summaryrefslogtreecommitdiffstats
path: root/thirdparty/mbedtls/library/rsa_alt_helpers.c
diff options
context:
space:
mode:
Diffstat (limited to 'thirdparty/mbedtls/library/rsa_alt_helpers.c')
-rw-r--r--thirdparty/mbedtls/library/rsa_alt_helpers.c447
1 files changed, 447 insertions, 0 deletions
diff --git a/thirdparty/mbedtls/library/rsa_alt_helpers.c b/thirdparty/mbedtls/library/rsa_alt_helpers.c
new file mode 100644
index 0000000000..5c265a9921
--- /dev/null
+++ b/thirdparty/mbedtls/library/rsa_alt_helpers.c
@@ -0,0 +1,447 @@
+/*
+ * Helper functions for the RSA module
+ *
+ * Copyright The Mbed TLS Contributors
+ * SPDX-License-Identifier: Apache-2.0 OR GPL-2.0-or-later
+ *
+ */
+
+#include "common.h"
+
+#if defined(MBEDTLS_RSA_C)
+
+#include "mbedtls/rsa.h"
+#include "mbedtls/bignum.h"
+#include "rsa_alt_helpers.h"
+
+/*
+ * Compute RSA prime factors from public and private exponents
+ *
+ * Summary of algorithm:
+ * Setting F := lcm(P-1,Q-1), the idea is as follows:
+ *
+ * (a) For any 1 <= X < N with gcd(X,N)=1, we have X^F = 1 modulo N, so X^(F/2)
+ * is a square root of 1 in Z/NZ. Since Z/NZ ~= Z/PZ x Z/QZ by CRT and the
+ * square roots of 1 in Z/PZ and Z/QZ are +1 and -1, this leaves the four
+ * possibilities X^(F/2) = (+-1, +-1). If it happens that X^(F/2) = (-1,+1)
+ * or (+1,-1), then gcd(X^(F/2) + 1, N) will be equal to one of the prime
+ * factors of N.
+ *
+ * (b) If we don't know F/2 but (F/2) * K for some odd (!) K, then the same
+ * construction still applies since (-)^K is the identity on the set of
+ * roots of 1 in Z/NZ.
+ *
+ * The public and private key primitives (-)^E and (-)^D are mutually inverse
+ * bijections on Z/NZ if and only if (-)^(DE) is the identity on Z/NZ, i.e.
+ * if and only if DE - 1 is a multiple of F, say DE - 1 = F * L.
+ * Splitting L = 2^t * K with K odd, we have
+ *
+ * DE - 1 = FL = (F/2) * (2^(t+1)) * K,
+ *
+ * so (F / 2) * K is among the numbers
+ *
+ * (DE - 1) >> 1, (DE - 1) >> 2, ..., (DE - 1) >> ord
+ *
+ * where ord is the order of 2 in (DE - 1).
+ * We can therefore iterate through these numbers apply the construction
+ * of (a) and (b) above to attempt to factor N.
+ *
+ */
+int mbedtls_rsa_deduce_primes(mbedtls_mpi const *N,
+ mbedtls_mpi const *E, mbedtls_mpi const *D,
+ mbedtls_mpi *P, mbedtls_mpi *Q)
+{
+ int ret = 0;
+
+ uint16_t attempt; /* Number of current attempt */
+ uint16_t iter; /* Number of squares computed in the current attempt */
+
+ uint16_t order; /* Order of 2 in DE - 1 */
+
+ mbedtls_mpi T; /* Holds largest odd divisor of DE - 1 */
+ mbedtls_mpi K; /* Temporary holding the current candidate */
+
+ const unsigned char primes[] = { 2,
+ 3, 5, 7, 11, 13, 17, 19, 23,
+ 29, 31, 37, 41, 43, 47, 53, 59,
+ 61, 67, 71, 73, 79, 83, 89, 97,
+ 101, 103, 107, 109, 113, 127, 131, 137,
+ 139, 149, 151, 157, 163, 167, 173, 179,
+ 181, 191, 193, 197, 199, 211, 223, 227,
+ 229, 233, 239, 241, 251 };
+
+ const size_t num_primes = sizeof(primes) / sizeof(*primes);
+
+ if (P == NULL || Q == NULL || P->p != NULL || Q->p != NULL) {
+ return MBEDTLS_ERR_MPI_BAD_INPUT_DATA;
+ }
+
+ if (mbedtls_mpi_cmp_int(N, 0) <= 0 ||
+ mbedtls_mpi_cmp_int(D, 1) <= 0 ||
+ mbedtls_mpi_cmp_mpi(D, N) >= 0 ||
+ mbedtls_mpi_cmp_int(E, 1) <= 0 ||
+ mbedtls_mpi_cmp_mpi(E, N) >= 0) {
+ return MBEDTLS_ERR_MPI_BAD_INPUT_DATA;
+ }
+
+ /*
+ * Initializations and temporary changes
+ */
+
+ mbedtls_mpi_init(&K);
+ mbedtls_mpi_init(&T);
+
+ /* T := DE - 1 */
+ MBEDTLS_MPI_CHK(mbedtls_mpi_mul_mpi(&T, D, E));
+ MBEDTLS_MPI_CHK(mbedtls_mpi_sub_int(&T, &T, 1));
+
+ if ((order = (uint16_t) mbedtls_mpi_lsb(&T)) == 0) {
+ ret = MBEDTLS_ERR_MPI_BAD_INPUT_DATA;
+ goto cleanup;
+ }
+
+ /* After this operation, T holds the largest odd divisor of DE - 1. */
+ MBEDTLS_MPI_CHK(mbedtls_mpi_shift_r(&T, order));
+
+ /*
+ * Actual work
+ */
+
+ /* Skip trying 2 if N == 1 mod 8 */
+ attempt = 0;
+ if (N->p[0] % 8 == 1) {
+ attempt = 1;
+ }
+
+ for (; attempt < num_primes; ++attempt) {
+ MBEDTLS_MPI_CHK(mbedtls_mpi_lset(&K, primes[attempt]));
+
+ /* Check if gcd(K,N) = 1 */
+ MBEDTLS_MPI_CHK(mbedtls_mpi_gcd(P, &K, N));
+ if (mbedtls_mpi_cmp_int(P, 1) != 0) {
+ continue;
+ }
+
+ /* Go through K^T + 1, K^(2T) + 1, K^(4T) + 1, ...
+ * and check whether they have nontrivial GCD with N. */
+ MBEDTLS_MPI_CHK(mbedtls_mpi_exp_mod(&K, &K, &T, N,
+ Q /* temporarily use Q for storing Montgomery
+ * multiplication helper values */));
+
+ for (iter = 1; iter <= order; ++iter) {
+ /* If we reach 1 prematurely, there's no point
+ * in continuing to square K */
+ if (mbedtls_mpi_cmp_int(&K, 1) == 0) {
+ break;
+ }
+
+ MBEDTLS_MPI_CHK(mbedtls_mpi_add_int(&K, &K, 1));
+ MBEDTLS_MPI_CHK(mbedtls_mpi_gcd(P, &K, N));
+
+ if (mbedtls_mpi_cmp_int(P, 1) == 1 &&
+ mbedtls_mpi_cmp_mpi(P, N) == -1) {
+ /*
+ * Have found a nontrivial divisor P of N.
+ * Set Q := N / P.
+ */
+
+ MBEDTLS_MPI_CHK(mbedtls_mpi_div_mpi(Q, NULL, N, P));
+ goto cleanup;
+ }
+
+ MBEDTLS_MPI_CHK(mbedtls_mpi_sub_int(&K, &K, 1));
+ MBEDTLS_MPI_CHK(mbedtls_mpi_mul_mpi(&K, &K, &K));
+ MBEDTLS_MPI_CHK(mbedtls_mpi_mod_mpi(&K, &K, N));
+ }
+
+ /*
+ * If we get here, then either we prematurely aborted the loop because
+ * we reached 1, or K holds primes[attempt]^(DE - 1) mod N, which must
+ * be 1 if D,E,N were consistent.
+ * Check if that's the case and abort if not, to avoid very long,
+ * yet eventually failing, computations if N,D,E were not sane.
+ */
+ if (mbedtls_mpi_cmp_int(&K, 1) != 0) {
+ break;
+ }
+ }
+
+ ret = MBEDTLS_ERR_MPI_BAD_INPUT_DATA;
+
+cleanup:
+
+ mbedtls_mpi_free(&K);
+ mbedtls_mpi_free(&T);
+ return ret;
+}
+
+/*
+ * Given P, Q and the public exponent E, deduce D.
+ * This is essentially a modular inversion.
+ */
+int mbedtls_rsa_deduce_private_exponent(mbedtls_mpi const *P,
+ mbedtls_mpi const *Q,
+ mbedtls_mpi const *E,
+ mbedtls_mpi *D)
+{
+ int ret = 0;
+ mbedtls_mpi K, L;
+
+ if (D == NULL || mbedtls_mpi_cmp_int(D, 0) != 0) {
+ return MBEDTLS_ERR_MPI_BAD_INPUT_DATA;
+ }
+
+ if (mbedtls_mpi_cmp_int(P, 1) <= 0 ||
+ mbedtls_mpi_cmp_int(Q, 1) <= 0 ||
+ mbedtls_mpi_cmp_int(E, 0) == 0) {
+ return MBEDTLS_ERR_MPI_BAD_INPUT_DATA;
+ }
+
+ mbedtls_mpi_init(&K);
+ mbedtls_mpi_init(&L);
+
+ /* Temporarily put K := P-1 and L := Q-1 */
+ MBEDTLS_MPI_CHK(mbedtls_mpi_sub_int(&K, P, 1));
+ MBEDTLS_MPI_CHK(mbedtls_mpi_sub_int(&L, Q, 1));
+
+ /* Temporarily put D := gcd(P-1, Q-1) */
+ MBEDTLS_MPI_CHK(mbedtls_mpi_gcd(D, &K, &L));
+
+ /* K := LCM(P-1, Q-1) */
+ MBEDTLS_MPI_CHK(mbedtls_mpi_mul_mpi(&K, &K, &L));
+ MBEDTLS_MPI_CHK(mbedtls_mpi_div_mpi(&K, NULL, &K, D));
+
+ /* Compute modular inverse of E in LCM(P-1, Q-1) */
+ MBEDTLS_MPI_CHK(mbedtls_mpi_inv_mod(D, E, &K));
+
+cleanup:
+
+ mbedtls_mpi_free(&K);
+ mbedtls_mpi_free(&L);
+
+ return ret;
+}
+
+int mbedtls_rsa_deduce_crt(const mbedtls_mpi *P, const mbedtls_mpi *Q,
+ const mbedtls_mpi *D, mbedtls_mpi *DP,
+ mbedtls_mpi *DQ, mbedtls_mpi *QP)
+{
+ int ret = 0;
+ mbedtls_mpi K;
+ mbedtls_mpi_init(&K);
+
+ /* DP = D mod P-1 */
+ if (DP != NULL) {
+ MBEDTLS_MPI_CHK(mbedtls_mpi_sub_int(&K, P, 1));
+ MBEDTLS_MPI_CHK(mbedtls_mpi_mod_mpi(DP, D, &K));
+ }
+
+ /* DQ = D mod Q-1 */
+ if (DQ != NULL) {
+ MBEDTLS_MPI_CHK(mbedtls_mpi_sub_int(&K, Q, 1));
+ MBEDTLS_MPI_CHK(mbedtls_mpi_mod_mpi(DQ, D, &K));
+ }
+
+ /* QP = Q^{-1} mod P */
+ if (QP != NULL) {
+ MBEDTLS_MPI_CHK(mbedtls_mpi_inv_mod(QP, Q, P));
+ }
+
+cleanup:
+ mbedtls_mpi_free(&K);
+
+ return ret;
+}
+
+/*
+ * Check that core RSA parameters are sane.
+ */
+int mbedtls_rsa_validate_params(const mbedtls_mpi *N, const mbedtls_mpi *P,
+ const mbedtls_mpi *Q, const mbedtls_mpi *D,
+ const mbedtls_mpi *E,
+ int (*f_rng)(void *, unsigned char *, size_t),
+ void *p_rng)
+{
+ int ret = 0;
+ mbedtls_mpi K, L;
+
+ mbedtls_mpi_init(&K);
+ mbedtls_mpi_init(&L);
+
+ /*
+ * Step 1: If PRNG provided, check that P and Q are prime
+ */
+
+#if defined(MBEDTLS_GENPRIME)
+ /*
+ * When generating keys, the strongest security we support aims for an error
+ * rate of at most 2^-100 and we are aiming for the same certainty here as
+ * well.
+ */
+ if (f_rng != NULL && P != NULL &&
+ (ret = mbedtls_mpi_is_prime_ext(P, 50, f_rng, p_rng)) != 0) {
+ ret = MBEDTLS_ERR_RSA_KEY_CHECK_FAILED;
+ goto cleanup;
+ }
+
+ if (f_rng != NULL && Q != NULL &&
+ (ret = mbedtls_mpi_is_prime_ext(Q, 50, f_rng, p_rng)) != 0) {
+ ret = MBEDTLS_ERR_RSA_KEY_CHECK_FAILED;
+ goto cleanup;
+ }
+#else
+ ((void) f_rng);
+ ((void) p_rng);
+#endif /* MBEDTLS_GENPRIME */
+
+ /*
+ * Step 2: Check that 1 < N = P * Q
+ */
+
+ if (P != NULL && Q != NULL && N != NULL) {
+ MBEDTLS_MPI_CHK(mbedtls_mpi_mul_mpi(&K, P, Q));
+ if (mbedtls_mpi_cmp_int(N, 1) <= 0 ||
+ mbedtls_mpi_cmp_mpi(&K, N) != 0) {
+ ret = MBEDTLS_ERR_RSA_KEY_CHECK_FAILED;
+ goto cleanup;
+ }
+ }
+
+ /*
+ * Step 3: Check and 1 < D, E < N if present.
+ */
+
+ if (N != NULL && D != NULL && E != NULL) {
+ if (mbedtls_mpi_cmp_int(D, 1) <= 0 ||
+ mbedtls_mpi_cmp_int(E, 1) <= 0 ||
+ mbedtls_mpi_cmp_mpi(D, N) >= 0 ||
+ mbedtls_mpi_cmp_mpi(E, N) >= 0) {
+ ret = MBEDTLS_ERR_RSA_KEY_CHECK_FAILED;
+ goto cleanup;
+ }
+ }
+
+ /*
+ * Step 4: Check that D, E are inverse modulo P-1 and Q-1
+ */
+
+ if (P != NULL && Q != NULL && D != NULL && E != NULL) {
+ if (mbedtls_mpi_cmp_int(P, 1) <= 0 ||
+ mbedtls_mpi_cmp_int(Q, 1) <= 0) {
+ ret = MBEDTLS_ERR_RSA_KEY_CHECK_FAILED;
+ goto cleanup;
+ }
+
+ /* Compute DE-1 mod P-1 */
+ MBEDTLS_MPI_CHK(mbedtls_mpi_mul_mpi(&K, D, E));
+ MBEDTLS_MPI_CHK(mbedtls_mpi_sub_int(&K, &K, 1));
+ MBEDTLS_MPI_CHK(mbedtls_mpi_sub_int(&L, P, 1));
+ MBEDTLS_MPI_CHK(mbedtls_mpi_mod_mpi(&K, &K, &L));
+ if (mbedtls_mpi_cmp_int(&K, 0) != 0) {
+ ret = MBEDTLS_ERR_RSA_KEY_CHECK_FAILED;
+ goto cleanup;
+ }
+
+ /* Compute DE-1 mod Q-1 */
+ MBEDTLS_MPI_CHK(mbedtls_mpi_mul_mpi(&K, D, E));
+ MBEDTLS_MPI_CHK(mbedtls_mpi_sub_int(&K, &K, 1));
+ MBEDTLS_MPI_CHK(mbedtls_mpi_sub_int(&L, Q, 1));
+ MBEDTLS_MPI_CHK(mbedtls_mpi_mod_mpi(&K, &K, &L));
+ if (mbedtls_mpi_cmp_int(&K, 0) != 0) {
+ ret = MBEDTLS_ERR_RSA_KEY_CHECK_FAILED;
+ goto cleanup;
+ }
+ }
+
+cleanup:
+
+ mbedtls_mpi_free(&K);
+ mbedtls_mpi_free(&L);
+
+ /* Wrap MPI error codes by RSA check failure error code */
+ if (ret != 0 && ret != MBEDTLS_ERR_RSA_KEY_CHECK_FAILED) {
+ ret += MBEDTLS_ERR_RSA_KEY_CHECK_FAILED;
+ }
+
+ return ret;
+}
+
+/*
+ * Check that RSA CRT parameters are in accordance with core parameters.
+ */
+int mbedtls_rsa_validate_crt(const mbedtls_mpi *P, const mbedtls_mpi *Q,
+ const mbedtls_mpi *D, const mbedtls_mpi *DP,
+ const mbedtls_mpi *DQ, const mbedtls_mpi *QP)
+{
+ int ret = 0;
+
+ mbedtls_mpi K, L;
+ mbedtls_mpi_init(&K);
+ mbedtls_mpi_init(&L);
+
+ /* Check that DP - D == 0 mod P - 1 */
+ if (DP != NULL) {
+ if (P == NULL) {
+ ret = MBEDTLS_ERR_RSA_BAD_INPUT_DATA;
+ goto cleanup;
+ }
+
+ MBEDTLS_MPI_CHK(mbedtls_mpi_sub_int(&K, P, 1));
+ MBEDTLS_MPI_CHK(mbedtls_mpi_sub_mpi(&L, DP, D));
+ MBEDTLS_MPI_CHK(mbedtls_mpi_mod_mpi(&L, &L, &K));
+
+ if (mbedtls_mpi_cmp_int(&L, 0) != 0) {
+ ret = MBEDTLS_ERR_RSA_KEY_CHECK_FAILED;
+ goto cleanup;
+ }
+ }
+
+ /* Check that DQ - D == 0 mod Q - 1 */
+ if (DQ != NULL) {
+ if (Q == NULL) {
+ ret = MBEDTLS_ERR_RSA_BAD_INPUT_DATA;
+ goto cleanup;
+ }
+
+ MBEDTLS_MPI_CHK(mbedtls_mpi_sub_int(&K, Q, 1));
+ MBEDTLS_MPI_CHK(mbedtls_mpi_sub_mpi(&L, DQ, D));
+ MBEDTLS_MPI_CHK(mbedtls_mpi_mod_mpi(&L, &L, &K));
+
+ if (mbedtls_mpi_cmp_int(&L, 0) != 0) {
+ ret = MBEDTLS_ERR_RSA_KEY_CHECK_FAILED;
+ goto cleanup;
+ }
+ }
+
+ /* Check that QP * Q - 1 == 0 mod P */
+ if (QP != NULL) {
+ if (P == NULL || Q == NULL) {
+ ret = MBEDTLS_ERR_RSA_BAD_INPUT_DATA;
+ goto cleanup;
+ }
+
+ MBEDTLS_MPI_CHK(mbedtls_mpi_mul_mpi(&K, QP, Q));
+ MBEDTLS_MPI_CHK(mbedtls_mpi_sub_int(&K, &K, 1));
+ MBEDTLS_MPI_CHK(mbedtls_mpi_mod_mpi(&K, &K, P));
+ if (mbedtls_mpi_cmp_int(&K, 0) != 0) {
+ ret = MBEDTLS_ERR_RSA_KEY_CHECK_FAILED;
+ goto cleanup;
+ }
+ }
+
+cleanup:
+
+ /* Wrap MPI error codes by RSA check failure error code */
+ if (ret != 0 &&
+ ret != MBEDTLS_ERR_RSA_KEY_CHECK_FAILED &&
+ ret != MBEDTLS_ERR_RSA_BAD_INPUT_DATA) {
+ ret += MBEDTLS_ERR_RSA_KEY_CHECK_FAILED;
+ }
+
+ mbedtls_mpi_free(&K);
+ mbedtls_mpi_free(&L);
+
+ return ret;
+}
+
+#endif /* MBEDTLS_RSA_C */