diff options
Diffstat (limited to 'thirdparty/spirv-cross/spirv_cross.cpp')
-rw-r--r-- | thirdparty/spirv-cross/spirv_cross.cpp | 5668 |
1 files changed, 5668 insertions, 0 deletions
diff --git a/thirdparty/spirv-cross/spirv_cross.cpp b/thirdparty/spirv-cross/spirv_cross.cpp new file mode 100644 index 0000000000..8c3e7d3812 --- /dev/null +++ b/thirdparty/spirv-cross/spirv_cross.cpp @@ -0,0 +1,5668 @@ +/* + * Copyright 2015-2021 Arm Limited + * SPDX-License-Identifier: Apache-2.0 OR MIT + * + * Licensed under the Apache License, Version 2.0 (the "License"); + * you may not use this file except in compliance with the License. + * You may obtain a copy of the License at + * + * http://www.apache.org/licenses/LICENSE-2.0 + * + * Unless required by applicable law or agreed to in writing, software + * distributed under the License is distributed on an "AS IS" BASIS, + * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + * See the License for the specific language governing permissions and + * limitations under the License. + */ + +/* + * At your option, you may choose to accept this material under either: + * 1. The Apache License, Version 2.0, found at <http://www.apache.org/licenses/LICENSE-2.0>, or + * 2. The MIT License, found at <http://opensource.org/licenses/MIT>. + */ + +#include "spirv_cross.hpp" +#include "GLSL.std.450.h" +#include "spirv_cfg.hpp" +#include "spirv_common.hpp" +#include "spirv_parser.hpp" +#include <algorithm> +#include <cstring> +#include <utility> + +using namespace std; +using namespace spv; +using namespace SPIRV_CROSS_NAMESPACE; + +Compiler::Compiler(vector<uint32_t> ir_) +{ + Parser parser(std::move(ir_)); + parser.parse(); + set_ir(std::move(parser.get_parsed_ir())); +} + +Compiler::Compiler(const uint32_t *ir_, size_t word_count) +{ + Parser parser(ir_, word_count); + parser.parse(); + set_ir(std::move(parser.get_parsed_ir())); +} + +Compiler::Compiler(const ParsedIR &ir_) +{ + set_ir(ir_); +} + +Compiler::Compiler(ParsedIR &&ir_) +{ + set_ir(std::move(ir_)); +} + +void Compiler::set_ir(ParsedIR &&ir_) +{ + ir = std::move(ir_); + parse_fixup(); +} + +void Compiler::set_ir(const ParsedIR &ir_) +{ + ir = ir_; + parse_fixup(); +} + +string Compiler::compile() +{ + return ""; +} + +bool Compiler::variable_storage_is_aliased(const SPIRVariable &v) +{ + auto &type = get<SPIRType>(v.basetype); + bool ssbo = v.storage == StorageClassStorageBuffer || + ir.meta[type.self].decoration.decoration_flags.get(DecorationBufferBlock); + bool image = type.basetype == SPIRType::Image; + bool counter = type.basetype == SPIRType::AtomicCounter; + bool buffer_reference = type.storage == StorageClassPhysicalStorageBufferEXT; + + bool is_restrict; + if (ssbo) + is_restrict = ir.get_buffer_block_flags(v).get(DecorationRestrict); + else + is_restrict = has_decoration(v.self, DecorationRestrict); + + return !is_restrict && (ssbo || image || counter || buffer_reference); +} + +bool Compiler::block_is_control_dependent(const SPIRBlock &block) +{ + for (auto &i : block.ops) + { + auto ops = stream(i); + auto op = static_cast<Op>(i.op); + + switch (op) + { + case OpFunctionCall: + { + uint32_t func = ops[2]; + if (function_is_control_dependent(get<SPIRFunction>(func))) + return true; + break; + } + + // Derivatives + case OpDPdx: + case OpDPdxCoarse: + case OpDPdxFine: + case OpDPdy: + case OpDPdyCoarse: + case OpDPdyFine: + case OpFwidth: + case OpFwidthCoarse: + case OpFwidthFine: + + // Anything implicit LOD + case OpImageSampleImplicitLod: + case OpImageSampleDrefImplicitLod: + case OpImageSampleProjImplicitLod: + case OpImageSampleProjDrefImplicitLod: + case OpImageSparseSampleImplicitLod: + case OpImageSparseSampleDrefImplicitLod: + case OpImageSparseSampleProjImplicitLod: + case OpImageSparseSampleProjDrefImplicitLod: + case OpImageQueryLod: + case OpImageDrefGather: + case OpImageGather: + case OpImageSparseDrefGather: + case OpImageSparseGather: + + // Anything subgroups + case OpGroupNonUniformElect: + case OpGroupNonUniformAll: + case OpGroupNonUniformAny: + case OpGroupNonUniformAllEqual: + case OpGroupNonUniformBroadcast: + case OpGroupNonUniformBroadcastFirst: + case OpGroupNonUniformBallot: + case OpGroupNonUniformInverseBallot: + case OpGroupNonUniformBallotBitExtract: + case OpGroupNonUniformBallotBitCount: + case OpGroupNonUniformBallotFindLSB: + case OpGroupNonUniformBallotFindMSB: + case OpGroupNonUniformShuffle: + case OpGroupNonUniformShuffleXor: + case OpGroupNonUniformShuffleUp: + case OpGroupNonUniformShuffleDown: + case OpGroupNonUniformIAdd: + case OpGroupNonUniformFAdd: + case OpGroupNonUniformIMul: + case OpGroupNonUniformFMul: + case OpGroupNonUniformSMin: + case OpGroupNonUniformUMin: + case OpGroupNonUniformFMin: + case OpGroupNonUniformSMax: + case OpGroupNonUniformUMax: + case OpGroupNonUniformFMax: + case OpGroupNonUniformBitwiseAnd: + case OpGroupNonUniformBitwiseOr: + case OpGroupNonUniformBitwiseXor: + case OpGroupNonUniformLogicalAnd: + case OpGroupNonUniformLogicalOr: + case OpGroupNonUniformLogicalXor: + case OpGroupNonUniformQuadBroadcast: + case OpGroupNonUniformQuadSwap: + + // Control barriers + case OpControlBarrier: + return true; + + default: + break; + } + } + + return false; +} + +bool Compiler::block_is_pure(const SPIRBlock &block) +{ + // This is a global side effect of the function. + if (block.terminator == SPIRBlock::Kill || + block.terminator == SPIRBlock::TerminateRay || + block.terminator == SPIRBlock::IgnoreIntersection || + block.terminator == SPIRBlock::EmitMeshTasks) + return false; + + for (auto &i : block.ops) + { + auto ops = stream(i); + auto op = static_cast<Op>(i.op); + + switch (op) + { + case OpFunctionCall: + { + uint32_t func = ops[2]; + if (!function_is_pure(get<SPIRFunction>(func))) + return false; + break; + } + + case OpCopyMemory: + case OpStore: + { + auto &type = expression_type(ops[0]); + if (type.storage != StorageClassFunction) + return false; + break; + } + + case OpImageWrite: + return false; + + // Atomics are impure. + case OpAtomicLoad: + case OpAtomicStore: + case OpAtomicExchange: + case OpAtomicCompareExchange: + case OpAtomicCompareExchangeWeak: + case OpAtomicIIncrement: + case OpAtomicIDecrement: + case OpAtomicIAdd: + case OpAtomicISub: + case OpAtomicSMin: + case OpAtomicUMin: + case OpAtomicSMax: + case OpAtomicUMax: + case OpAtomicAnd: + case OpAtomicOr: + case OpAtomicXor: + return false; + + // Geometry shader builtins modify global state. + case OpEndPrimitive: + case OpEmitStreamVertex: + case OpEndStreamPrimitive: + case OpEmitVertex: + return false; + + // Mesh shader functions modify global state. + // (EmitMeshTasks is a terminator). + case OpSetMeshOutputsEXT: + return false; + + // Barriers disallow any reordering, so we should treat blocks with barrier as writing. + case OpControlBarrier: + case OpMemoryBarrier: + return false; + + // Ray tracing builtins are impure. + case OpReportIntersectionKHR: + case OpIgnoreIntersectionNV: + case OpTerminateRayNV: + case OpTraceNV: + case OpTraceRayKHR: + case OpExecuteCallableNV: + case OpExecuteCallableKHR: + case OpRayQueryInitializeKHR: + case OpRayQueryTerminateKHR: + case OpRayQueryGenerateIntersectionKHR: + case OpRayQueryConfirmIntersectionKHR: + case OpRayQueryProceedKHR: + // There are various getters in ray query, but they are considered pure. + return false; + + // OpExtInst is potentially impure depending on extension, but GLSL builtins are at least pure. + + case OpDemoteToHelperInvocationEXT: + // This is a global side effect of the function. + return false; + + case OpExtInst: + { + uint32_t extension_set = ops[2]; + if (get<SPIRExtension>(extension_set).ext == SPIRExtension::GLSL) + { + auto op_450 = static_cast<GLSLstd450>(ops[3]); + switch (op_450) + { + case GLSLstd450Modf: + case GLSLstd450Frexp: + { + auto &type = expression_type(ops[5]); + if (type.storage != StorageClassFunction) + return false; + break; + } + + default: + break; + } + } + break; + } + + default: + break; + } + } + + return true; +} + +string Compiler::to_name(uint32_t id, bool allow_alias) const +{ + if (allow_alias && ir.ids[id].get_type() == TypeType) + { + // If this type is a simple alias, emit the + // name of the original type instead. + // We don't want to override the meta alias + // as that can be overridden by the reflection APIs after parse. + auto &type = get<SPIRType>(id); + if (type.type_alias) + { + // If the alias master has been specially packed, we will have emitted a clean variant as well, + // so skip the name aliasing here. + if (!has_extended_decoration(type.type_alias, SPIRVCrossDecorationBufferBlockRepacked)) + return to_name(type.type_alias); + } + } + + auto &alias = ir.get_name(id); + if (alias.empty()) + return join("_", id); + else + return alias; +} + +bool Compiler::function_is_pure(const SPIRFunction &func) +{ + for (auto block : func.blocks) + if (!block_is_pure(get<SPIRBlock>(block))) + return false; + + return true; +} + +bool Compiler::function_is_control_dependent(const SPIRFunction &func) +{ + for (auto block : func.blocks) + if (block_is_control_dependent(get<SPIRBlock>(block))) + return true; + + return false; +} + +void Compiler::register_global_read_dependencies(const SPIRBlock &block, uint32_t id) +{ + for (auto &i : block.ops) + { + auto ops = stream(i); + auto op = static_cast<Op>(i.op); + + switch (op) + { + case OpFunctionCall: + { + uint32_t func = ops[2]; + register_global_read_dependencies(get<SPIRFunction>(func), id); + break; + } + + case OpLoad: + case OpImageRead: + { + // If we're in a storage class which does not get invalidated, adding dependencies here is no big deal. + auto *var = maybe_get_backing_variable(ops[2]); + if (var && var->storage != StorageClassFunction) + { + auto &type = get<SPIRType>(var->basetype); + + // InputTargets are immutable. + if (type.basetype != SPIRType::Image && type.image.dim != DimSubpassData) + var->dependees.push_back(id); + } + break; + } + + default: + break; + } + } +} + +void Compiler::register_global_read_dependencies(const SPIRFunction &func, uint32_t id) +{ + for (auto block : func.blocks) + register_global_read_dependencies(get<SPIRBlock>(block), id); +} + +SPIRVariable *Compiler::maybe_get_backing_variable(uint32_t chain) +{ + auto *var = maybe_get<SPIRVariable>(chain); + if (!var) + { + auto *cexpr = maybe_get<SPIRExpression>(chain); + if (cexpr) + var = maybe_get<SPIRVariable>(cexpr->loaded_from); + + auto *access_chain = maybe_get<SPIRAccessChain>(chain); + if (access_chain) + var = maybe_get<SPIRVariable>(access_chain->loaded_from); + } + + return var; +} + +void Compiler::register_read(uint32_t expr, uint32_t chain, bool forwarded) +{ + auto &e = get<SPIRExpression>(expr); + auto *var = maybe_get_backing_variable(chain); + + if (var) + { + e.loaded_from = var->self; + + // If the backing variable is immutable, we do not need to depend on the variable. + if (forwarded && !is_immutable(var->self)) + var->dependees.push_back(e.self); + + // If we load from a parameter, make sure we create "inout" if we also write to the parameter. + // The default is "in" however, so we never invalidate our compilation by reading. + if (var && var->parameter) + var->parameter->read_count++; + } +} + +void Compiler::register_write(uint32_t chain) +{ + auto *var = maybe_get<SPIRVariable>(chain); + if (!var) + { + // If we're storing through an access chain, invalidate the backing variable instead. + auto *expr = maybe_get<SPIRExpression>(chain); + if (expr && expr->loaded_from) + var = maybe_get<SPIRVariable>(expr->loaded_from); + + auto *access_chain = maybe_get<SPIRAccessChain>(chain); + if (access_chain && access_chain->loaded_from) + var = maybe_get<SPIRVariable>(access_chain->loaded_from); + } + + auto &chain_type = expression_type(chain); + + if (var) + { + bool check_argument_storage_qualifier = true; + auto &type = expression_type(chain); + + // If our variable is in a storage class which can alias with other buffers, + // invalidate all variables which depend on aliased variables. And if this is a + // variable pointer, then invalidate all variables regardless. + if (get_variable_data_type(*var).pointer) + { + flush_all_active_variables(); + + if (type.pointer_depth == 1) + { + // We have a backing variable which is a pointer-to-pointer type. + // We are storing some data through a pointer acquired through that variable, + // but we are not writing to the value of the variable itself, + // i.e., we are not modifying the pointer directly. + // If we are storing a non-pointer type (pointer_depth == 1), + // we know that we are storing some unrelated data. + // A case here would be + // void foo(Foo * const *arg) { + // Foo *bar = *arg; + // bar->unrelated = 42; + // } + // arg, the argument is constant. + check_argument_storage_qualifier = false; + } + } + + if (type.storage == StorageClassPhysicalStorageBufferEXT || variable_storage_is_aliased(*var)) + flush_all_aliased_variables(); + else if (var) + flush_dependees(*var); + + // We tried to write to a parameter which is not marked with out qualifier, force a recompile. + if (check_argument_storage_qualifier && var->parameter && var->parameter->write_count == 0) + { + var->parameter->write_count++; + force_recompile(); + } + } + else if (chain_type.pointer) + { + // If we stored through a variable pointer, then we don't know which + // variable we stored to. So *all* expressions after this point need to + // be invalidated. + // FIXME: If we can prove that the variable pointer will point to + // only certain variables, we can invalidate only those. + flush_all_active_variables(); + } + + // If chain_type.pointer is false, we're not writing to memory backed variables, but temporaries instead. + // This can happen in copy_logical_type where we unroll complex reads and writes to temporaries. +} + +void Compiler::flush_dependees(SPIRVariable &var) +{ + for (auto expr : var.dependees) + invalid_expressions.insert(expr); + var.dependees.clear(); +} + +void Compiler::flush_all_aliased_variables() +{ + for (auto aliased : aliased_variables) + flush_dependees(get<SPIRVariable>(aliased)); +} + +void Compiler::flush_all_atomic_capable_variables() +{ + for (auto global : global_variables) + flush_dependees(get<SPIRVariable>(global)); + flush_all_aliased_variables(); +} + +void Compiler::flush_control_dependent_expressions(uint32_t block_id) +{ + auto &block = get<SPIRBlock>(block_id); + for (auto &expr : block.invalidate_expressions) + invalid_expressions.insert(expr); + block.invalidate_expressions.clear(); +} + +void Compiler::flush_all_active_variables() +{ + // Invalidate all temporaries we read from variables in this block since they were forwarded. + // Invalidate all temporaries we read from globals. + for (auto &v : current_function->local_variables) + flush_dependees(get<SPIRVariable>(v)); + for (auto &arg : current_function->arguments) + flush_dependees(get<SPIRVariable>(arg.id)); + for (auto global : global_variables) + flush_dependees(get<SPIRVariable>(global)); + + flush_all_aliased_variables(); +} + +uint32_t Compiler::expression_type_id(uint32_t id) const +{ + switch (ir.ids[id].get_type()) + { + case TypeVariable: + return get<SPIRVariable>(id).basetype; + + case TypeExpression: + return get<SPIRExpression>(id).expression_type; + + case TypeConstant: + return get<SPIRConstant>(id).constant_type; + + case TypeConstantOp: + return get<SPIRConstantOp>(id).basetype; + + case TypeUndef: + return get<SPIRUndef>(id).basetype; + + case TypeCombinedImageSampler: + return get<SPIRCombinedImageSampler>(id).combined_type; + + case TypeAccessChain: + return get<SPIRAccessChain>(id).basetype; + + default: + SPIRV_CROSS_THROW("Cannot resolve expression type."); + } +} + +const SPIRType &Compiler::expression_type(uint32_t id) const +{ + return get<SPIRType>(expression_type_id(id)); +} + +bool Compiler::expression_is_lvalue(uint32_t id) const +{ + auto &type = expression_type(id); + switch (type.basetype) + { + case SPIRType::SampledImage: + case SPIRType::Image: + case SPIRType::Sampler: + return false; + + default: + return true; + } +} + +bool Compiler::is_immutable(uint32_t id) const +{ + if (ir.ids[id].get_type() == TypeVariable) + { + auto &var = get<SPIRVariable>(id); + + // Anything we load from the UniformConstant address space is guaranteed to be immutable. + bool pointer_to_const = var.storage == StorageClassUniformConstant; + return pointer_to_const || var.phi_variable || !expression_is_lvalue(id); + } + else if (ir.ids[id].get_type() == TypeAccessChain) + return get<SPIRAccessChain>(id).immutable; + else if (ir.ids[id].get_type() == TypeExpression) + return get<SPIRExpression>(id).immutable; + else if (ir.ids[id].get_type() == TypeConstant || ir.ids[id].get_type() == TypeConstantOp || + ir.ids[id].get_type() == TypeUndef) + return true; + else + return false; +} + +static inline bool storage_class_is_interface(spv::StorageClass storage) +{ + switch (storage) + { + case StorageClassInput: + case StorageClassOutput: + case StorageClassUniform: + case StorageClassUniformConstant: + case StorageClassAtomicCounter: + case StorageClassPushConstant: + case StorageClassStorageBuffer: + return true; + + default: + return false; + } +} + +bool Compiler::is_hidden_variable(const SPIRVariable &var, bool include_builtins) const +{ + if ((is_builtin_variable(var) && !include_builtins) || var.remapped_variable) + return true; + + // Combined image samplers are always considered active as they are "magic" variables. + if (find_if(begin(combined_image_samplers), end(combined_image_samplers), [&var](const CombinedImageSampler &samp) { + return samp.combined_id == var.self; + }) != end(combined_image_samplers)) + { + return false; + } + + // In SPIR-V 1.4 and up we must also use the active variable interface to disable global variables + // which are not part of the entry point. + if (ir.get_spirv_version() >= 0x10400 && var.storage != spv::StorageClassGeneric && + var.storage != spv::StorageClassFunction && !interface_variable_exists_in_entry_point(var.self)) + { + return true; + } + + return check_active_interface_variables && storage_class_is_interface(var.storage) && + active_interface_variables.find(var.self) == end(active_interface_variables); +} + +bool Compiler::is_builtin_type(const SPIRType &type) const +{ + auto *type_meta = ir.find_meta(type.self); + + // We can have builtin structs as well. If one member of a struct is builtin, the struct must also be builtin. + if (type_meta) + for (auto &m : type_meta->members) + if (m.builtin) + return true; + + return false; +} + +bool Compiler::is_builtin_variable(const SPIRVariable &var) const +{ + auto *m = ir.find_meta(var.self); + + if (var.compat_builtin || (m && m->decoration.builtin)) + return true; + else + return is_builtin_type(get<SPIRType>(var.basetype)); +} + +bool Compiler::is_member_builtin(const SPIRType &type, uint32_t index, BuiltIn *builtin) const +{ + auto *type_meta = ir.find_meta(type.self); + + if (type_meta) + { + auto &memb = type_meta->members; + if (index < memb.size() && memb[index].builtin) + { + if (builtin) + *builtin = memb[index].builtin_type; + return true; + } + } + + return false; +} + +bool Compiler::is_scalar(const SPIRType &type) const +{ + return type.basetype != SPIRType::Struct && type.vecsize == 1 && type.columns == 1; +} + +bool Compiler::is_vector(const SPIRType &type) const +{ + return type.vecsize > 1 && type.columns == 1; +} + +bool Compiler::is_matrix(const SPIRType &type) const +{ + return type.vecsize > 1 && type.columns > 1; +} + +bool Compiler::is_array(const SPIRType &type) const +{ + return type.op == OpTypeArray || type.op == OpTypeRuntimeArray; +} + +bool Compiler::is_pointer(const SPIRType &type) const +{ + return type.op == OpTypePointer && type.basetype != SPIRType::Unknown; // Ignore function pointers. +} + +bool Compiler::is_physical_pointer(const SPIRType &type) const +{ + return type.op == OpTypePointer && type.storage == StorageClassPhysicalStorageBuffer; +} + +bool Compiler::is_physical_pointer_to_buffer_block(const SPIRType &type) const +{ + return is_physical_pointer(type) && get_pointee_type(type).self == type.parent_type && + (has_decoration(type.self, DecorationBlock) || + has_decoration(type.self, DecorationBufferBlock)); +} + +bool Compiler::is_runtime_size_array(const SPIRType &type) +{ + return type.op == OpTypeRuntimeArray; +} + +ShaderResources Compiler::get_shader_resources() const +{ + return get_shader_resources(nullptr); +} + +ShaderResources Compiler::get_shader_resources(const unordered_set<VariableID> &active_variables) const +{ + return get_shader_resources(&active_variables); +} + +bool Compiler::InterfaceVariableAccessHandler::handle(Op opcode, const uint32_t *args, uint32_t length) +{ + uint32_t variable = 0; + switch (opcode) + { + // Need this first, otherwise, GCC complains about unhandled switch statements. + default: + break; + + case OpFunctionCall: + { + // Invalid SPIR-V. + if (length < 3) + return false; + + uint32_t count = length - 3; + args += 3; + for (uint32_t i = 0; i < count; i++) + { + auto *var = compiler.maybe_get<SPIRVariable>(args[i]); + if (var && storage_class_is_interface(var->storage)) + variables.insert(args[i]); + } + break; + } + + case OpSelect: + { + // Invalid SPIR-V. + if (length < 5) + return false; + + uint32_t count = length - 3; + args += 3; + for (uint32_t i = 0; i < count; i++) + { + auto *var = compiler.maybe_get<SPIRVariable>(args[i]); + if (var && storage_class_is_interface(var->storage)) + variables.insert(args[i]); + } + break; + } + + case OpPhi: + { + // Invalid SPIR-V. + if (length < 2) + return false; + + uint32_t count = length - 2; + args += 2; + for (uint32_t i = 0; i < count; i += 2) + { + auto *var = compiler.maybe_get<SPIRVariable>(args[i]); + if (var && storage_class_is_interface(var->storage)) + variables.insert(args[i]); + } + break; + } + + case OpAtomicStore: + case OpStore: + // Invalid SPIR-V. + if (length < 1) + return false; + variable = args[0]; + break; + + case OpCopyMemory: + { + if (length < 2) + return false; + + auto *var = compiler.maybe_get<SPIRVariable>(args[0]); + if (var && storage_class_is_interface(var->storage)) + variables.insert(args[0]); + + var = compiler.maybe_get<SPIRVariable>(args[1]); + if (var && storage_class_is_interface(var->storage)) + variables.insert(args[1]); + break; + } + + case OpExtInst: + { + if (length < 3) + return false; + auto &extension_set = compiler.get<SPIRExtension>(args[2]); + switch (extension_set.ext) + { + case SPIRExtension::GLSL: + { + auto op = static_cast<GLSLstd450>(args[3]); + + switch (op) + { + case GLSLstd450InterpolateAtCentroid: + case GLSLstd450InterpolateAtSample: + case GLSLstd450InterpolateAtOffset: + { + auto *var = compiler.maybe_get<SPIRVariable>(args[4]); + if (var && storage_class_is_interface(var->storage)) + variables.insert(args[4]); + break; + } + + case GLSLstd450Modf: + case GLSLstd450Fract: + { + auto *var = compiler.maybe_get<SPIRVariable>(args[5]); + if (var && storage_class_is_interface(var->storage)) + variables.insert(args[5]); + break; + } + + default: + break; + } + break; + } + case SPIRExtension::SPV_AMD_shader_explicit_vertex_parameter: + { + enum AMDShaderExplicitVertexParameter + { + InterpolateAtVertexAMD = 1 + }; + + auto op = static_cast<AMDShaderExplicitVertexParameter>(args[3]); + + switch (op) + { + case InterpolateAtVertexAMD: + { + auto *var = compiler.maybe_get<SPIRVariable>(args[4]); + if (var && storage_class_is_interface(var->storage)) + variables.insert(args[4]); + break; + } + + default: + break; + } + break; + } + default: + break; + } + break; + } + + case OpAccessChain: + case OpInBoundsAccessChain: + case OpPtrAccessChain: + case OpLoad: + case OpCopyObject: + case OpImageTexelPointer: + case OpAtomicLoad: + case OpAtomicExchange: + case OpAtomicCompareExchange: + case OpAtomicCompareExchangeWeak: + case OpAtomicIIncrement: + case OpAtomicIDecrement: + case OpAtomicIAdd: + case OpAtomicISub: + case OpAtomicSMin: + case OpAtomicUMin: + case OpAtomicSMax: + case OpAtomicUMax: + case OpAtomicAnd: + case OpAtomicOr: + case OpAtomicXor: + case OpArrayLength: + // Invalid SPIR-V. + if (length < 3) + return false; + variable = args[2]; + break; + } + + if (variable) + { + auto *var = compiler.maybe_get<SPIRVariable>(variable); + if (var && storage_class_is_interface(var->storage)) + variables.insert(variable); + } + return true; +} + +unordered_set<VariableID> Compiler::get_active_interface_variables() const +{ + // Traverse the call graph and find all interface variables which are in use. + unordered_set<VariableID> variables; + InterfaceVariableAccessHandler handler(*this, variables); + traverse_all_reachable_opcodes(get<SPIRFunction>(ir.default_entry_point), handler); + + ir.for_each_typed_id<SPIRVariable>([&](uint32_t, const SPIRVariable &var) { + if (var.storage != StorageClassOutput) + return; + if (!interface_variable_exists_in_entry_point(var.self)) + return; + + // An output variable which is just declared (but uninitialized) might be read by subsequent stages + // so we should force-enable these outputs, + // since compilation will fail if a subsequent stage attempts to read from the variable in question. + // Also, make sure we preserve output variables which are only initialized, but never accessed by any code. + if (var.initializer != ID(0) || get_execution_model() != ExecutionModelFragment) + variables.insert(var.self); + }); + + // If we needed to create one, we'll need it. + if (dummy_sampler_id) + variables.insert(dummy_sampler_id); + + return variables; +} + +void Compiler::set_enabled_interface_variables(std::unordered_set<VariableID> active_variables) +{ + active_interface_variables = std::move(active_variables); + check_active_interface_variables = true; +} + +ShaderResources Compiler::get_shader_resources(const unordered_set<VariableID> *active_variables) const +{ + ShaderResources res; + + bool ssbo_instance_name = reflection_ssbo_instance_name_is_significant(); + + ir.for_each_typed_id<SPIRVariable>([&](uint32_t, const SPIRVariable &var) { + auto &type = this->get<SPIRType>(var.basetype); + + // It is possible for uniform storage classes to be passed as function parameters, so detect + // that. To detect function parameters, check of StorageClass of variable is function scope. + if (var.storage == StorageClassFunction || !type.pointer) + return; + + if (active_variables && active_variables->find(var.self) == end(*active_variables)) + return; + + // In SPIR-V 1.4 and up, every global must be present in the entry point interface list, + // not just IO variables. + bool active_in_entry_point = true; + if (ir.get_spirv_version() < 0x10400) + { + if (var.storage == StorageClassInput || var.storage == StorageClassOutput) + active_in_entry_point = interface_variable_exists_in_entry_point(var.self); + } + else + active_in_entry_point = interface_variable_exists_in_entry_point(var.self); + + if (!active_in_entry_point) + return; + + bool is_builtin = is_builtin_variable(var); + + if (is_builtin) + { + if (var.storage != StorageClassInput && var.storage != StorageClassOutput) + return; + + auto &list = var.storage == StorageClassInput ? res.builtin_inputs : res.builtin_outputs; + BuiltInResource resource; + + if (has_decoration(type.self, DecorationBlock)) + { + resource.resource = { var.self, var.basetype, type.self, + get_remapped_declared_block_name(var.self, false) }; + + for (uint32_t i = 0; i < uint32_t(type.member_types.size()); i++) + { + resource.value_type_id = type.member_types[i]; + resource.builtin = BuiltIn(get_member_decoration(type.self, i, DecorationBuiltIn)); + list.push_back(resource); + } + } + else + { + bool strip_array = + !has_decoration(var.self, DecorationPatch) && ( + get_execution_model() == ExecutionModelTessellationControl || + (get_execution_model() == ExecutionModelTessellationEvaluation && + var.storage == StorageClassInput)); + + resource.resource = { var.self, var.basetype, type.self, get_name(var.self) }; + + if (strip_array && !type.array.empty()) + resource.value_type_id = get_variable_data_type(var).parent_type; + else + resource.value_type_id = get_variable_data_type_id(var); + + assert(resource.value_type_id); + + resource.builtin = BuiltIn(get_decoration(var.self, DecorationBuiltIn)); + list.push_back(std::move(resource)); + } + return; + } + + // Input + if (var.storage == StorageClassInput) + { + if (has_decoration(type.self, DecorationBlock)) + { + res.stage_inputs.push_back( + { var.self, var.basetype, type.self, + get_remapped_declared_block_name(var.self, false) }); + } + else + res.stage_inputs.push_back({ var.self, var.basetype, type.self, get_name(var.self) }); + } + // Subpass inputs + else if (var.storage == StorageClassUniformConstant && type.image.dim == DimSubpassData) + { + res.subpass_inputs.push_back({ var.self, var.basetype, type.self, get_name(var.self) }); + } + // Outputs + else if (var.storage == StorageClassOutput) + { + if (has_decoration(type.self, DecorationBlock)) + { + res.stage_outputs.push_back( + { var.self, var.basetype, type.self, get_remapped_declared_block_name(var.self, false) }); + } + else + res.stage_outputs.push_back({ var.self, var.basetype, type.self, get_name(var.self) }); + } + // UBOs + else if (type.storage == StorageClassUniform && has_decoration(type.self, DecorationBlock)) + { + res.uniform_buffers.push_back( + { var.self, var.basetype, type.self, get_remapped_declared_block_name(var.self, false) }); + } + // Old way to declare SSBOs. + else if (type.storage == StorageClassUniform && has_decoration(type.self, DecorationBufferBlock)) + { + res.storage_buffers.push_back( + { var.self, var.basetype, type.self, get_remapped_declared_block_name(var.self, ssbo_instance_name) }); + } + // Modern way to declare SSBOs. + else if (type.storage == StorageClassStorageBuffer) + { + res.storage_buffers.push_back( + { var.self, var.basetype, type.self, get_remapped_declared_block_name(var.self, ssbo_instance_name) }); + } + // Push constant blocks + else if (type.storage == StorageClassPushConstant) + { + // There can only be one push constant block, but keep the vector in case this restriction is lifted + // in the future. + res.push_constant_buffers.push_back({ var.self, var.basetype, type.self, get_name(var.self) }); + } + else if (type.storage == StorageClassShaderRecordBufferKHR) + { + res.shader_record_buffers.push_back({ var.self, var.basetype, type.self, get_remapped_declared_block_name(var.self, ssbo_instance_name) }); + } + // Atomic counters + else if (type.storage == StorageClassAtomicCounter) + { + res.atomic_counters.push_back({ var.self, var.basetype, type.self, get_name(var.self) }); + } + else if (type.storage == StorageClassUniformConstant) + { + if (type.basetype == SPIRType::Image) + { + // Images + if (type.image.sampled == 2) + { + res.storage_images.push_back({ var.self, var.basetype, type.self, get_name(var.self) }); + } + // Separate images + else if (type.image.sampled == 1) + { + res.separate_images.push_back({ var.self, var.basetype, type.self, get_name(var.self) }); + } + } + // Separate samplers + else if (type.basetype == SPIRType::Sampler) + { + res.separate_samplers.push_back({ var.self, var.basetype, type.self, get_name(var.self) }); + } + // Textures + else if (type.basetype == SPIRType::SampledImage) + { + res.sampled_images.push_back({ var.self, var.basetype, type.self, get_name(var.self) }); + } + // Acceleration structures + else if (type.basetype == SPIRType::AccelerationStructure) + { + res.acceleration_structures.push_back({ var.self, var.basetype, type.self, get_name(var.self) }); + } + else + { + res.gl_plain_uniforms.push_back({ var.self, var.basetype, type.self, get_name(var.self) }); + } + } + }); + + return res; +} + +bool Compiler::type_is_top_level_block(const SPIRType &type) const +{ + if (type.basetype != SPIRType::Struct) + return false; + return has_decoration(type.self, DecorationBlock) || has_decoration(type.self, DecorationBufferBlock); +} + +bool Compiler::type_is_block_like(const SPIRType &type) const +{ + if (type_is_top_level_block(type)) + return true; + + if (type.basetype == SPIRType::Struct) + { + // Block-like types may have Offset decorations. + for (uint32_t i = 0; i < uint32_t(type.member_types.size()); i++) + if (has_member_decoration(type.self, i, DecorationOffset)) + return true; + } + + return false; +} + +void Compiler::parse_fixup() +{ + // Figure out specialization constants for work group sizes. + for (auto id_ : ir.ids_for_constant_or_variable) + { + auto &id = ir.ids[id_]; + + if (id.get_type() == TypeConstant) + { + auto &c = id.get<SPIRConstant>(); + if (has_decoration(c.self, DecorationBuiltIn) && + BuiltIn(get_decoration(c.self, DecorationBuiltIn)) == BuiltInWorkgroupSize) + { + // In current SPIR-V, there can be just one constant like this. + // All entry points will receive the constant value. + // WorkgroupSize take precedence over LocalSizeId. + for (auto &entry : ir.entry_points) + { + entry.second.workgroup_size.constant = c.self; + entry.second.workgroup_size.x = c.scalar(0, 0); + entry.second.workgroup_size.y = c.scalar(0, 1); + entry.second.workgroup_size.z = c.scalar(0, 2); + } + } + } + else if (id.get_type() == TypeVariable) + { + auto &var = id.get<SPIRVariable>(); + if (var.storage == StorageClassPrivate || var.storage == StorageClassWorkgroup || + var.storage == StorageClassTaskPayloadWorkgroupEXT || + var.storage == StorageClassOutput) + { + global_variables.push_back(var.self); + } + if (variable_storage_is_aliased(var)) + aliased_variables.push_back(var.self); + } + } +} + +void Compiler::update_name_cache(unordered_set<string> &cache_primary, const unordered_set<string> &cache_secondary, + string &name) +{ + if (name.empty()) + return; + + const auto find_name = [&](const string &n) -> bool { + if (cache_primary.find(n) != end(cache_primary)) + return true; + + if (&cache_primary != &cache_secondary) + if (cache_secondary.find(n) != end(cache_secondary)) + return true; + + return false; + }; + + const auto insert_name = [&](const string &n) { cache_primary.insert(n); }; + + if (!find_name(name)) + { + insert_name(name); + return; + } + + uint32_t counter = 0; + auto tmpname = name; + + bool use_linked_underscore = true; + + if (tmpname == "_") + { + // We cannot just append numbers, as we will end up creating internally reserved names. + // Make it like _0_<counter> instead. + tmpname += "0"; + } + else if (tmpname.back() == '_') + { + // The last_character is an underscore, so we don't need to link in underscore. + // This would violate double underscore rules. + use_linked_underscore = false; + } + + // If there is a collision (very rare), + // keep tacking on extra identifier until it's unique. + do + { + counter++; + name = tmpname + (use_linked_underscore ? "_" : "") + convert_to_string(counter); + } while (find_name(name)); + insert_name(name); +} + +void Compiler::update_name_cache(unordered_set<string> &cache, string &name) +{ + update_name_cache(cache, cache, name); +} + +void Compiler::set_name(ID id, const std::string &name) +{ + ir.set_name(id, name); +} + +const SPIRType &Compiler::get_type(TypeID id) const +{ + return get<SPIRType>(id); +} + +const SPIRType &Compiler::get_type_from_variable(VariableID id) const +{ + return get<SPIRType>(get<SPIRVariable>(id).basetype); +} + +uint32_t Compiler::get_pointee_type_id(uint32_t type_id) const +{ + auto *p_type = &get<SPIRType>(type_id); + if (p_type->pointer) + { + assert(p_type->parent_type); + type_id = p_type->parent_type; + } + return type_id; +} + +const SPIRType &Compiler::get_pointee_type(const SPIRType &type) const +{ + auto *p_type = &type; + if (p_type->pointer) + { + assert(p_type->parent_type); + p_type = &get<SPIRType>(p_type->parent_type); + } + return *p_type; +} + +const SPIRType &Compiler::get_pointee_type(uint32_t type_id) const +{ + return get_pointee_type(get<SPIRType>(type_id)); +} + +uint32_t Compiler::get_variable_data_type_id(const SPIRVariable &var) const +{ + if (var.phi_variable || var.storage == spv::StorageClass::StorageClassAtomicCounter) + return var.basetype; + return get_pointee_type_id(var.basetype); +} + +SPIRType &Compiler::get_variable_data_type(const SPIRVariable &var) +{ + return get<SPIRType>(get_variable_data_type_id(var)); +} + +const SPIRType &Compiler::get_variable_data_type(const SPIRVariable &var) const +{ + return get<SPIRType>(get_variable_data_type_id(var)); +} + +SPIRType &Compiler::get_variable_element_type(const SPIRVariable &var) +{ + SPIRType *type = &get_variable_data_type(var); + if (is_array(*type)) + type = &get<SPIRType>(type->parent_type); + return *type; +} + +const SPIRType &Compiler::get_variable_element_type(const SPIRVariable &var) const +{ + const SPIRType *type = &get_variable_data_type(var); + if (is_array(*type)) + type = &get<SPIRType>(type->parent_type); + return *type; +} + +bool Compiler::is_sampled_image_type(const SPIRType &type) +{ + return (type.basetype == SPIRType::Image || type.basetype == SPIRType::SampledImage) && type.image.sampled == 1 && + type.image.dim != DimBuffer; +} + +void Compiler::set_member_decoration_string(TypeID id, uint32_t index, spv::Decoration decoration, + const std::string &argument) +{ + ir.set_member_decoration_string(id, index, decoration, argument); +} + +void Compiler::set_member_decoration(TypeID id, uint32_t index, Decoration decoration, uint32_t argument) +{ + ir.set_member_decoration(id, index, decoration, argument); +} + +void Compiler::set_member_name(TypeID id, uint32_t index, const std::string &name) +{ + ir.set_member_name(id, index, name); +} + +const std::string &Compiler::get_member_name(TypeID id, uint32_t index) const +{ + return ir.get_member_name(id, index); +} + +void Compiler::set_qualified_name(uint32_t id, const string &name) +{ + ir.meta[id].decoration.qualified_alias = name; +} + +void Compiler::set_member_qualified_name(uint32_t type_id, uint32_t index, const std::string &name) +{ + ir.meta[type_id].members.resize(max(ir.meta[type_id].members.size(), size_t(index) + 1)); + ir.meta[type_id].members[index].qualified_alias = name; +} + +const string &Compiler::get_member_qualified_name(TypeID type_id, uint32_t index) const +{ + auto *m = ir.find_meta(type_id); + if (m && index < m->members.size()) + return m->members[index].qualified_alias; + else + return ir.get_empty_string(); +} + +uint32_t Compiler::get_member_decoration(TypeID id, uint32_t index, Decoration decoration) const +{ + return ir.get_member_decoration(id, index, decoration); +} + +const Bitset &Compiler::get_member_decoration_bitset(TypeID id, uint32_t index) const +{ + return ir.get_member_decoration_bitset(id, index); +} + +bool Compiler::has_member_decoration(TypeID id, uint32_t index, Decoration decoration) const +{ + return ir.has_member_decoration(id, index, decoration); +} + +void Compiler::unset_member_decoration(TypeID id, uint32_t index, Decoration decoration) +{ + ir.unset_member_decoration(id, index, decoration); +} + +void Compiler::set_decoration_string(ID id, spv::Decoration decoration, const std::string &argument) +{ + ir.set_decoration_string(id, decoration, argument); +} + +void Compiler::set_decoration(ID id, Decoration decoration, uint32_t argument) +{ + ir.set_decoration(id, decoration, argument); +} + +void Compiler::set_extended_decoration(uint32_t id, ExtendedDecorations decoration, uint32_t value) +{ + auto &dec = ir.meta[id].decoration; + dec.extended.flags.set(decoration); + dec.extended.values[decoration] = value; +} + +void Compiler::set_extended_member_decoration(uint32_t type, uint32_t index, ExtendedDecorations decoration, + uint32_t value) +{ + ir.meta[type].members.resize(max(ir.meta[type].members.size(), size_t(index) + 1)); + auto &dec = ir.meta[type].members[index]; + dec.extended.flags.set(decoration); + dec.extended.values[decoration] = value; +} + +static uint32_t get_default_extended_decoration(ExtendedDecorations decoration) +{ + switch (decoration) + { + case SPIRVCrossDecorationResourceIndexPrimary: + case SPIRVCrossDecorationResourceIndexSecondary: + case SPIRVCrossDecorationResourceIndexTertiary: + case SPIRVCrossDecorationResourceIndexQuaternary: + case SPIRVCrossDecorationInterfaceMemberIndex: + return ~(0u); + + default: + return 0; + } +} + +uint32_t Compiler::get_extended_decoration(uint32_t id, ExtendedDecorations decoration) const +{ + auto *m = ir.find_meta(id); + if (!m) + return 0; + + auto &dec = m->decoration; + + if (!dec.extended.flags.get(decoration)) + return get_default_extended_decoration(decoration); + + return dec.extended.values[decoration]; +} + +uint32_t Compiler::get_extended_member_decoration(uint32_t type, uint32_t index, ExtendedDecorations decoration) const +{ + auto *m = ir.find_meta(type); + if (!m) + return 0; + + if (index >= m->members.size()) + return 0; + + auto &dec = m->members[index]; + if (!dec.extended.flags.get(decoration)) + return get_default_extended_decoration(decoration); + return dec.extended.values[decoration]; +} + +bool Compiler::has_extended_decoration(uint32_t id, ExtendedDecorations decoration) const +{ + auto *m = ir.find_meta(id); + if (!m) + return false; + + auto &dec = m->decoration; + return dec.extended.flags.get(decoration); +} + +bool Compiler::has_extended_member_decoration(uint32_t type, uint32_t index, ExtendedDecorations decoration) const +{ + auto *m = ir.find_meta(type); + if (!m) + return false; + + if (index >= m->members.size()) + return false; + + auto &dec = m->members[index]; + return dec.extended.flags.get(decoration); +} + +void Compiler::unset_extended_decoration(uint32_t id, ExtendedDecorations decoration) +{ + auto &dec = ir.meta[id].decoration; + dec.extended.flags.clear(decoration); + dec.extended.values[decoration] = 0; +} + +void Compiler::unset_extended_member_decoration(uint32_t type, uint32_t index, ExtendedDecorations decoration) +{ + ir.meta[type].members.resize(max(ir.meta[type].members.size(), size_t(index) + 1)); + auto &dec = ir.meta[type].members[index]; + dec.extended.flags.clear(decoration); + dec.extended.values[decoration] = 0; +} + +StorageClass Compiler::get_storage_class(VariableID id) const +{ + return get<SPIRVariable>(id).storage; +} + +const std::string &Compiler::get_name(ID id) const +{ + return ir.get_name(id); +} + +const std::string Compiler::get_fallback_name(ID id) const +{ + return join("_", id); +} + +const std::string Compiler::get_block_fallback_name(VariableID id) const +{ + auto &var = get<SPIRVariable>(id); + if (get_name(id).empty()) + return join("_", get<SPIRType>(var.basetype).self, "_", id); + else + return get_name(id); +} + +const Bitset &Compiler::get_decoration_bitset(ID id) const +{ + return ir.get_decoration_bitset(id); +} + +bool Compiler::has_decoration(ID id, Decoration decoration) const +{ + return ir.has_decoration(id, decoration); +} + +const string &Compiler::get_decoration_string(ID id, Decoration decoration) const +{ + return ir.get_decoration_string(id, decoration); +} + +const string &Compiler::get_member_decoration_string(TypeID id, uint32_t index, Decoration decoration) const +{ + return ir.get_member_decoration_string(id, index, decoration); +} + +uint32_t Compiler::get_decoration(ID id, Decoration decoration) const +{ + return ir.get_decoration(id, decoration); +} + +void Compiler::unset_decoration(ID id, Decoration decoration) +{ + ir.unset_decoration(id, decoration); +} + +bool Compiler::get_binary_offset_for_decoration(VariableID id, spv::Decoration decoration, uint32_t &word_offset) const +{ + auto *m = ir.find_meta(id); + if (!m) + return false; + + auto &word_offsets = m->decoration_word_offset; + auto itr = word_offsets.find(decoration); + if (itr == end(word_offsets)) + return false; + + word_offset = itr->second; + return true; +} + +bool Compiler::block_is_noop(const SPIRBlock &block) const +{ + if (block.terminator != SPIRBlock::Direct) + return false; + + auto &child = get<SPIRBlock>(block.next_block); + + // If this block participates in PHI, the block isn't really noop. + for (auto &phi : block.phi_variables) + if (phi.parent == block.self || phi.parent == child.self) + return false; + + for (auto &phi : child.phi_variables) + if (phi.parent == block.self) + return false; + + // Verify all instructions have no semantic impact. + for (auto &i : block.ops) + { + auto op = static_cast<Op>(i.op); + + switch (op) + { + // Non-Semantic instructions. + case OpLine: + case OpNoLine: + break; + + case OpExtInst: + { + auto *ops = stream(i); + auto ext = get<SPIRExtension>(ops[2]).ext; + + bool ext_is_nonsemantic_only = + ext == SPIRExtension::NonSemanticShaderDebugInfo || + ext == SPIRExtension::SPV_debug_info || + ext == SPIRExtension::NonSemanticGeneric; + + if (!ext_is_nonsemantic_only) + return false; + + break; + } + + default: + return false; + } + } + + return true; +} + +bool Compiler::block_is_loop_candidate(const SPIRBlock &block, SPIRBlock::Method method) const +{ + // Tried and failed. + if (block.disable_block_optimization || block.complex_continue) + return false; + + if (method == SPIRBlock::MergeToSelectForLoop || method == SPIRBlock::MergeToSelectContinueForLoop) + { + // Try to detect common for loop pattern + // which the code backend can use to create cleaner code. + // for(;;) { if (cond) { some_body; } else { break; } } + // is the pattern we're looking for. + const auto *false_block = maybe_get<SPIRBlock>(block.false_block); + const auto *true_block = maybe_get<SPIRBlock>(block.true_block); + const auto *merge_block = maybe_get<SPIRBlock>(block.merge_block); + + bool false_block_is_merge = block.false_block == block.merge_block || + (false_block && merge_block && execution_is_noop(*false_block, *merge_block)); + + bool true_block_is_merge = block.true_block == block.merge_block || + (true_block && merge_block && execution_is_noop(*true_block, *merge_block)); + + bool positive_candidate = + block.true_block != block.merge_block && block.true_block != block.self && false_block_is_merge; + + bool negative_candidate = + block.false_block != block.merge_block && block.false_block != block.self && true_block_is_merge; + + bool ret = block.terminator == SPIRBlock::Select && block.merge == SPIRBlock::MergeLoop && + (positive_candidate || negative_candidate); + + if (ret && positive_candidate && method == SPIRBlock::MergeToSelectContinueForLoop) + ret = block.true_block == block.continue_block; + else if (ret && negative_candidate && method == SPIRBlock::MergeToSelectContinueForLoop) + ret = block.false_block == block.continue_block; + + // If we have OpPhi which depends on branches which came from our own block, + // we need to flush phi variables in else block instead of a trivial break, + // so we cannot assume this is a for loop candidate. + if (ret) + { + for (auto &phi : block.phi_variables) + if (phi.parent == block.self) + return false; + + auto *merge = maybe_get<SPIRBlock>(block.merge_block); + if (merge) + for (auto &phi : merge->phi_variables) + if (phi.parent == block.self) + return false; + } + return ret; + } + else if (method == SPIRBlock::MergeToDirectForLoop) + { + // Empty loop header that just sets up merge target + // and branches to loop body. + bool ret = block.terminator == SPIRBlock::Direct && block.merge == SPIRBlock::MergeLoop && block_is_noop(block); + + if (!ret) + return false; + + auto &child = get<SPIRBlock>(block.next_block); + + const auto *false_block = maybe_get<SPIRBlock>(child.false_block); + const auto *true_block = maybe_get<SPIRBlock>(child.true_block); + const auto *merge_block = maybe_get<SPIRBlock>(block.merge_block); + + bool false_block_is_merge = child.false_block == block.merge_block || + (false_block && merge_block && execution_is_noop(*false_block, *merge_block)); + + bool true_block_is_merge = child.true_block == block.merge_block || + (true_block && merge_block && execution_is_noop(*true_block, *merge_block)); + + bool positive_candidate = + child.true_block != block.merge_block && child.true_block != block.self && false_block_is_merge; + + bool negative_candidate = + child.false_block != block.merge_block && child.false_block != block.self && true_block_is_merge; + + ret = child.terminator == SPIRBlock::Select && child.merge == SPIRBlock::MergeNone && + (positive_candidate || negative_candidate); + + if (ret) + { + auto *merge = maybe_get<SPIRBlock>(block.merge_block); + if (merge) + for (auto &phi : merge->phi_variables) + if (phi.parent == block.self || phi.parent == child.false_block) + return false; + } + + return ret; + } + else + return false; +} + +bool Compiler::execution_is_noop(const SPIRBlock &from, const SPIRBlock &to) const +{ + if (!execution_is_branchless(from, to)) + return false; + + auto *start = &from; + for (;;) + { + if (start->self == to.self) + return true; + + if (!block_is_noop(*start)) + return false; + + auto &next = get<SPIRBlock>(start->next_block); + start = &next; + } +} + +bool Compiler::execution_is_branchless(const SPIRBlock &from, const SPIRBlock &to) const +{ + auto *start = &from; + for (;;) + { + if (start->self == to.self) + return true; + + if (start->terminator == SPIRBlock::Direct && start->merge == SPIRBlock::MergeNone) + start = &get<SPIRBlock>(start->next_block); + else + return false; + } +} + +bool Compiler::execution_is_direct_branch(const SPIRBlock &from, const SPIRBlock &to) const +{ + return from.terminator == SPIRBlock::Direct && from.merge == SPIRBlock::MergeNone && from.next_block == to.self; +} + +SPIRBlock::ContinueBlockType Compiler::continue_block_type(const SPIRBlock &block) const +{ + // The block was deemed too complex during code emit, pick conservative fallback paths. + if (block.complex_continue) + return SPIRBlock::ComplexLoop; + + // In older glslang output continue block can be equal to the loop header. + // In this case, execution is clearly branchless, so just assume a while loop header here. + if (block.merge == SPIRBlock::MergeLoop) + return SPIRBlock::WhileLoop; + + if (block.loop_dominator == BlockID(SPIRBlock::NoDominator)) + { + // Continue block is never reached from CFG. + return SPIRBlock::ComplexLoop; + } + + auto &dominator = get<SPIRBlock>(block.loop_dominator); + + if (execution_is_noop(block, dominator)) + return SPIRBlock::WhileLoop; + else if (execution_is_branchless(block, dominator)) + return SPIRBlock::ForLoop; + else + { + const auto *false_block = maybe_get<SPIRBlock>(block.false_block); + const auto *true_block = maybe_get<SPIRBlock>(block.true_block); + const auto *merge_block = maybe_get<SPIRBlock>(dominator.merge_block); + + // If we need to flush Phi in this block, we cannot have a DoWhile loop. + bool flush_phi_to_false = false_block && flush_phi_required(block.self, block.false_block); + bool flush_phi_to_true = true_block && flush_phi_required(block.self, block.true_block); + if (flush_phi_to_false || flush_phi_to_true) + return SPIRBlock::ComplexLoop; + + bool positive_do_while = block.true_block == dominator.self && + (block.false_block == dominator.merge_block || + (false_block && merge_block && execution_is_noop(*false_block, *merge_block))); + + bool negative_do_while = block.false_block == dominator.self && + (block.true_block == dominator.merge_block || + (true_block && merge_block && execution_is_noop(*true_block, *merge_block))); + + if (block.merge == SPIRBlock::MergeNone && block.terminator == SPIRBlock::Select && + (positive_do_while || negative_do_while)) + { + return SPIRBlock::DoWhileLoop; + } + else + return SPIRBlock::ComplexLoop; + } +} + +const SmallVector<SPIRBlock::Case> &Compiler::get_case_list(const SPIRBlock &block) const +{ + uint32_t width = 0; + + // First we check if we can get the type directly from the block.condition + // since it can be a SPIRConstant or a SPIRVariable. + if (const auto *constant = maybe_get<SPIRConstant>(block.condition)) + { + const auto &type = get<SPIRType>(constant->constant_type); + width = type.width; + } + else if (const auto *var = maybe_get<SPIRVariable>(block.condition)) + { + const auto &type = get<SPIRType>(var->basetype); + width = type.width; + } + else if (const auto *undef = maybe_get<SPIRUndef>(block.condition)) + { + const auto &type = get<SPIRType>(undef->basetype); + width = type.width; + } + else + { + auto search = ir.load_type_width.find(block.condition); + if (search == ir.load_type_width.end()) + { + SPIRV_CROSS_THROW("Use of undeclared variable on a switch statement."); + } + + width = search->second; + } + + if (width > 32) + return block.cases_64bit; + + return block.cases_32bit; +} + +bool Compiler::traverse_all_reachable_opcodes(const SPIRBlock &block, OpcodeHandler &handler) const +{ + handler.set_current_block(block); + handler.rearm_current_block(block); + + // Ideally, perhaps traverse the CFG instead of all blocks in order to eliminate dead blocks, + // but this shouldn't be a problem in practice unless the SPIR-V is doing insane things like recursing + // inside dead blocks ... + for (auto &i : block.ops) + { + auto ops = stream(i); + auto op = static_cast<Op>(i.op); + + if (!handler.handle(op, ops, i.length)) + return false; + + if (op == OpFunctionCall) + { + auto &func = get<SPIRFunction>(ops[2]); + if (handler.follow_function_call(func)) + { + if (!handler.begin_function_scope(ops, i.length)) + return false; + if (!traverse_all_reachable_opcodes(get<SPIRFunction>(ops[2]), handler)) + return false; + if (!handler.end_function_scope(ops, i.length)) + return false; + + handler.rearm_current_block(block); + } + } + } + + if (!handler.handle_terminator(block)) + return false; + + return true; +} + +bool Compiler::traverse_all_reachable_opcodes(const SPIRFunction &func, OpcodeHandler &handler) const +{ + for (auto block : func.blocks) + if (!traverse_all_reachable_opcodes(get<SPIRBlock>(block), handler)) + return false; + + return true; +} + +uint32_t Compiler::type_struct_member_offset(const SPIRType &type, uint32_t index) const +{ + auto *type_meta = ir.find_meta(type.self); + if (type_meta) + { + // Decoration must be set in valid SPIR-V, otherwise throw. + auto &dec = type_meta->members[index]; + if (dec.decoration_flags.get(DecorationOffset)) + return dec.offset; + else + SPIRV_CROSS_THROW("Struct member does not have Offset set."); + } + else + SPIRV_CROSS_THROW("Struct member does not have Offset set."); +} + +uint32_t Compiler::type_struct_member_array_stride(const SPIRType &type, uint32_t index) const +{ + auto *type_meta = ir.find_meta(type.member_types[index]); + if (type_meta) + { + // Decoration must be set in valid SPIR-V, otherwise throw. + // ArrayStride is part of the array type not OpMemberDecorate. + auto &dec = type_meta->decoration; + if (dec.decoration_flags.get(DecorationArrayStride)) + return dec.array_stride; + else + SPIRV_CROSS_THROW("Struct member does not have ArrayStride set."); + } + else + SPIRV_CROSS_THROW("Struct member does not have ArrayStride set."); +} + +uint32_t Compiler::type_struct_member_matrix_stride(const SPIRType &type, uint32_t index) const +{ + auto *type_meta = ir.find_meta(type.self); + if (type_meta) + { + // Decoration must be set in valid SPIR-V, otherwise throw. + // MatrixStride is part of OpMemberDecorate. + auto &dec = type_meta->members[index]; + if (dec.decoration_flags.get(DecorationMatrixStride)) + return dec.matrix_stride; + else + SPIRV_CROSS_THROW("Struct member does not have MatrixStride set."); + } + else + SPIRV_CROSS_THROW("Struct member does not have MatrixStride set."); +} + +size_t Compiler::get_declared_struct_size(const SPIRType &type) const +{ + if (type.member_types.empty()) + SPIRV_CROSS_THROW("Declared struct in block cannot be empty."); + + // Offsets can be declared out of order, so we need to deduce the actual size + // based on last member instead. + uint32_t member_index = 0; + size_t highest_offset = 0; + for (uint32_t i = 0; i < uint32_t(type.member_types.size()); i++) + { + size_t offset = type_struct_member_offset(type, i); + if (offset > highest_offset) + { + highest_offset = offset; + member_index = i; + } + } + + size_t size = get_declared_struct_member_size(type, member_index); + return highest_offset + size; +} + +size_t Compiler::get_declared_struct_size_runtime_array(const SPIRType &type, size_t array_size) const +{ + if (type.member_types.empty()) + SPIRV_CROSS_THROW("Declared struct in block cannot be empty."); + + size_t size = get_declared_struct_size(type); + auto &last_type = get<SPIRType>(type.member_types.back()); + if (!last_type.array.empty() && last_type.array_size_literal[0] && last_type.array[0] == 0) // Runtime array + size += array_size * type_struct_member_array_stride(type, uint32_t(type.member_types.size() - 1)); + + return size; +} + +uint32_t Compiler::evaluate_spec_constant_u32(const SPIRConstantOp &spec) const +{ + auto &result_type = get<SPIRType>(spec.basetype); + if (result_type.basetype != SPIRType::UInt && result_type.basetype != SPIRType::Int && + result_type.basetype != SPIRType::Boolean) + { + SPIRV_CROSS_THROW( + "Only 32-bit integers and booleans are currently supported when evaluating specialization constants.\n"); + } + + if (!is_scalar(result_type)) + SPIRV_CROSS_THROW("Spec constant evaluation must be a scalar.\n"); + + uint32_t value = 0; + + const auto eval_u32 = [&](uint32_t id) -> uint32_t { + auto &type = expression_type(id); + if (type.basetype != SPIRType::UInt && type.basetype != SPIRType::Int && type.basetype != SPIRType::Boolean) + { + SPIRV_CROSS_THROW("Only 32-bit integers and booleans are currently supported when evaluating " + "specialization constants.\n"); + } + + if (!is_scalar(type)) + SPIRV_CROSS_THROW("Spec constant evaluation must be a scalar.\n"); + if (const auto *c = this->maybe_get<SPIRConstant>(id)) + return c->scalar(); + else + return evaluate_spec_constant_u32(this->get<SPIRConstantOp>(id)); + }; + +#define binary_spec_op(op, binary_op) \ + case Op##op: \ + value = eval_u32(spec.arguments[0]) binary_op eval_u32(spec.arguments[1]); \ + break +#define binary_spec_op_cast(op, binary_op, type) \ + case Op##op: \ + value = uint32_t(type(eval_u32(spec.arguments[0])) binary_op type(eval_u32(spec.arguments[1]))); \ + break + + // Support the basic opcodes which are typically used when computing array sizes. + switch (spec.opcode) + { + binary_spec_op(IAdd, +); + binary_spec_op(ISub, -); + binary_spec_op(IMul, *); + binary_spec_op(BitwiseAnd, &); + binary_spec_op(BitwiseOr, |); + binary_spec_op(BitwiseXor, ^); + binary_spec_op(LogicalAnd, &); + binary_spec_op(LogicalOr, |); + binary_spec_op(ShiftLeftLogical, <<); + binary_spec_op(ShiftRightLogical, >>); + binary_spec_op_cast(ShiftRightArithmetic, >>, int32_t); + binary_spec_op(LogicalEqual, ==); + binary_spec_op(LogicalNotEqual, !=); + binary_spec_op(IEqual, ==); + binary_spec_op(INotEqual, !=); + binary_spec_op(ULessThan, <); + binary_spec_op(ULessThanEqual, <=); + binary_spec_op(UGreaterThan, >); + binary_spec_op(UGreaterThanEqual, >=); + binary_spec_op_cast(SLessThan, <, int32_t); + binary_spec_op_cast(SLessThanEqual, <=, int32_t); + binary_spec_op_cast(SGreaterThan, >, int32_t); + binary_spec_op_cast(SGreaterThanEqual, >=, int32_t); +#undef binary_spec_op +#undef binary_spec_op_cast + + case OpLogicalNot: + value = uint32_t(!eval_u32(spec.arguments[0])); + break; + + case OpNot: + value = ~eval_u32(spec.arguments[0]); + break; + + case OpSNegate: + value = uint32_t(-int32_t(eval_u32(spec.arguments[0]))); + break; + + case OpSelect: + value = eval_u32(spec.arguments[0]) ? eval_u32(spec.arguments[1]) : eval_u32(spec.arguments[2]); + break; + + case OpUMod: + { + uint32_t a = eval_u32(spec.arguments[0]); + uint32_t b = eval_u32(spec.arguments[1]); + if (b == 0) + SPIRV_CROSS_THROW("Undefined behavior in UMod, b == 0.\n"); + value = a % b; + break; + } + + case OpSRem: + { + auto a = int32_t(eval_u32(spec.arguments[0])); + auto b = int32_t(eval_u32(spec.arguments[1])); + if (b == 0) + SPIRV_CROSS_THROW("Undefined behavior in SRem, b == 0.\n"); + value = a % b; + break; + } + + case OpSMod: + { + auto a = int32_t(eval_u32(spec.arguments[0])); + auto b = int32_t(eval_u32(spec.arguments[1])); + if (b == 0) + SPIRV_CROSS_THROW("Undefined behavior in SMod, b == 0.\n"); + auto v = a % b; + + // Makes sure we match the sign of b, not a. + if ((b < 0 && v > 0) || (b > 0 && v < 0)) + v += b; + value = v; + break; + } + + case OpUDiv: + { + uint32_t a = eval_u32(spec.arguments[0]); + uint32_t b = eval_u32(spec.arguments[1]); + if (b == 0) + SPIRV_CROSS_THROW("Undefined behavior in UDiv, b == 0.\n"); + value = a / b; + break; + } + + case OpSDiv: + { + auto a = int32_t(eval_u32(spec.arguments[0])); + auto b = int32_t(eval_u32(spec.arguments[1])); + if (b == 0) + SPIRV_CROSS_THROW("Undefined behavior in SDiv, b == 0.\n"); + value = a / b; + break; + } + + default: + SPIRV_CROSS_THROW("Unsupported spec constant opcode for evaluation.\n"); + } + + return value; +} + +uint32_t Compiler::evaluate_constant_u32(uint32_t id) const +{ + if (const auto *c = maybe_get<SPIRConstant>(id)) + return c->scalar(); + else + return evaluate_spec_constant_u32(get<SPIRConstantOp>(id)); +} + +size_t Compiler::get_declared_struct_member_size(const SPIRType &struct_type, uint32_t index) const +{ + if (struct_type.member_types.empty()) + SPIRV_CROSS_THROW("Declared struct in block cannot be empty."); + + auto &flags = get_member_decoration_bitset(struct_type.self, index); + auto &type = get<SPIRType>(struct_type.member_types[index]); + + switch (type.basetype) + { + case SPIRType::Unknown: + case SPIRType::Void: + case SPIRType::Boolean: // Bools are purely logical, and cannot be used for externally visible types. + case SPIRType::AtomicCounter: + case SPIRType::Image: + case SPIRType::SampledImage: + case SPIRType::Sampler: + SPIRV_CROSS_THROW("Querying size for object with opaque size."); + + default: + break; + } + + if (type.pointer && type.storage == StorageClassPhysicalStorageBuffer) + { + // Check if this is a top-level pointer type, and not an array of pointers. + if (type.pointer_depth > get<SPIRType>(type.parent_type).pointer_depth) + return 8; + } + + if (!type.array.empty()) + { + // For arrays, we can use ArrayStride to get an easy check. + bool array_size_literal = type.array_size_literal.back(); + uint32_t array_size = array_size_literal ? type.array.back() : evaluate_constant_u32(type.array.back()); + return type_struct_member_array_stride(struct_type, index) * array_size; + } + else if (type.basetype == SPIRType::Struct) + { + return get_declared_struct_size(type); + } + else + { + unsigned vecsize = type.vecsize; + unsigned columns = type.columns; + + // Vectors. + if (columns == 1) + { + size_t component_size = type.width / 8; + return vecsize * component_size; + } + else + { + uint32_t matrix_stride = type_struct_member_matrix_stride(struct_type, index); + + // Per SPIR-V spec, matrices must be tightly packed and aligned up for vec3 accesses. + if (flags.get(DecorationRowMajor)) + return matrix_stride * vecsize; + else if (flags.get(DecorationColMajor)) + return matrix_stride * columns; + else + SPIRV_CROSS_THROW("Either row-major or column-major must be declared for matrices."); + } + } +} + +bool Compiler::BufferAccessHandler::handle(Op opcode, const uint32_t *args, uint32_t length) +{ + if (opcode != OpAccessChain && opcode != OpInBoundsAccessChain && opcode != OpPtrAccessChain) + return true; + + bool ptr_chain = (opcode == OpPtrAccessChain); + + // Invalid SPIR-V. + if (length < (ptr_chain ? 5u : 4u)) + return false; + + if (args[2] != id) + return true; + + // Don't bother traversing the entire access chain tree yet. + // If we access a struct member, assume we access the entire member. + uint32_t index = compiler.get<SPIRConstant>(args[ptr_chain ? 4 : 3]).scalar(); + + // Seen this index already. + if (seen.find(index) != end(seen)) + return true; + seen.insert(index); + + auto &type = compiler.expression_type(id); + uint32_t offset = compiler.type_struct_member_offset(type, index); + + size_t range; + // If we have another member in the struct, deduce the range by looking at the next member. + // This is okay since structs in SPIR-V can have padding, but Offset decoration must be + // monotonically increasing. + // Of course, this doesn't take into account if the SPIR-V for some reason decided to add + // very large amounts of padding, but that's not really a big deal. + if (index + 1 < type.member_types.size()) + { + range = compiler.type_struct_member_offset(type, index + 1) - offset; + } + else + { + // No padding, so just deduce it from the size of the member directly. + range = compiler.get_declared_struct_member_size(type, index); + } + + ranges.push_back({ index, offset, range }); + return true; +} + +SmallVector<BufferRange> Compiler::get_active_buffer_ranges(VariableID id) const +{ + SmallVector<BufferRange> ranges; + BufferAccessHandler handler(*this, ranges, id); + traverse_all_reachable_opcodes(get<SPIRFunction>(ir.default_entry_point), handler); + return ranges; +} + +bool Compiler::types_are_logically_equivalent(const SPIRType &a, const SPIRType &b) const +{ + if (a.basetype != b.basetype) + return false; + if (a.width != b.width) + return false; + if (a.vecsize != b.vecsize) + return false; + if (a.columns != b.columns) + return false; + if (a.array.size() != b.array.size()) + return false; + + size_t array_count = a.array.size(); + if (array_count && memcmp(a.array.data(), b.array.data(), array_count * sizeof(uint32_t)) != 0) + return false; + + if (a.basetype == SPIRType::Image || a.basetype == SPIRType::SampledImage) + { + if (memcmp(&a.image, &b.image, sizeof(SPIRType::Image)) != 0) + return false; + } + + if (a.member_types.size() != b.member_types.size()) + return false; + + size_t member_types = a.member_types.size(); + for (size_t i = 0; i < member_types; i++) + { + if (!types_are_logically_equivalent(get<SPIRType>(a.member_types[i]), get<SPIRType>(b.member_types[i]))) + return false; + } + + return true; +} + +const Bitset &Compiler::get_execution_mode_bitset() const +{ + return get_entry_point().flags; +} + +void Compiler::set_execution_mode(ExecutionMode mode, uint32_t arg0, uint32_t arg1, uint32_t arg2) +{ + auto &execution = get_entry_point(); + + execution.flags.set(mode); + switch (mode) + { + case ExecutionModeLocalSize: + execution.workgroup_size.x = arg0; + execution.workgroup_size.y = arg1; + execution.workgroup_size.z = arg2; + break; + + case ExecutionModeLocalSizeId: + execution.workgroup_size.id_x = arg0; + execution.workgroup_size.id_y = arg1; + execution.workgroup_size.id_z = arg2; + break; + + case ExecutionModeInvocations: + execution.invocations = arg0; + break; + + case ExecutionModeOutputVertices: + execution.output_vertices = arg0; + break; + + case ExecutionModeOutputPrimitivesEXT: + execution.output_primitives = arg0; + break; + + default: + break; + } +} + +void Compiler::unset_execution_mode(ExecutionMode mode) +{ + auto &execution = get_entry_point(); + execution.flags.clear(mode); +} + +uint32_t Compiler::get_work_group_size_specialization_constants(SpecializationConstant &x, SpecializationConstant &y, + SpecializationConstant &z) const +{ + auto &execution = get_entry_point(); + x = { 0, 0 }; + y = { 0, 0 }; + z = { 0, 0 }; + + // WorkgroupSize builtin takes precedence over LocalSize / LocalSizeId. + if (execution.workgroup_size.constant != 0) + { + auto &c = get<SPIRConstant>(execution.workgroup_size.constant); + + if (c.m.c[0].id[0] != ID(0)) + { + x.id = c.m.c[0].id[0]; + x.constant_id = get_decoration(c.m.c[0].id[0], DecorationSpecId); + } + + if (c.m.c[0].id[1] != ID(0)) + { + y.id = c.m.c[0].id[1]; + y.constant_id = get_decoration(c.m.c[0].id[1], DecorationSpecId); + } + + if (c.m.c[0].id[2] != ID(0)) + { + z.id = c.m.c[0].id[2]; + z.constant_id = get_decoration(c.m.c[0].id[2], DecorationSpecId); + } + } + else if (execution.flags.get(ExecutionModeLocalSizeId)) + { + auto &cx = get<SPIRConstant>(execution.workgroup_size.id_x); + if (cx.specialization) + { + x.id = execution.workgroup_size.id_x; + x.constant_id = get_decoration(execution.workgroup_size.id_x, DecorationSpecId); + } + + auto &cy = get<SPIRConstant>(execution.workgroup_size.id_y); + if (cy.specialization) + { + y.id = execution.workgroup_size.id_y; + y.constant_id = get_decoration(execution.workgroup_size.id_y, DecorationSpecId); + } + + auto &cz = get<SPIRConstant>(execution.workgroup_size.id_z); + if (cz.specialization) + { + z.id = execution.workgroup_size.id_z; + z.constant_id = get_decoration(execution.workgroup_size.id_z, DecorationSpecId); + } + } + + return execution.workgroup_size.constant; +} + +uint32_t Compiler::get_execution_mode_argument(spv::ExecutionMode mode, uint32_t index) const +{ + auto &execution = get_entry_point(); + switch (mode) + { + case ExecutionModeLocalSizeId: + if (execution.flags.get(ExecutionModeLocalSizeId)) + { + switch (index) + { + case 0: + return execution.workgroup_size.id_x; + case 1: + return execution.workgroup_size.id_y; + case 2: + return execution.workgroup_size.id_z; + default: + return 0; + } + } + else + return 0; + + case ExecutionModeLocalSize: + switch (index) + { + case 0: + if (execution.flags.get(ExecutionModeLocalSizeId) && execution.workgroup_size.id_x != 0) + return get<SPIRConstant>(execution.workgroup_size.id_x).scalar(); + else + return execution.workgroup_size.x; + case 1: + if (execution.flags.get(ExecutionModeLocalSizeId) && execution.workgroup_size.id_y != 0) + return get<SPIRConstant>(execution.workgroup_size.id_y).scalar(); + else + return execution.workgroup_size.y; + case 2: + if (execution.flags.get(ExecutionModeLocalSizeId) && execution.workgroup_size.id_z != 0) + return get<SPIRConstant>(execution.workgroup_size.id_z).scalar(); + else + return execution.workgroup_size.z; + default: + return 0; + } + + case ExecutionModeInvocations: + return execution.invocations; + + case ExecutionModeOutputVertices: + return execution.output_vertices; + + case ExecutionModeOutputPrimitivesEXT: + return execution.output_primitives; + + default: + return 0; + } +} + +ExecutionModel Compiler::get_execution_model() const +{ + auto &execution = get_entry_point(); + return execution.model; +} + +bool Compiler::is_tessellation_shader(ExecutionModel model) +{ + return model == ExecutionModelTessellationControl || model == ExecutionModelTessellationEvaluation; +} + +bool Compiler::is_vertex_like_shader() const +{ + auto model = get_execution_model(); + return model == ExecutionModelVertex || model == ExecutionModelGeometry || + model == ExecutionModelTessellationControl || model == ExecutionModelTessellationEvaluation; +} + +bool Compiler::is_tessellation_shader() const +{ + return is_tessellation_shader(get_execution_model()); +} + +bool Compiler::is_tessellating_triangles() const +{ + return get_execution_mode_bitset().get(ExecutionModeTriangles); +} + +void Compiler::set_remapped_variable_state(VariableID id, bool remap_enable) +{ + get<SPIRVariable>(id).remapped_variable = remap_enable; +} + +bool Compiler::get_remapped_variable_state(VariableID id) const +{ + return get<SPIRVariable>(id).remapped_variable; +} + +void Compiler::set_subpass_input_remapped_components(VariableID id, uint32_t components) +{ + get<SPIRVariable>(id).remapped_components = components; +} + +uint32_t Compiler::get_subpass_input_remapped_components(VariableID id) const +{ + return get<SPIRVariable>(id).remapped_components; +} + +void Compiler::add_implied_read_expression(SPIRExpression &e, uint32_t source) +{ + auto itr = find(begin(e.implied_read_expressions), end(e.implied_read_expressions), ID(source)); + if (itr == end(e.implied_read_expressions)) + e.implied_read_expressions.push_back(source); +} + +void Compiler::add_implied_read_expression(SPIRAccessChain &e, uint32_t source) +{ + auto itr = find(begin(e.implied_read_expressions), end(e.implied_read_expressions), ID(source)); + if (itr == end(e.implied_read_expressions)) + e.implied_read_expressions.push_back(source); +} + +void Compiler::add_active_interface_variable(uint32_t var_id) +{ + active_interface_variables.insert(var_id); + + // In SPIR-V 1.4 and up we must also track the interface variable in the entry point. + if (ir.get_spirv_version() >= 0x10400) + { + auto &vars = get_entry_point().interface_variables; + if (find(begin(vars), end(vars), VariableID(var_id)) == end(vars)) + vars.push_back(var_id); + } +} + +void Compiler::inherit_expression_dependencies(uint32_t dst, uint32_t source_expression) +{ + // Don't inherit any expression dependencies if the expression in dst + // is not a forwarded temporary. + if (forwarded_temporaries.find(dst) == end(forwarded_temporaries) || + forced_temporaries.find(dst) != end(forced_temporaries)) + { + return; + } + + auto &e = get<SPIRExpression>(dst); + auto *phi = maybe_get<SPIRVariable>(source_expression); + if (phi && phi->phi_variable) + { + // We have used a phi variable, which can change at the end of the block, + // so make sure we take a dependency on this phi variable. + phi->dependees.push_back(dst); + } + + auto *s = maybe_get<SPIRExpression>(source_expression); + if (!s) + return; + + auto &e_deps = e.expression_dependencies; + auto &s_deps = s->expression_dependencies; + + // If we depend on a expression, we also depend on all sub-dependencies from source. + e_deps.push_back(source_expression); + e_deps.insert(end(e_deps), begin(s_deps), end(s_deps)); + + // Eliminate duplicated dependencies. + sort(begin(e_deps), end(e_deps)); + e_deps.erase(unique(begin(e_deps), end(e_deps)), end(e_deps)); +} + +SmallVector<EntryPoint> Compiler::get_entry_points_and_stages() const +{ + SmallVector<EntryPoint> entries; + for (auto &entry : ir.entry_points) + entries.push_back({ entry.second.orig_name, entry.second.model }); + return entries; +} + +void Compiler::rename_entry_point(const std::string &old_name, const std::string &new_name, spv::ExecutionModel model) +{ + auto &entry = get_entry_point(old_name, model); + entry.orig_name = new_name; + entry.name = new_name; +} + +void Compiler::set_entry_point(const std::string &name, spv::ExecutionModel model) +{ + auto &entry = get_entry_point(name, model); + ir.default_entry_point = entry.self; +} + +SPIREntryPoint &Compiler::get_first_entry_point(const std::string &name) +{ + auto itr = find_if( + begin(ir.entry_points), end(ir.entry_points), + [&](const std::pair<uint32_t, SPIREntryPoint> &entry) -> bool { return entry.second.orig_name == name; }); + + if (itr == end(ir.entry_points)) + SPIRV_CROSS_THROW("Entry point does not exist."); + + return itr->second; +} + +const SPIREntryPoint &Compiler::get_first_entry_point(const std::string &name) const +{ + auto itr = find_if( + begin(ir.entry_points), end(ir.entry_points), + [&](const std::pair<uint32_t, SPIREntryPoint> &entry) -> bool { return entry.second.orig_name == name; }); + + if (itr == end(ir.entry_points)) + SPIRV_CROSS_THROW("Entry point does not exist."); + + return itr->second; +} + +SPIREntryPoint &Compiler::get_entry_point(const std::string &name, ExecutionModel model) +{ + auto itr = find_if(begin(ir.entry_points), end(ir.entry_points), + [&](const std::pair<uint32_t, SPIREntryPoint> &entry) -> bool { + return entry.second.orig_name == name && entry.second.model == model; + }); + + if (itr == end(ir.entry_points)) + SPIRV_CROSS_THROW("Entry point does not exist."); + + return itr->second; +} + +const SPIREntryPoint &Compiler::get_entry_point(const std::string &name, ExecutionModel model) const +{ + auto itr = find_if(begin(ir.entry_points), end(ir.entry_points), + [&](const std::pair<uint32_t, SPIREntryPoint> &entry) -> bool { + return entry.second.orig_name == name && entry.second.model == model; + }); + + if (itr == end(ir.entry_points)) + SPIRV_CROSS_THROW("Entry point does not exist."); + + return itr->second; +} + +const string &Compiler::get_cleansed_entry_point_name(const std::string &name, ExecutionModel model) const +{ + return get_entry_point(name, model).name; +} + +const SPIREntryPoint &Compiler::get_entry_point() const +{ + return ir.entry_points.find(ir.default_entry_point)->second; +} + +SPIREntryPoint &Compiler::get_entry_point() +{ + return ir.entry_points.find(ir.default_entry_point)->second; +} + +bool Compiler::interface_variable_exists_in_entry_point(uint32_t id) const +{ + auto &var = get<SPIRVariable>(id); + + if (ir.get_spirv_version() < 0x10400) + { + if (var.storage != StorageClassInput && var.storage != StorageClassOutput && + var.storage != StorageClassUniformConstant) + SPIRV_CROSS_THROW("Only Input, Output variables and Uniform constants are part of a shader linking interface."); + + // This is to avoid potential problems with very old glslang versions which did + // not emit input/output interfaces properly. + // We can assume they only had a single entry point, and single entry point + // shaders could easily be assumed to use every interface variable anyways. + if (ir.entry_points.size() <= 1) + return true; + } + + // In SPIR-V 1.4 and later, all global resource variables must be present. + + auto &execution = get_entry_point(); + return find(begin(execution.interface_variables), end(execution.interface_variables), VariableID(id)) != + end(execution.interface_variables); +} + +void Compiler::CombinedImageSamplerHandler::push_remap_parameters(const SPIRFunction &func, const uint32_t *args, + uint32_t length) +{ + // If possible, pipe through a remapping table so that parameters know + // which variables they actually bind to in this scope. + unordered_map<uint32_t, uint32_t> remapping; + for (uint32_t i = 0; i < length; i++) + remapping[func.arguments[i].id] = remap_parameter(args[i]); + parameter_remapping.push(std::move(remapping)); +} + +void Compiler::CombinedImageSamplerHandler::pop_remap_parameters() +{ + parameter_remapping.pop(); +} + +uint32_t Compiler::CombinedImageSamplerHandler::remap_parameter(uint32_t id) +{ + auto *var = compiler.maybe_get_backing_variable(id); + if (var) + id = var->self; + + if (parameter_remapping.empty()) + return id; + + auto &remapping = parameter_remapping.top(); + auto itr = remapping.find(id); + if (itr != end(remapping)) + return itr->second; + else + return id; +} + +bool Compiler::CombinedImageSamplerHandler::begin_function_scope(const uint32_t *args, uint32_t length) +{ + if (length < 3) + return false; + + auto &callee = compiler.get<SPIRFunction>(args[2]); + args += 3; + length -= 3; + push_remap_parameters(callee, args, length); + functions.push(&callee); + return true; +} + +bool Compiler::CombinedImageSamplerHandler::end_function_scope(const uint32_t *args, uint32_t length) +{ + if (length < 3) + return false; + + auto &callee = compiler.get<SPIRFunction>(args[2]); + args += 3; + + // There are two types of cases we have to handle, + // a callee might call sampler2D(texture2D, sampler) directly where + // one or more parameters originate from parameters. + // Alternatively, we need to provide combined image samplers to our callees, + // and in this case we need to add those as well. + + pop_remap_parameters(); + + // Our callee has now been processed at least once. + // No point in doing it again. + callee.do_combined_parameters = false; + + auto ¶ms = functions.top()->combined_parameters; + functions.pop(); + if (functions.empty()) + return true; + + auto &caller = *functions.top(); + if (caller.do_combined_parameters) + { + for (auto ¶m : params) + { + VariableID image_id = param.global_image ? param.image_id : VariableID(args[param.image_id]); + VariableID sampler_id = param.global_sampler ? param.sampler_id : VariableID(args[param.sampler_id]); + + auto *i = compiler.maybe_get_backing_variable(image_id); + auto *s = compiler.maybe_get_backing_variable(sampler_id); + if (i) + image_id = i->self; + if (s) + sampler_id = s->self; + + register_combined_image_sampler(caller, 0, image_id, sampler_id, param.depth); + } + } + + return true; +} + +void Compiler::CombinedImageSamplerHandler::register_combined_image_sampler(SPIRFunction &caller, + VariableID combined_module_id, + VariableID image_id, VariableID sampler_id, + bool depth) +{ + // We now have a texture ID and a sampler ID which will either be found as a global + // or a parameter in our own function. If both are global, they will not need a parameter, + // otherwise, add it to our list. + SPIRFunction::CombinedImageSamplerParameter param = { + 0u, image_id, sampler_id, true, true, depth, + }; + + auto texture_itr = find_if(begin(caller.arguments), end(caller.arguments), + [image_id](const SPIRFunction::Parameter &p) { return p.id == image_id; }); + auto sampler_itr = find_if(begin(caller.arguments), end(caller.arguments), + [sampler_id](const SPIRFunction::Parameter &p) { return p.id == sampler_id; }); + + if (texture_itr != end(caller.arguments)) + { + param.global_image = false; + param.image_id = uint32_t(texture_itr - begin(caller.arguments)); + } + + if (sampler_itr != end(caller.arguments)) + { + param.global_sampler = false; + param.sampler_id = uint32_t(sampler_itr - begin(caller.arguments)); + } + + if (param.global_image && param.global_sampler) + return; + + auto itr = find_if(begin(caller.combined_parameters), end(caller.combined_parameters), + [¶m](const SPIRFunction::CombinedImageSamplerParameter &p) { + return param.image_id == p.image_id && param.sampler_id == p.sampler_id && + param.global_image == p.global_image && param.global_sampler == p.global_sampler; + }); + + if (itr == end(caller.combined_parameters)) + { + uint32_t id = compiler.ir.increase_bound_by(3); + auto type_id = id + 0; + auto ptr_type_id = id + 1; + auto combined_id = id + 2; + auto &base = compiler.expression_type(image_id); + auto &type = compiler.set<SPIRType>(type_id, OpTypeSampledImage); + auto &ptr_type = compiler.set<SPIRType>(ptr_type_id, OpTypePointer); + + type = base; + type.self = type_id; + type.basetype = SPIRType::SampledImage; + type.pointer = false; + type.storage = StorageClassGeneric; + type.image.depth = depth; + + ptr_type = type; + ptr_type.pointer = true; + ptr_type.storage = StorageClassUniformConstant; + ptr_type.parent_type = type_id; + + // Build new variable. + compiler.set<SPIRVariable>(combined_id, ptr_type_id, StorageClassFunction, 0); + + // Inherit RelaxedPrecision. + // If any of OpSampledImage, underlying image or sampler are marked, inherit the decoration. + bool relaxed_precision = + compiler.has_decoration(sampler_id, DecorationRelaxedPrecision) || + compiler.has_decoration(image_id, DecorationRelaxedPrecision) || + (combined_module_id && compiler.has_decoration(combined_module_id, DecorationRelaxedPrecision)); + + if (relaxed_precision) + compiler.set_decoration(combined_id, DecorationRelaxedPrecision); + + param.id = combined_id; + + compiler.set_name(combined_id, + join("SPIRV_Cross_Combined", compiler.to_name(image_id), compiler.to_name(sampler_id))); + + caller.combined_parameters.push_back(param); + caller.shadow_arguments.push_back({ ptr_type_id, combined_id, 0u, 0u, true }); + } +} + +bool Compiler::DummySamplerForCombinedImageHandler::handle(Op opcode, const uint32_t *args, uint32_t length) +{ + if (need_dummy_sampler) + { + // No need to traverse further, we know the result. + return false; + } + + switch (opcode) + { + case OpLoad: + { + if (length < 3) + return false; + + uint32_t result_type = args[0]; + + auto &type = compiler.get<SPIRType>(result_type); + bool separate_image = + type.basetype == SPIRType::Image && type.image.sampled == 1 && type.image.dim != DimBuffer; + + // If not separate image, don't bother. + if (!separate_image) + return true; + + uint32_t id = args[1]; + uint32_t ptr = args[2]; + compiler.set<SPIRExpression>(id, "", result_type, true); + compiler.register_read(id, ptr, true); + break; + } + + case OpImageFetch: + case OpImageQuerySizeLod: + case OpImageQuerySize: + case OpImageQueryLevels: + case OpImageQuerySamples: + { + // If we are fetching or querying LOD from a plain OpTypeImage, we must pre-combine with our dummy sampler. + auto *var = compiler.maybe_get_backing_variable(args[2]); + if (var) + { + auto &type = compiler.get<SPIRType>(var->basetype); + if (type.basetype == SPIRType::Image && type.image.sampled == 1 && type.image.dim != DimBuffer) + need_dummy_sampler = true; + } + + break; + } + + case OpInBoundsAccessChain: + case OpAccessChain: + case OpPtrAccessChain: + { + if (length < 3) + return false; + + uint32_t result_type = args[0]; + auto &type = compiler.get<SPIRType>(result_type); + bool separate_image = + type.basetype == SPIRType::Image && type.image.sampled == 1 && type.image.dim != DimBuffer; + if (!separate_image) + return true; + + uint32_t id = args[1]; + uint32_t ptr = args[2]; + compiler.set<SPIRExpression>(id, "", result_type, true); + compiler.register_read(id, ptr, true); + + // Other backends might use SPIRAccessChain for this later. + compiler.ir.ids[id].set_allow_type_rewrite(); + break; + } + + default: + break; + } + + return true; +} + +bool Compiler::CombinedImageSamplerHandler::handle(Op opcode, const uint32_t *args, uint32_t length) +{ + // We need to figure out where samplers and images are loaded from, so do only the bare bones compilation we need. + bool is_fetch = false; + + switch (opcode) + { + case OpLoad: + { + if (length < 3) + return false; + + uint32_t result_type = args[0]; + + auto &type = compiler.get<SPIRType>(result_type); + bool separate_image = type.basetype == SPIRType::Image && type.image.sampled == 1; + bool separate_sampler = type.basetype == SPIRType::Sampler; + + // If not separate image or sampler, don't bother. + if (!separate_image && !separate_sampler) + return true; + + uint32_t id = args[1]; + uint32_t ptr = args[2]; + compiler.set<SPIRExpression>(id, "", result_type, true); + compiler.register_read(id, ptr, true); + return true; + } + + case OpInBoundsAccessChain: + case OpAccessChain: + case OpPtrAccessChain: + { + if (length < 3) + return false; + + // Technically, it is possible to have arrays of textures and arrays of samplers and combine them, but this becomes essentially + // impossible to implement, since we don't know which concrete sampler we are accessing. + // One potential way is to create a combinatorial explosion where N textures and M samplers are combined into N * M sampler2Ds, + // but this seems ridiculously complicated for a problem which is easy to work around. + // Checking access chains like this assumes we don't have samplers or textures inside uniform structs, but this makes no sense. + + uint32_t result_type = args[0]; + + auto &type = compiler.get<SPIRType>(result_type); + bool separate_image = type.basetype == SPIRType::Image && type.image.sampled == 1; + bool separate_sampler = type.basetype == SPIRType::Sampler; + if (separate_sampler) + SPIRV_CROSS_THROW( + "Attempting to use arrays or structs of separate samplers. This is not possible to statically " + "remap to plain GLSL."); + + if (separate_image) + { + uint32_t id = args[1]; + uint32_t ptr = args[2]; + compiler.set<SPIRExpression>(id, "", result_type, true); + compiler.register_read(id, ptr, true); + } + return true; + } + + case OpImageFetch: + case OpImageQuerySizeLod: + case OpImageQuerySize: + case OpImageQueryLevels: + case OpImageQuerySamples: + { + // If we are fetching from a plain OpTypeImage or querying LOD, we must pre-combine with our dummy sampler. + auto *var = compiler.maybe_get_backing_variable(args[2]); + if (!var) + return true; + + auto &type = compiler.get<SPIRType>(var->basetype); + if (type.basetype == SPIRType::Image && type.image.sampled == 1 && type.image.dim != DimBuffer) + { + if (compiler.dummy_sampler_id == 0) + SPIRV_CROSS_THROW("texelFetch without sampler was found, but no dummy sampler has been created with " + "build_dummy_sampler_for_combined_images()."); + + // Do it outside. + is_fetch = true; + break; + } + + return true; + } + + case OpSampledImage: + // Do it outside. + break; + + default: + return true; + } + + // Registers sampler2D calls used in case they are parameters so + // that their callees know which combined image samplers to propagate down the call stack. + if (!functions.empty()) + { + auto &callee = *functions.top(); + if (callee.do_combined_parameters) + { + uint32_t image_id = args[2]; + + auto *image = compiler.maybe_get_backing_variable(image_id); + if (image) + image_id = image->self; + + uint32_t sampler_id = is_fetch ? compiler.dummy_sampler_id : args[3]; + auto *sampler = compiler.maybe_get_backing_variable(sampler_id); + if (sampler) + sampler_id = sampler->self; + + uint32_t combined_id = args[1]; + + auto &combined_type = compiler.get<SPIRType>(args[0]); + register_combined_image_sampler(callee, combined_id, image_id, sampler_id, combined_type.image.depth); + } + } + + // For function calls, we need to remap IDs which are function parameters into global variables. + // This information is statically known from the current place in the call stack. + // Function parameters are not necessarily pointers, so if we don't have a backing variable, remapping will know + // which backing variable the image/sample came from. + VariableID image_id = remap_parameter(args[2]); + VariableID sampler_id = is_fetch ? compiler.dummy_sampler_id : remap_parameter(args[3]); + + auto itr = find_if(begin(compiler.combined_image_samplers), end(compiler.combined_image_samplers), + [image_id, sampler_id](const CombinedImageSampler &combined) { + return combined.image_id == image_id && combined.sampler_id == sampler_id; + }); + + if (itr == end(compiler.combined_image_samplers)) + { + uint32_t sampled_type; + uint32_t combined_module_id; + if (is_fetch) + { + // Have to invent the sampled image type. + sampled_type = compiler.ir.increase_bound_by(1); + auto &type = compiler.set<SPIRType>(sampled_type, OpTypeSampledImage); + type = compiler.expression_type(args[2]); + type.self = sampled_type; + type.basetype = SPIRType::SampledImage; + type.image.depth = false; + combined_module_id = 0; + } + else + { + sampled_type = args[0]; + combined_module_id = args[1]; + } + + auto id = compiler.ir.increase_bound_by(2); + auto type_id = id + 0; + auto combined_id = id + 1; + + // Make a new type, pointer to OpTypeSampledImage, so we can make a variable of this type. + // We will probably have this type lying around, but it doesn't hurt to make duplicates for internal purposes. + auto &type = compiler.set<SPIRType>(type_id, OpTypePointer); + auto &base = compiler.get<SPIRType>(sampled_type); + type = base; + type.pointer = true; + type.storage = StorageClassUniformConstant; + type.parent_type = type_id; + + // Build new variable. + compiler.set<SPIRVariable>(combined_id, type_id, StorageClassUniformConstant, 0); + + // Inherit RelaxedPrecision (and potentially other useful flags if deemed relevant). + // If any of OpSampledImage, underlying image or sampler are marked, inherit the decoration. + bool relaxed_precision = + (sampler_id && compiler.has_decoration(sampler_id, DecorationRelaxedPrecision)) || + (image_id && compiler.has_decoration(image_id, DecorationRelaxedPrecision)) || + (combined_module_id && compiler.has_decoration(combined_module_id, DecorationRelaxedPrecision)); + + if (relaxed_precision) + compiler.set_decoration(combined_id, DecorationRelaxedPrecision); + + // Propagate the array type for the original image as well. + auto *var = compiler.maybe_get_backing_variable(image_id); + if (var) + { + auto &parent_type = compiler.get<SPIRType>(var->basetype); + type.array = parent_type.array; + type.array_size_literal = parent_type.array_size_literal; + } + + compiler.combined_image_samplers.push_back({ combined_id, image_id, sampler_id }); + } + + return true; +} + +VariableID Compiler::build_dummy_sampler_for_combined_images() +{ + DummySamplerForCombinedImageHandler handler(*this); + traverse_all_reachable_opcodes(get<SPIRFunction>(ir.default_entry_point), handler); + if (handler.need_dummy_sampler) + { + uint32_t offset = ir.increase_bound_by(3); + auto type_id = offset + 0; + auto ptr_type_id = offset + 1; + auto var_id = offset + 2; + + auto &sampler = set<SPIRType>(type_id, OpTypeSampler); + sampler.basetype = SPIRType::Sampler; + + auto &ptr_sampler = set<SPIRType>(ptr_type_id, OpTypePointer); + ptr_sampler = sampler; + ptr_sampler.self = type_id; + ptr_sampler.storage = StorageClassUniformConstant; + ptr_sampler.pointer = true; + ptr_sampler.parent_type = type_id; + + set<SPIRVariable>(var_id, ptr_type_id, StorageClassUniformConstant, 0); + set_name(var_id, "SPIRV_Cross_DummySampler"); + dummy_sampler_id = var_id; + return var_id; + } + else + return 0; +} + +void Compiler::build_combined_image_samplers() +{ + ir.for_each_typed_id<SPIRFunction>([&](uint32_t, SPIRFunction &func) { + func.combined_parameters.clear(); + func.shadow_arguments.clear(); + func.do_combined_parameters = true; + }); + + combined_image_samplers.clear(); + CombinedImageSamplerHandler handler(*this); + traverse_all_reachable_opcodes(get<SPIRFunction>(ir.default_entry_point), handler); +} + +SmallVector<SpecializationConstant> Compiler::get_specialization_constants() const +{ + SmallVector<SpecializationConstant> spec_consts; + ir.for_each_typed_id<SPIRConstant>([&](uint32_t, const SPIRConstant &c) { + if (c.specialization && has_decoration(c.self, DecorationSpecId)) + spec_consts.push_back({ c.self, get_decoration(c.self, DecorationSpecId) }); + }); + return spec_consts; +} + +SPIRConstant &Compiler::get_constant(ConstantID id) +{ + return get<SPIRConstant>(id); +} + +const SPIRConstant &Compiler::get_constant(ConstantID id) const +{ + return get<SPIRConstant>(id); +} + +static bool exists_unaccessed_path_to_return(const CFG &cfg, uint32_t block, const unordered_set<uint32_t> &blocks, + unordered_set<uint32_t> &visit_cache) +{ + // This block accesses the variable. + if (blocks.find(block) != end(blocks)) + return false; + + // We are at the end of the CFG. + if (cfg.get_succeeding_edges(block).empty()) + return true; + + // If any of our successors have a path to the end, there exists a path from block. + for (auto &succ : cfg.get_succeeding_edges(block)) + { + if (visit_cache.count(succ) == 0) + { + if (exists_unaccessed_path_to_return(cfg, succ, blocks, visit_cache)) + return true; + visit_cache.insert(succ); + } + } + + return false; +} + +void Compiler::analyze_parameter_preservation( + SPIRFunction &entry, const CFG &cfg, const unordered_map<uint32_t, unordered_set<uint32_t>> &variable_to_blocks, + const unordered_map<uint32_t, unordered_set<uint32_t>> &complete_write_blocks) +{ + for (auto &arg : entry.arguments) + { + // Non-pointers are always inputs. + auto &type = get<SPIRType>(arg.type); + if (!type.pointer) + continue; + + // Opaque argument types are always in + bool potential_preserve; + switch (type.basetype) + { + case SPIRType::Sampler: + case SPIRType::Image: + case SPIRType::SampledImage: + case SPIRType::AtomicCounter: + potential_preserve = false; + break; + + default: + potential_preserve = true; + break; + } + + if (!potential_preserve) + continue; + + auto itr = variable_to_blocks.find(arg.id); + if (itr == end(variable_to_blocks)) + { + // Variable is never accessed. + continue; + } + + // We have accessed a variable, but there was no complete writes to that variable. + // We deduce that we must preserve the argument. + itr = complete_write_blocks.find(arg.id); + if (itr == end(complete_write_blocks)) + { + arg.read_count++; + continue; + } + + // If there is a path through the CFG where no block completely writes to the variable, the variable will be in an undefined state + // when the function returns. We therefore need to implicitly preserve the variable in case there are writers in the function. + // Major case here is if a function is + // void foo(int &var) { if (cond) var = 10; } + // Using read/write counts, we will think it's just an out variable, but it really needs to be inout, + // because if we don't write anything whatever we put into the function must return back to the caller. + unordered_set<uint32_t> visit_cache; + if (exists_unaccessed_path_to_return(cfg, entry.entry_block, itr->second, visit_cache)) + arg.read_count++; + } +} + +Compiler::AnalyzeVariableScopeAccessHandler::AnalyzeVariableScopeAccessHandler(Compiler &compiler_, + SPIRFunction &entry_) + : compiler(compiler_) + , entry(entry_) +{ +} + +bool Compiler::AnalyzeVariableScopeAccessHandler::follow_function_call(const SPIRFunction &) +{ + // Only analyze within this function. + return false; +} + +void Compiler::AnalyzeVariableScopeAccessHandler::set_current_block(const SPIRBlock &block) +{ + current_block = █ + + // If we're branching to a block which uses OpPhi, in GLSL + // this will be a variable write when we branch, + // so we need to track access to these variables as well to + // have a complete picture. + const auto test_phi = [this, &block](uint32_t to) { + auto &next = compiler.get<SPIRBlock>(to); + for (auto &phi : next.phi_variables) + { + if (phi.parent == block.self) + { + accessed_variables_to_block[phi.function_variable].insert(block.self); + // Phi variables are also accessed in our target branch block. + accessed_variables_to_block[phi.function_variable].insert(next.self); + + notify_variable_access(phi.local_variable, block.self); + } + } + }; + + switch (block.terminator) + { + case SPIRBlock::Direct: + notify_variable_access(block.condition, block.self); + test_phi(block.next_block); + break; + + case SPIRBlock::Select: + notify_variable_access(block.condition, block.self); + test_phi(block.true_block); + test_phi(block.false_block); + break; + + case SPIRBlock::MultiSelect: + { + notify_variable_access(block.condition, block.self); + auto &cases = compiler.get_case_list(block); + for (auto &target : cases) + test_phi(target.block); + if (block.default_block) + test_phi(block.default_block); + break; + } + + default: + break; + } +} + +void Compiler::AnalyzeVariableScopeAccessHandler::notify_variable_access(uint32_t id, uint32_t block) +{ + if (id == 0) + return; + + // Access chains used in multiple blocks mean hoisting all the variables used to construct the access chain as not all backends can use pointers. + auto itr = rvalue_forward_children.find(id); + if (itr != end(rvalue_forward_children)) + for (auto child_id : itr->second) + notify_variable_access(child_id, block); + + if (id_is_phi_variable(id)) + accessed_variables_to_block[id].insert(block); + else if (id_is_potential_temporary(id)) + accessed_temporaries_to_block[id].insert(block); +} + +bool Compiler::AnalyzeVariableScopeAccessHandler::id_is_phi_variable(uint32_t id) const +{ + if (id >= compiler.get_current_id_bound()) + return false; + auto *var = compiler.maybe_get<SPIRVariable>(id); + return var && var->phi_variable; +} + +bool Compiler::AnalyzeVariableScopeAccessHandler::id_is_potential_temporary(uint32_t id) const +{ + if (id >= compiler.get_current_id_bound()) + return false; + + // Temporaries are not created before we start emitting code. + return compiler.ir.ids[id].empty() || (compiler.ir.ids[id].get_type() == TypeExpression); +} + +bool Compiler::AnalyzeVariableScopeAccessHandler::handle_terminator(const SPIRBlock &block) +{ + switch (block.terminator) + { + case SPIRBlock::Return: + if (block.return_value) + notify_variable_access(block.return_value, block.self); + break; + + case SPIRBlock::Select: + case SPIRBlock::MultiSelect: + notify_variable_access(block.condition, block.self); + break; + + default: + break; + } + + return true; +} + +bool Compiler::AnalyzeVariableScopeAccessHandler::handle(spv::Op op, const uint32_t *args, uint32_t length) +{ + // Keep track of the types of temporaries, so we can hoist them out as necessary. + uint32_t result_type = 0, result_id = 0; + if (compiler.instruction_to_result_type(result_type, result_id, op, args, length)) + { + // For some opcodes, we will need to override the result id. + // If we need to hoist the temporary, the temporary type is the input, not the result. + if (op == OpConvertUToAccelerationStructureKHR) + { + auto itr = result_id_to_type.find(args[2]); + if (itr != result_id_to_type.end()) + result_type = itr->second; + } + + result_id_to_type[result_id] = result_type; + } + + switch (op) + { + case OpStore: + { + if (length < 2) + return false; + + ID ptr = args[0]; + auto *var = compiler.maybe_get_backing_variable(ptr); + + // If we store through an access chain, we have a partial write. + if (var) + { + accessed_variables_to_block[var->self].insert(current_block->self); + if (var->self == ptr) + complete_write_variables_to_block[var->self].insert(current_block->self); + else + partial_write_variables_to_block[var->self].insert(current_block->self); + } + + // args[0] might be an access chain we have to track use of. + notify_variable_access(args[0], current_block->self); + // Might try to store a Phi variable here. + notify_variable_access(args[1], current_block->self); + break; + } + + case OpAccessChain: + case OpInBoundsAccessChain: + case OpPtrAccessChain: + { + if (length < 3) + return false; + + // Access chains used in multiple blocks mean hoisting all the variables used to construct the access chain as not all backends can use pointers. + uint32_t ptr = args[2]; + auto *var = compiler.maybe_get<SPIRVariable>(ptr); + if (var) + { + accessed_variables_to_block[var->self].insert(current_block->self); + rvalue_forward_children[args[1]].insert(var->self); + } + + // args[2] might be another access chain we have to track use of. + for (uint32_t i = 2; i < length; i++) + { + notify_variable_access(args[i], current_block->self); + rvalue_forward_children[args[1]].insert(args[i]); + } + + // Also keep track of the access chain pointer itself. + // In exceptionally rare cases, we can end up with a case where + // the access chain is generated in the loop body, but is consumed in continue block. + // This means we need complex loop workarounds, and we must detect this via CFG analysis. + notify_variable_access(args[1], current_block->self); + + // The result of an access chain is a fixed expression and is not really considered a temporary. + auto &e = compiler.set<SPIRExpression>(args[1], "", args[0], true); + auto *backing_variable = compiler.maybe_get_backing_variable(ptr); + e.loaded_from = backing_variable ? VariableID(backing_variable->self) : VariableID(0); + + // Other backends might use SPIRAccessChain for this later. + compiler.ir.ids[args[1]].set_allow_type_rewrite(); + access_chain_expressions.insert(args[1]); + break; + } + + case OpCopyMemory: + { + if (length < 2) + return false; + + ID lhs = args[0]; + ID rhs = args[1]; + auto *var = compiler.maybe_get_backing_variable(lhs); + + // If we store through an access chain, we have a partial write. + if (var) + { + accessed_variables_to_block[var->self].insert(current_block->self); + if (var->self == lhs) + complete_write_variables_to_block[var->self].insert(current_block->self); + else + partial_write_variables_to_block[var->self].insert(current_block->self); + } + + // args[0:1] might be access chains we have to track use of. + for (uint32_t i = 0; i < 2; i++) + notify_variable_access(args[i], current_block->self); + + var = compiler.maybe_get_backing_variable(rhs); + if (var) + accessed_variables_to_block[var->self].insert(current_block->self); + break; + } + + case OpCopyObject: + { + // OpCopyObject copies the underlying non-pointer type, + // so any temp variable should be declared using the underlying type. + // If the type is a pointer, get its base type and overwrite the result type mapping. + auto &type = compiler.get<SPIRType>(result_type); + if (type.pointer) + result_id_to_type[result_id] = type.parent_type; + + if (length < 3) + return false; + + auto *var = compiler.maybe_get_backing_variable(args[2]); + if (var) + accessed_variables_to_block[var->self].insert(current_block->self); + + // Might be an access chain which we have to keep track of. + notify_variable_access(args[1], current_block->self); + if (access_chain_expressions.count(args[2])) + access_chain_expressions.insert(args[1]); + + // Might try to copy a Phi variable here. + notify_variable_access(args[2], current_block->self); + break; + } + + case OpLoad: + { + if (length < 3) + return false; + uint32_t ptr = args[2]; + auto *var = compiler.maybe_get_backing_variable(ptr); + if (var) + accessed_variables_to_block[var->self].insert(current_block->self); + + // Loaded value is a temporary. + notify_variable_access(args[1], current_block->self); + + // Might be an access chain we have to track use of. + notify_variable_access(args[2], current_block->self); + + // If we're loading an opaque type we cannot lower it to a temporary, + // we must defer access of args[2] until it's used. + auto &type = compiler.get<SPIRType>(args[0]); + if (compiler.type_is_opaque_value(type)) + rvalue_forward_children[args[1]].insert(args[2]); + break; + } + + case OpFunctionCall: + { + if (length < 3) + return false; + + // Return value may be a temporary. + if (compiler.get_type(args[0]).basetype != SPIRType::Void) + notify_variable_access(args[1], current_block->self); + + length -= 3; + args += 3; + + for (uint32_t i = 0; i < length; i++) + { + auto *var = compiler.maybe_get_backing_variable(args[i]); + if (var) + { + accessed_variables_to_block[var->self].insert(current_block->self); + // Assume we can get partial writes to this variable. + partial_write_variables_to_block[var->self].insert(current_block->self); + } + + // Cannot easily prove if argument we pass to a function is completely written. + // Usually, functions write to a dummy variable, + // which is then copied to in full to the real argument. + + // Might try to copy a Phi variable here. + notify_variable_access(args[i], current_block->self); + } + break; + } + + case OpSelect: + { + // In case of variable pointers, we might access a variable here. + // We cannot prove anything about these accesses however. + for (uint32_t i = 1; i < length; i++) + { + if (i >= 3) + { + auto *var = compiler.maybe_get_backing_variable(args[i]); + if (var) + { + accessed_variables_to_block[var->self].insert(current_block->self); + // Assume we can get partial writes to this variable. + partial_write_variables_to_block[var->self].insert(current_block->self); + } + } + + // Might try to copy a Phi variable here. + notify_variable_access(args[i], current_block->self); + } + break; + } + + case OpExtInst: + { + for (uint32_t i = 4; i < length; i++) + notify_variable_access(args[i], current_block->self); + notify_variable_access(args[1], current_block->self); + + uint32_t extension_set = args[2]; + if (compiler.get<SPIRExtension>(extension_set).ext == SPIRExtension::GLSL) + { + auto op_450 = static_cast<GLSLstd450>(args[3]); + switch (op_450) + { + case GLSLstd450Modf: + case GLSLstd450Frexp: + { + uint32_t ptr = args[5]; + auto *var = compiler.maybe_get_backing_variable(ptr); + if (var) + { + accessed_variables_to_block[var->self].insert(current_block->self); + if (var->self == ptr) + complete_write_variables_to_block[var->self].insert(current_block->self); + else + partial_write_variables_to_block[var->self].insert(current_block->self); + } + break; + } + + default: + break; + } + } + break; + } + + case OpArrayLength: + // Only result is a temporary. + notify_variable_access(args[1], current_block->self); + break; + + case OpLine: + case OpNoLine: + // Uses literals, but cannot be a phi variable or temporary, so ignore. + break; + + // Atomics shouldn't be able to access function-local variables. + // Some GLSL builtins access a pointer. + + case OpCompositeInsert: + case OpVectorShuffle: + // Specialize for opcode which contains literals. + for (uint32_t i = 1; i < 4; i++) + notify_variable_access(args[i], current_block->self); + break; + + case OpCompositeExtract: + // Specialize for opcode which contains literals. + for (uint32_t i = 1; i < 3; i++) + notify_variable_access(args[i], current_block->self); + break; + + case OpImageWrite: + for (uint32_t i = 0; i < length; i++) + { + // Argument 3 is a literal. + if (i != 3) + notify_variable_access(args[i], current_block->self); + } + break; + + case OpImageSampleImplicitLod: + case OpImageSampleExplicitLod: + case OpImageSparseSampleImplicitLod: + case OpImageSparseSampleExplicitLod: + case OpImageSampleProjImplicitLod: + case OpImageSampleProjExplicitLod: + case OpImageSparseSampleProjImplicitLod: + case OpImageSparseSampleProjExplicitLod: + case OpImageFetch: + case OpImageSparseFetch: + case OpImageRead: + case OpImageSparseRead: + for (uint32_t i = 1; i < length; i++) + { + // Argument 4 is a literal. + if (i != 4) + notify_variable_access(args[i], current_block->self); + } + break; + + case OpImageSampleDrefImplicitLod: + case OpImageSampleDrefExplicitLod: + case OpImageSparseSampleDrefImplicitLod: + case OpImageSparseSampleDrefExplicitLod: + case OpImageSampleProjDrefImplicitLod: + case OpImageSampleProjDrefExplicitLod: + case OpImageSparseSampleProjDrefImplicitLod: + case OpImageSparseSampleProjDrefExplicitLod: + case OpImageGather: + case OpImageSparseGather: + case OpImageDrefGather: + case OpImageSparseDrefGather: + for (uint32_t i = 1; i < length; i++) + { + // Argument 5 is a literal. + if (i != 5) + notify_variable_access(args[i], current_block->self); + } + break; + + default: + { + // Rather dirty way of figuring out where Phi variables are used. + // As long as only IDs are used, we can scan through instructions and try to find any evidence that + // the ID of a variable has been used. + // There are potential false positives here where a literal is used in-place of an ID, + // but worst case, it does not affect the correctness of the compile. + // Exhaustive analysis would be better here, but it's not worth it for now. + for (uint32_t i = 0; i < length; i++) + notify_variable_access(args[i], current_block->self); + break; + } + } + return true; +} + +Compiler::StaticExpressionAccessHandler::StaticExpressionAccessHandler(Compiler &compiler_, uint32_t variable_id_) + : compiler(compiler_) + , variable_id(variable_id_) +{ +} + +bool Compiler::StaticExpressionAccessHandler::follow_function_call(const SPIRFunction &) +{ + return false; +} + +bool Compiler::StaticExpressionAccessHandler::handle(spv::Op op, const uint32_t *args, uint32_t length) +{ + switch (op) + { + case OpStore: + if (length < 2) + return false; + if (args[0] == variable_id) + { + static_expression = args[1]; + write_count++; + } + break; + + case OpLoad: + if (length < 3) + return false; + if (args[2] == variable_id && static_expression == 0) // Tried to read from variable before it was initialized. + return false; + break; + + case OpAccessChain: + case OpInBoundsAccessChain: + case OpPtrAccessChain: + if (length < 3) + return false; + if (args[2] == variable_id) // If we try to access chain our candidate variable before we store to it, bail. + return false; + break; + + default: + break; + } + + return true; +} + +void Compiler::find_function_local_luts(SPIRFunction &entry, const AnalyzeVariableScopeAccessHandler &handler, + bool single_function) +{ + auto &cfg = *function_cfgs.find(entry.self)->second; + + // For each variable which is statically accessed. + for (auto &accessed_var : handler.accessed_variables_to_block) + { + auto &blocks = accessed_var.second; + auto &var = get<SPIRVariable>(accessed_var.first); + auto &type = expression_type(accessed_var.first); + + // First check if there are writes to the variable. Later, if there are none, we'll + // reconsider it as globally accessed LUT. + if (!var.is_written_to) + { + var.is_written_to = handler.complete_write_variables_to_block.count(var.self) != 0 || + handler.partial_write_variables_to_block.count(var.self) != 0; + } + + // Only consider function local variables here. + // If we only have a single function in our CFG, private storage is also fine, + // since it behaves like a function local variable. + bool allow_lut = var.storage == StorageClassFunction || (single_function && var.storage == StorageClassPrivate); + if (!allow_lut) + continue; + + // We cannot be a phi variable. + if (var.phi_variable) + continue; + + // Only consider arrays here. + if (type.array.empty()) + continue; + + // If the variable has an initializer, make sure it is a constant expression. + uint32_t static_constant_expression = 0; + if (var.initializer) + { + if (ir.ids[var.initializer].get_type() != TypeConstant) + continue; + static_constant_expression = var.initializer; + + // There can be no stores to this variable, we have now proved we have a LUT. + if (var.is_written_to) + continue; + } + else + { + // We can have one, and only one write to the variable, and that write needs to be a constant. + + // No partial writes allowed. + if (handler.partial_write_variables_to_block.count(var.self) != 0) + continue; + + auto itr = handler.complete_write_variables_to_block.find(var.self); + + // No writes? + if (itr == end(handler.complete_write_variables_to_block)) + continue; + + // We write to the variable in more than one block. + auto &write_blocks = itr->second; + if (write_blocks.size() != 1) + continue; + + // The write needs to happen in the dominating block. + DominatorBuilder builder(cfg); + for (auto &block : blocks) + builder.add_block(block); + uint32_t dominator = builder.get_dominator(); + + // The complete write happened in a branch or similar, cannot deduce static expression. + if (write_blocks.count(dominator) == 0) + continue; + + // Find the static expression for this variable. + StaticExpressionAccessHandler static_expression_handler(*this, var.self); + traverse_all_reachable_opcodes(get<SPIRBlock>(dominator), static_expression_handler); + + // We want one, and exactly one write + if (static_expression_handler.write_count != 1 || static_expression_handler.static_expression == 0) + continue; + + // Is it a constant expression? + if (ir.ids[static_expression_handler.static_expression].get_type() != TypeConstant) + continue; + + // We found a LUT! + static_constant_expression = static_expression_handler.static_expression; + } + + get<SPIRConstant>(static_constant_expression).is_used_as_lut = true; + var.static_expression = static_constant_expression; + var.statically_assigned = true; + var.remapped_variable = true; + } +} + +void Compiler::analyze_variable_scope(SPIRFunction &entry, AnalyzeVariableScopeAccessHandler &handler) +{ + // First, we map out all variable access within a function. + // Essentially a map of block -> { variables accessed in the basic block } + traverse_all_reachable_opcodes(entry, handler); + + auto &cfg = *function_cfgs.find(entry.self)->second; + + // Analyze if there are parameters which need to be implicitly preserved with an "in" qualifier. + analyze_parameter_preservation(entry, cfg, handler.accessed_variables_to_block, + handler.complete_write_variables_to_block); + + unordered_map<uint32_t, uint32_t> potential_loop_variables; + + // Find the loop dominator block for each block. + for (auto &block_id : entry.blocks) + { + auto &block = get<SPIRBlock>(block_id); + + auto itr = ir.continue_block_to_loop_header.find(block_id); + if (itr != end(ir.continue_block_to_loop_header) && itr->second != block_id) + { + // Continue block might be unreachable in the CFG, but we still like to know the loop dominator. + // Edge case is when continue block is also the loop header, don't set the dominator in this case. + block.loop_dominator = itr->second; + } + else + { + uint32_t loop_dominator = cfg.find_loop_dominator(block_id); + if (loop_dominator != block_id) + block.loop_dominator = loop_dominator; + else + block.loop_dominator = SPIRBlock::NoDominator; + } + } + + // For each variable which is statically accessed. + for (auto &var : handler.accessed_variables_to_block) + { + // Only deal with variables which are considered local variables in this function. + if (find(begin(entry.local_variables), end(entry.local_variables), VariableID(var.first)) == + end(entry.local_variables)) + continue; + + DominatorBuilder builder(cfg); + auto &blocks = var.second; + auto &type = expression_type(var.first); + BlockID potential_continue_block = 0; + + // Figure out which block is dominating all accesses of those variables. + for (auto &block : blocks) + { + // If we're accessing a variable inside a continue block, this variable might be a loop variable. + // We can only use loop variables with scalars, as we cannot track static expressions for vectors. + if (is_continue(block)) + { + // Potentially awkward case to check for. + // We might have a variable inside a loop, which is touched by the continue block, + // but is not actually a loop variable. + // The continue block is dominated by the inner part of the loop, which does not make sense in high-level + // language output because it will be declared before the body, + // so we will have to lift the dominator up to the relevant loop header instead. + builder.add_block(ir.continue_block_to_loop_header[block]); + + // Arrays or structs cannot be loop variables. + if (type.vecsize == 1 && type.columns == 1 && type.basetype != SPIRType::Struct && type.array.empty()) + { + // The variable is used in multiple continue blocks, this is not a loop + // candidate, signal that by setting block to -1u. + if (potential_continue_block == 0) + potential_continue_block = block; + else + potential_continue_block = ~(0u); + } + } + + builder.add_block(block); + } + + builder.lift_continue_block_dominator(); + + // Add it to a per-block list of variables. + BlockID dominating_block = builder.get_dominator(); + + if (dominating_block && potential_continue_block != 0 && potential_continue_block != ~0u) + { + auto &inner_block = get<SPIRBlock>(dominating_block); + + BlockID merge_candidate = 0; + + // Analyze the dominator. If it lives in a different loop scope than the candidate continue + // block, reject the loop variable candidate. + if (inner_block.merge == SPIRBlock::MergeLoop) + merge_candidate = inner_block.merge_block; + else if (inner_block.loop_dominator != SPIRBlock::NoDominator) + merge_candidate = get<SPIRBlock>(inner_block.loop_dominator).merge_block; + + if (merge_candidate != 0 && cfg.is_reachable(merge_candidate)) + { + // If the merge block has a higher post-visit order, we know that continue candidate + // cannot reach the merge block, and we have two separate scopes. + if (!cfg.is_reachable(potential_continue_block) || + cfg.get_visit_order(merge_candidate) > cfg.get_visit_order(potential_continue_block)) + { + potential_continue_block = 0; + } + } + } + + if (potential_continue_block != 0 && potential_continue_block != ~0u) + potential_loop_variables[var.first] = potential_continue_block; + + // For variables whose dominating block is inside a loop, there is a risk that these variables + // actually need to be preserved across loop iterations. We can express this by adding + // a "read" access to the loop header. + // In the dominating block, we must see an OpStore or equivalent as the first access of an OpVariable. + // Should that fail, we look for the outermost loop header and tack on an access there. + // Phi nodes cannot have this problem. + if (dominating_block) + { + auto &variable = get<SPIRVariable>(var.first); + if (!variable.phi_variable) + { + auto *block = &get<SPIRBlock>(dominating_block); + bool preserve = may_read_undefined_variable_in_block(*block, var.first); + if (preserve) + { + // Find the outermost loop scope. + while (block->loop_dominator != BlockID(SPIRBlock::NoDominator)) + block = &get<SPIRBlock>(block->loop_dominator); + + if (block->self != dominating_block) + { + builder.add_block(block->self); + dominating_block = builder.get_dominator(); + } + } + } + } + + // If all blocks here are dead code, this will be 0, so the variable in question + // will be completely eliminated. + if (dominating_block) + { + auto &block = get<SPIRBlock>(dominating_block); + block.dominated_variables.push_back(var.first); + get<SPIRVariable>(var.first).dominator = dominating_block; + } + } + + for (auto &var : handler.accessed_temporaries_to_block) + { + auto itr = handler.result_id_to_type.find(var.first); + + if (itr == end(handler.result_id_to_type)) + { + // We found a false positive ID being used, ignore. + // This should probably be an assert. + continue; + } + + // There is no point in doing domination analysis for opaque types. + auto &type = get<SPIRType>(itr->second); + if (type_is_opaque_value(type)) + continue; + + DominatorBuilder builder(cfg); + bool force_temporary = false; + bool used_in_header_hoisted_continue_block = false; + + // Figure out which block is dominating all accesses of those temporaries. + auto &blocks = var.second; + for (auto &block : blocks) + { + builder.add_block(block); + + if (blocks.size() != 1 && is_continue(block)) + { + // The risk here is that inner loop can dominate the continue block. + // Any temporary we access in the continue block must be declared before the loop. + // This is moot for complex loops however. + auto &loop_header_block = get<SPIRBlock>(ir.continue_block_to_loop_header[block]); + assert(loop_header_block.merge == SPIRBlock::MergeLoop); + builder.add_block(loop_header_block.self); + used_in_header_hoisted_continue_block = true; + } + } + + uint32_t dominating_block = builder.get_dominator(); + + if (blocks.size() != 1 && is_single_block_loop(dominating_block)) + { + // Awkward case, because the loop header is also the continue block, + // so hoisting to loop header does not help. + force_temporary = true; + } + + if (dominating_block) + { + // If we touch a variable in the dominating block, this is the expected setup. + // SPIR-V normally mandates this, but we have extra cases for temporary use inside loops. + bool first_use_is_dominator = blocks.count(dominating_block) != 0; + + if (!first_use_is_dominator || force_temporary) + { + if (handler.access_chain_expressions.count(var.first)) + { + // Exceptionally rare case. + // We cannot declare temporaries of access chains (except on MSL perhaps with pointers). + // Rather than do that, we force the indexing expressions to be declared in the right scope by + // tracking their usage to that end. There is no temporary to hoist. + // However, we still need to observe declaration order of the access chain. + + if (used_in_header_hoisted_continue_block) + { + // For this scenario, we used an access chain inside a continue block where we also registered an access to header block. + // This is a problem as we need to declare an access chain properly first with full definition. + // We cannot use temporaries for these expressions, + // so we must make sure the access chain is declared ahead of time. + // Force a complex for loop to deal with this. + // TODO: Out-of-order declaring for loops where continue blocks are emitted last might be another option. + auto &loop_header_block = get<SPIRBlock>(dominating_block); + assert(loop_header_block.merge == SPIRBlock::MergeLoop); + loop_header_block.complex_continue = true; + } + } + else + { + // This should be very rare, but if we try to declare a temporary inside a loop, + // and that temporary is used outside the loop as well (spirv-opt inliner likes this) + // we should actually emit the temporary outside the loop. + hoisted_temporaries.insert(var.first); + forced_temporaries.insert(var.first); + + auto &block_temporaries = get<SPIRBlock>(dominating_block).declare_temporary; + block_temporaries.emplace_back(handler.result_id_to_type[var.first], var.first); + } + } + else if (blocks.size() > 1) + { + // Keep track of the temporary as we might have to declare this temporary. + // This can happen if the loop header dominates a temporary, but we have a complex fallback loop. + // In this case, the header is actually inside the for (;;) {} block, and we have problems. + // What we need to do is hoist the temporaries outside the for (;;) {} block in case the header block + // declares the temporary. + auto &block_temporaries = get<SPIRBlock>(dominating_block).potential_declare_temporary; + block_temporaries.emplace_back(handler.result_id_to_type[var.first], var.first); + } + } + } + + unordered_set<uint32_t> seen_blocks; + + // Now, try to analyze whether or not these variables are actually loop variables. + for (auto &loop_variable : potential_loop_variables) + { + auto &var = get<SPIRVariable>(loop_variable.first); + auto dominator = var.dominator; + BlockID block = loop_variable.second; + + // The variable was accessed in multiple continue blocks, ignore. + if (block == BlockID(~(0u)) || block == BlockID(0)) + continue; + + // Dead code. + if (dominator == ID(0)) + continue; + + BlockID header = 0; + + // Find the loop header for this block if we are a continue block. + { + auto itr = ir.continue_block_to_loop_header.find(block); + if (itr != end(ir.continue_block_to_loop_header)) + { + header = itr->second; + } + else if (get<SPIRBlock>(block).continue_block == block) + { + // Also check for self-referential continue block. + header = block; + } + } + + assert(header); + auto &header_block = get<SPIRBlock>(header); + auto &blocks = handler.accessed_variables_to_block[loop_variable.first]; + + // If a loop variable is not used before the loop, it's probably not a loop variable. + bool has_accessed_variable = blocks.count(header) != 0; + + // Now, there are two conditions we need to meet for the variable to be a loop variable. + // 1. The dominating block must have a branch-free path to the loop header, + // this way we statically know which expression should be part of the loop variable initializer. + + // Walk from the dominator, if there is one straight edge connecting + // dominator and loop header, we statically know the loop initializer. + bool static_loop_init = true; + while (dominator != header) + { + if (blocks.count(dominator) != 0) + has_accessed_variable = true; + + auto &succ = cfg.get_succeeding_edges(dominator); + if (succ.size() != 1) + { + static_loop_init = false; + break; + } + + auto &pred = cfg.get_preceding_edges(succ.front()); + if (pred.size() != 1 || pred.front() != dominator) + { + static_loop_init = false; + break; + } + + dominator = succ.front(); + } + + if (!static_loop_init || !has_accessed_variable) + continue; + + // The second condition we need to meet is that no access after the loop + // merge can occur. Walk the CFG to see if we find anything. + + seen_blocks.clear(); + cfg.walk_from(seen_blocks, header_block.merge_block, [&](uint32_t walk_block) -> bool { + // We found a block which accesses the variable outside the loop. + if (blocks.find(walk_block) != end(blocks)) + static_loop_init = false; + return true; + }); + + if (!static_loop_init) + continue; + + // We have a loop variable. + header_block.loop_variables.push_back(loop_variable.first); + // Need to sort here as variables come from an unordered container, and pushing stuff in wrong order + // will break reproducability in regression runs. + sort(begin(header_block.loop_variables), end(header_block.loop_variables)); + get<SPIRVariable>(loop_variable.first).loop_variable = true; + } +} + +bool Compiler::may_read_undefined_variable_in_block(const SPIRBlock &block, uint32_t var) +{ + for (auto &op : block.ops) + { + auto *ops = stream(op); + switch (op.op) + { + case OpStore: + case OpCopyMemory: + if (ops[0] == var) + return false; + break; + + case OpAccessChain: + case OpInBoundsAccessChain: + case OpPtrAccessChain: + // Access chains are generally used to partially read and write. It's too hard to analyze + // if all constituents are written fully before continuing, so just assume it's preserved. + // This is the same as the parameter preservation analysis. + if (ops[2] == var) + return true; + break; + + case OpSelect: + // Variable pointers. + // We might read before writing. + if (ops[3] == var || ops[4] == var) + return true; + break; + + case OpPhi: + { + // Variable pointers. + // We might read before writing. + if (op.length < 2) + break; + + uint32_t count = op.length - 2; + for (uint32_t i = 0; i < count; i += 2) + if (ops[i + 2] == var) + return true; + break; + } + + case OpCopyObject: + case OpLoad: + if (ops[2] == var) + return true; + break; + + case OpFunctionCall: + { + if (op.length < 3) + break; + + // May read before writing. + uint32_t count = op.length - 3; + for (uint32_t i = 0; i < count; i++) + if (ops[i + 3] == var) + return true; + break; + } + + default: + break; + } + } + + // Not accessed somehow, at least not in a usual fashion. + // It's likely accessed in a branch, so assume we must preserve. + return true; +} + +Bitset Compiler::get_buffer_block_flags(VariableID id) const +{ + return ir.get_buffer_block_flags(get<SPIRVariable>(id)); +} + +bool Compiler::get_common_basic_type(const SPIRType &type, SPIRType::BaseType &base_type) +{ + if (type.basetype == SPIRType::Struct) + { + base_type = SPIRType::Unknown; + for (auto &member_type : type.member_types) + { + SPIRType::BaseType member_base; + if (!get_common_basic_type(get<SPIRType>(member_type), member_base)) + return false; + + if (base_type == SPIRType::Unknown) + base_type = member_base; + else if (base_type != member_base) + return false; + } + return true; + } + else + { + base_type = type.basetype; + return true; + } +} + +void Compiler::ActiveBuiltinHandler::handle_builtin(const SPIRType &type, BuiltIn builtin, + const Bitset &decoration_flags) +{ + // If used, we will need to explicitly declare a new array size for these builtins. + + if (builtin == BuiltInClipDistance) + { + if (!type.array_size_literal[0]) + SPIRV_CROSS_THROW("Array size for ClipDistance must be a literal."); + uint32_t array_size = type.array[0]; + if (array_size == 0) + SPIRV_CROSS_THROW("Array size for ClipDistance must not be unsized."); + compiler.clip_distance_count = array_size; + } + else if (builtin == BuiltInCullDistance) + { + if (!type.array_size_literal[0]) + SPIRV_CROSS_THROW("Array size for CullDistance must be a literal."); + uint32_t array_size = type.array[0]; + if (array_size == 0) + SPIRV_CROSS_THROW("Array size for CullDistance must not be unsized."); + compiler.cull_distance_count = array_size; + } + else if (builtin == BuiltInPosition) + { + if (decoration_flags.get(DecorationInvariant)) + compiler.position_invariant = true; + } +} + +void Compiler::ActiveBuiltinHandler::add_if_builtin(uint32_t id, bool allow_blocks) +{ + // Only handle plain variables here. + // Builtins which are part of a block are handled in AccessChain. + // If allow_blocks is used however, this is to handle initializers of blocks, + // which implies that all members are written to. + + auto *var = compiler.maybe_get<SPIRVariable>(id); + auto *m = compiler.ir.find_meta(id); + if (var && m) + { + auto &type = compiler.get<SPIRType>(var->basetype); + auto &decorations = m->decoration; + auto &flags = type.storage == StorageClassInput ? + compiler.active_input_builtins : compiler.active_output_builtins; + if (decorations.builtin) + { + flags.set(decorations.builtin_type); + handle_builtin(type, decorations.builtin_type, decorations.decoration_flags); + } + else if (allow_blocks && compiler.has_decoration(type.self, DecorationBlock)) + { + uint32_t member_count = uint32_t(type.member_types.size()); + for (uint32_t i = 0; i < member_count; i++) + { + if (compiler.has_member_decoration(type.self, i, DecorationBuiltIn)) + { + auto &member_type = compiler.get<SPIRType>(type.member_types[i]); + BuiltIn builtin = BuiltIn(compiler.get_member_decoration(type.self, i, DecorationBuiltIn)); + flags.set(builtin); + handle_builtin(member_type, builtin, compiler.get_member_decoration_bitset(type.self, i)); + } + } + } + } +} + +void Compiler::ActiveBuiltinHandler::add_if_builtin(uint32_t id) +{ + add_if_builtin(id, false); +} + +void Compiler::ActiveBuiltinHandler::add_if_builtin_or_block(uint32_t id) +{ + add_if_builtin(id, true); +} + +bool Compiler::ActiveBuiltinHandler::handle(spv::Op opcode, const uint32_t *args, uint32_t length) +{ + switch (opcode) + { + case OpStore: + if (length < 1) + return false; + + add_if_builtin(args[0]); + break; + + case OpCopyMemory: + if (length < 2) + return false; + + add_if_builtin(args[0]); + add_if_builtin(args[1]); + break; + + case OpCopyObject: + case OpLoad: + if (length < 3) + return false; + + add_if_builtin(args[2]); + break; + + case OpSelect: + if (length < 5) + return false; + + add_if_builtin(args[3]); + add_if_builtin(args[4]); + break; + + case OpPhi: + { + if (length < 2) + return false; + + uint32_t count = length - 2; + args += 2; + for (uint32_t i = 0; i < count; i += 2) + add_if_builtin(args[i]); + break; + } + + case OpFunctionCall: + { + if (length < 3) + return false; + + uint32_t count = length - 3; + args += 3; + for (uint32_t i = 0; i < count; i++) + add_if_builtin(args[i]); + break; + } + + case OpAccessChain: + case OpInBoundsAccessChain: + case OpPtrAccessChain: + { + if (length < 4) + return false; + + // Only consider global variables, cannot consider variables in functions yet, or other + // access chains as they have not been created yet. + auto *var = compiler.maybe_get<SPIRVariable>(args[2]); + if (!var) + break; + + // Required if we access chain into builtins like gl_GlobalInvocationID. + add_if_builtin(args[2]); + + // Start traversing type hierarchy at the proper non-pointer types. + auto *type = &compiler.get_variable_data_type(*var); + + auto &flags = + var->storage == StorageClassInput ? compiler.active_input_builtins : compiler.active_output_builtins; + + uint32_t count = length - 3; + args += 3; + for (uint32_t i = 0; i < count; i++) + { + // Pointers + // PtrAccessChain functions more like a pointer offset. Type remains the same. + if (opcode == OpPtrAccessChain && i == 0) + continue; + + // Arrays + if (!type->array.empty()) + { + type = &compiler.get<SPIRType>(type->parent_type); + } + // Structs + else if (type->basetype == SPIRType::Struct) + { + uint32_t index = compiler.get<SPIRConstant>(args[i]).scalar(); + + if (index < uint32_t(compiler.ir.meta[type->self].members.size())) + { + auto &decorations = compiler.ir.meta[type->self].members[index]; + if (decorations.builtin) + { + flags.set(decorations.builtin_type); + handle_builtin(compiler.get<SPIRType>(type->member_types[index]), decorations.builtin_type, + decorations.decoration_flags); + } + } + + type = &compiler.get<SPIRType>(type->member_types[index]); + } + else + { + // No point in traversing further. We won't find any extra builtins. + break; + } + } + break; + } + + default: + break; + } + + return true; +} + +void Compiler::update_active_builtins() +{ + active_input_builtins.reset(); + active_output_builtins.reset(); + cull_distance_count = 0; + clip_distance_count = 0; + ActiveBuiltinHandler handler(*this); + traverse_all_reachable_opcodes(get<SPIRFunction>(ir.default_entry_point), handler); + + ir.for_each_typed_id<SPIRVariable>([&](uint32_t, const SPIRVariable &var) { + if (var.storage != StorageClassOutput) + return; + if (!interface_variable_exists_in_entry_point(var.self)) + return; + + // Also, make sure we preserve output variables which are only initialized, but never accessed by any code. + if (var.initializer != ID(0)) + handler.add_if_builtin_or_block(var.self); + }); +} + +// Returns whether this shader uses a builtin of the storage class +bool Compiler::has_active_builtin(BuiltIn builtin, StorageClass storage) const +{ + const Bitset *flags; + switch (storage) + { + case StorageClassInput: + flags = &active_input_builtins; + break; + case StorageClassOutput: + flags = &active_output_builtins; + break; + + default: + return false; + } + return flags->get(builtin); +} + +void Compiler::analyze_image_and_sampler_usage() +{ + CombinedImageSamplerDrefHandler dref_handler(*this); + traverse_all_reachable_opcodes(get<SPIRFunction>(ir.default_entry_point), dref_handler); + + CombinedImageSamplerUsageHandler handler(*this, dref_handler.dref_combined_samplers); + traverse_all_reachable_opcodes(get<SPIRFunction>(ir.default_entry_point), handler); + + // Need to run this traversal twice. First time, we propagate any comparison sampler usage from leaf functions + // down to main(). + // In the second pass, we can propagate up forced depth state coming from main() up into leaf functions. + handler.dependency_hierarchy.clear(); + traverse_all_reachable_opcodes(get<SPIRFunction>(ir.default_entry_point), handler); + + comparison_ids = std::move(handler.comparison_ids); + need_subpass_input = handler.need_subpass_input; + need_subpass_input_ms = handler.need_subpass_input_ms; + + // Forward information from separate images and samplers into combined image samplers. + for (auto &combined : combined_image_samplers) + if (comparison_ids.count(combined.sampler_id)) + comparison_ids.insert(combined.combined_id); +} + +bool Compiler::CombinedImageSamplerDrefHandler::handle(spv::Op opcode, const uint32_t *args, uint32_t) +{ + // Mark all sampled images which are used with Dref. + switch (opcode) + { + case OpImageSampleDrefExplicitLod: + case OpImageSampleDrefImplicitLod: + case OpImageSampleProjDrefExplicitLod: + case OpImageSampleProjDrefImplicitLod: + case OpImageSparseSampleProjDrefImplicitLod: + case OpImageSparseSampleDrefImplicitLod: + case OpImageSparseSampleProjDrefExplicitLod: + case OpImageSparseSampleDrefExplicitLod: + case OpImageDrefGather: + case OpImageSparseDrefGather: + dref_combined_samplers.insert(args[2]); + return true; + + default: + break; + } + + return true; +} + +const CFG &Compiler::get_cfg_for_current_function() const +{ + assert(current_function); + return get_cfg_for_function(current_function->self); +} + +const CFG &Compiler::get_cfg_for_function(uint32_t id) const +{ + auto cfg_itr = function_cfgs.find(id); + assert(cfg_itr != end(function_cfgs)); + assert(cfg_itr->second); + return *cfg_itr->second; +} + +void Compiler::build_function_control_flow_graphs_and_analyze() +{ + CFGBuilder handler(*this); + handler.function_cfgs[ir.default_entry_point].reset(new CFG(*this, get<SPIRFunction>(ir.default_entry_point))); + traverse_all_reachable_opcodes(get<SPIRFunction>(ir.default_entry_point), handler); + function_cfgs = std::move(handler.function_cfgs); + bool single_function = function_cfgs.size() <= 1; + + for (auto &f : function_cfgs) + { + auto &func = get<SPIRFunction>(f.first); + AnalyzeVariableScopeAccessHandler scope_handler(*this, func); + analyze_variable_scope(func, scope_handler); + find_function_local_luts(func, scope_handler, single_function); + + // Check if we can actually use the loop variables we found in analyze_variable_scope. + // To use multiple initializers, we need the same type and qualifiers. + for (auto block : func.blocks) + { + auto &b = get<SPIRBlock>(block); + if (b.loop_variables.size() < 2) + continue; + + auto &flags = get_decoration_bitset(b.loop_variables.front()); + uint32_t type = get<SPIRVariable>(b.loop_variables.front()).basetype; + bool invalid_initializers = false; + for (auto loop_variable : b.loop_variables) + { + if (flags != get_decoration_bitset(loop_variable) || + type != get<SPIRVariable>(b.loop_variables.front()).basetype) + { + invalid_initializers = true; + break; + } + } + + if (invalid_initializers) + { + for (auto loop_variable : b.loop_variables) + get<SPIRVariable>(loop_variable).loop_variable = false; + b.loop_variables.clear(); + } + } + } + + // Find LUTs which are not function local. Only consider this case if the CFG is multi-function, + // otherwise we treat Private as Function trivially. + // Needs to be analyzed from the outside since we have to block the LUT optimization if at least + // one function writes to it. + if (!single_function) + { + for (auto &id : global_variables) + { + auto &var = get<SPIRVariable>(id); + auto &type = get_variable_data_type(var); + + if (is_array(type) && var.storage == StorageClassPrivate && + var.initializer && !var.is_written_to && + ir.ids[var.initializer].get_type() == TypeConstant) + { + get<SPIRConstant>(var.initializer).is_used_as_lut = true; + var.static_expression = var.initializer; + var.statically_assigned = true; + var.remapped_variable = true; + } + } + } +} + +Compiler::CFGBuilder::CFGBuilder(Compiler &compiler_) + : compiler(compiler_) +{ +} + +bool Compiler::CFGBuilder::handle(spv::Op, const uint32_t *, uint32_t) +{ + return true; +} + +bool Compiler::CFGBuilder::follow_function_call(const SPIRFunction &func) +{ + if (function_cfgs.find(func.self) == end(function_cfgs)) + { + function_cfgs[func.self].reset(new CFG(compiler, func)); + return true; + } + else + return false; +} + +void Compiler::CombinedImageSamplerUsageHandler::add_dependency(uint32_t dst, uint32_t src) +{ + dependency_hierarchy[dst].insert(src); + // Propagate up any comparison state if we're loading from one such variable. + if (comparison_ids.count(src)) + comparison_ids.insert(dst); +} + +bool Compiler::CombinedImageSamplerUsageHandler::begin_function_scope(const uint32_t *args, uint32_t length) +{ + if (length < 3) + return false; + + auto &func = compiler.get<SPIRFunction>(args[2]); + const auto *arg = &args[3]; + length -= 3; + + for (uint32_t i = 0; i < length; i++) + { + auto &argument = func.arguments[i]; + add_dependency(argument.id, arg[i]); + } + + return true; +} + +void Compiler::CombinedImageSamplerUsageHandler::add_hierarchy_to_comparison_ids(uint32_t id) +{ + // Traverse the variable dependency hierarchy and tag everything in its path with comparison ids. + comparison_ids.insert(id); + + for (auto &dep_id : dependency_hierarchy[id]) + add_hierarchy_to_comparison_ids(dep_id); +} + +bool Compiler::CombinedImageSamplerUsageHandler::handle(Op opcode, const uint32_t *args, uint32_t length) +{ + switch (opcode) + { + case OpAccessChain: + case OpInBoundsAccessChain: + case OpPtrAccessChain: + case OpLoad: + { + if (length < 3) + return false; + + add_dependency(args[1], args[2]); + + // Ideally defer this to OpImageRead, but then we'd need to track loaded IDs. + // If we load an image, we're going to use it and there is little harm in declaring an unused gl_FragCoord. + auto &type = compiler.get<SPIRType>(args[0]); + if (type.image.dim == DimSubpassData) + { + need_subpass_input = true; + if (type.image.ms) + need_subpass_input_ms = true; + } + + // If we load a SampledImage and it will be used with Dref, propagate the state up. + if (dref_combined_samplers.count(args[1]) != 0) + add_hierarchy_to_comparison_ids(args[1]); + break; + } + + case OpSampledImage: + { + if (length < 4) + return false; + + // If the underlying resource has been used for comparison then duplicate loads of that resource must be too. + // This image must be a depth image. + uint32_t result_id = args[1]; + uint32_t image = args[2]; + uint32_t sampler = args[3]; + + if (dref_combined_samplers.count(result_id) != 0) + { + add_hierarchy_to_comparison_ids(image); + + // This sampler must be a SamplerComparisonState, and not a regular SamplerState. + add_hierarchy_to_comparison_ids(sampler); + + // Mark the OpSampledImage itself as being comparison state. + comparison_ids.insert(result_id); + } + return true; + } + + default: + break; + } + + return true; +} + +bool Compiler::buffer_is_hlsl_counter_buffer(VariableID id) const +{ + auto *m = ir.find_meta(id); + return m && m->hlsl_is_magic_counter_buffer; +} + +bool Compiler::buffer_get_hlsl_counter_buffer(VariableID id, uint32_t &counter_id) const +{ + auto *m = ir.find_meta(id); + + // First, check for the proper decoration. + if (m && m->hlsl_magic_counter_buffer != 0) + { + counter_id = m->hlsl_magic_counter_buffer; + return true; + } + else + return false; +} + +void Compiler::make_constant_null(uint32_t id, uint32_t type) +{ + auto &constant_type = get<SPIRType>(type); + + if (constant_type.pointer) + { + auto &constant = set<SPIRConstant>(id, type); + constant.make_null(constant_type); + } + else if (!constant_type.array.empty()) + { + assert(constant_type.parent_type); + uint32_t parent_id = ir.increase_bound_by(1); + make_constant_null(parent_id, constant_type.parent_type); + + if (!constant_type.array_size_literal.back()) + SPIRV_CROSS_THROW("Array size of OpConstantNull must be a literal."); + + SmallVector<uint32_t> elements(constant_type.array.back()); + for (uint32_t i = 0; i < constant_type.array.back(); i++) + elements[i] = parent_id; + set<SPIRConstant>(id, type, elements.data(), uint32_t(elements.size()), false); + } + else if (!constant_type.member_types.empty()) + { + uint32_t member_ids = ir.increase_bound_by(uint32_t(constant_type.member_types.size())); + SmallVector<uint32_t> elements(constant_type.member_types.size()); + for (uint32_t i = 0; i < constant_type.member_types.size(); i++) + { + make_constant_null(member_ids + i, constant_type.member_types[i]); + elements[i] = member_ids + i; + } + set<SPIRConstant>(id, type, elements.data(), uint32_t(elements.size()), false); + } + else + { + auto &constant = set<SPIRConstant>(id, type); + constant.make_null(constant_type); + } +} + +const SmallVector<spv::Capability> &Compiler::get_declared_capabilities() const +{ + return ir.declared_capabilities; +} + +const SmallVector<std::string> &Compiler::get_declared_extensions() const +{ + return ir.declared_extensions; +} + +std::string Compiler::get_remapped_declared_block_name(VariableID id) const +{ + return get_remapped_declared_block_name(id, false); +} + +std::string Compiler::get_remapped_declared_block_name(uint32_t id, bool fallback_prefer_instance_name) const +{ + auto itr = declared_block_names.find(id); + if (itr != end(declared_block_names)) + { + return itr->second; + } + else + { + auto &var = get<SPIRVariable>(id); + + if (fallback_prefer_instance_name) + { + return to_name(var.self); + } + else + { + auto &type = get<SPIRType>(var.basetype); + auto *type_meta = ir.find_meta(type.self); + auto *block_name = type_meta ? &type_meta->decoration.alias : nullptr; + return (!block_name || block_name->empty()) ? get_block_fallback_name(id) : *block_name; + } + } +} + +bool Compiler::reflection_ssbo_instance_name_is_significant() const +{ + if (ir.source.known) + { + // UAVs from HLSL source tend to be declared in a way where the type is reused + // but the instance name is significant, and that's the name we should report. + // For GLSL, SSBOs each have their own block type as that's how GLSL is written. + return ir.source.hlsl; + } + + unordered_set<uint32_t> ssbo_type_ids; + bool aliased_ssbo_types = false; + + // If we don't have any OpSource information, we need to perform some shaky heuristics. + ir.for_each_typed_id<SPIRVariable>([&](uint32_t, const SPIRVariable &var) { + auto &type = this->get<SPIRType>(var.basetype); + if (!type.pointer || var.storage == StorageClassFunction) + return; + + bool ssbo = var.storage == StorageClassStorageBuffer || + (var.storage == StorageClassUniform && has_decoration(type.self, DecorationBufferBlock)); + + if (ssbo) + { + if (ssbo_type_ids.count(type.self)) + aliased_ssbo_types = true; + else + ssbo_type_ids.insert(type.self); + } + }); + + // If the block name is aliased, assume we have HLSL-style UAV declarations. + return aliased_ssbo_types; +} + +bool Compiler::instruction_to_result_type(uint32_t &result_type, uint32_t &result_id, spv::Op op, + const uint32_t *args, uint32_t length) +{ + if (length < 2) + return false; + + bool has_result_id = false, has_result_type = false; + HasResultAndType(op, &has_result_id, &has_result_type); + if (has_result_id && has_result_type) + { + result_type = args[0]; + result_id = args[1]; + return true; + } + else + return false; +} + +Bitset Compiler::combined_decoration_for_member(const SPIRType &type, uint32_t index) const +{ + Bitset flags; + auto *type_meta = ir.find_meta(type.self); + + if (type_meta) + { + auto &members = type_meta->members; + if (index >= members.size()) + return flags; + auto &dec = members[index]; + + flags.merge_or(dec.decoration_flags); + + auto &member_type = get<SPIRType>(type.member_types[index]); + + // If our member type is a struct, traverse all the child members as well recursively. + auto &member_childs = member_type.member_types; + for (uint32_t i = 0; i < member_childs.size(); i++) + { + auto &child_member_type = get<SPIRType>(member_childs[i]); + if (!child_member_type.pointer) + flags.merge_or(combined_decoration_for_member(member_type, i)); + } + } + + return flags; +} + +bool Compiler::is_desktop_only_format(spv::ImageFormat format) +{ + switch (format) + { + // Desktop-only formats + case ImageFormatR11fG11fB10f: + case ImageFormatR16f: + case ImageFormatRgb10A2: + case ImageFormatR8: + case ImageFormatRg8: + case ImageFormatR16: + case ImageFormatRg16: + case ImageFormatRgba16: + case ImageFormatR16Snorm: + case ImageFormatRg16Snorm: + case ImageFormatRgba16Snorm: + case ImageFormatR8Snorm: + case ImageFormatRg8Snorm: + case ImageFormatR8ui: + case ImageFormatRg8ui: + case ImageFormatR16ui: + case ImageFormatRgb10a2ui: + case ImageFormatR8i: + case ImageFormatRg8i: + case ImageFormatR16i: + return true; + default: + break; + } + + return false; +} + +// An image is determined to be a depth image if it is marked as a depth image and is not also +// explicitly marked with a color format, or if there are any sample/gather compare operations on it. +bool Compiler::is_depth_image(const SPIRType &type, uint32_t id) const +{ + return (type.image.depth && type.image.format == ImageFormatUnknown) || comparison_ids.count(id); +} + +bool Compiler::type_is_opaque_value(const SPIRType &type) const +{ + return !type.pointer && (type.basetype == SPIRType::SampledImage || type.basetype == SPIRType::Image || + type.basetype == SPIRType::Sampler); +} + +// Make these member functions so we can easily break on any force_recompile events. +void Compiler::force_recompile() +{ + is_force_recompile = true; +} + +void Compiler::force_recompile_guarantee_forward_progress() +{ + force_recompile(); + is_force_recompile_forward_progress = true; +} + +bool Compiler::is_forcing_recompilation() const +{ + return is_force_recompile; +} + +void Compiler::clear_force_recompile() +{ + is_force_recompile = false; + is_force_recompile_forward_progress = false; +} + +Compiler::PhysicalStorageBufferPointerHandler::PhysicalStorageBufferPointerHandler(Compiler &compiler_) + : compiler(compiler_) +{ +} + +Compiler::PhysicalBlockMeta *Compiler::PhysicalStorageBufferPointerHandler::find_block_meta(uint32_t id) const +{ + auto chain_itr = access_chain_to_physical_block.find(id); + if (chain_itr != access_chain_to_physical_block.end()) + return chain_itr->second; + else + return nullptr; +} + +void Compiler::PhysicalStorageBufferPointerHandler::mark_aligned_access(uint32_t id, const uint32_t *args, uint32_t length) +{ + uint32_t mask = *args; + args++; + length--; + if (length && (mask & MemoryAccessVolatileMask) != 0) + { + args++; + length--; + } + + if (length && (mask & MemoryAccessAlignedMask) != 0) + { + uint32_t alignment = *args; + auto *meta = find_block_meta(id); + + // This makes the assumption that the application does not rely on insane edge cases like: + // Bind buffer with ADDR = 8, use block offset of 8 bytes, load/store with 16 byte alignment. + // If we emit the buffer with alignment = 16 here, the first element at offset = 0 should + // actually have alignment of 8 bytes, but this is too theoretical and awkward to support. + // We could potentially keep track of any offset in the access chain, but it's + // practically impossible for high level compilers to emit code like that, + // so deducing overall alignment requirement based on maximum observed Alignment value is probably fine. + if (meta && alignment > meta->alignment) + meta->alignment = alignment; + } +} + +bool Compiler::PhysicalStorageBufferPointerHandler::type_is_bda_block_entry(uint32_t type_id) const +{ + auto &type = compiler.get<SPIRType>(type_id); + return compiler.is_physical_pointer(type); +} + +uint32_t Compiler::PhysicalStorageBufferPointerHandler::get_minimum_scalar_alignment(const SPIRType &type) const +{ + if (type.storage == spv::StorageClassPhysicalStorageBufferEXT) + return 8; + else if (type.basetype == SPIRType::Struct) + { + uint32_t alignment = 0; + for (auto &member_type : type.member_types) + { + uint32_t member_align = get_minimum_scalar_alignment(compiler.get<SPIRType>(member_type)); + if (member_align > alignment) + alignment = member_align; + } + return alignment; + } + else + return type.width / 8; +} + +void Compiler::PhysicalStorageBufferPointerHandler::setup_meta_chain(uint32_t type_id, uint32_t var_id) +{ + if (type_is_bda_block_entry(type_id)) + { + auto &meta = physical_block_type_meta[type_id]; + access_chain_to_physical_block[var_id] = &meta; + + auto &type = compiler.get<SPIRType>(type_id); + + if (!compiler.is_physical_pointer_to_buffer_block(type)) + non_block_types.insert(type_id); + + if (meta.alignment == 0) + meta.alignment = get_minimum_scalar_alignment(compiler.get_pointee_type(type)); + } +} + +bool Compiler::PhysicalStorageBufferPointerHandler::handle(Op op, const uint32_t *args, uint32_t length) +{ + // When a BDA pointer comes to life, we need to keep a mapping of SSA ID -> type ID for the pointer type. + // For every load and store, we'll need to be able to look up the type ID being accessed and mark any alignment + // requirements. + switch (op) + { + case OpConvertUToPtr: + case OpBitcast: + case OpCompositeExtract: + // Extract can begin a new chain if we had a struct or array of pointers as input. + // We don't begin chains before we have a pure scalar pointer. + setup_meta_chain(args[0], args[1]); + break; + + case OpAccessChain: + case OpInBoundsAccessChain: + case OpPtrAccessChain: + case OpCopyObject: + { + auto itr = access_chain_to_physical_block.find(args[2]); + if (itr != access_chain_to_physical_block.end()) + access_chain_to_physical_block[args[1]] = itr->second; + break; + } + + case OpLoad: + { + setup_meta_chain(args[0], args[1]); + if (length >= 4) + mark_aligned_access(args[2], args + 3, length - 3); + break; + } + + case OpStore: + { + if (length >= 3) + mark_aligned_access(args[0], args + 2, length - 2); + break; + } + + default: + break; + } + + return true; +} + +uint32_t Compiler::PhysicalStorageBufferPointerHandler::get_base_non_block_type_id(uint32_t type_id) const +{ + auto *type = &compiler.get<SPIRType>(type_id); + while (compiler.is_physical_pointer(*type) && !type_is_bda_block_entry(type_id)) + { + type_id = type->parent_type; + type = &compiler.get<SPIRType>(type_id); + } + + assert(type_is_bda_block_entry(type_id)); + return type_id; +} + +void Compiler::PhysicalStorageBufferPointerHandler::analyze_non_block_types_from_block(const SPIRType &type) +{ + for (auto &member : type.member_types) + { + auto &subtype = compiler.get<SPIRType>(member); + + if (compiler.is_physical_pointer(subtype) && !compiler.is_physical_pointer_to_buffer_block(subtype)) + non_block_types.insert(get_base_non_block_type_id(member)); + else if (subtype.basetype == SPIRType::Struct && !compiler.is_pointer(subtype)) + analyze_non_block_types_from_block(subtype); + } +} + +void Compiler::analyze_non_block_pointer_types() +{ + PhysicalStorageBufferPointerHandler handler(*this); + traverse_all_reachable_opcodes(get<SPIRFunction>(ir.default_entry_point), handler); + + // Analyze any block declaration we have to make. It might contain + // physical pointers to POD types which we never used, and thus never added to the list. + // We'll need to add those pointer types to the set of types we declare. + ir.for_each_typed_id<SPIRType>([&](uint32_t id, SPIRType &type) { + // Only analyze the raw block struct, not any pointer-to-struct, since that's just redundant. + if (type.self == id && + (has_decoration(type.self, DecorationBlock) || + has_decoration(type.self, DecorationBufferBlock))) + { + handler.analyze_non_block_types_from_block(type); + } + }); + + physical_storage_non_block_pointer_types.reserve(handler.non_block_types.size()); + for (auto type : handler.non_block_types) + physical_storage_non_block_pointer_types.push_back(type); + sort(begin(physical_storage_non_block_pointer_types), end(physical_storage_non_block_pointer_types)); + physical_storage_type_to_alignment = std::move(handler.physical_block_type_meta); +} + +bool Compiler::InterlockedResourceAccessPrepassHandler::handle(Op op, const uint32_t *, uint32_t) +{ + if (op == OpBeginInvocationInterlockEXT || op == OpEndInvocationInterlockEXT) + { + if (interlock_function_id != 0 && interlock_function_id != call_stack.back()) + { + // Most complex case, we have no sensible way of dealing with this + // other than taking the 100% conservative approach, exit early. + split_function_case = true; + return false; + } + else + { + interlock_function_id = call_stack.back(); + // If this call is performed inside control flow we have a problem. + auto &cfg = compiler.get_cfg_for_function(interlock_function_id); + + uint32_t from_block_id = compiler.get<SPIRFunction>(interlock_function_id).entry_block; + bool outside_control_flow = cfg.node_terminates_control_flow_in_sub_graph(from_block_id, current_block_id); + if (!outside_control_flow) + control_flow_interlock = true; + } + } + return true; +} + +void Compiler::InterlockedResourceAccessPrepassHandler::rearm_current_block(const SPIRBlock &block) +{ + current_block_id = block.self; +} + +bool Compiler::InterlockedResourceAccessPrepassHandler::begin_function_scope(const uint32_t *args, uint32_t length) +{ + if (length < 3) + return false; + call_stack.push_back(args[2]); + return true; +} + +bool Compiler::InterlockedResourceAccessPrepassHandler::end_function_scope(const uint32_t *, uint32_t) +{ + call_stack.pop_back(); + return true; +} + +bool Compiler::InterlockedResourceAccessHandler::begin_function_scope(const uint32_t *args, uint32_t length) +{ + if (length < 3) + return false; + + if (args[2] == interlock_function_id) + call_stack_is_interlocked = true; + + call_stack.push_back(args[2]); + return true; +} + +bool Compiler::InterlockedResourceAccessHandler::end_function_scope(const uint32_t *, uint32_t) +{ + if (call_stack.back() == interlock_function_id) + call_stack_is_interlocked = false; + + call_stack.pop_back(); + return true; +} + +void Compiler::InterlockedResourceAccessHandler::access_potential_resource(uint32_t id) +{ + if ((use_critical_section && in_crit_sec) || (control_flow_interlock && call_stack_is_interlocked) || + split_function_case) + { + compiler.interlocked_resources.insert(id); + } +} + +bool Compiler::InterlockedResourceAccessHandler::handle(Op opcode, const uint32_t *args, uint32_t length) +{ + // Only care about critical section analysis if we have simple case. + if (use_critical_section) + { + if (opcode == OpBeginInvocationInterlockEXT) + { + in_crit_sec = true; + return true; + } + + if (opcode == OpEndInvocationInterlockEXT) + { + // End critical section--nothing more to do. + return false; + } + } + + // We need to figure out where images and buffers are loaded from, so do only the bare bones compilation we need. + switch (opcode) + { + case OpLoad: + { + if (length < 3) + return false; + + uint32_t ptr = args[2]; + auto *var = compiler.maybe_get_backing_variable(ptr); + + // We're only concerned with buffer and image memory here. + if (!var) + break; + + switch (var->storage) + { + default: + break; + + case StorageClassUniformConstant: + { + uint32_t result_type = args[0]; + uint32_t id = args[1]; + compiler.set<SPIRExpression>(id, "", result_type, true); + compiler.register_read(id, ptr, true); + break; + } + + case StorageClassUniform: + // Must have BufferBlock; we only care about SSBOs. + if (!compiler.has_decoration(compiler.get<SPIRType>(var->basetype).self, DecorationBufferBlock)) + break; + // fallthrough + case StorageClassStorageBuffer: + access_potential_resource(var->self); + break; + } + break; + } + + case OpInBoundsAccessChain: + case OpAccessChain: + case OpPtrAccessChain: + { + if (length < 3) + return false; + + uint32_t result_type = args[0]; + + auto &type = compiler.get<SPIRType>(result_type); + if (type.storage == StorageClassUniform || type.storage == StorageClassUniformConstant || + type.storage == StorageClassStorageBuffer) + { + uint32_t id = args[1]; + uint32_t ptr = args[2]; + compiler.set<SPIRExpression>(id, "", result_type, true); + compiler.register_read(id, ptr, true); + compiler.ir.ids[id].set_allow_type_rewrite(); + } + break; + } + + case OpImageTexelPointer: + { + if (length < 3) + return false; + + uint32_t result_type = args[0]; + uint32_t id = args[1]; + uint32_t ptr = args[2]; + auto &e = compiler.set<SPIRExpression>(id, "", result_type, true); + auto *var = compiler.maybe_get_backing_variable(ptr); + if (var) + e.loaded_from = var->self; + break; + } + + case OpStore: + case OpImageWrite: + case OpAtomicStore: + { + if (length < 1) + return false; + + uint32_t ptr = args[0]; + auto *var = compiler.maybe_get_backing_variable(ptr); + if (var && (var->storage == StorageClassUniform || var->storage == StorageClassUniformConstant || + var->storage == StorageClassStorageBuffer)) + { + access_potential_resource(var->self); + } + + break; + } + + case OpCopyMemory: + { + if (length < 2) + return false; + + uint32_t dst = args[0]; + uint32_t src = args[1]; + auto *dst_var = compiler.maybe_get_backing_variable(dst); + auto *src_var = compiler.maybe_get_backing_variable(src); + + if (dst_var && (dst_var->storage == StorageClassUniform || dst_var->storage == StorageClassStorageBuffer)) + access_potential_resource(dst_var->self); + + if (src_var) + { + if (src_var->storage != StorageClassUniform && src_var->storage != StorageClassStorageBuffer) + break; + + if (src_var->storage == StorageClassUniform && + !compiler.has_decoration(compiler.get<SPIRType>(src_var->basetype).self, DecorationBufferBlock)) + { + break; + } + + access_potential_resource(src_var->self); + } + + break; + } + + case OpImageRead: + case OpAtomicLoad: + { + if (length < 3) + return false; + + uint32_t ptr = args[2]; + auto *var = compiler.maybe_get_backing_variable(ptr); + + // We're only concerned with buffer and image memory here. + if (!var) + break; + + switch (var->storage) + { + default: + break; + + case StorageClassUniform: + // Must have BufferBlock; we only care about SSBOs. + if (!compiler.has_decoration(compiler.get<SPIRType>(var->basetype).self, DecorationBufferBlock)) + break; + // fallthrough + case StorageClassUniformConstant: + case StorageClassStorageBuffer: + access_potential_resource(var->self); + break; + } + break; + } + + case OpAtomicExchange: + case OpAtomicCompareExchange: + case OpAtomicIIncrement: + case OpAtomicIDecrement: + case OpAtomicIAdd: + case OpAtomicISub: + case OpAtomicSMin: + case OpAtomicUMin: + case OpAtomicSMax: + case OpAtomicUMax: + case OpAtomicAnd: + case OpAtomicOr: + case OpAtomicXor: + { + if (length < 3) + return false; + + uint32_t ptr = args[2]; + auto *var = compiler.maybe_get_backing_variable(ptr); + if (var && (var->storage == StorageClassUniform || var->storage == StorageClassUniformConstant || + var->storage == StorageClassStorageBuffer)) + { + access_potential_resource(var->self); + } + + break; + } + + default: + break; + } + + return true; +} + +void Compiler::analyze_interlocked_resource_usage() +{ + if (get_execution_model() == ExecutionModelFragment && + (get_entry_point().flags.get(ExecutionModePixelInterlockOrderedEXT) || + get_entry_point().flags.get(ExecutionModePixelInterlockUnorderedEXT) || + get_entry_point().flags.get(ExecutionModeSampleInterlockOrderedEXT) || + get_entry_point().flags.get(ExecutionModeSampleInterlockUnorderedEXT))) + { + InterlockedResourceAccessPrepassHandler prepass_handler(*this, ir.default_entry_point); + traverse_all_reachable_opcodes(get<SPIRFunction>(ir.default_entry_point), prepass_handler); + + InterlockedResourceAccessHandler handler(*this, ir.default_entry_point); + handler.interlock_function_id = prepass_handler.interlock_function_id; + handler.split_function_case = prepass_handler.split_function_case; + handler.control_flow_interlock = prepass_handler.control_flow_interlock; + handler.use_critical_section = !handler.split_function_case && !handler.control_flow_interlock; + + traverse_all_reachable_opcodes(get<SPIRFunction>(ir.default_entry_point), handler); + + // For GLSL. If we hit any of these cases, we have to fall back to conservative approach. + interlocked_is_complex = + !handler.use_critical_section || handler.interlock_function_id != ir.default_entry_point; + } +} + +// Helper function +bool Compiler::check_internal_recursion(const SPIRType &type, std::unordered_set<uint32_t> &checked_ids) +{ + if (type.basetype != SPIRType::Struct) + return false; + + if (checked_ids.count(type.self)) + return true; + + // Recurse into struct members + bool is_recursive = false; + checked_ids.insert(type.self); + uint32_t mbr_cnt = uint32_t(type.member_types.size()); + for (uint32_t mbr_idx = 0; !is_recursive && mbr_idx < mbr_cnt; mbr_idx++) + { + uint32_t mbr_type_id = type.member_types[mbr_idx]; + auto &mbr_type = get<SPIRType>(mbr_type_id); + is_recursive |= check_internal_recursion(mbr_type, checked_ids); + } + checked_ids.erase(type.self); + return is_recursive; +} + +// Return whether the struct type contains a structural recursion nested somewhere within its content. +bool Compiler::type_contains_recursion(const SPIRType &type) +{ + std::unordered_set<uint32_t> checked_ids; + return check_internal_recursion(type, checked_ids); +} + +bool Compiler::type_is_array_of_pointers(const SPIRType &type) const +{ + if (!is_array(type)) + return false; + + // BDA types must have parent type hierarchy. + if (!type.parent_type) + return false; + + // Punch through all array layers. + auto *parent = &get<SPIRType>(type.parent_type); + while (is_array(*parent)) + parent = &get<SPIRType>(parent->parent_type); + + return is_pointer(*parent); +} + +bool Compiler::flush_phi_required(BlockID from, BlockID to) const +{ + auto &child = get<SPIRBlock>(to); + for (auto &phi : child.phi_variables) + if (phi.parent == from) + return true; + return false; +} + +void Compiler::add_loop_level() +{ + current_loop_level++; +} |