diff options
Diffstat (limited to 'thirdparty/mbedtls/library/alignment.h')
-rw-r--r-- | thirdparty/mbedtls/library/alignment.h | 684 |
1 files changed, 684 insertions, 0 deletions
diff --git a/thirdparty/mbedtls/library/alignment.h b/thirdparty/mbedtls/library/alignment.h new file mode 100644 index 0000000000..a17001dd91 --- /dev/null +++ b/thirdparty/mbedtls/library/alignment.h @@ -0,0 +1,684 @@ +/** + * \file alignment.h + * + * \brief Utility code for dealing with unaligned memory accesses + */ +/* + * Copyright The Mbed TLS Contributors + * SPDX-License-Identifier: Apache-2.0 OR GPL-2.0-or-later + */ + +#ifndef MBEDTLS_LIBRARY_ALIGNMENT_H +#define MBEDTLS_LIBRARY_ALIGNMENT_H + +#include <stdint.h> +#include <string.h> +#include <stdlib.h> + +/* + * Define MBEDTLS_EFFICIENT_UNALIGNED_ACCESS for architectures where unaligned memory + * accesses are known to be efficient. + * + * All functions defined here will behave correctly regardless, but might be less + * efficient when this is not defined. + */ +#if defined(__ARM_FEATURE_UNALIGNED) \ + || defined(MBEDTLS_ARCH_IS_X86) || defined(MBEDTLS_ARCH_IS_X64) \ + || defined(MBEDTLS_PLATFORM_IS_WINDOWS_ON_ARM64) +/* + * __ARM_FEATURE_UNALIGNED is defined where appropriate by armcc, gcc 7, clang 9 + * (and later versions) for Arm v7 and later; all x86 platforms should have + * efficient unaligned access. + * + * https://learn.microsoft.com/en-us/cpp/build/arm64-windows-abi-conventions?view=msvc-170#alignment + * specifies that on Windows-on-Arm64, unaligned access is safe (except for uncached + * device memory). + */ +#define MBEDTLS_EFFICIENT_UNALIGNED_ACCESS +#endif + +#if defined(__IAR_SYSTEMS_ICC__) && \ + (defined(MBEDTLS_ARCH_IS_ARM64) || defined(MBEDTLS_ARCH_IS_ARM32) \ + || defined(__ICCRX__) || defined(__ICCRL78__) || defined(__ICCRISCV__)) +#pragma language=save +#pragma language=extended +#define MBEDTLS_POP_IAR_LANGUAGE_PRAGMA +/* IAR recommend this technique for accessing unaligned data in + * https://www.iar.com/knowledge/support/technical-notes/compiler/accessing-unaligned-data + * This results in a single load / store instruction (if unaligned access is supported). + * According to that document, this is only supported on certain architectures. + */ + #define UINT_UNALIGNED +typedef uint16_t __packed mbedtls_uint16_unaligned_t; +typedef uint32_t __packed mbedtls_uint32_unaligned_t; +typedef uint64_t __packed mbedtls_uint64_unaligned_t; +#elif defined(MBEDTLS_COMPILER_IS_GCC) && (MBEDTLS_GCC_VERSION >= 40504) && \ + ((MBEDTLS_GCC_VERSION < 60300) || (!defined(MBEDTLS_EFFICIENT_UNALIGNED_ACCESS))) +/* + * gcc may generate a branch to memcpy for calls like `memcpy(dest, src, 4)` rather than + * generating some LDR or LDRB instructions (similar for stores). + * + * This is architecture dependent: x86-64 seems fine even with old gcc; 32-bit Arm + * is affected. To keep it simple, we enable for all architectures. + * + * For versions of gcc < 5.4.0 this issue always happens. + * For gcc < 6.3.0, this issue happens at -O0 + * For all versions, this issue happens iff unaligned access is not supported. + * + * For gcc 4.x, this implementation will generate byte-by-byte loads even if unaligned access is + * supported, which is correct but not optimal. + * + * For performance (and code size, in some cases), we want to avoid the branch and just generate + * some inline load/store instructions since the access is small and constant-size. + * + * The manual states: + * "The packed attribute specifies that a variable or structure field should have the smallest + * possible alignment—one byte for a variable" + * https://gcc.gnu.org/onlinedocs/gcc-4.5.4/gcc/Variable-Attributes.html + * + * Previous implementations used __attribute__((__aligned__(1)), but had issues with a gcc bug: + * https://gcc.gnu.org/bugzilla/show_bug.cgi?id=94662 + * + * Tested with several versions of GCC from 4.5.0 up to 13.2.0 + * We don't enable for older than 4.5.0 as this has not been tested. + */ + #define UINT_UNALIGNED_STRUCT +typedef struct { + uint16_t x; +} __attribute__((packed)) mbedtls_uint16_unaligned_t; +typedef struct { + uint32_t x; +} __attribute__((packed)) mbedtls_uint32_unaligned_t; +typedef struct { + uint64_t x; +} __attribute__((packed)) mbedtls_uint64_unaligned_t; + #endif + +/* + * We try to force mbedtls_(get|put)_unaligned_uintXX to be always inline, because this results + * in code that is both smaller and faster. IAR and gcc both benefit from this when optimising + * for size. + */ + +/** + * Read the unsigned 16 bits integer from the given address, which need not + * be aligned. + * + * \param p pointer to 2 bytes of data + * \return Data at the given address + */ +#if defined(__IAR_SYSTEMS_ICC__) +#pragma inline = forced +#elif defined(__GNUC__) +__attribute__((always_inline)) +#endif +static inline uint16_t mbedtls_get_unaligned_uint16(const void *p) +{ + uint16_t r; +#if defined(UINT_UNALIGNED) + mbedtls_uint16_unaligned_t *p16 = (mbedtls_uint16_unaligned_t *) p; + r = *p16; +#elif defined(UINT_UNALIGNED_STRUCT) + mbedtls_uint16_unaligned_t *p16 = (mbedtls_uint16_unaligned_t *) p; + r = p16->x; +#else + memcpy(&r, p, sizeof(r)); +#endif + return r; +} + +/** + * Write the unsigned 16 bits integer to the given address, which need not + * be aligned. + * + * \param p pointer to 2 bytes of data + * \param x data to write + */ +#if defined(__IAR_SYSTEMS_ICC__) +#pragma inline = forced +#elif defined(__GNUC__) +__attribute__((always_inline)) +#endif +static inline void mbedtls_put_unaligned_uint16(void *p, uint16_t x) +{ +#if defined(UINT_UNALIGNED) + mbedtls_uint16_unaligned_t *p16 = (mbedtls_uint16_unaligned_t *) p; + *p16 = x; +#elif defined(UINT_UNALIGNED_STRUCT) + mbedtls_uint16_unaligned_t *p16 = (mbedtls_uint16_unaligned_t *) p; + p16->x = x; +#else + memcpy(p, &x, sizeof(x)); +#endif +} + +/** + * Read the unsigned 32 bits integer from the given address, which need not + * be aligned. + * + * \param p pointer to 4 bytes of data + * \return Data at the given address + */ +#if defined(__IAR_SYSTEMS_ICC__) +#pragma inline = forced +#elif defined(__GNUC__) +__attribute__((always_inline)) +#endif +static inline uint32_t mbedtls_get_unaligned_uint32(const void *p) +{ + uint32_t r; +#if defined(UINT_UNALIGNED) + mbedtls_uint32_unaligned_t *p32 = (mbedtls_uint32_unaligned_t *) p; + r = *p32; +#elif defined(UINT_UNALIGNED_STRUCT) + mbedtls_uint32_unaligned_t *p32 = (mbedtls_uint32_unaligned_t *) p; + r = p32->x; +#else + memcpy(&r, p, sizeof(r)); +#endif + return r; +} + +/** + * Write the unsigned 32 bits integer to the given address, which need not + * be aligned. + * + * \param p pointer to 4 bytes of data + * \param x data to write + */ +#if defined(__IAR_SYSTEMS_ICC__) +#pragma inline = forced +#elif defined(__GNUC__) +__attribute__((always_inline)) +#endif +static inline void mbedtls_put_unaligned_uint32(void *p, uint32_t x) +{ +#if defined(UINT_UNALIGNED) + mbedtls_uint32_unaligned_t *p32 = (mbedtls_uint32_unaligned_t *) p; + *p32 = x; +#elif defined(UINT_UNALIGNED_STRUCT) + mbedtls_uint32_unaligned_t *p32 = (mbedtls_uint32_unaligned_t *) p; + p32->x = x; +#else + memcpy(p, &x, sizeof(x)); +#endif +} + +/** + * Read the unsigned 64 bits integer from the given address, which need not + * be aligned. + * + * \param p pointer to 8 bytes of data + * \return Data at the given address + */ +#if defined(__IAR_SYSTEMS_ICC__) +#pragma inline = forced +#elif defined(__GNUC__) +__attribute__((always_inline)) +#endif +static inline uint64_t mbedtls_get_unaligned_uint64(const void *p) +{ + uint64_t r; +#if defined(UINT_UNALIGNED) + mbedtls_uint64_unaligned_t *p64 = (mbedtls_uint64_unaligned_t *) p; + r = *p64; +#elif defined(UINT_UNALIGNED_STRUCT) + mbedtls_uint64_unaligned_t *p64 = (mbedtls_uint64_unaligned_t *) p; + r = p64->x; +#else + memcpy(&r, p, sizeof(r)); +#endif + return r; +} + +/** + * Write the unsigned 64 bits integer to the given address, which need not + * be aligned. + * + * \param p pointer to 8 bytes of data + * \param x data to write + */ +#if defined(__IAR_SYSTEMS_ICC__) +#pragma inline = forced +#elif defined(__GNUC__) +__attribute__((always_inline)) +#endif +static inline void mbedtls_put_unaligned_uint64(void *p, uint64_t x) +{ +#if defined(UINT_UNALIGNED) + mbedtls_uint64_unaligned_t *p64 = (mbedtls_uint64_unaligned_t *) p; + *p64 = x; +#elif defined(UINT_UNALIGNED_STRUCT) + mbedtls_uint64_unaligned_t *p64 = (mbedtls_uint64_unaligned_t *) p; + p64->x = x; +#else + memcpy(p, &x, sizeof(x)); +#endif +} + +#if defined(MBEDTLS_POP_IAR_LANGUAGE_PRAGMA) +#pragma language=restore +#endif + +/** Byte Reading Macros + * + * Given a multi-byte integer \p x, MBEDTLS_BYTE_n retrieves the n-th + * byte from x, where byte 0 is the least significant byte. + */ +#define MBEDTLS_BYTE_0(x) ((uint8_t) ((x) & 0xff)) +#define MBEDTLS_BYTE_1(x) ((uint8_t) (((x) >> 8) & 0xff)) +#define MBEDTLS_BYTE_2(x) ((uint8_t) (((x) >> 16) & 0xff)) +#define MBEDTLS_BYTE_3(x) ((uint8_t) (((x) >> 24) & 0xff)) +#define MBEDTLS_BYTE_4(x) ((uint8_t) (((x) >> 32) & 0xff)) +#define MBEDTLS_BYTE_5(x) ((uint8_t) (((x) >> 40) & 0xff)) +#define MBEDTLS_BYTE_6(x) ((uint8_t) (((x) >> 48) & 0xff)) +#define MBEDTLS_BYTE_7(x) ((uint8_t) (((x) >> 56) & 0xff)) + +/* + * Detect GCC built-in byteswap routines + */ +#if defined(__GNUC__) && defined(__GNUC_PREREQ) +#if __GNUC_PREREQ(4, 8) +#define MBEDTLS_BSWAP16 __builtin_bswap16 +#endif /* __GNUC_PREREQ(4,8) */ +#if __GNUC_PREREQ(4, 3) +#define MBEDTLS_BSWAP32 __builtin_bswap32 +#define MBEDTLS_BSWAP64 __builtin_bswap64 +#endif /* __GNUC_PREREQ(4,3) */ +#endif /* defined(__GNUC__) && defined(__GNUC_PREREQ) */ + +/* + * Detect Clang built-in byteswap routines + */ +#if defined(__clang__) && defined(__has_builtin) +#if __has_builtin(__builtin_bswap16) && !defined(MBEDTLS_BSWAP16) +#define MBEDTLS_BSWAP16 __builtin_bswap16 +#endif /* __has_builtin(__builtin_bswap16) */ +#if __has_builtin(__builtin_bswap32) && !defined(MBEDTLS_BSWAP32) +#define MBEDTLS_BSWAP32 __builtin_bswap32 +#endif /* __has_builtin(__builtin_bswap32) */ +#if __has_builtin(__builtin_bswap64) && !defined(MBEDTLS_BSWAP64) +#define MBEDTLS_BSWAP64 __builtin_bswap64 +#endif /* __has_builtin(__builtin_bswap64) */ +#endif /* defined(__clang__) && defined(__has_builtin) */ + +/* + * Detect MSVC built-in byteswap routines + */ +#if defined(_MSC_VER) +#if !defined(MBEDTLS_BSWAP16) +#define MBEDTLS_BSWAP16 _byteswap_ushort +#endif +#if !defined(MBEDTLS_BSWAP32) +#define MBEDTLS_BSWAP32 _byteswap_ulong +#endif +#if !defined(MBEDTLS_BSWAP64) +#define MBEDTLS_BSWAP64 _byteswap_uint64 +#endif +#endif /* defined(_MSC_VER) */ + +/* Detect armcc built-in byteswap routine */ +#if defined(__ARMCC_VERSION) && (__ARMCC_VERSION >= 410000) && !defined(MBEDTLS_BSWAP32) +#if defined(__ARM_ACLE) /* ARM Compiler 6 - earlier versions don't need a header */ +#include <arm_acle.h> +#endif +#define MBEDTLS_BSWAP32 __rev +#endif + +/* Detect IAR built-in byteswap routine */ +#if defined(__IAR_SYSTEMS_ICC__) +#if defined(__ARM_ACLE) +#include <arm_acle.h> +#define MBEDTLS_BSWAP16(x) ((uint16_t) __rev16((uint32_t) (x))) +#define MBEDTLS_BSWAP32 __rev +#define MBEDTLS_BSWAP64 __revll +#endif +#endif + +/* + * Where compiler built-ins are not present, fall back to C code that the + * compiler may be able to detect and transform into the relevant bswap or + * similar instruction. + */ +#if !defined(MBEDTLS_BSWAP16) +static inline uint16_t mbedtls_bswap16(uint16_t x) +{ + return + (x & 0x00ff) << 8 | + (x & 0xff00) >> 8; +} +#define MBEDTLS_BSWAP16 mbedtls_bswap16 +#endif /* !defined(MBEDTLS_BSWAP16) */ + +#if !defined(MBEDTLS_BSWAP32) +static inline uint32_t mbedtls_bswap32(uint32_t x) +{ + return + (x & 0x000000ff) << 24 | + (x & 0x0000ff00) << 8 | + (x & 0x00ff0000) >> 8 | + (x & 0xff000000) >> 24; +} +#define MBEDTLS_BSWAP32 mbedtls_bswap32 +#endif /* !defined(MBEDTLS_BSWAP32) */ + +#if !defined(MBEDTLS_BSWAP64) +static inline uint64_t mbedtls_bswap64(uint64_t x) +{ + return + (x & 0x00000000000000ffULL) << 56 | + (x & 0x000000000000ff00ULL) << 40 | + (x & 0x0000000000ff0000ULL) << 24 | + (x & 0x00000000ff000000ULL) << 8 | + (x & 0x000000ff00000000ULL) >> 8 | + (x & 0x0000ff0000000000ULL) >> 24 | + (x & 0x00ff000000000000ULL) >> 40 | + (x & 0xff00000000000000ULL) >> 56; +} +#define MBEDTLS_BSWAP64 mbedtls_bswap64 +#endif /* !defined(MBEDTLS_BSWAP64) */ + +#if !defined(__BYTE_ORDER__) + +#if defined(__LITTLE_ENDIAN__) +/* IAR defines __xxx_ENDIAN__, but not __BYTE_ORDER__ */ +#define MBEDTLS_IS_BIG_ENDIAN 0 +#elif defined(__BIG_ENDIAN__) +#define MBEDTLS_IS_BIG_ENDIAN 1 +#else +static const uint16_t mbedtls_byte_order_detector = { 0x100 }; +#define MBEDTLS_IS_BIG_ENDIAN (*((unsigned char *) (&mbedtls_byte_order_detector)) == 0x01) +#endif + +#else + +#if (__BYTE_ORDER__) == (__ORDER_BIG_ENDIAN__) +#define MBEDTLS_IS_BIG_ENDIAN 1 +#else +#define MBEDTLS_IS_BIG_ENDIAN 0 +#endif + +#endif /* !defined(__BYTE_ORDER__) */ + +/** + * Get the unsigned 32 bits integer corresponding to four bytes in + * big-endian order (MSB first). + * + * \param data Base address of the memory to get the four bytes from. + * \param offset Offset from \p data of the first and most significant + * byte of the four bytes to build the 32 bits unsigned + * integer from. + */ +#define MBEDTLS_GET_UINT32_BE(data, offset) \ + ((MBEDTLS_IS_BIG_ENDIAN) \ + ? mbedtls_get_unaligned_uint32((data) + (offset)) \ + : MBEDTLS_BSWAP32(mbedtls_get_unaligned_uint32((data) + (offset))) \ + ) + +/** + * Put in memory a 32 bits unsigned integer in big-endian order. + * + * \param n 32 bits unsigned integer to put in memory. + * \param data Base address of the memory where to put the 32 + * bits unsigned integer in. + * \param offset Offset from \p data where to put the most significant + * byte of the 32 bits unsigned integer \p n. + */ +#define MBEDTLS_PUT_UINT32_BE(n, data, offset) \ + { \ + if (MBEDTLS_IS_BIG_ENDIAN) \ + { \ + mbedtls_put_unaligned_uint32((data) + (offset), (uint32_t) (n)); \ + } \ + else \ + { \ + mbedtls_put_unaligned_uint32((data) + (offset), MBEDTLS_BSWAP32((uint32_t) (n))); \ + } \ + } + +/** + * Get the unsigned 32 bits integer corresponding to four bytes in + * little-endian order (LSB first). + * + * \param data Base address of the memory to get the four bytes from. + * \param offset Offset from \p data of the first and least significant + * byte of the four bytes to build the 32 bits unsigned + * integer from. + */ +#define MBEDTLS_GET_UINT32_LE(data, offset) \ + ((MBEDTLS_IS_BIG_ENDIAN) \ + ? MBEDTLS_BSWAP32(mbedtls_get_unaligned_uint32((data) + (offset))) \ + : mbedtls_get_unaligned_uint32((data) + (offset)) \ + ) + + +/** + * Put in memory a 32 bits unsigned integer in little-endian order. + * + * \param n 32 bits unsigned integer to put in memory. + * \param data Base address of the memory where to put the 32 + * bits unsigned integer in. + * \param offset Offset from \p data where to put the least significant + * byte of the 32 bits unsigned integer \p n. + */ +#define MBEDTLS_PUT_UINT32_LE(n, data, offset) \ + { \ + if (MBEDTLS_IS_BIG_ENDIAN) \ + { \ + mbedtls_put_unaligned_uint32((data) + (offset), MBEDTLS_BSWAP32((uint32_t) (n))); \ + } \ + else \ + { \ + mbedtls_put_unaligned_uint32((data) + (offset), ((uint32_t) (n))); \ + } \ + } + +/** + * Get the unsigned 16 bits integer corresponding to two bytes in + * little-endian order (LSB first). + * + * \param data Base address of the memory to get the two bytes from. + * \param offset Offset from \p data of the first and least significant + * byte of the two bytes to build the 16 bits unsigned + * integer from. + */ +#define MBEDTLS_GET_UINT16_LE(data, offset) \ + ((MBEDTLS_IS_BIG_ENDIAN) \ + ? MBEDTLS_BSWAP16(mbedtls_get_unaligned_uint16((data) + (offset))) \ + : mbedtls_get_unaligned_uint16((data) + (offset)) \ + ) + +/** + * Put in memory a 16 bits unsigned integer in little-endian order. + * + * \param n 16 bits unsigned integer to put in memory. + * \param data Base address of the memory where to put the 16 + * bits unsigned integer in. + * \param offset Offset from \p data where to put the least significant + * byte of the 16 bits unsigned integer \p n. + */ +#define MBEDTLS_PUT_UINT16_LE(n, data, offset) \ + { \ + if (MBEDTLS_IS_BIG_ENDIAN) \ + { \ + mbedtls_put_unaligned_uint16((data) + (offset), MBEDTLS_BSWAP16((uint16_t) (n))); \ + } \ + else \ + { \ + mbedtls_put_unaligned_uint16((data) + (offset), (uint16_t) (n)); \ + } \ + } + +/** + * Get the unsigned 16 bits integer corresponding to two bytes in + * big-endian order (MSB first). + * + * \param data Base address of the memory to get the two bytes from. + * \param offset Offset from \p data of the first and most significant + * byte of the two bytes to build the 16 bits unsigned + * integer from. + */ +#define MBEDTLS_GET_UINT16_BE(data, offset) \ + ((MBEDTLS_IS_BIG_ENDIAN) \ + ? mbedtls_get_unaligned_uint16((data) + (offset)) \ + : MBEDTLS_BSWAP16(mbedtls_get_unaligned_uint16((data) + (offset))) \ + ) + +/** + * Put in memory a 16 bits unsigned integer in big-endian order. + * + * \param n 16 bits unsigned integer to put in memory. + * \param data Base address of the memory where to put the 16 + * bits unsigned integer in. + * \param offset Offset from \p data where to put the most significant + * byte of the 16 bits unsigned integer \p n. + */ +#define MBEDTLS_PUT_UINT16_BE(n, data, offset) \ + { \ + if (MBEDTLS_IS_BIG_ENDIAN) \ + { \ + mbedtls_put_unaligned_uint16((data) + (offset), (uint16_t) (n)); \ + } \ + else \ + { \ + mbedtls_put_unaligned_uint16((data) + (offset), MBEDTLS_BSWAP16((uint16_t) (n))); \ + } \ + } + +/** + * Get the unsigned 24 bits integer corresponding to three bytes in + * big-endian order (MSB first). + * + * \param data Base address of the memory to get the three bytes from. + * \param offset Offset from \p data of the first and most significant + * byte of the three bytes to build the 24 bits unsigned + * integer from. + */ +#define MBEDTLS_GET_UINT24_BE(data, offset) \ + ( \ + ((uint32_t) (data)[(offset)] << 16) \ + | ((uint32_t) (data)[(offset) + 1] << 8) \ + | ((uint32_t) (data)[(offset) + 2]) \ + ) + +/** + * Put in memory a 24 bits unsigned integer in big-endian order. + * + * \param n 24 bits unsigned integer to put in memory. + * \param data Base address of the memory where to put the 24 + * bits unsigned integer in. + * \param offset Offset from \p data where to put the most significant + * byte of the 24 bits unsigned integer \p n. + */ +#define MBEDTLS_PUT_UINT24_BE(n, data, offset) \ + { \ + (data)[(offset)] = MBEDTLS_BYTE_2(n); \ + (data)[(offset) + 1] = MBEDTLS_BYTE_1(n); \ + (data)[(offset) + 2] = MBEDTLS_BYTE_0(n); \ + } + +/** + * Get the unsigned 24 bits integer corresponding to three bytes in + * little-endian order (LSB first). + * + * \param data Base address of the memory to get the three bytes from. + * \param offset Offset from \p data of the first and least significant + * byte of the three bytes to build the 24 bits unsigned + * integer from. + */ +#define MBEDTLS_GET_UINT24_LE(data, offset) \ + ( \ + ((uint32_t) (data)[(offset)]) \ + | ((uint32_t) (data)[(offset) + 1] << 8) \ + | ((uint32_t) (data)[(offset) + 2] << 16) \ + ) + +/** + * Put in memory a 24 bits unsigned integer in little-endian order. + * + * \param n 24 bits unsigned integer to put in memory. + * \param data Base address of the memory where to put the 24 + * bits unsigned integer in. + * \param offset Offset from \p data where to put the least significant + * byte of the 24 bits unsigned integer \p n. + */ +#define MBEDTLS_PUT_UINT24_LE(n, data, offset) \ + { \ + (data)[(offset)] = MBEDTLS_BYTE_0(n); \ + (data)[(offset) + 1] = MBEDTLS_BYTE_1(n); \ + (data)[(offset) + 2] = MBEDTLS_BYTE_2(n); \ + } + +/** + * Get the unsigned 64 bits integer corresponding to eight bytes in + * big-endian order (MSB first). + * + * \param data Base address of the memory to get the eight bytes from. + * \param offset Offset from \p data of the first and most significant + * byte of the eight bytes to build the 64 bits unsigned + * integer from. + */ +#define MBEDTLS_GET_UINT64_BE(data, offset) \ + ((MBEDTLS_IS_BIG_ENDIAN) \ + ? mbedtls_get_unaligned_uint64((data) + (offset)) \ + : MBEDTLS_BSWAP64(mbedtls_get_unaligned_uint64((data) + (offset))) \ + ) + +/** + * Put in memory a 64 bits unsigned integer in big-endian order. + * + * \param n 64 bits unsigned integer to put in memory. + * \param data Base address of the memory where to put the 64 + * bits unsigned integer in. + * \param offset Offset from \p data where to put the most significant + * byte of the 64 bits unsigned integer \p n. + */ +#define MBEDTLS_PUT_UINT64_BE(n, data, offset) \ + { \ + if (MBEDTLS_IS_BIG_ENDIAN) \ + { \ + mbedtls_put_unaligned_uint64((data) + (offset), (uint64_t) (n)); \ + } \ + else \ + { \ + mbedtls_put_unaligned_uint64((data) + (offset), MBEDTLS_BSWAP64((uint64_t) (n))); \ + } \ + } + +/** + * Get the unsigned 64 bits integer corresponding to eight bytes in + * little-endian order (LSB first). + * + * \param data Base address of the memory to get the eight bytes from. + * \param offset Offset from \p data of the first and least significant + * byte of the eight bytes to build the 64 bits unsigned + * integer from. + */ +#define MBEDTLS_GET_UINT64_LE(data, offset) \ + ((MBEDTLS_IS_BIG_ENDIAN) \ + ? MBEDTLS_BSWAP64(mbedtls_get_unaligned_uint64((data) + (offset))) \ + : mbedtls_get_unaligned_uint64((data) + (offset)) \ + ) + +/** + * Put in memory a 64 bits unsigned integer in little-endian order. + * + * \param n 64 bits unsigned integer to put in memory. + * \param data Base address of the memory where to put the 64 + * bits unsigned integer in. + * \param offset Offset from \p data where to put the least significant + * byte of the 64 bits unsigned integer \p n. + */ +#define MBEDTLS_PUT_UINT64_LE(n, data, offset) \ + { \ + if (MBEDTLS_IS_BIG_ENDIAN) \ + { \ + mbedtls_put_unaligned_uint64((data) + (offset), MBEDTLS_BSWAP64((uint64_t) (n))); \ + } \ + else \ + { \ + mbedtls_put_unaligned_uint64((data) + (offset), (uint64_t) (n)); \ + } \ + } + +#endif /* MBEDTLS_LIBRARY_ALIGNMENT_H */ |