summaryrefslogtreecommitdiffstats
path: root/thirdparty/mbedtls/library/psa_crypto_slot_management.c
diff options
context:
space:
mode:
Diffstat (limited to 'thirdparty/mbedtls/library/psa_crypto_slot_management.c')
-rw-r--r--thirdparty/mbedtls/library/psa_crypto_slot_management.c1131
1 files changed, 1131 insertions, 0 deletions
diff --git a/thirdparty/mbedtls/library/psa_crypto_slot_management.c b/thirdparty/mbedtls/library/psa_crypto_slot_management.c
new file mode 100644
index 0000000000..9850d8c750
--- /dev/null
+++ b/thirdparty/mbedtls/library/psa_crypto_slot_management.c
@@ -0,0 +1,1131 @@
+/*
+ * PSA crypto layer on top of Mbed TLS crypto
+ */
+/*
+ * Copyright The Mbed TLS Contributors
+ * SPDX-License-Identifier: Apache-2.0 OR GPL-2.0-or-later
+ */
+
+#include "common.h"
+
+#if defined(MBEDTLS_PSA_CRYPTO_C)
+
+#include "psa/crypto.h"
+
+#include "psa_crypto_core.h"
+#include "psa_crypto_driver_wrappers_no_static.h"
+#include "psa_crypto_slot_management.h"
+#include "psa_crypto_storage.h"
+#if defined(MBEDTLS_PSA_CRYPTO_SE_C)
+#include "psa_crypto_se.h"
+#endif
+
+#include <stdlib.h>
+#include <string.h>
+#include "mbedtls/platform.h"
+#if defined(MBEDTLS_THREADING_C)
+#include "mbedtls/threading.h"
+#endif
+
+
+
+/* Make sure we have distinct ranges of key identifiers for distinct
+ * purposes. */
+MBEDTLS_STATIC_ASSERT(PSA_KEY_ID_USER_MIN < PSA_KEY_ID_USER_MAX,
+ "Empty user key ID range");
+MBEDTLS_STATIC_ASSERT(PSA_KEY_ID_VENDOR_MIN < PSA_KEY_ID_VENDOR_MAX,
+ "Empty vendor key ID range");
+MBEDTLS_STATIC_ASSERT(MBEDTLS_PSA_KEY_ID_BUILTIN_MIN < MBEDTLS_PSA_KEY_ID_BUILTIN_MAX,
+ "Empty builtin key ID range");
+MBEDTLS_STATIC_ASSERT(PSA_KEY_ID_VOLATILE_MIN < PSA_KEY_ID_VOLATILE_MAX,
+ "Empty volatile key ID range");
+
+MBEDTLS_STATIC_ASSERT(PSA_KEY_ID_USER_MAX < PSA_KEY_ID_VENDOR_MIN ||
+ PSA_KEY_ID_VENDOR_MAX < PSA_KEY_ID_USER_MIN,
+ "Overlap between user key IDs and vendor key IDs");
+
+MBEDTLS_STATIC_ASSERT(PSA_KEY_ID_VENDOR_MIN <= MBEDTLS_PSA_KEY_ID_BUILTIN_MIN &&
+ MBEDTLS_PSA_KEY_ID_BUILTIN_MAX <= PSA_KEY_ID_VENDOR_MAX,
+ "Builtin key identifiers are not in the vendor range");
+
+MBEDTLS_STATIC_ASSERT(PSA_KEY_ID_VENDOR_MIN <= PSA_KEY_ID_VOLATILE_MIN &&
+ PSA_KEY_ID_VOLATILE_MAX <= PSA_KEY_ID_VENDOR_MAX,
+ "Volatile key identifiers are not in the vendor range");
+
+MBEDTLS_STATIC_ASSERT(PSA_KEY_ID_VOLATILE_MAX < MBEDTLS_PSA_KEY_ID_BUILTIN_MIN ||
+ MBEDTLS_PSA_KEY_ID_BUILTIN_MAX < PSA_KEY_ID_VOLATILE_MIN,
+ "Overlap between builtin key IDs and volatile key IDs");
+
+
+
+#if defined(MBEDTLS_PSA_KEY_STORE_DYNAMIC)
+
+/* Dynamic key store.
+ *
+ * The key store consists of multiple slices.
+ *
+ * The volatile keys are stored in variable-sized tables called slices.
+ * Slices are allocated on demand and deallocated when possible.
+ * The size of slices increases exponentially, so the average overhead
+ * (number of slots that are allocated but not used) is roughly
+ * proportional to the number of keys (with a factor that grows
+ * when the key store is fragmented).
+ *
+ * One slice is dedicated to the cache of persistent and built-in keys.
+ * For simplicity, they are separated from volatile keys. This cache
+ * slice has a fixed size and has the slice index KEY_SLOT_CACHE_SLICE_INDEX,
+ * located after the slices for volatile keys.
+ */
+
+/* Size of the last slice containing the cache of persistent and built-in keys. */
+#define PERSISTENT_KEY_CACHE_COUNT MBEDTLS_PSA_KEY_SLOT_COUNT
+
+/* Volatile keys are stored in slices 0 through
+ * (KEY_SLOT_VOLATILE_SLICE_COUNT - 1) inclusive.
+ * Each slice is twice the size of the previous slice.
+ * Volatile key identifiers encode the slice number as follows:
+ * bits 30..31: 0b10 (mandated by the PSA Crypto specification).
+ * bits 25..29: slice index (0...KEY_SLOT_VOLATILE_SLICE_COUNT-1)
+ * bits 0..24: slot index in slice
+ */
+#define KEY_ID_SLOT_INDEX_WIDTH 25u
+#define KEY_ID_SLICE_INDEX_WIDTH 5u
+
+#define KEY_SLOT_VOLATILE_SLICE_BASE_LENGTH 16u
+#define KEY_SLOT_VOLATILE_SLICE_COUNT 22u
+#define KEY_SLICE_COUNT (KEY_SLOT_VOLATILE_SLICE_COUNT + 1u)
+#define KEY_SLOT_CACHE_SLICE_INDEX KEY_SLOT_VOLATILE_SLICE_COUNT
+
+
+/* Check that the length of the largest slice (calculated as
+ * KEY_SLICE_LENGTH_MAX below) does not overflow size_t. We use
+ * an indirect method in case the calculation of KEY_SLICE_LENGTH_MAX
+ * itself overflows uintmax_t: if (BASE_LENGTH << c)
+ * overflows size_t then BASE_LENGTH > SIZE_MAX >> c.
+ */
+#if (KEY_SLOT_VOLATILE_SLICE_BASE_LENGTH > \
+ SIZE_MAX >> (KEY_SLOT_VOLATILE_SLICE_COUNT - 1))
+#error "Maximum slice length overflows size_t"
+#endif
+
+#if KEY_ID_SLICE_INDEX_WIDTH + KEY_ID_SLOT_INDEX_WIDTH > 30
+#error "Not enough room in volatile key IDs for slice index and slot index"
+#endif
+#if KEY_SLOT_VOLATILE_SLICE_COUNT > (1 << KEY_ID_SLICE_INDEX_WIDTH)
+#error "Too many slices to fit the slice index in a volatile key ID"
+#endif
+#define KEY_SLICE_LENGTH_MAX \
+ (KEY_SLOT_VOLATILE_SLICE_BASE_LENGTH << (KEY_SLOT_VOLATILE_SLICE_COUNT - 1))
+#if KEY_SLICE_LENGTH_MAX > 1 << KEY_ID_SLOT_INDEX_WIDTH
+#error "Not enough room in volatile key IDs for a slot index in the largest slice"
+#endif
+#if KEY_ID_SLICE_INDEX_WIDTH > 8
+#error "Slice index does not fit in uint8_t for psa_key_slot_t::slice_index"
+#endif
+
+
+/* Calculate the volatile key id to use for a given slot.
+ * This function assumes valid parameter values. */
+static psa_key_id_t volatile_key_id_of_index(size_t slice_idx,
+ size_t slot_idx)
+{
+ /* We assert above that the slice and slot indexes fit in separate
+ * bit-fields inside psa_key_id_t, which is a 32-bit type per the
+ * PSA Cryptography specification. */
+ return (psa_key_id_t) (0x40000000u |
+ (slice_idx << KEY_ID_SLOT_INDEX_WIDTH) |
+ slot_idx);
+}
+
+/* Calculate the slice containing the given volatile key.
+ * This function assumes valid parameter values. */
+static size_t slice_index_of_volatile_key_id(psa_key_id_t key_id)
+{
+ size_t mask = (1LU << KEY_ID_SLICE_INDEX_WIDTH) - 1;
+ return (key_id >> KEY_ID_SLOT_INDEX_WIDTH) & mask;
+}
+
+/* Calculate the index of the slot containing the given volatile key.
+ * This function assumes valid parameter values. */
+static size_t slot_index_of_volatile_key_id(psa_key_id_t key_id)
+{
+ return key_id & ((1LU << KEY_ID_SLOT_INDEX_WIDTH) - 1);
+}
+
+/* In global_data.first_free_slot_index, use this special value to
+ * indicate that the slice is full. */
+#define FREE_SLOT_INDEX_NONE ((size_t) -1)
+
+#if defined(MBEDTLS_TEST_HOOKS)
+size_t psa_key_slot_volatile_slice_count(void)
+{
+ return KEY_SLOT_VOLATILE_SLICE_COUNT;
+}
+#endif
+
+#else /* MBEDTLS_PSA_KEY_STORE_DYNAMIC */
+
+/* Static key store.
+ *
+ * All the keys (volatile or persistent) are in a single slice.
+ * We only use slices as a concept to allow some differences between
+ * static and dynamic key store management to be buried in auxiliary
+ * functions.
+ */
+
+#define PERSISTENT_KEY_CACHE_COUNT MBEDTLS_PSA_KEY_SLOT_COUNT
+#define KEY_SLICE_COUNT 1u
+#define KEY_SLOT_CACHE_SLICE_INDEX 0
+
+#endif /* MBEDTLS_PSA_KEY_STORE_DYNAMIC */
+
+
+typedef struct {
+#if defined(MBEDTLS_PSA_KEY_STORE_DYNAMIC)
+ psa_key_slot_t *key_slices[KEY_SLICE_COUNT];
+ size_t first_free_slot_index[KEY_SLOT_VOLATILE_SLICE_COUNT];
+#else /* MBEDTLS_PSA_KEY_STORE_DYNAMIC */
+ psa_key_slot_t key_slots[MBEDTLS_PSA_KEY_SLOT_COUNT];
+#endif /* MBEDTLS_PSA_KEY_STORE_DYNAMIC */
+ uint8_t key_slots_initialized;
+} psa_global_data_t;
+
+static psa_global_data_t global_data;
+
+static uint8_t psa_get_key_slots_initialized(void)
+{
+ uint8_t initialized;
+
+#if defined(MBEDTLS_THREADING_C)
+ mbedtls_mutex_lock(&mbedtls_threading_psa_globaldata_mutex);
+#endif /* defined(MBEDTLS_THREADING_C) */
+
+ initialized = global_data.key_slots_initialized;
+
+#if defined(MBEDTLS_THREADING_C)
+ mbedtls_mutex_unlock(&mbedtls_threading_psa_globaldata_mutex);
+#endif /* defined(MBEDTLS_THREADING_C) */
+
+ return initialized;
+}
+
+
+
+/** The length of the given slice in the key slot table.
+ *
+ * \param slice_idx The slice number. It must satisfy
+ * 0 <= slice_idx < KEY_SLICE_COUNT.
+ *
+ * \return The number of elements in the given slice.
+ */
+static inline size_t key_slice_length(size_t slice_idx);
+
+/** Get a pointer to the slot where the given volatile key is located.
+ *
+ * \param key_id The key identifier. It must be a valid volatile key
+ * identifier.
+ * \return A pointer to the only slot that the given key
+ * can be in. Note that the slot may be empty or
+ * contain a different key.
+ */
+static inline psa_key_slot_t *get_volatile_key_slot(psa_key_id_t key_id);
+
+/** Get a pointer to an entry in the persistent key cache.
+ *
+ * \param slot_idx The index in the table. It must satisfy
+ * 0 <= slot_idx < PERSISTENT_KEY_CACHE_COUNT.
+ * \return A pointer to the slot containing the given
+ * persistent key cache entry.
+ */
+static inline psa_key_slot_t *get_persistent_key_slot(size_t slot_idx);
+
+/** Get a pointer to a slot given by slice and index.
+ *
+ * \param slice_idx The slice number. It must satisfy
+ * 0 <= slice_idx < KEY_SLICE_COUNT.
+ * \param slot_idx An index in the given slice. It must satisfy
+ * 0 <= slot_idx < key_slice_length(slice_idx).
+ *
+ * \return A pointer to the given slot.
+ */
+static inline psa_key_slot_t *get_key_slot(size_t slice_idx, size_t slot_idx);
+
+#if defined(MBEDTLS_PSA_KEY_STORE_DYNAMIC)
+
+#if defined(MBEDTLS_TEST_HOOKS)
+size_t (*mbedtls_test_hook_psa_volatile_key_slice_length)(size_t slice_idx) = NULL;
+#endif
+
+static inline size_t key_slice_length(size_t slice_idx)
+{
+ if (slice_idx == KEY_SLOT_CACHE_SLICE_INDEX) {
+ return PERSISTENT_KEY_CACHE_COUNT;
+ } else {
+#if defined(MBEDTLS_TEST_HOOKS)
+ if (mbedtls_test_hook_psa_volatile_key_slice_length != NULL) {
+ return mbedtls_test_hook_psa_volatile_key_slice_length(slice_idx);
+ }
+#endif
+ return KEY_SLOT_VOLATILE_SLICE_BASE_LENGTH << slice_idx;
+ }
+}
+
+static inline psa_key_slot_t *get_volatile_key_slot(psa_key_id_t key_id)
+{
+ size_t slice_idx = slice_index_of_volatile_key_id(key_id);
+ if (slice_idx >= KEY_SLOT_VOLATILE_SLICE_COUNT) {
+ return NULL;
+ }
+ size_t slot_idx = slot_index_of_volatile_key_id(key_id);
+ if (slot_idx >= key_slice_length(slice_idx)) {
+ return NULL;
+ }
+ psa_key_slot_t *slice = global_data.key_slices[slice_idx];
+ if (slice == NULL) {
+ return NULL;
+ }
+ return &slice[slot_idx];
+}
+
+static inline psa_key_slot_t *get_persistent_key_slot(size_t slot_idx)
+{
+ return &global_data.key_slices[KEY_SLOT_CACHE_SLICE_INDEX][slot_idx];
+}
+
+static inline psa_key_slot_t *get_key_slot(size_t slice_idx, size_t slot_idx)
+{
+ return &global_data.key_slices[slice_idx][slot_idx];
+}
+
+#else /* MBEDTLS_PSA_KEY_STORE_DYNAMIC */
+
+static inline size_t key_slice_length(size_t slice_idx)
+{
+ (void) slice_idx;
+ return ARRAY_LENGTH(global_data.key_slots);
+}
+
+static inline psa_key_slot_t *get_volatile_key_slot(psa_key_id_t key_id)
+{
+ MBEDTLS_STATIC_ASSERT(ARRAY_LENGTH(global_data.key_slots) <=
+ PSA_KEY_ID_VOLATILE_MAX - PSA_KEY_ID_VOLATILE_MIN + 1,
+ "The key slot array is larger than the volatile key ID range");
+ return &global_data.key_slots[key_id - PSA_KEY_ID_VOLATILE_MIN];
+}
+
+static inline psa_key_slot_t *get_persistent_key_slot(size_t slot_idx)
+{
+ return &global_data.key_slots[slot_idx];
+}
+
+static inline psa_key_slot_t *get_key_slot(size_t slice_idx, size_t slot_idx)
+{
+ (void) slice_idx;
+ return &global_data.key_slots[slot_idx];
+}
+
+#endif /* MBEDTLS_PSA_KEY_STORE_DYNAMIC */
+
+
+
+int psa_is_valid_key_id(mbedtls_svc_key_id_t key, int vendor_ok)
+{
+ psa_key_id_t key_id = MBEDTLS_SVC_KEY_ID_GET_KEY_ID(key);
+
+ if ((PSA_KEY_ID_USER_MIN <= key_id) &&
+ (key_id <= PSA_KEY_ID_USER_MAX)) {
+ return 1;
+ }
+
+ if (vendor_ok &&
+ (PSA_KEY_ID_VENDOR_MIN <= key_id) &&
+ (key_id <= PSA_KEY_ID_VENDOR_MAX)) {
+ return 1;
+ }
+
+ return 0;
+}
+
+/** Get the description in memory of a key given its identifier and lock it.
+ *
+ * The descriptions of volatile keys and loaded persistent keys are
+ * stored in key slots. This function returns a pointer to the key slot
+ * containing the description of a key given its identifier.
+ *
+ * The function searches the key slots containing the description of the key
+ * with \p key identifier. The function does only read accesses to the key
+ * slots. The function does not load any persistent key thus does not access
+ * any storage.
+ *
+ * For volatile key identifiers, only one key slot is queried as a volatile
+ * key with identifier key_id can only be stored in slot of index
+ * ( key_id - #PSA_KEY_ID_VOLATILE_MIN ).
+ *
+ * On success, the function locks the key slot. It is the responsibility of
+ * the caller to unlock the key slot when it does not access it anymore.
+ *
+ * If multi-threading is enabled, the caller must hold the
+ * global key slot mutex.
+ *
+ * \param key Key identifier to query.
+ * \param[out] p_slot On success, `*p_slot` contains a pointer to the
+ * key slot containing the description of the key
+ * identified by \p key.
+ *
+ * \retval #PSA_SUCCESS
+ * The pointer to the key slot containing the description of the key
+ * identified by \p key was returned.
+ * \retval #PSA_ERROR_INVALID_HANDLE
+ * \p key is not a valid key identifier.
+ * \retval #PSA_ERROR_DOES_NOT_EXIST
+ * There is no key with key identifier \p key in the key slots.
+ */
+static psa_status_t psa_get_and_lock_key_slot_in_memory(
+ mbedtls_svc_key_id_t key, psa_key_slot_t **p_slot)
+{
+ psa_status_t status = PSA_ERROR_CORRUPTION_DETECTED;
+ psa_key_id_t key_id = MBEDTLS_SVC_KEY_ID_GET_KEY_ID(key);
+ size_t slot_idx;
+ psa_key_slot_t *slot = NULL;
+
+ if (psa_key_id_is_volatile(key_id)) {
+ slot = get_volatile_key_slot(key_id);
+
+ /* Check if both the PSA key identifier key_id and the owner
+ * identifier of key match those of the key slot. */
+ if (slot != NULL &&
+ slot->state == PSA_SLOT_FULL &&
+ mbedtls_svc_key_id_equal(key, slot->attr.id)) {
+ status = PSA_SUCCESS;
+ } else {
+ status = PSA_ERROR_DOES_NOT_EXIST;
+ }
+ } else {
+ if (!psa_is_valid_key_id(key, 1)) {
+ return PSA_ERROR_INVALID_HANDLE;
+ }
+
+ for (slot_idx = 0; slot_idx < PERSISTENT_KEY_CACHE_COUNT; slot_idx++) {
+ slot = get_persistent_key_slot(slot_idx);
+ /* Only consider slots which are in a full state. */
+ if ((slot->state == PSA_SLOT_FULL) &&
+ (mbedtls_svc_key_id_equal(key, slot->attr.id))) {
+ break;
+ }
+ }
+ status = (slot_idx < MBEDTLS_PSA_KEY_SLOT_COUNT) ?
+ PSA_SUCCESS : PSA_ERROR_DOES_NOT_EXIST;
+ }
+
+ if (status == PSA_SUCCESS) {
+ status = psa_register_read(slot);
+ if (status == PSA_SUCCESS) {
+ *p_slot = slot;
+ }
+ }
+
+ return status;
+}
+
+psa_status_t psa_initialize_key_slots(void)
+{
+#if defined(MBEDTLS_PSA_KEY_STORE_DYNAMIC)
+ global_data.key_slices[KEY_SLOT_CACHE_SLICE_INDEX] =
+ mbedtls_calloc(PERSISTENT_KEY_CACHE_COUNT,
+ sizeof(*global_data.key_slices[KEY_SLOT_CACHE_SLICE_INDEX]));
+ if (global_data.key_slices[KEY_SLOT_CACHE_SLICE_INDEX] == NULL) {
+ return PSA_ERROR_INSUFFICIENT_MEMORY;
+ }
+#else /* MBEDTLS_PSA_KEY_STORE_DYNAMIC */
+ /* Nothing to do: program startup and psa_wipe_all_key_slots() both
+ * guarantee that the key slots are initialized to all-zero, which
+ * means that all the key slots are in a valid, empty state. The global
+ * data mutex is already held when calling this function, so no need to
+ * lock it here, to set the flag. */
+#endif /* MBEDTLS_PSA_KEY_STORE_DYNAMIC */
+
+ global_data.key_slots_initialized = 1;
+ return PSA_SUCCESS;
+}
+
+void psa_wipe_all_key_slots(void)
+{
+ for (size_t slice_idx = 0; slice_idx < KEY_SLICE_COUNT; slice_idx++) {
+#if defined(MBEDTLS_PSA_KEY_STORE_DYNAMIC)
+ if (global_data.key_slices[slice_idx] == NULL) {
+ continue;
+ }
+#endif /* MBEDTLS_PSA_KEY_STORE_DYNAMIC */
+ for (size_t slot_idx = 0; slot_idx < key_slice_length(slice_idx); slot_idx++) {
+ psa_key_slot_t *slot = get_key_slot(slice_idx, slot_idx);
+#if defined(MBEDTLS_PSA_KEY_STORE_DYNAMIC)
+ /* When MBEDTLS_PSA_KEY_STORE_DYNAMIC is disabled, calling
+ * psa_wipe_key_slot() on an unused slot is useless, but it
+ * happens to work (because we flip the state to PENDING_DELETION).
+ *
+ * When MBEDTLS_PSA_KEY_STORE_DYNAMIC is enabled,
+ * psa_wipe_key_slot() needs to have a valid slice_index
+ * field, but that value might not be correct in a
+ * free slot, so we must not call it.
+ *
+ * Bypass the call to psa_wipe_key_slot() if the slot is empty,
+ * but only if MBEDTLS_PSA_KEY_STORE_DYNAMIC is enabled, to save
+ * a few bytes of code size otherwise.
+ */
+ if (slot->state == PSA_SLOT_EMPTY) {
+ continue;
+ }
+#endif
+ slot->var.occupied.registered_readers = 1;
+ slot->state = PSA_SLOT_PENDING_DELETION;
+ (void) psa_wipe_key_slot(slot);
+ }
+#if defined(MBEDTLS_PSA_KEY_STORE_DYNAMIC)
+ mbedtls_free(global_data.key_slices[slice_idx]);
+ global_data.key_slices[slice_idx] = NULL;
+#endif /* MBEDTLS_PSA_KEY_STORE_DYNAMIC */
+ }
+
+#if defined(MBEDTLS_PSA_KEY_STORE_DYNAMIC)
+ for (size_t slice_idx = 0; slice_idx < KEY_SLOT_VOLATILE_SLICE_COUNT; slice_idx++) {
+ global_data.first_free_slot_index[slice_idx] = 0;
+ }
+#endif /* MBEDTLS_PSA_KEY_STORE_DYNAMIC */
+
+ /* The global data mutex is already held when calling this function. */
+ global_data.key_slots_initialized = 0;
+}
+
+#if defined(MBEDTLS_PSA_KEY_STORE_DYNAMIC)
+
+static psa_status_t psa_allocate_volatile_key_slot(psa_key_id_t *key_id,
+ psa_key_slot_t **p_slot)
+{
+ size_t slice_idx;
+ for (slice_idx = 0; slice_idx < KEY_SLOT_VOLATILE_SLICE_COUNT; slice_idx++) {
+ if (global_data.first_free_slot_index[slice_idx] != FREE_SLOT_INDEX_NONE) {
+ break;
+ }
+ }
+ if (slice_idx == KEY_SLOT_VOLATILE_SLICE_COUNT) {
+ return PSA_ERROR_INSUFFICIENT_MEMORY;
+ }
+
+ if (global_data.key_slices[slice_idx] == NULL) {
+ global_data.key_slices[slice_idx] =
+ mbedtls_calloc(key_slice_length(slice_idx),
+ sizeof(psa_key_slot_t));
+ if (global_data.key_slices[slice_idx] == NULL) {
+ return PSA_ERROR_INSUFFICIENT_MEMORY;
+ }
+ }
+ psa_key_slot_t *slice = global_data.key_slices[slice_idx];
+
+ size_t slot_idx = global_data.first_free_slot_index[slice_idx];
+ *key_id = volatile_key_id_of_index(slice_idx, slot_idx);
+
+ psa_key_slot_t *slot = &slice[slot_idx];
+ size_t next_free = slot_idx + 1 + slot->var.free.next_free_relative_to_next;
+ if (next_free >= key_slice_length(slice_idx)) {
+ next_free = FREE_SLOT_INDEX_NONE;
+ }
+ global_data.first_free_slot_index[slice_idx] = next_free;
+ /* The .next_free field is not meaningful when the slot is not free,
+ * so give it the same content as freshly initialized memory. */
+ slot->var.free.next_free_relative_to_next = 0;
+
+ psa_status_t status = psa_key_slot_state_transition(slot,
+ PSA_SLOT_EMPTY,
+ PSA_SLOT_FILLING);
+ if (status != PSA_SUCCESS) {
+ /* The only reason for failure is if the slot state was not empty.
+ * This indicates that something has gone horribly wrong.
+ * In this case, we leave the slot out of the free list, and stop
+ * modifying it. This minimizes any further corruption. The slot
+ * is a memory leak, but that's a lesser evil. */
+ return status;
+ }
+
+ *p_slot = slot;
+ /* We assert at compile time that the slice index fits in uint8_t. */
+ slot->slice_index = (uint8_t) slice_idx;
+ return PSA_SUCCESS;
+}
+
+psa_status_t psa_free_key_slot(size_t slice_idx,
+ psa_key_slot_t *slot)
+{
+
+ if (slice_idx == KEY_SLOT_CACHE_SLICE_INDEX) {
+ /* This is a cache entry. We don't maintain a free list, so
+ * there's nothing to do. */
+ return PSA_SUCCESS;
+ }
+ if (slice_idx >= KEY_SLOT_VOLATILE_SLICE_COUNT) {
+ return PSA_ERROR_CORRUPTION_DETECTED;
+ }
+
+ psa_key_slot_t *slice = global_data.key_slices[slice_idx];
+ psa_key_slot_t *slice_end = slice + key_slice_length(slice_idx);
+ if (slot < slice || slot >= slice_end) {
+ /* The slot isn't actually in the slice! We can't detect that
+ * condition for sure, because the pointer comparison itself is
+ * undefined behavior in that case. That same condition makes the
+ * subtraction to calculate the slot index also UB.
+ * Give up now to avoid causing further corruption.
+ */
+ return PSA_ERROR_CORRUPTION_DETECTED;
+ }
+ size_t slot_idx = slot - slice;
+
+ size_t next_free = global_data.first_free_slot_index[slice_idx];
+ if (next_free >= key_slice_length(slice_idx)) {
+ /* The slot was full. The newly freed slot thus becomes the
+ * end of the free list. */
+ next_free = key_slice_length(slice_idx);
+ }
+ global_data.first_free_slot_index[slice_idx] = slot_idx;
+ slot->var.free.next_free_relative_to_next =
+ (int32_t) next_free - (int32_t) slot_idx - 1;
+
+ return PSA_SUCCESS;
+}
+#endif /* MBEDTLS_PSA_KEY_STORE_DYNAMIC */
+
+psa_status_t psa_reserve_free_key_slot(psa_key_id_t *volatile_key_id,
+ psa_key_slot_t **p_slot)
+{
+ psa_status_t status = PSA_ERROR_CORRUPTION_DETECTED;
+ size_t slot_idx;
+ psa_key_slot_t *selected_slot, *unused_persistent_key_slot;
+
+ if (!psa_get_key_slots_initialized()) {
+ status = PSA_ERROR_BAD_STATE;
+ goto error;
+ }
+
+#if defined(MBEDTLS_PSA_KEY_STORE_DYNAMIC)
+ if (volatile_key_id != NULL) {
+ return psa_allocate_volatile_key_slot(volatile_key_id, p_slot);
+ }
+#endif /* MBEDTLS_PSA_KEY_STORE_DYNAMIC */
+
+ /* With a dynamic key store, allocate an entry in the cache slice,
+ * applicable only to non-volatile keys that get cached in RAM.
+ * With a static key store, allocate an entry in the sole slice,
+ * applicable to all keys. */
+ selected_slot = unused_persistent_key_slot = NULL;
+ for (slot_idx = 0; slot_idx < PERSISTENT_KEY_CACHE_COUNT; slot_idx++) {
+ psa_key_slot_t *slot = get_key_slot(KEY_SLOT_CACHE_SLICE_INDEX, slot_idx);
+ if (slot->state == PSA_SLOT_EMPTY) {
+ selected_slot = slot;
+ break;
+ }
+
+ if ((unused_persistent_key_slot == NULL) &&
+ (slot->state == PSA_SLOT_FULL) &&
+ (!psa_key_slot_has_readers(slot)) &&
+ (!PSA_KEY_LIFETIME_IS_VOLATILE(slot->attr.lifetime))) {
+ unused_persistent_key_slot = slot;
+ }
+ }
+
+ /*
+ * If there is no unused key slot and there is at least one unlocked key
+ * slot containing the description of a persistent key, recycle the first
+ * such key slot we encountered. If we later need to operate on the
+ * persistent key we are evicting now, we will reload its description from
+ * storage.
+ */
+ if ((selected_slot == NULL) &&
+ (unused_persistent_key_slot != NULL)) {
+ selected_slot = unused_persistent_key_slot;
+ psa_register_read(selected_slot);
+ status = psa_wipe_key_slot(selected_slot);
+ if (status != PSA_SUCCESS) {
+ goto error;
+ }
+ }
+
+ if (selected_slot != NULL) {
+ status = psa_key_slot_state_transition(selected_slot, PSA_SLOT_EMPTY,
+ PSA_SLOT_FILLING);
+ if (status != PSA_SUCCESS) {
+ goto error;
+ }
+
+#if defined(MBEDTLS_PSA_KEY_STORE_DYNAMIC)
+ selected_slot->slice_index = KEY_SLOT_CACHE_SLICE_INDEX;
+#endif /* MBEDTLS_PSA_KEY_STORE_DYNAMIC */
+
+#if !defined(MBEDTLS_PSA_KEY_STORE_DYNAMIC)
+ if (volatile_key_id != NULL) {
+ /* Refresh slot_idx, for when the slot is not the original
+ * selected_slot but rather unused_persistent_key_slot. */
+ slot_idx = selected_slot - global_data.key_slots;
+ *volatile_key_id = PSA_KEY_ID_VOLATILE_MIN + slot_idx;
+ }
+#endif
+ *p_slot = selected_slot;
+
+ return PSA_SUCCESS;
+ }
+ status = PSA_ERROR_INSUFFICIENT_MEMORY;
+
+error:
+ *p_slot = NULL;
+
+ return status;
+}
+
+#if defined(MBEDTLS_PSA_CRYPTO_STORAGE_C)
+static psa_status_t psa_load_persistent_key_into_slot(psa_key_slot_t *slot)
+{
+ psa_status_t status = PSA_SUCCESS;
+ uint8_t *key_data = NULL;
+ size_t key_data_length = 0;
+
+ status = psa_load_persistent_key(&slot->attr,
+ &key_data, &key_data_length);
+ if (status != PSA_SUCCESS) {
+ goto exit;
+ }
+
+#if defined(MBEDTLS_PSA_CRYPTO_SE_C)
+ /* Special handling is required for loading keys associated with a
+ * dynamically registered SE interface. */
+ const psa_drv_se_t *drv;
+ psa_drv_se_context_t *drv_context;
+ if (psa_get_se_driver(slot->attr.lifetime, &drv, &drv_context)) {
+ psa_se_key_data_storage_t *data;
+
+ if (key_data_length != sizeof(*data)) {
+ status = PSA_ERROR_DATA_INVALID;
+ goto exit;
+ }
+ data = (psa_se_key_data_storage_t *) key_data;
+ status = psa_copy_key_material_into_slot(
+ slot, data->slot_number, sizeof(data->slot_number));
+ goto exit;
+ }
+#endif /* MBEDTLS_PSA_CRYPTO_SE_C */
+
+ status = psa_copy_key_material_into_slot(slot, key_data, key_data_length);
+ if (status != PSA_SUCCESS) {
+ goto exit;
+ }
+
+exit:
+ psa_free_persistent_key_data(key_data, key_data_length);
+ return status;
+}
+#endif /* MBEDTLS_PSA_CRYPTO_STORAGE_C */
+
+#if defined(MBEDTLS_PSA_CRYPTO_BUILTIN_KEYS)
+
+static psa_status_t psa_load_builtin_key_into_slot(psa_key_slot_t *slot)
+{
+ psa_status_t status = PSA_ERROR_CORRUPTION_DETECTED;
+ psa_key_attributes_t attributes = PSA_KEY_ATTRIBUTES_INIT;
+ psa_key_lifetime_t lifetime = PSA_KEY_LIFETIME_VOLATILE;
+ psa_drv_slot_number_t slot_number = 0;
+ size_t key_buffer_size = 0;
+ size_t key_buffer_length = 0;
+
+ if (!psa_key_id_is_builtin(
+ MBEDTLS_SVC_KEY_ID_GET_KEY_ID(slot->attr.id))) {
+ return PSA_ERROR_DOES_NOT_EXIST;
+ }
+
+ /* Check the platform function to see whether this key actually exists */
+ status = mbedtls_psa_platform_get_builtin_key(
+ slot->attr.id, &lifetime, &slot_number);
+ if (status != PSA_SUCCESS) {
+ return status;
+ }
+
+ /* Set required key attributes to ensure get_builtin_key can retrieve the
+ * full attributes. */
+ psa_set_key_id(&attributes, slot->attr.id);
+ psa_set_key_lifetime(&attributes, lifetime);
+
+ /* Get the full key attributes from the driver in order to be able to
+ * calculate the required buffer size. */
+ status = psa_driver_wrapper_get_builtin_key(
+ slot_number, &attributes,
+ NULL, 0, NULL);
+ if (status != PSA_ERROR_BUFFER_TOO_SMALL) {
+ /* Builtin keys cannot be defined by the attributes alone */
+ if (status == PSA_SUCCESS) {
+ status = PSA_ERROR_CORRUPTION_DETECTED;
+ }
+ return status;
+ }
+
+ /* If the key should exist according to the platform, then ask the driver
+ * what its expected size is. */
+ status = psa_driver_wrapper_get_key_buffer_size(&attributes,
+ &key_buffer_size);
+ if (status != PSA_SUCCESS) {
+ return status;
+ }
+
+ /* Allocate a buffer of the required size and load the builtin key directly
+ * into the (now properly sized) slot buffer. */
+ status = psa_allocate_buffer_to_slot(slot, key_buffer_size);
+ if (status != PSA_SUCCESS) {
+ return status;
+ }
+
+ status = psa_driver_wrapper_get_builtin_key(
+ slot_number, &attributes,
+ slot->key.data, slot->key.bytes, &key_buffer_length);
+ if (status != PSA_SUCCESS) {
+ goto exit;
+ }
+
+ /* Copy actual key length and core attributes into the slot on success */
+ slot->key.bytes = key_buffer_length;
+ slot->attr = attributes;
+exit:
+ if (status != PSA_SUCCESS) {
+ psa_remove_key_data_from_memory(slot);
+ }
+ return status;
+}
+#endif /* MBEDTLS_PSA_CRYPTO_BUILTIN_KEYS */
+
+psa_status_t psa_get_and_lock_key_slot(mbedtls_svc_key_id_t key,
+ psa_key_slot_t **p_slot)
+{
+ psa_status_t status = PSA_ERROR_CORRUPTION_DETECTED;
+
+ *p_slot = NULL;
+ if (!psa_get_key_slots_initialized()) {
+ return PSA_ERROR_BAD_STATE;
+ }
+
+#if defined(MBEDTLS_THREADING_C)
+ /* We need to set status as success, otherwise CORRUPTION_DETECTED
+ * would be returned if the lock fails. */
+ status = PSA_SUCCESS;
+ /* If the key is persistent and not loaded, we cannot unlock the mutex
+ * between checking if the key is loaded and setting the slot as FULL,
+ * as otherwise another thread may load and then destroy the key
+ * in the meantime. */
+ PSA_THREADING_CHK_RET(mbedtls_mutex_lock(
+ &mbedtls_threading_key_slot_mutex));
+#endif
+ /*
+ * On success, the pointer to the slot is passed directly to the caller
+ * thus no need to unlock the key slot here.
+ */
+ status = psa_get_and_lock_key_slot_in_memory(key, p_slot);
+ if (status != PSA_ERROR_DOES_NOT_EXIST) {
+#if defined(MBEDTLS_THREADING_C)
+ PSA_THREADING_CHK_RET(mbedtls_mutex_unlock(
+ &mbedtls_threading_key_slot_mutex));
+#endif
+ return status;
+ }
+
+ /* Loading keys from storage requires support for such a mechanism */
+#if defined(MBEDTLS_PSA_CRYPTO_STORAGE_C) || \
+ defined(MBEDTLS_PSA_CRYPTO_BUILTIN_KEYS)
+
+ status = psa_reserve_free_key_slot(NULL, p_slot);
+ if (status != PSA_SUCCESS) {
+#if defined(MBEDTLS_THREADING_C)
+ PSA_THREADING_CHK_RET(mbedtls_mutex_unlock(
+ &mbedtls_threading_key_slot_mutex));
+#endif
+ return status;
+ }
+
+ (*p_slot)->attr.id = key;
+ (*p_slot)->attr.lifetime = PSA_KEY_LIFETIME_PERSISTENT;
+
+ status = PSA_ERROR_DOES_NOT_EXIST;
+#if defined(MBEDTLS_PSA_CRYPTO_BUILTIN_KEYS)
+ /* Load keys in the 'builtin' range through their own interface */
+ status = psa_load_builtin_key_into_slot(*p_slot);
+#endif /* MBEDTLS_PSA_CRYPTO_BUILTIN_KEYS */
+
+#if defined(MBEDTLS_PSA_CRYPTO_STORAGE_C)
+ if (status == PSA_ERROR_DOES_NOT_EXIST) {
+ status = psa_load_persistent_key_into_slot(*p_slot);
+ }
+#endif /* defined(MBEDTLS_PSA_CRYPTO_STORAGE_C) */
+
+ if (status != PSA_SUCCESS) {
+ psa_wipe_key_slot(*p_slot);
+
+ /* If the key does not exist, we need to return
+ * PSA_ERROR_INVALID_HANDLE. */
+ if (status == PSA_ERROR_DOES_NOT_EXIST) {
+ status = PSA_ERROR_INVALID_HANDLE;
+ }
+ } else {
+ /* Add implicit usage flags. */
+ psa_extend_key_usage_flags(&(*p_slot)->attr.policy.usage);
+
+ psa_key_slot_state_transition((*p_slot), PSA_SLOT_FILLING,
+ PSA_SLOT_FULL);
+ status = psa_register_read(*p_slot);
+ }
+
+#else /* MBEDTLS_PSA_CRYPTO_STORAGE_C || MBEDTLS_PSA_CRYPTO_BUILTIN_KEYS */
+ status = PSA_ERROR_INVALID_HANDLE;
+#endif /* MBEDTLS_PSA_CRYPTO_STORAGE_C || MBEDTLS_PSA_CRYPTO_BUILTIN_KEYS */
+
+ if (status != PSA_SUCCESS) {
+ *p_slot = NULL;
+ }
+#if defined(MBEDTLS_THREADING_C)
+ PSA_THREADING_CHK_RET(mbedtls_mutex_unlock(
+ &mbedtls_threading_key_slot_mutex));
+#endif
+ return status;
+}
+
+psa_status_t psa_unregister_read(psa_key_slot_t *slot)
+{
+ if (slot == NULL) {
+ return PSA_SUCCESS;
+ }
+ if ((slot->state != PSA_SLOT_FULL) &&
+ (slot->state != PSA_SLOT_PENDING_DELETION)) {
+ return PSA_ERROR_CORRUPTION_DETECTED;
+ }
+
+ /* If we are the last reader and the slot is marked for deletion,
+ * we must wipe the slot here. */
+ if ((slot->state == PSA_SLOT_PENDING_DELETION) &&
+ (slot->var.occupied.registered_readers == 1)) {
+ return psa_wipe_key_slot(slot);
+ }
+
+ if (psa_key_slot_has_readers(slot)) {
+ slot->var.occupied.registered_readers--;
+ return PSA_SUCCESS;
+ }
+
+ /*
+ * As the return error code may not be handled in case of multiple errors,
+ * do our best to report if there are no registered readers. Assert with
+ * MBEDTLS_TEST_HOOK_TEST_ASSERT that there are registered readers:
+ * if the MBEDTLS_TEST_HOOKS configuration option is enabled and
+ * the function is called as part of the execution of a test suite, the
+ * execution of the test suite is stopped in error if the assertion fails.
+ */
+ MBEDTLS_TEST_HOOK_TEST_ASSERT(psa_key_slot_has_readers(slot));
+ return PSA_ERROR_CORRUPTION_DETECTED;
+}
+
+psa_status_t psa_unregister_read_under_mutex(psa_key_slot_t *slot)
+{
+ psa_status_t status = PSA_ERROR_CORRUPTION_DETECTED;
+#if defined(MBEDTLS_THREADING_C)
+ /* We need to set status as success, otherwise CORRUPTION_DETECTED
+ * would be returned if the lock fails. */
+ status = PSA_SUCCESS;
+ PSA_THREADING_CHK_RET(mbedtls_mutex_lock(
+ &mbedtls_threading_key_slot_mutex));
+#endif
+ status = psa_unregister_read(slot);
+#if defined(MBEDTLS_THREADING_C)
+ PSA_THREADING_CHK_RET(mbedtls_mutex_unlock(
+ &mbedtls_threading_key_slot_mutex));
+#endif
+ return status;
+}
+
+psa_status_t psa_validate_key_location(psa_key_lifetime_t lifetime,
+ psa_se_drv_table_entry_t **p_drv)
+{
+ if (psa_key_lifetime_is_external(lifetime)) {
+#if defined(MBEDTLS_PSA_CRYPTO_SE_C)
+ /* Check whether a driver is registered against this lifetime */
+ psa_se_drv_table_entry_t *driver = psa_get_se_driver_entry(lifetime);
+ if (driver != NULL) {
+ if (p_drv != NULL) {
+ *p_drv = driver;
+ }
+ return PSA_SUCCESS;
+ }
+#else /* MBEDTLS_PSA_CRYPTO_SE_C */
+ (void) p_drv;
+#endif /* MBEDTLS_PSA_CRYPTO_SE_C */
+
+ /* Key location for external keys gets checked by the wrapper */
+ return PSA_SUCCESS;
+ } else {
+ /* Local/internal keys are always valid */
+ return PSA_SUCCESS;
+ }
+}
+
+psa_status_t psa_validate_key_persistence(psa_key_lifetime_t lifetime)
+{
+ if (PSA_KEY_LIFETIME_IS_VOLATILE(lifetime)) {
+ /* Volatile keys are always supported */
+ return PSA_SUCCESS;
+ } else {
+ /* Persistent keys require storage support */
+#if defined(MBEDTLS_PSA_CRYPTO_STORAGE_C)
+ if (PSA_KEY_LIFETIME_IS_READ_ONLY(lifetime)) {
+ return PSA_ERROR_INVALID_ARGUMENT;
+ } else {
+ return PSA_SUCCESS;
+ }
+#else /* MBEDTLS_PSA_CRYPTO_STORAGE_C */
+ return PSA_ERROR_NOT_SUPPORTED;
+#endif /* !MBEDTLS_PSA_CRYPTO_STORAGE_C */
+ }
+}
+
+psa_status_t psa_open_key(mbedtls_svc_key_id_t key, psa_key_handle_t *handle)
+{
+#if defined(MBEDTLS_PSA_CRYPTO_STORAGE_C) || \
+ defined(MBEDTLS_PSA_CRYPTO_BUILTIN_KEYS)
+ psa_status_t status;
+ psa_key_slot_t *slot;
+
+ status = psa_get_and_lock_key_slot(key, &slot);
+ if (status != PSA_SUCCESS) {
+ *handle = PSA_KEY_HANDLE_INIT;
+ if (status == PSA_ERROR_INVALID_HANDLE) {
+ status = PSA_ERROR_DOES_NOT_EXIST;
+ }
+
+ return status;
+ }
+
+ *handle = key;
+
+ return psa_unregister_read_under_mutex(slot);
+
+#else /* MBEDTLS_PSA_CRYPTO_STORAGE_C || MBEDTLS_PSA_CRYPTO_BUILTIN_KEYS */
+ (void) key;
+ *handle = PSA_KEY_HANDLE_INIT;
+ return PSA_ERROR_NOT_SUPPORTED;
+#endif /* MBEDTLS_PSA_CRYPTO_STORAGE_C || MBEDTLS_PSA_CRYPTO_BUILTIN_KEYS */
+}
+
+psa_status_t psa_close_key(psa_key_handle_t handle)
+{
+ psa_status_t status = PSA_ERROR_CORRUPTION_DETECTED;
+ psa_key_slot_t *slot;
+
+ if (psa_key_handle_is_null(handle)) {
+ return PSA_SUCCESS;
+ }
+
+#if defined(MBEDTLS_THREADING_C)
+ /* We need to set status as success, otherwise CORRUPTION_DETECTED
+ * would be returned if the lock fails. */
+ status = PSA_SUCCESS;
+ PSA_THREADING_CHK_RET(mbedtls_mutex_lock(
+ &mbedtls_threading_key_slot_mutex));
+#endif
+ status = psa_get_and_lock_key_slot_in_memory(handle, &slot);
+ if (status != PSA_SUCCESS) {
+ if (status == PSA_ERROR_DOES_NOT_EXIST) {
+ status = PSA_ERROR_INVALID_HANDLE;
+ }
+#if defined(MBEDTLS_THREADING_C)
+ PSA_THREADING_CHK_RET(mbedtls_mutex_unlock(
+ &mbedtls_threading_key_slot_mutex));
+#endif
+ return status;
+ }
+
+ if (slot->var.occupied.registered_readers == 1) {
+ status = psa_wipe_key_slot(slot);
+ } else {
+ status = psa_unregister_read(slot);
+ }
+#if defined(MBEDTLS_THREADING_C)
+ PSA_THREADING_CHK_RET(mbedtls_mutex_unlock(
+ &mbedtls_threading_key_slot_mutex));
+#endif
+
+ return status;
+}
+
+psa_status_t psa_purge_key(mbedtls_svc_key_id_t key)
+{
+ psa_status_t status = PSA_ERROR_CORRUPTION_DETECTED;
+ psa_key_slot_t *slot;
+
+#if defined(MBEDTLS_THREADING_C)
+ /* We need to set status as success, otherwise CORRUPTION_DETECTED
+ * would be returned if the lock fails. */
+ status = PSA_SUCCESS;
+ PSA_THREADING_CHK_RET(mbedtls_mutex_lock(
+ &mbedtls_threading_key_slot_mutex));
+#endif
+ status = psa_get_and_lock_key_slot_in_memory(key, &slot);
+ if (status != PSA_SUCCESS) {
+#if defined(MBEDTLS_THREADING_C)
+ PSA_THREADING_CHK_RET(mbedtls_mutex_unlock(
+ &mbedtls_threading_key_slot_mutex));
+#endif
+ return status;
+ }
+
+ if ((!PSA_KEY_LIFETIME_IS_VOLATILE(slot->attr.lifetime)) &&
+ (slot->var.occupied.registered_readers == 1)) {
+ status = psa_wipe_key_slot(slot);
+ } else {
+ status = psa_unregister_read(slot);
+ }
+#if defined(MBEDTLS_THREADING_C)
+ PSA_THREADING_CHK_RET(mbedtls_mutex_unlock(
+ &mbedtls_threading_key_slot_mutex));
+#endif
+
+ return status;
+}
+
+void mbedtls_psa_get_stats(mbedtls_psa_stats_t *stats)
+{
+ memset(stats, 0, sizeof(*stats));
+
+ for (size_t slice_idx = 0; slice_idx < KEY_SLICE_COUNT; slice_idx++) {
+#if defined(MBEDTLS_PSA_KEY_STORE_DYNAMIC)
+ if (global_data.key_slices[slice_idx] == NULL) {
+ continue;
+ }
+#endif /* MBEDTLS_PSA_KEY_STORE_DYNAMIC */
+ for (size_t slot_idx = 0; slot_idx < key_slice_length(slice_idx); slot_idx++) {
+ const psa_key_slot_t *slot = get_key_slot(slice_idx, slot_idx);
+ if (slot->state == PSA_SLOT_EMPTY) {
+ ++stats->empty_slots;
+ continue;
+ }
+ if (psa_key_slot_has_readers(slot)) {
+ ++stats->locked_slots;
+ }
+ if (PSA_KEY_LIFETIME_IS_VOLATILE(slot->attr.lifetime)) {
+ ++stats->volatile_slots;
+ } else {
+ psa_key_id_t id = MBEDTLS_SVC_KEY_ID_GET_KEY_ID(slot->attr.id);
+ ++stats->persistent_slots;
+ if (id > stats->max_open_internal_key_id) {
+ stats->max_open_internal_key_id = id;
+ }
+ }
+ if (PSA_KEY_LIFETIME_GET_LOCATION(slot->attr.lifetime) !=
+ PSA_KEY_LOCATION_LOCAL_STORAGE) {
+ psa_key_id_t id = MBEDTLS_SVC_KEY_ID_GET_KEY_ID(slot->attr.id);
+ ++stats->external_slots;
+ if (id > stats->max_open_external_key_id) {
+ stats->max_open_external_key_id = id;
+ }
+ }
+ }
+ }
+}
+
+#endif /* MBEDTLS_PSA_CRYPTO_C */