diff options
Diffstat (limited to 'thirdparty/spirv-cross/spirv_cross.hpp')
-rw-r--r-- | thirdparty/spirv-cross/spirv_cross.hpp | 1182 |
1 files changed, 1182 insertions, 0 deletions
diff --git a/thirdparty/spirv-cross/spirv_cross.hpp b/thirdparty/spirv-cross/spirv_cross.hpp new file mode 100644 index 0000000000..e9062b485c --- /dev/null +++ b/thirdparty/spirv-cross/spirv_cross.hpp @@ -0,0 +1,1182 @@ +/* + * Copyright 2015-2021 Arm Limited + * SPDX-License-Identifier: Apache-2.0 OR MIT + * + * Licensed under the Apache License, Version 2.0 (the "License"); + * you may not use this file except in compliance with the License. + * You may obtain a copy of the License at + * + * http://www.apache.org/licenses/LICENSE-2.0 + * + * Unless required by applicable law or agreed to in writing, software + * distributed under the License is distributed on an "AS IS" BASIS, + * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + * See the License for the specific language governing permissions and + * limitations under the License. + */ + +/* + * At your option, you may choose to accept this material under either: + * 1. The Apache License, Version 2.0, found at <http://www.apache.org/licenses/LICENSE-2.0>, or + * 2. The MIT License, found at <http://opensource.org/licenses/MIT>. + */ + +#ifndef SPIRV_CROSS_HPP +#define SPIRV_CROSS_HPP + +#ifndef SPV_ENABLE_UTILITY_CODE +#define SPV_ENABLE_UTILITY_CODE +#endif +#include "spirv.hpp" +#include "spirv_cfg.hpp" +#include "spirv_cross_parsed_ir.hpp" + +namespace SPIRV_CROSS_NAMESPACE +{ +struct Resource +{ + // Resources are identified with their SPIR-V ID. + // This is the ID of the OpVariable. + ID id; + + // The type ID of the variable which includes arrays and all type modifications. + // This type ID is not suitable for parsing OpMemberDecoration of a struct and other decorations in general + // since these modifications typically happen on the base_type_id. + TypeID type_id; + + // The base type of the declared resource. + // This type is the base type which ignores pointers and arrays of the type_id. + // This is mostly useful to parse decorations of the underlying type. + // base_type_id can also be obtained with get_type(get_type(type_id).self). + TypeID base_type_id; + + // The declared name (OpName) of the resource. + // For Buffer blocks, the name actually reflects the externally + // visible Block name. + // + // This name can be retrieved again by using either + // get_name(id) or get_name(base_type_id) depending if it's a buffer block or not. + // + // This name can be an empty string in which case get_fallback_name(id) can be + // used which obtains a suitable fallback identifier for an ID. + std::string name; +}; + +struct BuiltInResource +{ + // This is mostly here to support reflection of builtins such as Position/PointSize/CullDistance/ClipDistance. + // This needs to be different from Resource since we can collect builtins from blocks. + // A builtin present here does not necessarily mean it's considered an active builtin, + // since variable ID "activeness" is only tracked on OpVariable level, not Block members. + // For that, update_active_builtins() -> has_active_builtin() can be used to further refine the reflection. + spv::BuiltIn builtin; + + // This is the actual value type of the builtin. + // Typically float4, float, array<float, N> for the gl_PerVertex builtins. + // If the builtin is a control point, the control point array type will be stripped away here as appropriate. + TypeID value_type_id; + + // This refers to the base resource which contains the builtin. + // If resource is a Block, it can hold multiple builtins, or it might not be a block. + // For advanced reflection scenarios, all information in builtin/value_type_id can be deduced, + // it's just more convenient this way. + Resource resource; +}; + +struct ShaderResources +{ + SmallVector<Resource> uniform_buffers; + SmallVector<Resource> storage_buffers; + SmallVector<Resource> stage_inputs; + SmallVector<Resource> stage_outputs; + SmallVector<Resource> subpass_inputs; + SmallVector<Resource> storage_images; + SmallVector<Resource> sampled_images; + SmallVector<Resource> atomic_counters; + SmallVector<Resource> acceleration_structures; + SmallVector<Resource> gl_plain_uniforms; + + // There can only be one push constant block, + // but keep the vector in case this restriction is lifted in the future. + SmallVector<Resource> push_constant_buffers; + + SmallVector<Resource> shader_record_buffers; + + // For Vulkan GLSL and HLSL source, + // these correspond to separate texture2D and samplers respectively. + SmallVector<Resource> separate_images; + SmallVector<Resource> separate_samplers; + + SmallVector<BuiltInResource> builtin_inputs; + SmallVector<BuiltInResource> builtin_outputs; +}; + +struct CombinedImageSampler +{ + // The ID of the sampler2D variable. + VariableID combined_id; + // The ID of the texture2D variable. + VariableID image_id; + // The ID of the sampler variable. + VariableID sampler_id; +}; + +struct SpecializationConstant +{ + // The ID of the specialization constant. + ConstantID id; + // The constant ID of the constant, used in Vulkan during pipeline creation. + uint32_t constant_id; +}; + +struct BufferRange +{ + unsigned index; + size_t offset; + size_t range; +}; + +enum BufferPackingStandard +{ + BufferPackingStd140, + BufferPackingStd430, + BufferPackingStd140EnhancedLayout, + BufferPackingStd430EnhancedLayout, + BufferPackingHLSLCbuffer, + BufferPackingHLSLCbufferPackOffset, + BufferPackingScalar, + BufferPackingScalarEnhancedLayout +}; + +struct EntryPoint +{ + std::string name; + spv::ExecutionModel execution_model; +}; + +class Compiler +{ +public: + friend class CFG; + friend class DominatorBuilder; + + // The constructor takes a buffer of SPIR-V words and parses it. + // It will create its own parser, parse the SPIR-V and move the parsed IR + // as if you had called the constructors taking ParsedIR directly. + explicit Compiler(std::vector<uint32_t> ir); + Compiler(const uint32_t *ir, size_t word_count); + + // This is more modular. We can also consume a ParsedIR structure directly, either as a move, or copy. + // With copy, we can reuse the same parsed IR for multiple Compiler instances. + explicit Compiler(const ParsedIR &ir); + explicit Compiler(ParsedIR &&ir); + + virtual ~Compiler() = default; + + // After parsing, API users can modify the SPIR-V via reflection and call this + // to disassemble the SPIR-V into the desired langauage. + // Sub-classes actually implement this. + virtual std::string compile(); + + // Gets the identifier (OpName) of an ID. If not defined, an empty string will be returned. + const std::string &get_name(ID id) const; + + // Applies a decoration to an ID. Effectively injects OpDecorate. + void set_decoration(ID id, spv::Decoration decoration, uint32_t argument = 0); + void set_decoration_string(ID id, spv::Decoration decoration, const std::string &argument); + + // Overrides the identifier OpName of an ID. + // Identifiers beginning with underscores or identifiers which contain double underscores + // are reserved by the implementation. + void set_name(ID id, const std::string &name); + + // Gets a bitmask for the decorations which are applied to ID. + // I.e. (1ull << spv::DecorationFoo) | (1ull << spv::DecorationBar) + const Bitset &get_decoration_bitset(ID id) const; + + // Returns whether the decoration has been applied to the ID. + bool has_decoration(ID id, spv::Decoration decoration) const; + + // Gets the value for decorations which take arguments. + // If the decoration is a boolean (i.e. spv::DecorationNonWritable), + // 1 will be returned. + // If decoration doesn't exist or decoration is not recognized, + // 0 will be returned. + uint32_t get_decoration(ID id, spv::Decoration decoration) const; + const std::string &get_decoration_string(ID id, spv::Decoration decoration) const; + + // Removes the decoration for an ID. + void unset_decoration(ID id, spv::Decoration decoration); + + // Gets the SPIR-V type associated with ID. + // Mostly used with Resource::type_id and Resource::base_type_id to parse the underlying type of a resource. + const SPIRType &get_type(TypeID id) const; + + // Gets the SPIR-V type of a variable. + const SPIRType &get_type_from_variable(VariableID id) const; + + // Gets the underlying storage class for an OpVariable. + spv::StorageClass get_storage_class(VariableID id) const; + + // If get_name() is an empty string, get the fallback name which will be used + // instead in the disassembled source. + virtual const std::string get_fallback_name(ID id) const; + + // If get_name() of a Block struct is an empty string, get the fallback name. + // This needs to be per-variable as multiple variables can use the same block type. + virtual const std::string get_block_fallback_name(VariableID id) const; + + // Given an OpTypeStruct in ID, obtain the identifier for member number "index". + // This may be an empty string. + const std::string &get_member_name(TypeID id, uint32_t index) const; + + // Given an OpTypeStruct in ID, obtain the OpMemberDecoration for member number "index". + uint32_t get_member_decoration(TypeID id, uint32_t index, spv::Decoration decoration) const; + const std::string &get_member_decoration_string(TypeID id, uint32_t index, spv::Decoration decoration) const; + + // Sets the member identifier for OpTypeStruct ID, member number "index". + void set_member_name(TypeID id, uint32_t index, const std::string &name); + + // Returns the qualified member identifier for OpTypeStruct ID, member number "index", + // or an empty string if no qualified alias exists + const std::string &get_member_qualified_name(TypeID type_id, uint32_t index) const; + + // Gets the decoration mask for a member of a struct, similar to get_decoration_mask. + const Bitset &get_member_decoration_bitset(TypeID id, uint32_t index) const; + + // Returns whether the decoration has been applied to a member of a struct. + bool has_member_decoration(TypeID id, uint32_t index, spv::Decoration decoration) const; + + // Similar to set_decoration, but for struct members. + void set_member_decoration(TypeID id, uint32_t index, spv::Decoration decoration, uint32_t argument = 0); + void set_member_decoration_string(TypeID id, uint32_t index, spv::Decoration decoration, + const std::string &argument); + + // Unsets a member decoration, similar to unset_decoration. + void unset_member_decoration(TypeID id, uint32_t index, spv::Decoration decoration); + + // Gets the fallback name for a member, similar to get_fallback_name. + virtual const std::string get_fallback_member_name(uint32_t index) const + { + return join("_", index); + } + + // Returns a vector of which members of a struct are potentially in use by a + // SPIR-V shader. The granularity of this analysis is per-member of a struct. + // This can be used for Buffer (UBO), BufferBlock/StorageBuffer (SSBO) and PushConstant blocks. + // ID is the Resource::id obtained from get_shader_resources(). + SmallVector<BufferRange> get_active_buffer_ranges(VariableID id) const; + + // Returns the effective size of a buffer block. + size_t get_declared_struct_size(const SPIRType &struct_type) const; + + // Returns the effective size of a buffer block, with a given array size + // for a runtime array. + // SSBOs are typically declared as runtime arrays. get_declared_struct_size() will return 0 for the size. + // This is not very helpful for applications which might need to know the array stride of its last member. + // This can be done through the API, but it is not very intuitive how to accomplish this, so here we provide a helper function + // to query the size of the buffer, assuming that the last member has a certain size. + // If the buffer does not contain a runtime array, array_size is ignored, and the function will behave as + // get_declared_struct_size(). + // To get the array stride of the last member, something like: + // get_declared_struct_size_runtime_array(type, 1) - get_declared_struct_size_runtime_array(type, 0) will work. + size_t get_declared_struct_size_runtime_array(const SPIRType &struct_type, size_t array_size) const; + + // Returns the effective size of a buffer block struct member. + size_t get_declared_struct_member_size(const SPIRType &struct_type, uint32_t index) const; + + // Returns a set of all global variables which are statically accessed + // by the control flow graph from the current entry point. + // Only variables which change the interface for a shader are returned, that is, + // variables with storage class of Input, Output, Uniform, UniformConstant, PushConstant and AtomicCounter + // storage classes are returned. + // + // To use the returned set as the filter for which variables are used during compilation, + // this set can be moved to set_enabled_interface_variables(). + std::unordered_set<VariableID> get_active_interface_variables() const; + + // Sets the interface variables which are used during compilation. + // By default, all variables are used. + // Once set, compile() will only consider the set in active_variables. + void set_enabled_interface_variables(std::unordered_set<VariableID> active_variables); + + // Query shader resources, use ids with reflection interface to modify or query binding points, etc. + ShaderResources get_shader_resources() const; + + // Query shader resources, but only return the variables which are part of active_variables. + // E.g.: get_shader_resources(get_active_variables()) to only return the variables which are statically + // accessed. + ShaderResources get_shader_resources(const std::unordered_set<VariableID> &active_variables) const; + + // Remapped variables are considered built-in variables and a backend will + // not emit a declaration for this variable. + // This is mostly useful for making use of builtins which are dependent on extensions. + void set_remapped_variable_state(VariableID id, bool remap_enable); + bool get_remapped_variable_state(VariableID id) const; + + // For subpassInput variables which are remapped to plain variables, + // the number of components in the remapped + // variable must be specified as the backing type of subpass inputs are opaque. + void set_subpass_input_remapped_components(VariableID id, uint32_t components); + uint32_t get_subpass_input_remapped_components(VariableID id) const; + + // All operations work on the current entry point. + // Entry points can be swapped out with set_entry_point(). + // Entry points should be set right after the constructor completes as some reflection functions traverse the graph from the entry point. + // Resource reflection also depends on the entry point. + // By default, the current entry point is set to the first OpEntryPoint which appears in the SPIR-V module. + + // Some shader languages restrict the names that can be given to entry points, and the + // corresponding backend will automatically rename an entry point name, during the call + // to compile() if it is illegal. For example, the common entry point name main() is + // illegal in MSL, and is renamed to an alternate name by the MSL backend. + // Given the original entry point name contained in the SPIR-V, this function returns + // the name, as updated by the backend during the call to compile(). If the name is not + // illegal, and has not been renamed, or if this function is called before compile(), + // this function will simply return the same name. + + // New variants of entry point query and reflection. + // Names for entry points in the SPIR-V module may alias if they belong to different execution models. + // To disambiguate, we must pass along with the entry point names the execution model. + SmallVector<EntryPoint> get_entry_points_and_stages() const; + void set_entry_point(const std::string &entry, spv::ExecutionModel execution_model); + + // Renames an entry point from old_name to new_name. + // If old_name is currently selected as the current entry point, it will continue to be the current entry point, + // albeit with a new name. + // get_entry_points() is essentially invalidated at this point. + void rename_entry_point(const std::string &old_name, const std::string &new_name, + spv::ExecutionModel execution_model); + const SPIREntryPoint &get_entry_point(const std::string &name, spv::ExecutionModel execution_model) const; + SPIREntryPoint &get_entry_point(const std::string &name, spv::ExecutionModel execution_model); + const std::string &get_cleansed_entry_point_name(const std::string &name, + spv::ExecutionModel execution_model) const; + + // Traverses all reachable opcodes and sets active_builtins to a bitmask of all builtin variables which are accessed in the shader. + void update_active_builtins(); + bool has_active_builtin(spv::BuiltIn builtin, spv::StorageClass storage) const; + + // Query and modify OpExecutionMode. + const Bitset &get_execution_mode_bitset() const; + + void unset_execution_mode(spv::ExecutionMode mode); + void set_execution_mode(spv::ExecutionMode mode, uint32_t arg0 = 0, uint32_t arg1 = 0, uint32_t arg2 = 0); + + // Gets argument for an execution mode (LocalSize, Invocations, OutputVertices). + // For LocalSize or LocalSizeId, the index argument is used to select the dimension (X = 0, Y = 1, Z = 2). + // For execution modes which do not have arguments, 0 is returned. + // LocalSizeId query returns an ID. If LocalSizeId execution mode is not used, it returns 0. + // LocalSize always returns a literal. If execution mode is LocalSizeId, + // the literal (spec constant or not) is still returned. + uint32_t get_execution_mode_argument(spv::ExecutionMode mode, uint32_t index = 0) const; + spv::ExecutionModel get_execution_model() const; + + bool is_tessellation_shader() const; + bool is_tessellating_triangles() const; + + // In SPIR-V, the compute work group size can be represented by a constant vector, in which case + // the LocalSize execution mode is ignored. + // + // This constant vector can be a constant vector, specialization constant vector, or partly specialized constant vector. + // To modify and query work group dimensions which are specialization constants, SPIRConstant values must be modified + // directly via get_constant() rather than using LocalSize directly. This function will return which constants should be modified. + // + // To modify dimensions which are *not* specialization constants, set_execution_mode should be used directly. + // Arguments to set_execution_mode which are specialization constants are effectively ignored during compilation. + // NOTE: This is somewhat different from how SPIR-V works. In SPIR-V, the constant vector will completely replace LocalSize, + // while in this interface, LocalSize is only ignored for specialization constants. + // + // The specialization constant will be written to x, y and z arguments. + // If the component is not a specialization constant, a zeroed out struct will be written. + // The return value is the constant ID of the builtin WorkGroupSize, but this is not expected to be useful + // for most use cases. + // If LocalSizeId is used, there is no uvec3 value representing the workgroup size, so the return value is 0, + // but x, y and z are written as normal if the components are specialization constants. + uint32_t get_work_group_size_specialization_constants(SpecializationConstant &x, SpecializationConstant &y, + SpecializationConstant &z) const; + + // Analyzes all OpImageFetch (texelFetch) opcodes and checks if there are instances where + // said instruction is used without a combined image sampler. + // GLSL targets do not support the use of texelFetch without a sampler. + // To workaround this, we must inject a dummy sampler which can be used to form a sampler2D at the call-site of + // texelFetch as necessary. + // + // This must be called before build_combined_image_samplers(). + // build_combined_image_samplers() may refer to the ID returned by this method if the returned ID is non-zero. + // The return value will be the ID of a sampler object if a dummy sampler is necessary, or 0 if no sampler object + // is required. + // + // If the returned ID is non-zero, it can be decorated with set/bindings as desired before calling compile(). + // Calling this function also invalidates get_active_interface_variables(), so this should be called + // before that function. + VariableID build_dummy_sampler_for_combined_images(); + + // Analyzes all separate image and samplers used from the currently selected entry point, + // and re-routes them all to a combined image sampler instead. + // This is required to "support" separate image samplers in targets which do not natively support + // this feature, like GLSL/ESSL. + // + // This must be called before compile() if such remapping is desired. + // This call will add new sampled images to the SPIR-V, + // so it will appear in reflection if get_shader_resources() is called after build_combined_image_samplers. + // + // If any image/sampler remapping was found, no separate image/samplers will appear in the decompiled output, + // but will still appear in reflection. + // + // The resulting samplers will be void of any decorations like name, descriptor sets and binding points, + // so this can be added before compile() if desired. + // + // Combined image samplers originating from this set are always considered active variables. + // Arrays of separate samplers are not supported, but arrays of separate images are supported. + // Array of images + sampler -> Array of combined image samplers. + void build_combined_image_samplers(); + + // Gets a remapping for the combined image samplers. + const SmallVector<CombinedImageSampler> &get_combined_image_samplers() const + { + return combined_image_samplers; + } + + // Set a new variable type remap callback. + // The type remapping is designed to allow global interface variable to assume more special types. + // A typical example here is to remap sampler2D into samplerExternalOES, which currently isn't supported + // directly by SPIR-V. + // + // In compile() while emitting code, + // for every variable that is declared, including function parameters, the callback will be called + // and the API user has a chance to change the textual representation of the type used to declare the variable. + // The API user can detect special patterns in names to guide the remapping. + void set_variable_type_remap_callback(VariableTypeRemapCallback cb) + { + variable_remap_callback = std::move(cb); + } + + // API for querying which specialization constants exist. + // To modify a specialization constant before compile(), use get_constant(constant.id), + // then update constants directly in the SPIRConstant data structure. + // For composite types, the subconstants can be iterated over and modified. + // constant_type is the SPIRType for the specialization constant, + // which can be queried to determine which fields in the unions should be poked at. + SmallVector<SpecializationConstant> get_specialization_constants() const; + SPIRConstant &get_constant(ConstantID id); + const SPIRConstant &get_constant(ConstantID id) const; + + uint32_t get_current_id_bound() const + { + return uint32_t(ir.ids.size()); + } + + // API for querying buffer objects. + // The type passed in here should be the base type of a resource, i.e. + // get_type(resource.base_type_id) + // as decorations are set in the basic Block type. + // The type passed in here must have these decorations set, or an exception is raised. + // Only UBOs and SSBOs or sub-structs which are part of these buffer types will have these decorations set. + uint32_t type_struct_member_offset(const SPIRType &type, uint32_t index) const; + uint32_t type_struct_member_array_stride(const SPIRType &type, uint32_t index) const; + uint32_t type_struct_member_matrix_stride(const SPIRType &type, uint32_t index) const; + + // Gets the offset in SPIR-V words (uint32_t) for a decoration which was originally declared in the SPIR-V binary. + // The offset will point to one or more uint32_t literals which can be modified in-place before using the SPIR-V binary. + // Note that adding or removing decorations using the reflection API will not change the behavior of this function. + // If the decoration was declared, sets the word_offset to an offset into the provided SPIR-V binary buffer and returns true, + // otherwise, returns false. + // If the decoration does not have any value attached to it (e.g. DecorationRelaxedPrecision), this function will also return false. + bool get_binary_offset_for_decoration(VariableID id, spv::Decoration decoration, uint32_t &word_offset) const; + + // HLSL counter buffer reflection interface. + // Append/Consume/Increment/Decrement in HLSL is implemented as two "neighbor" buffer objects where + // one buffer implements the storage, and a single buffer containing just a lone "int" implements the counter. + // To SPIR-V these will be exposed as two separate buffers, but glslang HLSL frontend emits a special indentifier + // which lets us link the two buffers together. + + // Queries if a variable ID is a counter buffer which "belongs" to a regular buffer object. + + // If SPV_GOOGLE_hlsl_functionality1 is used, this can be used even with a stripped SPIR-V module. + // Otherwise, this query is purely based on OpName identifiers as found in the SPIR-V module, and will + // only return true if OpSource was reported HLSL. + // To rely on this functionality, ensure that the SPIR-V module is not stripped. + + bool buffer_is_hlsl_counter_buffer(VariableID id) const; + + // Queries if a buffer object has a neighbor "counter" buffer. + // If so, the ID of that counter buffer will be returned in counter_id. + // If SPV_GOOGLE_hlsl_functionality1 is used, this can be used even with a stripped SPIR-V module. + // Otherwise, this query is purely based on OpName identifiers as found in the SPIR-V module, and will + // only return true if OpSource was reported HLSL. + // To rely on this functionality, ensure that the SPIR-V module is not stripped. + bool buffer_get_hlsl_counter_buffer(VariableID id, uint32_t &counter_id) const; + + // Gets the list of all SPIR-V Capabilities which were declared in the SPIR-V module. + const SmallVector<spv::Capability> &get_declared_capabilities() const; + + // Gets the list of all SPIR-V extensions which were declared in the SPIR-V module. + const SmallVector<std::string> &get_declared_extensions() const; + + // When declaring buffer blocks in GLSL, the name declared in the GLSL source + // might not be the same as the name declared in the SPIR-V module due to naming conflicts. + // In this case, SPIRV-Cross needs to find a fallback-name, and it might only + // be possible to know this name after compiling to GLSL. + // This is particularly important for HLSL input and UAVs which tends to reuse the same block type + // for multiple distinct blocks. For these cases it is not possible to modify the name of the type itself + // because it might be unique. Instead, you can use this interface to check after compilation which + // name was actually used if your input SPIR-V tends to have this problem. + // For other names like remapped names for variables, etc, it's generally enough to query the name of the variables + // after compiling, block names are an exception to this rule. + // ID is the name of a variable as returned by Resource::id, and must be a variable with a Block-like type. + // + // This also applies to HLSL cbuffers. + std::string get_remapped_declared_block_name(VariableID id) const; + + // For buffer block variables, get the decorations for that variable. + // Sometimes, decorations for buffer blocks are found in member decorations instead + // of direct decorations on the variable itself. + // The most common use here is to check if a buffer is readonly or writeonly. + Bitset get_buffer_block_flags(VariableID id) const; + + // Returns whether the position output is invariant + bool is_position_invariant() const + { + return position_invariant; + } + +protected: + const uint32_t *stream(const Instruction &instr) const + { + // If we're not going to use any arguments, just return nullptr. + // We want to avoid case where we return an out of range pointer + // that trips debug assertions on some platforms. + if (!instr.length) + return nullptr; + + if (instr.is_embedded()) + { + auto &embedded = static_cast<const EmbeddedInstruction &>(instr); + assert(embedded.ops.size() == instr.length); + return embedded.ops.data(); + } + else + { + if (instr.offset + instr.length > ir.spirv.size()) + SPIRV_CROSS_THROW("Compiler::stream() out of range."); + return &ir.spirv[instr.offset]; + } + } + + uint32_t *stream_mutable(const Instruction &instr) const + { + return const_cast<uint32_t *>(stream(instr)); + } + + ParsedIR ir; + // Marks variables which have global scope and variables which can alias with other variables + // (SSBO, image load store, etc) + SmallVector<uint32_t> global_variables; + SmallVector<uint32_t> aliased_variables; + + SPIRFunction *current_function = nullptr; + SPIRBlock *current_block = nullptr; + uint32_t current_loop_level = 0; + std::unordered_set<VariableID> active_interface_variables; + bool check_active_interface_variables = false; + + void add_loop_level(); + + void set_initializers(SPIRExpression &e) + { + e.emitted_loop_level = current_loop_level; + } + + template <typename T> + void set_initializers(const T &) + { + } + + // If our IDs are out of range here as part of opcodes, throw instead of + // undefined behavior. + template <typename T, typename... P> + T &set(uint32_t id, P &&... args) + { + ir.add_typed_id(static_cast<Types>(T::type), id); + auto &var = variant_set<T>(ir.ids[id], std::forward<P>(args)...); + var.self = id; + set_initializers(var); + return var; + } + + template <typename T> + T &get(uint32_t id) + { + return variant_get<T>(ir.ids[id]); + } + + template <typename T> + T *maybe_get(uint32_t id) + { + if (id >= ir.ids.size()) + return nullptr; + else if (ir.ids[id].get_type() == static_cast<Types>(T::type)) + return &get<T>(id); + else + return nullptr; + } + + template <typename T> + const T &get(uint32_t id) const + { + return variant_get<T>(ir.ids[id]); + } + + template <typename T> + const T *maybe_get(uint32_t id) const + { + if (id >= ir.ids.size()) + return nullptr; + else if (ir.ids[id].get_type() == static_cast<Types>(T::type)) + return &get<T>(id); + else + return nullptr; + } + + // Gets the id of SPIR-V type underlying the given type_id, which might be a pointer. + uint32_t get_pointee_type_id(uint32_t type_id) const; + + // Gets the SPIR-V type underlying the given type, which might be a pointer. + const SPIRType &get_pointee_type(const SPIRType &type) const; + + // Gets the SPIR-V type underlying the given type_id, which might be a pointer. + const SPIRType &get_pointee_type(uint32_t type_id) const; + + // Gets the ID of the SPIR-V type underlying a variable. + uint32_t get_variable_data_type_id(const SPIRVariable &var) const; + + // Gets the SPIR-V type underlying a variable. + SPIRType &get_variable_data_type(const SPIRVariable &var); + + // Gets the SPIR-V type underlying a variable. + const SPIRType &get_variable_data_type(const SPIRVariable &var) const; + + // Gets the SPIR-V element type underlying an array variable. + SPIRType &get_variable_element_type(const SPIRVariable &var); + + // Gets the SPIR-V element type underlying an array variable. + const SPIRType &get_variable_element_type(const SPIRVariable &var) const; + + // Sets the qualified member identifier for OpTypeStruct ID, member number "index". + void set_member_qualified_name(uint32_t type_id, uint32_t index, const std::string &name); + void set_qualified_name(uint32_t id, const std::string &name); + + // Returns if the given type refers to a sampled image. + bool is_sampled_image_type(const SPIRType &type); + + const SPIREntryPoint &get_entry_point() const; + SPIREntryPoint &get_entry_point(); + static bool is_tessellation_shader(spv::ExecutionModel model); + + virtual std::string to_name(uint32_t id, bool allow_alias = true) const; + bool is_builtin_variable(const SPIRVariable &var) const; + bool is_builtin_type(const SPIRType &type) const; + bool is_hidden_variable(const SPIRVariable &var, bool include_builtins = false) const; + bool is_immutable(uint32_t id) const; + bool is_member_builtin(const SPIRType &type, uint32_t index, spv::BuiltIn *builtin) const; + bool is_scalar(const SPIRType &type) const; + bool is_vector(const SPIRType &type) const; + bool is_matrix(const SPIRType &type) const; + bool is_array(const SPIRType &type) const; + bool is_pointer(const SPIRType &type) const; + bool is_physical_pointer(const SPIRType &type) const; + bool is_physical_pointer_to_buffer_block(const SPIRType &type) const; + static bool is_runtime_size_array(const SPIRType &type); + uint32_t expression_type_id(uint32_t id) const; + const SPIRType &expression_type(uint32_t id) const; + bool expression_is_lvalue(uint32_t id) const; + bool variable_storage_is_aliased(const SPIRVariable &var); + SPIRVariable *maybe_get_backing_variable(uint32_t chain); + + void register_read(uint32_t expr, uint32_t chain, bool forwarded); + void register_write(uint32_t chain); + + inline bool is_continue(uint32_t next) const + { + return (ir.block_meta[next] & ParsedIR::BLOCK_META_CONTINUE_BIT) != 0; + } + + inline bool is_single_block_loop(uint32_t next) const + { + auto &block = get<SPIRBlock>(next); + return block.merge == SPIRBlock::MergeLoop && block.continue_block == ID(next); + } + + inline bool is_break(uint32_t next) const + { + return (ir.block_meta[next] & + (ParsedIR::BLOCK_META_LOOP_MERGE_BIT | ParsedIR::BLOCK_META_MULTISELECT_MERGE_BIT)) != 0; + } + + inline bool is_loop_break(uint32_t next) const + { + return (ir.block_meta[next] & ParsedIR::BLOCK_META_LOOP_MERGE_BIT) != 0; + } + + inline bool is_conditional(uint32_t next) const + { + return (ir.block_meta[next] & + (ParsedIR::BLOCK_META_SELECTION_MERGE_BIT | ParsedIR::BLOCK_META_MULTISELECT_MERGE_BIT)) != 0; + } + + // Dependency tracking for temporaries read from variables. + void flush_dependees(SPIRVariable &var); + void flush_all_active_variables(); + void flush_control_dependent_expressions(uint32_t block); + void flush_all_atomic_capable_variables(); + void flush_all_aliased_variables(); + void register_global_read_dependencies(const SPIRBlock &func, uint32_t id); + void register_global_read_dependencies(const SPIRFunction &func, uint32_t id); + std::unordered_set<uint32_t> invalid_expressions; + + void update_name_cache(std::unordered_set<std::string> &cache, std::string &name); + + // A variant which takes two sets of names. The secondary is only used to verify there are no collisions, + // but the set is not updated when we have found a new name. + // Used primarily when adding block interface names. + void update_name_cache(std::unordered_set<std::string> &cache_primary, + const std::unordered_set<std::string> &cache_secondary, std::string &name); + + bool function_is_pure(const SPIRFunction &func); + bool block_is_pure(const SPIRBlock &block); + bool function_is_control_dependent(const SPIRFunction &func); + bool block_is_control_dependent(const SPIRBlock &block); + + bool execution_is_branchless(const SPIRBlock &from, const SPIRBlock &to) const; + bool execution_is_direct_branch(const SPIRBlock &from, const SPIRBlock &to) const; + bool execution_is_noop(const SPIRBlock &from, const SPIRBlock &to) const; + SPIRBlock::ContinueBlockType continue_block_type(const SPIRBlock &continue_block) const; + + void force_recompile(); + void force_recompile_guarantee_forward_progress(); + void clear_force_recompile(); + bool is_forcing_recompilation() const; + bool is_force_recompile = false; + bool is_force_recompile_forward_progress = false; + + bool block_is_noop(const SPIRBlock &block) const; + bool block_is_loop_candidate(const SPIRBlock &block, SPIRBlock::Method method) const; + + bool types_are_logically_equivalent(const SPIRType &a, const SPIRType &b) const; + void inherit_expression_dependencies(uint32_t dst, uint32_t source); + void add_implied_read_expression(SPIRExpression &e, uint32_t source); + void add_implied_read_expression(SPIRAccessChain &e, uint32_t source); + void add_active_interface_variable(uint32_t var_id); + + // For proper multiple entry point support, allow querying if an Input or Output + // variable is part of that entry points interface. + bool interface_variable_exists_in_entry_point(uint32_t id) const; + + SmallVector<CombinedImageSampler> combined_image_samplers; + + void remap_variable_type_name(const SPIRType &type, const std::string &var_name, std::string &type_name) const + { + if (variable_remap_callback) + variable_remap_callback(type, var_name, type_name); + } + + void set_ir(const ParsedIR &parsed); + void set_ir(ParsedIR &&parsed); + void parse_fixup(); + + // Used internally to implement various traversals for queries. + struct OpcodeHandler + { + virtual ~OpcodeHandler() = default; + + // Return true if traversal should continue. + // If false, traversal will end immediately. + virtual bool handle(spv::Op opcode, const uint32_t *args, uint32_t length) = 0; + virtual bool handle_terminator(const SPIRBlock &) + { + return true; + } + + virtual bool follow_function_call(const SPIRFunction &) + { + return true; + } + + virtual void set_current_block(const SPIRBlock &) + { + } + + // Called after returning from a function or when entering a block, + // can be called multiple times per block, + // while set_current_block is only called on block entry. + virtual void rearm_current_block(const SPIRBlock &) + { + } + + virtual bool begin_function_scope(const uint32_t *, uint32_t) + { + return true; + } + + virtual bool end_function_scope(const uint32_t *, uint32_t) + { + return true; + } + }; + + struct BufferAccessHandler : OpcodeHandler + { + BufferAccessHandler(const Compiler &compiler_, SmallVector<BufferRange> &ranges_, uint32_t id_) + : compiler(compiler_) + , ranges(ranges_) + , id(id_) + { + } + + bool handle(spv::Op opcode, const uint32_t *args, uint32_t length) override; + + const Compiler &compiler; + SmallVector<BufferRange> &ranges; + uint32_t id; + + std::unordered_set<uint32_t> seen; + }; + + struct InterfaceVariableAccessHandler : OpcodeHandler + { + InterfaceVariableAccessHandler(const Compiler &compiler_, std::unordered_set<VariableID> &variables_) + : compiler(compiler_) + , variables(variables_) + { + } + + bool handle(spv::Op opcode, const uint32_t *args, uint32_t length) override; + + const Compiler &compiler; + std::unordered_set<VariableID> &variables; + }; + + struct CombinedImageSamplerHandler : OpcodeHandler + { + CombinedImageSamplerHandler(Compiler &compiler_) + : compiler(compiler_) + { + } + bool handle(spv::Op opcode, const uint32_t *args, uint32_t length) override; + bool begin_function_scope(const uint32_t *args, uint32_t length) override; + bool end_function_scope(const uint32_t *args, uint32_t length) override; + + Compiler &compiler; + + // Each function in the call stack needs its own remapping for parameters so we can deduce which global variable each texture/sampler the parameter is statically bound to. + std::stack<std::unordered_map<uint32_t, uint32_t>> parameter_remapping; + std::stack<SPIRFunction *> functions; + + uint32_t remap_parameter(uint32_t id); + void push_remap_parameters(const SPIRFunction &func, const uint32_t *args, uint32_t length); + void pop_remap_parameters(); + void register_combined_image_sampler(SPIRFunction &caller, VariableID combined_id, VariableID texture_id, + VariableID sampler_id, bool depth); + }; + + struct DummySamplerForCombinedImageHandler : OpcodeHandler + { + DummySamplerForCombinedImageHandler(Compiler &compiler_) + : compiler(compiler_) + { + } + bool handle(spv::Op opcode, const uint32_t *args, uint32_t length) override; + + Compiler &compiler; + bool need_dummy_sampler = false; + }; + + struct ActiveBuiltinHandler : OpcodeHandler + { + ActiveBuiltinHandler(Compiler &compiler_) + : compiler(compiler_) + { + } + + bool handle(spv::Op opcode, const uint32_t *args, uint32_t length) override; + Compiler &compiler; + + void handle_builtin(const SPIRType &type, spv::BuiltIn builtin, const Bitset &decoration_flags); + void add_if_builtin(uint32_t id); + void add_if_builtin_or_block(uint32_t id); + void add_if_builtin(uint32_t id, bool allow_blocks); + }; + + bool traverse_all_reachable_opcodes(const SPIRBlock &block, OpcodeHandler &handler) const; + bool traverse_all_reachable_opcodes(const SPIRFunction &block, OpcodeHandler &handler) const; + // This must be an ordered data structure so we always pick the same type aliases. + SmallVector<uint32_t> global_struct_cache; + + ShaderResources get_shader_resources(const std::unordered_set<VariableID> *active_variables) const; + + VariableTypeRemapCallback variable_remap_callback; + + bool get_common_basic_type(const SPIRType &type, SPIRType::BaseType &base_type); + + std::unordered_set<uint32_t> forced_temporaries; + std::unordered_set<uint32_t> forwarded_temporaries; + std::unordered_set<uint32_t> suppressed_usage_tracking; + std::unordered_set<uint32_t> hoisted_temporaries; + std::unordered_set<uint32_t> forced_invariant_temporaries; + + Bitset active_input_builtins; + Bitset active_output_builtins; + uint32_t clip_distance_count = 0; + uint32_t cull_distance_count = 0; + bool position_invariant = false; + + void analyze_parameter_preservation( + SPIRFunction &entry, const CFG &cfg, + const std::unordered_map<uint32_t, std::unordered_set<uint32_t>> &variable_to_blocks, + const std::unordered_map<uint32_t, std::unordered_set<uint32_t>> &complete_write_blocks); + + // If a variable ID or parameter ID is found in this set, a sampler is actually a shadow/comparison sampler. + // SPIR-V does not support this distinction, so we must keep track of this information outside the type system. + // There might be unrelated IDs found in this set which do not correspond to actual variables. + // This set should only be queried for the existence of samplers which are already known to be variables or parameter IDs. + // Similar is implemented for images, as well as if subpass inputs are needed. + std::unordered_set<uint32_t> comparison_ids; + bool need_subpass_input = false; + bool need_subpass_input_ms = false; + + // In certain backends, we will need to use a dummy sampler to be able to emit code. + // GLSL does not support texelFetch on texture2D objects, but SPIR-V does, + // so we need to workaround by having the application inject a dummy sampler. + uint32_t dummy_sampler_id = 0; + + void analyze_image_and_sampler_usage(); + + struct CombinedImageSamplerDrefHandler : OpcodeHandler + { + CombinedImageSamplerDrefHandler(Compiler &compiler_) + : compiler(compiler_) + { + } + bool handle(spv::Op opcode, const uint32_t *args, uint32_t length) override; + + Compiler &compiler; + std::unordered_set<uint32_t> dref_combined_samplers; + }; + + struct CombinedImageSamplerUsageHandler : OpcodeHandler + { + CombinedImageSamplerUsageHandler(Compiler &compiler_, + const std::unordered_set<uint32_t> &dref_combined_samplers_) + : compiler(compiler_) + , dref_combined_samplers(dref_combined_samplers_) + { + } + + bool begin_function_scope(const uint32_t *args, uint32_t length) override; + bool handle(spv::Op opcode, const uint32_t *args, uint32_t length) override; + Compiler &compiler; + const std::unordered_set<uint32_t> &dref_combined_samplers; + + std::unordered_map<uint32_t, std::unordered_set<uint32_t>> dependency_hierarchy; + std::unordered_set<uint32_t> comparison_ids; + + void add_hierarchy_to_comparison_ids(uint32_t ids); + bool need_subpass_input = false; + bool need_subpass_input_ms = false; + void add_dependency(uint32_t dst, uint32_t src); + }; + + void build_function_control_flow_graphs_and_analyze(); + std::unordered_map<uint32_t, std::unique_ptr<CFG>> function_cfgs; + const CFG &get_cfg_for_current_function() const; + const CFG &get_cfg_for_function(uint32_t id) const; + + struct CFGBuilder : OpcodeHandler + { + explicit CFGBuilder(Compiler &compiler_); + + bool follow_function_call(const SPIRFunction &func) override; + bool handle(spv::Op op, const uint32_t *args, uint32_t length) override; + Compiler &compiler; + std::unordered_map<uint32_t, std::unique_ptr<CFG>> function_cfgs; + }; + + struct AnalyzeVariableScopeAccessHandler : OpcodeHandler + { + AnalyzeVariableScopeAccessHandler(Compiler &compiler_, SPIRFunction &entry_); + + bool follow_function_call(const SPIRFunction &) override; + void set_current_block(const SPIRBlock &block) override; + + void notify_variable_access(uint32_t id, uint32_t block); + bool id_is_phi_variable(uint32_t id) const; + bool id_is_potential_temporary(uint32_t id) const; + bool handle(spv::Op op, const uint32_t *args, uint32_t length) override; + bool handle_terminator(const SPIRBlock &block) override; + + Compiler &compiler; + SPIRFunction &entry; + std::unordered_map<uint32_t, std::unordered_set<uint32_t>> accessed_variables_to_block; + std::unordered_map<uint32_t, std::unordered_set<uint32_t>> accessed_temporaries_to_block; + std::unordered_map<uint32_t, uint32_t> result_id_to_type; + std::unordered_map<uint32_t, std::unordered_set<uint32_t>> complete_write_variables_to_block; + std::unordered_map<uint32_t, std::unordered_set<uint32_t>> partial_write_variables_to_block; + std::unordered_set<uint32_t> access_chain_expressions; + // Access chains used in multiple blocks mean hoisting all the variables used to construct the access chain as not all backends can use pointers. + // This is also relevant when forwarding opaque objects since we cannot lower these to temporaries. + std::unordered_map<uint32_t, std::unordered_set<uint32_t>> rvalue_forward_children; + const SPIRBlock *current_block = nullptr; + }; + + struct StaticExpressionAccessHandler : OpcodeHandler + { + StaticExpressionAccessHandler(Compiler &compiler_, uint32_t variable_id_); + bool follow_function_call(const SPIRFunction &) override; + bool handle(spv::Op op, const uint32_t *args, uint32_t length) override; + + Compiler &compiler; + uint32_t variable_id; + uint32_t static_expression = 0; + uint32_t write_count = 0; + }; + + struct PhysicalBlockMeta + { + uint32_t alignment = 0; + }; + + struct PhysicalStorageBufferPointerHandler : OpcodeHandler + { + explicit PhysicalStorageBufferPointerHandler(Compiler &compiler_); + bool handle(spv::Op op, const uint32_t *args, uint32_t length) override; + Compiler &compiler; + + std::unordered_set<uint32_t> non_block_types; + std::unordered_map<uint32_t, PhysicalBlockMeta> physical_block_type_meta; + std::unordered_map<uint32_t, PhysicalBlockMeta *> access_chain_to_physical_block; + + void mark_aligned_access(uint32_t id, const uint32_t *args, uint32_t length); + PhysicalBlockMeta *find_block_meta(uint32_t id) const; + bool type_is_bda_block_entry(uint32_t type_id) const; + void setup_meta_chain(uint32_t type_id, uint32_t var_id); + uint32_t get_minimum_scalar_alignment(const SPIRType &type) const; + void analyze_non_block_types_from_block(const SPIRType &type); + uint32_t get_base_non_block_type_id(uint32_t type_id) const; + }; + void analyze_non_block_pointer_types(); + SmallVector<uint32_t> physical_storage_non_block_pointer_types; + std::unordered_map<uint32_t, PhysicalBlockMeta> physical_storage_type_to_alignment; + + void analyze_variable_scope(SPIRFunction &function, AnalyzeVariableScopeAccessHandler &handler); + void find_function_local_luts(SPIRFunction &function, const AnalyzeVariableScopeAccessHandler &handler, + bool single_function); + bool may_read_undefined_variable_in_block(const SPIRBlock &block, uint32_t var); + + // Finds all resources that are written to from inside the critical section, if present. + // The critical section is delimited by OpBeginInvocationInterlockEXT and + // OpEndInvocationInterlockEXT instructions. In MSL and HLSL, any resources written + // while inside the critical section must be placed in a raster order group. + struct InterlockedResourceAccessHandler : OpcodeHandler + { + InterlockedResourceAccessHandler(Compiler &compiler_, uint32_t entry_point_id) + : compiler(compiler_) + { + call_stack.push_back(entry_point_id); + } + + bool handle(spv::Op op, const uint32_t *args, uint32_t length) override; + bool begin_function_scope(const uint32_t *args, uint32_t length) override; + bool end_function_scope(const uint32_t *args, uint32_t length) override; + + Compiler &compiler; + bool in_crit_sec = false; + + uint32_t interlock_function_id = 0; + bool split_function_case = false; + bool control_flow_interlock = false; + bool use_critical_section = false; + bool call_stack_is_interlocked = false; + SmallVector<uint32_t> call_stack; + + void access_potential_resource(uint32_t id); + }; + + struct InterlockedResourceAccessPrepassHandler : OpcodeHandler + { + InterlockedResourceAccessPrepassHandler(Compiler &compiler_, uint32_t entry_point_id) + : compiler(compiler_) + { + call_stack.push_back(entry_point_id); + } + + void rearm_current_block(const SPIRBlock &block) override; + bool handle(spv::Op op, const uint32_t *args, uint32_t length) override; + bool begin_function_scope(const uint32_t *args, uint32_t length) override; + bool end_function_scope(const uint32_t *args, uint32_t length) override; + + Compiler &compiler; + uint32_t interlock_function_id = 0; + uint32_t current_block_id = 0; + bool split_function_case = false; + bool control_flow_interlock = false; + SmallVector<uint32_t> call_stack; + }; + + void analyze_interlocked_resource_usage(); + // The set of all resources written while inside the critical section, if present. + std::unordered_set<uint32_t> interlocked_resources; + bool interlocked_is_complex = false; + + void make_constant_null(uint32_t id, uint32_t type); + + std::unordered_map<uint32_t, std::string> declared_block_names; + + bool instruction_to_result_type(uint32_t &result_type, uint32_t &result_id, spv::Op op, const uint32_t *args, + uint32_t length); + + Bitset combined_decoration_for_member(const SPIRType &type, uint32_t index) const; + static bool is_desktop_only_format(spv::ImageFormat format); + + bool is_depth_image(const SPIRType &type, uint32_t id) const; + + void set_extended_decoration(uint32_t id, ExtendedDecorations decoration, uint32_t value = 0); + uint32_t get_extended_decoration(uint32_t id, ExtendedDecorations decoration) const; + bool has_extended_decoration(uint32_t id, ExtendedDecorations decoration) const; + void unset_extended_decoration(uint32_t id, ExtendedDecorations decoration); + + void set_extended_member_decoration(uint32_t type, uint32_t index, ExtendedDecorations decoration, + uint32_t value = 0); + uint32_t get_extended_member_decoration(uint32_t type, uint32_t index, ExtendedDecorations decoration) const; + bool has_extended_member_decoration(uint32_t type, uint32_t index, ExtendedDecorations decoration) const; + void unset_extended_member_decoration(uint32_t type, uint32_t index, ExtendedDecorations decoration); + + bool check_internal_recursion(const SPIRType &type, std::unordered_set<uint32_t> &checked_ids); + bool type_contains_recursion(const SPIRType &type); + bool type_is_array_of_pointers(const SPIRType &type) const; + bool type_is_block_like(const SPIRType &type) const; + bool type_is_top_level_block(const SPIRType &type) const; + bool type_is_opaque_value(const SPIRType &type) const; + + bool reflection_ssbo_instance_name_is_significant() const; + std::string get_remapped_declared_block_name(uint32_t id, bool fallback_prefer_instance_name) const; + + bool flush_phi_required(BlockID from, BlockID to) const; + + uint32_t evaluate_spec_constant_u32(const SPIRConstantOp &spec) const; + uint32_t evaluate_constant_u32(uint32_t id) const; + + bool is_vertex_like_shader() const; + + // Get the correct case list for the OpSwitch, since it can be either a + // 32 bit wide condition or a 64 bit, but the type is not embedded in the + // instruction itself. + const SmallVector<SPIRBlock::Case> &get_case_list(const SPIRBlock &block) const; + +private: + // Used only to implement the old deprecated get_entry_point() interface. + const SPIREntryPoint &get_first_entry_point(const std::string &name) const; + SPIREntryPoint &get_first_entry_point(const std::string &name); +}; +} // namespace SPIRV_CROSS_NAMESPACE + +#endif |