diff options
Diffstat (limited to 'thirdparty/mbedtls/library/psa_crypto_slot_management.c')
-rw-r--r-- | thirdparty/mbedtls/library/psa_crypto_slot_management.c | 1131 |
1 files changed, 1131 insertions, 0 deletions
diff --git a/thirdparty/mbedtls/library/psa_crypto_slot_management.c b/thirdparty/mbedtls/library/psa_crypto_slot_management.c new file mode 100644 index 0000000000..9850d8c750 --- /dev/null +++ b/thirdparty/mbedtls/library/psa_crypto_slot_management.c @@ -0,0 +1,1131 @@ +/* + * PSA crypto layer on top of Mbed TLS crypto + */ +/* + * Copyright The Mbed TLS Contributors + * SPDX-License-Identifier: Apache-2.0 OR GPL-2.0-or-later + */ + +#include "common.h" + +#if defined(MBEDTLS_PSA_CRYPTO_C) + +#include "psa/crypto.h" + +#include "psa_crypto_core.h" +#include "psa_crypto_driver_wrappers_no_static.h" +#include "psa_crypto_slot_management.h" +#include "psa_crypto_storage.h" +#if defined(MBEDTLS_PSA_CRYPTO_SE_C) +#include "psa_crypto_se.h" +#endif + +#include <stdlib.h> +#include <string.h> +#include "mbedtls/platform.h" +#if defined(MBEDTLS_THREADING_C) +#include "mbedtls/threading.h" +#endif + + + +/* Make sure we have distinct ranges of key identifiers for distinct + * purposes. */ +MBEDTLS_STATIC_ASSERT(PSA_KEY_ID_USER_MIN < PSA_KEY_ID_USER_MAX, + "Empty user key ID range"); +MBEDTLS_STATIC_ASSERT(PSA_KEY_ID_VENDOR_MIN < PSA_KEY_ID_VENDOR_MAX, + "Empty vendor key ID range"); +MBEDTLS_STATIC_ASSERT(MBEDTLS_PSA_KEY_ID_BUILTIN_MIN < MBEDTLS_PSA_KEY_ID_BUILTIN_MAX, + "Empty builtin key ID range"); +MBEDTLS_STATIC_ASSERT(PSA_KEY_ID_VOLATILE_MIN < PSA_KEY_ID_VOLATILE_MAX, + "Empty volatile key ID range"); + +MBEDTLS_STATIC_ASSERT(PSA_KEY_ID_USER_MAX < PSA_KEY_ID_VENDOR_MIN || + PSA_KEY_ID_VENDOR_MAX < PSA_KEY_ID_USER_MIN, + "Overlap between user key IDs and vendor key IDs"); + +MBEDTLS_STATIC_ASSERT(PSA_KEY_ID_VENDOR_MIN <= MBEDTLS_PSA_KEY_ID_BUILTIN_MIN && + MBEDTLS_PSA_KEY_ID_BUILTIN_MAX <= PSA_KEY_ID_VENDOR_MAX, + "Builtin key identifiers are not in the vendor range"); + +MBEDTLS_STATIC_ASSERT(PSA_KEY_ID_VENDOR_MIN <= PSA_KEY_ID_VOLATILE_MIN && + PSA_KEY_ID_VOLATILE_MAX <= PSA_KEY_ID_VENDOR_MAX, + "Volatile key identifiers are not in the vendor range"); + +MBEDTLS_STATIC_ASSERT(PSA_KEY_ID_VOLATILE_MAX < MBEDTLS_PSA_KEY_ID_BUILTIN_MIN || + MBEDTLS_PSA_KEY_ID_BUILTIN_MAX < PSA_KEY_ID_VOLATILE_MIN, + "Overlap between builtin key IDs and volatile key IDs"); + + + +#if defined(MBEDTLS_PSA_KEY_STORE_DYNAMIC) + +/* Dynamic key store. + * + * The key store consists of multiple slices. + * + * The volatile keys are stored in variable-sized tables called slices. + * Slices are allocated on demand and deallocated when possible. + * The size of slices increases exponentially, so the average overhead + * (number of slots that are allocated but not used) is roughly + * proportional to the number of keys (with a factor that grows + * when the key store is fragmented). + * + * One slice is dedicated to the cache of persistent and built-in keys. + * For simplicity, they are separated from volatile keys. This cache + * slice has a fixed size and has the slice index KEY_SLOT_CACHE_SLICE_INDEX, + * located after the slices for volatile keys. + */ + +/* Size of the last slice containing the cache of persistent and built-in keys. */ +#define PERSISTENT_KEY_CACHE_COUNT MBEDTLS_PSA_KEY_SLOT_COUNT + +/* Volatile keys are stored in slices 0 through + * (KEY_SLOT_VOLATILE_SLICE_COUNT - 1) inclusive. + * Each slice is twice the size of the previous slice. + * Volatile key identifiers encode the slice number as follows: + * bits 30..31: 0b10 (mandated by the PSA Crypto specification). + * bits 25..29: slice index (0...KEY_SLOT_VOLATILE_SLICE_COUNT-1) + * bits 0..24: slot index in slice + */ +#define KEY_ID_SLOT_INDEX_WIDTH 25u +#define KEY_ID_SLICE_INDEX_WIDTH 5u + +#define KEY_SLOT_VOLATILE_SLICE_BASE_LENGTH 16u +#define KEY_SLOT_VOLATILE_SLICE_COUNT 22u +#define KEY_SLICE_COUNT (KEY_SLOT_VOLATILE_SLICE_COUNT + 1u) +#define KEY_SLOT_CACHE_SLICE_INDEX KEY_SLOT_VOLATILE_SLICE_COUNT + + +/* Check that the length of the largest slice (calculated as + * KEY_SLICE_LENGTH_MAX below) does not overflow size_t. We use + * an indirect method in case the calculation of KEY_SLICE_LENGTH_MAX + * itself overflows uintmax_t: if (BASE_LENGTH << c) + * overflows size_t then BASE_LENGTH > SIZE_MAX >> c. + */ +#if (KEY_SLOT_VOLATILE_SLICE_BASE_LENGTH > \ + SIZE_MAX >> (KEY_SLOT_VOLATILE_SLICE_COUNT - 1)) +#error "Maximum slice length overflows size_t" +#endif + +#if KEY_ID_SLICE_INDEX_WIDTH + KEY_ID_SLOT_INDEX_WIDTH > 30 +#error "Not enough room in volatile key IDs for slice index and slot index" +#endif +#if KEY_SLOT_VOLATILE_SLICE_COUNT > (1 << KEY_ID_SLICE_INDEX_WIDTH) +#error "Too many slices to fit the slice index in a volatile key ID" +#endif +#define KEY_SLICE_LENGTH_MAX \ + (KEY_SLOT_VOLATILE_SLICE_BASE_LENGTH << (KEY_SLOT_VOLATILE_SLICE_COUNT - 1)) +#if KEY_SLICE_LENGTH_MAX > 1 << KEY_ID_SLOT_INDEX_WIDTH +#error "Not enough room in volatile key IDs for a slot index in the largest slice" +#endif +#if KEY_ID_SLICE_INDEX_WIDTH > 8 +#error "Slice index does not fit in uint8_t for psa_key_slot_t::slice_index" +#endif + + +/* Calculate the volatile key id to use for a given slot. + * This function assumes valid parameter values. */ +static psa_key_id_t volatile_key_id_of_index(size_t slice_idx, + size_t slot_idx) +{ + /* We assert above that the slice and slot indexes fit in separate + * bit-fields inside psa_key_id_t, which is a 32-bit type per the + * PSA Cryptography specification. */ + return (psa_key_id_t) (0x40000000u | + (slice_idx << KEY_ID_SLOT_INDEX_WIDTH) | + slot_idx); +} + +/* Calculate the slice containing the given volatile key. + * This function assumes valid parameter values. */ +static size_t slice_index_of_volatile_key_id(psa_key_id_t key_id) +{ + size_t mask = (1LU << KEY_ID_SLICE_INDEX_WIDTH) - 1; + return (key_id >> KEY_ID_SLOT_INDEX_WIDTH) & mask; +} + +/* Calculate the index of the slot containing the given volatile key. + * This function assumes valid parameter values. */ +static size_t slot_index_of_volatile_key_id(psa_key_id_t key_id) +{ + return key_id & ((1LU << KEY_ID_SLOT_INDEX_WIDTH) - 1); +} + +/* In global_data.first_free_slot_index, use this special value to + * indicate that the slice is full. */ +#define FREE_SLOT_INDEX_NONE ((size_t) -1) + +#if defined(MBEDTLS_TEST_HOOKS) +size_t psa_key_slot_volatile_slice_count(void) +{ + return KEY_SLOT_VOLATILE_SLICE_COUNT; +} +#endif + +#else /* MBEDTLS_PSA_KEY_STORE_DYNAMIC */ + +/* Static key store. + * + * All the keys (volatile or persistent) are in a single slice. + * We only use slices as a concept to allow some differences between + * static and dynamic key store management to be buried in auxiliary + * functions. + */ + +#define PERSISTENT_KEY_CACHE_COUNT MBEDTLS_PSA_KEY_SLOT_COUNT +#define KEY_SLICE_COUNT 1u +#define KEY_SLOT_CACHE_SLICE_INDEX 0 + +#endif /* MBEDTLS_PSA_KEY_STORE_DYNAMIC */ + + +typedef struct { +#if defined(MBEDTLS_PSA_KEY_STORE_DYNAMIC) + psa_key_slot_t *key_slices[KEY_SLICE_COUNT]; + size_t first_free_slot_index[KEY_SLOT_VOLATILE_SLICE_COUNT]; +#else /* MBEDTLS_PSA_KEY_STORE_DYNAMIC */ + psa_key_slot_t key_slots[MBEDTLS_PSA_KEY_SLOT_COUNT]; +#endif /* MBEDTLS_PSA_KEY_STORE_DYNAMIC */ + uint8_t key_slots_initialized; +} psa_global_data_t; + +static psa_global_data_t global_data; + +static uint8_t psa_get_key_slots_initialized(void) +{ + uint8_t initialized; + +#if defined(MBEDTLS_THREADING_C) + mbedtls_mutex_lock(&mbedtls_threading_psa_globaldata_mutex); +#endif /* defined(MBEDTLS_THREADING_C) */ + + initialized = global_data.key_slots_initialized; + +#if defined(MBEDTLS_THREADING_C) + mbedtls_mutex_unlock(&mbedtls_threading_psa_globaldata_mutex); +#endif /* defined(MBEDTLS_THREADING_C) */ + + return initialized; +} + + + +/** The length of the given slice in the key slot table. + * + * \param slice_idx The slice number. It must satisfy + * 0 <= slice_idx < KEY_SLICE_COUNT. + * + * \return The number of elements in the given slice. + */ +static inline size_t key_slice_length(size_t slice_idx); + +/** Get a pointer to the slot where the given volatile key is located. + * + * \param key_id The key identifier. It must be a valid volatile key + * identifier. + * \return A pointer to the only slot that the given key + * can be in. Note that the slot may be empty or + * contain a different key. + */ +static inline psa_key_slot_t *get_volatile_key_slot(psa_key_id_t key_id); + +/** Get a pointer to an entry in the persistent key cache. + * + * \param slot_idx The index in the table. It must satisfy + * 0 <= slot_idx < PERSISTENT_KEY_CACHE_COUNT. + * \return A pointer to the slot containing the given + * persistent key cache entry. + */ +static inline psa_key_slot_t *get_persistent_key_slot(size_t slot_idx); + +/** Get a pointer to a slot given by slice and index. + * + * \param slice_idx The slice number. It must satisfy + * 0 <= slice_idx < KEY_SLICE_COUNT. + * \param slot_idx An index in the given slice. It must satisfy + * 0 <= slot_idx < key_slice_length(slice_idx). + * + * \return A pointer to the given slot. + */ +static inline psa_key_slot_t *get_key_slot(size_t slice_idx, size_t slot_idx); + +#if defined(MBEDTLS_PSA_KEY_STORE_DYNAMIC) + +#if defined(MBEDTLS_TEST_HOOKS) +size_t (*mbedtls_test_hook_psa_volatile_key_slice_length)(size_t slice_idx) = NULL; +#endif + +static inline size_t key_slice_length(size_t slice_idx) +{ + if (slice_idx == KEY_SLOT_CACHE_SLICE_INDEX) { + return PERSISTENT_KEY_CACHE_COUNT; + } else { +#if defined(MBEDTLS_TEST_HOOKS) + if (mbedtls_test_hook_psa_volatile_key_slice_length != NULL) { + return mbedtls_test_hook_psa_volatile_key_slice_length(slice_idx); + } +#endif + return KEY_SLOT_VOLATILE_SLICE_BASE_LENGTH << slice_idx; + } +} + +static inline psa_key_slot_t *get_volatile_key_slot(psa_key_id_t key_id) +{ + size_t slice_idx = slice_index_of_volatile_key_id(key_id); + if (slice_idx >= KEY_SLOT_VOLATILE_SLICE_COUNT) { + return NULL; + } + size_t slot_idx = slot_index_of_volatile_key_id(key_id); + if (slot_idx >= key_slice_length(slice_idx)) { + return NULL; + } + psa_key_slot_t *slice = global_data.key_slices[slice_idx]; + if (slice == NULL) { + return NULL; + } + return &slice[slot_idx]; +} + +static inline psa_key_slot_t *get_persistent_key_slot(size_t slot_idx) +{ + return &global_data.key_slices[KEY_SLOT_CACHE_SLICE_INDEX][slot_idx]; +} + +static inline psa_key_slot_t *get_key_slot(size_t slice_idx, size_t slot_idx) +{ + return &global_data.key_slices[slice_idx][slot_idx]; +} + +#else /* MBEDTLS_PSA_KEY_STORE_DYNAMIC */ + +static inline size_t key_slice_length(size_t slice_idx) +{ + (void) slice_idx; + return ARRAY_LENGTH(global_data.key_slots); +} + +static inline psa_key_slot_t *get_volatile_key_slot(psa_key_id_t key_id) +{ + MBEDTLS_STATIC_ASSERT(ARRAY_LENGTH(global_data.key_slots) <= + PSA_KEY_ID_VOLATILE_MAX - PSA_KEY_ID_VOLATILE_MIN + 1, + "The key slot array is larger than the volatile key ID range"); + return &global_data.key_slots[key_id - PSA_KEY_ID_VOLATILE_MIN]; +} + +static inline psa_key_slot_t *get_persistent_key_slot(size_t slot_idx) +{ + return &global_data.key_slots[slot_idx]; +} + +static inline psa_key_slot_t *get_key_slot(size_t slice_idx, size_t slot_idx) +{ + (void) slice_idx; + return &global_data.key_slots[slot_idx]; +} + +#endif /* MBEDTLS_PSA_KEY_STORE_DYNAMIC */ + + + +int psa_is_valid_key_id(mbedtls_svc_key_id_t key, int vendor_ok) +{ + psa_key_id_t key_id = MBEDTLS_SVC_KEY_ID_GET_KEY_ID(key); + + if ((PSA_KEY_ID_USER_MIN <= key_id) && + (key_id <= PSA_KEY_ID_USER_MAX)) { + return 1; + } + + if (vendor_ok && + (PSA_KEY_ID_VENDOR_MIN <= key_id) && + (key_id <= PSA_KEY_ID_VENDOR_MAX)) { + return 1; + } + + return 0; +} + +/** Get the description in memory of a key given its identifier and lock it. + * + * The descriptions of volatile keys and loaded persistent keys are + * stored in key slots. This function returns a pointer to the key slot + * containing the description of a key given its identifier. + * + * The function searches the key slots containing the description of the key + * with \p key identifier. The function does only read accesses to the key + * slots. The function does not load any persistent key thus does not access + * any storage. + * + * For volatile key identifiers, only one key slot is queried as a volatile + * key with identifier key_id can only be stored in slot of index + * ( key_id - #PSA_KEY_ID_VOLATILE_MIN ). + * + * On success, the function locks the key slot. It is the responsibility of + * the caller to unlock the key slot when it does not access it anymore. + * + * If multi-threading is enabled, the caller must hold the + * global key slot mutex. + * + * \param key Key identifier to query. + * \param[out] p_slot On success, `*p_slot` contains a pointer to the + * key slot containing the description of the key + * identified by \p key. + * + * \retval #PSA_SUCCESS + * The pointer to the key slot containing the description of the key + * identified by \p key was returned. + * \retval #PSA_ERROR_INVALID_HANDLE + * \p key is not a valid key identifier. + * \retval #PSA_ERROR_DOES_NOT_EXIST + * There is no key with key identifier \p key in the key slots. + */ +static psa_status_t psa_get_and_lock_key_slot_in_memory( + mbedtls_svc_key_id_t key, psa_key_slot_t **p_slot) +{ + psa_status_t status = PSA_ERROR_CORRUPTION_DETECTED; + psa_key_id_t key_id = MBEDTLS_SVC_KEY_ID_GET_KEY_ID(key); + size_t slot_idx; + psa_key_slot_t *slot = NULL; + + if (psa_key_id_is_volatile(key_id)) { + slot = get_volatile_key_slot(key_id); + + /* Check if both the PSA key identifier key_id and the owner + * identifier of key match those of the key slot. */ + if (slot != NULL && + slot->state == PSA_SLOT_FULL && + mbedtls_svc_key_id_equal(key, slot->attr.id)) { + status = PSA_SUCCESS; + } else { + status = PSA_ERROR_DOES_NOT_EXIST; + } + } else { + if (!psa_is_valid_key_id(key, 1)) { + return PSA_ERROR_INVALID_HANDLE; + } + + for (slot_idx = 0; slot_idx < PERSISTENT_KEY_CACHE_COUNT; slot_idx++) { + slot = get_persistent_key_slot(slot_idx); + /* Only consider slots which are in a full state. */ + if ((slot->state == PSA_SLOT_FULL) && + (mbedtls_svc_key_id_equal(key, slot->attr.id))) { + break; + } + } + status = (slot_idx < MBEDTLS_PSA_KEY_SLOT_COUNT) ? + PSA_SUCCESS : PSA_ERROR_DOES_NOT_EXIST; + } + + if (status == PSA_SUCCESS) { + status = psa_register_read(slot); + if (status == PSA_SUCCESS) { + *p_slot = slot; + } + } + + return status; +} + +psa_status_t psa_initialize_key_slots(void) +{ +#if defined(MBEDTLS_PSA_KEY_STORE_DYNAMIC) + global_data.key_slices[KEY_SLOT_CACHE_SLICE_INDEX] = + mbedtls_calloc(PERSISTENT_KEY_CACHE_COUNT, + sizeof(*global_data.key_slices[KEY_SLOT_CACHE_SLICE_INDEX])); + if (global_data.key_slices[KEY_SLOT_CACHE_SLICE_INDEX] == NULL) { + return PSA_ERROR_INSUFFICIENT_MEMORY; + } +#else /* MBEDTLS_PSA_KEY_STORE_DYNAMIC */ + /* Nothing to do: program startup and psa_wipe_all_key_slots() both + * guarantee that the key slots are initialized to all-zero, which + * means that all the key slots are in a valid, empty state. The global + * data mutex is already held when calling this function, so no need to + * lock it here, to set the flag. */ +#endif /* MBEDTLS_PSA_KEY_STORE_DYNAMIC */ + + global_data.key_slots_initialized = 1; + return PSA_SUCCESS; +} + +void psa_wipe_all_key_slots(void) +{ + for (size_t slice_idx = 0; slice_idx < KEY_SLICE_COUNT; slice_idx++) { +#if defined(MBEDTLS_PSA_KEY_STORE_DYNAMIC) + if (global_data.key_slices[slice_idx] == NULL) { + continue; + } +#endif /* MBEDTLS_PSA_KEY_STORE_DYNAMIC */ + for (size_t slot_idx = 0; slot_idx < key_slice_length(slice_idx); slot_idx++) { + psa_key_slot_t *slot = get_key_slot(slice_idx, slot_idx); +#if defined(MBEDTLS_PSA_KEY_STORE_DYNAMIC) + /* When MBEDTLS_PSA_KEY_STORE_DYNAMIC is disabled, calling + * psa_wipe_key_slot() on an unused slot is useless, but it + * happens to work (because we flip the state to PENDING_DELETION). + * + * When MBEDTLS_PSA_KEY_STORE_DYNAMIC is enabled, + * psa_wipe_key_slot() needs to have a valid slice_index + * field, but that value might not be correct in a + * free slot, so we must not call it. + * + * Bypass the call to psa_wipe_key_slot() if the slot is empty, + * but only if MBEDTLS_PSA_KEY_STORE_DYNAMIC is enabled, to save + * a few bytes of code size otherwise. + */ + if (slot->state == PSA_SLOT_EMPTY) { + continue; + } +#endif + slot->var.occupied.registered_readers = 1; + slot->state = PSA_SLOT_PENDING_DELETION; + (void) psa_wipe_key_slot(slot); + } +#if defined(MBEDTLS_PSA_KEY_STORE_DYNAMIC) + mbedtls_free(global_data.key_slices[slice_idx]); + global_data.key_slices[slice_idx] = NULL; +#endif /* MBEDTLS_PSA_KEY_STORE_DYNAMIC */ + } + +#if defined(MBEDTLS_PSA_KEY_STORE_DYNAMIC) + for (size_t slice_idx = 0; slice_idx < KEY_SLOT_VOLATILE_SLICE_COUNT; slice_idx++) { + global_data.first_free_slot_index[slice_idx] = 0; + } +#endif /* MBEDTLS_PSA_KEY_STORE_DYNAMIC */ + + /* The global data mutex is already held when calling this function. */ + global_data.key_slots_initialized = 0; +} + +#if defined(MBEDTLS_PSA_KEY_STORE_DYNAMIC) + +static psa_status_t psa_allocate_volatile_key_slot(psa_key_id_t *key_id, + psa_key_slot_t **p_slot) +{ + size_t slice_idx; + for (slice_idx = 0; slice_idx < KEY_SLOT_VOLATILE_SLICE_COUNT; slice_idx++) { + if (global_data.first_free_slot_index[slice_idx] != FREE_SLOT_INDEX_NONE) { + break; + } + } + if (slice_idx == KEY_SLOT_VOLATILE_SLICE_COUNT) { + return PSA_ERROR_INSUFFICIENT_MEMORY; + } + + if (global_data.key_slices[slice_idx] == NULL) { + global_data.key_slices[slice_idx] = + mbedtls_calloc(key_slice_length(slice_idx), + sizeof(psa_key_slot_t)); + if (global_data.key_slices[slice_idx] == NULL) { + return PSA_ERROR_INSUFFICIENT_MEMORY; + } + } + psa_key_slot_t *slice = global_data.key_slices[slice_idx]; + + size_t slot_idx = global_data.first_free_slot_index[slice_idx]; + *key_id = volatile_key_id_of_index(slice_idx, slot_idx); + + psa_key_slot_t *slot = &slice[slot_idx]; + size_t next_free = slot_idx + 1 + slot->var.free.next_free_relative_to_next; + if (next_free >= key_slice_length(slice_idx)) { + next_free = FREE_SLOT_INDEX_NONE; + } + global_data.first_free_slot_index[slice_idx] = next_free; + /* The .next_free field is not meaningful when the slot is not free, + * so give it the same content as freshly initialized memory. */ + slot->var.free.next_free_relative_to_next = 0; + + psa_status_t status = psa_key_slot_state_transition(slot, + PSA_SLOT_EMPTY, + PSA_SLOT_FILLING); + if (status != PSA_SUCCESS) { + /* The only reason for failure is if the slot state was not empty. + * This indicates that something has gone horribly wrong. + * In this case, we leave the slot out of the free list, and stop + * modifying it. This minimizes any further corruption. The slot + * is a memory leak, but that's a lesser evil. */ + return status; + } + + *p_slot = slot; + /* We assert at compile time that the slice index fits in uint8_t. */ + slot->slice_index = (uint8_t) slice_idx; + return PSA_SUCCESS; +} + +psa_status_t psa_free_key_slot(size_t slice_idx, + psa_key_slot_t *slot) +{ + + if (slice_idx == KEY_SLOT_CACHE_SLICE_INDEX) { + /* This is a cache entry. We don't maintain a free list, so + * there's nothing to do. */ + return PSA_SUCCESS; + } + if (slice_idx >= KEY_SLOT_VOLATILE_SLICE_COUNT) { + return PSA_ERROR_CORRUPTION_DETECTED; + } + + psa_key_slot_t *slice = global_data.key_slices[slice_idx]; + psa_key_slot_t *slice_end = slice + key_slice_length(slice_idx); + if (slot < slice || slot >= slice_end) { + /* The slot isn't actually in the slice! We can't detect that + * condition for sure, because the pointer comparison itself is + * undefined behavior in that case. That same condition makes the + * subtraction to calculate the slot index also UB. + * Give up now to avoid causing further corruption. + */ + return PSA_ERROR_CORRUPTION_DETECTED; + } + size_t slot_idx = slot - slice; + + size_t next_free = global_data.first_free_slot_index[slice_idx]; + if (next_free >= key_slice_length(slice_idx)) { + /* The slot was full. The newly freed slot thus becomes the + * end of the free list. */ + next_free = key_slice_length(slice_idx); + } + global_data.first_free_slot_index[slice_idx] = slot_idx; + slot->var.free.next_free_relative_to_next = + (int32_t) next_free - (int32_t) slot_idx - 1; + + return PSA_SUCCESS; +} +#endif /* MBEDTLS_PSA_KEY_STORE_DYNAMIC */ + +psa_status_t psa_reserve_free_key_slot(psa_key_id_t *volatile_key_id, + psa_key_slot_t **p_slot) +{ + psa_status_t status = PSA_ERROR_CORRUPTION_DETECTED; + size_t slot_idx; + psa_key_slot_t *selected_slot, *unused_persistent_key_slot; + + if (!psa_get_key_slots_initialized()) { + status = PSA_ERROR_BAD_STATE; + goto error; + } + +#if defined(MBEDTLS_PSA_KEY_STORE_DYNAMIC) + if (volatile_key_id != NULL) { + return psa_allocate_volatile_key_slot(volatile_key_id, p_slot); + } +#endif /* MBEDTLS_PSA_KEY_STORE_DYNAMIC */ + + /* With a dynamic key store, allocate an entry in the cache slice, + * applicable only to non-volatile keys that get cached in RAM. + * With a static key store, allocate an entry in the sole slice, + * applicable to all keys. */ + selected_slot = unused_persistent_key_slot = NULL; + for (slot_idx = 0; slot_idx < PERSISTENT_KEY_CACHE_COUNT; slot_idx++) { + psa_key_slot_t *slot = get_key_slot(KEY_SLOT_CACHE_SLICE_INDEX, slot_idx); + if (slot->state == PSA_SLOT_EMPTY) { + selected_slot = slot; + break; + } + + if ((unused_persistent_key_slot == NULL) && + (slot->state == PSA_SLOT_FULL) && + (!psa_key_slot_has_readers(slot)) && + (!PSA_KEY_LIFETIME_IS_VOLATILE(slot->attr.lifetime))) { + unused_persistent_key_slot = slot; + } + } + + /* + * If there is no unused key slot and there is at least one unlocked key + * slot containing the description of a persistent key, recycle the first + * such key slot we encountered. If we later need to operate on the + * persistent key we are evicting now, we will reload its description from + * storage. + */ + if ((selected_slot == NULL) && + (unused_persistent_key_slot != NULL)) { + selected_slot = unused_persistent_key_slot; + psa_register_read(selected_slot); + status = psa_wipe_key_slot(selected_slot); + if (status != PSA_SUCCESS) { + goto error; + } + } + + if (selected_slot != NULL) { + status = psa_key_slot_state_transition(selected_slot, PSA_SLOT_EMPTY, + PSA_SLOT_FILLING); + if (status != PSA_SUCCESS) { + goto error; + } + +#if defined(MBEDTLS_PSA_KEY_STORE_DYNAMIC) + selected_slot->slice_index = KEY_SLOT_CACHE_SLICE_INDEX; +#endif /* MBEDTLS_PSA_KEY_STORE_DYNAMIC */ + +#if !defined(MBEDTLS_PSA_KEY_STORE_DYNAMIC) + if (volatile_key_id != NULL) { + /* Refresh slot_idx, for when the slot is not the original + * selected_slot but rather unused_persistent_key_slot. */ + slot_idx = selected_slot - global_data.key_slots; + *volatile_key_id = PSA_KEY_ID_VOLATILE_MIN + slot_idx; + } +#endif + *p_slot = selected_slot; + + return PSA_SUCCESS; + } + status = PSA_ERROR_INSUFFICIENT_MEMORY; + +error: + *p_slot = NULL; + + return status; +} + +#if defined(MBEDTLS_PSA_CRYPTO_STORAGE_C) +static psa_status_t psa_load_persistent_key_into_slot(psa_key_slot_t *slot) +{ + psa_status_t status = PSA_SUCCESS; + uint8_t *key_data = NULL; + size_t key_data_length = 0; + + status = psa_load_persistent_key(&slot->attr, + &key_data, &key_data_length); + if (status != PSA_SUCCESS) { + goto exit; + } + +#if defined(MBEDTLS_PSA_CRYPTO_SE_C) + /* Special handling is required for loading keys associated with a + * dynamically registered SE interface. */ + const psa_drv_se_t *drv; + psa_drv_se_context_t *drv_context; + if (psa_get_se_driver(slot->attr.lifetime, &drv, &drv_context)) { + psa_se_key_data_storage_t *data; + + if (key_data_length != sizeof(*data)) { + status = PSA_ERROR_DATA_INVALID; + goto exit; + } + data = (psa_se_key_data_storage_t *) key_data; + status = psa_copy_key_material_into_slot( + slot, data->slot_number, sizeof(data->slot_number)); + goto exit; + } +#endif /* MBEDTLS_PSA_CRYPTO_SE_C */ + + status = psa_copy_key_material_into_slot(slot, key_data, key_data_length); + if (status != PSA_SUCCESS) { + goto exit; + } + +exit: + psa_free_persistent_key_data(key_data, key_data_length); + return status; +} +#endif /* MBEDTLS_PSA_CRYPTO_STORAGE_C */ + +#if defined(MBEDTLS_PSA_CRYPTO_BUILTIN_KEYS) + +static psa_status_t psa_load_builtin_key_into_slot(psa_key_slot_t *slot) +{ + psa_status_t status = PSA_ERROR_CORRUPTION_DETECTED; + psa_key_attributes_t attributes = PSA_KEY_ATTRIBUTES_INIT; + psa_key_lifetime_t lifetime = PSA_KEY_LIFETIME_VOLATILE; + psa_drv_slot_number_t slot_number = 0; + size_t key_buffer_size = 0; + size_t key_buffer_length = 0; + + if (!psa_key_id_is_builtin( + MBEDTLS_SVC_KEY_ID_GET_KEY_ID(slot->attr.id))) { + return PSA_ERROR_DOES_NOT_EXIST; + } + + /* Check the platform function to see whether this key actually exists */ + status = mbedtls_psa_platform_get_builtin_key( + slot->attr.id, &lifetime, &slot_number); + if (status != PSA_SUCCESS) { + return status; + } + + /* Set required key attributes to ensure get_builtin_key can retrieve the + * full attributes. */ + psa_set_key_id(&attributes, slot->attr.id); + psa_set_key_lifetime(&attributes, lifetime); + + /* Get the full key attributes from the driver in order to be able to + * calculate the required buffer size. */ + status = psa_driver_wrapper_get_builtin_key( + slot_number, &attributes, + NULL, 0, NULL); + if (status != PSA_ERROR_BUFFER_TOO_SMALL) { + /* Builtin keys cannot be defined by the attributes alone */ + if (status == PSA_SUCCESS) { + status = PSA_ERROR_CORRUPTION_DETECTED; + } + return status; + } + + /* If the key should exist according to the platform, then ask the driver + * what its expected size is. */ + status = psa_driver_wrapper_get_key_buffer_size(&attributes, + &key_buffer_size); + if (status != PSA_SUCCESS) { + return status; + } + + /* Allocate a buffer of the required size and load the builtin key directly + * into the (now properly sized) slot buffer. */ + status = psa_allocate_buffer_to_slot(slot, key_buffer_size); + if (status != PSA_SUCCESS) { + return status; + } + + status = psa_driver_wrapper_get_builtin_key( + slot_number, &attributes, + slot->key.data, slot->key.bytes, &key_buffer_length); + if (status != PSA_SUCCESS) { + goto exit; + } + + /* Copy actual key length and core attributes into the slot on success */ + slot->key.bytes = key_buffer_length; + slot->attr = attributes; +exit: + if (status != PSA_SUCCESS) { + psa_remove_key_data_from_memory(slot); + } + return status; +} +#endif /* MBEDTLS_PSA_CRYPTO_BUILTIN_KEYS */ + +psa_status_t psa_get_and_lock_key_slot(mbedtls_svc_key_id_t key, + psa_key_slot_t **p_slot) +{ + psa_status_t status = PSA_ERROR_CORRUPTION_DETECTED; + + *p_slot = NULL; + if (!psa_get_key_slots_initialized()) { + return PSA_ERROR_BAD_STATE; + } + +#if defined(MBEDTLS_THREADING_C) + /* We need to set status as success, otherwise CORRUPTION_DETECTED + * would be returned if the lock fails. */ + status = PSA_SUCCESS; + /* If the key is persistent and not loaded, we cannot unlock the mutex + * between checking if the key is loaded and setting the slot as FULL, + * as otherwise another thread may load and then destroy the key + * in the meantime. */ + PSA_THREADING_CHK_RET(mbedtls_mutex_lock( + &mbedtls_threading_key_slot_mutex)); +#endif + /* + * On success, the pointer to the slot is passed directly to the caller + * thus no need to unlock the key slot here. + */ + status = psa_get_and_lock_key_slot_in_memory(key, p_slot); + if (status != PSA_ERROR_DOES_NOT_EXIST) { +#if defined(MBEDTLS_THREADING_C) + PSA_THREADING_CHK_RET(mbedtls_mutex_unlock( + &mbedtls_threading_key_slot_mutex)); +#endif + return status; + } + + /* Loading keys from storage requires support for such a mechanism */ +#if defined(MBEDTLS_PSA_CRYPTO_STORAGE_C) || \ + defined(MBEDTLS_PSA_CRYPTO_BUILTIN_KEYS) + + status = psa_reserve_free_key_slot(NULL, p_slot); + if (status != PSA_SUCCESS) { +#if defined(MBEDTLS_THREADING_C) + PSA_THREADING_CHK_RET(mbedtls_mutex_unlock( + &mbedtls_threading_key_slot_mutex)); +#endif + return status; + } + + (*p_slot)->attr.id = key; + (*p_slot)->attr.lifetime = PSA_KEY_LIFETIME_PERSISTENT; + + status = PSA_ERROR_DOES_NOT_EXIST; +#if defined(MBEDTLS_PSA_CRYPTO_BUILTIN_KEYS) + /* Load keys in the 'builtin' range through their own interface */ + status = psa_load_builtin_key_into_slot(*p_slot); +#endif /* MBEDTLS_PSA_CRYPTO_BUILTIN_KEYS */ + +#if defined(MBEDTLS_PSA_CRYPTO_STORAGE_C) + if (status == PSA_ERROR_DOES_NOT_EXIST) { + status = psa_load_persistent_key_into_slot(*p_slot); + } +#endif /* defined(MBEDTLS_PSA_CRYPTO_STORAGE_C) */ + + if (status != PSA_SUCCESS) { + psa_wipe_key_slot(*p_slot); + + /* If the key does not exist, we need to return + * PSA_ERROR_INVALID_HANDLE. */ + if (status == PSA_ERROR_DOES_NOT_EXIST) { + status = PSA_ERROR_INVALID_HANDLE; + } + } else { + /* Add implicit usage flags. */ + psa_extend_key_usage_flags(&(*p_slot)->attr.policy.usage); + + psa_key_slot_state_transition((*p_slot), PSA_SLOT_FILLING, + PSA_SLOT_FULL); + status = psa_register_read(*p_slot); + } + +#else /* MBEDTLS_PSA_CRYPTO_STORAGE_C || MBEDTLS_PSA_CRYPTO_BUILTIN_KEYS */ + status = PSA_ERROR_INVALID_HANDLE; +#endif /* MBEDTLS_PSA_CRYPTO_STORAGE_C || MBEDTLS_PSA_CRYPTO_BUILTIN_KEYS */ + + if (status != PSA_SUCCESS) { + *p_slot = NULL; + } +#if defined(MBEDTLS_THREADING_C) + PSA_THREADING_CHK_RET(mbedtls_mutex_unlock( + &mbedtls_threading_key_slot_mutex)); +#endif + return status; +} + +psa_status_t psa_unregister_read(psa_key_slot_t *slot) +{ + if (slot == NULL) { + return PSA_SUCCESS; + } + if ((slot->state != PSA_SLOT_FULL) && + (slot->state != PSA_SLOT_PENDING_DELETION)) { + return PSA_ERROR_CORRUPTION_DETECTED; + } + + /* If we are the last reader and the slot is marked for deletion, + * we must wipe the slot here. */ + if ((slot->state == PSA_SLOT_PENDING_DELETION) && + (slot->var.occupied.registered_readers == 1)) { + return psa_wipe_key_slot(slot); + } + + if (psa_key_slot_has_readers(slot)) { + slot->var.occupied.registered_readers--; + return PSA_SUCCESS; + } + + /* + * As the return error code may not be handled in case of multiple errors, + * do our best to report if there are no registered readers. Assert with + * MBEDTLS_TEST_HOOK_TEST_ASSERT that there are registered readers: + * if the MBEDTLS_TEST_HOOKS configuration option is enabled and + * the function is called as part of the execution of a test suite, the + * execution of the test suite is stopped in error if the assertion fails. + */ + MBEDTLS_TEST_HOOK_TEST_ASSERT(psa_key_slot_has_readers(slot)); + return PSA_ERROR_CORRUPTION_DETECTED; +} + +psa_status_t psa_unregister_read_under_mutex(psa_key_slot_t *slot) +{ + psa_status_t status = PSA_ERROR_CORRUPTION_DETECTED; +#if defined(MBEDTLS_THREADING_C) + /* We need to set status as success, otherwise CORRUPTION_DETECTED + * would be returned if the lock fails. */ + status = PSA_SUCCESS; + PSA_THREADING_CHK_RET(mbedtls_mutex_lock( + &mbedtls_threading_key_slot_mutex)); +#endif + status = psa_unregister_read(slot); +#if defined(MBEDTLS_THREADING_C) + PSA_THREADING_CHK_RET(mbedtls_mutex_unlock( + &mbedtls_threading_key_slot_mutex)); +#endif + return status; +} + +psa_status_t psa_validate_key_location(psa_key_lifetime_t lifetime, + psa_se_drv_table_entry_t **p_drv) +{ + if (psa_key_lifetime_is_external(lifetime)) { +#if defined(MBEDTLS_PSA_CRYPTO_SE_C) + /* Check whether a driver is registered against this lifetime */ + psa_se_drv_table_entry_t *driver = psa_get_se_driver_entry(lifetime); + if (driver != NULL) { + if (p_drv != NULL) { + *p_drv = driver; + } + return PSA_SUCCESS; + } +#else /* MBEDTLS_PSA_CRYPTO_SE_C */ + (void) p_drv; +#endif /* MBEDTLS_PSA_CRYPTO_SE_C */ + + /* Key location for external keys gets checked by the wrapper */ + return PSA_SUCCESS; + } else { + /* Local/internal keys are always valid */ + return PSA_SUCCESS; + } +} + +psa_status_t psa_validate_key_persistence(psa_key_lifetime_t lifetime) +{ + if (PSA_KEY_LIFETIME_IS_VOLATILE(lifetime)) { + /* Volatile keys are always supported */ + return PSA_SUCCESS; + } else { + /* Persistent keys require storage support */ +#if defined(MBEDTLS_PSA_CRYPTO_STORAGE_C) + if (PSA_KEY_LIFETIME_IS_READ_ONLY(lifetime)) { + return PSA_ERROR_INVALID_ARGUMENT; + } else { + return PSA_SUCCESS; + } +#else /* MBEDTLS_PSA_CRYPTO_STORAGE_C */ + return PSA_ERROR_NOT_SUPPORTED; +#endif /* !MBEDTLS_PSA_CRYPTO_STORAGE_C */ + } +} + +psa_status_t psa_open_key(mbedtls_svc_key_id_t key, psa_key_handle_t *handle) +{ +#if defined(MBEDTLS_PSA_CRYPTO_STORAGE_C) || \ + defined(MBEDTLS_PSA_CRYPTO_BUILTIN_KEYS) + psa_status_t status; + psa_key_slot_t *slot; + + status = psa_get_and_lock_key_slot(key, &slot); + if (status != PSA_SUCCESS) { + *handle = PSA_KEY_HANDLE_INIT; + if (status == PSA_ERROR_INVALID_HANDLE) { + status = PSA_ERROR_DOES_NOT_EXIST; + } + + return status; + } + + *handle = key; + + return psa_unregister_read_under_mutex(slot); + +#else /* MBEDTLS_PSA_CRYPTO_STORAGE_C || MBEDTLS_PSA_CRYPTO_BUILTIN_KEYS */ + (void) key; + *handle = PSA_KEY_HANDLE_INIT; + return PSA_ERROR_NOT_SUPPORTED; +#endif /* MBEDTLS_PSA_CRYPTO_STORAGE_C || MBEDTLS_PSA_CRYPTO_BUILTIN_KEYS */ +} + +psa_status_t psa_close_key(psa_key_handle_t handle) +{ + psa_status_t status = PSA_ERROR_CORRUPTION_DETECTED; + psa_key_slot_t *slot; + + if (psa_key_handle_is_null(handle)) { + return PSA_SUCCESS; + } + +#if defined(MBEDTLS_THREADING_C) + /* We need to set status as success, otherwise CORRUPTION_DETECTED + * would be returned if the lock fails. */ + status = PSA_SUCCESS; + PSA_THREADING_CHK_RET(mbedtls_mutex_lock( + &mbedtls_threading_key_slot_mutex)); +#endif + status = psa_get_and_lock_key_slot_in_memory(handle, &slot); + if (status != PSA_SUCCESS) { + if (status == PSA_ERROR_DOES_NOT_EXIST) { + status = PSA_ERROR_INVALID_HANDLE; + } +#if defined(MBEDTLS_THREADING_C) + PSA_THREADING_CHK_RET(mbedtls_mutex_unlock( + &mbedtls_threading_key_slot_mutex)); +#endif + return status; + } + + if (slot->var.occupied.registered_readers == 1) { + status = psa_wipe_key_slot(slot); + } else { + status = psa_unregister_read(slot); + } +#if defined(MBEDTLS_THREADING_C) + PSA_THREADING_CHK_RET(mbedtls_mutex_unlock( + &mbedtls_threading_key_slot_mutex)); +#endif + + return status; +} + +psa_status_t psa_purge_key(mbedtls_svc_key_id_t key) +{ + psa_status_t status = PSA_ERROR_CORRUPTION_DETECTED; + psa_key_slot_t *slot; + +#if defined(MBEDTLS_THREADING_C) + /* We need to set status as success, otherwise CORRUPTION_DETECTED + * would be returned if the lock fails. */ + status = PSA_SUCCESS; + PSA_THREADING_CHK_RET(mbedtls_mutex_lock( + &mbedtls_threading_key_slot_mutex)); +#endif + status = psa_get_and_lock_key_slot_in_memory(key, &slot); + if (status != PSA_SUCCESS) { +#if defined(MBEDTLS_THREADING_C) + PSA_THREADING_CHK_RET(mbedtls_mutex_unlock( + &mbedtls_threading_key_slot_mutex)); +#endif + return status; + } + + if ((!PSA_KEY_LIFETIME_IS_VOLATILE(slot->attr.lifetime)) && + (slot->var.occupied.registered_readers == 1)) { + status = psa_wipe_key_slot(slot); + } else { + status = psa_unregister_read(slot); + } +#if defined(MBEDTLS_THREADING_C) + PSA_THREADING_CHK_RET(mbedtls_mutex_unlock( + &mbedtls_threading_key_slot_mutex)); +#endif + + return status; +} + +void mbedtls_psa_get_stats(mbedtls_psa_stats_t *stats) +{ + memset(stats, 0, sizeof(*stats)); + + for (size_t slice_idx = 0; slice_idx < KEY_SLICE_COUNT; slice_idx++) { +#if defined(MBEDTLS_PSA_KEY_STORE_DYNAMIC) + if (global_data.key_slices[slice_idx] == NULL) { + continue; + } +#endif /* MBEDTLS_PSA_KEY_STORE_DYNAMIC */ + for (size_t slot_idx = 0; slot_idx < key_slice_length(slice_idx); slot_idx++) { + const psa_key_slot_t *slot = get_key_slot(slice_idx, slot_idx); + if (slot->state == PSA_SLOT_EMPTY) { + ++stats->empty_slots; + continue; + } + if (psa_key_slot_has_readers(slot)) { + ++stats->locked_slots; + } + if (PSA_KEY_LIFETIME_IS_VOLATILE(slot->attr.lifetime)) { + ++stats->volatile_slots; + } else { + psa_key_id_t id = MBEDTLS_SVC_KEY_ID_GET_KEY_ID(slot->attr.id); + ++stats->persistent_slots; + if (id > stats->max_open_internal_key_id) { + stats->max_open_internal_key_id = id; + } + } + if (PSA_KEY_LIFETIME_GET_LOCATION(slot->attr.lifetime) != + PSA_KEY_LOCATION_LOCAL_STORAGE) { + psa_key_id_t id = MBEDTLS_SVC_KEY_ID_GET_KEY_ID(slot->attr.id); + ++stats->external_slots; + if (id > stats->max_open_external_key_id) { + stats->max_open_external_key_id = id; + } + } + } + } +} + +#endif /* MBEDTLS_PSA_CRYPTO_C */ |