diff options
Diffstat (limited to 'thirdparty/spirv-cross/spirv_common.hpp')
-rw-r--r-- | thirdparty/spirv-cross/spirv_common.hpp | 1943 |
1 files changed, 1943 insertions, 0 deletions
diff --git a/thirdparty/spirv-cross/spirv_common.hpp b/thirdparty/spirv-cross/spirv_common.hpp new file mode 100644 index 0000000000..93b2669770 --- /dev/null +++ b/thirdparty/spirv-cross/spirv_common.hpp @@ -0,0 +1,1943 @@ +/* + * Copyright 2015-2021 Arm Limited + * SPDX-License-Identifier: Apache-2.0 OR MIT + * + * Licensed under the Apache License, Version 2.0 (the "License"); + * you may not use this file except in compliance with the License. + * You may obtain a copy of the License at + * + * http://www.apache.org/licenses/LICENSE-2.0 + * + * Unless required by applicable law or agreed to in writing, software + * distributed under the License is distributed on an "AS IS" BASIS, + * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + * See the License for the specific language governing permissions and + * limitations under the License. + */ + +/* + * At your option, you may choose to accept this material under either: + * 1. The Apache License, Version 2.0, found at <http://www.apache.org/licenses/LICENSE-2.0>, or + * 2. The MIT License, found at <http://opensource.org/licenses/MIT>. + */ + +#ifndef SPIRV_CROSS_COMMON_HPP +#define SPIRV_CROSS_COMMON_HPP + +#ifndef SPV_ENABLE_UTILITY_CODE +#define SPV_ENABLE_UTILITY_CODE +#endif +#include "spirv.hpp" + +#include "spirv_cross_containers.hpp" +#include "spirv_cross_error_handling.hpp" +#include <functional> + +// A bit crude, but allows projects which embed SPIRV-Cross statically to +// effectively hide all the symbols from other projects. +// There is a case where we have: +// - Project A links against SPIRV-Cross statically. +// - Project A links against Project B statically. +// - Project B links against SPIRV-Cross statically (might be a different version). +// This leads to a conflict with extremely bizarre results. +// By overriding the namespace in one of the project builds, we can work around this. +// If SPIRV-Cross is embedded in dynamic libraries, +// prefer using -fvisibility=hidden on GCC/Clang instead. +#ifdef SPIRV_CROSS_NAMESPACE_OVERRIDE +#define SPIRV_CROSS_NAMESPACE SPIRV_CROSS_NAMESPACE_OVERRIDE +#else +#define SPIRV_CROSS_NAMESPACE spirv_cross +#endif + +namespace SPIRV_CROSS_NAMESPACE +{ +namespace inner +{ +template <typename T> +void join_helper(StringStream<> &stream, T &&t) +{ + stream << std::forward<T>(t); +} + +template <typename T, typename... Ts> +void join_helper(StringStream<> &stream, T &&t, Ts &&... ts) +{ + stream << std::forward<T>(t); + join_helper(stream, std::forward<Ts>(ts)...); +} +} // namespace inner + +class Bitset +{ +public: + Bitset() = default; + explicit inline Bitset(uint64_t lower_) + : lower(lower_) + { + } + + inline bool get(uint32_t bit) const + { + if (bit < 64) + return (lower & (1ull << bit)) != 0; + else + return higher.count(bit) != 0; + } + + inline void set(uint32_t bit) + { + if (bit < 64) + lower |= 1ull << bit; + else + higher.insert(bit); + } + + inline void clear(uint32_t bit) + { + if (bit < 64) + lower &= ~(1ull << bit); + else + higher.erase(bit); + } + + inline uint64_t get_lower() const + { + return lower; + } + + inline void reset() + { + lower = 0; + higher.clear(); + } + + inline void merge_and(const Bitset &other) + { + lower &= other.lower; + std::unordered_set<uint32_t> tmp_set; + for (auto &v : higher) + if (other.higher.count(v) != 0) + tmp_set.insert(v); + higher = std::move(tmp_set); + } + + inline void merge_or(const Bitset &other) + { + lower |= other.lower; + for (auto &v : other.higher) + higher.insert(v); + } + + inline bool operator==(const Bitset &other) const + { + if (lower != other.lower) + return false; + + if (higher.size() != other.higher.size()) + return false; + + for (auto &v : higher) + if (other.higher.count(v) == 0) + return false; + + return true; + } + + inline bool operator!=(const Bitset &other) const + { + return !(*this == other); + } + + template <typename Op> + void for_each_bit(const Op &op) const + { + // TODO: Add ctz-based iteration. + for (uint32_t i = 0; i < 64; i++) + { + if (lower & (1ull << i)) + op(i); + } + + if (higher.empty()) + return; + + // Need to enforce an order here for reproducible results, + // but hitting this path should happen extremely rarely, so having this slow path is fine. + SmallVector<uint32_t> bits; + bits.reserve(higher.size()); + for (auto &v : higher) + bits.push_back(v); + std::sort(std::begin(bits), std::end(bits)); + + for (auto &v : bits) + op(v); + } + + inline bool empty() const + { + return lower == 0 && higher.empty(); + } + +private: + // The most common bits to set are all lower than 64, + // so optimize for this case. Bits spilling outside 64 go into a slower data structure. + // In almost all cases, higher data structure will not be used. + uint64_t lower = 0; + std::unordered_set<uint32_t> higher; +}; + +// Helper template to avoid lots of nasty string temporary munging. +template <typename... Ts> +std::string join(Ts &&... ts) +{ + StringStream<> stream; + inner::join_helper(stream, std::forward<Ts>(ts)...); + return stream.str(); +} + +inline std::string merge(const SmallVector<std::string> &list, const char *between = ", ") +{ + StringStream<> stream; + for (auto &elem : list) + { + stream << elem; + if (&elem != &list.back()) + stream << between; + } + return stream.str(); +} + +// Make sure we don't accidentally call this with float or doubles with SFINAE. +// Have to use the radix-aware overload. +template <typename T, typename std::enable_if<!std::is_floating_point<T>::value, int>::type = 0> +inline std::string convert_to_string(const T &t) +{ + return std::to_string(t); +} + +static inline std::string convert_to_string(int32_t value) +{ + // INT_MIN is ... special on some backends. If we use a decimal literal, and negate it, we + // could accidentally promote the literal to long first, then negate. + // To workaround it, emit int(0x80000000) instead. + if (value == (std::numeric_limits<int32_t>::min)()) + return "int(0x80000000)"; + else + return std::to_string(value); +} + +static inline std::string convert_to_string(int64_t value, const std::string &int64_type, bool long_long_literal_suffix) +{ + // INT64_MIN is ... special on some backends. + // If we use a decimal literal, and negate it, we might overflow the representable numbers. + // To workaround it, emit int(0x80000000) instead. + if (value == (std::numeric_limits<int64_t>::min)()) + return join(int64_type, "(0x8000000000000000u", (long_long_literal_suffix ? "ll" : "l"), ")"); + else + return std::to_string(value) + (long_long_literal_suffix ? "ll" : "l"); +} + +// Allow implementations to set a convenient standard precision +#ifndef SPIRV_CROSS_FLT_FMT +#define SPIRV_CROSS_FLT_FMT "%.32g" +#endif + +// Disable sprintf and strcat warnings. +// We cannot rely on snprintf and family existing because, ..., MSVC. +#if defined(__clang__) || defined(__GNUC__) +#pragma GCC diagnostic push +#pragma GCC diagnostic ignored "-Wdeprecated-declarations" +#elif defined(_MSC_VER) +#pragma warning(push) +#pragma warning(disable : 4996) +#endif + +static inline void fixup_radix_point(char *str, char radix_point) +{ + // Setting locales is a very risky business in multi-threaded program, + // so just fixup locales instead. We only need to care about the radix point. + if (radix_point != '.') + { + while (*str != '\0') + { + if (*str == radix_point) + *str = '.'; + str++; + } + } +} + +inline std::string convert_to_string(float t, char locale_radix_point) +{ + // std::to_string for floating point values is broken. + // Fallback to something more sane. + char buf[64]; + sprintf(buf, SPIRV_CROSS_FLT_FMT, t); + fixup_radix_point(buf, locale_radix_point); + + // Ensure that the literal is float. + if (!strchr(buf, '.') && !strchr(buf, 'e')) + strcat(buf, ".0"); + return buf; +} + +inline std::string convert_to_string(double t, char locale_radix_point) +{ + // std::to_string for floating point values is broken. + // Fallback to something more sane. + char buf[64]; + sprintf(buf, SPIRV_CROSS_FLT_FMT, t); + fixup_radix_point(buf, locale_radix_point); + + // Ensure that the literal is float. + if (!strchr(buf, '.') && !strchr(buf, 'e')) + strcat(buf, ".0"); + return buf; +} + +#if defined(__clang__) || defined(__GNUC__) +#pragma GCC diagnostic pop +#elif defined(_MSC_VER) +#pragma warning(pop) +#endif + +class FloatFormatter +{ +public: + virtual ~FloatFormatter() = default; + virtual std::string format_float(float value) = 0; + virtual std::string format_double(double value) = 0; +}; + +template <typename T> +struct ValueSaver +{ + explicit ValueSaver(T ¤t_) + : current(current_) + , saved(current_) + { + } + + void release() + { + current = saved; + } + + ~ValueSaver() + { + release(); + } + + T ¤t; + T saved; +}; + +struct Instruction +{ + uint16_t op = 0; + uint16_t count = 0; + // If offset is 0 (not a valid offset into the instruction stream), + // we have an instruction stream which is embedded in the object. + uint32_t offset = 0; + uint32_t length = 0; + + inline bool is_embedded() const + { + return offset == 0; + } +}; + +struct EmbeddedInstruction : Instruction +{ + SmallVector<uint32_t> ops; +}; + +enum Types +{ + TypeNone, + TypeType, + TypeVariable, + TypeConstant, + TypeFunction, + TypeFunctionPrototype, + TypeBlock, + TypeExtension, + TypeExpression, + TypeConstantOp, + TypeCombinedImageSampler, + TypeAccessChain, + TypeUndef, + TypeString, + TypeCount +}; + +template <Types type> +class TypedID; + +template <> +class TypedID<TypeNone> +{ +public: + TypedID() = default; + TypedID(uint32_t id_) + : id(id_) + { + } + + template <Types U> + TypedID(const TypedID<U> &other) + { + *this = other; + } + + template <Types U> + TypedID &operator=(const TypedID<U> &other) + { + id = uint32_t(other); + return *this; + } + + // Implicit conversion to u32 is desired here. + // As long as we block implicit conversion between TypedID<A> and TypedID<B> we're good. + operator uint32_t() const + { + return id; + } + + template <Types U> + operator TypedID<U>() const + { + return TypedID<U>(*this); + } + +private: + uint32_t id = 0; +}; + +template <Types type> +class TypedID +{ +public: + TypedID() = default; + TypedID(uint32_t id_) + : id(id_) + { + } + + explicit TypedID(const TypedID<TypeNone> &other) + : id(uint32_t(other)) + { + } + + operator uint32_t() const + { + return id; + } + +private: + uint32_t id = 0; +}; + +using VariableID = TypedID<TypeVariable>; +using TypeID = TypedID<TypeType>; +using ConstantID = TypedID<TypeConstant>; +using FunctionID = TypedID<TypeFunction>; +using BlockID = TypedID<TypeBlock>; +using ID = TypedID<TypeNone>; + +// Helper for Variant interface. +struct IVariant +{ + virtual ~IVariant() = default; + virtual IVariant *clone(ObjectPoolBase *pool) = 0; + ID self = 0; + +protected: + IVariant() = default; + IVariant(const IVariant&) = default; + IVariant &operator=(const IVariant&) = default; +}; + +#define SPIRV_CROSS_DECLARE_CLONE(T) \ + IVariant *clone(ObjectPoolBase *pool) override \ + { \ + return static_cast<ObjectPool<T> *>(pool)->allocate(*this); \ + } + +struct SPIRUndef : IVariant +{ + enum + { + type = TypeUndef + }; + + explicit SPIRUndef(TypeID basetype_) + : basetype(basetype_) + { + } + TypeID basetype; + + SPIRV_CROSS_DECLARE_CLONE(SPIRUndef) +}; + +struct SPIRString : IVariant +{ + enum + { + type = TypeString + }; + + explicit SPIRString(std::string str_) + : str(std::move(str_)) + { + } + + std::string str; + + SPIRV_CROSS_DECLARE_CLONE(SPIRString) +}; + +// This type is only used by backends which need to access the combined image and sampler IDs separately after +// the OpSampledImage opcode. +struct SPIRCombinedImageSampler : IVariant +{ + enum + { + type = TypeCombinedImageSampler + }; + SPIRCombinedImageSampler(TypeID type_, VariableID image_, VariableID sampler_) + : combined_type(type_) + , image(image_) + , sampler(sampler_) + { + } + TypeID combined_type; + VariableID image; + VariableID sampler; + + SPIRV_CROSS_DECLARE_CLONE(SPIRCombinedImageSampler) +}; + +struct SPIRConstantOp : IVariant +{ + enum + { + type = TypeConstantOp + }; + + SPIRConstantOp(TypeID result_type, spv::Op op, const uint32_t *args, uint32_t length) + : opcode(op) + , basetype(result_type) + { + arguments.reserve(length); + for (uint32_t i = 0; i < length; i++) + arguments.push_back(args[i]); + } + + spv::Op opcode; + SmallVector<uint32_t> arguments; + TypeID basetype; + + SPIRV_CROSS_DECLARE_CLONE(SPIRConstantOp) +}; + +struct SPIRType : IVariant +{ + enum + { + type = TypeType + }; + + spv::Op op = spv::Op::OpNop; + explicit SPIRType(spv::Op op_) : op(op_) {} + + enum BaseType + { + Unknown, + Void, + Boolean, + SByte, + UByte, + Short, + UShort, + Int, + UInt, + Int64, + UInt64, + AtomicCounter, + Half, + Float, + Double, + Struct, + Image, + SampledImage, + Sampler, + AccelerationStructure, + RayQuery, + + // Keep internal types at the end. + ControlPointArray, + Interpolant, + Char + }; + + // Scalar/vector/matrix support. + BaseType basetype = Unknown; + uint32_t width = 0; + uint32_t vecsize = 1; + uint32_t columns = 1; + + // Arrays, support array of arrays by having a vector of array sizes. + SmallVector<uint32_t> array; + + // Array elements can be either specialization constants or specialization ops. + // This array determines how to interpret the array size. + // If an element is true, the element is a literal, + // otherwise, it's an expression, which must be resolved on demand. + // The actual size is not really known until runtime. + SmallVector<bool> array_size_literal; + + // Pointers + // Keep track of how many pointer layers we have. + uint32_t pointer_depth = 0; + bool pointer = false; + bool forward_pointer = false; + + spv::StorageClass storage = spv::StorageClassGeneric; + + SmallVector<TypeID> member_types; + + // If member order has been rewritten to handle certain scenarios with Offset, + // allow codegen to rewrite the index. + SmallVector<uint32_t> member_type_index_redirection; + + struct ImageType + { + TypeID type; + spv::Dim dim; + bool depth; + bool arrayed; + bool ms; + uint32_t sampled; + spv::ImageFormat format; + spv::AccessQualifier access; + } image = {}; + + // Structs can be declared multiple times if they are used as part of interface blocks. + // We want to detect this so that we only emit the struct definition once. + // Since we cannot rely on OpName to be equal, we need to figure out aliases. + TypeID type_alias = 0; + + // Denotes the type which this type is based on. + // Allows the backend to traverse how a complex type is built up during access chains. + TypeID parent_type = 0; + + // Used in backends to avoid emitting members with conflicting names. + std::unordered_set<std::string> member_name_cache; + + SPIRV_CROSS_DECLARE_CLONE(SPIRType) +}; + +struct SPIRExtension : IVariant +{ + enum + { + type = TypeExtension + }; + + enum Extension + { + Unsupported, + GLSL, + SPV_debug_info, + SPV_AMD_shader_ballot, + SPV_AMD_shader_explicit_vertex_parameter, + SPV_AMD_shader_trinary_minmax, + SPV_AMD_gcn_shader, + NonSemanticDebugPrintf, + NonSemanticShaderDebugInfo, + NonSemanticGeneric + }; + + explicit SPIRExtension(Extension ext_) + : ext(ext_) + { + } + + Extension ext; + SPIRV_CROSS_DECLARE_CLONE(SPIRExtension) +}; + +// SPIREntryPoint is not a variant since its IDs are used to decorate OpFunction, +// so in order to avoid conflicts, we can't stick them in the ids array. +struct SPIREntryPoint +{ + SPIREntryPoint(FunctionID self_, spv::ExecutionModel execution_model, const std::string &entry_name) + : self(self_) + , name(entry_name) + , orig_name(entry_name) + , model(execution_model) + { + } + SPIREntryPoint() = default; + + FunctionID self = 0; + std::string name; + std::string orig_name; + SmallVector<VariableID> interface_variables; + + Bitset flags; + struct WorkgroupSize + { + uint32_t x = 0, y = 0, z = 0; + uint32_t id_x = 0, id_y = 0, id_z = 0; + uint32_t constant = 0; // Workgroup size can be expressed as a constant/spec-constant instead. + } workgroup_size; + uint32_t invocations = 0; + uint32_t output_vertices = 0; + uint32_t output_primitives = 0; + spv::ExecutionModel model = spv::ExecutionModelMax; + bool geometry_passthrough = false; +}; + +struct SPIRExpression : IVariant +{ + enum + { + type = TypeExpression + }; + + // Only created by the backend target to avoid creating tons of temporaries. + SPIRExpression(std::string expr, TypeID expression_type_, bool immutable_) + : expression(std::move(expr)) + , expression_type(expression_type_) + , immutable(immutable_) + { + } + + // If non-zero, prepend expression with to_expression(base_expression). + // Used in amortizing multiple calls to to_expression() + // where in certain cases that would quickly force a temporary when not needed. + ID base_expression = 0; + + std::string expression; + TypeID expression_type = 0; + + // If this expression is a forwarded load, + // allow us to reference the original variable. + ID loaded_from = 0; + + // If this expression will never change, we can avoid lots of temporaries + // in high level source. + // An expression being immutable can be speculative, + // it is assumed that this is true almost always. + bool immutable = false; + + // Before use, this expression must be transposed. + // This is needed for targets which don't support row_major layouts. + bool need_transpose = false; + + // Whether or not this is an access chain expression. + bool access_chain = false; + + // Whether or not gl_MeshVerticesEXT[].gl_Position (as a whole or .y) is referenced + bool access_meshlet_position_y = false; + + // A list of expressions which this expression depends on. + SmallVector<ID> expression_dependencies; + + // By reading this expression, we implicitly read these expressions as well. + // Used by access chain Store and Load since we read multiple expressions in this case. + SmallVector<ID> implied_read_expressions; + + // The expression was emitted at a certain scope. Lets us track when an expression read means multiple reads. + uint32_t emitted_loop_level = 0; + + SPIRV_CROSS_DECLARE_CLONE(SPIRExpression) +}; + +struct SPIRFunctionPrototype : IVariant +{ + enum + { + type = TypeFunctionPrototype + }; + + explicit SPIRFunctionPrototype(TypeID return_type_) + : return_type(return_type_) + { + } + + TypeID return_type; + SmallVector<uint32_t> parameter_types; + + SPIRV_CROSS_DECLARE_CLONE(SPIRFunctionPrototype) +}; + +struct SPIRBlock : IVariant +{ + enum + { + type = TypeBlock + }; + + enum Terminator + { + Unknown, + Direct, // Emit next block directly without a particular condition. + + Select, // Block ends with an if/else block. + MultiSelect, // Block ends with switch statement. + + Return, // Block ends with return. + Unreachable, // Noop + Kill, // Discard + IgnoreIntersection, // Ray Tracing + TerminateRay, // Ray Tracing + EmitMeshTasks // Mesh shaders + }; + + enum Merge + { + MergeNone, + MergeLoop, + MergeSelection + }; + + enum Hints + { + HintNone, + HintUnroll, + HintDontUnroll, + HintFlatten, + HintDontFlatten + }; + + enum Method + { + MergeToSelectForLoop, + MergeToDirectForLoop, + MergeToSelectContinueForLoop + }; + + enum ContinueBlockType + { + ContinueNone, + + // Continue block is branchless and has at least one instruction. + ForLoop, + + // Noop continue block. + WhileLoop, + + // Continue block is conditional. + DoWhileLoop, + + // Highly unlikely that anything will use this, + // since it is really awkward/impossible to express in GLSL. + ComplexLoop + }; + + enum : uint32_t + { + NoDominator = 0xffffffffu + }; + + Terminator terminator = Unknown; + Merge merge = MergeNone; + Hints hint = HintNone; + BlockID next_block = 0; + BlockID merge_block = 0; + BlockID continue_block = 0; + + ID return_value = 0; // If 0, return nothing (void). + ID condition = 0; + BlockID true_block = 0; + BlockID false_block = 0; + BlockID default_block = 0; + + // If terminator is EmitMeshTasksEXT. + struct + { + ID groups[3]; + ID payload; + } mesh = {}; + + SmallVector<Instruction> ops; + + struct Phi + { + ID local_variable; // flush local variable ... + BlockID parent; // If we're in from_block and want to branch into this block ... + VariableID function_variable; // to this function-global "phi" variable first. + }; + + // Before entering this block flush out local variables to magical "phi" variables. + SmallVector<Phi> phi_variables; + + // Declare these temporaries before beginning the block. + // Used for handling complex continue blocks which have side effects. + SmallVector<std::pair<TypeID, ID>> declare_temporary; + + // Declare these temporaries, but only conditionally if this block turns out to be + // a complex loop header. + SmallVector<std::pair<TypeID, ID>> potential_declare_temporary; + + struct Case + { + uint64_t value; + BlockID block; + }; + SmallVector<Case> cases_32bit; + SmallVector<Case> cases_64bit; + + // If we have tried to optimize code for this block but failed, + // keep track of this. + bool disable_block_optimization = false; + + // If the continue block is complex, fallback to "dumb" for loops. + bool complex_continue = false; + + // Do we need a ladder variable to defer breaking out of a loop construct after a switch block? + bool need_ladder_break = false; + + // If marked, we have explicitly handled Phi from this block, so skip any flushes related to that on a branch. + // Used to handle an edge case with switch and case-label fallthrough where fall-through writes to Phi. + BlockID ignore_phi_from_block = 0; + + // The dominating block which this block might be within. + // Used in continue; blocks to determine if we really need to write continue. + BlockID loop_dominator = 0; + + // All access to these variables are dominated by this block, + // so before branching anywhere we need to make sure that we declare these variables. + SmallVector<VariableID> dominated_variables; + + // These are variables which should be declared in a for loop header, if we + // fail to use a classic for-loop, + // we remove these variables, and fall back to regular variables outside the loop. + SmallVector<VariableID> loop_variables; + + // Some expressions are control-flow dependent, i.e. any instruction which relies on derivatives or + // sub-group-like operations. + // Make sure that we only use these expressions in the original block. + SmallVector<ID> invalidate_expressions; + + SPIRV_CROSS_DECLARE_CLONE(SPIRBlock) +}; + +struct SPIRFunction : IVariant +{ + enum + { + type = TypeFunction + }; + + SPIRFunction(TypeID return_type_, TypeID function_type_) + : return_type(return_type_) + , function_type(function_type_) + { + } + + struct Parameter + { + TypeID type; + ID id; + uint32_t read_count; + uint32_t write_count; + + // Set to true if this parameter aliases a global variable, + // used mostly in Metal where global variables + // have to be passed down to functions as regular arguments. + // However, for this kind of variable, we should not care about + // read and write counts as access to the function arguments + // is not local to the function in question. + bool alias_global_variable; + }; + + // When calling a function, and we're remapping separate image samplers, + // resolve these arguments into combined image samplers and pass them + // as additional arguments in this order. + // It gets more complicated as functions can pull in their own globals + // and combine them with parameters, + // so we need to distinguish if something is local parameter index + // or a global ID. + struct CombinedImageSamplerParameter + { + VariableID id; + VariableID image_id; + VariableID sampler_id; + bool global_image; + bool global_sampler; + bool depth; + }; + + TypeID return_type; + TypeID function_type; + SmallVector<Parameter> arguments; + + // Can be used by backends to add magic arguments. + // Currently used by combined image/sampler implementation. + + SmallVector<Parameter> shadow_arguments; + SmallVector<VariableID> local_variables; + BlockID entry_block = 0; + SmallVector<BlockID> blocks; + SmallVector<CombinedImageSamplerParameter> combined_parameters; + + struct EntryLine + { + uint32_t file_id = 0; + uint32_t line_literal = 0; + }; + EntryLine entry_line; + + void add_local_variable(VariableID id) + { + local_variables.push_back(id); + } + + void add_parameter(TypeID parameter_type, ID id, bool alias_global_variable = false) + { + // Arguments are read-only until proven otherwise. + arguments.push_back({ parameter_type, id, 0u, 0u, alias_global_variable }); + } + + // Hooks to be run when the function returns. + // Mostly used for lowering internal data structures onto flattened structures. + // Need to defer this, because they might rely on things which change during compilation. + // Intentionally not a small vector, this one is rare, and std::function can be large. + Vector<std::function<void()>> fixup_hooks_out; + + // Hooks to be run when the function begins. + // Mostly used for populating internal data structures from flattened structures. + // Need to defer this, because they might rely on things which change during compilation. + // Intentionally not a small vector, this one is rare, and std::function can be large. + Vector<std::function<void()>> fixup_hooks_in; + + // On function entry, make sure to copy a constant array into thread addr space to work around + // the case where we are passing a constant array by value to a function on backends which do not + // consider arrays value types. + SmallVector<ID> constant_arrays_needed_on_stack; + + bool active = false; + bool flush_undeclared = true; + bool do_combined_parameters = true; + + SPIRV_CROSS_DECLARE_CLONE(SPIRFunction) +}; + +struct SPIRAccessChain : IVariant +{ + enum + { + type = TypeAccessChain + }; + + SPIRAccessChain(TypeID basetype_, spv::StorageClass storage_, std::string base_, std::string dynamic_index_, + int32_t static_index_) + : basetype(basetype_) + , storage(storage_) + , base(std::move(base_)) + , dynamic_index(std::move(dynamic_index_)) + , static_index(static_index_) + { + } + + // The access chain represents an offset into a buffer. + // Some backends need more complicated handling of access chains to be able to use buffers, like HLSL + // which has no usable buffer type ala GLSL SSBOs. + // StructuredBuffer is too limited, so our only option is to deal with ByteAddressBuffer which works with raw addresses. + + TypeID basetype; + spv::StorageClass storage; + std::string base; + std::string dynamic_index; + int32_t static_index; + + VariableID loaded_from = 0; + uint32_t matrix_stride = 0; + uint32_t array_stride = 0; + bool row_major_matrix = false; + bool immutable = false; + + // By reading this expression, we implicitly read these expressions as well. + // Used by access chain Store and Load since we read multiple expressions in this case. + SmallVector<ID> implied_read_expressions; + + SPIRV_CROSS_DECLARE_CLONE(SPIRAccessChain) +}; + +struct SPIRVariable : IVariant +{ + enum + { + type = TypeVariable + }; + + SPIRVariable() = default; + SPIRVariable(TypeID basetype_, spv::StorageClass storage_, ID initializer_ = 0, VariableID basevariable_ = 0) + : basetype(basetype_) + , storage(storage_) + , initializer(initializer_) + , basevariable(basevariable_) + { + } + + TypeID basetype = 0; + spv::StorageClass storage = spv::StorageClassGeneric; + uint32_t decoration = 0; + ID initializer = 0; + VariableID basevariable = 0; + + SmallVector<uint32_t> dereference_chain; + bool compat_builtin = false; + + // If a variable is shadowed, we only statically assign to it + // and never actually emit a statement for it. + // When we read the variable as an expression, just forward + // shadowed_id as the expression. + bool statically_assigned = false; + ID static_expression = 0; + + // Temporaries which can remain forwarded as long as this variable is not modified. + SmallVector<ID> dependees; + + bool deferred_declaration = false; + bool phi_variable = false; + + // Used to deal with Phi variable flushes. See flush_phi(). + bool allocate_temporary_copy = false; + + bool remapped_variable = false; + uint32_t remapped_components = 0; + + // The block which dominates all access to this variable. + BlockID dominator = 0; + // If true, this variable is a loop variable, when accessing the variable + // outside a loop, + // we should statically forward it. + bool loop_variable = false; + // Set to true while we're inside the for loop. + bool loop_variable_enable = false; + + // Used to find global LUTs + bool is_written_to = false; + + SPIRFunction::Parameter *parameter = nullptr; + + SPIRV_CROSS_DECLARE_CLONE(SPIRVariable) +}; + +struct SPIRConstant : IVariant +{ + enum + { + type = TypeConstant + }; + + union Constant + { + uint32_t u32; + int32_t i32; + float f32; + + uint64_t u64; + int64_t i64; + double f64; + }; + + struct ConstantVector + { + Constant r[4]; + // If != 0, this element is a specialization constant, and we should keep track of it as such. + ID id[4]; + uint32_t vecsize = 1; + + ConstantVector() + { + memset(r, 0, sizeof(r)); + } + }; + + struct ConstantMatrix + { + ConstantVector c[4]; + // If != 0, this column is a specialization constant, and we should keep track of it as such. + ID id[4]; + uint32_t columns = 1; + }; + + static inline float f16_to_f32(uint16_t u16_value) + { + // Based on the GLM implementation. + int s = (u16_value >> 15) & 0x1; + int e = (u16_value >> 10) & 0x1f; + int m = (u16_value >> 0) & 0x3ff; + + union + { + float f32; + uint32_t u32; + } u; + + if (e == 0) + { + if (m == 0) + { + u.u32 = uint32_t(s) << 31; + return u.f32; + } + else + { + while ((m & 0x400) == 0) + { + m <<= 1; + e--; + } + + e++; + m &= ~0x400; + } + } + else if (e == 31) + { + if (m == 0) + { + u.u32 = (uint32_t(s) << 31) | 0x7f800000u; + return u.f32; + } + else + { + u.u32 = (uint32_t(s) << 31) | 0x7f800000u | (m << 13); + return u.f32; + } + } + + e += 127 - 15; + m <<= 13; + u.u32 = (uint32_t(s) << 31) | (e << 23) | m; + return u.f32; + } + + inline uint32_t specialization_constant_id(uint32_t col, uint32_t row) const + { + return m.c[col].id[row]; + } + + inline uint32_t specialization_constant_id(uint32_t col) const + { + return m.id[col]; + } + + inline uint32_t scalar(uint32_t col = 0, uint32_t row = 0) const + { + return m.c[col].r[row].u32; + } + + inline int16_t scalar_i16(uint32_t col = 0, uint32_t row = 0) const + { + return int16_t(m.c[col].r[row].u32 & 0xffffu); + } + + inline uint16_t scalar_u16(uint32_t col = 0, uint32_t row = 0) const + { + return uint16_t(m.c[col].r[row].u32 & 0xffffu); + } + + inline int8_t scalar_i8(uint32_t col = 0, uint32_t row = 0) const + { + return int8_t(m.c[col].r[row].u32 & 0xffu); + } + + inline uint8_t scalar_u8(uint32_t col = 0, uint32_t row = 0) const + { + return uint8_t(m.c[col].r[row].u32 & 0xffu); + } + + inline float scalar_f16(uint32_t col = 0, uint32_t row = 0) const + { + return f16_to_f32(scalar_u16(col, row)); + } + + inline float scalar_f32(uint32_t col = 0, uint32_t row = 0) const + { + return m.c[col].r[row].f32; + } + + inline int32_t scalar_i32(uint32_t col = 0, uint32_t row = 0) const + { + return m.c[col].r[row].i32; + } + + inline double scalar_f64(uint32_t col = 0, uint32_t row = 0) const + { + return m.c[col].r[row].f64; + } + + inline int64_t scalar_i64(uint32_t col = 0, uint32_t row = 0) const + { + return m.c[col].r[row].i64; + } + + inline uint64_t scalar_u64(uint32_t col = 0, uint32_t row = 0) const + { + return m.c[col].r[row].u64; + } + + inline const ConstantVector &vector() const + { + return m.c[0]; + } + + inline uint32_t vector_size() const + { + return m.c[0].vecsize; + } + + inline uint32_t columns() const + { + return m.columns; + } + + inline void make_null(const SPIRType &constant_type_) + { + m = {}; + m.columns = constant_type_.columns; + for (auto &c : m.c) + c.vecsize = constant_type_.vecsize; + } + + inline bool constant_is_null() const + { + if (specialization) + return false; + if (!subconstants.empty()) + return false; + + for (uint32_t col = 0; col < columns(); col++) + for (uint32_t row = 0; row < vector_size(); row++) + if (scalar_u64(col, row) != 0) + return false; + + return true; + } + + explicit SPIRConstant(uint32_t constant_type_) + : constant_type(constant_type_) + { + } + + SPIRConstant() = default; + + SPIRConstant(TypeID constant_type_, const uint32_t *elements, uint32_t num_elements, bool specialized) + : constant_type(constant_type_) + , specialization(specialized) + { + subconstants.reserve(num_elements); + for (uint32_t i = 0; i < num_elements; i++) + subconstants.push_back(elements[i]); + specialization = specialized; + } + + // Construct scalar (32-bit). + SPIRConstant(TypeID constant_type_, uint32_t v0, bool specialized) + : constant_type(constant_type_) + , specialization(specialized) + { + m.c[0].r[0].u32 = v0; + m.c[0].vecsize = 1; + m.columns = 1; + } + + // Construct scalar (64-bit). + SPIRConstant(TypeID constant_type_, uint64_t v0, bool specialized) + : constant_type(constant_type_) + , specialization(specialized) + { + m.c[0].r[0].u64 = v0; + m.c[0].vecsize = 1; + m.columns = 1; + } + + // Construct vectors and matrices. + SPIRConstant(TypeID constant_type_, const SPIRConstant *const *vector_elements, uint32_t num_elements, + bool specialized) + : constant_type(constant_type_) + , specialization(specialized) + { + bool matrix = vector_elements[0]->m.c[0].vecsize > 1; + + if (matrix) + { + m.columns = num_elements; + + for (uint32_t i = 0; i < num_elements; i++) + { + m.c[i] = vector_elements[i]->m.c[0]; + if (vector_elements[i]->specialization) + m.id[i] = vector_elements[i]->self; + } + } + else + { + m.c[0].vecsize = num_elements; + m.columns = 1; + + for (uint32_t i = 0; i < num_elements; i++) + { + m.c[0].r[i] = vector_elements[i]->m.c[0].r[0]; + if (vector_elements[i]->specialization) + m.c[0].id[i] = vector_elements[i]->self; + } + } + } + + TypeID constant_type = 0; + ConstantMatrix m; + + // If this constant is a specialization constant (i.e. created with OpSpecConstant*). + bool specialization = false; + // If this constant is used as an array length which creates specialization restrictions on some backends. + bool is_used_as_array_length = false; + + // If true, this is a LUT, and should always be declared in the outer scope. + bool is_used_as_lut = false; + + // For composites which are constant arrays, etc. + SmallVector<ConstantID> subconstants; + + // Non-Vulkan GLSL, HLSL and sometimes MSL emits defines for each specialization constant, + // and uses them to initialize the constant. This allows the user + // to still be able to specialize the value by supplying corresponding + // preprocessor directives before compiling the shader. + std::string specialization_constant_macro_name; + + SPIRV_CROSS_DECLARE_CLONE(SPIRConstant) +}; + +// Variants have a very specific allocation scheme. +struct ObjectPoolGroup +{ + std::unique_ptr<ObjectPoolBase> pools[TypeCount]; +}; + +class Variant +{ +public: + explicit Variant(ObjectPoolGroup *group_) + : group(group_) + { + } + + ~Variant() + { + if (holder) + group->pools[type]->deallocate_opaque(holder); + } + + // Marking custom move constructor as noexcept is important. + Variant(Variant &&other) SPIRV_CROSS_NOEXCEPT + { + *this = std::move(other); + } + + // We cannot copy from other variant without our own pool group. + // Have to explicitly copy. + Variant(const Variant &variant) = delete; + + // Marking custom move constructor as noexcept is important. + Variant &operator=(Variant &&other) SPIRV_CROSS_NOEXCEPT + { + if (this != &other) + { + if (holder) + group->pools[type]->deallocate_opaque(holder); + holder = other.holder; + group = other.group; + type = other.type; + allow_type_rewrite = other.allow_type_rewrite; + + other.holder = nullptr; + other.type = TypeNone; + } + return *this; + } + + // This copy/clone should only be called in the Compiler constructor. + // If this is called inside ::compile(), we invalidate any references we took higher in the stack. + // This should never happen. + Variant &operator=(const Variant &other) + { +//#define SPIRV_CROSS_COPY_CONSTRUCTOR_SANITIZE +#ifdef SPIRV_CROSS_COPY_CONSTRUCTOR_SANITIZE + abort(); +#endif + if (this != &other) + { + if (holder) + group->pools[type]->deallocate_opaque(holder); + + if (other.holder) + holder = other.holder->clone(group->pools[other.type].get()); + else + holder = nullptr; + + type = other.type; + allow_type_rewrite = other.allow_type_rewrite; + } + return *this; + } + + void set(IVariant *val, Types new_type) + { + if (holder) + group->pools[type]->deallocate_opaque(holder); + holder = nullptr; + + if (!allow_type_rewrite && type != TypeNone && type != new_type) + { + if (val) + group->pools[new_type]->deallocate_opaque(val); + SPIRV_CROSS_THROW("Overwriting a variant with new type."); + } + + holder = val; + type = new_type; + allow_type_rewrite = false; + } + + template <typename T, typename... Ts> + T *allocate_and_set(Types new_type, Ts &&... ts) + { + T *val = static_cast<ObjectPool<T> &>(*group->pools[new_type]).allocate(std::forward<Ts>(ts)...); + set(val, new_type); + return val; + } + + template <typename T> + T &get() + { + if (!holder) + SPIRV_CROSS_THROW("nullptr"); + if (static_cast<Types>(T::type) != type) + SPIRV_CROSS_THROW("Bad cast"); + return *static_cast<T *>(holder); + } + + template <typename T> + const T &get() const + { + if (!holder) + SPIRV_CROSS_THROW("nullptr"); + if (static_cast<Types>(T::type) != type) + SPIRV_CROSS_THROW("Bad cast"); + return *static_cast<const T *>(holder); + } + + Types get_type() const + { + return type; + } + + ID get_id() const + { + return holder ? holder->self : ID(0); + } + + bool empty() const + { + return !holder; + } + + void reset() + { + if (holder) + group->pools[type]->deallocate_opaque(holder); + holder = nullptr; + type = TypeNone; + } + + void set_allow_type_rewrite() + { + allow_type_rewrite = true; + } + +private: + ObjectPoolGroup *group = nullptr; + IVariant *holder = nullptr; + Types type = TypeNone; + bool allow_type_rewrite = false; +}; + +template <typename T> +T &variant_get(Variant &var) +{ + return var.get<T>(); +} + +template <typename T> +const T &variant_get(const Variant &var) +{ + return var.get<T>(); +} + +template <typename T, typename... P> +T &variant_set(Variant &var, P &&... args) +{ + auto *ptr = var.allocate_and_set<T>(static_cast<Types>(T::type), std::forward<P>(args)...); + return *ptr; +} + +struct AccessChainMeta +{ + uint32_t storage_physical_type = 0; + bool need_transpose = false; + bool storage_is_packed = false; + bool storage_is_invariant = false; + bool flattened_struct = false; + bool relaxed_precision = false; + bool access_meshlet_position_y = false; +}; + +enum ExtendedDecorations +{ + // Marks if a buffer block is re-packed, i.e. member declaration might be subject to PhysicalTypeID remapping and padding. + SPIRVCrossDecorationBufferBlockRepacked = 0, + + // A type in a buffer block might be declared with a different physical type than the logical type. + // If this is not set, PhysicalTypeID == the SPIR-V type as declared. + SPIRVCrossDecorationPhysicalTypeID, + + // Marks if the physical type is to be declared with tight packing rules, i.e. packed_floatN on MSL and friends. + // If this is set, PhysicalTypeID might also be set. It can be set to same as logical type if all we're doing + // is converting float3 to packed_float3 for example. + // If this is marked on a struct, it means the struct itself must use only Packed types for all its members. + SPIRVCrossDecorationPhysicalTypePacked, + + // The padding in bytes before declaring this struct member. + // If used on a struct type, marks the target size of a struct. + SPIRVCrossDecorationPaddingTarget, + + SPIRVCrossDecorationInterfaceMemberIndex, + SPIRVCrossDecorationInterfaceOrigID, + SPIRVCrossDecorationResourceIndexPrimary, + // Used for decorations like resource indices for samplers when part of combined image samplers. + // A variable might need to hold two resource indices in this case. + SPIRVCrossDecorationResourceIndexSecondary, + // Used for resource indices for multiplanar images when part of combined image samplers. + SPIRVCrossDecorationResourceIndexTertiary, + SPIRVCrossDecorationResourceIndexQuaternary, + + // Marks a buffer block for using explicit offsets (GLSL/HLSL). + SPIRVCrossDecorationExplicitOffset, + + // Apply to a variable in the Input storage class; marks it as holding the base group passed to vkCmdDispatchBase(), + // or the base vertex and instance indices passed to vkCmdDrawIndexed(). + // In MSL, this is used to adjust the WorkgroupId and GlobalInvocationId variables in compute shaders, + // and to hold the BaseVertex and BaseInstance variables in vertex shaders. + SPIRVCrossDecorationBuiltInDispatchBase, + + // Apply to a variable that is a function parameter; marks it as being a "dynamic" + // combined image-sampler. In MSL, this is used when a function parameter might hold + // either a regular combined image-sampler or one that has an attached sampler + // Y'CbCr conversion. + SPIRVCrossDecorationDynamicImageSampler, + + // Apply to a variable in the Input storage class; marks it as holding the size of the stage + // input grid. + // In MSL, this is used to hold the vertex and instance counts in a tessellation pipeline + // vertex shader. + SPIRVCrossDecorationBuiltInStageInputSize, + + // Apply to any access chain of a tessellation I/O variable; stores the type of the sub-object + // that was chained to, as recorded in the input variable itself. This is used in case the pointer + // is itself used as the base of an access chain, to calculate the original type of the sub-object + // chained to, in case a swizzle needs to be applied. This should not happen normally with valid + // SPIR-V, but the MSL backend can change the type of input variables, necessitating the + // addition of swizzles to keep the generated code compiling. + SPIRVCrossDecorationTessIOOriginalInputTypeID, + + // Apply to any access chain of an interface variable used with pull-model interpolation, where the variable is a + // vector but the resulting pointer is a scalar; stores the component index that is to be accessed by the chain. + // This is used when emitting calls to interpolation functions on the chain in MSL: in this case, the component + // must be applied to the result, since pull-model interpolants in MSL cannot be swizzled directly, but the + // results of interpolation can. + SPIRVCrossDecorationInterpolantComponentExpr, + + // Apply to any struct type that is used in the Workgroup storage class. + // This causes matrices in MSL prior to Metal 3.0 to be emitted using a special + // class that is convertible to the standard matrix type, to work around the + // lack of constructors in the 'threadgroup' address space. + SPIRVCrossDecorationWorkgroupStruct, + + SPIRVCrossDecorationOverlappingBinding, + + SPIRVCrossDecorationCount +}; + +struct Meta +{ + struct Decoration + { + std::string alias; + std::string qualified_alias; + std::string hlsl_semantic; + std::string user_type; + Bitset decoration_flags; + spv::BuiltIn builtin_type = spv::BuiltInMax; + uint32_t location = 0; + uint32_t component = 0; + uint32_t set = 0; + uint32_t binding = 0; + uint32_t offset = 0; + uint32_t xfb_buffer = 0; + uint32_t xfb_stride = 0; + uint32_t stream = 0; + uint32_t array_stride = 0; + uint32_t matrix_stride = 0; + uint32_t input_attachment = 0; + uint32_t spec_id = 0; + uint32_t index = 0; + spv::FPRoundingMode fp_rounding_mode = spv::FPRoundingModeMax; + bool builtin = false; + bool qualified_alias_explicit_override = false; + + struct Extended + { + Extended() + { + // MSVC 2013 workaround to init like this. + for (auto &v : values) + v = 0; + } + + Bitset flags; + uint32_t values[SPIRVCrossDecorationCount]; + } extended; + }; + + Decoration decoration; + + // Intentionally not a SmallVector. Decoration is large and somewhat rare. + Vector<Decoration> members; + + std::unordered_map<uint32_t, uint32_t> decoration_word_offset; + + // For SPV_GOOGLE_hlsl_functionality1. + bool hlsl_is_magic_counter_buffer = false; + // ID for the sibling counter buffer. + uint32_t hlsl_magic_counter_buffer = 0; +}; + +// A user callback that remaps the type of any variable. +// var_name is the declared name of the variable. +// name_of_type is the textual name of the type which will be used in the code unless written to by the callback. +using VariableTypeRemapCallback = + std::function<void(const SPIRType &type, const std::string &var_name, std::string &name_of_type)>; + +class Hasher +{ +public: + inline void u32(uint32_t value) + { + h = (h * 0x100000001b3ull) ^ value; + } + + inline uint64_t get() const + { + return h; + } + +private: + uint64_t h = 0xcbf29ce484222325ull; +}; + +static inline bool type_is_floating_point(const SPIRType &type) +{ + return type.basetype == SPIRType::Half || type.basetype == SPIRType::Float || type.basetype == SPIRType::Double; +} + +static inline bool type_is_integral(const SPIRType &type) +{ + return type.basetype == SPIRType::SByte || type.basetype == SPIRType::UByte || type.basetype == SPIRType::Short || + type.basetype == SPIRType::UShort || type.basetype == SPIRType::Int || type.basetype == SPIRType::UInt || + type.basetype == SPIRType::Int64 || type.basetype == SPIRType::UInt64; +} + +static inline SPIRType::BaseType to_signed_basetype(uint32_t width) +{ + switch (width) + { + case 8: + return SPIRType::SByte; + case 16: + return SPIRType::Short; + case 32: + return SPIRType::Int; + case 64: + return SPIRType::Int64; + default: + SPIRV_CROSS_THROW("Invalid bit width."); + } +} + +static inline SPIRType::BaseType to_unsigned_basetype(uint32_t width) +{ + switch (width) + { + case 8: + return SPIRType::UByte; + case 16: + return SPIRType::UShort; + case 32: + return SPIRType::UInt; + case 64: + return SPIRType::UInt64; + default: + SPIRV_CROSS_THROW("Invalid bit width."); + } +} + +// Returns true if an arithmetic operation does not change behavior depending on signedness. +static inline bool opcode_is_sign_invariant(spv::Op opcode) +{ + switch (opcode) + { + case spv::OpIEqual: + case spv::OpINotEqual: + case spv::OpISub: + case spv::OpIAdd: + case spv::OpIMul: + case spv::OpShiftLeftLogical: + case spv::OpBitwiseOr: + case spv::OpBitwiseXor: + case spv::OpBitwiseAnd: + return true; + + default: + return false; + } +} + +static inline bool opcode_can_promote_integer_implicitly(spv::Op opcode) +{ + switch (opcode) + { + case spv::OpSNegate: + case spv::OpNot: + case spv::OpBitwiseAnd: + case spv::OpBitwiseOr: + case spv::OpBitwiseXor: + case spv::OpShiftLeftLogical: + case spv::OpShiftRightLogical: + case spv::OpShiftRightArithmetic: + case spv::OpIAdd: + case spv::OpISub: + case spv::OpIMul: + case spv::OpSDiv: + case spv::OpUDiv: + case spv::OpSRem: + case spv::OpUMod: + case spv::OpSMod: + return true; + + default: + return false; + } +} + +struct SetBindingPair +{ + uint32_t desc_set; + uint32_t binding; + + inline bool operator==(const SetBindingPair &other) const + { + return desc_set == other.desc_set && binding == other.binding; + } + + inline bool operator<(const SetBindingPair &other) const + { + return desc_set < other.desc_set || (desc_set == other.desc_set && binding < other.binding); + } +}; + +struct LocationComponentPair +{ + uint32_t location; + uint32_t component; + + inline bool operator==(const LocationComponentPair &other) const + { + return location == other.location && component == other.component; + } + + inline bool operator<(const LocationComponentPair &other) const + { + return location < other.location || (location == other.location && component < other.component); + } +}; + +struct StageSetBinding +{ + spv::ExecutionModel model; + uint32_t desc_set; + uint32_t binding; + + inline bool operator==(const StageSetBinding &other) const + { + return model == other.model && desc_set == other.desc_set && binding == other.binding; + } +}; + +struct InternalHasher +{ + inline size_t operator()(const SetBindingPair &value) const + { + // Quality of hash doesn't really matter here. + auto hash_set = std::hash<uint32_t>()(value.desc_set); + auto hash_binding = std::hash<uint32_t>()(value.binding); + return (hash_set * 0x10001b31) ^ hash_binding; + } + + inline size_t operator()(const LocationComponentPair &value) const + { + // Quality of hash doesn't really matter here. + auto hash_set = std::hash<uint32_t>()(value.location); + auto hash_binding = std::hash<uint32_t>()(value.component); + return (hash_set * 0x10001b31) ^ hash_binding; + } + + inline size_t operator()(const StageSetBinding &value) const + { + // Quality of hash doesn't really matter here. + auto hash_model = std::hash<uint32_t>()(value.model); + auto hash_set = std::hash<uint32_t>()(value.desc_set); + auto tmp_hash = (hash_model * 0x10001b31) ^ hash_set; + return (tmp_hash * 0x10001b31) ^ value.binding; + } +}; + +// Special constant used in a {MSL,HLSL}ResourceBinding desc_set +// element to indicate the bindings for the push constants. +static const uint32_t ResourceBindingPushConstantDescriptorSet = ~(0u); + +// Special constant used in a {MSL,HLSL}ResourceBinding binding +// element to indicate the bindings for the push constants. +static const uint32_t ResourceBindingPushConstantBinding = 0; +} // namespace SPIRV_CROSS_NAMESPACE + +namespace std +{ +template <SPIRV_CROSS_NAMESPACE::Types type> +struct hash<SPIRV_CROSS_NAMESPACE::TypedID<type>> +{ + size_t operator()(const SPIRV_CROSS_NAMESPACE::TypedID<type> &value) const + { + return std::hash<uint32_t>()(value); + } +}; +} // namespace std + +#endif |