diff options
Diffstat (limited to 'thirdparty/oidn/mkl-dnn/src/cpu/simple_sum.cpp')
-rw-r--r-- | thirdparty/oidn/mkl-dnn/src/cpu/simple_sum.cpp | 91 |
1 files changed, 0 insertions, 91 deletions
diff --git a/thirdparty/oidn/mkl-dnn/src/cpu/simple_sum.cpp b/thirdparty/oidn/mkl-dnn/src/cpu/simple_sum.cpp deleted file mode 100644 index f0947573a9..0000000000 --- a/thirdparty/oidn/mkl-dnn/src/cpu/simple_sum.cpp +++ /dev/null @@ -1,91 +0,0 @@ -/******************************************************************************* -* Copyright 2017-2018 Intel Corporation -* -* Licensed under the Apache License, Version 2.0 (the "License"); -* you may not use this file except in compliance with the License. -* You may obtain a copy of the License at -* -* http://www.apache.org/licenses/LICENSE-2.0 -* -* Unless required by applicable law or agreed to in writing, software -* distributed under the License is distributed on an "AS IS" BASIS, -* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -* See the License for the specific language governing permissions and -* limitations under the License. -*******************************************************************************/ - -#include "mkldnn_thread.hpp" - -#include "simple_sum.hpp" - -namespace mkldnn { -namespace impl { -namespace cpu { - -template <data_type_t data_type> -status_t simple_sum_t<data_type>::execute(const exec_ctx_t &ctx) const { - auto output = CTX_OUT_MEM(data_t *, MKLDNN_ARG_DST); - - const memory_desc_wrapper o_d(pd()->dst_md()); - output += o_d.blk_off(0); - - const int num_arrs = pd()->n_inputs(); - const data_t *input_ptrs[max_num_arrs]; - const size_t nelems = o_d.nelems(); - - for (int a = 0; a < num_arrs; ++a) { - const memory_desc_wrapper i_d(pd()->src_md(a)); - input_ptrs[a] = CTX_IN_MEM(const data_t *, MKLDNN_ARG_MULTIPLE_SRC + a) - + i_d.blk_off(0); - } - - const size_t block_size = 16 * 1024 / sizeof(data_type); - const size_t blocks_number = nelems / block_size; - const size_t tail = nelems % block_size; - - const auto scales = pd()->scales(); - parallel(0, [&](const int ithr, const int nthr) { - size_t start{0}, end{0}; - balance211(blocks_number, nthr, ithr, start, end); - - for (size_t nb = start; nb < end; ++nb) { - size_t start_e = nb * block_size; - size_t end_e = start_e + block_size; - - PRAGMA_OMP_SIMD() - for (size_t e = start_e; e < end_e; e++) { - output[e] = data_t(scales[0] * input_ptrs[0][e]); - } - for (int a = 1; a < num_arrs; a++) { - PRAGMA_OMP_SIMD() - for (size_t e = start_e; e < end_e; e++) { - output[e] += data_t(scales[a] * input_ptrs[a][e]); - } - } - } - - if (tail != 0 && ithr == nthr - 1) { - size_t start_e = nelems - tail; - size_t end_e = nelems; - - PRAGMA_OMP_SIMD() - for (size_t e = start_e; e < end_e; e++) { - output[e] = data_t(scales[0] * input_ptrs[0][e]); - } - for (int a = 1; a < num_arrs; a++) { - PRAGMA_OMP_SIMD() - for (size_t e = start_e; e < end_e; e++) { - output[e] += data_t(scales[a] * input_ptrs[a][e]); - } - } - } - }); - - return status::success; -} - -template struct simple_sum_t<data_type::f32>; - -} -} -} |