diff options
Diffstat (limited to 'thirdparty/mbedtls/library/bignum_mod_raw.h')
-rw-r--r-- | thirdparty/mbedtls/library/bignum_mod_raw.h | 416 |
1 files changed, 416 insertions, 0 deletions
diff --git a/thirdparty/mbedtls/library/bignum_mod_raw.h b/thirdparty/mbedtls/library/bignum_mod_raw.h new file mode 100644 index 0000000000..7bb4ca3cf5 --- /dev/null +++ b/thirdparty/mbedtls/library/bignum_mod_raw.h @@ -0,0 +1,416 @@ +/** + * Low-level modular bignum functions + * + * This interface should only be used by the higher-level modular bignum + * module (bignum_mod.c) and the ECP module (ecp.c, ecp_curves.c). All other + * modules should use the high-level modular bignum interface (bignum_mod.h) + * or the legacy bignum interface (bignum.h). + * + * This is a low-level interface to operations on integers modulo which + * has no protection against passing invalid arguments such as arrays of + * the wrong size. The functions in bignum_mod.h provide a higher-level + * interface that includes protections against accidental misuse, at the + * expense of code size and sometimes more cumbersome memory management. + * + * The functions in this module obey the following conventions unless + * explicitly indicated otherwise: + * - **Modulus parameters**: the modulus is passed as a pointer to a structure + * of type #mbedtls_mpi_mod_modulus. The structure must be set up with an + * array of limbs storing the bignum value of the modulus. The modulus must + * be odd and is assumed to have no leading zeroes. The modulus is usually + * named \c N and is usually input-only. + * - **Bignum parameters**: Bignums are passed as pointers to an array of + * limbs. A limb has the type #mbedtls_mpi_uint. Unless otherwise specified: + * - Bignum parameters called \c A, \c B, ... are inputs, and are not + * modified by the function. + * - Bignum parameters called \c X, \c Y are outputs or input-output. + * The initial content of output-only parameters is ignored. + * - \c T is a temporary storage area. The initial content of such a + * parameter is ignored and the final content is unspecified. + * - **Bignum sizes**: bignum sizes are usually expressed by the \c limbs + * member of the modulus argument. All bignum parameters must have the same + * number of limbs as the modulus. All bignum sizes must be at least 1 and + * must be significantly less than #SIZE_MAX. The behavior if a size is 0 is + * undefined. + * - **Bignum representation**: the representation of inputs and outputs is + * specified by the \c int_rep field of the modulus for arithmetic + * functions. Utility functions may allow for different representation. + * - **Parameter ordering**: for bignum parameters, outputs come before inputs. + * The modulus is passed after other bignum input parameters. Temporaries + * come last. + * - **Aliasing**: in general, output bignums may be aliased to one or more + * inputs. Modulus values may not be aliased to any other parameter. Outputs + * may not be aliased to one another. Temporaries may not be aliased to any + * other parameter. + * - **Overlap**: apart from aliasing of limb array pointers (where two + * arguments are equal pointers), overlap is not supported and may result + * in undefined behavior. + * - **Error handling**: This is a low-level module. Functions generally do not + * try to protect against invalid arguments such as nonsensical sizes or + * null pointers. Note that passing bignums with a different size than the + * modulus may lead to buffer overflows. Some functions which allocate + * memory or handle reading/writing of bignums will return an error if + * memory allocation fails or if buffer sizes are invalid. + * - **Modular representatives**: all functions expect inputs to be in the + * range [0, \c N - 1] and guarantee outputs in the range [0, \c N - 1]. If + * an input is out of range, outputs are fully unspecified, though bignum + * values out of range should not cause buffer overflows (beware that this is + * not extensively tested). + */ + +/* + * Copyright The Mbed TLS Contributors + * SPDX-License-Identifier: Apache-2.0 OR GPL-2.0-or-later + */ + +#ifndef MBEDTLS_BIGNUM_MOD_RAW_H +#define MBEDTLS_BIGNUM_MOD_RAW_H + +#include "common.h" + +#if defined(MBEDTLS_BIGNUM_C) +#include "mbedtls/bignum.h" +#endif + +#include "bignum_mod.h" + +/** + * \brief Perform a safe conditional copy of an MPI which doesn't reveal + * whether the assignment was done or not. + * + * The size to copy is determined by \p N. + * + * \param[out] X The address of the destination MPI. + * This must be initialized. Must have enough limbs to + * store the full value of \p A. + * \param[in] A The address of the source MPI. This must be initialized. + * \param[in] N The address of the modulus related to \p X and \p A. + * \param assign The condition deciding whether to perform the + * assignment or not. Must be either 0 or 1: + * * \c 1: Perform the assignment `X = A`. + * * \c 0: Keep the original value of \p X. + * + * \note This function avoids leaking any information about whether + * the assignment was done or not. + * + * \warning If \p assign is neither 0 nor 1, the result of this function + * is indeterminate, and the resulting value in \p X might be + * neither its original value nor the value in \p A. + */ +void mbedtls_mpi_mod_raw_cond_assign(mbedtls_mpi_uint *X, + const mbedtls_mpi_uint *A, + const mbedtls_mpi_mod_modulus *N, + unsigned char assign); + +/** + * \brief Perform a safe conditional swap of two MPIs which doesn't reveal + * whether the swap was done or not. + * + * The size to swap is determined by \p N. + * + * \param[in,out] X The address of the first MPI. This must be initialized. + * \param[in,out] Y The address of the second MPI. This must be initialized. + * \param[in] N The address of the modulus related to \p X and \p Y. + * \param swap The condition deciding whether to perform + * the swap or not. Must be either 0 or 1: + * * \c 1: Swap the values of \p X and \p Y. + * * \c 0: Keep the original values of \p X and \p Y. + * + * \note This function avoids leaking any information about whether + * the swap was done or not. + * + * \warning If \p swap is neither 0 nor 1, the result of this function + * is indeterminate, and both \p X and \p Y might end up with + * values different to either of the original ones. + */ +void mbedtls_mpi_mod_raw_cond_swap(mbedtls_mpi_uint *X, + mbedtls_mpi_uint *Y, + const mbedtls_mpi_mod_modulus *N, + unsigned char swap); + +/** Import X from unsigned binary data. + * + * The MPI needs to have enough limbs to store the full value (including any + * most significant zero bytes in the input). + * + * \param[out] X The address of the MPI. The size is determined by \p N. + * (In particular, it must have at least as many limbs as + * the modulus \p N.) + * \param[in] N The address of the modulus related to \p X. + * \param[in] input The input buffer to import from. + * \param input_length The length in bytes of \p input. + * \param ext_rep The endianness of the number in the input buffer. + * + * \return \c 0 if successful. + * \return #MBEDTLS_ERR_MPI_BUFFER_TOO_SMALL if \p X isn't + * large enough to hold the value in \p input. + * \return #MBEDTLS_ERR_MPI_BAD_INPUT_DATA if the external representation + * of \p N is invalid or \p X is not less than \p N. + */ +int mbedtls_mpi_mod_raw_read(mbedtls_mpi_uint *X, + const mbedtls_mpi_mod_modulus *N, + const unsigned char *input, + size_t input_length, + mbedtls_mpi_mod_ext_rep ext_rep); + +/** Export A into unsigned binary data. + * + * \param[in] A The address of the MPI. The size is determined by \p N. + * (In particular, it must have at least as many limbs as + * the modulus \p N.) + * \param[in] N The address of the modulus related to \p A. + * \param[out] output The output buffer to export to. + * \param output_length The length in bytes of \p output. + * \param ext_rep The endianness in which the number should be written into the output buffer. + * + * \return \c 0 if successful. + * \return #MBEDTLS_ERR_MPI_BUFFER_TOO_SMALL if \p output isn't + * large enough to hold the value of \p A. + * \return #MBEDTLS_ERR_MPI_BAD_INPUT_DATA if the external representation + * of \p N is invalid. + */ +int mbedtls_mpi_mod_raw_write(const mbedtls_mpi_uint *A, + const mbedtls_mpi_mod_modulus *N, + unsigned char *output, + size_t output_length, + mbedtls_mpi_mod_ext_rep ext_rep); + +/** \brief Subtract two MPIs, returning the residue modulo the specified + * modulus. + * + * The size of the operation is determined by \p N. \p A and \p B must have + * the same number of limbs as \p N. + * + * \p X may be aliased to \p A or \p B, or even both, but may not overlap + * either otherwise. + * + * \param[out] X The address of the result MPI. + * This must be initialized. Must have enough limbs to + * store the full value of the result. + * \param[in] A The address of the first MPI. This must be initialized. + * \param[in] B The address of the second MPI. This must be initialized. + * \param[in] N The address of the modulus. Used to perform a modulo + * operation on the result of the subtraction. + */ +void mbedtls_mpi_mod_raw_sub(mbedtls_mpi_uint *X, + const mbedtls_mpi_uint *A, + const mbedtls_mpi_uint *B, + const mbedtls_mpi_mod_modulus *N); + +/** \brief Multiply two MPIs, returning the residue modulo the specified + * modulus. + * + * \note Currently handles the case when `N->int_rep` is + * MBEDTLS_MPI_MOD_REP_MONTGOMERY. + * + * The size of the operation is determined by \p N. \p A, \p B and \p X must + * all be associated with the modulus \p N and must all have the same number + * of limbs as \p N. + * + * \p X may be aliased to \p A or \p B, or even both, but may not overlap + * either otherwise. They may not alias \p N (since they must be in canonical + * form, they cannot == \p N). + * + * \param[out] X The address of the result MPI. Must have the same + * number of limbs as \p N. + * On successful completion, \p X contains the result of + * the multiplication `A * B * R^-1` mod N where + * `R = 2^(biL * N->limbs)`. + * \param[in] A The address of the first MPI. + * \param[in] B The address of the second MPI. + * \param[in] N The address of the modulus. Used to perform a modulo + * operation on the result of the multiplication. + * \param[in,out] T Temporary storage of size at least 2 * N->limbs + 1 + * limbs. Its initial content is unused and + * its final content is indeterminate. + * It must not alias or otherwise overlap any of the + * other parameters. + */ +void mbedtls_mpi_mod_raw_mul(mbedtls_mpi_uint *X, + const mbedtls_mpi_uint *A, + const mbedtls_mpi_uint *B, + const mbedtls_mpi_mod_modulus *N, + mbedtls_mpi_uint *T); + +/** + * \brief Returns the number of limbs of working memory required for + * a call to `mbedtls_mpi_mod_raw_inv_prime()`. + * + * \note This will always be at least + * `mbedtls_mpi_core_montmul_working_limbs(AN_limbs)`, + * i.e. sufficient for a call to `mbedtls_mpi_core_montmul()`. + * + * \param AN_limbs The number of limbs in the input `A` and the modulus `N` + * (they must be the same size) that will be given to + * `mbedtls_mpi_mod_raw_inv_prime()`. + * + * \return The number of limbs of working memory required by + * `mbedtls_mpi_mod_raw_inv_prime()`. + */ +size_t mbedtls_mpi_mod_raw_inv_prime_working_limbs(size_t AN_limbs); + +/** + * \brief Perform fixed-width modular inversion of a Montgomery-form MPI with + * respect to a modulus \p N that must be prime. + * + * \p X may be aliased to \p A, but not to \p N or \p RR. + * + * \param[out] X The modular inverse of \p A with respect to \p N. + * Will be in Montgomery form. + * \param[in] A The number to calculate the modular inverse of. + * Must be in Montgomery form. Must not be 0. + * \param[in] N The modulus, as a little-endian array of length \p AN_limbs. + * Must be prime. + * \param AN_limbs The number of limbs in \p A, \p N and \p RR. + * \param[in] RR The precomputed residue of 2^{2*biL} modulo N, as a little- + * endian array of length \p AN_limbs. + * \param[in,out] T Temporary storage of at least the number of limbs returned + * by `mbedtls_mpi_mod_raw_inv_prime_working_limbs()`. + * Its initial content is unused and its final content is + * indeterminate. + * It must not alias or otherwise overlap any of the other + * parameters. + * It is up to the caller to zeroize \p T when it is no + * longer needed, and before freeing it if it was dynamically + * allocated. + */ +void mbedtls_mpi_mod_raw_inv_prime(mbedtls_mpi_uint *X, + const mbedtls_mpi_uint *A, + const mbedtls_mpi_uint *N, + size_t AN_limbs, + const mbedtls_mpi_uint *RR, + mbedtls_mpi_uint *T); + +/** + * \brief Perform a known-size modular addition. + * + * Calculate `A + B modulo N`. + * + * The number of limbs in each operand, and the result, is given by the + * modulus \p N. + * + * \p X may be aliased to \p A or \p B, or even both, but may not overlap + * either otherwise. + * + * \param[out] X The result of the modular addition. + * \param[in] A Little-endian presentation of the left operand. This + * must be smaller than \p N. + * \param[in] B Little-endian presentation of the right operand. This + * must be smaller than \p N. + * \param[in] N The address of the modulus. + */ +void mbedtls_mpi_mod_raw_add(mbedtls_mpi_uint *X, + const mbedtls_mpi_uint *A, + const mbedtls_mpi_uint *B, + const mbedtls_mpi_mod_modulus *N); + +/** Convert an MPI from canonical representation (little-endian limb array) + * to the representation associated with the modulus. + * + * \param[in,out] X The limb array to convert. + * It must have as many limbs as \p N. + * It is converted in place. + * If this function returns an error, the content of \p X + * is unspecified. + * \param[in] N The modulus structure. + * + * \return \c 0 if successful. + * Otherwise an \c MBEDTLS_ERR_MPI_xxx error code. + */ +int mbedtls_mpi_mod_raw_canonical_to_modulus_rep( + mbedtls_mpi_uint *X, + const mbedtls_mpi_mod_modulus *N); + +/** Convert an MPI from the representation associated with the modulus + * to canonical representation (little-endian limb array). + * + * \param[in,out] X The limb array to convert. + * It must have as many limbs as \p N. + * It is converted in place. + * If this function returns an error, the content of \p X + * is unspecified. + * \param[in] N The modulus structure. + * + * \return \c 0 if successful. + * Otherwise an \c MBEDTLS_ERR_MPI_xxx error code. + */ +int mbedtls_mpi_mod_raw_modulus_to_canonical_rep( + mbedtls_mpi_uint *X, + const mbedtls_mpi_mod_modulus *N); + +/** Generate a random number uniformly in a range. + * + * This function generates a random number between \p min inclusive and + * \p N exclusive. + * + * The procedure complies with RFC 6979 §3.3 (deterministic ECDSA) + * when the RNG is a suitably parametrized instance of HMAC_DRBG + * and \p min is \c 1. + * + * \note There are `N - min` possible outputs. The lower bound + * \p min can be reached, but the upper bound \p N cannot. + * + * \param X The destination MPI, in canonical representation modulo \p N. + * It must not be aliased with \p N or otherwise overlap it. + * \param min The minimum value to return. It must be strictly smaller + * than \b N. + * \param N The modulus. + * This is the upper bound of the output range, exclusive. + * \param f_rng The RNG function to use. This must not be \c NULL. + * \param p_rng The RNG parameter to be passed to \p f_rng. + * + * \return \c 0 if successful. + * \return #MBEDTLS_ERR_MPI_NOT_ACCEPTABLE if the implementation was + * unable to find a suitable value within a limited number + * of attempts. This has a negligible probability if \p N + * is significantly larger than \p min, which is the case + * for all usual cryptographic applications. + */ +int mbedtls_mpi_mod_raw_random(mbedtls_mpi_uint *X, + mbedtls_mpi_uint min, + const mbedtls_mpi_mod_modulus *N, + int (*f_rng)(void *, unsigned char *, size_t), + void *p_rng); + +/** Convert an MPI into Montgomery form. + * + * \param X The address of the MPI. + * Must have the same number of limbs as \p N. + * \param N The address of the modulus, which gives the size of + * the base `R` = 2^(biL*N->limbs). + * + * \return \c 0 if successful. + */ +int mbedtls_mpi_mod_raw_to_mont_rep(mbedtls_mpi_uint *X, + const mbedtls_mpi_mod_modulus *N); + +/** Convert an MPI back from Montgomery representation. + * + * \param X The address of the MPI. + * Must have the same number of limbs as \p N. + * \param N The address of the modulus, which gives the size of + * the base `R`= 2^(biL*N->limbs). + * + * \return \c 0 if successful. + */ +int mbedtls_mpi_mod_raw_from_mont_rep(mbedtls_mpi_uint *X, + const mbedtls_mpi_mod_modulus *N); + +/** \brief Perform fixed width modular negation. + * + * The size of the operation is determined by \p N. \p A must have + * the same number of limbs as \p N. + * + * \p X may be aliased to \p A. + * + * \param[out] X The result of the modular negation. + * This must be initialized. + * \param[in] A Little-endian presentation of the input operand. This + * must be less than or equal to \p N. + * \param[in] N The modulus to use. + */ +void mbedtls_mpi_mod_raw_neg(mbedtls_mpi_uint *X, + const mbedtls_mpi_uint *A, + const mbedtls_mpi_mod_modulus *N); + +#endif /* MBEDTLS_BIGNUM_MOD_RAW_H */ |