice shall be included in
+// all copies or substantial portions of the Software.
+//
+// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
+// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
+// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
+// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
+// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
+// OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
+// THE SOFTWARE.
+
+
+
+#extension GL_GOOGLE_include_directive : require
+#extension GL_EXT_samplerless_texture_functions : require
+
+#define FSR2_BIND_SRV_INPUT_COLOR 0
+#define FSR2_BIND_UAV_SPD_GLOBAL_ATOMIC 1
+#define FSR2_BIND_UAV_EXPOSURE_MIP_LUMA_CHANGE 2
+#define FSR2_BIND_UAV_EXPOSURE_MIP_5 3
+#define FSR2_BIND_UAV_AUTO_EXPOSURE 4
+#define FSR2_BIND_CB_FSR2 5
+#define FSR2_BIND_CB_SPD 6
+
+#include "ffx_fsr2_callbacks_glsl.h"
+#include "ffx_fsr2_common.h"
+
+#if defined(FSR2_BIND_CB_SPD)
+ layout (set = 1, binding = FSR2_BIND_CB_SPD, std140) uniform cbSPD_t
+ {
+ uint mips;
+ uint numWorkGroups;
+ uvec2 workGroupOffset;
+ uvec2 renderSize;
+ } cbSPD;
+
+ uint MipCount()
+ {
+ return cbSPD.mips;
+ }
+
+ uint NumWorkGroups()
+ {
+ return cbSPD.numWorkGroups;
+ }
+
+ uvec2 WorkGroupOffset()
+ {
+ return cbSPD.workGroupOffset;
+ }
+
+ uvec2 SPD_RenderSize()
+ {
+ return cbSPD.renderSize;
+ }
+#endif
+
+vec2 SPD_LoadExposureBuffer()
+{
+ return imageLoad(rw_auto_exposure, ivec2(0,0)).xy;
+}
+
+void SPD_SetExposureBuffer(vec2 value)
+{
+ imageStore(rw_auto_exposure, ivec2(0,0), vec4(value, 0.0f, 0.0f));
+}
+
+vec4 SPD_LoadMipmap5(ivec2 iPxPos)
+{
+ return vec4(imageLoad(rw_img_mip_5, iPxPos).x, 0.0f, 0.0f, 0.0f);
+}
+
+void SPD_SetMipmap(ivec2 iPxPos, uint slice, float value)
+{
+ switch (slice)
+ {
+ case FFX_FSR2_SHADING_CHANGE_MIP_LEVEL:
+ imageStore(rw_img_mip_shading_change, iPxPos, vec4(value, 0.0f, 0.0f, 0.0f));
+ break;
+ case 5:
+ imageStore(rw_img_mip_5, iPxPos, vec4(value, 0.0f, 0.0f, 0.0f));
+ break;
+ default:
+
+ // avoid flattened side effect
+#if defined(FSR2_BIND_UAV_EXPOSURE_MIP_LUMA_CHANGE)
+ imageStore(rw_img_mip_shading_change, iPxPos, vec4(imageLoad(rw_img_mip_shading_change, iPxPos).x, 0.0f, 0.0f, 0.0f));
+#elif defined(FSR2_BIND_UAV_EXPOSURE_MIP_5)
+ imageStore(rw_img_mip_5, iPxPos, vec4(imageLoad(rw_img_mip_5, iPxPos).x, 0.0f, 0.0f, 0.0f));
+#endif
+ break;
+ }
+}
+
+void SPD_IncreaseAtomicCounter(inout uint spdCounter)
+{
+ spdCounter = imageAtomicAdd(rw_spd_global_atomic, ivec2(0,0), 1);
+}
+
+void SPD_ResetAtomicCounter()
+{
+ imageStore(rw_spd_global_atomic, ivec2(0,0), uvec4(0));
+}
+
+#include "ffx_fsr2_compute_luminance_pyramid.h"
+
+#ifndef FFX_FSR2_THREAD_GROUP_WIDTH
+#define FFX_FSR2_THREAD_GROUP_WIDTH 256
+#endif // #ifndef FFX_FSR2_THREAD_GROUP_WIDTH
+#ifndef FFX_FSR2_THREAD_GROUP_HEIGHT
+#define FFX_FSR2_THREAD_GROUP_HEIGHT 1
+#endif // #ifndef FFX_FSR2_THREAD_GROUP_HEIGHT
+#ifndef FFX_FSR2_THREAD_GROUP_DEPTH
+#define FFX_FSR2_THREAD_GROUP_DEPTH 1
+#endif // #ifndef FFX_FSR2_THREAD_GROUP_DEPTH
+#ifndef FFX_FSR2_NUM_THREADS
+#define FFX_FSR2_NUM_THREADS layout (local_size_x = FFX_FSR2_THREAD_GROUP_WIDTH, local_size_y = FFX_FSR2_THREAD_GROUP_HEIGHT, local_size_z = FFX_FSR2_THREAD_GROUP_DEPTH) in;
+#endif // #ifndef FFX_FSR2_NUM_THREADS
+
+FFX_FSR2_NUM_THREADS
+void main()
+{
+ ComputeAutoExposure(gl_WorkGroupID.xyz, gl_LocalInvocationIndex);
+} \ No newline at end of file
diff --git a/thirdparty/amd-fsr2/shaders/ffx_fsr2_depth_clip.h b/thirdparty/amd-fsr2/shaders/ffx_fsr2_depth_clip.h
new file mode 100644
index 0000000000..fa4c975a23
--- /dev/null
+++ b/thirdparty/amd-fsr2/shaders/ffx_fsr2_depth_clip.h
@@ -0,0 +1,258 @@
+// This file is part of the FidelityFX SDK.
+//
+// Copyright (c) 2022-2023 Advanced Micro Devices, Inc. All rights reserved.
+//
+// Permission is hereby granted, free of charge, to any person obtaining a copy
+// of this software and associated documentation files (the "Software"), to deal
+// in the Software without restriction, including without limitation the rights
+// to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
+// copies of the Software, and to permit persons to whom the Software is
+// furnished to do so, subject to the following conditions:
+// The above copyright notice and this permission notice shall be included in
+// all copies or substantial portions of the Software.
+//
+// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
+// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
+// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
+// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
+// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
+// OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
+// THE SOFTWARE.
+
+#ifndef FFX_FSR2_DEPTH_CLIP_H
+#define FFX_FSR2_DEPTH_CLIP_H
+
+FFX_STATIC const FfxFloat32 DepthClipBaseScale = 4.0f;
+
+FfxFloat32 ComputeDepthClip(FfxFloat32x2 fUvSample, FfxFloat32 fCurrentDepthSample)
+{
+ FfxFloat32 fCurrentDepthViewSpace = GetViewSpaceDepth(fCurrentDepthSample);
+ BilinearSamplingData bilinearInfo = GetBilinearSamplingData(fUvSample, RenderSize());
+
+ FfxFloat32 fDilatedSum = 0.0f;
+ FfxFloat32 fDepth = 0.0f;
+ FfxFloat32 fWeightSum = 0.0f;
+ for (FfxInt32 iSampleIndex = 0; iSampleIndex < 4; iSampleIndex++) {
+
+ const FfxInt32x2 iOffset = bilinearInfo.iOffsets[iSampleIndex];
+ const FfxInt32x2 iSamplePos = bilinearInfo.iBasePos + iOffset;
+
+ if (IsOnScreen(iSamplePos, RenderSize())) {
+ const FfxFloat32 fWeight = bilinearInfo.fWeights[iSampleIndex];
+ if (fWeight > fReconstructedDepthBilinearWeightThreshold) {
+
+ const FfxFloat32 fPrevDepthSample = LoadReconstructedPrevDepth(iSamplePos);
+ const FfxFloat32 fPrevNearestDepthViewSpace = GetViewSpaceDepth(fPrevDepthSample);
+
+ const FfxFloat32 fDepthDiff = fCurrentDepthViewSpace - fPrevNearestDepthViewSpace;
+
+ if (fDepthDiff > 0.0f) {
+
+#if FFX_FSR2_OPTION_INVERTED_DEPTH
+ const FfxFloat32 fPlaneDepth = ffxMin(fPrevDepthSample, fCurrentDepthSample);
+#else
+ const FfxFloat32 fPlaneDepth = ffxMax(fPrevDepthSample, fCurrentDepthSample);
+#endif
+
+ const FfxFloat32x3 fCenter = GetViewSpacePosition(FfxInt32x2(RenderSize() * 0.5f), RenderSize(), fPlaneDepth);
+ const FfxFloat32x3 fCorner = GetViewSpacePosition(FfxInt32x2(0, 0), RenderSize(), fPlaneDepth);
+
+ const FfxFloat32 fHalfViewportWidth = length(FfxFloat32x2(RenderSize()));
+ const FfxFloat32 fDepthThreshold = ffxMax(fCurrentDepthViewSpace, fPrevNearestDepthViewSpace);
+
+ const FfxFloat32 Ksep = 1.37e-05f;
+ const FfxFloat32 Kfov = length(fCorner) / length(fCenter);
+ const FfxFloat32 fRequiredDepthSeparation = Ksep * Kfov * fHalfViewportWidth * fDepthThreshold;
+
+ const FfxFloat32 fResolutionFactor = ffxSaturate(length(FfxFloat32x2(RenderSize())) / length(FfxFloat32x2(1920.0f, 1080.0f)));
+ const FfxFloat32 fPower = ffxLerp(1.0f, 3.0f, fResolutionFactor);
+ fDepth += ffxPow(ffxSaturate(FfxFloat32(fRequiredDepthSeparation / fDepthDiff)), fPower) * fWeight;
+ fWeightSum += fWeight;
+ }
+ }
+ }
+ }
+
+ return (fWeightSum > 0) ? ffxSaturate(1.0f - fDepth / fWeightSum) : 0.0f;
+}
+
+FfxFloat32 ComputeMotionDivergence(FfxInt32x2 iPxPos, FfxInt32x2 iPxInputMotionVectorSize)
+{
+ FfxFloat32 minconvergence = 1.0f;
+
+ FfxFloat32x2 fMotionVectorNucleus = LoadInputMotionVector(iPxPos);
+ FfxFloat32 fNucleusVelocityLr = length(fMotionVectorNucleus * RenderSize());
+ FfxFloat32 fMaxVelocityUv = length(fMotionVectorNucleus);
+
+ const FfxFloat32 MotionVectorVelocityEpsilon = 1e-02f;
+
+ if (fNucleusVelocityLr > MotionVectorVelocityEpsilon) {
+ for (FfxInt32 y = -1; y <= 1; ++y) {
+ for (FfxInt32 x = -1; x <= 1; ++x) {
+
+ FfxInt32x2 sp = ClampLoad(iPxPos, FfxInt32x2(x, y), iPxInputMotionVectorSize);
+
+ FfxFloat32x2 fMotionVector = LoadInputMotionVector(sp);
+ FfxFloat32 fVelocityUv = length(fMotionVector);
+
+ fMaxVelocityUv = ffxMax(fVelocityUv, fMaxVelocityUv);
+ fVelocityUv = ffxMax(fVelocityUv, fMaxVelocityUv);
+ minconvergence = ffxMin(minconvergence, dot(fMotionVector / fVelocityUv, fMotionVectorNucleus / fVelocityUv));
+ }
+ }
+ }
+
+ return ffxSaturate(1.0f - minconvergence) * ffxSaturate(fMaxVelocityUv / 0.01f);
+}
+
+FfxFloat32 ComputeDepthDivergence(FfxInt32x2 iPxPos)
+{
+ const FfxFloat32 fMaxDistInMeters = GetMaxDistanceInMeters();
+ FfxFloat32 fDepthMax = 0.0f;
+ FfxFloat32 fDepthMin = fMaxDistInMeters;
+
+ FfxInt32 iMaxDistFound = 0;
+
+ for (FfxInt32 y = -1; y < 2; y++) {
+ for (FfxInt32 x = -1; x < 2; x++) {
+
+ const FfxInt32x2 iOffset = FfxInt32x2(x, y);
+ const FfxInt32x2 iSamplePos = iPxPos + iOffset;
+
+ const FfxFloat32 fOnScreenFactor = IsOnScreen(iSamplePos, RenderSize()) ? 1.0f : 0.0f;
+ FfxFloat32 fDepth = GetViewSpaceDepthInMeters(LoadDilatedDepth(iSamplePos)) * fOnScreenFactor;
+
+ iMaxDistFound |= FfxInt32(fMaxDistInMeters == fDepth);
+
+ fDepthMin = ffxMin(fDepthMin, fDepth);
+ fDepthMax = ffxMax(fDepthMax, fDepth);
+ }
+ }
+
+ return (1.0f - fDepthMin / fDepthMax) * (FfxBoolean(iMaxDistFound) ? 0.0f : 1.0f);
+}
+
+FfxFloat32 ComputeTemporalMotionDivergence(FfxInt32x2 iPxPos)
+{
+ const FfxFloat32x2 fUv = FfxFloat32x2(iPxPos + 0.5f) / RenderSize();
+
+ FfxFloat32x2 fMotionVector = LoadDilatedMotionVector(iPxPos);
+ FfxFloat32x2 fReprojectedUv = fUv + fMotionVector;
+ fReprojectedUv = ClampUv(fReprojectedUv, RenderSize(), MaxRenderSize());
+ FfxFloat32x2 fPrevMotionVector = SamplePreviousDilatedMotionVector(fReprojectedUv);
+
+ float fPxDistance = length(fMotionVector * DisplaySize());
+ return fPxDistance > 1.0f ? ffxLerp(0.0f, 1.0f - ffxSaturate(length(fPrevMotionVector) / length(fMotionVector)), ffxSaturate(ffxPow(fPxDistance / 20.0f, 3.0f))) : 0;
+}
+
+void PreProcessReactiveMasks(FfxInt32x2 iPxLrPos, FfxFloat32 fMotionDivergence)
+{
+ // Compensate for bilinear sampling in accumulation pass
+
+ FfxFloat32x3 fReferenceColor = LoadInputColor(iPxLrPos).xyz;
+ FfxFloat32x2 fReactiveFactor = FfxFloat32x2(0.0f, fMotionDivergence);
+
+ float fMasksSum = 0.0f;
+
+ FfxFloat32x3 fColorSamples[9];
+ FfxFloat32 fReactiveSamples[9];
+ FfxFloat32 fTransparencyAndCompositionSamples[9];
+
+ FFX_UNROLL
+ for (FfxInt32 y = -1; y < 2; y++) {
+ FFX_UNROLL
+ for (FfxInt32 x = -1; x < 2; x++) {
+
+ const FfxInt32x2 sampleCoord = ClampLoad(iPxLrPos, FfxInt32x2(x, y), FfxInt32x2(RenderSize()));
+
+ FfxInt32 sampleIdx = (y + 1) * 3 + x + 1;
+
+ FfxFloat32x3 fColorSample = LoadInputColor(sampleCoord).xyz;
+ FfxFloat32 fReactiveSample = LoadReactiveMask(sampleCoord);
+ FfxFloat32 fTransparencyAndCompositionSample = LoadTransparencyAndCompositionMask(sampleCoord);
+
+ fColorSamples[sampleIdx] = fColorSample;
+ fReactiveSamples[sampleIdx] = fReactiveSample;
+ fTransparencyAndCompositionSamples[sampleIdx] = fTransparencyAndCompositionSample;
+
+ fMasksSum += (fReactiveSample + fTransparencyAndCompositionSample);
+ }
+ }
+
+ if (fMasksSum > 0)
+ {
+ for (FfxInt32 sampleIdx = 0; sampleIdx < 9; sampleIdx++)
+ {
+ FfxFloat32x3 fColorSample = fColorSamples[sampleIdx];
+ FfxFloat32 fReactiveSample = fReactiveSamples[sampleIdx];
+ FfxFloat32 fTransparencyAndCompositionSample = fTransparencyAndCompositionSamples[sampleIdx];
+
+ const FfxFloat32 fMaxLenSq = ffxMax(dot(fReferenceColor, fReferenceColor), dot(fColorSample, fColorSample));
+ const FfxFloat32 fSimilarity = dot(fReferenceColor, fColorSample) / fMaxLenSq;
+
+ // Increase power for non-similar samples
+ const FfxFloat32 fPowerBiasMax = 6.0f;
+ const FfxFloat32 fSimilarityPower = 1.0f + (fPowerBiasMax - fSimilarity * fPowerBiasMax);
+ const FfxFloat32 fWeightedReactiveSample = ffxPow(fReactiveSample, fSimilarityPower);
+ const FfxFloat32 fWeightedTransparencyAndCompositionSample = ffxPow(fTransparencyAndCompositionSample, fSimilarityPower);
+
+ fReactiveFactor = ffxMax(fReactiveFactor, FfxFloat32x2(fWeightedReactiveSample, fWeightedTransparencyAndCompositionSample));
+ }
+ }
+
+ StoreDilatedReactiveMasks(iPxLrPos, fReactiveFactor);
+}
+
+FfxFloat32x3 ComputePreparedInputColor(FfxInt32x2 iPxLrPos)
+{
+ //We assume linear data. if non-linear input (sRGB, ...),
+ //then we should convert to linear first and back to sRGB on output.
+ FfxFloat32x3 fRgb = ffxMax(FfxFloat32x3(0, 0, 0), LoadInputColor(iPxLrPos));
+
+ fRgb = PrepareRgb(fRgb, Exposure(), PreExposure());
+
+ const FfxFloat32x3 fPreparedYCoCg = RGBToYCoCg(fRgb);
+
+ return fPreparedYCoCg;
+}
+
+FfxFloat32 EvaluateSurface(FfxInt32x2 iPxPos, FfxFloat32x2 fMotionVector)
+{
+ FfxFloat32 d0 = GetViewSpaceDepth(LoadReconstructedPrevDepth(iPxPos + FfxInt32x2(0, -1)));
+ FfxFloat32 d1 = GetViewSpaceDepth(LoadReconstructedPrevDepth(iPxPos + FfxInt32x2(0, 0)));
+ FfxFloat32 d2 = GetViewSpaceDepth(LoadReconstructedPrevDepth(iPxPos + FfxInt32x2(0, 1)));
+
+ return 1.0f - FfxFloat32(((d0 - d1) > (d1 * 0.01f)) && ((d1 - d2) > (d2 * 0.01f)));
+}
+
+void DepthClip(FfxInt32x2 iPxPos)
+{
+ FfxFloat32x2 fDepthUv = (iPxPos + 0.5f) / RenderSize();
+ FfxFloat32x2 fMotionVector = LoadDilatedMotionVector(iPxPos);
+
+ // Discard tiny mvs
+ fMotionVector *= FfxFloat32(length(fMotionVector * DisplaySize()) > 0.01f);
+
+ const FfxFloat32x2 fDilatedUv = fDepthUv + fMotionVector;
+ const FfxFloat32 fDilatedDepth = LoadDilatedDepth(iPxPos);
+ const FfxFloat32 fCurrentDepthViewSpace = GetViewSpaceDepth(LoadInputDepth(iPxPos));
+
+ // Compute prepared input color and depth clip
+ FfxFloat32 fDepthClip = ComputeDepthClip(fDilatedUv, fDilatedDepth) * EvaluateSurface(iPxPos, fMotionVector);
+ FfxFloat32x3 fPreparedYCoCg = ComputePreparedInputColor(iPxPos);
+ StorePreparedInputColor(iPxPos, FfxFloat32x4(fPreparedYCoCg, fDepthClip));
+
+ // Compute dilated reactive mask
+#if FFX_FSR2_OPTION_LOW_RESOLUTION_MOTION_VECTORS
+ FfxInt32x2 iSamplePos = iPxPos;
+#else
+ FfxInt32x2 iSamplePos = ComputeHrPosFromLrPos(iPxPos);
+#endif
+
+ FfxFloat32 fMotionDivergence = ComputeMotionDivergence(iSamplePos, RenderSize());
+ FfxFloat32 fTemporalMotionDifference = ffxSaturate(ComputeTemporalMotionDivergence(iPxPos) - ComputeDepthDivergence(iPxPos));
+
+ PreProcessReactiveMasks(iPxPos, ffxMax(fTemporalMotionDifference, fMotionDivergence));
+}
+
+#endif //!defined( FFX_FSR2_DEPTH_CLIPH ) \ No newline at end of file
diff --git a/thirdparty/amd-fsr2/shaders/ffx_fsr2_depth_clip_pass.glsl b/thirdparty/amd-fsr2/shaders/ffx_fsr2_depth_clip_pass.glsl
new file mode 100644
index 0000000000..65cc8b67ef
--- /dev/null
+++ b/thirdparty/amd-fsr2/shaders/ffx_fsr2_depth_clip_pass.glsl
@@ -0,0 +1,67 @@
+// This file is part of the FidelityFX SDK.
+//
+// Copyright (c) 2022-2023 Advanced Micro Devices, Inc. All rights reserved.
+//
+// Permission is hereby granted, free of charge, to any person obtaining a copy
+// of this software and associated documentation files (the "Software"), to deal
+// in the Software without restriction, including without limitation the rights
+// to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
+// copies of the Software, and to permit persons to whom the Software is
+// furnished to do so, subject to the following conditions:
+// The above copyright notice and this permission notice shall be included in
+// all copies or substantial portions of the Software.
+//
+// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
+// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
+// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
+// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
+// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
+// OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
+// THE SOFTWARE.
+
+
+
+#extension GL_GOOGLE_include_directive : require
+#extension GL_EXT_samplerless_texture_functions : require
+
+#define FSR2_BIND_SRV_RECONSTRUCTED_PREV_NEAREST_DEPTH 0
+#define FSR2_BIND_SRV_DILATED_MOTION_VECTORS 1
+#define FSR2_BIND_SRV_DILATED_DEPTH 2
+#define FSR2_BIND_SRV_REACTIVE_MASK 3
+#define FSR2_BIND_SRV_TRANSPARENCY_AND_COMPOSITION_MASK 4
+#define FSR2_BIND_SRV_PREPARED_INPUT_COLOR 5
+#define FSR2_BIND_SRV_PREVIOUS_DILATED_MOTION_VECTORS 6
+#define FSR2_BIND_SRV_INPUT_MOTION_VECTORS 7
+#define FSR2_BIND_SRV_INPUT_COLOR 8
+#define FSR2_BIND_SRV_INPUT_DEPTH 9
+#define FSR2_BIND_SRV_INPUT_EXPOSURE 10
+
+#define FSR2_BIND_UAV_DEPTH_CLIP 11
+#define FSR2_BIND_UAV_DILATED_REACTIVE_MASKS 12
+#define FSR2_BIND_UAV_PREPARED_INPUT_COLOR 13
+
+#define FSR2_BIND_CB_FSR2 14
+
+#include "ffx_fsr2_callbacks_glsl.h"
+#include "ffx_fsr2_common.h"
+#include "ffx_fsr2_sample.h"
+#include "ffx_fsr2_depth_clip.h"
+
+#ifndef FFX_FSR2_THREAD_GROUP_WIDTH
+#define FFX_FSR2_THREAD_GROUP_WIDTH 8
+#endif // #ifndef FFX_FSR2_THREAD_GROUP_WIDTH
+#ifndef FFX_FSR2_THREAD_GROUP_HEIGHT
+#define FFX_FSR2_THREAD_GROUP_HEIGHT 8
+#endif // #ifndef FFX_FSR2_THREAD_GROUP_HEIGHT
+#ifndef FFX_FSR2_THREAD_GROUP_DEPTH
+#define FFX_FSR2_THREAD_GROUP_DEPTH 1
+#endif // #ifndef FFX_FSR2_THREAD_GROUP_DEPTH
+#ifndef FFX_FSR2_NUM_THREADS
+#define FFX_FSR2_NUM_THREADS layout (local_size_x = FFX_FSR2_THREAD_GROUP_WIDTH, local_size_y = FFX_FSR2_THREAD_GROUP_HEIGHT, local_size_z = FFX_FSR2_THREAD_GROUP_DEPTH) in;
+#endif // #ifndef FFX_FSR2_NUM_THREADS
+
+FFX_FSR2_NUM_THREADS
+void main()
+{
+ DepthClip(ivec2(gl_GlobalInvocationID.xy));
+}
diff --git a/thirdparty/amd-fsr2/shaders/ffx_fsr2_force16_begin.h b/thirdparty/amd-fsr2/shaders/ffx_fsr2_force16_begin.h
new file mode 100644
index 0000000000..3bd4d5d912
--- /dev/null
+++ b/thirdparty/amd-fsr2/shaders/ffx_fsr2_force16_begin.h
@@ -0,0 +1 @@
+// This file doesn't exist in this version of FSR. \ No newline at end of file
diff --git a/thirdparty/amd-fsr2/shaders/ffx_fsr2_force16_end.h b/thirdparty/amd-fsr2/shaders/ffx_fsr2_force16_end.h
new file mode 100644
index 0000000000..3bd4d5d912
--- /dev/null
+++ b/thirdparty/amd-fsr2/shaders/ffx_fsr2_force16_end.h
@@ -0,0 +1 @@
+// This file doesn't exist in this version of FSR. \ No newline at end of file
diff --git a/thirdparty/amd-fsr2/shaders/ffx_fsr2_lock.h b/thirdparty/amd-fsr2/shaders/ffx_fsr2_lock.h
new file mode 100644
index 0000000000..8347fa86bc
--- /dev/null
+++ b/thirdparty/amd-fsr2/shaders/ffx_fsr2_lock.h
@@ -0,0 +1,115 @@
+// This file is part of the FidelityFX SDK.
+//
+// Copyright (c) 2022-2023 Advanced Micro Devices, Inc. All rights reserved.
+//
+// Permission is hereby granted, free of charge, to any person obtaining a copy
+// of this software and associated documentation files (the "Software"), to deal
+// in the Software without restriction, including without limitation the rights
+// to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
+// copies of the Software, and to permit persons to whom the Software is
+// furnished to do so, subject to the following conditions:
+// The above copyright notice and this permission notice shall be included in
+// all copies or substantial portions of the Software.
+//
+// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
+// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
+// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
+// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
+// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
+// OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
+// THE SOFTWARE.
+
+#ifndef FFX_FSR2_LOCK_H
+#define FFX_FSR2_LOCK_H
+
+void ClearResourcesForNextFrame(in FfxInt32x2 iPxHrPos)
+{
+ if (all(FFX_LESS_THAN(iPxHrPos, FfxInt32x2(RenderSize()))))
+ {
+#if FFX_FSR2_OPTION_INVERTED_DEPTH
+ const FfxUInt32 farZ = 0x0;
+#else
+ const FfxUInt32 farZ = 0x3f800000;
+#endif
+ SetReconstructedDepth(iPxHrPos, farZ);
+ }
+}
+
+FfxBoolean ComputeThinFeatureConfidence(FfxInt32x2 pos)
+{
+ const FfxInt32 RADIUS = 1;
+
+ FfxFloat32 fNucleus = LoadLockInputLuma(pos);
+
+ FfxFloat32 similar_threshold = 1.05f;
+ FfxFloat32 dissimilarLumaMin = FSR2_FLT_MAX;
+ FfxFloat32 dissimilarLumaMax = 0;
+
+ /*
+ 0 1 2
+ 3 4 5
+ 6 7 8
+ */
+
+ #define SETBIT(x) (1U << x)
+
+ FfxUInt32 mask = SETBIT(4); //flag fNucleus as similar
+
+ const FfxUInt32 uNumRejectionMasks = 4;
+ const FfxUInt32 uRejectionMasks[uNumRejectionMasks] = {
+ SETBIT(0) | SETBIT(1) | SETBIT(3) | SETBIT(4), //Upper left
+ SETBIT(1) | SETBIT(2) | SETBIT(4) | SETBIT(5), //Upper right
+ SETBIT(3) | SETBIT(4) | SETBIT(6) | SETBIT(7), //Lower left
+ SETBIT(4) | SETBIT(5) | SETBIT(7) | SETBIT(8), //Lower right
+ };
+
+ FfxInt32 idx = 0;
+ FFX_UNROLL
+ for (FfxInt32 y = -RADIUS; y <= RADIUS; y++) {
+ FFX_UNROLL
+ for (FfxInt32 x = -RADIUS; x <= RADIUS; x++, idx++) {
+ if (x == 0 && y == 0) continue;
+
+ FfxInt32x2 samplePos = ClampLoad(pos, FfxInt32x2(x, y), FfxInt32x2(RenderSize()));
+
+ FfxFloat32 sampleLuma = LoadLockInputLuma(samplePos);
+ FfxFloat32 difference = ffxMax(sampleLuma, fNucleus) / ffxMin(sampleLuma, fNucleus);
+
+ if (difference > 0 && (difference < similar_threshold)) {
+ mask |= SETBIT(idx);
+ } else {
+ dissimilarLumaMin = ffxMin(dissimilarLumaMin, sampleLuma);
+ dissimilarLumaMax = ffxMax(dissimilarLumaMax, sampleLuma);
+ }
+ }
+ }
+
+ FfxBoolean isRidge = fNucleus > dissimilarLumaMax || fNucleus < dissimilarLumaMin;
+
+ if (FFX_FALSE == isRidge) {
+
+ return false;
+ }
+
+ FFX_UNROLL
+ for (FfxInt32 i = 0; i < 4; i++) {
+
+ if ((mask & uRejectionMasks[i]) == uRejectionMasks[i]) {
+ return false;
+ }
+ }
+
+ return true;
+}
+
+void ComputeLock(FfxInt32x2 iPxLrPos)
+{
+ if (ComputeThinFeatureConfidence(iPxLrPos))
+ {
+ StoreNewLocks(ComputeHrPosFromLrPos(iPxLrPos), 1.f);
+ }
+
+ ClearResourcesForNextFrame(iPxLrPos);
+}
+
+#endif // FFX_FSR2_LOCK_H
diff --git a/thirdparty/amd-fsr2/shaders/ffx_fsr2_lock_pass.glsl b/thirdparty/amd-fsr2/shaders/ffx_fsr2_lock_pass.glsl
new file mode 100644
index 0000000000..0adce1bb11
--- /dev/null
+++ b/thirdparty/amd-fsr2/shaders/ffx_fsr2_lock_pass.glsl
@@ -0,0 +1,56 @@
+// This file is part of the FidelityFX SDK.
+//
+// Copyright (c) 2022-2023 Advanced Micro Devices, Inc. All rights reserved.
+//
+// Permission is hereby granted, free of charge, to any person obtaining a copy
+// of this software and associated documentation files (the "Software"), to deal
+// in the Software without restriction, including without limitation the rights
+// to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
+// copies of the Software, and to permit persons to whom the Software is
+// furnished to do so, subject to the following conditions:
+// The above copyright notice and this permission notice shall be included in
+// all copies or substantial portions of the Software.
+//
+// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
+// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
+// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
+// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
+// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
+// OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
+// THE SOFTWARE.
+
+
+
+#extension GL_GOOGLE_include_directive : require
+#extension GL_EXT_samplerless_texture_functions : require
+
+#define FSR2_BIND_SRV_LOCK_INPUT_LUMA 0
+#define FSR2_BIND_UAV_NEW_LOCKS 1
+#define FSR2_BIND_UAV_RECONSTRUCTED_PREV_NEAREST_DEPTH 2
+#define FSR2_BIND_CB_FSR2 3
+
+#include "ffx_fsr2_callbacks_glsl.h"
+#include "ffx_fsr2_common.h"
+#include "ffx_fsr2_sample.h"
+#include "ffx_fsr2_lock.h"
+
+#ifndef FFX_FSR2_THREAD_GROUP_WIDTH
+#define FFX_FSR2_THREAD_GROUP_WIDTH 8
+#endif // #ifndef FFX_FSR2_THREAD_GROUP_WIDTH
+#ifndef FFX_FSR2_THREAD_GROUP_HEIGHT
+#define FFX_FSR2_THREAD_GROUP_HEIGHT 8
+#endif // #ifndef FFX_FSR2_THREAD_GROUP_HEIGHT
+#ifndef FFX_FSR2_THREAD_GROUP_DEPTH
+#define FFX_FSR2_THREAD_GROUP_DEPTH 1
+#endif // #ifndef FFX_FSR2_THREAD_GROUP_DEPTH
+#ifndef FFX_FSR2_NUM_THREADS
+#define FFX_FSR2_NUM_THREADS layout (local_size_x = FFX_FSR2_THREAD_GROUP_WIDTH, local_size_y = FFX_FSR2_THREAD_GROUP_HEIGHT, local_size_z = FFX_FSR2_THREAD_GROUP_DEPTH) in;
+#endif // #ifndef FFX_FSR2_NUM_THREADS
+
+FFX_FSR2_NUM_THREADS
+void main()
+{
+ uvec2 uDispatchThreadId = gl_WorkGroupID.xy * uvec2(FFX_FSR2_THREAD_GROUP_WIDTH, FFX_FSR2_THREAD_GROUP_HEIGHT) + gl_LocalInvocationID.xy;
+
+ ComputeLock(ivec2(uDispatchThreadId));
+}
diff --git a/thirdparty/amd-fsr2/shaders/ffx_fsr2_postprocess_lock_status.h b/thirdparty/amd-fsr2/shaders/ffx_fsr2_postprocess_lock_status.h
new file mode 100644
index 0000000000..cee9e148ba
--- /dev/null
+++ b/thirdparty/amd-fsr2/shaders/ffx_fsr2_postprocess_lock_status.h
@@ -0,0 +1,106 @@
+// This file is part of the FidelityFX SDK.
+//
+// Copyright (c) 2022-2023 Advanced Micro Devices, Inc. All rights reserved.
+//
+// Permission is hereby granted, free of charge, to any person obtaining a copy
+// of this software and associated documentation files (the "Software"), to deal
+// in the Software without restriction, including without limitation the rights
+// to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
+// copies of the Software, and to permit persons to whom the Software is
+// furnished to do so, subject to the following conditions:
+// The above copyright notice and this permission notice shall be included in
+// all copies or substantial portions of the Software.
+//
+// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
+// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
+// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
+// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
+// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
+// OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
+// THE SOFTWARE.
+
+#ifndef FFX_FSR2_POSTPROCESS_LOCK_STATUS_H
+#define FFX_FSR2_POSTPROCESS_LOCK_STATUS_H
+
+FfxFloat32x4 WrapShadingChangeLuma(FfxInt32x2 iPxSample)
+{
+ return FfxFloat32x4(LoadMipLuma(iPxSample, LumaMipLevelToUse()), 0, 0, 0);
+}
+
+#if FFX_HALF
+FFX_MIN16_F4 WrapShadingChangeLuma(FFX_MIN16_I2 iPxSample)
+{
+ return FFX_MIN16_F4(LoadMipLuma(iPxSample, LumaMipLevelToUse()), 0, 0, 0);
+}
+#endif
+
+#if FFX_FSR2_OPTION_POSTPROCESSLOCKSTATUS_SAMPLERS_USE_DATA_HALF && FFX_HALF
+DeclareCustomFetchBilinearSamplesMin16(FetchShadingChangeLumaSamples, WrapShadingChangeLuma)
+#else
+DeclareCustomFetchBicubicSamples(FetchShadingChangeLumaSamples, WrapShadingChangeLuma)
+#endif
+DeclareCustomTextureSample(ShadingChangeLumaSample, Lanczos2, FetchShadingChangeLumaSamples)
+
+FfxFloat32 GetShadingChangeLuma(FfxInt32x2 iPxHrPos, FfxFloat32x2 fUvCoord)
+{
+ FfxFloat32 fShadingChangeLuma = 0;
+
+#if 0
+ fShadingChangeLuma = Exposure() * exp(ShadingChangeLumaSample(fUvCoord, LumaMipDimensions()).x);
+#else
+
+ const FfxFloat32 fDiv = FfxFloat32(2 << LumaMipLevelToUse());
+ FfxInt32x2 iMipRenderSize = FfxInt32x2(RenderSize() / fDiv);
+
+ fUvCoord = ClampUv(fUvCoord, iMipRenderSize, LumaMipDimensions());
+ fShadingChangeLuma = Exposure() * exp(FfxFloat32(SampleMipLuma(fUvCoord, LumaMipLevelToUse())));
+#endif
+
+ fShadingChangeLuma = ffxPow(fShadingChangeLuma, 1.0f / 6.0f);
+
+ return fShadingChangeLuma;
+}
+
+void UpdateLockStatus(AccumulationPassCommonParams params,
+ FFX_PARAMETER_INOUT FfxFloat32 fReactiveFactor, LockState state,
+ FFX_PARAMETER_INOUT FfxFloat32x2 fLockStatus,
+ FFX_PARAMETER_OUT FfxFloat32 fLockContributionThisFrame,
+ FFX_PARAMETER_OUT FfxFloat32 fLuminanceDiff) {
+
+ const FfxFloat32 fShadingChangeLuma = GetShadingChangeLuma(params.iPxHrPos, params.fHrUv);
+
+ //init temporal shading change factor, init to -1 or so in reproject to know if "true new"?
+ fLockStatus[LOCK_TEMPORAL_LUMA] = (fLockStatus[LOCK_TEMPORAL_LUMA] == FfxFloat32(0.0f)) ? fShadingChangeLuma : fLockStatus[LOCK_TEMPORAL_LUMA];
+
+ FfxFloat32 fPreviousShadingChangeLuma = fLockStatus[LOCK_TEMPORAL_LUMA];
+
+ fLuminanceDiff = 1.0f - MinDividedByMax(fPreviousShadingChangeLuma, fShadingChangeLuma);
+
+ if (state.NewLock) {
+ fLockStatus[LOCK_TEMPORAL_LUMA] = fShadingChangeLuma;
+
+ fLockStatus[LOCK_LIFETIME_REMAINING] = (fLockStatus[LOCK_LIFETIME_REMAINING] != 0.0f) ? 2.0f : 1.0f;
+ }
+ else if(fLockStatus[LOCK_LIFETIME_REMAINING] <= 1.0f) {
+ fLockStatus[LOCK_TEMPORAL_LUMA] = ffxLerp(fLockStatus[LOCK_TEMPORAL_LUMA], FfxFloat32(fShadingChangeLuma), 0.5f);
+ }
+ else {
+ if (fLuminanceDiff > 0.1f) {
+ KillLock(fLockStatus);
+ }
+ }
+
+ fReactiveFactor = ffxMax(fReactiveFactor, ffxSaturate((fLuminanceDiff - 0.1f) * 10.0f));
+ fLockStatus[LOCK_LIFETIME_REMAINING] *= (1.0f - fReactiveFactor);
+
+ fLockStatus[LOCK_LIFETIME_REMAINING] *= ffxSaturate(1.0f - params.fAccumulationMask);
+ fLockStatus[LOCK_LIFETIME_REMAINING] *= FfxFloat32(params.fDepthClipFactor < 0.1f);
+
+ // Compute this frame lock contribution
+ const FfxFloat32 fLifetimeContribution = ffxSaturate(fLockStatus[LOCK_LIFETIME_REMAINING] - 1.0f);
+ const FfxFloat32 fShadingChangeContribution = ffxSaturate(MinDividedByMax(fLockStatus[LOCK_TEMPORAL_LUMA], fShadingChangeLuma));
+
+ fLockContributionThisFrame = ffxSaturate(ffxSaturate(fLifetimeContribution * 4.0f) * fShadingChangeContribution);
+}
+
+#endif //!defined( FFX_FSR2_POSTPROCESS_LOCK_STATUS_H )
diff --git a/thirdparty/amd-fsr2/shaders/ffx_fsr2_rcas.h b/thirdparty/amd-fsr2/shaders/ffx_fsr2_rcas.h
new file mode 100644
index 0000000000..d9006cd8ee
--- /dev/null
+++ b/thirdparty/amd-fsr2/shaders/ffx_fsr2_rcas.h
@@ -0,0 +1,67 @@
+// This file is part of the FidelityFX SDK.
+//
+// Copyright (c) 2022-2023 Advanced Micro Devices, Inc. All rights reserved.
+//
+// Permission is hereby granted, free of charge, to any person obtaining a copy
+// of this software and associated documentation files (the "Software"), to deal
+// in the Software without restriction, including without limitation the rights
+// to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
+// copies of the Software, and to permit persons to whom the Software is
+// furnished to do so, subject to the following conditions:
+// The above copyright notice and this permission notice shall be included in
+// all copies or substantial portions of the Software.
+//
+// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
+// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
+// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
+// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
+// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
+// OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
+// THE SOFTWARE.
+
+#define GROUP_SIZE 8
+
+#define FSR_RCAS_DENOISE 1
+
+void WriteUpscaledOutput(FFX_MIN16_U2 iPxHrPos, FfxFloat32x3 fUpscaledColor)
+{
+ StoreUpscaledOutput(FFX_MIN16_I2(iPxHrPos), fUpscaledColor);
+}
+
+#define FSR_RCAS_F
+FfxFloat32x4 FsrRcasLoadF(FfxInt32x2 p)
+{
+ FfxFloat32x4 fColor = LoadRCAS_Input(p);
+
+ fColor.rgb = PrepareRgb(fColor.rgb, Exposure(), PreExposure());
+
+ return fColor;
+}
+
+void FsrRcasInputF(inout FfxFloat32 r, inout FfxFloat32 g, inout FfxFloat32 b) {}
+
+#include "ffx_fsr1.h"
+
+
+void CurrFilter(FFX_MIN16_U2 pos)
+{
+ FfxFloat32x3 c;
+ FsrRcasF(c.r, c.g, c.b, pos, RCASConfig());
+
+ c = UnprepareRgb(c, Exposure());
+
+ WriteUpscaledOutput(pos, c);
+}
+
+void RCAS(FfxUInt32x3 LocalThreadId, FfxUInt32x3 WorkGroupId, FfxUInt32x3 Dtid)
+{
+ // Do remapping of local xy in workgroup for a more PS-like swizzle pattern.
+ FfxUInt32x2 gxy = ffxRemapForQuad(LocalThreadId.x) + FfxUInt32x2(WorkGroupId.x << 4u, WorkGroupId.y << 4u);
+ CurrFilter(FFX_MIN16_U2(gxy));
+ gxy.x += 8u;
+ CurrFilter(FFX_MIN16_U2(gxy));
+ gxy.y += 8u;
+ CurrFilter(FFX_MIN16_U2(gxy));
+ gxy.x -= 8u;
+ CurrFilter(FFX_MIN16_U2(gxy));
+}
diff --git a/thirdparty/amd-fsr2/shaders/ffx_fsr2_rcas_pass.glsl b/thirdparty/amd-fsr2/shaders/ffx_fsr2_rcas_pass.glsl
new file mode 100644
index 0000000000..f78fa53e6e
--- /dev/null
+++ b/thirdparty/amd-fsr2/shaders/ffx_fsr2_rcas_pass.glsl
@@ -0,0 +1,80 @@
+// This file is part of the FidelityFX SDK.
+//
+// Copyright (c) 2022-2023 Advanced Micro Devices, Inc. All rights reserved.
+//
+// Permission is hereby granted, free of charge, to any person obtaining a copy
+// of this software and associated documentation files (the "Software"), to deal
+// in the Software without restriction, including without limitation the rights
+// to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
+// copies of the Software, and to permit persons to whom the Software is
+// furnished to do so, subject to the following conditions:
+// The above copyright notice and this permission notice shall be included in
+// all copies or substantial portions of the Software.
+//
+// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
+// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
+// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
+// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
+// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
+// OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
+// THE SOFTWARE.
+
+
+
+#extension GL_GOOGLE_include_directive : require
+#extension GL_EXT_samplerless_texture_functions : require
+// Needed for rw_upscaled_output declaration
+#extension GL_EXT_shader_image_load_formatted : require
+
+#define FSR2_BIND_SRV_INPUT_EXPOSURE 0
+#define FSR2_BIND_SRV_RCAS_INPUT 1
+#define FSR2_BIND_UAV_UPSCALED_OUTPUT 2
+#define FSR2_BIND_CB_FSR2 3
+#define FSR2_BIND_CB_RCAS 4
+
+#include "ffx_fsr2_callbacks_glsl.h"
+#include "ffx_fsr2_common.h"
+
+//Move to prototype shader!
+#if defined(FSR2_BIND_CB_RCAS)
+ layout (set = 1, binding = FSR2_BIND_CB_RCAS, std140) uniform cbRCAS_t
+ {
+ uvec4 rcasConfig;
+ } cbRCAS;
+
+ uvec4 RCASConfig()
+ {
+ return cbRCAS.rcasConfig;
+ }
+#else
+ uvec4 RCASConfig()
+ {
+ return uvec4(0);
+ }
+#endif
+
+vec4 LoadRCAS_Input(FfxInt32x2 iPxPos)
+{
+ return texelFetch(r_rcas_input, iPxPos, 0);
+}
+
+#include "ffx_fsr2_rcas.h"
+
+#ifndef FFX_FSR2_THREAD_GROUP_WIDTH
+#define FFX_FSR2_THREAD_GROUP_WIDTH 64
+#endif // #ifndef FFX_FSR2_THREAD_GROUP_WIDTH
+#ifndef FFX_FSR2_THREAD_GROUP_HEIGHT
+#define FFX_FSR2_THREAD_GROUP_HEIGHT 1
+#endif // #ifndef FFX_FSR2_THREAD_GROUP_HEIGHT
+#ifndef FFX_FSR2_THREAD_GROUP_DEPTH
+#define FFX_FSR2_THREAD_GROUP_DEPTH 1
+#endif // #ifndef FFX_FSR2_THREAD_GROUP_DEPTH
+#ifndef FFX_FSR2_NUM_THREADS
+#define FFX_FSR2_NUM_THREADS layout (local_size_x = FFX_FSR2_THREAD_GROUP_WIDTH, local_size_y = FFX_FSR2_THREAD_GROUP_HEIGHT, local_size_z = FFX_FSR2_THREAD_GROUP_DEPTH) in;
+#endif // #ifndef FFX_FSR2_NUM_THREADS
+
+FFX_FSR2_NUM_THREADS
+void main()
+{
+ RCAS(gl_LocalInvocationID.xyz, gl_WorkGroupID.xyz, gl_GlobalInvocationID.xyz);
+} \ No newline at end of file
diff --git a/thirdparty/amd-fsr2/shaders/ffx_fsr2_reconstruct_dilated_velocity_and_previous_depth.h b/thirdparty/amd-fsr2/shaders/ffx_fsr2_reconstruct_dilated_velocity_and_previous_depth.h
new file mode 100644
index 0000000000..e9ccc4bc8c
--- /dev/null
+++ b/thirdparty/amd-fsr2/shaders/ffx_fsr2_reconstruct_dilated_velocity_and_previous_depth.h
@@ -0,0 +1,145 @@
+// This file is part of the FidelityFX SDK.
+//
+// Copyright (c) 2022-2023 Advanced Micro Devices, Inc. All rights reserved.
+//
+// Permission is hereby granted, free of charge, to any person obtaining a copy
+// of this software and associated documentation files (the "Software"), to deal
+// in the Software without restriction, including without limitation the rights
+// to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
+// copies of the Software, and to permit persons to whom the Software is
+// furnished to do so, subject to the following conditions:
+// The above copyright notice and this permission notice shall be included in
+// all copies or substantial portions of the Software.
+//
+// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
+// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
+// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
+// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
+// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
+// OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
+// THE SOFTWARE.
+
+#ifndef FFX_FSR2_RECONSTRUCT_DILATED_VELOCITY_AND_PREVIOUS_DEPTH_H
+#define FFX_FSR2_RECONSTRUCT_DILATED_VELOCITY_AND_PREVIOUS_DEPTH_H
+
+void ReconstructPrevDepth(FfxInt32x2 iPxPos, FfxFloat32 fDepth, FfxFloat32x2 fMotionVector, FfxInt32x2 iPxDepthSize)
+{
+ fMotionVector *= FfxFloat32(length(fMotionVector * DisplaySize()) > 0.1f);
+
+ FfxFloat32x2 fUv = (iPxPos + FfxFloat32(0.5)) / iPxDepthSize;
+ FfxFloat32x2 fReprojectedUv = fUv + fMotionVector;
+
+ BilinearSamplingData bilinearInfo = GetBilinearSamplingData(fReprojectedUv, RenderSize());
+
+ // Project current depth into previous frame locations.
+ // Push to all pixels having some contribution if reprojection is using bilinear logic.
+ for (FfxInt32 iSampleIndex = 0; iSampleIndex < 4; iSampleIndex++) {
+
+ const FfxInt32x2 iOffset = bilinearInfo.iOffsets[iSampleIndex];
+ FfxFloat32 fWeight = bilinearInfo.fWeights[iSampleIndex];
+
+ if (fWeight > fReconstructedDepthBilinearWeightThreshold) {
+
+ FfxInt32x2 iStorePos = bilinearInfo.iBasePos + iOffset;
+ if (IsOnScreen(iStorePos, iPxDepthSize)) {
+ StoreReconstructedDepth(iStorePos, fDepth);
+ }
+ }
+ }
+}
+
+void FindNearestDepth(FFX_PARAMETER_IN FfxInt32x2 iPxPos, FFX_PARAMETER_IN FfxInt32x2 iPxSize, FFX_PARAMETER_OUT FfxFloat32 fNearestDepth, FFX_PARAMETER_OUT FfxInt32x2 fNearestDepthCoord)
+{
+ const FfxInt32 iSampleCount = 9;
+ const FfxInt32x2 iSampleOffsets[iSampleCount] = {
+ FfxInt32x2(+0, +0),
+ FfxInt32x2(+1, +0),
+ FfxInt32x2(+0, +1),
+ FfxInt32x2(+0, -1),
+ FfxInt32x2(-1, +0),
+ FfxInt32x2(-1, +1),
+ FfxInt32x2(+1, +1),
+ FfxInt32x2(-1, -1),
+ FfxInt32x2(+1, -1),
+ };
+
+ // pull out the depth loads to allow SC to batch them
+ FfxFloat32 depth[9];
+ FfxInt32 iSampleIndex = 0;
+ FFX_UNROLL
+ for (iSampleIndex = 0; iSampleIndex < iSampleCount; ++iSampleIndex) {
+
+ FfxInt32x2 iPos = iPxPos + iSampleOffsets[iSampleIndex];
+ depth[iSampleIndex] = LoadInputDepth(iPos);
+ }
+
+ // find closest depth
+ fNearestDepthCoord = iPxPos;
+ fNearestDepth = depth[0];
+ FFX_UNROLL
+ for (iSampleIndex = 1; iSampleIndex < iSampleCount; ++iSampleIndex) {
+
+ FfxInt32x2 iPos = iPxPos + iSampleOffsets[iSampleIndex];
+ if (IsOnScreen(iPos, iPxSize)) {
+
+ FfxFloat32 fNdDepth = depth[iSampleIndex];
+#if FFX_FSR2_OPTION_INVERTED_DEPTH
+ if (fNdDepth > fNearestDepth) {
+#else
+ if (fNdDepth < fNearestDepth) {
+#endif
+ fNearestDepthCoord = iPos;
+ fNearestDepth = fNdDepth;
+ }
+ }
+ }
+}
+
+FfxFloat32 ComputeLockInputLuma(FfxInt32x2 iPxLrPos)
+{
+ //We assume linear data. if non-linear input (sRGB, ...),
+ //then we should convert to linear first and back to sRGB on output.
+ FfxFloat32x3 fRgb = ffxMax(FfxFloat32x3(0, 0, 0), LoadInputColor(iPxLrPos));
+
+ // Use internal auto exposure for locking logic
+ fRgb /= PreExposure();
+ fRgb *= Exposure();
+
+#if FFX_FSR2_OPTION_HDR_COLOR_INPUT
+ fRgb = Tonemap(fRgb);
+#endif
+
+ //compute luma used to lock pixels, if used elsewhere the ffxPow must be moved!
+ const FfxFloat32 fLockInputLuma = ffxPow(RGBToPerceivedLuma(fRgb), FfxFloat32(1.0 / 6.0));
+
+ return fLockInputLuma;
+}
+
+void ReconstructAndDilate(FfxInt32x2 iPxLrPos)
+{
+ FfxFloat32 fDilatedDepth;
+ FfxInt32x2 iNearestDepthCoord;
+
+ FindNearestDepth(iPxLrPos, RenderSize(), fDilatedDepth, iNearestDepthCoord);
+
+#if FFX_FSR2_OPTION_LOW_RESOLUTION_MOTION_VECTORS
+ FfxInt32x2 iSamplePos = iPxLrPos;
+ FfxInt32x2 iMotionVectorPos = iNearestDepthCoord;
+#else
+ FfxInt32x2 iSamplePos = ComputeHrPosFromLrPos(iPxLrPos);
+ FfxInt32x2 iMotionVectorPos = ComputeHrPosFromLrPos(iNearestDepthCoord);
+#endif
+
+ FfxFloat32x2 fDilatedMotionVector = LoadInputMotionVector(iMotionVectorPos);
+
+ StoreDilatedDepth(iPxLrPos, fDilatedDepth);
+ StoreDilatedMotionVector(iPxLrPos, fDilatedMotionVector);
+
+ ReconstructPrevDepth(iPxLrPos, fDilatedDepth, fDilatedMotionVector, RenderSize());
+
+ FfxFloat32 fLockInputLuma = ComputeLockInputLuma(iPxLrPos);
+ StoreLockInputLuma(iPxLrPos, fLockInputLuma);
+}
+
+
+#endif //!defined( FFX_FSR2_RECONSTRUCT_DILATED_VELOCITY_AND_PREVIOUS_DEPTH_H )
diff --git a/thirdparty/amd-fsr2/shaders/ffx_fsr2_reconstruct_previous_depth_pass.glsl b/thirdparty/amd-fsr2/shaders/ffx_fsr2_reconstruct_previous_depth_pass.glsl
new file mode 100644
index 0000000000..25c18c0622
--- /dev/null
+++ b/thirdparty/amd-fsr2/shaders/ffx_fsr2_reconstruct_previous_depth_pass.glsl
@@ -0,0 +1,65 @@
+// This file is part of the FidelityFX SDK.
+//
+// Copyright (c) 2022-2023 Advanced Micro Devices, Inc. All rights reserved.
+//
+// Permission is hereby granted, free of charge, to any person obtaining a copy
+// of this software and associated documentation files (the "Software"), to deal
+// in the Software without restriction, including without limitation the rights
+// to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
+// copies of the Software, and to permit persons to whom the Software is
+// furnished to do so, subject to the following conditions:
+// The above copyright notice and this permission notice shall be included in
+// all copies or substantial portions of the Software.
+//
+// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
+// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
+// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
+// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
+// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
+// OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
+// THE SOFTWARE.
+
+
+
+#extension GL_GOOGLE_include_directive : require
+#extension GL_EXT_samplerless_texture_functions : require
+
+#define FSR2_BIND_SRV_INPUT_MOTION_VECTORS 0
+#define FSR2_BIND_SRV_INPUT_DEPTH 1
+#define FSR2_BIND_SRV_INPUT_COLOR 2
+#define FSR2_BIND_SRV_INPUT_EXPOSURE 3
+#define FSR2_BIND_SRV_LUMA_HISTORY 4
+
+#define FSR2_BIND_UAV_RECONSTRUCTED_PREV_NEAREST_DEPTH 5
+#define FSR2_BIND_UAV_DILATED_MOTION_VECTORS 6
+#define FSR2_BIND_UAV_DILATED_DEPTH 7
+#define FSR2_BIND_UAV_PREPARED_INPUT_COLOR 8
+#define FSR2_BIND_UAV_LUMA_HISTORY 9
+#define FSR2_BIND_UAV_LUMA_INSTABILITY 10
+#define FSR2_BIND_UAV_LOCK_INPUT_LUMA 11
+
+#define FSR2_BIND_CB_FSR2 12
+
+#include "ffx_fsr2_callbacks_glsl.h"
+#include "ffx_fsr2_common.h"
+#include "ffx_fsr2_sample.h"
+#include "ffx_fsr2_reconstruct_dilated_velocity_and_previous_depth.h"
+
+#ifndef FFX_FSR2_THREAD_GROUP_WIDTH
+#define FFX_FSR2_THREAD_GROUP_WIDTH 8
+#endif // #ifndef FFX_FSR2_THREAD_GROUP_WIDTH
+#ifndef FFX_FSR2_THREAD_GROUP_HEIGHT
+#define FFX_FSR2_THREAD_GROUP_HEIGHT 8
+#endif // #ifndef FFX_FSR2_THREAD_GROUP_HEIGHT
+#ifndef FFX_FSR2_THREAD_GROUP_DEPTH
+#define FFX_FSR2_THREAD_GROUP_DEPTH 1
+#endif // #ifndef FFX_FSR2_THREAD_GROUP_DEPTH
+#ifndef FFX_FSR2_NUM_THREADS
+#define FFX_FSR2_NUM_THREADS layout (local_size_x = FFX_FSR2_THREAD_GROUP_WIDTH, local_size_y = FFX_FSR2_THREAD_GROUP_HEIGHT, local_size_z = FFX_FSR2_THREAD_GROUP_DEPTH) in;
+#endif // #ifndef FFX_FSR2_NUM_THREADS
+
+FFX_FSR2_NUM_THREADS
+void main()
+{
+ ReconstructAndDilate(FFX_MIN16_I2(gl_GlobalInvocationID.xy));
+}
diff --git a/thirdparty/amd-fsr2/shaders/ffx_fsr2_reproject.h b/thirdparty/amd-fsr2/shaders/ffx_fsr2_reproject.h
new file mode 100644
index 0000000000..f7f396129e
--- /dev/null
+++ b/thirdparty/amd-fsr2/shaders/ffx_fsr2_reproject.h
@@ -0,0 +1,136 @@
+// This file is part of the FidelityFX SDK.
+//
+// Copyright (c) 2022-2023 Advanced Micro Devices, Inc. All rights reserved.
+//
+// Permission is hereby granted, free of charge, to any person obtaining a copy
+// of this software and associated documentation files (the "Software"), to deal
+// in the Software without restriction, including without limitation the rights
+// to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
+// copies of the Software, and to permit persons to whom the Software is
+// furnished to do so, subject to the following conditions:
+// The above copyright notice and this permission notice shall be included in
+// all copies or substantial portions of the Software.
+//
+// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
+// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
+// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
+// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
+// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
+// OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
+// THE SOFTWARE.
+
+#ifndef FFX_FSR2_REPROJECT_H
+#define FFX_FSR2_REPROJECT_H
+
+#ifndef FFX_FSR2_OPTION_REPROJECT_USE_LANCZOS_TYPE
+#define FFX_FSR2_OPTION_REPROJECT_USE_LANCZOS_TYPE 0 // Reference
+#endif
+
+FfxFloat32x4 WrapHistory(FfxInt32x2 iPxSample)
+{
+ return LoadHistory(iPxSample);
+}
+
+#if FFX_HALF
+FFX_MIN16_F4 WrapHistory(FFX_MIN16_I2 iPxSample)
+{
+ return FFX_MIN16_F4(LoadHistory(iPxSample));
+}
+#endif
+
+
+#if FFX_FSR2_OPTION_REPROJECT_SAMPLERS_USE_DATA_HALF && FFX_HALF
+DeclareCustomFetchBicubicSamplesMin16(FetchHistorySamples, WrapHistory)
+DeclareCustomTextureSampleMin16(HistorySample, FFX_FSR2_GET_LANCZOS_SAMPLER1D(FFX_FSR2_OPTION_REPROJECT_USE_LANCZOS_TYPE), FetchHistorySamples)
+#else
+DeclareCustomFetchBicubicSamples(FetchHistorySamples, WrapHistory)
+DeclareCustomTextureSample(HistorySample, FFX_FSR2_GET_LANCZOS_SAMPLER1D(FFX_FSR2_OPTION_REPROJECT_USE_LANCZOS_TYPE), FetchHistorySamples)
+#endif
+
+FfxFloat32x4 WrapLockStatus(FfxInt32x2 iPxSample)
+{
+ FfxFloat32x4 fSample = FfxFloat32x4(LoadLockStatus(iPxSample), 0.0f, 0.0f);
+ return fSample;
+}
+
+#if FFX_HALF
+FFX_MIN16_F4 WrapLockStatus(FFX_MIN16_I2 iPxSample)
+{
+ FFX_MIN16_F4 fSample = FFX_MIN16_F4(LoadLockStatus(iPxSample), 0.0, 0.0);
+
+ return fSample;
+}
+#endif
+
+#if 1
+#if FFX_FSR2_OPTION_REPROJECT_SAMPLERS_USE_DATA_HALF && FFX_HALF
+DeclareCustomFetchBilinearSamplesMin16(FetchLockStatusSamples, WrapLockStatus)
+DeclareCustomTextureSampleMin16(LockStatusSample, Bilinear, FetchLockStatusSamples)
+#else
+DeclareCustomFetchBilinearSamples(FetchLockStatusSamples, WrapLockStatus)
+DeclareCustomTextureSample(LockStatusSample, Bilinear, FetchLockStatusSamples)
+#endif
+#else
+#if FFX_FSR2_OPTION_REPROJECT_SAMPLERS_USE_DATA_HALF && FFX_HALF
+DeclareCustomFetchBicubicSamplesMin16(FetchLockStatusSamples, WrapLockStatus)
+DeclareCustomTextureSampleMin16(LockStatusSample, FFX_FSR2_GET_LANCZOS_SAMPLER1D(FFX_FSR2_OPTION_REPROJECT_USE_LANCZOS_TYPE), FetchLockStatusSamples)
+#else
+DeclareCustomFetchBicubicSamples(FetchLockStatusSamples, WrapLockStatus)
+DeclareCustomTextureSample(LockStatusSample, FFX_FSR2_GET_LANCZOS_SAMPLER1D(FFX_FSR2_OPTION_REPROJECT_USE_LANCZOS_TYPE), FetchLockStatusSamples)
+#endif
+#endif
+
+FfxFloat32x2 GetMotionVector(FfxInt32x2 iPxHrPos, FfxFloat32x2 fHrUv)
+{
+#if FFX_FSR2_OPTION_LOW_RESOLUTION_MOTION_VECTORS
+ FfxFloat32x2 fDilatedMotionVector = LoadDilatedMotionVector(FFX_MIN16_I2(fHrUv * RenderSize()));
+#else
+ FfxFloat32x2 fDilatedMotionVector = LoadInputMotionVector(iPxHrPos);
+#endif
+
+ return fDilatedMotionVector;
+}
+
+FfxBoolean IsUvInside(FfxFloat32x2 fUv)
+{
+ return (fUv.x >= 0.0f && fUv.x <= 1.0f) && (fUv.y >= 0.0f && fUv.y <= 1.0f);
+}
+
+void ComputeReprojectedUVs(const AccumulationPassCommonParams params, FFX_PARAMETER_OUT FfxFloat32x2 fReprojectedHrUv, FFX_PARAMETER_OUT FfxBoolean bIsExistingSample)
+{
+ fReprojectedHrUv = params.fHrUv + params.fMotionVector;
+
+ bIsExistingSample = IsUvInside(fReprojectedHrUv);
+}
+
+void ReprojectHistoryColor(const AccumulationPassCommonParams params, FFX_PARAMETER_OUT FfxFloat32x3 fHistoryColor, FFX_PARAMETER_OUT FfxFloat32 fTemporalReactiveFactor, FFX_PARAMETER_OUT FfxBoolean bInMotionLastFrame)
+{
+ FfxFloat32x4 fHistory = HistorySample(params.fReprojectedHrUv, DisplaySize());
+
+ fHistoryColor = PrepareRgb(fHistory.rgb, Exposure(), PreviousFramePreExposure());
+
+ fHistoryColor = RGBToYCoCg(fHistoryColor);
+
+ //Compute temporal reactivity info
+ fTemporalReactiveFactor = ffxSaturate(abs(fHistory.w));
+ bInMotionLastFrame = (fHistory.w < 0.0f);
+}
+
+LockState ReprojectHistoryLockStatus(const AccumulationPassCommonParams params, FFX_PARAMETER_OUT FfxFloat32x2 fReprojectedLockStatus)
+{
+ LockState state = { FFX_FALSE, FFX_FALSE };
+ const FfxFloat32 fNewLockIntensity = LoadRwNewLocks(params.iPxHrPos);
+ state.NewLock = fNewLockIntensity > (127.0f / 255.0f);
+
+ FfxFloat32 fInPlaceLockLifetime = state.NewLock ? fNewLockIntensity : 0;
+
+ fReprojectedLockStatus = SampleLockStatus(params.fReprojectedHrUv);
+
+ if (fReprojectedLockStatus[LOCK_LIFETIME_REMAINING] != FfxFloat32(0.0f)) {
+ state.WasLockedPrevFrame = true;
+ }
+
+ return state;
+}
+
+#endif //!defined( FFX_FSR2_REPROJECT_H )
diff --git a/thirdparty/amd-fsr2/shaders/ffx_fsr2_resources.h b/thirdparty/amd-fsr2/shaders/ffx_fsr2_resources.h
new file mode 100644
index 0000000000..535dbc383c
--- /dev/null
+++ b/thirdparty/amd-fsr2/shaders/ffx_fsr2_resources.h
@@ -0,0 +1,105 @@
+// This file is part of the FidelityFX SDK.
+//
+// Copyright (c) 2022-2023 Advanced Micro Devices, Inc. All rights reserved.
+//
+// Permission is hereby granted, free of charge, to any person obtaining a copy
+// of this software and associated documentation files (the "Software"), to deal
+// in the Software without restriction, including without limitation the rights
+// to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
+// copies of the Software, and to permit persons to whom the Software is
+// furnished to do so, subject to the following conditions:
+// The above copyright notice and this permission notice shall be included in
+// all copies or substantial portions of the Software.
+//
+// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
+// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
+// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
+// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
+// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
+// OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
+// THE SOFTWARE.
+
+#ifndef FFX_FSR2_RESOURCES_H
+#define FFX_FSR2_RESOURCES_H
+
+#if defined(FFX_CPU) || defined(FFX_GPU)
+#define FFX_FSR2_RESOURCE_IDENTIFIER_NULL 0
+#define FFX_FSR2_RESOURCE_IDENTIFIER_INPUT_OPAQUE_ONLY 1
+#define FFX_FSR2_RESOURCE_IDENTIFIER_INPUT_COLOR 2
+#define FFX_FSR2_RESOURCE_IDENTIFIER_INPUT_MOTION_VECTORS 3
+#define FFX_FSR2_RESOURCE_IDENTIFIER_INPUT_DEPTH 4
+#define FFX_FSR2_RESOURCE_IDENTIFIER_INPUT_EXPOSURE 5
+#define FFX_FSR2_RESOURCE_IDENTIFIER_INPUT_REACTIVE_MASK 6
+#define FFX_FSR2_RESOURCE_IDENTIFIER_INPUT_TRANSPARENCY_AND_COMPOSITION_MASK 7
+#define FFX_FSR2_RESOURCE_IDENTIFIER_RECONSTRUCTED_PREVIOUS_NEAREST_DEPTH 8
+#define FFX_FSR2_RESOURCE_IDENTIFIER_DILATED_MOTION_VECTORS 9
+#define FFX_FSR2_RESOURCE_IDENTIFIER_DILATED_DEPTH 10
+#define FFX_FSR2_RESOURCE_IDENTIFIER_INTERNAL_UPSCALED_COLOR 11
+#define FFX_FSR2_RESOURCE_IDENTIFIER_LOCK_STATUS 12
+#define FFX_FSR2_RESOURCE_IDENTIFIER_NEW_LOCKS 13
+#define FFX_FSR2_RESOURCE_IDENTIFIER_PREPARED_INPUT_COLOR 14
+#define FFX_FSR2_RESOURCE_IDENTIFIER_LUMA_HISTORY 15
+#define FFX_FSR2_RESOURCE_IDENTIFIER_DEBUG_OUTPUT 16
+#define FFX_FSR2_RESOURCE_IDENTIFIER_LANCZOS_LUT 17
+#define FFX_FSR2_RESOURCE_IDENTIFIER_SPD_ATOMIC_COUNT 18
+#define FFX_FSR2_RESOURCE_IDENTIFIER_UPSCALED_OUTPUT 19
+#define FFX_FSR2_RESOURCE_IDENTIFIER_RCAS_INPUT 20
+#define FFX_FSR2_RESOURCE_IDENTIFIER_LOCK_STATUS_1 21
+#define FFX_FSR2_RESOURCE_IDENTIFIER_LOCK_STATUS_2 22
+#define FFX_FSR2_RESOURCE_IDENTIFIER_INTERNAL_UPSCALED_COLOR_1 23
+#define FFX_FSR2_RESOURCE_IDENTIFIER_INTERNAL_UPSCALED_COLOR_2 24
+#define FFX_FSR2_RESOURCE_IDENTIFIER_INTERNAL_DEFAULT_REACTIVITY 25
+#define FFX_FSR2_RESOURCE_IDENTIFIER_INTERNAL_DEFAULT_TRANSPARENCY_AND_COMPOSITION 26
+#define FFX_FSR2_RESOURCE_IDENTITIER_UPSAMPLE_MAXIMUM_BIAS_LUT 27
+#define FFX_FSR2_RESOURCE_IDENTIFIER_DILATED_REACTIVE_MASKS 28
+#define FFX_FSR2_RESOURCE_IDENTIFIER_SCENE_LUMINANCE 29 // same as FFX_FSR2_RESOURCE_IDENTIFIER_SCENE_LUMINANCE_MIPMAP_0
+#define FFX_FSR2_RESOURCE_IDENTIFIER_SCENE_LUMINANCE_MIPMAP_0 29
+#define FFX_FSR2_RESOURCE_IDENTIFIER_SCENE_LUMINANCE_MIPMAP_1 30
+#define FFX_FSR2_RESOURCE_IDENTIFIER_SCENE_LUMINANCE_MIPMAP_2 31
+#define FFX_FSR2_RESOURCE_IDENTIFIER_SCENE_LUMINANCE_MIPMAP_3 32
+#define FFX_FSR2_RESOURCE_IDENTIFIER_SCENE_LUMINANCE_MIPMAP_4 33
+#define FFX_FSR2_RESOURCE_IDENTIFIER_SCENE_LUMINANCE_MIPMAP_5 34
+#define FFX_FSR2_RESOURCE_IDENTIFIER_SCENE_LUMINANCE_MIPMAP_6 35
+#define FFX_FSR2_RESOURCE_IDENTIFIER_SCENE_LUMINANCE_MIPMAP_7 36
+#define FFX_FSR2_RESOURCE_IDENTIFIER_SCENE_LUMINANCE_MIPMAP_8 37
+#define FFX_FSR2_RESOURCE_IDENTIFIER_SCENE_LUMINANCE_MIPMAP_9 38
+#define FFX_FSR2_RESOURCE_IDENTIFIER_SCENE_LUMINANCE_MIPMAP_10 39
+#define FFX_FSR2_RESOURCE_IDENTIFIER_SCENE_LUMINANCE_MIPMAP_11 40
+#define FFX_FSR2_RESOURCE_IDENTIFIER_SCENE_LUMINANCE_MIPMAP_12 41
+#define FFX_FSR2_RESOURCE_IDENTIFIER_INTERNAL_DEFAULT_EXPOSURE 42
+#define FFX_FSR2_RESOURCE_IDENTIFIER_AUTO_EXPOSURE 43
+#define FFX_FSR2_RESOURCE_IDENTIFIER_AUTOREACTIVE 44
+#define FFX_FSR2_RESOURCE_IDENTIFIER_AUTOCOMPOSITION 45
+
+#define FFX_FSR2_RESOURCE_IDENTIFIER_PREV_PRE_ALPHA_COLOR 46
+#define FFX_FSR2_RESOURCE_IDENTIFIER_PREV_POST_ALPHA_COLOR 47
+#define FFX_FSR2_RESOURCE_IDENTIFIER_PREV_PRE_ALPHA_COLOR_1 48
+#define FFX_FSR2_RESOURCE_IDENTIFIER_PREV_POST_ALPHA_COLOR_1 49
+#define FFX_FSR2_RESOURCE_IDENTIFIER_PREV_PRE_ALPHA_COLOR_2 50
+#define FFX_FSR2_RESOURCE_IDENTIFIER_PREV_POST_ALPHA_COLOR_2 51
+#define FFX_FSR2_RESOURCE_IDENTIFIER_PREVIOUS_DILATED_MOTION_VECTORS 52
+#define FFX_FSR2_RESOURCE_IDENTIFIER_INTERNAL_DILATED_MOTION_VECTORS_1 53
+#define FFX_FSR2_RESOURCE_IDENTIFIER_INTERNAL_DILATED_MOTION_VECTORS_2 54
+#define FFX_FSR2_RESOURCE_IDENTIFIER_LUMA_HISTORY_1 55
+#define FFX_FSR2_RESOURCE_IDENTIFIER_LUMA_HISTORY_2 56
+#define FFX_FSR2_RESOURCE_IDENTIFIER_LOCK_INPUT_LUMA 57
+
+// Shading change detection mip level setting, value must be in the range [FFX_FSR2_RESOURCE_IDENTIFIER_SCENE_LUMINANCE_MIPMAP_0, FFX_FSR2_RESOURCE_IDENTIFIER_SCENE_LUMINANCE_MIPMAP_12]
+#define FFX_FSR2_RESOURCE_IDENTIFIER_SCENE_LUMINANCE_MIPMAP_SHADING_CHANGE FFX_FSR2_RESOURCE_IDENTIFIER_SCENE_LUMINANCE_MIPMAP_4
+#define FFX_FSR2_SHADING_CHANGE_MIP_LEVEL (FFX_FSR2_RESOURCE_IDENTIFIER_SCENE_LUMINANCE_MIPMAP_SHADING_CHANGE - FFX_FSR2_RESOURCE_IDENTIFIER_SCENE_LUMINANCE)
+
+#define FFX_FSR2_RESOURCE_IDENTIFIER_COUNT 58
+
+#define FFX_FSR2_CONSTANTBUFFER_IDENTIFIER_FSR2 0
+#define FFX_FSR2_CONSTANTBUFFER_IDENTIFIER_SPD 1
+#define FFX_FSR2_CONSTANTBUFFER_IDENTIFIER_RCAS 2
+#define FFX_FSR2_CONSTANTBUFFER_IDENTIFIER_GENREACTIVE 3
+
+#define FFX_FSR2_AUTOREACTIVEFLAGS_APPLY_TONEMAP 1
+#define FFX_FSR2_AUTOREACTIVEFLAGS_APPLY_INVERSETONEMAP 2
+#define FFX_FSR2_AUTOREACTIVEFLAGS_APPLY_THRESHOLD 4
+#define FFX_FSR2_AUTOREACTIVEFLAGS_USE_COMPONENTS_MAX 8
+
+#endif // #if defined(FFX_CPU) || defined(FFX_GPU)
+
+#endif //!defined( FFX_FSR2_RESOURCES_H )
diff --git a/thirdparty/amd-fsr2/shaders/ffx_fsr2_sample.h b/thirdparty/amd-fsr2/shaders/ffx_fsr2_sample.h
new file mode 100644
index 0000000000..f94f40aa79
--- /dev/null
+++ b/thirdparty/amd-fsr2/shaders/ffx_fsr2_sample.h
@@ -0,0 +1,605 @@
+// This file is part of the FidelityFX SDK.
+//
+// Copyright (c) 2022-2023 Advanced Micro Devices, Inc. All rights reserved.
+//
+// Permission is hereby granted, free of charge, to any person obtaining a copy
+// of this software and associated documentation files (the "Software"), to deal
+// in the Software without restriction, including without limitation the rights
+// to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
+// copies of the Software, and to permit persons to whom the Software is
+// furnished to do so, subject to the following conditions:
+// The above copyright notice and this permission notice shall be included in
+// all copies or substantial portions of the Software.
+//
+// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
+// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
+// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
+// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
+// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
+// OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
+// THE SOFTWARE.
+
+#ifndef FFX_FSR2_SAMPLE_H
+#define FFX_FSR2_SAMPLE_H
+
+// suppress warnings
+#ifdef FFX_HLSL
+#pragma warning(disable: 4008) // potentially divide by zero
+#endif //FFX_HLSL
+
+struct FetchedBilinearSamples {
+
+ FfxFloat32x4 fColor00;
+ FfxFloat32x4 fColor10;
+
+ FfxFloat32x4 fColor01;
+ FfxFloat32x4 fColor11;
+};
+
+struct FetchedBicubicSamples {
+
+ FfxFloat32x4 fColor00;
+ FfxFloat32x4 fColor10;
+ FfxFloat32x4 fColor20;
+ FfxFloat32x4 fColor30;
+
+ FfxFloat32x4 fColor01;
+ FfxFloat32x4 fColor11;
+ FfxFloat32x4 fColor21;
+ FfxFloat32x4 fColor31;
+
+ FfxFloat32x4 fColor02;
+ FfxFloat32x4 fColor12;
+ FfxFloat32x4 fColor22;
+ FfxFloat32x4 fColor32;
+
+ FfxFloat32x4 fColor03;
+ FfxFloat32x4 fColor13;
+ FfxFloat32x4 fColor23;
+ FfxFloat32x4 fColor33;
+};
+
+#if FFX_HALF
+struct FetchedBilinearSamplesMin16 {
+
+ FFX_MIN16_F4 fColor00;
+ FFX_MIN16_F4 fColor10;
+
+ FFX_MIN16_F4 fColor01;
+ FFX_MIN16_F4 fColor11;
+};
+
+struct FetchedBicubicSamplesMin16 {
+
+ FFX_MIN16_F4 fColor00;
+ FFX_MIN16_F4 fColor10;
+ FFX_MIN16_F4 fColor20;
+ FFX_MIN16_F4 fColor30;
+
+ FFX_MIN16_F4 fColor01;
+ FFX_MIN16_F4 fColor11;
+ FFX_MIN16_F4 fColor21;
+ FFX_MIN16_F4 fColor31;
+
+ FFX_MIN16_F4 fColor02;
+ FFX_MIN16_F4 fColor12;
+ FFX_MIN16_F4 fColor22;
+ FFX_MIN16_F4 fColor32;
+
+ FFX_MIN16_F4 fColor03;
+ FFX_MIN16_F4 fColor13;
+ FFX_MIN16_F4 fColor23;
+ FFX_MIN16_F4 fColor33;
+};
+#else //FFX_HALF
+#define FetchedBicubicSamplesMin16 FetchedBicubicSamples
+#define FetchedBilinearSamplesMin16 FetchedBilinearSamples
+#endif //FFX_HALF
+
+FfxFloat32x4 Linear(FfxFloat32x4 A, FfxFloat32x4 B, FfxFloat32 t)
+{
+ return A + (B - A) * t;
+}
+
+FfxFloat32x4 Bilinear(FetchedBilinearSamples BilinearSamples, FfxFloat32x2 fPxFrac)
+{
+ FfxFloat32x4 fColorX0 = Linear(BilinearSamples.fColor00, BilinearSamples.fColor10, fPxFrac.x);
+ FfxFloat32x4 fColorX1 = Linear(BilinearSamples.fColor01, BilinearSamples.fColor11, fPxFrac.x);
+ FfxFloat32x4 fColorXY = Linear(fColorX0, fColorX1, fPxFrac.y);
+ return fColorXY;
+}
+
+#if FFX_HALF
+FFX_MIN16_F4 Linear(FFX_MIN16_F4 A, FFX_MIN16_F4 B, FFX_MIN16_F t)
+{
+ return A + (B - A) * t;
+}
+
+FFX_MIN16_F4 Bilinear(FetchedBilinearSamplesMin16 BilinearSamples, FFX_MIN16_F2 fPxFrac)
+{
+ FFX_MIN16_F4 fColorX0 = Linear(BilinearSamples.fColor00, BilinearSamples.fColor10, fPxFrac.x);
+ FFX_MIN16_F4 fColorX1 = Linear(BilinearSamples.fColor01, BilinearSamples.fColor11, fPxFrac.x);
+ FFX_MIN16_F4 fColorXY = Linear(fColorX0, fColorX1, fPxFrac.y);
+ return fColorXY;
+}
+#endif
+
+FfxFloat32 Lanczos2NoClamp(FfxFloat32 x)
+{
+ const FfxFloat32 PI = 3.141592653589793f; // TODO: share SDK constants
+ return abs(x) < FSR2_EPSILON ? 1.f : (sin(PI * x) / (PI * x)) * (sin(0.5f * PI * x) / (0.5f * PI * x));
+}
+
+FfxFloat32 Lanczos2(FfxFloat32 x)
+{
+ x = ffxMin(abs(x), 2.0f);
+ return Lanczos2NoClamp(x);
+}
+
+#if FFX_HALF
+
+#if 0
+FFX_MIN16_F Lanczos2NoClamp(FFX_MIN16_F x)
+{
+ const FFX_MIN16_F PI = FFX_MIN16_F(3.141592653589793f); // TODO: share SDK constants
+ return abs(x) < FFX_MIN16_F(FSR2_EPSILON) ? FFX_MIN16_F(1.f) : (sin(PI * x) / (PI * x)) * (sin(FFX_MIN16_F(0.5f) * PI * x) / (FFX_MIN16_F(0.5f) * PI * x));
+}
+#endif
+
+FFX_MIN16_F Lanczos2(FFX_MIN16_F x)
+{
+ x = ffxMin(abs(x), FFX_MIN16_F(2.0f));
+ return FFX_MIN16_F(Lanczos2NoClamp(x));
+}
+#endif //FFX_HALF
+
+// FSR1 lanczos approximation. Input is x*x and must be <= 4.
+FfxFloat32 Lanczos2ApproxSqNoClamp(FfxFloat32 x2)
+{
+ FfxFloat32 a = (2.0f / 5.0f) * x2 - 1;
+ FfxFloat32 b = (1.0f / 4.0f) * x2 - 1;
+ return ((25.0f / 16.0f) * a * a - (25.0f / 16.0f - 1)) * (b * b);
+}
+
+#if FFX_HALF
+FFX_MIN16_F Lanczos2ApproxSqNoClamp(FFX_MIN16_F x2)
+{
+ FFX_MIN16_F a = FFX_MIN16_F(2.0f / 5.0f) * x2 - FFX_MIN16_F(1);
+ FFX_MIN16_F b = FFX_MIN16_F(1.0f / 4.0f) * x2 - FFX_MIN16_F(1);
+ return (FFX_MIN16_F(25.0f / 16.0f) * a * a - FFX_MIN16_F(25.0f / 16.0f - 1)) * (b * b);
+}
+#endif //FFX_HALF
+
+FfxFloat32 Lanczos2ApproxSq(FfxFloat32 x2)
+{
+ x2 = ffxMin(x2, 4.0f);
+ return Lanczos2ApproxSqNoClamp(x2);
+}
+
+#if FFX_HALF
+FFX_MIN16_F Lanczos2ApproxSq(FFX_MIN16_F x2)
+{
+ x2 = ffxMin(x2, FFX_MIN16_F(4.0f));
+ return Lanczos2ApproxSqNoClamp(x2);
+}
+#endif //FFX_HALF
+
+FfxFloat32 Lanczos2ApproxNoClamp(FfxFloat32 x)
+{
+ return Lanczos2ApproxSqNoClamp(x * x);
+}
+
+#if FFX_HALF
+FFX_MIN16_F Lanczos2ApproxNoClamp(FFX_MIN16_F x)
+{
+ return Lanczos2ApproxSqNoClamp(x * x);
+}
+#endif //FFX_HALF
+
+FfxFloat32 Lanczos2Approx(FfxFloat32 x)
+{
+ return Lanczos2ApproxSq(x * x);
+}
+
+#if FFX_HALF
+FFX_MIN16_F Lanczos2Approx(FFX_MIN16_F x)
+{
+ return Lanczos2ApproxSq(x * x);
+}
+#endif //FFX_HALF
+
+FfxFloat32 Lanczos2_UseLUT(FfxFloat32 x)
+{
+ return SampleLanczos2Weight(abs(x));
+}
+
+#if FFX_HALF
+FFX_MIN16_F Lanczos2_UseLUT(FFX_MIN16_F x)
+{
+ return FFX_MIN16_F(SampleLanczos2Weight(abs(x)));
+}
+#endif //FFX_HALF
+
+FfxFloat32x4 Lanczos2_UseLUT(FfxFloat32x4 fColor0, FfxFloat32x4 fColor1, FfxFloat32x4 fColor2, FfxFloat32x4 fColor3, FfxFloat32 t)
+{
+ FfxFloat32 fWeight0 = Lanczos2_UseLUT(-1.f - t);
+ FfxFloat32 fWeight1 = Lanczos2_UseLUT(-0.f - t);
+ FfxFloat32 fWeight2 = Lanczos2_UseLUT(+1.f - t);
+ FfxFloat32 fWeight3 = Lanczos2_UseLUT(+2.f - t);
+ return (fWeight0 * fColor0 + fWeight1 * fColor1 + fWeight2 * fColor2 + fWeight3 * fColor3) / (fWeight0 + fWeight1 + fWeight2 + fWeight3);
+}
+#if FFX_HALF
+FFX_MIN16_F4 Lanczos2_UseLUT(FFX_MIN16_F4 fColor0, FFX_MIN16_F4 fColor1, FFX_MIN16_F4 fColor2, FFX_MIN16_F4 fColor3, FFX_MIN16_F t)
+{
+ FFX_MIN16_F fWeight0 = Lanczos2_UseLUT(FFX_MIN16_F(-1.f) - t);
+ FFX_MIN16_F fWeight1 = Lanczos2_UseLUT(FFX_MIN16_F(-0.f) - t);
+ FFX_MIN16_F fWeight2 = Lanczos2_UseLUT(FFX_MIN16_F(+1.f) - t);
+ FFX_MIN16_F fWeight3 = Lanczos2_UseLUT(FFX_MIN16_F(+2.f) - t);
+ return (fWeight0 * fColor0 + fWeight1 * fColor1 + fWeight2 * fColor2 + fWeight3 * fColor3) / (fWeight0 + fWeight1 + fWeight2 + fWeight3);
+}
+#endif
+
+FfxFloat32x4 Lanczos2(FfxFloat32x4 fColor0, FfxFloat32x4 fColor1, FfxFloat32x4 fColor2, FfxFloat32x4 fColor3, FfxFloat32 t)
+{
+ FfxFloat32 fWeight0 = Lanczos2(-1.f - t);
+ FfxFloat32 fWeight1 = Lanczos2(-0.f - t);
+ FfxFloat32 fWeight2 = Lanczos2(+1.f - t);
+ FfxFloat32 fWeight3 = Lanczos2(+2.f - t);
+ return (fWeight0 * fColor0 + fWeight1 * fColor1 + fWeight2 * fColor2 + fWeight3 * fColor3) / (fWeight0 + fWeight1 + fWeight2 + fWeight3);
+}
+
+FfxFloat32x4 Lanczos2(FetchedBicubicSamples Samples, FfxFloat32x2 fPxFrac)
+{
+ FfxFloat32x4 fColorX0 = Lanczos2(Samples.fColor00, Samples.fColor10, Samples.fColor20, Samples.fColor30, fPxFrac.x);
+ FfxFloat32x4 fColorX1 = Lanczos2(Samples.fColor01, Samples.fColor11, Samples.fColor21, Samples.fColor31, fPxFrac.x);
+ FfxFloat32x4 fColorX2 = Lanczos2(Samples.fColor02, Samples.fColor12, Samples.fColor22, Samples.fColor32, fPxFrac.x);
+ FfxFloat32x4 fColorX3 = Lanczos2(Samples.fColor03, Samples.fColor13, Samples.fColor23, Samples.fColor33, fPxFrac.x);
+ FfxFloat32x4 fColorXY = Lanczos2(fColorX0, fColorX1, fColorX2, fColorX3, fPxFrac.y);
+
+ // Deringing
+
+ // TODO: only use 4 by checking jitter
+ const FfxInt32 iDeringingSampleCount = 4;
+ const FfxFloat32x4 fDeringingSamples[4] = {
+ Samples.fColor11,
+ Samples.fColor21,
+ Samples.fColor12,
+ Samples.fColor22,
+ };
+
+ FfxFloat32x4 fDeringingMin = fDeringingSamples[0];
+ FfxFloat32x4 fDeringingMax = fDeringingSamples[0];
+
+ FFX_UNROLL
+ for (FfxInt32 iSampleIndex = 1; iSampleIndex < iDeringingSampleCount; ++iSampleIndex) {
+
+ fDeringingMin = ffxMin(fDeringingMin, fDeringingSamples[iSampleIndex]);
+ fDeringingMax = ffxMax(fDeringingMax, fDeringingSamples[iSampleIndex]);
+ }
+
+ fColorXY = clamp(fColorXY, fDeringingMin, fDeringingMax);
+
+ return fColorXY;
+}
+
+#if FFX_HALF
+FFX_MIN16_F4 Lanczos2(FFX_MIN16_F4 fColor0, FFX_MIN16_F4 fColor1, FFX_MIN16_F4 fColor2, FFX_MIN16_F4 fColor3, FFX_MIN16_F t)
+{
+ FFX_MIN16_F fWeight0 = Lanczos2(FFX_MIN16_F(-1.f) - t);
+ FFX_MIN16_F fWeight1 = Lanczos2(FFX_MIN16_F(-0.f) - t);
+ FFX_MIN16_F fWeight2 = Lanczos2(FFX_MIN16_F(+1.f) - t);
+ FFX_MIN16_F fWeight3 = Lanczos2(FFX_MIN16_F(+2.f) - t);
+ return (fWeight0 * fColor0 + fWeight1 * fColor1 + fWeight2 * fColor2 + fWeight3 * fColor3) / (fWeight0 + fWeight1 + fWeight2 + fWeight3);
+}
+
+FFX_MIN16_F4 Lanczos2(FetchedBicubicSamplesMin16 Samples, FFX_MIN16_F2 fPxFrac)
+{
+ FFX_MIN16_F4 fColorX0 = Lanczos2(Samples.fColor00, Samples.fColor10, Samples.fColor20, Samples.fColor30, fPxFrac.x);
+ FFX_MIN16_F4 fColorX1 = Lanczos2(Samples.fColor01, Samples.fColor11, Samples.fColor21, Samples.fColor31, fPxFrac.x);
+ FFX_MIN16_F4 fColorX2 = Lanczos2(Samples.fColor02, Samples.fColor12, Samples.fColor22, Samples.fColor32, fPxFrac.x);
+ FFX_MIN16_F4 fColorX3 = Lanczos2(Samples.fColor03, Samples.fColor13, Samples.fColor23, Samples.fColor33, fPxFrac.x);
+ FFX_MIN16_F4 fColorXY = Lanczos2(fColorX0, fColorX1, fColorX2, fColorX3, fPxFrac.y);
+
+ // Deringing
+
+ // TODO: only use 4 by checking jitter
+ const FfxInt32 iDeringingSampleCount = 4;
+ const FFX_MIN16_F4 fDeringingSamples[4] = {
+ Samples.fColor11,
+ Samples.fColor21,
+ Samples.fColor12,
+ Samples.fColor22,
+ };
+
+ FFX_MIN16_F4 fDeringingMin = fDeringingSamples[0];
+ FFX_MIN16_F4 fDeringingMax = fDeringingSamples[0];
+
+ FFX_UNROLL
+ for (FfxInt32 iSampleIndex = 1; iSampleIndex < iDeringingSampleCount; ++iSampleIndex)
+ {
+ fDeringingMin = ffxMin(fDeringingMin, fDeringingSamples[iSampleIndex]);
+ fDeringingMax = ffxMax(fDeringingMax, fDeringingSamples[iSampleIndex]);
+ }
+
+ fColorXY = clamp(fColorXY, fDeringingMin, fDeringingMax);
+
+ return fColorXY;
+}
+#endif //FFX_HALF
+
+
+FfxFloat32x4 Lanczos2LUT(FetchedBicubicSamples Samples, FfxFloat32x2 fPxFrac)
+{
+ FfxFloat32x4 fColorX0 = Lanczos2_UseLUT(Samples.fColor00, Samples.fColor10, Samples.fColor20, Samples.fColor30, fPxFrac.x);
+ FfxFloat32x4 fColorX1 = Lanczos2_UseLUT(Samples.fColor01, Samples.fColor11, Samples.fColor21, Samples.fColor31, fPxFrac.x);
+ FfxFloat32x4 fColorX2 = Lanczos2_UseLUT(Samples.fColor02, Samples.fColor12, Samples.fColor22, Samples.fColor32, fPxFrac.x);
+ FfxFloat32x4 fColorX3 = Lanczos2_UseLUT(Samples.fColor03, Samples.fColor13, Samples.fColor23, Samples.fColor33, fPxFrac.x);
+ FfxFloat32x4 fColorXY = Lanczos2_UseLUT(fColorX0, fColorX1, fColorX2, fColorX3, fPxFrac.y);
+
+ // Deringing
+
+ // TODO: only use 4 by checking jitter
+ const FfxInt32 iDeringingSampleCount = 4;
+ const FfxFloat32x4 fDeringingSamples[4] = {
+ Samples.fColor11,
+ Samples.fColor21,
+ Samples.fColor12,
+ Samples.fColor22,
+ };
+
+ FfxFloat32x4 fDeringingMin = fDeringingSamples[0];
+ FfxFloat32x4 fDeringingMax = fDeringingSamples[0];
+
+ FFX_UNROLL
+ for (FfxInt32 iSampleIndex = 1; iSampleIndex < iDeringingSampleCount; ++iSampleIndex) {
+
+ fDeringingMin = ffxMin(fDeringingMin, fDeringingSamples[iSampleIndex]);
+ fDeringingMax = ffxMax(fDeringingMax, fDeringingSamples[iSampleIndex]);
+ }
+
+ fColorXY = clamp(fColorXY, fDeringingMin, fDeringingMax);
+
+ return fColorXY;
+}
+
+#if FFX_HALF
+FFX_MIN16_F4 Lanczos2LUT(FetchedBicubicSamplesMin16 Samples, FFX_MIN16_F2 fPxFrac)
+{
+ FFX_MIN16_F4 fColorX0 = Lanczos2_UseLUT(Samples.fColor00, Samples.fColor10, Samples.fColor20, Samples.fColor30, fPxFrac.x);
+ FFX_MIN16_F4 fColorX1 = Lanczos2_UseLUT(Samples.fColor01, Samples.fColor11, Samples.fColor21, Samples.fColor31, fPxFrac.x);
+ FFX_MIN16_F4 fColorX2 = Lanczos2_UseLUT(Samples.fColor02, Samples.fColor12, Samples.fColor22, Samples.fColor32, fPxFrac.x);
+ FFX_MIN16_F4 fColorX3 = Lanczos2_UseLUT(Samples.fColor03, Samples.fColor13, Samples.fColor23, Samples.fColor33, fPxFrac.x);
+ FFX_MIN16_F4 fColorXY = Lanczos2_UseLUT(fColorX0, fColorX1, fColorX2, fColorX3, fPxFrac.y);
+
+ // Deringing
+
+ // TODO: only use 4 by checking jitter
+ const FfxInt32 iDeringingSampleCount = 4;
+ const FFX_MIN16_F4 fDeringingSamples[4] = {
+ Samples.fColor11,
+ Samples.fColor21,
+ Samples.fColor12,
+ Samples.fColor22,
+ };
+
+ FFX_MIN16_F4 fDeringingMin = fDeringingSamples[0];
+ FFX_MIN16_F4 fDeringingMax = fDeringingSamples[0];
+
+ FFX_UNROLL
+ for (FfxInt32 iSampleIndex = 1; iSampleIndex < iDeringingSampleCount; ++iSampleIndex)
+ {
+ fDeringingMin = ffxMin(fDeringingMin, fDeringingSamples[iSampleIndex]);
+ fDeringingMax = ffxMax(fDeringingMax, fDeringingSamples[iSampleIndex]);
+ }
+
+ fColorXY = clamp(fColorXY, fDeringingMin, fDeringingMax);
+
+ return fColorXY;
+}
+#endif //FFX_HALF
+
+
+
+FfxFloat32x4 Lanczos2Approx(FfxFloat32x4 fColor0, FfxFloat32x4 fColor1, FfxFloat32x4 fColor2, FfxFloat32x4 fColor3, FfxFloat32 t)
+{
+ FfxFloat32 fWeight0 = Lanczos2ApproxNoClamp(-1.f - t);
+ FfxFloat32 fWeight1 = Lanczos2ApproxNoClamp(-0.f - t);
+ FfxFloat32 fWeight2 = Lanczos2ApproxNoClamp(+1.f - t);
+ FfxFloat32 fWeight3 = Lanczos2ApproxNoClamp(+2.f - t);
+ return (fWeight0 * fColor0 + fWeight1 * fColor1 + fWeight2 * fColor2 + fWeight3 * fColor3) / (fWeight0 + fWeight1 + fWeight2 + fWeight3);
+}
+
+#if FFX_HALF
+FFX_MIN16_F4 Lanczos2Approx(FFX_MIN16_F4 fColor0, FFX_MIN16_F4 fColor1, FFX_MIN16_F4 fColor2, FFX_MIN16_F4 fColor3, FFX_MIN16_F t)
+{
+ FFX_MIN16_F fWeight0 = Lanczos2ApproxNoClamp(FFX_MIN16_F(-1.f) - t);
+ FFX_MIN16_F fWeight1 = Lanczos2ApproxNoClamp(FFX_MIN16_F(-0.f) - t);
+ FFX_MIN16_F fWeight2 = Lanczos2ApproxNoClamp(FFX_MIN16_F(+1.f) - t);
+ FFX_MIN16_F fWeight3 = Lanczos2ApproxNoClamp(FFX_MIN16_F(+2.f) - t);
+ return (fWeight0 * fColor0 + fWeight1 * fColor1 + fWeight2 * fColor2 + fWeight3 * fColor3) / (fWeight0 + fWeight1 + fWeight2 + fWeight3);
+}
+#endif //FFX_HALF
+
+FfxFloat32x4 Lanczos2Approx(FetchedBicubicSamples Samples, FfxFloat32x2 fPxFrac)
+{
+ FfxFloat32x4 fColorX0 = Lanczos2Approx(Samples.fColor00, Samples.fColor10, Samples.fColor20, Samples.fColor30, fPxFrac.x);
+ FfxFloat32x4 fColorX1 = Lanczos2Approx(Samples.fColor01, Samples.fColor11, Samples.fColor21, Samples.fColor31, fPxFrac.x);
+ FfxFloat32x4 fColorX2 = Lanczos2Approx(Samples.fColor02, Samples.fColor12, Samples.fColor22, Samples.fColor32, fPxFrac.x);
+ FfxFloat32x4 fColorX3 = Lanczos2Approx(Samples.fColor03, Samples.fColor13, Samples.fColor23, Samples.fColor33, fPxFrac.x);
+ FfxFloat32x4 fColorXY = Lanczos2Approx(fColorX0, fColorX1, fColorX2, fColorX3, fPxFrac.y);
+
+ // Deringing
+
+ // TODO: only use 4 by checking jitter
+ const FfxInt32 iDeringingSampleCount = 4;
+ const FfxFloat32x4 fDeringingSamples[4] = {
+ Samples.fColor11,
+ Samples.fColor21,
+ Samples.fColor12,
+ Samples.fColor22,
+ };
+
+ FfxFloat32x4 fDeringingMin = fDeringingSamples[0];
+ FfxFloat32x4 fDeringingMax = fDeringingSamples[0];
+
+ FFX_UNROLL
+ for (FfxInt32 iSampleIndex = 1; iSampleIndex < iDeringingSampleCount; ++iSampleIndex)
+ {
+ fDeringingMin = ffxMin(fDeringingMin, fDeringingSamples[iSampleIndex]);
+ fDeringingMax = ffxMax(fDeringingMax, fDeringingSamples[iSampleIndex]);
+ }
+
+ fColorXY = clamp(fColorXY, fDeringingMin, fDeringingMax);
+
+ return fColorXY;
+}
+
+#if FFX_HALF
+FFX_MIN16_F4 Lanczos2Approx(FetchedBicubicSamplesMin16 Samples, FFX_MIN16_F2 fPxFrac)
+{
+ FFX_MIN16_F4 fColorX0 = Lanczos2Approx(Samples.fColor00, Samples.fColor10, Samples.fColor20, Samples.fColor30, fPxFrac.x);
+ FFX_MIN16_F4 fColorX1 = Lanczos2Approx(Samples.fColor01, Samples.fColor11, Samples.fColor21, Samples.fColor31, fPxFrac.x);
+ FFX_MIN16_F4 fColorX2 = Lanczos2Approx(Samples.fColor02, Samples.fColor12, Samples.fColor22, Samples.fColor32, fPxFrac.x);
+ FFX_MIN16_F4 fColorX3 = Lanczos2Approx(Samples.fColor03, Samples.fColor13, Samples.fColor23, Samples.fColor33, fPxFrac.x);
+ FFX_MIN16_F4 fColorXY = Lanczos2Approx(fColorX0, fColorX1, fColorX2, fColorX3, fPxFrac.y);
+
+ // Deringing
+
+ // TODO: only use 4 by checking jitter
+ const FfxInt32 iDeringingSampleCount = 4;
+ const FFX_MIN16_F4 fDeringingSamples[4] = {
+ Samples.fColor11,
+ Samples.fColor21,
+ Samples.fColor12,
+ Samples.fColor22,
+ };
+
+ FFX_MIN16_F4 fDeringingMin = fDeringingSamples[0];
+ FFX_MIN16_F4 fDeringingMax = fDeringingSamples[0];
+
+ FFX_UNROLL
+ for (FfxInt32 iSampleIndex = 1; iSampleIndex < iDeringingSampleCount; ++iSampleIndex)
+ {
+ fDeringingMin = ffxMin(fDeringingMin, fDeringingSamples[iSampleIndex]);
+ fDeringingMax = ffxMax(fDeringingMax, fDeringingSamples[iSampleIndex]);
+ }
+
+ fColorXY = clamp(fColorXY, fDeringingMin, fDeringingMax);
+
+ return fColorXY;
+}
+#endif
+
+// Clamp by offset direction. Assuming iPxSample is already in range and iPxOffset is compile time constant.
+FfxInt32x2 ClampCoord(FfxInt32x2 iPxSample, FfxInt32x2 iPxOffset, FfxInt32x2 iTextureSize)
+{
+ FfxInt32x2 result = iPxSample + iPxOffset;
+ result.x = (iPxOffset.x < 0) ? ffxMax(result.x, 0) : result.x;
+ result.x = (iPxOffset.x > 0) ? ffxMin(result.x, iTextureSize.x - 1) : result.x;
+ result.y = (iPxOffset.y < 0) ? ffxMax(result.y, 0) : result.y;
+ result.y = (iPxOffset.y > 0) ? ffxMin(result.y, iTextureSize.y - 1) : result.y;
+ return result;
+}
+#if FFX_HALF
+FFX_MIN16_I2 ClampCoord(FFX_MIN16_I2 iPxSample, FFX_MIN16_I2 iPxOffset, FFX_MIN16_I2 iTextureSize)
+{
+ FFX_MIN16_I2 result = iPxSample + iPxOffset;
+ result.x = (iPxOffset.x < FFX_MIN16_I(0)) ? ffxMax(result.x, FFX_MIN16_I(0)) : result.x;
+ result.x = (iPxOffset.x > FFX_MIN16_I(0)) ? ffxMin(result.x, iTextureSize.x - FFX_MIN16_I(1)) : result.x;
+ result.y = (iPxOffset.y < FFX_MIN16_I(0)) ? ffxMax(result.y, FFX_MIN16_I(0)) : result.y;
+ result.y = (iPxOffset.y > FFX_MIN16_I(0)) ? ffxMin(result.y, iTextureSize.y - FFX_MIN16_I(1)) : result.y;
+ return result;
+}
+#endif //FFX_HALF
+
+
+#define DeclareCustomFetchBicubicSamplesWithType(SampleType, TextureType, AddrType, Name, LoadTexture) \
+ SampleType Name(AddrType iPxSample, AddrType iTextureSize) \
+ { \
+ SampleType Samples; \
+ \
+ Samples.fColor00 = TextureType(LoadTexture(ClampCoord(iPxSample, AddrType(-1, -1), iTextureSize))); \
+ Samples.fColor10 = TextureType(LoadTexture(ClampCoord(iPxSample, AddrType(+0, -1), iTextureSize))); \
+ Samples.fColor20 = TextureType(LoadTexture(ClampCoord(iPxSample, AddrType(+1, -1), iTextureSize))); \
+ Samples.fColor30 = TextureType(LoadTexture(ClampCoord(iPxSample, AddrType(+2, -1), iTextureSize))); \
+ \
+ Samples.fColor01 = TextureType(LoadTexture(ClampCoord(iPxSample, AddrType(-1, +0), iTextureSize))); \
+ Samples.fColor11 = TextureType(LoadTexture(ClampCoord(iPxSample, AddrType(+0, +0), iTextureSize))); \
+ Samples.fColor21 = TextureType(LoadTexture(ClampCoord(iPxSample, AddrType(+1, +0), iTextureSize))); \
+ Samples.fColor31 = TextureType(LoadTexture(ClampCoord(iPxSample, AddrType(+2, +0), iTextureSize))); \
+ \
+ Samples.fColor02 = TextureType(LoadTexture(ClampCoord(iPxSample, AddrType(-1, +1), iTextureSize))); \
+ Samples.fColor12 = TextureType(LoadTexture(ClampCoord(iPxSample, AddrType(+0, +1), iTextureSize))); \
+ Samples.fColor22 = TextureType(LoadTexture(ClampCoord(iPxSample, AddrType(+1, +1), iTextureSize))); \
+ Samples.fColor32 = TextureType(LoadTexture(ClampCoord(iPxSample, AddrType(+2, +1), iTextureSize))); \
+ \
+ Samples.fColor03 = TextureType(LoadTexture(ClampCoord(iPxSample, AddrType(-1, +2), iTextureSize))); \
+ Samples.fColor13 = TextureType(LoadTexture(ClampCoord(iPxSample, AddrType(+0, +2), iTextureSize))); \
+ Samples.fColor23 = TextureType(LoadTexture(ClampCoord(iPxSample, AddrType(+1, +2), iTextureSize))); \
+ Samples.fColor33 = TextureType(LoadTexture(ClampCoord(iPxSample, AddrType(+2, +2), iTextureSize))); \
+ \
+ return Samples; \
+ }
+
+#define DeclareCustomFetchBicubicSamples(Name, LoadTexture) \
+ DeclareCustomFetchBicubicSamplesWithType(FetchedBicubicSamples, FfxFloat32x4, FfxInt32x2, Name, LoadTexture)
+
+#define DeclareCustomFetchBicubicSamplesMin16(Name, LoadTexture) \
+ DeclareCustomFetchBicubicSamplesWithType(FetchedBicubicSamplesMin16, FFX_MIN16_F4, FfxInt32x2, Name, LoadTexture)
+
+#define DeclareCustomFetchBilinearSamplesWithType(SampleType, TextureType,AddrType, Name, LoadTexture) \
+ SampleType Name(AddrType iPxSample, AddrType iTextureSize) \
+ { \
+ SampleType Samples; \
+ Samples.fColor00 = TextureType(LoadTexture(ClampCoord(iPxSample, AddrType(+0, +0), iTextureSize))); \
+ Samples.fColor10 = TextureType(LoadTexture(ClampCoord(iPxSample, AddrType(+1, +0), iTextureSize))); \
+ Samples.fColor01 = TextureType(LoadTexture(ClampCoord(iPxSample, AddrType(+0, +1), iTextureSize))); \
+ Samples.fColor11 = TextureType(LoadTexture(ClampCoord(iPxSample, AddrType(+1, +1), iTextureSize))); \
+ return Samples; \
+ }
+
+#define DeclareCustomFetchBilinearSamples(Name, LoadTexture) \
+ DeclareCustomFetchBilinearSamplesWithType(FetchedBilinearSamples, FfxFloat32x4, FfxInt32x2, Name, LoadTexture)
+
+#define DeclareCustomFetchBilinearSamplesMin16(Name, LoadTexture) \
+ DeclareCustomFetchBilinearSamplesWithType(FetchedBilinearSamplesMin16, FFX_MIN16_F4, FfxInt32x2, Name, LoadTexture)
+
+// BE CAREFUL: there is some precision issues and (3253, 125) leading to (3252.9989778, 125.001102)
+// is common, so iPxSample can "jitter"
+#define DeclareCustomTextureSample(Name, InterpolateSamples, FetchSamples) \
+ FfxFloat32x4 Name(FfxFloat32x2 fUvSample, FfxInt32x2 iTextureSize) \
+ { \
+ FfxFloat32x2 fPxSample = (fUvSample * FfxFloat32x2(iTextureSize)) - FfxFloat32x2(0.5f, 0.5f); \
+ /* Clamp base coords */ \
+ fPxSample.x = ffxMax(0.0f, ffxMin(FfxFloat32(iTextureSize.x), fPxSample.x)); \
+ fPxSample.y = ffxMax(0.0f, ffxMin(FfxFloat32(iTextureSize.y), fPxSample.y)); \
+ /* */ \
+ FfxInt32x2 iPxSample = FfxInt32x2(floor(fPxSample)); \
+ FfxFloat32x2 fPxFrac = ffxFract(fPxSample); \
+ FfxFloat32x4 fColorXY = FfxFloat32x4(InterpolateSamples(FetchSamples(iPxSample, iTextureSize), fPxFrac)); \
+ return fColorXY; \
+ }
+
+#define DeclareCustomTextureSampleMin16(Name, InterpolateSamples, FetchSamples) \
+ FFX_MIN16_F4 Name(FfxFloat32x2 fUvSample, FfxInt32x2 iTextureSize) \
+ { \
+ FfxFloat32x2 fPxSample = (fUvSample * FfxFloat32x2(iTextureSize)) - FfxFloat32x2(0.5f, 0.5f); \
+ /* Clamp base coords */ \
+ fPxSample.x = ffxMax(0.0f, ffxMin(FfxFloat32(iTextureSize.x), fPxSample.x)); \
+ fPxSample.y = ffxMax(0.0f, ffxMin(FfxFloat32(iTextureSize.y), fPxSample.y)); \
+ /* */ \
+ FfxInt32x2 iPxSample = FfxInt32x2(floor(fPxSample)); \
+ FFX_MIN16_F2 fPxFrac = FFX_MIN16_F2(ffxFract(fPxSample)); \
+ FFX_MIN16_F4 fColorXY = FFX_MIN16_F4(InterpolateSamples(FetchSamples(iPxSample, iTextureSize), fPxFrac)); \
+ return fColorXY; \
+ }
+
+#define FFX_FSR2_CONCAT_ID(x, y) x ## y
+#define FFX_FSR2_CONCAT(x, y) FFX_FSR2_CONCAT_ID(x, y)
+#define FFX_FSR2_SAMPLER_1D_0 Lanczos2
+#define FFX_FSR2_SAMPLER_1D_1 Lanczos2LUT
+#define FFX_FSR2_SAMPLER_1D_2 Lanczos2Approx
+
+#define FFX_FSR2_GET_LANCZOS_SAMPLER1D(x) FFX_FSR2_CONCAT(FFX_FSR2_SAMPLER_1D_, x)
+
+#endif //!defined( FFX_FSR2_SAMPLE_H )
diff --git a/thirdparty/amd-fsr2/shaders/ffx_fsr2_tcr_autogen.h b/thirdparty/amd-fsr2/shaders/ffx_fsr2_tcr_autogen.h
new file mode 100644
index 0000000000..101b75d25e
--- /dev/null
+++ b/thirdparty/amd-fsr2/shaders/ffx_fsr2_tcr_autogen.h
@@ -0,0 +1,250 @@
+// This file is part of the FidelityFX SDK.
+//
+// Copyright (c) 2022-2023 Advanced Micro Devices, Inc. All rights reserved.
+//
+// Permission is hereby granted, free of charge, to any person obtaining a copy
+// of this software and associated documentation files (the "Software"), to deal
+// in the Software without restriction, including without limitation the rights
+// to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
+// copies of the Software, and to permit persons to whom the Software is
+// furnished to do so, subject to the following conditions:
+// The above copyright notice and this permission notice shall be included in
+// all copies or substantial portions of the Software.
+//
+// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
+// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
+// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
+// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
+// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
+// OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
+// THE SOFTWARE.
+
+#define USE_YCOCG 1
+
+#define fAutogenEpsilon 0.01f
+
+// EXPERIMENTAL
+
+FFX_MIN16_F ComputeAutoTC_01(FFX_MIN16_I2 uDispatchThreadId, FFX_MIN16_I2 iPrevIdx)
+{
+ FfxFloat32x3 colorPreAlpha = LoadOpaqueOnly(uDispatchThreadId);
+ FfxFloat32x3 colorPostAlpha = LoadInputColor(uDispatchThreadId);
+ FfxFloat32x3 colorPrevPreAlpha = LoadPrevPreAlpha(iPrevIdx);
+ FfxFloat32x3 colorPrevPostAlpha = LoadPrevPostAlpha(iPrevIdx);
+
+#if USE_YCOCG
+ colorPreAlpha = RGBToYCoCg(colorPreAlpha);
+ colorPostAlpha = RGBToYCoCg(colorPostAlpha);
+ colorPrevPreAlpha = RGBToYCoCg(colorPrevPreAlpha);
+ colorPrevPostAlpha = RGBToYCoCg(colorPrevPostAlpha);
+#endif
+
+ FfxFloat32x3 colorDeltaCurr = colorPostAlpha - colorPreAlpha;
+ FfxFloat32x3 colorDeltaPrev = colorPrevPostAlpha - colorPrevPreAlpha;
+ bool hasAlpha = any(FFX_GREATER_THAN(abs(colorDeltaCurr), FfxFloat32x3(fAutogenEpsilon, fAutogenEpsilon, fAutogenEpsilon)));
+ bool hadAlpha = any(FFX_GREATER_THAN(abs(colorDeltaPrev), FfxFloat32x3(fAutogenEpsilon, fAutogenEpsilon, fAutogenEpsilon)));
+
+ FfxFloat32x3 X = colorPreAlpha;
+ FfxFloat32x3 Y = colorPostAlpha;
+ FfxFloat32x3 Z = colorPrevPreAlpha;
+ FfxFloat32x3 W = colorPrevPostAlpha;
+
+ FFX_MIN16_F retVal = FFX_MIN16_F(ffxSaturate(dot(abs(abs(Y - X) - abs(W - Z)), FfxFloat32x3(1, 1, 1))));
+
+ // cleanup very small values
+ retVal = (retVal < getTcThreshold()) ? FFX_MIN16_F(0.0f) : FFX_MIN16_F(1.f);
+
+ return retVal;
+}
+
+// works ok: thin edges
+FFX_MIN16_F ComputeAutoTC_02(FFX_MIN16_I2 uDispatchThreadId, FFX_MIN16_I2 iPrevIdx)
+{
+ FfxFloat32x3 colorPreAlpha = LoadOpaqueOnly(uDispatchThreadId);
+ FfxFloat32x3 colorPostAlpha = LoadInputColor(uDispatchThreadId);
+ FfxFloat32x3 colorPrevPreAlpha = LoadPrevPreAlpha(iPrevIdx);
+ FfxFloat32x3 colorPrevPostAlpha = LoadPrevPostAlpha(iPrevIdx);
+
+#if USE_YCOCG
+ colorPreAlpha = RGBToYCoCg(colorPreAlpha);
+ colorPostAlpha = RGBToYCoCg(colorPostAlpha);
+ colorPrevPreAlpha = RGBToYCoCg(colorPrevPreAlpha);
+ colorPrevPostAlpha = RGBToYCoCg(colorPrevPostAlpha);
+#endif
+
+ FfxFloat32x3 colorDelta = colorPostAlpha - colorPreAlpha;
+ FfxFloat32x3 colorPrevDelta = colorPrevPostAlpha - colorPrevPreAlpha;
+ bool hasAlpha = any(FFX_GREATER_THAN(abs(colorDelta), FfxFloat32x3(fAutogenEpsilon, fAutogenEpsilon, fAutogenEpsilon)));
+ bool hadAlpha = any(FFX_GREATER_THAN(abs(colorPrevDelta), FfxFloat32x3(fAutogenEpsilon, fAutogenEpsilon, fAutogenEpsilon)));
+
+ FfxFloat32x3 delta = colorPostAlpha - colorPreAlpha; //prev+1*d = post => d = color, alpha =
+ FfxFloat32x3 deltaPrev = colorPrevPostAlpha - colorPrevPreAlpha;
+
+ FfxFloat32x3 X = colorPrevPreAlpha;
+ FfxFloat32x3 N = colorPreAlpha - colorPrevPreAlpha;
+ FfxFloat32x3 YAminusXA = colorPrevPostAlpha - colorPrevPreAlpha;
+ FfxFloat32x3 NminusNA = colorPostAlpha - colorPrevPostAlpha;
+
+ FfxFloat32x3 A = (hasAlpha || hadAlpha) ? NminusNA / max(FfxFloat32x3(fAutogenEpsilon, fAutogenEpsilon, fAutogenEpsilon), N) : FfxFloat32x3(0, 0, 0);
+
+ FFX_MIN16_F retVal = FFX_MIN16_F( max(max(A.x, A.y), A.z) );
+
+ // only pixels that have significantly changed in color shuold be considered
+ retVal = ffxSaturate(retVal * FFX_MIN16_F(length(colorPostAlpha - colorPrevPostAlpha)) );
+
+ return retVal;
+}
+
+// This function computes the TransparencyAndComposition mask:
+// This mask indicates pixels that should discard locks and apply color clamping.
+//
+// Typically this is the case for translucent pixels (that don't write depth values) or pixels where the correctness of
+// the MVs can not be guaranteed (e.g. procedutal movement or vegetation that does not have MVs to reduce the cost during rasterization)
+// Also, large changes in color due to changed lighting should be marked to remove locks on pixels with "old" lighting.
+//
+// This function takes a opaque only and a final texture and uses internal copies of those textures from the last frame.
+// The function tries to determine where the color changes between opaque only and final image to determine the pixels that use transparency.
+// Also it uses the previous frames and detects where the use of transparency changed to mark those pixels.
+// Additionally it marks pixels where the color changed significantly in the opaque only image, e.g. due to lighting or texture animation.
+//
+// In the final step it stores the current textures in internal textures for the next frame
+
+FFX_MIN16_F ComputeTransparencyAndComposition(FFX_MIN16_I2 uDispatchThreadId, FFX_MIN16_I2 iPrevIdx)
+{
+ FFX_MIN16_F retVal = ComputeAutoTC_02(uDispatchThreadId, iPrevIdx);
+
+ // [branch]
+ if (retVal > FFX_MIN16_F(0.01f))
+ {
+ retVal = ComputeAutoTC_01(uDispatchThreadId, iPrevIdx);
+ }
+ return retVal;
+}
+
+float computeSolidEdge(FFX_MIN16_I2 curPos, FFX_MIN16_I2 prevPos)
+{
+ float lum[9];
+ int i = 0;
+ for (int y = -1; y < 2; ++y)
+ {
+ for (int x = -1; x < 2; ++x)
+ {
+ FfxFloat32x3 curCol = LoadOpaqueOnly(curPos + FFX_MIN16_I2(x, y)).rgb;
+ FfxFloat32x3 prevCol = LoadPrevPreAlpha(prevPos + FFX_MIN16_I2(x, y)).rgb;
+ lum[i++] = length(curCol - prevCol);
+ }
+ }
+
+ //float gradX = abs(lum[3] - lum[4]) + abs(lum[5] - lum[4]);
+ //float gradY = abs(lum[1] - lum[4]) + abs(lum[7] - lum[4]);
+
+ //return sqrt(gradX * gradX + gradY * gradY);
+
+ float gradX = abs(lum[3] - lum[4]) * abs(lum[5] - lum[4]);
+ float gradY = abs(lum[1] - lum[4]) * abs(lum[7] - lum[4]);
+
+ return sqrt(sqrt(gradX * gradY));
+}
+
+float computeAlphaEdge(FFX_MIN16_I2 curPos, FFX_MIN16_I2 prevPos)
+{
+ float lum[9];
+ int i = 0;
+ for (int y = -1; y < 2; ++y)
+ {
+ for (int x = -1; x < 2; ++x)
+ {
+ FfxFloat32x3 curCol = abs(LoadInputColor(curPos + FFX_MIN16_I2(x, y)).rgb - LoadOpaqueOnly(curPos + FFX_MIN16_I2(x, y)).rgb);
+ FfxFloat32x3 prevCol = abs(LoadPrevPostAlpha(prevPos + FFX_MIN16_I2(x, y)).rgb - LoadPrevPreAlpha(prevPos + FFX_MIN16_I2(x, y)).rgb);
+ lum[i++] = length(curCol - prevCol);
+ }
+ }
+
+ //float gradX = abs(lum[3] - lum[4]) + abs(lum[5] - lum[4]);
+ //float gradY = abs(lum[1] - lum[4]) + abs(lum[7] - lum[4]);
+
+ //return sqrt(gradX * gradX + gradY * gradY);
+
+ float gradX = abs(lum[3] - lum[4]) * abs(lum[5] - lum[4]);
+ float gradY = abs(lum[1] - lum[4]) * abs(lum[7] - lum[4]);
+
+ return sqrt(sqrt(gradX * gradY));
+}
+
+FFX_MIN16_F ComputeAabbOverlap(FFX_MIN16_I2 uDispatchThreadId, FFX_MIN16_I2 iPrevIdx)
+{
+ FFX_MIN16_F retVal = FFX_MIN16_F(0.f);
+
+ FfxFloat32x2 fMotionVector = LoadInputMotionVector(uDispatchThreadId);
+ FfxFloat32x3 colorPreAlpha = LoadOpaqueOnly(uDispatchThreadId);
+ FfxFloat32x3 colorPostAlpha = LoadInputColor(uDispatchThreadId);
+ FfxFloat32x3 colorPrevPreAlpha = LoadPrevPreAlpha(iPrevIdx);
+ FfxFloat32x3 colorPrevPostAlpha = LoadPrevPostAlpha(iPrevIdx);
+
+#if USE_YCOCG
+ colorPreAlpha = RGBToYCoCg(colorPreAlpha);
+ colorPostAlpha = RGBToYCoCg(colorPostAlpha);
+ colorPrevPreAlpha = RGBToYCoCg(colorPrevPreAlpha);
+ colorPrevPostAlpha = RGBToYCoCg(colorPrevPostAlpha);
+#endif
+ FfxFloat32x3 minPrev = FFX_MIN16_F3(+1000.f, +1000.f, +1000.f);
+ FfxFloat32x3 maxPrev = FFX_MIN16_F3(-1000.f, -1000.f, -1000.f);
+ for (int y = -1; y < 2; ++y)
+ {
+ for (int x = -1; x < 2; ++x)
+ {
+ FfxFloat32x3 W = LoadPrevPostAlpha(iPrevIdx + FFX_MIN16_I2(x, y));
+
+#if USE_YCOCG
+ W = RGBToYCoCg(W);
+#endif
+ minPrev = min(minPrev, W);
+ maxPrev = max(maxPrev, W);
+ }
+ }
+ // instead of computing the overlap: simply count how many samples are outside
+ // set reactive based on that
+ FFX_MIN16_F count = FFX_MIN16_F(0.f);
+ for (int y = -1; y < 2; ++y)
+ {
+ for (int x = -1; x < 2; ++x)
+ {
+ FfxFloat32x3 Y = LoadInputColor(uDispatchThreadId + FFX_MIN16_I2(x, y));
+
+#if USE_YCOCG
+ Y = RGBToYCoCg(Y);
+#endif
+ count += ((Y.x < minPrev.x) || (Y.x > maxPrev.x)) ? FFX_MIN16_F(1.f) : FFX_MIN16_F(0.f);
+ count += ((Y.y < minPrev.y) || (Y.y > maxPrev.y)) ? FFX_MIN16_F(1.f) : FFX_MIN16_F(0.f);
+ count += ((Y.z < minPrev.z) || (Y.z > maxPrev.z)) ? FFX_MIN16_F(1.f) : FFX_MIN16_F(0.f);
+ }
+ }
+ retVal = count / FFX_MIN16_F(27.f);
+
+ return retVal;
+}
+
+
+// This function computes the Reactive mask:
+// We want pixels marked where the alpha portion of the frame changes a lot between neighbours
+// Those pixels are expected to change quickly between frames, too. (e.g. small particles, reflections on curved surfaces...)
+// As a result history would not be trustworthy.
+// On the other hand we don't want pixels marked where pre-alpha has a large differnce, since those would profit from accumulation
+// For mirrors we may assume the pre-alpha is pretty uniform color.
+//
+// This works well generally, but also marks edge pixels
+FFX_MIN16_F ComputeReactive(FFX_MIN16_I2 uDispatchThreadId, FFX_MIN16_I2 iPrevIdx)
+{
+ // we only get here if alpha has a significant contribution and has changed since last frame.
+ FFX_MIN16_F retVal = FFX_MIN16_F(0.f);
+
+ // mark pixels with huge variance in alpha as reactive
+ FFX_MIN16_F alphaEdge = FFX_MIN16_F(computeAlphaEdge(uDispatchThreadId, iPrevIdx));
+ FFX_MIN16_F opaqueEdge = FFX_MIN16_F(computeSolidEdge(uDispatchThreadId, iPrevIdx));
+ retVal = ffxSaturate(alphaEdge - opaqueEdge);
+
+ // the above also marks edge pixels due to jitter, so we need to cancel those out
+
+
+ return retVal;
+}
diff --git a/thirdparty/amd-fsr2/shaders/ffx_fsr2_tcr_autogen_pass.glsl b/thirdparty/amd-fsr2/shaders/ffx_fsr2_tcr_autogen_pass.glsl
new file mode 100644
index 0000000000..12b4b40e08
--- /dev/null
+++ b/thirdparty/amd-fsr2/shaders/ffx_fsr2_tcr_autogen_pass.glsl
@@ -0,0 +1,122 @@
+// This file is part of the FidelityFX SDK.
+//
+// Copyright (c) 2022-2023 Advanced Micro Devices, Inc. All rights reserved.
+//
+// Permission is hereby granted, free of charge, to any person obtaining a copy
+// of this software and associated documentation files (the "Software"), to deal
+// in the Software without restriction, including without limitation the rights
+// to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
+// copies of the Software, and to permit persons to whom the Software is
+// furnished to do so, subject to the following conditions:
+// The above copyright notice and this permission notice shall be included in
+// all copies or substantial portions of the Software.
+//
+// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
+// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
+// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
+// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
+// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
+// OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
+// THE SOFTWARE.
+
+
+
+#extension GL_GOOGLE_include_directive : require
+#extension GL_EXT_samplerless_texture_functions : require
+
+#define FSR2_BIND_SRV_INPUT_OPAQUE_ONLY 0
+#define FSR2_BIND_SRV_INPUT_COLOR 1
+#define FSR2_BIND_SRV_INPUT_MOTION_VECTORS 2
+#define FSR2_BIND_SRV_PREV_PRE_ALPHA_COLOR 3
+#define FSR2_BIND_SRV_PREV_POST_ALPHA_COLOR 4
+#define FSR2_BIND_SRV_REACTIVE_MASK 5
+#define FSR2_BIND_SRV_TRANSPARENCY_AND_COMPOSITION_MASK 6
+
+#define FSR2_BIND_UAV_AUTOREACTIVE 7
+#define FSR2_BIND_UAV_AUTOCOMPOSITION 8
+#define FSR2_BIND_UAV_PREV_PRE_ALPHA_COLOR 9
+#define FSR2_BIND_UAV_PREV_POST_ALPHA_COLOR 10
+
+#define FSR2_BIND_CB_FSR2 11
+#define FSR2_BIND_CB_REACTIVE 12
+
+// -- GODOT start --
+#if FFX_FSR2_OPTION_GODOT_DERIVE_INVALID_MOTION_VECTORS
+#define FSR2_BIND_SRV_INPUT_DEPTH 13
+#endif
+// -- GODOT end --
+
+#include "ffx_fsr2_callbacks_glsl.h"
+#include "ffx_fsr2_common.h"
+
+#ifdef FSR2_BIND_CB_REACTIVE
+layout (set = 1, binding = FSR2_BIND_CB_REACTIVE, std140) uniform cbGenerateReactive_t
+{
+ float fTcThreshold; // 0.1 is a good starting value, lower will result in more TC pixels
+ float fTcScale;
+ float fReactiveScale;
+ float fReactiveMax;
+} cbGenerateReactive;
+
+float getTcThreshold()
+{
+ return cbGenerateReactive.fTcThreshold;
+}
+
+#else
+ float getTcThreshold()
+ {
+ return 0.05f;
+ }
+#endif
+
+#include "ffx_fsr2_tcr_autogen.h"
+
+#ifndef FFX_FSR2_THREAD_GROUP_WIDTH
+#define FFX_FSR2_THREAD_GROUP_WIDTH 8
+#endif // #ifndef FFX_FSR2_THREAD_GROUP_WIDTH
+#ifndef FFX_FSR2_THREAD_GROUP_HEIGHT
+#define FFX_FSR2_THREAD_GROUP_HEIGHT 8
+#endif // FFX_FSR2_THREAD_GROUP_HEIGHT
+#ifndef FFX_FSR2_THREAD_GROUP_DEPTH
+#define FFX_FSR2_THREAD_GROUP_DEPTH 1
+#endif // #ifndef FFX_FSR2_THREAD_GROUP_DEPTH
+#ifndef FFX_FSR2_NUM_THREADS
+#define FFX_FSR2_NUM_THREADS layout (local_size_x = FFX_FSR2_THREAD_GROUP_WIDTH, local_size_y = FFX_FSR2_THREAD_GROUP_HEIGHT, local_size_z = FFX_FSR2_THREAD_GROUP_DEPTH) in;
+#endif // #ifndef FFX_FSR2_NUM_THREADS
+
+FFX_FSR2_NUM_THREADS
+void main()
+{
+ FFX_MIN16_I2 uDispatchThreadId = FFX_MIN16_I2(gl_GlobalInvocationID.xy);
+
+ // ToDo: take into account jitter (i.e. add delta of previous jitter and current jitter to previous UV
+ // fetch pre- and post-alpha color values
+ FFX_MIN16_F2 fUv = ( FFX_MIN16_F2(uDispatchThreadId) + FFX_MIN16_F2(0.5f, 0.5f) ) / FFX_MIN16_F2( RenderSize() );
+ FFX_MIN16_F2 fPrevUV = fUv + FFX_MIN16_F2( LoadInputMotionVector(uDispatchThreadId) );
+ FFX_MIN16_I2 iPrevIdx = FFX_MIN16_I2(fPrevUV * FFX_MIN16_F2(RenderSize()) - 0.5f);
+
+ FFX_MIN16_F3 colorPreAlpha = FFX_MIN16_F3( LoadOpaqueOnly( uDispatchThreadId ) );
+ FFX_MIN16_F3 colorPostAlpha = FFX_MIN16_F3( LoadInputColor( uDispatchThreadId ) );
+
+ FFX_MIN16_F2 outReactiveMask = FFX_MIN16_F2( 0.f, 0.f );
+
+ outReactiveMask.y = ComputeTransparencyAndComposition(uDispatchThreadId, iPrevIdx);
+
+ if (outReactiveMask.y > 0.5f)
+ {
+ outReactiveMask.x = ComputeReactive(uDispatchThreadId, iPrevIdx);
+ outReactiveMask.x *= FFX_MIN16_F(cbGenerateReactive.fReactiveScale);
+ outReactiveMask.x = outReactiveMask.x < cbGenerateReactive.fReactiveMax ? outReactiveMask.x : FFX_MIN16_F( cbGenerateReactive.fReactiveMax );
+ }
+
+ outReactiveMask.y *= FFX_MIN16_F(cbGenerateReactive.fTcScale);
+
+ outReactiveMask.x = ffxMax(outReactiveMask.x, FFX_MIN16_F(LoadReactiveMask(uDispatchThreadId)));
+ outReactiveMask.y = ffxMax(outReactiveMask.y, FFX_MIN16_F(LoadTransparencyAndCompositionMask(uDispatchThreadId)));
+
+ StoreAutoReactive(uDispatchThreadId, outReactiveMask);
+
+ StorePrevPreAlpha(uDispatchThreadId, colorPreAlpha);
+ StorePrevPostAlpha(uDispatchThreadId, colorPostAlpha);
+}
diff --git a/thirdparty/amd-fsr2/shaders/ffx_fsr2_upsample.h b/thirdparty/amd-fsr2/shaders/ffx_fsr2_upsample.h
new file mode 100644
index 0000000000..abdb8888a9
--- /dev/null
+++ b/thirdparty/amd-fsr2/shaders/ffx_fsr2_upsample.h
@@ -0,0 +1,194 @@
+// This file is part of the FidelityFX SDK.
+//
+// Copyright (c) 2022-2023 Advanced Micro Devices, Inc. All rights reserved.
+//
+// Permission is hereby granted, free of charge, to any person obtaining a copy
+// of this software and associated documentation files (the "Software"), to deal
+// in the Software without restriction, including without limitation the rights
+// to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
+// copies of the Software, and to permit persons to whom the Software is
+// furnished to do so, subject to the following conditions:
+// The above copyright notice and this permission notice shall be included in
+// all copies or substantial portions of the Software.
+//
+// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
+// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
+// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
+// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
+// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
+// OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
+// THE SOFTWARE.
+
+#ifndef FFX_FSR2_UPSAMPLE_H
+#define FFX_FSR2_UPSAMPLE_H
+
+FFX_STATIC const FfxUInt32 iLanczos2SampleCount = 16;
+
+void Deringing(RectificationBox clippingBox, FFX_PARAMETER_INOUT FfxFloat32x3 fColor)
+{
+ fColor = clamp(fColor, clippingBox.aabbMin, clippingBox.aabbMax);
+}
+#if FFX_HALF
+void Deringing(RectificationBoxMin16 clippingBox, FFX_PARAMETER_INOUT FFX_MIN16_F3 fColor)
+{
+ fColor = clamp(fColor, clippingBox.aabbMin, clippingBox.aabbMax);
+}
+#endif
+
+#ifndef FFX_FSR2_OPTION_UPSAMPLE_USE_LANCZOS_TYPE
+#define FFX_FSR2_OPTION_UPSAMPLE_USE_LANCZOS_TYPE 2 // Approximate
+#endif
+
+FfxFloat32 GetUpsampleLanczosWeight(FfxFloat32x2 fSrcSampleOffset, FfxFloat32 fKernelWeight)
+{
+ FfxFloat32x2 fSrcSampleOffsetBiased = fSrcSampleOffset * fKernelWeight.xx;
+#if FFX_FSR2_OPTION_UPSAMPLE_USE_LANCZOS_TYPE == 0 // LANCZOS_TYPE_REFERENCE
+ FfxFloat32 fSampleWeight = Lanczos2(length(fSrcSampleOffsetBiased));
+#elif FFX_FSR2_OPTION_UPSAMPLE_USE_LANCZOS_TYPE == 1 // LANCZOS_TYPE_LUT
+ FfxFloat32 fSampleWeight = Lanczos2_UseLUT(length(fSrcSampleOffsetBiased));
+#elif FFX_FSR2_OPTION_UPSAMPLE_USE_LANCZOS_TYPE == 2 // LANCZOS_TYPE_APPROXIMATE
+ FfxFloat32 fSampleWeight = Lanczos2ApproxSq(dot(fSrcSampleOffsetBiased, fSrcSampleOffsetBiased));
+#else
+#error "Invalid Lanczos type"
+#endif
+ return fSampleWeight;
+}
+
+#if FFX_HALF
+FFX_MIN16_F GetUpsampleLanczosWeight(FFX_MIN16_F2 fSrcSampleOffset, FFX_MIN16_F fKernelWeight)
+{
+ FFX_MIN16_F2 fSrcSampleOffsetBiased = fSrcSampleOffset * fKernelWeight.xx;
+#if FFX_FSR2_OPTION_UPSAMPLE_USE_LANCZOS_TYPE == 0 // LANCZOS_TYPE_REFERENCE
+ FFX_MIN16_F fSampleWeight = Lanczos2(length(fSrcSampleOffsetBiased));
+#elif FFX_FSR2_OPTION_UPSAMPLE_USE_LANCZOS_TYPE == 1 // LANCZOS_TYPE_LUT
+ FFX_MIN16_F fSampleWeight = Lanczos2_UseLUT(length(fSrcSampleOffsetBiased));
+#elif FFX_FSR2_OPTION_UPSAMPLE_USE_LANCZOS_TYPE == 2 // LANCZOS_TYPE_APPROXIMATE
+ FFX_MIN16_F fSampleWeight = Lanczos2ApproxSq(dot(fSrcSampleOffsetBiased, fSrcSampleOffsetBiased));
+
+ // To Test: Save reciproqual sqrt compute
+ // FfxFloat32 fSampleWeight = Lanczos2Sq_UseLUT(dot(fSrcSampleOffsetBiased, fSrcSampleOffsetBiased));
+#else
+#error "Invalid Lanczos type"
+#endif
+ return fSampleWeight;
+}
+#endif
+
+FfxFloat32 ComputeMaxKernelWeight() {
+ const FfxFloat32 fKernelSizeBias = 1.0f;
+
+ FfxFloat32 fKernelWeight = FfxFloat32(1) + (FfxFloat32(1.0f) / FfxFloat32x2(DownscaleFactor()) - FfxFloat32(1)).x * FfxFloat32(fKernelSizeBias);
+
+ return ffxMin(FfxFloat32(1.99f), fKernelWeight);
+}
+
+FfxFloat32x4 ComputeUpsampledColorAndWeight(const AccumulationPassCommonParams params,
+ FFX_PARAMETER_INOUT RectificationBox clippingBox, FfxFloat32 fReactiveFactor)
+{
+ #if FFX_FSR2_OPTION_UPSAMPLE_SAMPLERS_USE_DATA_HALF && FFX_HALF
+ #include "ffx_fsr2_force16_begin.h"
+ #endif
+ // We compute a sliced lanczos filter with 2 lobes (other slices are accumulated temporaly)
+ FfxFloat32x2 fDstOutputPos = FfxFloat32x2(params.iPxHrPos) + FFX_BROADCAST_FLOAT32X2(0.5f); // Destination resolution output pixel center position
+ FfxFloat32x2 fSrcOutputPos = fDstOutputPos * DownscaleFactor(); // Source resolution output pixel center position
+ FfxInt32x2 iSrcInputPos = FfxInt32x2(floor(fSrcOutputPos)); // TODO: what about weird upscale factors...
+
+ #if FFX_FSR2_OPTION_UPSAMPLE_SAMPLERS_USE_DATA_HALF && FFX_HALF
+ #include "ffx_fsr2_force16_end.h"
+ #endif
+
+ FfxFloat32x3 fSamples[iLanczos2SampleCount];
+
+ FfxFloat32x2 fSrcUnjitteredPos = (FfxFloat32x2(iSrcInputPos) + FfxFloat32x2(0.5f, 0.5f)) - Jitter(); // This is the un-jittered position of the sample at offset 0,0
+
+ FfxInt32x2 offsetTL;
+ offsetTL.x = (fSrcUnjitteredPos.x > fSrcOutputPos.x) ? FfxInt32(-2) : FfxInt32(-1);
+ offsetTL.y = (fSrcUnjitteredPos.y > fSrcOutputPos.y) ? FfxInt32(-2) : FfxInt32(-1);
+
+ //Load samples
+ // If fSrcUnjitteredPos.y > fSrcOutputPos.y, indicates offsetTL.y = -2, sample offset Y will be [-2, 1], clipbox will be rows [1, 3].
+ // Flip row# for sampling offset in this case, so first 0~2 rows in the sampled array can always be used for computing the clipbox.
+ // This reduces branch or cmove on sampled colors, but moving this overhead to sample position / weight calculation time which apply to less values.
+ const FfxBoolean bFlipRow = fSrcUnjitteredPos.y > fSrcOutputPos.y;
+ const FfxBoolean bFlipCol = fSrcUnjitteredPos.x > fSrcOutputPos.x;
+
+ FfxFloat32x2 fOffsetTL = FfxFloat32x2(offsetTL);
+
+ FFX_UNROLL
+ for (FfxInt32 row = 0; row < 3; row++) {
+
+ FFX_UNROLL
+ for (FfxInt32 col = 0; col < 3; col++) {
+ FfxInt32 iSampleIndex = col + (row << 2);
+
+ FfxInt32x2 sampleColRow = FfxInt32x2(bFlipCol ? (3 - col) : col, bFlipRow ? (3 - row) : row);
+ FfxInt32x2 iSrcSamplePos = FfxInt32x2(iSrcInputPos) + offsetTL + sampleColRow;
+
+ const FfxInt32x2 sampleCoord = ClampLoad(iSrcSamplePos, FfxInt32x2(0, 0), FfxInt32x2(RenderSize()));
+
+ fSamples[iSampleIndex] = LoadPreparedInputColor(FfxInt32x2(sampleCoord));
+ }
+ }
+
+ FfxFloat32x4 fColorAndWeight = FfxFloat32x4(0.0f, 0.0f, 0.0f, 0.0f);
+
+ FfxFloat32x2 fBaseSampleOffset = FfxFloat32x2(fSrcUnjitteredPos - fSrcOutputPos);
+
+ // Identify how much of each upsampled color to be used for this frame
+ const FfxFloat32 fKernelReactiveFactor = ffxMax(fReactiveFactor, FfxFloat32(params.bIsNewSample));
+ const FfxFloat32 fKernelBiasMax = ComputeMaxKernelWeight() * (1.0f - fKernelReactiveFactor);
+
+ const FfxFloat32 fKernelBiasMin = ffxMax(1.0f, ((1.0f + fKernelBiasMax) * 0.3f));
+ const FfxFloat32 fKernelBiasFactor = ffxMax(0.0f, ffxMax(0.25f * params.fDepthClipFactor, fKernelReactiveFactor));
+ const FfxFloat32 fKernelBias = ffxLerp(fKernelBiasMax, fKernelBiasMin, fKernelBiasFactor);
+
+ const FfxFloat32 fRectificationCurveBias = ffxLerp(-2.0f, -3.0f, ffxSaturate(params.fHrVelocity / 50.0f));
+
+ FFX_UNROLL
+ for (FfxInt32 row = 0; row < 3; row++) {
+ FFX_UNROLL
+ for (FfxInt32 col = 0; col < 3; col++) {
+ FfxInt32 iSampleIndex = col + (row << 2);
+
+ const FfxInt32x2 sampleColRow = FfxInt32x2(bFlipCol ? (3 - col) : col, bFlipRow ? (3 - row) : row);
+ const FfxFloat32x2 fOffset = fOffsetTL + FfxFloat32x2(sampleColRow);
+ FfxFloat32x2 fSrcSampleOffset = fBaseSampleOffset + fOffset;
+
+ FfxInt32x2 iSrcSamplePos = FfxInt32x2(iSrcInputPos) + FfxInt32x2(offsetTL) + sampleColRow;
+
+ const FfxFloat32 fOnScreenFactor = FfxFloat32(IsOnScreen(FfxInt32x2(iSrcSamplePos), FfxInt32x2(RenderSize())));
+ FfxFloat32 fSampleWeight = fOnScreenFactor * FfxFloat32(GetUpsampleLanczosWeight(fSrcSampleOffset, fKernelBias));
+
+ fColorAndWeight += FfxFloat32x4(fSamples[iSampleIndex] * fSampleWeight, fSampleWeight);
+
+ // Update rectification box
+ {
+ const FfxFloat32 fSrcSampleOffsetSq = dot(fSrcSampleOffset, fSrcSampleOffset);
+ const FfxFloat32 fBoxSampleWeight = exp(fRectificationCurveBias * fSrcSampleOffsetSq);
+
+ const FfxBoolean bInitialSample = (row == 0) && (col == 0);
+ RectificationBoxAddSample(bInitialSample, clippingBox, fSamples[iSampleIndex], fBoxSampleWeight);
+ }
+ }
+ }
+
+ RectificationBoxComputeVarianceBoxData(clippingBox);
+
+ fColorAndWeight.w *= FfxFloat32(fColorAndWeight.w > FSR2_EPSILON);
+
+ if (fColorAndWeight.w > FSR2_EPSILON) {
+ // Normalize for deringing (we need to compare colors)
+ fColorAndWeight.xyz = fColorAndWeight.xyz / fColorAndWeight.w;
+ fColorAndWeight.w *= fUpsampleLanczosWeightScale;
+
+ Deringing(clippingBox, fColorAndWeight.xyz);
+ }
+
+ #if FFX_FSR2_OPTION_UPSAMPLE_SAMPLERS_USE_DATA_HALF && FFX_HALF
+ #include "ffx_fsr2_force16_end.h"
+ #endif
+
+ return fColorAndWeight;
+}
+
+#endif //!defined( FFX_FSR2_UPSAMPLE_H )
diff --git a/thirdparty/amd-fsr2/shaders/ffx_spd.h b/thirdparty/amd-fsr2/shaders/ffx_spd.h
new file mode 100644
index 0000000000..5ce24ec87c
--- /dev/null
+++ b/thirdparty/amd-fsr2/shaders/ffx_spd.h
@@ -0,0 +1,936 @@
+// This file is part of the FidelityFX SDK.
+//
+// Copyright (c) 2022-2023 Advanced Micro Devices, Inc. All rights reserved.
+//
+// Permission is hereby granted, free of charge, to any person obtaining a copy
+// of this software and associated documentation files (the "Software"), to deal
+// in the Software without restriction, including without limitation the rights
+// to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
+// copies of the Software, and to permit persons to whom the Software is
+// furnished to do so, subject to the following conditions:
+// The above copyright notice and this permission notice shall be included in
+// all copies or substantial portions of the Software.
+//
+// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
+// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
+// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
+// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
+// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
+// OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
+// THE SOFTWARE.
+
+#ifdef FFX_CPU
+FFX_STATIC void SpdSetup(FfxUInt32x2 dispatchThreadGroupCountXY, // CPU side: dispatch thread group count xy
+ FfxUInt32x2 workGroupOffset, // GPU side: pass in as constant
+ FfxUInt32x2 numWorkGroupsAndMips, // GPU side: pass in as constant
+ FfxUInt32x4 rectInfo, // left, top, width, height
+ FfxInt32 mips) // optional: if -1, calculate based on rect width and height
+{
+ workGroupOffset[0] = rectInfo[0] / 64; // rectInfo[0] = left
+ workGroupOffset[1] = rectInfo[1] / 64; // rectInfo[1] = top
+
+ FfxUInt32 endIndexX = (rectInfo[0] + rectInfo[2] - 1) / 64; // rectInfo[0] = left, rectInfo[2] = width
+ FfxUInt32 endIndexY = (rectInfo[1] + rectInfo[3] - 1) / 64; // rectInfo[1] = top, rectInfo[3] = height
+
+ dispatchThreadGroupCountXY[0] = endIndexX + 1 - workGroupOffset[0];
+ dispatchThreadGroupCountXY[1] = endIndexY + 1 - workGroupOffset[1];
+
+ numWorkGroupsAndMips[0] = (dispatchThreadGroupCountXY[0]) * (dispatchThreadGroupCountXY[1]);
+
+ if (mips >= 0)
+ {
+ numWorkGroupsAndMips[1] = FfxUInt32(mips);
+ }
+ else
+ {
+ // calculate based on rect width and height
+ FfxUInt32 resolution = ffxMax(rectInfo[2], rectInfo[3]);
+ numWorkGroupsAndMips[1] = FfxUInt32((ffxMin(floor(log2(FfxFloat32(resolution))), FfxFloat32(12))));
+ }
+}
+
+FFX_STATIC void SpdSetup(FfxUInt32x2 dispatchThreadGroupCountXY, // CPU side: dispatch thread group count xy
+ FfxUInt32x2 workGroupOffset, // GPU side: pass in as constant
+ FfxUInt32x2 numWorkGroupsAndMips, // GPU side: pass in as constant
+ FfxUInt32x4 rectInfo) // left, top, width, height
+{
+ SpdSetup(dispatchThreadGroupCountXY, workGroupOffset, numWorkGroupsAndMips, rectInfo, -1);
+}
+#endif // #ifdef FFX_CPU
+
+
+//==============================================================================================================================
+// NON-PACKED VERSION
+//==============================================================================================================================
+#ifdef FFX_GPU
+#ifdef SPD_PACKED_ONLY
+// Avoid compiler error
+FfxFloat32x4 SpdLoadSourceImage(FfxInt32x2 p, FfxUInt32 slice)
+{
+ return FfxFloat32x4(0.0, 0.0, 0.0, 0.0);
+}
+
+FfxFloat32x4 SpdLoad(FfxInt32x2 p, FfxUInt32 slice)
+{
+ return FfxFloat32x4(0.0, 0.0, 0.0, 0.0);
+}
+void SpdStore(FfxInt32x2 p, FfxFloat32x4 value, FfxUInt32 mip, FfxUInt32 slice)
+{
+}
+FfxFloat32x4 SpdLoadIntermediate(FfxUInt32 x, FfxUInt32 y)
+{
+ return FfxFloat32x4(0.0, 0.0, 0.0, 0.0);
+}
+void SpdStoreIntermediate(FfxUInt32 x, FfxUInt32 y, FfxFloat32x4 value)
+{
+}
+FfxFloat32x4 SpdReduce4(FfxFloat32x4 v0, FfxFloat32x4 v1, FfxFloat32x4 v2, FfxFloat32x4 v3)
+{
+ return FfxFloat32x4(0.0, 0.0, 0.0, 0.0);
+}
+#endif // #ifdef SPD_PACKED_ONLY
+
+//_____________________________________________________________/\_______________________________________________________________
+#if defined(FFX_GLSL) && !defined(SPD_NO_WAVE_OPERATIONS)
+#extension GL_KHR_shader_subgroup_quad:require
+#endif
+
+void SpdWorkgroupShuffleBarrier()
+{
+#ifdef FFX_GLSL
+ barrier();
+#endif
+#ifdef FFX_HLSL
+ GroupMemoryBarrierWithGroupSync();
+#endif
+}
+
+// Only last active workgroup should proceed
+bool SpdExitWorkgroup(FfxUInt32 numWorkGroups, FfxUInt32 localInvocationIndex, FfxUInt32 slice)
+{
+ // global atomic counter
+ if (localInvocationIndex == 0)
+ {
+ SpdIncreaseAtomicCounter(slice);
+ }
+
+ SpdWorkgroupShuffleBarrier();
+ return (SpdGetAtomicCounter() != (numWorkGroups - 1));
+}
+
+// User defined: FfxFloat32x4 SpdReduce4(FfxFloat32x4 v0, FfxFloat32x4 v1, FfxFloat32x4 v2, FfxFloat32x4 v3);
+FfxFloat32x4 SpdReduceQuad(FfxFloat32x4 v)
+{
+#if defined(FFX_GLSL) && !defined(SPD_NO_WAVE_OPERATIONS)
+
+ FfxFloat32x4 v0 = v;
+ FfxFloat32x4 v1 = subgroupQuadSwapHorizontal(v);
+ FfxFloat32x4 v2 = subgroupQuadSwapVertical(v);
+ FfxFloat32x4 v3 = subgroupQuadSwapDiagonal(v);
+ return SpdReduce4(v0, v1, v2, v3);
+
+#elif defined(FFX_HLSL) && !defined(SPD_NO_WAVE_OPERATIONS)
+
+ // requires SM6.0
+ FfxUInt32 quad = WaveGetLaneIndex() & (~0x3);
+ FfxFloat32x4 v0 = v;
+ FfxFloat32x4 v1 = WaveReadLaneAt(v, quad | 1);
+ FfxFloat32x4 v2 = WaveReadLaneAt(v, quad | 2);
+ FfxFloat32x4 v3 = WaveReadLaneAt(v, quad | 3);
+ return SpdReduce4(v0, v1, v2, v3);
+/*
+ // if SM6.0 is not available, you can use the AMD shader intrinsics
+ // the AMD shader intrinsics are available in AMD GPU Services (AGS) library:
+ // https://gpuopen.com/amd-gpu-services-ags-library/
+ // works for DX11
+ FfxFloat32x4 v0 = v;
+ FfxFloat32x4 v1;
+ v1.x = AmdExtD3DShaderIntrinsics_SwizzleF(v.x, AmdExtD3DShaderIntrinsicsSwizzle_SwapX1);
+ v1.y = AmdExtD3DShaderIntrinsics_SwizzleF(v.y, AmdExtD3DShaderIntrinsicsSwizzle_SwapX1);
+ v1.z = AmdExtD3DShaderIntrinsics_SwizzleF(v.z, AmdExtD3DShaderIntrinsicsSwizzle_SwapX1);
+ v1.w = AmdExtD3DShaderIntrinsics_SwizzleF(v.w, AmdExtD3DShaderIntrinsicsSwizzle_SwapX1);
+ FfxFloat32x4 v2;
+ v2.x = AmdExtD3DShaderIntrinsics_SwizzleF(v.x, AmdExtD3DShaderIntrinsicsSwizzle_SwapX2);
+ v2.y = AmdExtD3DShaderIntrinsics_SwizzleF(v.y, AmdExtD3DShaderIntrinsicsSwizzle_SwapX2);
+ v2.z = AmdExtD3DShaderIntrinsics_SwizzleF(v.z, AmdExtD3DShaderIntrinsicsSwizzle_SwapX2);
+ v2.w = AmdExtD3DShaderIntrinsics_SwizzleF(v.w, AmdExtD3DShaderIntrinsicsSwizzle_SwapX2);
+ FfxFloat32x4 v3;
+ v3.x = AmdExtD3DShaderIntrinsics_SwizzleF(v.x, AmdExtD3DShaderIntrinsicsSwizzle_ReverseX4);
+ v3.y = AmdExtD3DShaderIntrinsics_SwizzleF(v.y, AmdExtD3DShaderIntrinsicsSwizzle_ReverseX4);
+ v3.z = AmdExtD3DShaderIntrinsics_SwizzleF(v.z, AmdExtD3DShaderIntrinsicsSwizzle_ReverseX4);
+ v3.w = AmdExtD3DShaderIntrinsics_SwizzleF(v.w, AmdExtD3DShaderIntrinsicsSwizzle_ReverseX4);
+ return SpdReduce4(v0, v1, v2, v3);
+ */
+#endif
+ return v;
+}
+
+FfxFloat32x4 SpdReduceIntermediate(FfxUInt32x2 i0, FfxUInt32x2 i1, FfxUInt32x2 i2, FfxUInt32x2 i3)
+{
+ FfxFloat32x4 v0 = SpdLoadIntermediate(i0.x, i0.y);
+ FfxFloat32x4 v1 = SpdLoadIntermediate(i1.x, i1.y);
+ FfxFloat32x4 v2 = SpdLoadIntermediate(i2.x, i2.y);
+ FfxFloat32x4 v3 = SpdLoadIntermediate(i3.x, i3.y);
+ return SpdReduce4(v0, v1, v2, v3);
+}
+
+FfxFloat32x4 SpdReduceLoad4(FfxUInt32x2 i0, FfxUInt32x2 i1, FfxUInt32x2 i2, FfxUInt32x2 i3, FfxUInt32 slice)
+{
+ FfxFloat32x4 v0 = SpdLoad(FfxInt32x2(i0), slice);
+ FfxFloat32x4 v1 = SpdLoad(FfxInt32x2(i1), slice);
+ FfxFloat32x4 v2 = SpdLoad(FfxInt32x2(i2), slice);
+ FfxFloat32x4 v3 = SpdLoad(FfxInt32x2(i3), slice);
+ return SpdReduce4(v0, v1, v2, v3);
+}
+
+FfxFloat32x4 SpdReduceLoad4(FfxUInt32x2 base, FfxUInt32 slice)
+{
+ return SpdReduceLoad4(FfxUInt32x2(base + FfxUInt32x2(0, 0)), FfxUInt32x2(base + FfxUInt32x2(0, 1)), FfxUInt32x2(base + FfxUInt32x2(1, 0)), FfxUInt32x2(base + FfxUInt32x2(1, 1)), slice);
+}
+
+FfxFloat32x4 SpdReduceLoadSourceImage4(FfxUInt32x2 i0, FfxUInt32x2 i1, FfxUInt32x2 i2, FfxUInt32x2 i3, FfxUInt32 slice)
+{
+ FfxFloat32x4 v0 = SpdLoadSourceImage(FfxInt32x2(i0), slice);
+ FfxFloat32x4 v1 = SpdLoadSourceImage(FfxInt32x2(i1), slice);
+ FfxFloat32x4 v2 = SpdLoadSourceImage(FfxInt32x2(i2), slice);
+ FfxFloat32x4 v3 = SpdLoadSourceImage(FfxInt32x2(i3), slice);
+ return SpdReduce4(v0, v1, v2, v3);
+}
+
+FfxFloat32x4 SpdReduceLoadSourceImage(FfxUInt32x2 base, FfxUInt32 slice)
+{
+#ifdef SPD_LINEAR_SAMPLER
+ return SpdLoadSourceImage(FfxInt32x2(base), slice);
+#else
+ return SpdReduceLoadSourceImage4(FfxUInt32x2(base + FfxUInt32x2(0, 0)), FfxUInt32x2(base + FfxUInt32x2(0, 1)), FfxUInt32x2(base + FfxUInt32x2(1, 0)), FfxUInt32x2(base + FfxUInt32x2(1, 1)), slice);
+#endif
+}
+
+void SpdDownsampleMips_0_1_Intrinsics(FfxUInt32 x, FfxUInt32 y, FfxUInt32x2 workGroupID, FfxUInt32 localInvocationIndex, FfxUInt32 mip, FfxUInt32 slice)
+{
+ FfxFloat32x4 v[4];
+
+ FfxInt32x2 tex = FfxInt32x2(workGroupID.xy * 64) + FfxInt32x2(x * 2, y * 2);
+ FfxInt32x2 pix = FfxInt32x2(workGroupID.xy * 32) + FfxInt32x2(x, y);
+ v[0] = SpdReduceLoadSourceImage(tex, slice);
+ SpdStore(pix, v[0], 0, slice);
+
+ tex = FfxInt32x2(workGroupID.xy * 64) + FfxInt32x2(x * 2 + 32, y * 2);
+ pix = FfxInt32x2(workGroupID.xy * 32) + FfxInt32x2(x + 16, y);
+ v[1] = SpdReduceLoadSourceImage(tex, slice);
+ SpdStore(pix, v[1], 0, slice);
+
+ tex = FfxInt32x2(workGroupID.xy * 64) + FfxInt32x2(x * 2, y * 2 + 32);
+ pix = FfxInt32x2(workGroupID.xy * 32) + FfxInt32x2(x, y + 16);
+ v[2] = SpdReduceLoadSourceImage(tex, slice);
+ SpdStore(pix, v[2], 0, slice);
+
+ tex = FfxInt32x2(workGroupID.xy * 64) + FfxInt32x2(x * 2 + 32, y * 2 + 32);
+ pix = FfxInt32x2(workGroupID.xy * 32) + FfxInt32x2(x + 16, y + 16);
+ v[3] = SpdReduceLoadSourceImage(tex, slice);
+ SpdStore(pix, v[3], 0, slice);
+
+ if (mip <= 1)
+ return;
+
+ v[0] = SpdReduceQuad(v[0]);
+ v[1] = SpdReduceQuad(v[1]);
+ v[2] = SpdReduceQuad(v[2]);
+ v[3] = SpdReduceQuad(v[3]);
+
+ if ((localInvocationIndex % 4) == 0)
+ {
+ SpdStore(FfxInt32x2(workGroupID.xy * 16) + FfxInt32x2(x / 2, y / 2), v[0], 1, slice);
+ SpdStoreIntermediate(x / 2, y / 2, v[0]);
+
+ SpdStore(FfxInt32x2(workGroupID.xy * 16) + FfxInt32x2(x / 2 + 8, y / 2), v[1], 1, slice);
+ SpdStoreIntermediate(x / 2 + 8, y / 2, v[1]);
+
+ SpdStore(FfxInt32x2(workGroupID.xy * 16) + FfxInt32x2(x / 2, y / 2 + 8), v[2], 1, slice);
+ SpdStoreIntermediate(x / 2, y / 2 + 8, v[2]);
+
+ SpdStore(FfxInt32x2(workGroupID.xy * 16) + FfxInt32x2(x / 2 + 8, y / 2 + 8), v[3], 1, slice);
+ SpdStoreIntermediate(x / 2 + 8, y / 2 + 8, v[3]);
+ }
+}
+
+void SpdDownsampleMips_0_1_LDS(FfxUInt32 x, FfxUInt32 y, FfxUInt32x2 workGroupID, FfxUInt32 localInvocationIndex, FfxUInt32 mip, FfxUInt32 slice)
+{
+ FfxFloat32x4 v[4];
+
+ FfxInt32x2 tex = FfxInt32x2(workGroupID.xy * 64) + FfxInt32x2(x * 2, y * 2);
+ FfxInt32x2 pix = FfxInt32x2(workGroupID.xy * 32) + FfxInt32x2(x, y);
+ v[0] = SpdReduceLoadSourceImage(tex, slice);
+ SpdStore(pix, v[0], 0, slice);
+
+ tex = FfxInt32x2(workGroupID.xy * 64) + FfxInt32x2(x * 2 + 32, y * 2);
+ pix = FfxInt32x2(workGroupID.xy * 32) + FfxInt32x2(x + 16, y);
+ v[1] = SpdReduceLoadSourceImage(tex, slice);
+ SpdStore(pix, v[1], 0, slice);
+
+ tex = FfxInt32x2(workGroupID.xy * 64) + FfxInt32x2(x * 2, y * 2 + 32);
+ pix = FfxInt32x2(workGroupID.xy * 32) + FfxInt32x2(x, y + 16);
+ v[2] = SpdReduceLoadSourceImage(tex, slice);
+ SpdStore(pix, v[2], 0, slice);
+
+ tex = FfxInt32x2(workGroupID.xy * 64) + FfxInt32x2(x * 2 + 32, y * 2 + 32);
+ pix = FfxInt32x2(workGroupID.xy * 32) + FfxInt32x2(x + 16, y + 16);
+ v[3] = SpdReduceLoadSourceImage(tex, slice);
+ SpdStore(pix, v[3], 0, slice);
+
+ if (mip <= 1)
+ return;
+
+ for (FfxUInt32 i = 0; i < 4; i++)
+ {
+ SpdStoreIntermediate(x, y, v[i]);
+ SpdWorkgroupShuffleBarrier();
+ if (localInvocationIndex < 64)
+ {
+ v[i] = SpdReduceIntermediate(FfxUInt32x2(x * 2 + 0, y * 2 + 0), FfxUInt32x2(x * 2 + 1, y * 2 + 0), FfxUInt32x2(x * 2 + 0, y * 2 + 1), FfxUInt32x2(x * 2 + 1, y * 2 + 1));
+ SpdStore(FfxInt32x2(workGroupID.xy * 16) + FfxInt32x2(x + (i % 2) * 8, y + (i / 2) * 8), v[i], 1, slice);
+ }
+ SpdWorkgroupShuffleBarrier();
+ }
+
+ if (localInvocationIndex < 64)
+ {
+ SpdStoreIntermediate(x + 0, y + 0, v[0]);
+ SpdStoreIntermediate(x + 8, y + 0, v[1]);
+ SpdStoreIntermediate(x + 0, y + 8, v[2]);
+ SpdStoreIntermediate(x + 8, y + 8, v[3]);
+ }
+}
+
+void SpdDownsampleMips_0_1(FfxUInt32 x, FfxUInt32 y, FfxUInt32x2 workGroupID, FfxUInt32 localInvocationIndex, FfxUInt32 mip, FfxUInt32 slice)
+{
+#ifdef SPD_NO_WAVE_OPERATIONS
+ SpdDownsampleMips_0_1_LDS(x, y, workGroupID, localInvocationIndex, mip, slice);
+#else
+ SpdDownsampleMips_0_1_Intrinsics(x, y, workGroupID, localInvocationIndex, mip, slice);
+#endif
+}
+
+
+void SpdDownsampleMip_2(FfxUInt32 x, FfxUInt32 y, FfxUInt32x2 workGroupID, FfxUInt32 localInvocationIndex, FfxUInt32 mip, FfxUInt32 slice)
+{
+#ifdef SPD_NO_WAVE_OPERATIONS
+ if (localInvocationIndex < 64)
+ {
+ FfxFloat32x4 v = SpdReduceIntermediate(FfxUInt32x2(x * 2 + 0, y * 2 + 0), FfxUInt32x2(x * 2 + 1, y * 2 + 0), FfxUInt32x2(x * 2 + 0, y * 2 + 1), FfxUInt32x2(x * 2 + 1, y * 2 + 1));
+ SpdStore(FfxInt32x2(workGroupID.xy * 8) + FfxInt32x2(x, y), v, mip, slice);
+ // store to LDS, try to reduce bank conflicts
+ // x 0 x 0 x 0 x 0 x 0 x 0 x 0 x 0
+ // 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
+ // 0 x 0 x 0 x 0 x 0 x 0 x 0 x 0 x
+ // 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
+ // x 0 x 0 x 0 x 0 x 0 x 0 x 0 x 0
+ // ...
+ // x 0 x 0 x 0 x 0 x 0 x 0 x 0 x 0
+ SpdStoreIntermediate(x * 2 + y % 2, y * 2, v);
+ }
+#else
+ FfxFloat32x4 v = SpdLoadIntermediate(x, y);
+ v = SpdReduceQuad(v);
+ // quad index 0 stores result
+ if (localInvocationIndex % 4 == 0)
+ {
+ SpdStore(FfxInt32x2(workGroupID.xy * 8) + FfxInt32x2(x / 2, y / 2), v, mip, slice);
+ SpdStoreIntermediate(x + (y / 2) % 2, y, v);
+ }
+#endif
+}
+
+void SpdDownsampleMip_3(FfxUInt32 x, FfxUInt32 y, FfxUInt32x2 workGroupID, FfxUInt32 localInvocationIndex, FfxUInt32 mip, FfxUInt32 slice)
+{
+#ifdef SPD_NO_WAVE_OPERATIONS
+ if (localInvocationIndex < 16)
+ {
+ // x 0 x 0
+ // 0 0 0 0
+ // 0 x 0 x
+ // 0 0 0 0
+ FfxFloat32x4 v =
+ SpdReduceIntermediate(FfxUInt32x2(x * 4 + 0 + 0, y * 4 + 0), FfxUInt32x2(x * 4 + 2 + 0, y * 4 + 0), FfxUInt32x2(x * 4 + 0 + 1, y * 4 + 2), FfxUInt32x2(x * 4 + 2 + 1, y * 4 + 2));
+ SpdStore(FfxInt32x2(workGroupID.xy * 4) + FfxInt32x2(x, y), v, mip, slice);
+ // store to LDS
+ // x 0 0 0 x 0 0 0 x 0 0 0 x 0 0 0
+ // 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
+ // 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
+ // 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
+ // 0 x 0 0 0 x 0 0 0 x 0 0 0 x 0 0
+ // ...
+ // 0 0 x 0 0 0 x 0 0 0 x 0 0 0 x 0
+ // ...
+ // 0 0 0 x 0 0 0 x 0 0 0 x 0 0 0 x
+ // ...
+ SpdStoreIntermediate(x * 4 + y, y * 4, v);
+ }
+#else
+ if (localInvocationIndex < 64)
+ {
+ FfxFloat32x4 v = SpdLoadIntermediate(x * 2 + y % 2, y * 2);
+ v = SpdReduceQuad(v);
+ // quad index 0 stores result
+ if (localInvocationIndex % 4 == 0)
+ {
+ SpdStore(FfxInt32x2(workGroupID.xy * 4) + FfxInt32x2(x / 2, y / 2), v, mip, slice);
+ SpdStoreIntermediate(x * 2 + y / 2, y * 2, v);
+ }
+ }
+#endif
+}
+
+void SpdDownsampleMip_4(FfxUInt32 x, FfxUInt32 y, FfxUInt32x2 workGroupID, FfxUInt32 localInvocationIndex, FfxUInt32 mip, FfxUInt32 slice)
+{
+#ifdef SPD_NO_WAVE_OPERATIONS
+ if (localInvocationIndex < 4)
+ {
+ // x 0 0 0 x 0 0 0
+ // ...
+ // 0 x 0 0 0 x 0 0
+ FfxFloat32x4 v = SpdReduceIntermediate(FfxUInt32x2(x * 8 + 0 + 0 + y * 2, y * 8 + 0),
+ FfxUInt32x2(x * 8 + 4 + 0 + y * 2, y * 8 + 0),
+ FfxUInt32x2(x * 8 + 0 + 1 + y * 2, y * 8 + 4),
+ FfxUInt32x2(x * 8 + 4 + 1 + y * 2, y * 8 + 4));
+ SpdStore(FfxInt32x2(workGroupID.xy * 2) + FfxInt32x2(x, y), v, mip, slice);
+ // store to LDS
+ // x x x x 0 ...
+ // 0 ...
+ SpdStoreIntermediate(x + y * 2, 0, v);
+ }
+#else
+ if (localInvocationIndex < 16)
+ {
+ FfxFloat32x4 v = SpdLoadIntermediate(x * 4 + y, y * 4);
+ v = SpdReduceQuad(v);
+ // quad index 0 stores result
+ if (localInvocationIndex % 4 == 0)
+ {
+ SpdStore(FfxInt32x2(workGroupID.xy * 2) + FfxInt32x2(x / 2, y / 2), v, mip, slice);
+ SpdStoreIntermediate(x / 2 + y, 0, v);
+ }
+ }
+#endif
+}
+
+void SpdDownsampleMip_5(FfxUInt32x2 workGroupID, FfxUInt32 localInvocationIndex, FfxUInt32 mip, FfxUInt32 slice)
+{
+#ifdef SPD_NO_WAVE_OPERATIONS
+ if (localInvocationIndex < 1)
+ {
+ // x x x x 0 ...
+ // 0 ...
+ FfxFloat32x4 v = SpdReduceIntermediate(FfxUInt32x2(0, 0), FfxUInt32x2(1, 0), FfxUInt32x2(2, 0), FfxUInt32x2(3, 0));
+ SpdStore(FfxInt32x2(workGroupID.xy), v, mip, slice);
+ }
+#else
+ if (localInvocationIndex < 4)
+ {
+ FfxFloat32x4 v = SpdLoadIntermediate(localInvocationIndex, 0);
+ v = SpdReduceQuad(v);
+ // quad index 0 stores result
+ if (localInvocationIndex % 4 == 0)
+ {
+ SpdStore(FfxInt32x2(workGroupID.xy), v, mip, slice);
+ }
+ }
+#endif
+}
+
+void SpdDownsampleMips_6_7(FfxUInt32 x, FfxUInt32 y, FfxUInt32 mips, FfxUInt32 slice)
+{
+ FfxInt32x2 tex = FfxInt32x2(x * 4 + 0, y * 4 + 0);
+ FfxInt32x2 pix = FfxInt32x2(x * 2 + 0, y * 2 + 0);
+ FfxFloat32x4 v0 = SpdReduceLoad4(tex, slice);
+ SpdStore(pix, v0, 6, slice);
+
+ tex = FfxInt32x2(x * 4 + 2, y * 4 + 0);
+ pix = FfxInt32x2(x * 2 + 1, y * 2 + 0);
+ FfxFloat32x4 v1 = SpdReduceLoad4(tex, slice);
+ SpdStore(pix, v1, 6, slice);
+
+ tex = FfxInt32x2(x * 4 + 0, y * 4 + 2);
+ pix = FfxInt32x2(x * 2 + 0, y * 2 + 1);
+ FfxFloat32x4 v2 = SpdReduceLoad4(tex, slice);
+ SpdStore(pix, v2, 6, slice);
+
+ tex = FfxInt32x2(x * 4 + 2, y * 4 + 2);
+ pix = FfxInt32x2(x * 2 + 1, y * 2 + 1);
+ FfxFloat32x4 v3 = SpdReduceLoad4(tex, slice);
+ SpdStore(pix, v3, 6, slice);
+
+ if (mips <= 7)
+ return;
+ // no barrier needed, working on values only from the same thread
+
+ FfxFloat32x4 v = SpdReduce4(v0, v1, v2, v3);
+ SpdStore(FfxInt32x2(x, y), v, 7, slice);
+ SpdStoreIntermediate(x, y, v);
+}
+
+void SpdDownsampleNextFour(FfxUInt32 x, FfxUInt32 y, FfxUInt32x2 workGroupID, FfxUInt32 localInvocationIndex, FfxUInt32 baseMip, FfxUInt32 mips, FfxUInt32 slice)
+{
+ if (mips <= baseMip)
+ return;
+ SpdWorkgroupShuffleBarrier();
+ SpdDownsampleMip_2(x, y, workGroupID, localInvocationIndex, baseMip, slice);
+
+ if (mips <= baseMip + 1)
+ return;
+ SpdWorkgroupShuffleBarrier();
+ SpdDownsampleMip_3(x, y, workGroupID, localInvocationIndex, baseMip + 1, slice);
+
+ if (mips <= baseMip + 2)
+ return;
+ SpdWorkgroupShuffleBarrier();
+ SpdDownsampleMip_4(x, y, workGroupID, localInvocationIndex, baseMip + 2, slice);
+
+ if (mips <= baseMip + 3)
+ return;
+ SpdWorkgroupShuffleBarrier();
+ SpdDownsampleMip_5(workGroupID, localInvocationIndex, baseMip + 3, slice);
+}
+
+void SpdDownsample(FfxUInt32x2 workGroupID, FfxUInt32 localInvocationIndex, FfxUInt32 mips, FfxUInt32 numWorkGroups, FfxUInt32 slice)
+{
+ FfxUInt32x2 sub_xy = ffxRemapForWaveReduction(localInvocationIndex % 64);
+ FfxUInt32 x = sub_xy.x + 8 * ((localInvocationIndex >> 6) % 2);
+ FfxUInt32 y = sub_xy.y + 8 * ((localInvocationIndex >> 7));
+ SpdDownsampleMips_0_1(x, y, workGroupID, localInvocationIndex, mips, slice);
+
+ SpdDownsampleNextFour(x, y, workGroupID, localInvocationIndex, 2, mips, slice);
+
+ if (mips <= 6)
+ return;
+
+ if (SpdExitWorkgroup(numWorkGroups, localInvocationIndex, slice))
+ return;
+
+ SpdResetAtomicCounter(slice);
+
+ // After mip 6 there is only a single workgroup left that downsamples the remaining up to 64x64 texels.
+ SpdDownsampleMips_6_7(x, y, mips, slice);
+
+ SpdDownsampleNextFour(x, y, FfxUInt32x2(0, 0), localInvocationIndex, 8, mips, slice);
+}
+
+void SpdDownsample(FfxUInt32x2 workGroupID, FfxUInt32 localInvocationIndex, FfxUInt32 mips, FfxUInt32 numWorkGroups, FfxUInt32 slice, FfxUInt32x2 workGroupOffset)
+{
+ SpdDownsample(workGroupID + workGroupOffset, localInvocationIndex, mips, numWorkGroups, slice);
+}
+
+////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
+////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
+
+//==============================================================================================================================
+// PACKED VERSION
+//==============================================================================================================================
+
+#if FFX_HALF
+
+#ifdef FFX_GLSL
+#extension GL_EXT_shader_subgroup_extended_types_float16:require
+#endif
+
+FfxFloat16x4 SpdReduceQuadH(FfxFloat16x4 v)
+{
+#if defined(FFX_GLSL) && !defined(SPD_NO_WAVE_OPERATIONS)
+ FfxFloat16x4 v0 = v;
+ FfxFloat16x4 v1 = subgroupQuadSwapHorizontal(v);
+ FfxFloat16x4 v2 = subgroupQuadSwapVertical(v);
+ FfxFloat16x4 v3 = subgroupQuadSwapDiagonal(v);
+ return SpdReduce4H(v0, v1, v2, v3);
+#elif defined(FFX_HLSL) && !defined(SPD_NO_WAVE_OPERATIONS)
+ // requires SM6.0
+ FfxUInt32 quad = WaveGetLaneIndex() & (~0x3);
+ FfxFloat16x4 v0 = v;
+ FfxFloat16x4 v1 = WaveReadLaneAt(v, quad | 1);
+ FfxFloat16x4 v2 = WaveReadLaneAt(v, quad | 2);
+ FfxFloat16x4 v3 = WaveReadLaneAt(v, quad | 3);
+ return SpdReduce4H(v0, v1, v2, v3);
+/*
+ // if SM6.0 is not available, you can use the AMD shader intrinsics
+ // the AMD shader intrinsics are available in AMD GPU Services (AGS) library:
+ // https://gpuopen.com/amd-gpu-services-ags-library/
+ // works for DX11
+ FfxFloat16x4 v0 = v;
+ FfxFloat16x4 v1;
+ v1.x = AmdExtD3DShaderIntrinsics_SwizzleF(v.x, AmdExtD3DShaderIntrinsicsSwizzle_SwapX1);
+ v1.y = AmdExtD3DShaderIntrinsics_SwizzleF(v.y, AmdExtD3DShaderIntrinsicsSwizzle_SwapX1);
+ v1.z = AmdExtD3DShaderIntrinsics_SwizzleF(v.z, AmdExtD3DShaderIntrinsicsSwizzle_SwapX1);
+ v1.w = AmdExtD3DShaderIntrinsics_SwizzleF(v.w, AmdExtD3DShaderIntrinsicsSwizzle_SwapX1);
+ FfxFloat16x4 v2;
+ v2.x = AmdExtD3DShaderIntrinsics_SwizzleF(v.x, AmdExtD3DShaderIntrinsicsSwizzle_SwapX2);
+ v2.y = AmdExtD3DShaderIntrinsics_SwizzleF(v.y, AmdExtD3DShaderIntrinsicsSwizzle_SwapX2);
+ v2.z = AmdExtD3DShaderIntrinsics_SwizzleF(v.z, AmdExtD3DShaderIntrinsicsSwizzle_SwapX2);
+ v2.w = AmdExtD3DShaderIntrinsics_SwizzleF(v.w, AmdExtD3DShaderIntrinsicsSwizzle_SwapX2);
+ FfxFloat16x4 v3;
+ v3.x = AmdExtD3DShaderIntrinsics_SwizzleF(v.x, AmdExtD3DShaderIntrinsicsSwizzle_ReverseX4);
+ v3.y = AmdExtD3DShaderIntrinsics_SwizzleF(v.y, AmdExtD3DShaderIntrinsicsSwizzle_ReverseX4);
+ v3.z = AmdExtD3DShaderIntrinsics_SwizzleF(v.z, AmdExtD3DShaderIntrinsicsSwizzle_ReverseX4);
+ v3.w = AmdExtD3DShaderIntrinsics_SwizzleF(v.w, AmdExtD3DShaderIntrinsicsSwizzle_ReverseX4);
+ return SpdReduce4H(v0, v1, v2, v3);
+ */
+#endif
+ return FfxFloat16x4(0.0, 0.0, 0.0, 0.0);
+}
+
+FfxFloat16x4 SpdReduceIntermediateH(FfxUInt32x2 i0, FfxUInt32x2 i1, FfxUInt32x2 i2, FfxUInt32x2 i3)
+{
+ FfxFloat16x4 v0 = SpdLoadIntermediateH(i0.x, i0.y);
+ FfxFloat16x4 v1 = SpdLoadIntermediateH(i1.x, i1.y);
+ FfxFloat16x4 v2 = SpdLoadIntermediateH(i2.x, i2.y);
+ FfxFloat16x4 v3 = SpdLoadIntermediateH(i3.x, i3.y);
+ return SpdReduce4H(v0, v1, v2, v3);
+}
+
+FfxFloat16x4 SpdReduceLoad4H(FfxUInt32x2 i0, FfxUInt32x2 i1, FfxUInt32x2 i2, FfxUInt32x2 i3, FfxUInt32 slice)
+{
+ FfxFloat16x4 v0 = SpdLoadH(FfxInt32x2(i0), slice);
+ FfxFloat16x4 v1 = SpdLoadH(FfxInt32x2(i1), slice);
+ FfxFloat16x4 v2 = SpdLoadH(FfxInt32x2(i2), slice);
+ FfxFloat16x4 v3 = SpdLoadH(FfxInt32x2(i3), slice);
+ return SpdReduce4H(v0, v1, v2, v3);
+}
+
+FfxFloat16x4 SpdReduceLoad4H(FfxUInt32x2 base, FfxUInt32 slice)
+{
+ return SpdReduceLoad4H(FfxUInt32x2(base + FfxUInt32x2(0, 0)), FfxUInt32x2(base + FfxUInt32x2(0, 1)), FfxUInt32x2(base + FfxUInt32x2(1, 0)), FfxUInt32x2(base + FfxUInt32x2(1, 1)), slice);
+}
+
+FfxFloat16x4 SpdReduceLoadSourceImage4H(FfxUInt32x2 i0, FfxUInt32x2 i1, FfxUInt32x2 i2, FfxUInt32x2 i3, FfxUInt32 slice)
+{
+ FfxFloat16x4 v0 = SpdLoadSourceImageH(FfxInt32x2(i0), slice);
+ FfxFloat16x4 v1 = SpdLoadSourceImageH(FfxInt32x2(i1), slice);
+ FfxFloat16x4 v2 = SpdLoadSourceImageH(FfxInt32x2(i2), slice);
+ FfxFloat16x4 v3 = SpdLoadSourceImageH(FfxInt32x2(i3), slice);
+ return SpdReduce4H(v0, v1, v2, v3);
+}
+
+FfxFloat16x4 SpdReduceLoadSourceImageH(FfxUInt32x2 base, FfxUInt32 slice)
+{
+#ifdef SPD_LINEAR_SAMPLER
+ return SpdLoadSourceImageH(FfxInt32x2(base), slice);
+#else
+ return SpdReduceLoadSourceImage4H(FfxUInt32x2(base + FfxUInt32x2(0, 0)), FfxUInt32x2(base + FfxUInt32x2(0, 1)), FfxUInt32x2(base + FfxUInt32x2(1, 0)), FfxUInt32x2(base + FfxUInt32x2(1, 1)), slice);
+#endif
+}
+
+void SpdDownsampleMips_0_1_IntrinsicsH(FfxUInt32 x, FfxUInt32 y, FfxUInt32x2 workGroupID, FfxUInt32 localInvocationIndex, FfxUInt32 mips, FfxUInt32 slice)
+{
+ FfxFloat16x4 v[4];
+
+ FfxInt32x2 tex = FfxInt32x2(workGroupID.xy * 64) + FfxInt32x2(x * 2, y * 2);
+ FfxInt32x2 pix = FfxInt32x2(workGroupID.xy * 32) + FfxInt32x2(x, y);
+ v[0] = SpdReduceLoadSourceImageH(tex, slice);
+ SpdStoreH(pix, v[0], 0, slice);
+
+ tex = FfxInt32x2(workGroupID.xy * 64) + FfxInt32x2(x * 2 + 32, y * 2);
+ pix = FfxInt32x2(workGroupID.xy * 32) + FfxInt32x2(x + 16, y);
+ v[1] = SpdReduceLoadSourceImageH(tex, slice);
+ SpdStoreH(pix, v[1], 0, slice);
+
+ tex = FfxInt32x2(workGroupID.xy * 64) + FfxInt32x2(x * 2, y * 2 + 32);
+ pix = FfxInt32x2(workGroupID.xy * 32) + FfxInt32x2(x, y + 16);
+ v[2] = SpdReduceLoadSourceImageH(tex, slice);
+ SpdStoreH(pix, v[2], 0, slice);
+
+ tex = FfxInt32x2(workGroupID.xy * 64) + FfxInt32x2(x * 2 + 32, y * 2 + 32);
+ pix = FfxInt32x2(workGroupID.xy * 32) + FfxInt32x2(x + 16, y + 16);
+ v[3] = SpdReduceLoadSourceImageH(tex, slice);
+ SpdStoreH(pix, v[3], 0, slice);
+
+ if (mips <= 1)
+ return;
+
+ v[0] = SpdReduceQuadH(v[0]);
+ v[1] = SpdReduceQuadH(v[1]);
+ v[2] = SpdReduceQuadH(v[2]);
+ v[3] = SpdReduceQuadH(v[3]);
+
+ if ((localInvocationIndex % 4) == 0)
+ {
+ SpdStoreH(FfxInt32x2(workGroupID.xy * 16) + FfxInt32x2(x / 2, y / 2), v[0], 1, slice);
+ SpdStoreIntermediateH(x / 2, y / 2, v[0]);
+
+ SpdStoreH(FfxInt32x2(workGroupID.xy * 16) + FfxInt32x2(x / 2 + 8, y / 2), v[1], 1, slice);
+ SpdStoreIntermediateH(x / 2 + 8, y / 2, v[1]);
+
+ SpdStoreH(FfxInt32x2(workGroupID.xy * 16) + FfxInt32x2(x / 2, y / 2 + 8), v[2], 1, slice);
+ SpdStoreIntermediateH(x / 2, y / 2 + 8, v[2]);
+
+ SpdStoreH(FfxInt32x2(workGroupID.xy * 16) + FfxInt32x2(x / 2 + 8, y / 2 + 8), v[3], 1, slice);
+ SpdStoreIntermediateH(x / 2 + 8, y / 2 + 8, v[3]);
+ }
+}
+
+void SpdDownsampleMips_0_1_LDSH(FfxUInt32 x, FfxUInt32 y, FfxUInt32x2 workGroupID, FfxUInt32 localInvocationIndex, FfxUInt32 mips, FfxUInt32 slice)
+{
+ FfxFloat16x4 v[4];
+
+ FfxInt32x2 tex = FfxInt32x2(workGroupID.xy * 64) + FfxInt32x2(x * 2, y * 2);
+ FfxInt32x2 pix = FfxInt32x2(workGroupID.xy * 32) + FfxInt32x2(x, y);
+ v[0] = SpdReduceLoadSourceImageH(tex, slice);
+ SpdStoreH(pix, v[0], 0, slice);
+
+ tex = FfxInt32x2(workGroupID.xy * 64) + FfxInt32x2(x * 2 + 32, y * 2);
+ pix = FfxInt32x2(workGroupID.xy * 32) + FfxInt32x2(x + 16, y);
+ v[1] = SpdReduceLoadSourceImageH(tex, slice);
+ SpdStoreH(pix, v[1], 0, slice);
+
+ tex = FfxInt32x2(workGroupID.xy * 64) + FfxInt32x2(x * 2, y * 2 + 32);
+ pix = FfxInt32x2(workGroupID.xy * 32) + FfxInt32x2(x, y + 16);
+ v[2] = SpdReduceLoadSourceImageH(tex, slice);
+ SpdStoreH(pix, v[2], 0, slice);
+
+ tex = FfxInt32x2(workGroupID.xy * 64) + FfxInt32x2(x * 2 + 32, y * 2 + 32);
+ pix = FfxInt32x2(workGroupID.xy * 32) + FfxInt32x2(x + 16, y + 16);
+ v[3] = SpdReduceLoadSourceImageH(tex, slice);
+ SpdStoreH(pix, v[3], 0, slice);
+
+ if (mips <= 1)
+ return;
+
+ for (FfxInt32 i = 0; i < 4; i++)
+ {
+ SpdStoreIntermediateH(x, y, v[i]);
+ SpdWorkgroupShuffleBarrier();
+ if (localInvocationIndex < 64)
+ {
+ v[i] = SpdReduceIntermediateH(FfxUInt32x2(x * 2 + 0, y * 2 + 0), FfxUInt32x2(x * 2 + 1, y * 2 + 0), FfxUInt32x2(x * 2 + 0, y * 2 + 1), FfxUInt32x2(x * 2 + 1, y * 2 + 1));
+ SpdStoreH(FfxInt32x2(workGroupID.xy * 16) + FfxInt32x2(x + (i % 2) * 8, y + (i / 2) * 8), v[i], 1, slice);
+ }
+ SpdWorkgroupShuffleBarrier();
+ }
+
+ if (localInvocationIndex < 64)
+ {
+ SpdStoreIntermediateH(x + 0, y + 0, v[0]);
+ SpdStoreIntermediateH(x + 8, y + 0, v[1]);
+ SpdStoreIntermediateH(x + 0, y + 8, v[2]);
+ SpdStoreIntermediateH(x + 8, y + 8, v[3]);
+ }
+}
+
+void SpdDownsampleMips_0_1H(FfxUInt32 x, FfxUInt32 y, FfxUInt32x2 workGroupID, FfxUInt32 localInvocationIndex, FfxUInt32 mips, FfxUInt32 slice)
+{
+#ifdef SPD_NO_WAVE_OPERATIONS
+ SpdDownsampleMips_0_1_LDSH(x, y, workGroupID, localInvocationIndex, mips, slice);
+#else
+ SpdDownsampleMips_0_1_IntrinsicsH(x, y, workGroupID, localInvocationIndex, mips, slice);
+#endif
+}
+
+
+void SpdDownsampleMip_2H(FfxUInt32 x, FfxUInt32 y, FfxUInt32x2 workGroupID, FfxUInt32 localInvocationIndex, FfxUInt32 mip, FfxUInt32 slice)
+{
+#ifdef SPD_NO_WAVE_OPERATIONS
+ if (localInvocationIndex < 64)
+ {
+ FfxFloat16x4 v = SpdReduceIntermediateH(FfxUInt32x2(x * 2 + 0, y * 2 + 0), FfxUInt32x2(x * 2 + 1, y * 2 + 0), FfxUInt32x2(x * 2 + 0, y * 2 + 1), FfxUInt32x2(x * 2 + 1, y * 2 + 1));
+ SpdStoreH(FfxInt32x2(workGroupID.xy * 8) + FfxInt32x2(x, y), v, mip, slice);
+ // store to LDS, try to reduce bank conflicts
+ // x 0 x 0 x 0 x 0 x 0 x 0 x 0 x 0
+ // 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
+ // 0 x 0 x 0 x 0 x 0 x 0 x 0 x 0 x
+ // 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
+ // x 0 x 0 x 0 x 0 x 0 x 0 x 0 x 0
+ // ...
+ // x 0 x 0 x 0 x 0 x 0 x 0 x 0 x 0
+ SpdStoreIntermediateH(x * 2 + y % 2, y * 2, v);
+ }
+#else
+ FfxFloat16x4 v = SpdLoadIntermediateH(x, y);
+ v = SpdReduceQuadH(v);
+ // quad index 0 stores result
+ if (localInvocationIndex % 4 == 0)
+ {
+ SpdStoreH(FfxInt32x2(workGroupID.xy * 8) + FfxInt32x2(x / 2, y / 2), v, mip, slice);
+ SpdStoreIntermediateH(x + (y / 2) % 2, y, v);
+ }
+#endif
+}
+
+void SpdDownsampleMip_3H(FfxUInt32 x, FfxUInt32 y, FfxUInt32x2 workGroupID, FfxUInt32 localInvocationIndex, FfxUInt32 mip, FfxUInt32 slice)
+{
+#ifdef SPD_NO_WAVE_OPERATIONS
+ if (localInvocationIndex < 16)
+ {
+ // x 0 x 0
+ // 0 0 0 0
+ // 0 x 0 x
+ // 0 0 0 0
+ FfxFloat16x4 v =
+ SpdReduceIntermediateH(FfxUInt32x2(x * 4 + 0 + 0, y * 4 + 0), FfxUInt32x2(x * 4 + 2 + 0, y * 4 + 0), FfxUInt32x2(x * 4 + 0 + 1, y * 4 + 2), FfxUInt32x2(x * 4 + 2 + 1, y * 4 + 2));
+ SpdStoreH(FfxInt32x2(workGroupID.xy * 4) + FfxInt32x2(x, y), v, mip, slice);
+ // store to LDS
+ // x 0 0 0 x 0 0 0 x 0 0 0 x 0 0 0
+ // 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
+ // 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
+ // 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
+ // 0 x 0 0 0 x 0 0 0 x 0 0 0 x 0 0
+ // ...
+ // 0 0 x 0 0 0 x 0 0 0 x 0 0 0 x 0
+ // ...
+ // 0 0 0 x 0 0 0 x 0 0 0 x 0 0 0 x
+ // ...
+ SpdStoreIntermediateH(x * 4 + y, y * 4, v);
+ }
+#else
+ if (localInvocationIndex < 64)
+ {
+ FfxFloat16x4 v = SpdLoadIntermediateH(x * 2 + y % 2, y * 2);
+ v = SpdReduceQuadH(v);
+ // quad index 0 stores result
+ if (localInvocationIndex % 4 == 0)
+ {
+ SpdStoreH(FfxInt32x2(workGroupID.xy * 4) + FfxInt32x2(x / 2, y / 2), v, mip, slice);
+ SpdStoreIntermediateH(x * 2 + y / 2, y * 2, v);
+ }
+ }
+#endif
+}
+
+void SpdDownsampleMip_4H(FfxUInt32 x, FfxUInt32 y, FfxUInt32x2 workGroupID, FfxUInt32 localInvocationIndex, FfxUInt32 mip, FfxUInt32 slice)
+{
+#ifdef SPD_NO_WAVE_OPERATIONS
+ if (localInvocationIndex < 4)
+ {
+ // x 0 0 0 x 0 0 0
+ // ...
+ // 0 x 0 0 0 x 0 0
+ FfxFloat16x4 v = SpdReduceIntermediateH(FfxUInt32x2(x * 8 + 0 + 0 + y * 2, y * 8 + 0),
+ FfxUInt32x2(x * 8 + 4 + 0 + y * 2, y * 8 + 0),
+ FfxUInt32x2(x * 8 + 0 + 1 + y * 2, y * 8 + 4),
+ FfxUInt32x2(x * 8 + 4 + 1 + y * 2, y * 8 + 4));
+ SpdStoreH(FfxInt32x2(workGroupID.xy * 2) + FfxInt32x2(x, y), v, mip, slice);
+ // store to LDS
+ // x x x x 0 ...
+ // 0 ...
+ SpdStoreIntermediateH(x + y * 2, 0, v);
+ }
+#else
+ if (localInvocationIndex < 16)
+ {
+ FfxFloat16x4 v = SpdLoadIntermediateH(x * 4 + y, y * 4);
+ v = SpdReduceQuadH(v);
+ // quad index 0 stores result
+ if (localInvocationIndex % 4 == 0)
+ {
+ SpdStoreH(FfxInt32x2(workGroupID.xy * 2) + FfxInt32x2(x / 2, y / 2), v, mip, slice);
+ SpdStoreIntermediateH(x / 2 + y, 0, v);
+ }
+ }
+#endif
+}
+
+void SpdDownsampleMip_5H(FfxUInt32x2 workGroupID, FfxUInt32 localInvocationIndex, FfxUInt32 mip, FfxUInt32 slice)
+{
+#ifdef SPD_NO_WAVE_OPERATIONS
+ if (localInvocationIndex < 1)
+ {
+ // x x x x 0 ...
+ // 0 ...
+ FfxFloat16x4 v = SpdReduceIntermediateH(FfxUInt32x2(0, 0), FfxUInt32x2(1, 0), FfxUInt32x2(2, 0), FfxUInt32x2(3, 0));
+ SpdStoreH(FfxInt32x2(workGroupID.xy), v, mip, slice);
+ }
+#else
+ if (localInvocationIndex < 4)
+ {
+ FfxFloat16x4 v = SpdLoadIntermediateH(localInvocationIndex, 0);
+ v = SpdReduceQuadH(v);
+ // quad index 0 stores result
+ if (localInvocationIndex % 4 == 0)
+ {
+ SpdStoreH(FfxInt32x2(workGroupID.xy), v, mip, slice);
+ }
+ }
+#endif
+}
+
+void SpdDownsampleMips_6_7H(FfxUInt32 x, FfxUInt32 y, FfxUInt32 mips, FfxUInt32 slice)
+{
+ FfxInt32x2 tex = FfxInt32x2(x * 4 + 0, y * 4 + 0);
+ FfxInt32x2 pix = FfxInt32x2(x * 2 + 0, y * 2 + 0);
+ FfxFloat16x4 v0 = SpdReduceLoad4H(tex, slice);
+ SpdStoreH(pix, v0, 6, slice);
+
+ tex = FfxInt32x2(x * 4 + 2, y * 4 + 0);
+ pix = FfxInt32x2(x * 2 + 1, y * 2 + 0);
+ FfxFloat16x4 v1 = SpdReduceLoad4H(tex, slice);
+ SpdStoreH(pix, v1, 6, slice);
+
+ tex = FfxInt32x2(x * 4 + 0, y * 4 + 2);
+ pix = FfxInt32x2(x * 2 + 0, y * 2 + 1);
+ FfxFloat16x4 v2 = SpdReduceLoad4H(tex, slice);
+ SpdStoreH(pix, v2, 6, slice);
+
+ tex = FfxInt32x2(x * 4 + 2, y * 4 + 2);
+ pix = FfxInt32x2(x * 2 + 1, y * 2 + 1);
+ FfxFloat16x4 v3 = SpdReduceLoad4H(tex, slice);
+ SpdStoreH(pix, v3, 6, slice);
+
+ if (mips < 8)
+ return;
+ // no barrier needed, working on values only from the same thread
+
+ FfxFloat16x4 v = SpdReduce4H(v0, v1, v2, v3);
+ SpdStoreH(FfxInt32x2(x, y), v, 7, slice);
+ SpdStoreIntermediateH(x, y, v);
+}
+
+void SpdDownsampleNextFourH(FfxUInt32 x, FfxUInt32 y, FfxUInt32x2 workGroupID, FfxUInt32 localInvocationIndex, FfxUInt32 baseMip, FfxUInt32 mips, FfxUInt32 slice)
+{
+ if (mips <= baseMip)
+ return;
+ SpdWorkgroupShuffleBarrier();
+ SpdDownsampleMip_2H(x, y, workGroupID, localInvocationIndex, baseMip, slice);
+
+ if (mips <= baseMip + 1)
+ return;
+ SpdWorkgroupShuffleBarrier();
+ SpdDownsampleMip_3H(x, y, workGroupID, localInvocationIndex, baseMip + 1, slice);
+
+ if (mips <= baseMip + 2)
+ return;
+ SpdWorkgroupShuffleBarrier();
+ SpdDownsampleMip_4H(x, y, workGroupID, localInvocationIndex, baseMip + 2, slice);
+
+ if (mips <= baseMip + 3)
+ return;
+ SpdWorkgroupShuffleBarrier();
+ SpdDownsampleMip_5H(workGroupID, localInvocationIndex, baseMip + 3, slice);
+}
+
+void SpdDownsampleH(FfxUInt32x2 workGroupID, FfxUInt32 localInvocationIndex, FfxUInt32 mips, FfxUInt32 numWorkGroups, FfxUInt32 slice)
+{
+ FfxUInt32x2 sub_xy = ffxRemapForWaveReduction(localInvocationIndex % 64);
+ FfxUInt32 x = sub_xy.x + 8 * ((localInvocationIndex >> 6) % 2);
+ FfxUInt32 y = sub_xy.y + 8 * ((localInvocationIndex >> 7));
+
+ SpdDownsampleMips_0_1H(x, y, workGroupID, localInvocationIndex, mips, slice);
+
+ SpdDownsampleNextFourH(x, y, workGroupID, localInvocationIndex, 2, mips, slice);
+
+ if (mips < 7)
+ return;
+
+ if (SpdExitWorkgroup(numWorkGroups, localInvocationIndex, slice))
+ return;
+
+ SpdResetAtomicCounter(slice);
+
+ // After mip 6 there is only a single workgroup left that downsamples the remaining up to 64x64 texels.
+ SpdDownsampleMips_6_7H(x, y, mips, slice);
+
+ SpdDownsampleNextFourH(x, y, FfxUInt32x2(0, 0), localInvocationIndex, 8, mips, slice);
+}
+
+void SpdDownsampleH(FfxUInt32x2 workGroupID, FfxUInt32 localInvocationIndex, FfxUInt32 mips, FfxUInt32 numWorkGroups, FfxUInt32 slice, FfxUInt32x2 workGroupOffset)
+{
+ SpdDownsampleH(workGroupID + workGroupOffset, localInvocationIndex, mips, numWorkGroups, slice);
+}
+
+#endif // #if FFX_HALF
+#endif // #ifdef FFX_GPU