summaryrefslogtreecommitdiffstats
path: root/thirdparty/spirv-cross/spirv_glsl.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'thirdparty/spirv-cross/spirv_glsl.cpp')
-rw-r--r--thirdparty/spirv-cross/spirv_glsl.cpp19109
1 files changed, 19109 insertions, 0 deletions
diff --git a/thirdparty/spirv-cross/spirv_glsl.cpp b/thirdparty/spirv-cross/spirv_glsl.cpp
new file mode 100644
index 0000000000..fad1132e82
--- /dev/null
+++ b/thirdparty/spirv-cross/spirv_glsl.cpp
@@ -0,0 +1,19109 @@
+/*
+ * Copyright 2015-2021 Arm Limited
+ * SPDX-License-Identifier: Apache-2.0 OR MIT
+ *
+ * Licensed under the Apache License, Version 2.0 (the "License");
+ * you may not use this file except in compliance with the License.
+ * You may obtain a copy of the License at
+ *
+ * http://www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an "AS IS" BASIS,
+ * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+
+/*
+ * At your option, you may choose to accept this material under either:
+ * 1. The Apache License, Version 2.0, found at <http://www.apache.org/licenses/LICENSE-2.0>, or
+ * 2. The MIT License, found at <http://opensource.org/licenses/MIT>.
+ */
+
+#include "spirv_glsl.hpp"
+#include "GLSL.std.450.h"
+#include "spirv_common.hpp"
+#include <algorithm>
+#include <assert.h>
+#include <cmath>
+#include <limits>
+#include <locale.h>
+#include <utility>
+#include <array>
+
+#ifndef _WIN32
+#include <langinfo.h>
+#endif
+#include <locale.h>
+
+using namespace spv;
+using namespace SPIRV_CROSS_NAMESPACE;
+using namespace std;
+
+enum ExtraSubExpressionType
+{
+ // Create masks above any legal ID range to allow multiple address spaces into the extra_sub_expressions map.
+ EXTRA_SUB_EXPRESSION_TYPE_STREAM_OFFSET = 0x10000000,
+ EXTRA_SUB_EXPRESSION_TYPE_AUX = 0x20000000
+};
+
+static bool is_unsigned_opcode(Op op)
+{
+ // Don't have to be exhaustive, only relevant for legacy target checking ...
+ switch (op)
+ {
+ case OpShiftRightLogical:
+ case OpUGreaterThan:
+ case OpUGreaterThanEqual:
+ case OpULessThan:
+ case OpULessThanEqual:
+ case OpUConvert:
+ case OpUDiv:
+ case OpUMod:
+ case OpUMulExtended:
+ case OpConvertUToF:
+ case OpConvertFToU:
+ return true;
+
+ default:
+ return false;
+ }
+}
+
+static bool is_unsigned_glsl_opcode(GLSLstd450 op)
+{
+ // Don't have to be exhaustive, only relevant for legacy target checking ...
+ switch (op)
+ {
+ case GLSLstd450UClamp:
+ case GLSLstd450UMin:
+ case GLSLstd450UMax:
+ case GLSLstd450FindUMsb:
+ return true;
+
+ default:
+ return false;
+ }
+}
+
+static bool packing_is_vec4_padded(BufferPackingStandard packing)
+{
+ switch (packing)
+ {
+ case BufferPackingHLSLCbuffer:
+ case BufferPackingHLSLCbufferPackOffset:
+ case BufferPackingStd140:
+ case BufferPackingStd140EnhancedLayout:
+ return true;
+
+ default:
+ return false;
+ }
+}
+
+static bool packing_is_hlsl(BufferPackingStandard packing)
+{
+ switch (packing)
+ {
+ case BufferPackingHLSLCbuffer:
+ case BufferPackingHLSLCbufferPackOffset:
+ return true;
+
+ default:
+ return false;
+ }
+}
+
+static bool packing_has_flexible_offset(BufferPackingStandard packing)
+{
+ switch (packing)
+ {
+ case BufferPackingStd140:
+ case BufferPackingStd430:
+ case BufferPackingScalar:
+ case BufferPackingHLSLCbuffer:
+ return false;
+
+ default:
+ return true;
+ }
+}
+
+static bool packing_is_scalar(BufferPackingStandard packing)
+{
+ switch (packing)
+ {
+ case BufferPackingScalar:
+ case BufferPackingScalarEnhancedLayout:
+ return true;
+
+ default:
+ return false;
+ }
+}
+
+static BufferPackingStandard packing_to_substruct_packing(BufferPackingStandard packing)
+{
+ switch (packing)
+ {
+ case BufferPackingStd140EnhancedLayout:
+ return BufferPackingStd140;
+ case BufferPackingStd430EnhancedLayout:
+ return BufferPackingStd430;
+ case BufferPackingHLSLCbufferPackOffset:
+ return BufferPackingHLSLCbuffer;
+ case BufferPackingScalarEnhancedLayout:
+ return BufferPackingScalar;
+ default:
+ return packing;
+ }
+}
+
+void CompilerGLSL::init()
+{
+ if (ir.source.known)
+ {
+ options.es = ir.source.es;
+ options.version = ir.source.version;
+ }
+
+ // Query the locale to see what the decimal point is.
+ // We'll rely on fixing it up ourselves in the rare case we have a comma-as-decimal locale
+ // rather than setting locales ourselves. Settings locales in a safe and isolated way is rather
+ // tricky.
+#ifdef _WIN32
+ // On Windows, localeconv uses thread-local storage, so it should be fine.
+ const struct lconv *conv = localeconv();
+ if (conv && conv->decimal_point)
+ current_locale_radix_character = *conv->decimal_point;
+#elif defined(__ANDROID__) && __ANDROID_API__ < 26
+ // nl_langinfo is not supported on this platform, fall back to the worse alternative.
+ const struct lconv *conv = localeconv();
+ if (conv && conv->decimal_point)
+ current_locale_radix_character = *conv->decimal_point;
+#else
+ // localeconv, the portable function is not MT safe ...
+ const char *decimal_point = nl_langinfo(RADIXCHAR);
+ if (decimal_point && *decimal_point != '\0')
+ current_locale_radix_character = *decimal_point;
+#endif
+}
+
+static const char *to_pls_layout(PlsFormat format)
+{
+ switch (format)
+ {
+ case PlsR11FG11FB10F:
+ return "layout(r11f_g11f_b10f) ";
+ case PlsR32F:
+ return "layout(r32f) ";
+ case PlsRG16F:
+ return "layout(rg16f) ";
+ case PlsRGB10A2:
+ return "layout(rgb10_a2) ";
+ case PlsRGBA8:
+ return "layout(rgba8) ";
+ case PlsRG16:
+ return "layout(rg16) ";
+ case PlsRGBA8I:
+ return "layout(rgba8i)";
+ case PlsRG16I:
+ return "layout(rg16i) ";
+ case PlsRGB10A2UI:
+ return "layout(rgb10_a2ui) ";
+ case PlsRGBA8UI:
+ return "layout(rgba8ui) ";
+ case PlsRG16UI:
+ return "layout(rg16ui) ";
+ case PlsR32UI:
+ return "layout(r32ui) ";
+ default:
+ return "";
+ }
+}
+
+static std::pair<spv::Op, SPIRType::BaseType> pls_format_to_basetype(PlsFormat format)
+{
+ switch (format)
+ {
+ default:
+ case PlsR11FG11FB10F:
+ case PlsR32F:
+ case PlsRG16F:
+ case PlsRGB10A2:
+ case PlsRGBA8:
+ case PlsRG16:
+ return std::make_pair(spv::OpTypeFloat, SPIRType::Float);
+
+ case PlsRGBA8I:
+ case PlsRG16I:
+ return std::make_pair(spv::OpTypeInt, SPIRType::Int);
+
+ case PlsRGB10A2UI:
+ case PlsRGBA8UI:
+ case PlsRG16UI:
+ case PlsR32UI:
+ return std::make_pair(spv::OpTypeInt, SPIRType::UInt);
+ }
+}
+
+static uint32_t pls_format_to_components(PlsFormat format)
+{
+ switch (format)
+ {
+ default:
+ case PlsR32F:
+ case PlsR32UI:
+ return 1;
+
+ case PlsRG16F:
+ case PlsRG16:
+ case PlsRG16UI:
+ case PlsRG16I:
+ return 2;
+
+ case PlsR11FG11FB10F:
+ return 3;
+
+ case PlsRGB10A2:
+ case PlsRGBA8:
+ case PlsRGBA8I:
+ case PlsRGB10A2UI:
+ case PlsRGBA8UI:
+ return 4;
+ }
+}
+
+const char *CompilerGLSL::vector_swizzle(int vecsize, int index)
+{
+ static const char *const swizzle[4][4] = {
+ { ".x", ".y", ".z", ".w" },
+ { ".xy", ".yz", ".zw", nullptr },
+ { ".xyz", ".yzw", nullptr, nullptr },
+#if defined(__GNUC__) && (__GNUC__ == 9)
+ // This works around a GCC 9 bug, see details in https://gcc.gnu.org/bugzilla/show_bug.cgi?id=90947.
+ // This array ends up being compiled as all nullptrs, tripping the assertions below.
+ { "", nullptr, nullptr, "$" },
+#else
+ { "", nullptr, nullptr, nullptr },
+#endif
+ };
+
+ assert(vecsize >= 1 && vecsize <= 4);
+ assert(index >= 0 && index < 4);
+ assert(swizzle[vecsize - 1][index]);
+
+ return swizzle[vecsize - 1][index];
+}
+
+void CompilerGLSL::reset(uint32_t iteration_count)
+{
+ // Sanity check the iteration count to be robust against a certain class of bugs where
+ // we keep forcing recompilations without making clear forward progress.
+ // In buggy situations we will loop forever, or loop for an unbounded number of iterations.
+ // Certain types of recompilations are considered to make forward progress,
+ // but in almost all situations, we'll never see more than 3 iterations.
+ // It is highly context-sensitive when we need to force recompilation,
+ // and it is not practical with the current architecture
+ // to resolve everything up front.
+ if (iteration_count >= options.force_recompile_max_debug_iterations && !is_force_recompile_forward_progress)
+ SPIRV_CROSS_THROW("Maximum compilation loops detected and no forward progress was made. Must be a SPIRV-Cross bug!");
+
+ // We do some speculative optimizations which should pretty much always work out,
+ // but just in case the SPIR-V is rather weird, recompile until it's happy.
+ // This typically only means one extra pass.
+ clear_force_recompile();
+
+ // Clear invalid expression tracking.
+ invalid_expressions.clear();
+ composite_insert_overwritten.clear();
+ current_function = nullptr;
+
+ // Clear temporary usage tracking.
+ expression_usage_counts.clear();
+ forwarded_temporaries.clear();
+ suppressed_usage_tracking.clear();
+
+ // Ensure that we declare phi-variable copies even if the original declaration isn't deferred
+ flushed_phi_variables.clear();
+
+ current_emitting_switch_stack.clear();
+
+ reset_name_caches();
+
+ ir.for_each_typed_id<SPIRFunction>([&](uint32_t, SPIRFunction &func) {
+ func.active = false;
+ func.flush_undeclared = true;
+ });
+
+ ir.for_each_typed_id<SPIRVariable>([&](uint32_t, SPIRVariable &var) { var.dependees.clear(); });
+
+ ir.reset_all_of_type<SPIRExpression>();
+ ir.reset_all_of_type<SPIRAccessChain>();
+
+ statement_count = 0;
+ indent = 0;
+ current_loop_level = 0;
+}
+
+void CompilerGLSL::remap_pls_variables()
+{
+ for (auto &input : pls_inputs)
+ {
+ auto &var = get<SPIRVariable>(input.id);
+
+ bool input_is_target = false;
+ if (var.storage == StorageClassUniformConstant)
+ {
+ auto &type = get<SPIRType>(var.basetype);
+ input_is_target = type.image.dim == DimSubpassData;
+ }
+
+ if (var.storage != StorageClassInput && !input_is_target)
+ SPIRV_CROSS_THROW("Can only use in and target variables for PLS inputs.");
+ var.remapped_variable = true;
+ }
+
+ for (auto &output : pls_outputs)
+ {
+ auto &var = get<SPIRVariable>(output.id);
+ if (var.storage != StorageClassOutput)
+ SPIRV_CROSS_THROW("Can only use out variables for PLS outputs.");
+ var.remapped_variable = true;
+ }
+}
+
+void CompilerGLSL::remap_ext_framebuffer_fetch(uint32_t input_attachment_index, uint32_t color_location, bool coherent)
+{
+ subpass_to_framebuffer_fetch_attachment.push_back({ input_attachment_index, color_location });
+ inout_color_attachments.push_back({ color_location, coherent });
+}
+
+bool CompilerGLSL::location_is_framebuffer_fetch(uint32_t location) const
+{
+ return std::find_if(begin(inout_color_attachments), end(inout_color_attachments),
+ [&](const std::pair<uint32_t, bool> &elem) {
+ return elem.first == location;
+ }) != end(inout_color_attachments);
+}
+
+bool CompilerGLSL::location_is_non_coherent_framebuffer_fetch(uint32_t location) const
+{
+ return std::find_if(begin(inout_color_attachments), end(inout_color_attachments),
+ [&](const std::pair<uint32_t, bool> &elem) {
+ return elem.first == location && !elem.second;
+ }) != end(inout_color_attachments);
+}
+
+void CompilerGLSL::find_static_extensions()
+{
+ ir.for_each_typed_id<SPIRType>([&](uint32_t, const SPIRType &type) {
+ if (type.basetype == SPIRType::Double)
+ {
+ if (options.es)
+ SPIRV_CROSS_THROW("FP64 not supported in ES profile.");
+ if (!options.es && options.version < 400)
+ require_extension_internal("GL_ARB_gpu_shader_fp64");
+ }
+ else if (type.basetype == SPIRType::Int64 || type.basetype == SPIRType::UInt64)
+ {
+ if (options.es && options.version < 310) // GL_NV_gpu_shader5 fallback requires 310.
+ SPIRV_CROSS_THROW("64-bit integers not supported in ES profile before version 310.");
+ require_extension_internal("GL_ARB_gpu_shader_int64");
+ }
+ else if (type.basetype == SPIRType::Half)
+ {
+ require_extension_internal("GL_EXT_shader_explicit_arithmetic_types_float16");
+ if (options.vulkan_semantics)
+ require_extension_internal("GL_EXT_shader_16bit_storage");
+ }
+ else if (type.basetype == SPIRType::SByte || type.basetype == SPIRType::UByte)
+ {
+ require_extension_internal("GL_EXT_shader_explicit_arithmetic_types_int8");
+ if (options.vulkan_semantics)
+ require_extension_internal("GL_EXT_shader_8bit_storage");
+ }
+ else if (type.basetype == SPIRType::Short || type.basetype == SPIRType::UShort)
+ {
+ require_extension_internal("GL_EXT_shader_explicit_arithmetic_types_int16");
+ if (options.vulkan_semantics)
+ require_extension_internal("GL_EXT_shader_16bit_storage");
+ }
+ });
+
+ auto &execution = get_entry_point();
+ switch (execution.model)
+ {
+ case ExecutionModelGLCompute:
+ if (!options.es && options.version < 430)
+ require_extension_internal("GL_ARB_compute_shader");
+ if (options.es && options.version < 310)
+ SPIRV_CROSS_THROW("At least ESSL 3.10 required for compute shaders.");
+ break;
+
+ case ExecutionModelGeometry:
+ if (options.es && options.version < 320)
+ require_extension_internal("GL_EXT_geometry_shader");
+ if (!options.es && options.version < 150)
+ require_extension_internal("GL_ARB_geometry_shader4");
+
+ if (execution.flags.get(ExecutionModeInvocations) && execution.invocations != 1)
+ {
+ // Instanced GS is part of 400 core or this extension.
+ if (!options.es && options.version < 400)
+ require_extension_internal("GL_ARB_gpu_shader5");
+ }
+ break;
+
+ case ExecutionModelTessellationEvaluation:
+ case ExecutionModelTessellationControl:
+ if (options.es && options.version < 320)
+ require_extension_internal("GL_EXT_tessellation_shader");
+ if (!options.es && options.version < 400)
+ require_extension_internal("GL_ARB_tessellation_shader");
+ break;
+
+ case ExecutionModelRayGenerationKHR:
+ case ExecutionModelIntersectionKHR:
+ case ExecutionModelAnyHitKHR:
+ case ExecutionModelClosestHitKHR:
+ case ExecutionModelMissKHR:
+ case ExecutionModelCallableKHR:
+ // NV enums are aliases.
+ if (options.es || options.version < 460)
+ SPIRV_CROSS_THROW("Ray tracing shaders require non-es profile with version 460 or above.");
+ if (!options.vulkan_semantics)
+ SPIRV_CROSS_THROW("Ray tracing requires Vulkan semantics.");
+
+ // Need to figure out if we should target KHR or NV extension based on capabilities.
+ for (auto &cap : ir.declared_capabilities)
+ {
+ if (cap == CapabilityRayTracingKHR || cap == CapabilityRayQueryKHR ||
+ cap == CapabilityRayTraversalPrimitiveCullingKHR)
+ {
+ ray_tracing_is_khr = true;
+ break;
+ }
+ }
+
+ if (ray_tracing_is_khr)
+ {
+ // In KHR ray tracing we pass payloads by pointer instead of location,
+ // so make sure we assign locations properly.
+ ray_tracing_khr_fixup_locations();
+ require_extension_internal("GL_EXT_ray_tracing");
+ }
+ else
+ require_extension_internal("GL_NV_ray_tracing");
+ break;
+
+ case ExecutionModelMeshEXT:
+ case ExecutionModelTaskEXT:
+ if (options.es || options.version < 450)
+ SPIRV_CROSS_THROW("Mesh shaders require GLSL 450 or above.");
+ if (!options.vulkan_semantics)
+ SPIRV_CROSS_THROW("Mesh shaders require Vulkan semantics.");
+ require_extension_internal("GL_EXT_mesh_shader");
+ break;
+
+ default:
+ break;
+ }
+
+ if (!pls_inputs.empty() || !pls_outputs.empty())
+ {
+ if (execution.model != ExecutionModelFragment)
+ SPIRV_CROSS_THROW("Can only use GL_EXT_shader_pixel_local_storage in fragment shaders.");
+ require_extension_internal("GL_EXT_shader_pixel_local_storage");
+ }
+
+ if (!inout_color_attachments.empty())
+ {
+ if (execution.model != ExecutionModelFragment)
+ SPIRV_CROSS_THROW("Can only use GL_EXT_shader_framebuffer_fetch in fragment shaders.");
+ if (options.vulkan_semantics)
+ SPIRV_CROSS_THROW("Cannot use EXT_shader_framebuffer_fetch in Vulkan GLSL.");
+
+ bool has_coherent = false;
+ bool has_incoherent = false;
+
+ for (auto &att : inout_color_attachments)
+ {
+ if (att.second)
+ has_coherent = true;
+ else
+ has_incoherent = true;
+ }
+
+ if (has_coherent)
+ require_extension_internal("GL_EXT_shader_framebuffer_fetch");
+ if (has_incoherent)
+ require_extension_internal("GL_EXT_shader_framebuffer_fetch_non_coherent");
+ }
+
+ if (options.separate_shader_objects && !options.es && options.version < 410)
+ require_extension_internal("GL_ARB_separate_shader_objects");
+
+ if (ir.addressing_model == AddressingModelPhysicalStorageBuffer64EXT)
+ {
+ if (!options.vulkan_semantics)
+ SPIRV_CROSS_THROW("GL_EXT_buffer_reference is only supported in Vulkan GLSL.");
+ if (options.es && options.version < 320)
+ SPIRV_CROSS_THROW("GL_EXT_buffer_reference requires ESSL 320.");
+ else if (!options.es && options.version < 450)
+ SPIRV_CROSS_THROW("GL_EXT_buffer_reference requires GLSL 450.");
+ require_extension_internal("GL_EXT_buffer_reference2");
+ }
+ else if (ir.addressing_model != AddressingModelLogical)
+ {
+ SPIRV_CROSS_THROW("Only Logical and PhysicalStorageBuffer64EXT addressing models are supported.");
+ }
+
+ // Check for nonuniform qualifier and passthrough.
+ // Instead of looping over all decorations to find this, just look at capabilities.
+ for (auto &cap : ir.declared_capabilities)
+ {
+ switch (cap)
+ {
+ case CapabilityShaderNonUniformEXT:
+ if (!options.vulkan_semantics)
+ require_extension_internal("GL_NV_gpu_shader5");
+ else
+ require_extension_internal("GL_EXT_nonuniform_qualifier");
+ break;
+ case CapabilityRuntimeDescriptorArrayEXT:
+ if (!options.vulkan_semantics)
+ SPIRV_CROSS_THROW("GL_EXT_nonuniform_qualifier is only supported in Vulkan GLSL.");
+ require_extension_internal("GL_EXT_nonuniform_qualifier");
+ break;
+
+ case CapabilityGeometryShaderPassthroughNV:
+ if (execution.model == ExecutionModelGeometry)
+ {
+ require_extension_internal("GL_NV_geometry_shader_passthrough");
+ execution.geometry_passthrough = true;
+ }
+ break;
+
+ case CapabilityVariablePointers:
+ case CapabilityVariablePointersStorageBuffer:
+ SPIRV_CROSS_THROW("VariablePointers capability is not supported in GLSL.");
+
+ case CapabilityMultiView:
+ if (options.vulkan_semantics)
+ require_extension_internal("GL_EXT_multiview");
+ else
+ {
+ require_extension_internal("GL_OVR_multiview2");
+ if (options.ovr_multiview_view_count == 0)
+ SPIRV_CROSS_THROW("ovr_multiview_view_count must be non-zero when using GL_OVR_multiview2.");
+ if (get_execution_model() != ExecutionModelVertex)
+ SPIRV_CROSS_THROW("OVR_multiview2 can only be used with Vertex shaders.");
+ }
+ break;
+
+ case CapabilityRayQueryKHR:
+ if (options.es || options.version < 460 || !options.vulkan_semantics)
+ SPIRV_CROSS_THROW("RayQuery requires Vulkan GLSL 460.");
+ require_extension_internal("GL_EXT_ray_query");
+ ray_tracing_is_khr = true;
+ break;
+
+ case CapabilityRayTraversalPrimitiveCullingKHR:
+ if (options.es || options.version < 460 || !options.vulkan_semantics)
+ SPIRV_CROSS_THROW("RayQuery requires Vulkan GLSL 460.");
+ require_extension_internal("GL_EXT_ray_flags_primitive_culling");
+ ray_tracing_is_khr = true;
+ break;
+
+ default:
+ break;
+ }
+ }
+
+ if (options.ovr_multiview_view_count)
+ {
+ if (options.vulkan_semantics)
+ SPIRV_CROSS_THROW("OVR_multiview2 cannot be used with Vulkan semantics.");
+ if (get_execution_model() != ExecutionModelVertex)
+ SPIRV_CROSS_THROW("OVR_multiview2 can only be used with Vertex shaders.");
+ require_extension_internal("GL_OVR_multiview2");
+ }
+
+ // KHR one is likely to get promoted at some point, so if we don't see an explicit SPIR-V extension, assume KHR.
+ for (auto &ext : ir.declared_extensions)
+ if (ext == "SPV_NV_fragment_shader_barycentric")
+ barycentric_is_nv = true;
+}
+
+void CompilerGLSL::require_polyfill(Polyfill polyfill, bool relaxed)
+{
+ uint32_t &polyfills = (relaxed && (options.es || options.vulkan_semantics)) ?
+ required_polyfills_relaxed : required_polyfills;
+
+ if ((polyfills & polyfill) == 0)
+ {
+ polyfills |= polyfill;
+ force_recompile();
+ }
+}
+
+void CompilerGLSL::ray_tracing_khr_fixup_locations()
+{
+ uint32_t location = 0;
+ ir.for_each_typed_id<SPIRVariable>([&](uint32_t, SPIRVariable &var) {
+ // Incoming payload storage can also be used for tracing.
+ if (var.storage != StorageClassRayPayloadKHR && var.storage != StorageClassCallableDataKHR &&
+ var.storage != StorageClassIncomingRayPayloadKHR && var.storage != StorageClassIncomingCallableDataKHR)
+ return;
+ if (is_hidden_variable(var))
+ return;
+ set_decoration(var.self, DecorationLocation, location++);
+ });
+}
+
+string CompilerGLSL::compile()
+{
+ ir.fixup_reserved_names();
+
+ if (!options.vulkan_semantics)
+ {
+ // only NV_gpu_shader5 supports divergent indexing on OpenGL, and it does so without extra qualifiers
+ backend.nonuniform_qualifier = "";
+ backend.needs_row_major_load_workaround = options.enable_row_major_load_workaround;
+ }
+ backend.allow_precision_qualifiers = options.vulkan_semantics || options.es;
+ backend.force_gl_in_out_block = true;
+ backend.supports_extensions = true;
+ backend.use_array_constructor = true;
+ backend.workgroup_size_is_hidden = true;
+ backend.requires_relaxed_precision_analysis = options.es || options.vulkan_semantics;
+ backend.support_precise_qualifier =
+ (!options.es && options.version >= 400) || (options.es && options.version >= 320);
+
+ if (is_legacy_es())
+ backend.support_case_fallthrough = false;
+
+ // Scan the SPIR-V to find trivial uses of extensions.
+ fixup_anonymous_struct_names();
+ fixup_type_alias();
+ reorder_type_alias();
+ build_function_control_flow_graphs_and_analyze();
+ find_static_extensions();
+ fixup_image_load_store_access();
+ update_active_builtins();
+ analyze_image_and_sampler_usage();
+ analyze_interlocked_resource_usage();
+ if (!inout_color_attachments.empty())
+ emit_inout_fragment_outputs_copy_to_subpass_inputs();
+
+ // Shaders might cast unrelated data to pointers of non-block types.
+ // Find all such instances and make sure we can cast the pointers to a synthesized block type.
+ if (ir.addressing_model == AddressingModelPhysicalStorageBuffer64EXT)
+ analyze_non_block_pointer_types();
+
+ uint32_t pass_count = 0;
+ do
+ {
+ reset(pass_count);
+
+ buffer.reset();
+
+ emit_header();
+ emit_resources();
+ emit_extension_workarounds(get_execution_model());
+
+ if (required_polyfills != 0)
+ emit_polyfills(required_polyfills, false);
+ if ((options.es || options.vulkan_semantics) && required_polyfills_relaxed != 0)
+ emit_polyfills(required_polyfills_relaxed, true);
+
+ emit_function(get<SPIRFunction>(ir.default_entry_point), Bitset());
+
+ pass_count++;
+ } while (is_forcing_recompilation());
+
+ // Implement the interlocked wrapper function at the end.
+ // The body was implemented in lieu of main().
+ if (interlocked_is_complex)
+ {
+ statement("void main()");
+ begin_scope();
+ statement("// Interlocks were used in a way not compatible with GLSL, this is very slow.");
+ statement("SPIRV_Cross_beginInvocationInterlock();");
+ statement("spvMainInterlockedBody();");
+ statement("SPIRV_Cross_endInvocationInterlock();");
+ end_scope();
+ }
+
+ // Entry point in GLSL is always main().
+ get_entry_point().name = "main";
+
+ return buffer.str();
+}
+
+std::string CompilerGLSL::get_partial_source()
+{
+ return buffer.str();
+}
+
+void CompilerGLSL::build_workgroup_size(SmallVector<string> &arguments, const SpecializationConstant &wg_x,
+ const SpecializationConstant &wg_y, const SpecializationConstant &wg_z)
+{
+ auto &execution = get_entry_point();
+ bool builtin_workgroup = execution.workgroup_size.constant != 0;
+ bool use_local_size_id = !builtin_workgroup && execution.flags.get(ExecutionModeLocalSizeId);
+
+ if (wg_x.id)
+ {
+ if (options.vulkan_semantics)
+ arguments.push_back(join("local_size_x_id = ", wg_x.constant_id));
+ else
+ arguments.push_back(join("local_size_x = ", get<SPIRConstant>(wg_x.id).specialization_constant_macro_name));
+ }
+ else if (use_local_size_id && execution.workgroup_size.id_x)
+ arguments.push_back(join("local_size_x = ", get<SPIRConstant>(execution.workgroup_size.id_x).scalar()));
+ else
+ arguments.push_back(join("local_size_x = ", execution.workgroup_size.x));
+
+ if (wg_y.id)
+ {
+ if (options.vulkan_semantics)
+ arguments.push_back(join("local_size_y_id = ", wg_y.constant_id));
+ else
+ arguments.push_back(join("local_size_y = ", get<SPIRConstant>(wg_y.id).specialization_constant_macro_name));
+ }
+ else if (use_local_size_id && execution.workgroup_size.id_y)
+ arguments.push_back(join("local_size_y = ", get<SPIRConstant>(execution.workgroup_size.id_y).scalar()));
+ else
+ arguments.push_back(join("local_size_y = ", execution.workgroup_size.y));
+
+ if (wg_z.id)
+ {
+ if (options.vulkan_semantics)
+ arguments.push_back(join("local_size_z_id = ", wg_z.constant_id));
+ else
+ arguments.push_back(join("local_size_z = ", get<SPIRConstant>(wg_z.id).specialization_constant_macro_name));
+ }
+ else if (use_local_size_id && execution.workgroup_size.id_z)
+ arguments.push_back(join("local_size_z = ", get<SPIRConstant>(execution.workgroup_size.id_z).scalar()));
+ else
+ arguments.push_back(join("local_size_z = ", execution.workgroup_size.z));
+}
+
+void CompilerGLSL::request_subgroup_feature(ShaderSubgroupSupportHelper::Feature feature)
+{
+ if (options.vulkan_semantics)
+ {
+ auto khr_extension = ShaderSubgroupSupportHelper::get_KHR_extension_for_feature(feature);
+ require_extension_internal(ShaderSubgroupSupportHelper::get_extension_name(khr_extension));
+ }
+ else
+ {
+ if (!shader_subgroup_supporter.is_feature_requested(feature))
+ force_recompile();
+ shader_subgroup_supporter.request_feature(feature);
+ }
+}
+
+void CompilerGLSL::emit_header()
+{
+ auto &execution = get_entry_point();
+ statement("#version ", options.version, options.es && options.version > 100 ? " es" : "");
+
+ if (!options.es && options.version < 420)
+ {
+ // Needed for binding = # on UBOs, etc.
+ if (options.enable_420pack_extension)
+ {
+ statement("#ifdef GL_ARB_shading_language_420pack");
+ statement("#extension GL_ARB_shading_language_420pack : require");
+ statement("#endif");
+ }
+ // Needed for: layout(early_fragment_tests) in;
+ if (execution.flags.get(ExecutionModeEarlyFragmentTests))
+ require_extension_internal("GL_ARB_shader_image_load_store");
+ }
+
+ // Needed for: layout(post_depth_coverage) in;
+ if (execution.flags.get(ExecutionModePostDepthCoverage))
+ require_extension_internal("GL_ARB_post_depth_coverage");
+
+ // Needed for: layout({pixel,sample}_interlock_[un]ordered) in;
+ bool interlock_used = execution.flags.get(ExecutionModePixelInterlockOrderedEXT) ||
+ execution.flags.get(ExecutionModePixelInterlockUnorderedEXT) ||
+ execution.flags.get(ExecutionModeSampleInterlockOrderedEXT) ||
+ execution.flags.get(ExecutionModeSampleInterlockUnorderedEXT);
+
+ if (interlock_used)
+ {
+ if (options.es)
+ {
+ if (options.version < 310)
+ SPIRV_CROSS_THROW("At least ESSL 3.10 required for fragment shader interlock.");
+ require_extension_internal("GL_NV_fragment_shader_interlock");
+ }
+ else
+ {
+ if (options.version < 420)
+ require_extension_internal("GL_ARB_shader_image_load_store");
+ require_extension_internal("GL_ARB_fragment_shader_interlock");
+ }
+ }
+
+ for (auto &ext : forced_extensions)
+ {
+ if (ext == "GL_ARB_gpu_shader_int64")
+ {
+ statement("#if defined(GL_ARB_gpu_shader_int64)");
+ statement("#extension GL_ARB_gpu_shader_int64 : require");
+ if (!options.vulkan_semantics || options.es)
+ {
+ statement("#elif defined(GL_NV_gpu_shader5)");
+ statement("#extension GL_NV_gpu_shader5 : require");
+ }
+ statement("#else");
+ statement("#error No extension available for 64-bit integers.");
+ statement("#endif");
+ }
+ else if (ext == "GL_EXT_shader_explicit_arithmetic_types_float16")
+ {
+ // Special case, this extension has a potential fallback to another vendor extension in normal GLSL.
+ // GL_AMD_gpu_shader_half_float is a superset, so try that first.
+ statement("#if defined(GL_AMD_gpu_shader_half_float)");
+ statement("#extension GL_AMD_gpu_shader_half_float : require");
+ if (!options.vulkan_semantics)
+ {
+ statement("#elif defined(GL_NV_gpu_shader5)");
+ statement("#extension GL_NV_gpu_shader5 : require");
+ }
+ else
+ {
+ statement("#elif defined(GL_EXT_shader_explicit_arithmetic_types_float16)");
+ statement("#extension GL_EXT_shader_explicit_arithmetic_types_float16 : require");
+ }
+ statement("#else");
+ statement("#error No extension available for FP16.");
+ statement("#endif");
+ }
+ else if (ext == "GL_EXT_shader_explicit_arithmetic_types_int8")
+ {
+ if (options.vulkan_semantics)
+ statement("#extension GL_EXT_shader_explicit_arithmetic_types_int8 : require");
+ else
+ {
+ statement("#if defined(GL_EXT_shader_explicit_arithmetic_types_int8)");
+ statement("#extension GL_EXT_shader_explicit_arithmetic_types_int8 : require");
+ statement("#elif defined(GL_NV_gpu_shader5)");
+ statement("#extension GL_NV_gpu_shader5 : require");
+ statement("#else");
+ statement("#error No extension available for Int8.");
+ statement("#endif");
+ }
+ }
+ else if (ext == "GL_EXT_shader_explicit_arithmetic_types_int16")
+ {
+ if (options.vulkan_semantics)
+ statement("#extension GL_EXT_shader_explicit_arithmetic_types_int16 : require");
+ else
+ {
+ statement("#if defined(GL_EXT_shader_explicit_arithmetic_types_int16)");
+ statement("#extension GL_EXT_shader_explicit_arithmetic_types_int16 : require");
+ statement("#elif defined(GL_AMD_gpu_shader_int16)");
+ statement("#extension GL_AMD_gpu_shader_int16 : require");
+ statement("#elif defined(GL_NV_gpu_shader5)");
+ statement("#extension GL_NV_gpu_shader5 : require");
+ statement("#else");
+ statement("#error No extension available for Int16.");
+ statement("#endif");
+ }
+ }
+ else if (ext == "GL_ARB_post_depth_coverage")
+ {
+ if (options.es)
+ statement("#extension GL_EXT_post_depth_coverage : require");
+ else
+ {
+ statement("#if defined(GL_ARB_post_depth_coverge)");
+ statement("#extension GL_ARB_post_depth_coverage : require");
+ statement("#else");
+ statement("#extension GL_EXT_post_depth_coverage : require");
+ statement("#endif");
+ }
+ }
+ else if (!options.vulkan_semantics && ext == "GL_ARB_shader_draw_parameters")
+ {
+ // Soft-enable this extension on plain GLSL.
+ statement("#ifdef ", ext);
+ statement("#extension ", ext, " : enable");
+ statement("#endif");
+ }
+ else if (ext == "GL_EXT_control_flow_attributes")
+ {
+ // These are just hints so we can conditionally enable and fallback in the shader.
+ statement("#if defined(GL_EXT_control_flow_attributes)");
+ statement("#extension GL_EXT_control_flow_attributes : require");
+ statement("#define SPIRV_CROSS_FLATTEN [[flatten]]");
+ statement("#define SPIRV_CROSS_BRANCH [[dont_flatten]]");
+ statement("#define SPIRV_CROSS_UNROLL [[unroll]]");
+ statement("#define SPIRV_CROSS_LOOP [[dont_unroll]]");
+ statement("#else");
+ statement("#define SPIRV_CROSS_FLATTEN");
+ statement("#define SPIRV_CROSS_BRANCH");
+ statement("#define SPIRV_CROSS_UNROLL");
+ statement("#define SPIRV_CROSS_LOOP");
+ statement("#endif");
+ }
+ else if (ext == "GL_NV_fragment_shader_interlock")
+ {
+ statement("#extension GL_NV_fragment_shader_interlock : require");
+ statement("#define SPIRV_Cross_beginInvocationInterlock() beginInvocationInterlockNV()");
+ statement("#define SPIRV_Cross_endInvocationInterlock() endInvocationInterlockNV()");
+ }
+ else if (ext == "GL_ARB_fragment_shader_interlock")
+ {
+ statement("#ifdef GL_ARB_fragment_shader_interlock");
+ statement("#extension GL_ARB_fragment_shader_interlock : enable");
+ statement("#define SPIRV_Cross_beginInvocationInterlock() beginInvocationInterlockARB()");
+ statement("#define SPIRV_Cross_endInvocationInterlock() endInvocationInterlockARB()");
+ statement("#elif defined(GL_INTEL_fragment_shader_ordering)");
+ statement("#extension GL_INTEL_fragment_shader_ordering : enable");
+ statement("#define SPIRV_Cross_beginInvocationInterlock() beginFragmentShaderOrderingINTEL()");
+ statement("#define SPIRV_Cross_endInvocationInterlock()");
+ statement("#endif");
+ }
+ else
+ statement("#extension ", ext, " : require");
+ }
+
+ if (!options.vulkan_semantics)
+ {
+ using Supp = ShaderSubgroupSupportHelper;
+ auto result = shader_subgroup_supporter.resolve();
+
+ for (uint32_t feature_index = 0; feature_index < Supp::FeatureCount; feature_index++)
+ {
+ auto feature = static_cast<Supp::Feature>(feature_index);
+ if (!shader_subgroup_supporter.is_feature_requested(feature))
+ continue;
+
+ auto exts = Supp::get_candidates_for_feature(feature, result);
+ if (exts.empty())
+ continue;
+
+ statement("");
+
+ for (auto &ext : exts)
+ {
+ const char *name = Supp::get_extension_name(ext);
+ const char *extra_predicate = Supp::get_extra_required_extension_predicate(ext);
+ auto extra_names = Supp::get_extra_required_extension_names(ext);
+ statement(&ext != &exts.front() ? "#elif" : "#if", " defined(", name, ")",
+ (*extra_predicate != '\0' ? " && " : ""), extra_predicate);
+ for (const auto &e : extra_names)
+ statement("#extension ", e, " : enable");
+ statement("#extension ", name, " : require");
+ }
+
+ if (!Supp::can_feature_be_implemented_without_extensions(feature))
+ {
+ statement("#else");
+ statement("#error No extensions available to emulate requested subgroup feature.");
+ }
+
+ statement("#endif");
+ }
+ }
+
+ for (auto &header : header_lines)
+ statement(header);
+
+ SmallVector<string> inputs;
+ SmallVector<string> outputs;
+
+ switch (execution.model)
+ {
+ case ExecutionModelVertex:
+ if (options.ovr_multiview_view_count)
+ inputs.push_back(join("num_views = ", options.ovr_multiview_view_count));
+ break;
+ case ExecutionModelGeometry:
+ if ((execution.flags.get(ExecutionModeInvocations)) && execution.invocations != 1)
+ inputs.push_back(join("invocations = ", execution.invocations));
+ if (execution.flags.get(ExecutionModeInputPoints))
+ inputs.push_back("points");
+ if (execution.flags.get(ExecutionModeInputLines))
+ inputs.push_back("lines");
+ if (execution.flags.get(ExecutionModeInputLinesAdjacency))
+ inputs.push_back("lines_adjacency");
+ if (execution.flags.get(ExecutionModeTriangles))
+ inputs.push_back("triangles");
+ if (execution.flags.get(ExecutionModeInputTrianglesAdjacency))
+ inputs.push_back("triangles_adjacency");
+
+ if (!execution.geometry_passthrough)
+ {
+ // For passthrough, these are implies and cannot be declared in shader.
+ outputs.push_back(join("max_vertices = ", execution.output_vertices));
+ if (execution.flags.get(ExecutionModeOutputTriangleStrip))
+ outputs.push_back("triangle_strip");
+ if (execution.flags.get(ExecutionModeOutputPoints))
+ outputs.push_back("points");
+ if (execution.flags.get(ExecutionModeOutputLineStrip))
+ outputs.push_back("line_strip");
+ }
+ break;
+
+ case ExecutionModelTessellationControl:
+ if (execution.flags.get(ExecutionModeOutputVertices))
+ outputs.push_back(join("vertices = ", execution.output_vertices));
+ break;
+
+ case ExecutionModelTessellationEvaluation:
+ if (execution.flags.get(ExecutionModeQuads))
+ inputs.push_back("quads");
+ if (execution.flags.get(ExecutionModeTriangles))
+ inputs.push_back("triangles");
+ if (execution.flags.get(ExecutionModeIsolines))
+ inputs.push_back("isolines");
+ if (execution.flags.get(ExecutionModePointMode))
+ inputs.push_back("point_mode");
+
+ if (!execution.flags.get(ExecutionModeIsolines))
+ {
+ if (execution.flags.get(ExecutionModeVertexOrderCw))
+ inputs.push_back("cw");
+ if (execution.flags.get(ExecutionModeVertexOrderCcw))
+ inputs.push_back("ccw");
+ }
+
+ if (execution.flags.get(ExecutionModeSpacingFractionalEven))
+ inputs.push_back("fractional_even_spacing");
+ if (execution.flags.get(ExecutionModeSpacingFractionalOdd))
+ inputs.push_back("fractional_odd_spacing");
+ if (execution.flags.get(ExecutionModeSpacingEqual))
+ inputs.push_back("equal_spacing");
+ break;
+
+ case ExecutionModelGLCompute:
+ case ExecutionModelTaskEXT:
+ case ExecutionModelMeshEXT:
+ {
+ if (execution.workgroup_size.constant != 0 || execution.flags.get(ExecutionModeLocalSizeId))
+ {
+ SpecializationConstant wg_x, wg_y, wg_z;
+ get_work_group_size_specialization_constants(wg_x, wg_y, wg_z);
+
+ // If there are any spec constants on legacy GLSL, defer declaration, we need to set up macro
+ // declarations before we can emit the work group size.
+ if (options.vulkan_semantics ||
+ ((wg_x.id == ConstantID(0)) && (wg_y.id == ConstantID(0)) && (wg_z.id == ConstantID(0))))
+ build_workgroup_size(inputs, wg_x, wg_y, wg_z);
+ }
+ else
+ {
+ inputs.push_back(join("local_size_x = ", execution.workgroup_size.x));
+ inputs.push_back(join("local_size_y = ", execution.workgroup_size.y));
+ inputs.push_back(join("local_size_z = ", execution.workgroup_size.z));
+ }
+
+ if (execution.model == ExecutionModelMeshEXT)
+ {
+ outputs.push_back(join("max_vertices = ", execution.output_vertices));
+ outputs.push_back(join("max_primitives = ", execution.output_primitives));
+ if (execution.flags.get(ExecutionModeOutputTrianglesEXT))
+ outputs.push_back("triangles");
+ else if (execution.flags.get(ExecutionModeOutputLinesEXT))
+ outputs.push_back("lines");
+ else if (execution.flags.get(ExecutionModeOutputPoints))
+ outputs.push_back("points");
+ }
+ break;
+ }
+
+ case ExecutionModelFragment:
+ if (options.es)
+ {
+ switch (options.fragment.default_float_precision)
+ {
+ case Options::Lowp:
+ statement("precision lowp float;");
+ break;
+
+ case Options::Mediump:
+ statement("precision mediump float;");
+ break;
+
+ case Options::Highp:
+ statement("precision highp float;");
+ break;
+
+ default:
+ break;
+ }
+
+ switch (options.fragment.default_int_precision)
+ {
+ case Options::Lowp:
+ statement("precision lowp int;");
+ break;
+
+ case Options::Mediump:
+ statement("precision mediump int;");
+ break;
+
+ case Options::Highp:
+ statement("precision highp int;");
+ break;
+
+ default:
+ break;
+ }
+ }
+
+ if (execution.flags.get(ExecutionModeEarlyFragmentTests))
+ inputs.push_back("early_fragment_tests");
+ if (execution.flags.get(ExecutionModePostDepthCoverage))
+ inputs.push_back("post_depth_coverage");
+
+ if (interlock_used)
+ statement("#if defined(GL_ARB_fragment_shader_interlock)");
+
+ if (execution.flags.get(ExecutionModePixelInterlockOrderedEXT))
+ statement("layout(pixel_interlock_ordered) in;");
+ else if (execution.flags.get(ExecutionModePixelInterlockUnorderedEXT))
+ statement("layout(pixel_interlock_unordered) in;");
+ else if (execution.flags.get(ExecutionModeSampleInterlockOrderedEXT))
+ statement("layout(sample_interlock_ordered) in;");
+ else if (execution.flags.get(ExecutionModeSampleInterlockUnorderedEXT))
+ statement("layout(sample_interlock_unordered) in;");
+
+ if (interlock_used)
+ {
+ statement("#elif !defined(GL_INTEL_fragment_shader_ordering)");
+ statement("#error Fragment Shader Interlock/Ordering extension missing!");
+ statement("#endif");
+ }
+
+ if (!options.es && execution.flags.get(ExecutionModeDepthGreater))
+ statement("layout(depth_greater) out float gl_FragDepth;");
+ else if (!options.es && execution.flags.get(ExecutionModeDepthLess))
+ statement("layout(depth_less) out float gl_FragDepth;");
+
+ break;
+
+ default:
+ break;
+ }
+
+ for (auto &cap : ir.declared_capabilities)
+ if (cap == CapabilityRayTraversalPrimitiveCullingKHR)
+ statement("layout(primitive_culling);");
+
+ if (!inputs.empty())
+ statement("layout(", merge(inputs), ") in;");
+ if (!outputs.empty())
+ statement("layout(", merge(outputs), ") out;");
+
+ statement("");
+}
+
+bool CompilerGLSL::type_is_empty(const SPIRType &type)
+{
+ return type.basetype == SPIRType::Struct && type.member_types.empty();
+}
+
+void CompilerGLSL::emit_struct(SPIRType &type)
+{
+ // Struct types can be stamped out multiple times
+ // with just different offsets, matrix layouts, etc ...
+ // Type-punning with these types is legal, which complicates things
+ // when we are storing struct and array types in an SSBO for example.
+ // If the type master is packed however, we can no longer assume that the struct declaration will be redundant.
+ if (type.type_alias != TypeID(0) &&
+ !has_extended_decoration(type.type_alias, SPIRVCrossDecorationBufferBlockRepacked))
+ return;
+
+ add_resource_name(type.self);
+ auto name = type_to_glsl(type);
+
+ statement(!backend.explicit_struct_type ? "struct " : "", name);
+ begin_scope();
+
+ type.member_name_cache.clear();
+
+ uint32_t i = 0;
+ bool emitted = false;
+ for (auto &member : type.member_types)
+ {
+ add_member_name(type, i);
+ emit_struct_member(type, member, i);
+ i++;
+ emitted = true;
+ }
+
+ // Don't declare empty structs in GLSL, this is not allowed.
+ if (type_is_empty(type) && !backend.supports_empty_struct)
+ {
+ statement("int empty_struct_member;");
+ emitted = true;
+ }
+
+ if (has_extended_decoration(type.self, SPIRVCrossDecorationPaddingTarget))
+ emit_struct_padding_target(type);
+
+ end_scope_decl();
+
+ if (emitted)
+ statement("");
+}
+
+string CompilerGLSL::to_interpolation_qualifiers(const Bitset &flags)
+{
+ string res;
+ //if (flags & (1ull << DecorationSmooth))
+ // res += "smooth ";
+ if (flags.get(DecorationFlat))
+ res += "flat ";
+ if (flags.get(DecorationNoPerspective))
+ {
+ if (options.es)
+ {
+ if (options.version < 300)
+ SPIRV_CROSS_THROW("noperspective requires ESSL 300.");
+ require_extension_internal("GL_NV_shader_noperspective_interpolation");
+ }
+ else if (is_legacy_desktop())
+ require_extension_internal("GL_EXT_gpu_shader4");
+ res += "noperspective ";
+ }
+ if (flags.get(DecorationCentroid))
+ res += "centroid ";
+ if (flags.get(DecorationPatch))
+ res += "patch ";
+ if (flags.get(DecorationSample))
+ {
+ if (options.es)
+ {
+ if (options.version < 300)
+ SPIRV_CROSS_THROW("sample requires ESSL 300.");
+ else if (options.version < 320)
+ require_extension_internal("GL_OES_shader_multisample_interpolation");
+ }
+ res += "sample ";
+ }
+ if (flags.get(DecorationInvariant) && (options.es || options.version >= 120))
+ res += "invariant ";
+ if (flags.get(DecorationPerPrimitiveEXT))
+ {
+ res += "perprimitiveEXT ";
+ require_extension_internal("GL_EXT_mesh_shader");
+ }
+
+ if (flags.get(DecorationExplicitInterpAMD))
+ {
+ require_extension_internal("GL_AMD_shader_explicit_vertex_parameter");
+ res += "__explicitInterpAMD ";
+ }
+
+ if (flags.get(DecorationPerVertexKHR))
+ {
+ if (options.es && options.version < 320)
+ SPIRV_CROSS_THROW("pervertexEXT requires ESSL 320.");
+ else if (!options.es && options.version < 450)
+ SPIRV_CROSS_THROW("pervertexEXT requires GLSL 450.");
+
+ if (barycentric_is_nv)
+ {
+ require_extension_internal("GL_NV_fragment_shader_barycentric");
+ res += "pervertexNV ";
+ }
+ else
+ {
+ require_extension_internal("GL_EXT_fragment_shader_barycentric");
+ res += "pervertexEXT ";
+ }
+ }
+
+ return res;
+}
+
+string CompilerGLSL::layout_for_member(const SPIRType &type, uint32_t index)
+{
+ if (is_legacy())
+ return "";
+
+ bool is_block = has_decoration(type.self, DecorationBlock) || has_decoration(type.self, DecorationBufferBlock);
+ if (!is_block)
+ return "";
+
+ auto &memb = ir.meta[type.self].members;
+ if (index >= memb.size())
+ return "";
+ auto &dec = memb[index];
+
+ SmallVector<string> attr;
+
+ if (has_member_decoration(type.self, index, DecorationPassthroughNV))
+ attr.push_back("passthrough");
+
+ // We can only apply layouts on members in block interfaces.
+ // This is a bit problematic because in SPIR-V decorations are applied on the struct types directly.
+ // This is not supported on GLSL, so we have to make the assumption that if a struct within our buffer block struct
+ // has a decoration, it was originally caused by a top-level layout() qualifier in GLSL.
+ //
+ // We would like to go from (SPIR-V style):
+ //
+ // struct Foo { layout(row_major) mat4 matrix; };
+ // buffer UBO { Foo foo; };
+ //
+ // to
+ //
+ // struct Foo { mat4 matrix; }; // GLSL doesn't support any layout shenanigans in raw struct declarations.
+ // buffer UBO { layout(row_major) Foo foo; }; // Apply the layout on top-level.
+ auto flags = combined_decoration_for_member(type, index);
+
+ if (flags.get(DecorationRowMajor))
+ attr.push_back("row_major");
+ // We don't emit any global layouts, so column_major is default.
+ //if (flags & (1ull << DecorationColMajor))
+ // attr.push_back("column_major");
+
+ if (dec.decoration_flags.get(DecorationLocation) && can_use_io_location(type.storage, true))
+ attr.push_back(join("location = ", dec.location));
+
+ // Can only declare component if we can declare location.
+ if (dec.decoration_flags.get(DecorationComponent) && can_use_io_location(type.storage, true))
+ {
+ if (!options.es)
+ {
+ if (options.version < 440 && options.version >= 140)
+ require_extension_internal("GL_ARB_enhanced_layouts");
+ else if (options.version < 140)
+ SPIRV_CROSS_THROW("Component decoration is not supported in targets below GLSL 1.40.");
+ attr.push_back(join("component = ", dec.component));
+ }
+ else
+ SPIRV_CROSS_THROW("Component decoration is not supported in ES targets.");
+ }
+
+ // SPIRVCrossDecorationPacked is set by layout_for_variable earlier to mark that we need to emit offset qualifiers.
+ // This is only done selectively in GLSL as needed.
+ if (has_extended_decoration(type.self, SPIRVCrossDecorationExplicitOffset) &&
+ dec.decoration_flags.get(DecorationOffset))
+ attr.push_back(join("offset = ", dec.offset));
+ else if (type.storage == StorageClassOutput && dec.decoration_flags.get(DecorationOffset))
+ attr.push_back(join("xfb_offset = ", dec.offset));
+
+ if (attr.empty())
+ return "";
+
+ string res = "layout(";
+ res += merge(attr);
+ res += ") ";
+ return res;
+}
+
+const char *CompilerGLSL::format_to_glsl(spv::ImageFormat format)
+{
+ if (options.es && is_desktop_only_format(format))
+ SPIRV_CROSS_THROW("Attempting to use image format not supported in ES profile.");
+
+ switch (format)
+ {
+ case ImageFormatRgba32f:
+ return "rgba32f";
+ case ImageFormatRgba16f:
+ return "rgba16f";
+ case ImageFormatR32f:
+ return "r32f";
+ case ImageFormatRgba8:
+ return "rgba8";
+ case ImageFormatRgba8Snorm:
+ return "rgba8_snorm";
+ case ImageFormatRg32f:
+ return "rg32f";
+ case ImageFormatRg16f:
+ return "rg16f";
+ case ImageFormatRgba32i:
+ return "rgba32i";
+ case ImageFormatRgba16i:
+ return "rgba16i";
+ case ImageFormatR32i:
+ return "r32i";
+ case ImageFormatRgba8i:
+ return "rgba8i";
+ case ImageFormatRg32i:
+ return "rg32i";
+ case ImageFormatRg16i:
+ return "rg16i";
+ case ImageFormatRgba32ui:
+ return "rgba32ui";
+ case ImageFormatRgba16ui:
+ return "rgba16ui";
+ case ImageFormatR32ui:
+ return "r32ui";
+ case ImageFormatRgba8ui:
+ return "rgba8ui";
+ case ImageFormatRg32ui:
+ return "rg32ui";
+ case ImageFormatRg16ui:
+ return "rg16ui";
+ case ImageFormatR11fG11fB10f:
+ return "r11f_g11f_b10f";
+ case ImageFormatR16f:
+ return "r16f";
+ case ImageFormatRgb10A2:
+ return "rgb10_a2";
+ case ImageFormatR8:
+ return "r8";
+ case ImageFormatRg8:
+ return "rg8";
+ case ImageFormatR16:
+ return "r16";
+ case ImageFormatRg16:
+ return "rg16";
+ case ImageFormatRgba16:
+ return "rgba16";
+ case ImageFormatR16Snorm:
+ return "r16_snorm";
+ case ImageFormatRg16Snorm:
+ return "rg16_snorm";
+ case ImageFormatRgba16Snorm:
+ return "rgba16_snorm";
+ case ImageFormatR8Snorm:
+ return "r8_snorm";
+ case ImageFormatRg8Snorm:
+ return "rg8_snorm";
+ case ImageFormatR8ui:
+ return "r8ui";
+ case ImageFormatRg8ui:
+ return "rg8ui";
+ case ImageFormatR16ui:
+ return "r16ui";
+ case ImageFormatRgb10a2ui:
+ return "rgb10_a2ui";
+ case ImageFormatR8i:
+ return "r8i";
+ case ImageFormatRg8i:
+ return "rg8i";
+ case ImageFormatR16i:
+ return "r16i";
+ case ImageFormatR64i:
+ return "r64i";
+ case ImageFormatR64ui:
+ return "r64ui";
+ default:
+ case ImageFormatUnknown:
+ return nullptr;
+ }
+}
+
+uint32_t CompilerGLSL::type_to_packed_base_size(const SPIRType &type, BufferPackingStandard)
+{
+ switch (type.basetype)
+ {
+ case SPIRType::Double:
+ case SPIRType::Int64:
+ case SPIRType::UInt64:
+ return 8;
+ case SPIRType::Float:
+ case SPIRType::Int:
+ case SPIRType::UInt:
+ return 4;
+ case SPIRType::Half:
+ case SPIRType::Short:
+ case SPIRType::UShort:
+ return 2;
+ case SPIRType::SByte:
+ case SPIRType::UByte:
+ return 1;
+
+ default:
+ SPIRV_CROSS_THROW("Unrecognized type in type_to_packed_base_size.");
+ }
+}
+
+uint32_t CompilerGLSL::type_to_packed_alignment(const SPIRType &type, const Bitset &flags,
+ BufferPackingStandard packing)
+{
+ // If using PhysicalStorageBufferEXT storage class, this is a pointer,
+ // and is 64-bit.
+ if (is_physical_pointer(type))
+ {
+ if (!type.pointer)
+ SPIRV_CROSS_THROW("Types in PhysicalStorageBufferEXT must be pointers.");
+
+ if (ir.addressing_model == AddressingModelPhysicalStorageBuffer64EXT)
+ {
+ if (packing_is_vec4_padded(packing) && type_is_array_of_pointers(type))
+ return 16;
+ else
+ return 8;
+ }
+ else
+ SPIRV_CROSS_THROW("AddressingModelPhysicalStorageBuffer64EXT must be used for PhysicalStorageBufferEXT.");
+ }
+ else if (is_array(type))
+ {
+ uint32_t minimum_alignment = 1;
+ if (packing_is_vec4_padded(packing))
+ minimum_alignment = 16;
+
+ auto *tmp = &get<SPIRType>(type.parent_type);
+ while (!tmp->array.empty())
+ tmp = &get<SPIRType>(tmp->parent_type);
+
+ // Get the alignment of the base type, then maybe round up.
+ return max(minimum_alignment, type_to_packed_alignment(*tmp, flags, packing));
+ }
+
+ if (type.basetype == SPIRType::Struct)
+ {
+ // Rule 9. Structs alignments are maximum alignment of its members.
+ uint32_t alignment = 1;
+ for (uint32_t i = 0; i < type.member_types.size(); i++)
+ {
+ auto member_flags = ir.meta[type.self].members[i].decoration_flags;
+ alignment =
+ max(alignment, type_to_packed_alignment(get<SPIRType>(type.member_types[i]), member_flags, packing));
+ }
+
+ // In std140, struct alignment is rounded up to 16.
+ if (packing_is_vec4_padded(packing))
+ alignment = max<uint32_t>(alignment, 16u);
+
+ return alignment;
+ }
+ else
+ {
+ const uint32_t base_alignment = type_to_packed_base_size(type, packing);
+
+ // Alignment requirement for scalar block layout is always the alignment for the most basic component.
+ if (packing_is_scalar(packing))
+ return base_alignment;
+
+ // Vectors are *not* aligned in HLSL, but there's an extra rule where vectors cannot straddle
+ // a vec4, this is handled outside since that part knows our current offset.
+ if (type.columns == 1 && packing_is_hlsl(packing))
+ return base_alignment;
+
+ // From 7.6.2.2 in GL 4.5 core spec.
+ // Rule 1
+ if (type.vecsize == 1 && type.columns == 1)
+ return base_alignment;
+
+ // Rule 2
+ if ((type.vecsize == 2 || type.vecsize == 4) && type.columns == 1)
+ return type.vecsize * base_alignment;
+
+ // Rule 3
+ if (type.vecsize == 3 && type.columns == 1)
+ return 4 * base_alignment;
+
+ // Rule 4 implied. Alignment does not change in std430.
+
+ // Rule 5. Column-major matrices are stored as arrays of
+ // vectors.
+ if (flags.get(DecorationColMajor) && type.columns > 1)
+ {
+ if (packing_is_vec4_padded(packing))
+ return 4 * base_alignment;
+ else if (type.vecsize == 3)
+ return 4 * base_alignment;
+ else
+ return type.vecsize * base_alignment;
+ }
+
+ // Rule 6 implied.
+
+ // Rule 7.
+ if (flags.get(DecorationRowMajor) && type.vecsize > 1)
+ {
+ if (packing_is_vec4_padded(packing))
+ return 4 * base_alignment;
+ else if (type.columns == 3)
+ return 4 * base_alignment;
+ else
+ return type.columns * base_alignment;
+ }
+
+ // Rule 8 implied.
+ }
+
+ SPIRV_CROSS_THROW("Did not find suitable rule for type. Bogus decorations?");
+}
+
+uint32_t CompilerGLSL::type_to_packed_array_stride(const SPIRType &type, const Bitset &flags,
+ BufferPackingStandard packing)
+{
+ // Array stride is equal to aligned size of the underlying type.
+ uint32_t parent = type.parent_type;
+ assert(parent);
+
+ auto &tmp = get<SPIRType>(parent);
+
+ uint32_t size = type_to_packed_size(tmp, flags, packing);
+ uint32_t alignment = type_to_packed_alignment(type, flags, packing);
+ return (size + alignment - 1) & ~(alignment - 1);
+}
+
+uint32_t CompilerGLSL::type_to_packed_size(const SPIRType &type, const Bitset &flags, BufferPackingStandard packing)
+{
+ // If using PhysicalStorageBufferEXT storage class, this is a pointer,
+ // and is 64-bit.
+ if (is_physical_pointer(type))
+ {
+ if (!type.pointer)
+ SPIRV_CROSS_THROW("Types in PhysicalStorageBufferEXT must be pointers.");
+
+ if (ir.addressing_model == AddressingModelPhysicalStorageBuffer64EXT)
+ return 8;
+ else
+ SPIRV_CROSS_THROW("AddressingModelPhysicalStorageBuffer64EXT must be used for PhysicalStorageBufferEXT.");
+ }
+ else if (is_array(type))
+ {
+ uint32_t packed_size = to_array_size_literal(type) * type_to_packed_array_stride(type, flags, packing);
+
+ // For arrays of vectors and matrices in HLSL, the last element has a size which depends on its vector size,
+ // so that it is possible to pack other vectors into the last element.
+ if (packing_is_hlsl(packing) && type.basetype != SPIRType::Struct)
+ packed_size -= (4 - type.vecsize) * (type.width / 8);
+
+ return packed_size;
+ }
+
+ uint32_t size = 0;
+
+ if (type.basetype == SPIRType::Struct)
+ {
+ uint32_t pad_alignment = 1;
+
+ for (uint32_t i = 0; i < type.member_types.size(); i++)
+ {
+ auto member_flags = ir.meta[type.self].members[i].decoration_flags;
+ auto &member_type = get<SPIRType>(type.member_types[i]);
+
+ uint32_t packed_alignment = type_to_packed_alignment(member_type, member_flags, packing);
+ uint32_t alignment = max(packed_alignment, pad_alignment);
+
+ // The next member following a struct member is aligned to the base alignment of the struct that came before.
+ // GL 4.5 spec, 7.6.2.2.
+ if (member_type.basetype == SPIRType::Struct)
+ pad_alignment = packed_alignment;
+ else
+ pad_alignment = 1;
+
+ size = (size + alignment - 1) & ~(alignment - 1);
+ size += type_to_packed_size(member_type, member_flags, packing);
+ }
+ }
+ else
+ {
+ const uint32_t base_alignment = type_to_packed_base_size(type, packing);
+
+ if (packing_is_scalar(packing))
+ {
+ size = type.vecsize * type.columns * base_alignment;
+ }
+ else
+ {
+ if (type.columns == 1)
+ size = type.vecsize * base_alignment;
+
+ if (flags.get(DecorationColMajor) && type.columns > 1)
+ {
+ if (packing_is_vec4_padded(packing))
+ size = type.columns * 4 * base_alignment;
+ else if (type.vecsize == 3)
+ size = type.columns * 4 * base_alignment;
+ else
+ size = type.columns * type.vecsize * base_alignment;
+ }
+
+ if (flags.get(DecorationRowMajor) && type.vecsize > 1)
+ {
+ if (packing_is_vec4_padded(packing))
+ size = type.vecsize * 4 * base_alignment;
+ else if (type.columns == 3)
+ size = type.vecsize * 4 * base_alignment;
+ else
+ size = type.vecsize * type.columns * base_alignment;
+ }
+
+ // For matrices in HLSL, the last element has a size which depends on its vector size,
+ // so that it is possible to pack other vectors into the last element.
+ if (packing_is_hlsl(packing) && type.columns > 1)
+ size -= (4 - type.vecsize) * (type.width / 8);
+ }
+ }
+
+ return size;
+}
+
+bool CompilerGLSL::buffer_is_packing_standard(const SPIRType &type, BufferPackingStandard packing,
+ uint32_t *failed_validation_index, uint32_t start_offset,
+ uint32_t end_offset)
+{
+ // This is very tricky and error prone, but try to be exhaustive and correct here.
+ // SPIR-V doesn't directly say if we're using std430 or std140.
+ // SPIR-V communicates this using Offset and ArrayStride decorations (which is what really matters),
+ // so we have to try to infer whether or not the original GLSL source was std140 or std430 based on this information.
+ // We do not have to consider shared or packed since these layouts are not allowed in Vulkan SPIR-V (they are useless anyways, and custom offsets would do the same thing).
+ //
+ // It is almost certain that we're using std430, but it gets tricky with arrays in particular.
+ // We will assume std430, but infer std140 if we can prove the struct is not compliant with std430.
+ //
+ // The only two differences between std140 and std430 are related to padding alignment/array stride
+ // in arrays and structs. In std140 they take minimum vec4 alignment.
+ // std430 only removes the vec4 requirement.
+
+ uint32_t offset = 0;
+ uint32_t pad_alignment = 1;
+
+ bool is_top_level_block =
+ has_decoration(type.self, DecorationBlock) || has_decoration(type.self, DecorationBufferBlock);
+
+ for (uint32_t i = 0; i < type.member_types.size(); i++)
+ {
+ auto &memb_type = get<SPIRType>(type.member_types[i]);
+
+ auto *type_meta = ir.find_meta(type.self);
+ auto member_flags = type_meta ? type_meta->members[i].decoration_flags : Bitset{};
+
+ // Verify alignment rules.
+ uint32_t packed_alignment = type_to_packed_alignment(memb_type, member_flags, packing);
+
+ // This is a rather dirty workaround to deal with some cases of OpSpecConstantOp used as array size, e.g:
+ // layout(constant_id = 0) const int s = 10;
+ // const int S = s + 5; // SpecConstantOp
+ // buffer Foo { int data[S]; }; // <-- Very hard for us to deduce a fixed value here,
+ // we would need full implementation of compile-time constant folding. :(
+ // If we are the last member of a struct, there might be cases where the actual size of that member is irrelevant
+ // for our analysis (e.g. unsized arrays).
+ // This lets us simply ignore that there are spec constant op sized arrays in our buffers.
+ // Querying size of this member will fail, so just don't call it unless we have to.
+ //
+ // This is likely "best effort" we can support without going into unacceptably complicated workarounds.
+ bool member_can_be_unsized =
+ is_top_level_block && size_t(i + 1) == type.member_types.size() && !memb_type.array.empty();
+
+ uint32_t packed_size = 0;
+ if (!member_can_be_unsized || packing_is_hlsl(packing))
+ packed_size = type_to_packed_size(memb_type, member_flags, packing);
+
+ // We only need to care about this if we have non-array types which can straddle the vec4 boundary.
+ uint32_t actual_offset = type_struct_member_offset(type, i);
+
+ if (packing_is_hlsl(packing))
+ {
+ // If a member straddles across a vec4 boundary, alignment is actually vec4.
+ uint32_t target_offset;
+
+ // If we intend to use explicit packing, we must check for improper straddle with that offset.
+ // In implicit packing, we must check with implicit offset, since the explicit offset
+ // might have already accounted for the straddle, and we'd miss the alignment promotion to vec4.
+ // This is important when packing sub-structs that don't support packoffset().
+ if (packing_has_flexible_offset(packing))
+ target_offset = actual_offset;
+ else
+ target_offset = offset;
+
+ uint32_t begin_word = target_offset / 16;
+ uint32_t end_word = (target_offset + packed_size - 1) / 16;
+
+ if (begin_word != end_word)
+ packed_alignment = max<uint32_t>(packed_alignment, 16u);
+ }
+
+ // Field is not in the specified range anymore and we can ignore any further fields.
+ if (actual_offset >= end_offset)
+ break;
+
+ uint32_t alignment = max(packed_alignment, pad_alignment);
+ offset = (offset + alignment - 1) & ~(alignment - 1);
+
+ // The next member following a struct member is aligned to the base alignment of the struct that came before.
+ // GL 4.5 spec, 7.6.2.2.
+ if (memb_type.basetype == SPIRType::Struct && !memb_type.pointer)
+ pad_alignment = packed_alignment;
+ else
+ pad_alignment = 1;
+
+ // Only care about packing if we are in the given range
+ if (actual_offset >= start_offset)
+ {
+ // We only care about offsets in std140, std430, etc ...
+ // For EnhancedLayout variants, we have the flexibility to choose our own offsets.
+ if (!packing_has_flexible_offset(packing))
+ {
+ if (actual_offset != offset) // This cannot be the packing we're looking for.
+ {
+ if (failed_validation_index)
+ *failed_validation_index = i;
+ return false;
+ }
+ }
+ else if ((actual_offset & (alignment - 1)) != 0)
+ {
+ // We still need to verify that alignment rules are observed, even if we have explicit offset.
+ if (failed_validation_index)
+ *failed_validation_index = i;
+ return false;
+ }
+
+ // Verify array stride rules.
+ if (is_array(memb_type) &&
+ type_to_packed_array_stride(memb_type, member_flags, packing) !=
+ type_struct_member_array_stride(type, i))
+ {
+ if (failed_validation_index)
+ *failed_validation_index = i;
+ return false;
+ }
+
+ // Verify that sub-structs also follow packing rules.
+ // We cannot use enhanced layouts on substructs, so they better be up to spec.
+ auto substruct_packing = packing_to_substruct_packing(packing);
+
+ if (!memb_type.pointer && !memb_type.member_types.empty() &&
+ !buffer_is_packing_standard(memb_type, substruct_packing))
+ {
+ if (failed_validation_index)
+ *failed_validation_index = i;
+ return false;
+ }
+ }
+
+ // Bump size.
+ offset = actual_offset + packed_size;
+ }
+
+ return true;
+}
+
+bool CompilerGLSL::can_use_io_location(StorageClass storage, bool block)
+{
+ // Location specifiers are must have in SPIR-V, but they aren't really supported in earlier versions of GLSL.
+ // Be very explicit here about how to solve the issue.
+ if ((get_execution_model() != ExecutionModelVertex && storage == StorageClassInput) ||
+ (get_execution_model() != ExecutionModelFragment && storage == StorageClassOutput))
+ {
+ uint32_t minimum_desktop_version = block ? 440 : 410;
+ // ARB_enhanced_layouts vs ARB_separate_shader_objects ...
+
+ if (!options.es && options.version < minimum_desktop_version && !options.separate_shader_objects)
+ return false;
+ else if (options.es && options.version < 310)
+ return false;
+ }
+
+ if ((get_execution_model() == ExecutionModelVertex && storage == StorageClassInput) ||
+ (get_execution_model() == ExecutionModelFragment && storage == StorageClassOutput))
+ {
+ if (options.es && options.version < 300)
+ return false;
+ else if (!options.es && options.version < 330)
+ return false;
+ }
+
+ if (storage == StorageClassUniform || storage == StorageClassUniformConstant || storage == StorageClassPushConstant)
+ {
+ if (options.es && options.version < 310)
+ return false;
+ else if (!options.es && options.version < 430)
+ return false;
+ }
+
+ return true;
+}
+
+string CompilerGLSL::layout_for_variable(const SPIRVariable &var)
+{
+ // FIXME: Come up with a better solution for when to disable layouts.
+ // Having layouts depend on extensions as well as which types
+ // of layouts are used. For now, the simple solution is to just disable
+ // layouts for legacy versions.
+ if (is_legacy())
+ return "";
+
+ if (subpass_input_is_framebuffer_fetch(var.self))
+ return "";
+
+ SmallVector<string> attr;
+
+ auto &type = get<SPIRType>(var.basetype);
+ auto &flags = get_decoration_bitset(var.self);
+ auto &typeflags = get_decoration_bitset(type.self);
+
+ if (flags.get(DecorationPassthroughNV))
+ attr.push_back("passthrough");
+
+ if (options.vulkan_semantics && var.storage == StorageClassPushConstant)
+ attr.push_back("push_constant");
+ else if (var.storage == StorageClassShaderRecordBufferKHR)
+ attr.push_back(ray_tracing_is_khr ? "shaderRecordEXT" : "shaderRecordNV");
+
+ if (flags.get(DecorationRowMajor))
+ attr.push_back("row_major");
+ if (flags.get(DecorationColMajor))
+ attr.push_back("column_major");
+
+ if (options.vulkan_semantics)
+ {
+ if (flags.get(DecorationInputAttachmentIndex))
+ attr.push_back(join("input_attachment_index = ", get_decoration(var.self, DecorationInputAttachmentIndex)));
+ }
+
+ bool is_block = has_decoration(type.self, DecorationBlock);
+ if (flags.get(DecorationLocation) && can_use_io_location(var.storage, is_block))
+ {
+ Bitset combined_decoration;
+ for (uint32_t i = 0; i < ir.meta[type.self].members.size(); i++)
+ combined_decoration.merge_or(combined_decoration_for_member(type, i));
+
+ // If our members have location decorations, we don't need to
+ // emit location decorations at the top as well (looks weird).
+ if (!combined_decoration.get(DecorationLocation))
+ attr.push_back(join("location = ", get_decoration(var.self, DecorationLocation)));
+ }
+
+ if (get_execution_model() == ExecutionModelFragment && var.storage == StorageClassOutput &&
+ location_is_non_coherent_framebuffer_fetch(get_decoration(var.self, DecorationLocation)))
+ {
+ attr.push_back("noncoherent");
+ }
+
+ // Transform feedback
+ bool uses_enhanced_layouts = false;
+ if (is_block && var.storage == StorageClassOutput)
+ {
+ // For blocks, there is a restriction where xfb_stride/xfb_buffer must only be declared on the block itself,
+ // since all members must match the same xfb_buffer. The only thing we will declare for members of the block
+ // is the xfb_offset.
+ uint32_t member_count = uint32_t(type.member_types.size());
+ bool have_xfb_buffer_stride = false;
+ bool have_any_xfb_offset = false;
+ bool have_geom_stream = false;
+ uint32_t xfb_stride = 0, xfb_buffer = 0, geom_stream = 0;
+
+ if (flags.get(DecorationXfbBuffer) && flags.get(DecorationXfbStride))
+ {
+ have_xfb_buffer_stride = true;
+ xfb_buffer = get_decoration(var.self, DecorationXfbBuffer);
+ xfb_stride = get_decoration(var.self, DecorationXfbStride);
+ }
+
+ if (flags.get(DecorationStream))
+ {
+ have_geom_stream = true;
+ geom_stream = get_decoration(var.self, DecorationStream);
+ }
+
+ // Verify that none of the members violate our assumption.
+ for (uint32_t i = 0; i < member_count; i++)
+ {
+ if (has_member_decoration(type.self, i, DecorationStream))
+ {
+ uint32_t member_geom_stream = get_member_decoration(type.self, i, DecorationStream);
+ if (have_geom_stream && member_geom_stream != geom_stream)
+ SPIRV_CROSS_THROW("IO block member Stream mismatch.");
+ have_geom_stream = true;
+ geom_stream = member_geom_stream;
+ }
+
+ // Only members with an Offset decoration participate in XFB.
+ if (!has_member_decoration(type.self, i, DecorationOffset))
+ continue;
+ have_any_xfb_offset = true;
+
+ if (has_member_decoration(type.self, i, DecorationXfbBuffer))
+ {
+ uint32_t buffer_index = get_member_decoration(type.self, i, DecorationXfbBuffer);
+ if (have_xfb_buffer_stride && buffer_index != xfb_buffer)
+ SPIRV_CROSS_THROW("IO block member XfbBuffer mismatch.");
+ have_xfb_buffer_stride = true;
+ xfb_buffer = buffer_index;
+ }
+
+ if (has_member_decoration(type.self, i, DecorationXfbStride))
+ {
+ uint32_t stride = get_member_decoration(type.self, i, DecorationXfbStride);
+ if (have_xfb_buffer_stride && stride != xfb_stride)
+ SPIRV_CROSS_THROW("IO block member XfbStride mismatch.");
+ have_xfb_buffer_stride = true;
+ xfb_stride = stride;
+ }
+ }
+
+ if (have_xfb_buffer_stride && have_any_xfb_offset)
+ {
+ attr.push_back(join("xfb_buffer = ", xfb_buffer));
+ attr.push_back(join("xfb_stride = ", xfb_stride));
+ uses_enhanced_layouts = true;
+ }
+
+ if (have_geom_stream)
+ {
+ if (get_execution_model() != ExecutionModelGeometry)
+ SPIRV_CROSS_THROW("Geometry streams can only be used in geometry shaders.");
+ if (options.es)
+ SPIRV_CROSS_THROW("Multiple geometry streams not supported in ESSL.");
+ if (options.version < 400)
+ require_extension_internal("GL_ARB_transform_feedback3");
+ attr.push_back(join("stream = ", get_decoration(var.self, DecorationStream)));
+ }
+ }
+ else if (var.storage == StorageClassOutput)
+ {
+ if (flags.get(DecorationXfbBuffer) && flags.get(DecorationXfbStride) && flags.get(DecorationOffset))
+ {
+ // XFB for standalone variables, we can emit all decorations.
+ attr.push_back(join("xfb_buffer = ", get_decoration(var.self, DecorationXfbBuffer)));
+ attr.push_back(join("xfb_stride = ", get_decoration(var.self, DecorationXfbStride)));
+ attr.push_back(join("xfb_offset = ", get_decoration(var.self, DecorationOffset)));
+ uses_enhanced_layouts = true;
+ }
+
+ if (flags.get(DecorationStream))
+ {
+ if (get_execution_model() != ExecutionModelGeometry)
+ SPIRV_CROSS_THROW("Geometry streams can only be used in geometry shaders.");
+ if (options.es)
+ SPIRV_CROSS_THROW("Multiple geometry streams not supported in ESSL.");
+ if (options.version < 400)
+ require_extension_internal("GL_ARB_transform_feedback3");
+ attr.push_back(join("stream = ", get_decoration(var.self, DecorationStream)));
+ }
+ }
+
+ // Can only declare Component if we can declare location.
+ if (flags.get(DecorationComponent) && can_use_io_location(var.storage, is_block))
+ {
+ uses_enhanced_layouts = true;
+ attr.push_back(join("component = ", get_decoration(var.self, DecorationComponent)));
+ }
+
+ if (uses_enhanced_layouts)
+ {
+ if (!options.es)
+ {
+ if (options.version < 440 && options.version >= 140)
+ require_extension_internal("GL_ARB_enhanced_layouts");
+ else if (options.version < 140)
+ SPIRV_CROSS_THROW("GL_ARB_enhanced_layouts is not supported in targets below GLSL 1.40.");
+ if (!options.es && options.version < 440)
+ require_extension_internal("GL_ARB_enhanced_layouts");
+ }
+ else if (options.es)
+ SPIRV_CROSS_THROW("GL_ARB_enhanced_layouts is not supported in ESSL.");
+ }
+
+ if (flags.get(DecorationIndex))
+ attr.push_back(join("index = ", get_decoration(var.self, DecorationIndex)));
+
+ // Do not emit set = decoration in regular GLSL output, but
+ // we need to preserve it in Vulkan GLSL mode.
+ if (var.storage != StorageClassPushConstant && var.storage != StorageClassShaderRecordBufferKHR)
+ {
+ if (flags.get(DecorationDescriptorSet) && options.vulkan_semantics)
+ attr.push_back(join("set = ", get_decoration(var.self, DecorationDescriptorSet)));
+ }
+
+ bool push_constant_block = options.vulkan_semantics && var.storage == StorageClassPushConstant;
+ bool ssbo_block = var.storage == StorageClassStorageBuffer || var.storage == StorageClassShaderRecordBufferKHR ||
+ (var.storage == StorageClassUniform && typeflags.get(DecorationBufferBlock));
+ bool emulated_ubo = var.storage == StorageClassPushConstant && options.emit_push_constant_as_uniform_buffer;
+ bool ubo_block = var.storage == StorageClassUniform && typeflags.get(DecorationBlock);
+
+ // GL 3.0/GLSL 1.30 is not considered legacy, but it doesn't have UBOs ...
+ bool can_use_buffer_blocks = (options.es && options.version >= 300) || (!options.es && options.version >= 140);
+
+ // pretend no UBOs when options say so
+ if (ubo_block && options.emit_uniform_buffer_as_plain_uniforms)
+ can_use_buffer_blocks = false;
+
+ bool can_use_binding;
+ if (options.es)
+ can_use_binding = options.version >= 310;
+ else
+ can_use_binding = options.enable_420pack_extension || (options.version >= 420);
+
+ // Make sure we don't emit binding layout for a classic uniform on GLSL 1.30.
+ if (!can_use_buffer_blocks && var.storage == StorageClassUniform)
+ can_use_binding = false;
+
+ if (var.storage == StorageClassShaderRecordBufferKHR)
+ can_use_binding = false;
+
+ if (can_use_binding && flags.get(DecorationBinding))
+ attr.push_back(join("binding = ", get_decoration(var.self, DecorationBinding)));
+
+ if (var.storage != StorageClassOutput && flags.get(DecorationOffset))
+ attr.push_back(join("offset = ", get_decoration(var.self, DecorationOffset)));
+
+ // Instead of adding explicit offsets for every element here, just assume we're using std140 or std430.
+ // If SPIR-V does not comply with either layout, we cannot really work around it.
+ if (can_use_buffer_blocks && (ubo_block || emulated_ubo))
+ {
+ attr.push_back(buffer_to_packing_standard(type, false, true));
+ }
+ else if (can_use_buffer_blocks && (push_constant_block || ssbo_block))
+ {
+ attr.push_back(buffer_to_packing_standard(type, true, true));
+ }
+
+ // For images, the type itself adds a layout qualifer.
+ // Only emit the format for storage images.
+ if (type.basetype == SPIRType::Image && type.image.sampled == 2)
+ {
+ const char *fmt = format_to_glsl(type.image.format);
+ if (fmt)
+ attr.push_back(fmt);
+ }
+
+ if (attr.empty())
+ return "";
+
+ string res = "layout(";
+ res += merge(attr);
+ res += ") ";
+ return res;
+}
+
+string CompilerGLSL::buffer_to_packing_standard(const SPIRType &type,
+ bool support_std430_without_scalar_layout,
+ bool support_enhanced_layouts)
+{
+ if (support_std430_without_scalar_layout && buffer_is_packing_standard(type, BufferPackingStd430))
+ return "std430";
+ else if (buffer_is_packing_standard(type, BufferPackingStd140))
+ return "std140";
+ else if (options.vulkan_semantics && buffer_is_packing_standard(type, BufferPackingScalar))
+ {
+ require_extension_internal("GL_EXT_scalar_block_layout");
+ return "scalar";
+ }
+ else if (support_std430_without_scalar_layout &&
+ support_enhanced_layouts &&
+ buffer_is_packing_standard(type, BufferPackingStd430EnhancedLayout))
+ {
+ if (options.es && !options.vulkan_semantics)
+ SPIRV_CROSS_THROW("Push constant block cannot be expressed as neither std430 nor std140. ES-targets do "
+ "not support GL_ARB_enhanced_layouts.");
+ if (!options.es && !options.vulkan_semantics && options.version < 440)
+ require_extension_internal("GL_ARB_enhanced_layouts");
+
+ set_extended_decoration(type.self, SPIRVCrossDecorationExplicitOffset);
+ return "std430";
+ }
+ else if (support_enhanced_layouts &&
+ buffer_is_packing_standard(type, BufferPackingStd140EnhancedLayout))
+ {
+ // Fallback time. We might be able to use the ARB_enhanced_layouts to deal with this difference,
+ // however, we can only use layout(offset) on the block itself, not any substructs, so the substructs better be the appropriate layout.
+ // Enhanced layouts seem to always work in Vulkan GLSL, so no need for extensions there.
+ if (options.es && !options.vulkan_semantics)
+ SPIRV_CROSS_THROW("Push constant block cannot be expressed as neither std430 nor std140. ES-targets do "
+ "not support GL_ARB_enhanced_layouts.");
+ if (!options.es && !options.vulkan_semantics && options.version < 440)
+ require_extension_internal("GL_ARB_enhanced_layouts");
+
+ set_extended_decoration(type.self, SPIRVCrossDecorationExplicitOffset);
+ return "std140";
+ }
+ else if (options.vulkan_semantics &&
+ support_enhanced_layouts &&
+ buffer_is_packing_standard(type, BufferPackingScalarEnhancedLayout))
+ {
+ set_extended_decoration(type.self, SPIRVCrossDecorationExplicitOffset);
+ require_extension_internal("GL_EXT_scalar_block_layout");
+ return "scalar";
+ }
+ else if (!support_std430_without_scalar_layout && options.vulkan_semantics &&
+ buffer_is_packing_standard(type, BufferPackingStd430))
+ {
+ // UBOs can support std430 with GL_EXT_scalar_block_layout.
+ require_extension_internal("GL_EXT_scalar_block_layout");
+ return "std430";
+ }
+ else if (!support_std430_without_scalar_layout && options.vulkan_semantics &&
+ support_enhanced_layouts &&
+ buffer_is_packing_standard(type, BufferPackingStd430EnhancedLayout))
+ {
+ // UBOs can support std430 with GL_EXT_scalar_block_layout.
+ set_extended_decoration(type.self, SPIRVCrossDecorationExplicitOffset);
+ require_extension_internal("GL_EXT_scalar_block_layout");
+ return "std430";
+ }
+ else
+ {
+ SPIRV_CROSS_THROW("Buffer block cannot be expressed as any of std430, std140, scalar, even with enhanced "
+ "layouts. You can try flattening this block to support a more flexible layout.");
+ }
+}
+
+void CompilerGLSL::emit_push_constant_block(const SPIRVariable &var)
+{
+ if (flattened_buffer_blocks.count(var.self))
+ emit_buffer_block_flattened(var);
+ else if (options.vulkan_semantics)
+ emit_push_constant_block_vulkan(var);
+ else if (options.emit_push_constant_as_uniform_buffer)
+ emit_buffer_block_native(var);
+ else
+ emit_push_constant_block_glsl(var);
+}
+
+void CompilerGLSL::emit_push_constant_block_vulkan(const SPIRVariable &var)
+{
+ emit_buffer_block(var);
+}
+
+void CompilerGLSL::emit_push_constant_block_glsl(const SPIRVariable &var)
+{
+ // OpenGL has no concept of push constant blocks, implement it as a uniform struct.
+ auto &type = get<SPIRType>(var.basetype);
+
+ unset_decoration(var.self, DecorationBinding);
+ unset_decoration(var.self, DecorationDescriptorSet);
+
+#if 0
+ if (flags & ((1ull << DecorationBinding) | (1ull << DecorationDescriptorSet)))
+ SPIRV_CROSS_THROW("Push constant blocks cannot be compiled to GLSL with Binding or Set syntax. "
+ "Remap to location with reflection API first or disable these decorations.");
+#endif
+
+ // We're emitting the push constant block as a regular struct, so disable the block qualifier temporarily.
+ // Otherwise, we will end up emitting layout() qualifiers on naked structs which is not allowed.
+ bool block_flag = has_decoration(type.self, DecorationBlock);
+ unset_decoration(type.self, DecorationBlock);
+
+ emit_struct(type);
+
+ if (block_flag)
+ set_decoration(type.self, DecorationBlock);
+
+ emit_uniform(var);
+ statement("");
+}
+
+void CompilerGLSL::emit_buffer_block(const SPIRVariable &var)
+{
+ auto &type = get<SPIRType>(var.basetype);
+ bool ubo_block = var.storage == StorageClassUniform && has_decoration(type.self, DecorationBlock);
+
+ if (flattened_buffer_blocks.count(var.self))
+ emit_buffer_block_flattened(var);
+ else if (is_legacy() || (!options.es && options.version == 130) ||
+ (ubo_block && options.emit_uniform_buffer_as_plain_uniforms))
+ emit_buffer_block_legacy(var);
+ else
+ emit_buffer_block_native(var);
+}
+
+void CompilerGLSL::emit_buffer_block_legacy(const SPIRVariable &var)
+{
+ auto &type = get<SPIRType>(var.basetype);
+ bool ssbo = var.storage == StorageClassStorageBuffer ||
+ ir.meta[type.self].decoration.decoration_flags.get(DecorationBufferBlock);
+ if (ssbo)
+ SPIRV_CROSS_THROW("SSBOs not supported in legacy targets.");
+
+ // We're emitting the push constant block as a regular struct, so disable the block qualifier temporarily.
+ // Otherwise, we will end up emitting layout() qualifiers on naked structs which is not allowed.
+ auto &block_flags = ir.meta[type.self].decoration.decoration_flags;
+ bool block_flag = block_flags.get(DecorationBlock);
+ block_flags.clear(DecorationBlock);
+ emit_struct(type);
+ if (block_flag)
+ block_flags.set(DecorationBlock);
+ emit_uniform(var);
+ statement("");
+}
+
+void CompilerGLSL::emit_buffer_reference_block(uint32_t type_id, bool forward_declaration)
+{
+ auto &type = get<SPIRType>(type_id);
+ string buffer_name;
+
+ if (forward_declaration && is_physical_pointer_to_buffer_block(type))
+ {
+ // Block names should never alias, but from HLSL input they kind of can because block types are reused for UAVs ...
+ // Allow aliased name since we might be declaring the block twice. Once with buffer reference (forward declared) and one proper declaration.
+ // The names must match up.
+ buffer_name = to_name(type.self, false);
+
+ // Shaders never use the block by interface name, so we don't
+ // have to track this other than updating name caches.
+ // If we have a collision for any reason, just fallback immediately.
+ if (ir.meta[type.self].decoration.alias.empty() ||
+ block_ssbo_names.find(buffer_name) != end(block_ssbo_names) ||
+ resource_names.find(buffer_name) != end(resource_names))
+ {
+ buffer_name = join("_", type.self);
+ }
+
+ // Make sure we get something unique for both global name scope and block name scope.
+ // See GLSL 4.5 spec: section 4.3.9 for details.
+ add_variable(block_ssbo_names, resource_names, buffer_name);
+
+ // If for some reason buffer_name is an illegal name, make a final fallback to a workaround name.
+ // This cannot conflict with anything else, so we're safe now.
+ // We cannot reuse this fallback name in neither global scope (blocked by block_names) nor block name scope.
+ if (buffer_name.empty())
+ buffer_name = join("_", type.self);
+
+ block_names.insert(buffer_name);
+ block_ssbo_names.insert(buffer_name);
+
+ // Ensure we emit the correct name when emitting non-forward pointer type.
+ ir.meta[type.self].decoration.alias = buffer_name;
+ }
+ else
+ {
+ buffer_name = type_to_glsl(type);
+ }
+
+ if (!forward_declaration)
+ {
+ auto itr = physical_storage_type_to_alignment.find(type_id);
+ uint32_t alignment = 0;
+ if (itr != physical_storage_type_to_alignment.end())
+ alignment = itr->second.alignment;
+
+ if (is_physical_pointer_to_buffer_block(type))
+ {
+ SmallVector<std::string> attributes;
+ attributes.push_back("buffer_reference");
+ if (alignment)
+ attributes.push_back(join("buffer_reference_align = ", alignment));
+ attributes.push_back(buffer_to_packing_standard(type, true, true));
+
+ auto flags = ir.get_buffer_block_type_flags(type);
+ string decorations;
+ if (flags.get(DecorationRestrict))
+ decorations += " restrict";
+ if (flags.get(DecorationCoherent))
+ decorations += " coherent";
+ if (flags.get(DecorationNonReadable))
+ decorations += " writeonly";
+ if (flags.get(DecorationNonWritable))
+ decorations += " readonly";
+
+ statement("layout(", merge(attributes), ")", decorations, " buffer ", buffer_name);
+ }
+ else
+ {
+ string packing_standard;
+ if (type.basetype == SPIRType::Struct)
+ {
+ // The non-block type is embedded in a block, so we cannot use enhanced layouts :(
+ packing_standard = buffer_to_packing_standard(type, true, false) + ", ";
+ }
+ else if (is_array(get_pointee_type(type)))
+ {
+ SPIRType wrap_type{OpTypeStruct};
+ wrap_type.self = ir.increase_bound_by(1);
+ wrap_type.member_types.push_back(get_pointee_type_id(type_id));
+ ir.set_member_decoration(wrap_type.self, 0, DecorationOffset, 0);
+ packing_standard = buffer_to_packing_standard(wrap_type, true, false) + ", ";
+ }
+
+ if (alignment)
+ statement("layout(", packing_standard, "buffer_reference, buffer_reference_align = ", alignment, ") buffer ", buffer_name);
+ else
+ statement("layout(", packing_standard, "buffer_reference) buffer ", buffer_name);
+ }
+
+ begin_scope();
+
+ if (is_physical_pointer_to_buffer_block(type))
+ {
+ type.member_name_cache.clear();
+
+ uint32_t i = 0;
+ for (auto &member : type.member_types)
+ {
+ add_member_name(type, i);
+ emit_struct_member(type, member, i);
+ i++;
+ }
+ }
+ else
+ {
+ auto &pointee_type = get_pointee_type(type);
+ statement(type_to_glsl(pointee_type), " value", type_to_array_glsl(pointee_type, 0), ";");
+ }
+
+ end_scope_decl();
+ statement("");
+ }
+ else
+ {
+ statement("layout(buffer_reference) buffer ", buffer_name, ";");
+ }
+}
+
+void CompilerGLSL::emit_buffer_block_native(const SPIRVariable &var)
+{
+ auto &type = get<SPIRType>(var.basetype);
+
+ Bitset flags = ir.get_buffer_block_flags(var);
+ bool ssbo = var.storage == StorageClassStorageBuffer || var.storage == StorageClassShaderRecordBufferKHR ||
+ ir.meta[type.self].decoration.decoration_flags.get(DecorationBufferBlock);
+ bool is_restrict = ssbo && flags.get(DecorationRestrict);
+ bool is_writeonly = ssbo && flags.get(DecorationNonReadable);
+ bool is_readonly = ssbo && flags.get(DecorationNonWritable);
+ bool is_coherent = ssbo && flags.get(DecorationCoherent);
+
+ // Block names should never alias, but from HLSL input they kind of can because block types are reused for UAVs ...
+ auto buffer_name = to_name(type.self, false);
+
+ auto &block_namespace = ssbo ? block_ssbo_names : block_ubo_names;
+
+ // Shaders never use the block by interface name, so we don't
+ // have to track this other than updating name caches.
+ // If we have a collision for any reason, just fallback immediately.
+ if (ir.meta[type.self].decoration.alias.empty() || block_namespace.find(buffer_name) != end(block_namespace) ||
+ resource_names.find(buffer_name) != end(resource_names))
+ {
+ buffer_name = get_block_fallback_name(var.self);
+ }
+
+ // Make sure we get something unique for both global name scope and block name scope.
+ // See GLSL 4.5 spec: section 4.3.9 for details.
+ add_variable(block_namespace, resource_names, buffer_name);
+
+ // If for some reason buffer_name is an illegal name, make a final fallback to a workaround name.
+ // This cannot conflict with anything else, so we're safe now.
+ // We cannot reuse this fallback name in neither global scope (blocked by block_names) nor block name scope.
+ if (buffer_name.empty())
+ buffer_name = join("_", get<SPIRType>(var.basetype).self, "_", var.self);
+
+ block_names.insert(buffer_name);
+ block_namespace.insert(buffer_name);
+
+ // Save for post-reflection later.
+ declared_block_names[var.self] = buffer_name;
+
+ statement(layout_for_variable(var), is_coherent ? "coherent " : "", is_restrict ? "restrict " : "",
+ is_writeonly ? "writeonly " : "", is_readonly ? "readonly " : "", ssbo ? "buffer " : "uniform ",
+ buffer_name);
+
+ begin_scope();
+
+ type.member_name_cache.clear();
+
+ uint32_t i = 0;
+ for (auto &member : type.member_types)
+ {
+ add_member_name(type, i);
+ emit_struct_member(type, member, i);
+ i++;
+ }
+
+ // Don't declare empty blocks in GLSL, this is not allowed.
+ if (type_is_empty(type) && !backend.supports_empty_struct)
+ statement("int empty_struct_member;");
+
+ // var.self can be used as a backup name for the block name,
+ // so we need to make sure we don't disturb the name here on a recompile.
+ // It will need to be reset if we have to recompile.
+ preserve_alias_on_reset(var.self);
+ add_resource_name(var.self);
+ end_scope_decl(to_name(var.self) + type_to_array_glsl(type, var.self));
+ statement("");
+}
+
+void CompilerGLSL::emit_buffer_block_flattened(const SPIRVariable &var)
+{
+ auto &type = get<SPIRType>(var.basetype);
+
+ // Block names should never alias.
+ auto buffer_name = to_name(type.self, false);
+ size_t buffer_size = (get_declared_struct_size(type) + 15) / 16;
+
+ SPIRType::BaseType basic_type;
+ if (get_common_basic_type(type, basic_type))
+ {
+ SPIRType tmp { OpTypeVector };
+ tmp.basetype = basic_type;
+ tmp.vecsize = 4;
+ if (basic_type != SPIRType::Float && basic_type != SPIRType::Int && basic_type != SPIRType::UInt)
+ SPIRV_CROSS_THROW("Basic types in a flattened UBO must be float, int or uint.");
+
+ auto flags = ir.get_buffer_block_flags(var);
+ statement("uniform ", flags_to_qualifiers_glsl(tmp, flags), type_to_glsl(tmp), " ", buffer_name, "[",
+ buffer_size, "];");
+ }
+ else
+ SPIRV_CROSS_THROW("All basic types in a flattened block must be the same.");
+}
+
+const char *CompilerGLSL::to_storage_qualifiers_glsl(const SPIRVariable &var)
+{
+ auto &execution = get_entry_point();
+
+ if (subpass_input_is_framebuffer_fetch(var.self))
+ return "";
+
+ if (var.storage == StorageClassInput || var.storage == StorageClassOutput)
+ {
+ if (is_legacy() && execution.model == ExecutionModelVertex)
+ return var.storage == StorageClassInput ? "attribute " : "varying ";
+ else if (is_legacy() && execution.model == ExecutionModelFragment)
+ return "varying "; // Fragment outputs are renamed so they never hit this case.
+ else if (execution.model == ExecutionModelFragment && var.storage == StorageClassOutput)
+ {
+ uint32_t loc = get_decoration(var.self, DecorationLocation);
+ bool is_inout = location_is_framebuffer_fetch(loc);
+ if (is_inout)
+ return "inout ";
+ else
+ return "out ";
+ }
+ else
+ return var.storage == StorageClassInput ? "in " : "out ";
+ }
+ else if (var.storage == StorageClassUniformConstant || var.storage == StorageClassUniform ||
+ var.storage == StorageClassPushConstant || var.storage == StorageClassAtomicCounter)
+ {
+ return "uniform ";
+ }
+ else if (var.storage == StorageClassRayPayloadKHR)
+ {
+ return ray_tracing_is_khr ? "rayPayloadEXT " : "rayPayloadNV ";
+ }
+ else if (var.storage == StorageClassIncomingRayPayloadKHR)
+ {
+ return ray_tracing_is_khr ? "rayPayloadInEXT " : "rayPayloadInNV ";
+ }
+ else if (var.storage == StorageClassHitAttributeKHR)
+ {
+ return ray_tracing_is_khr ? "hitAttributeEXT " : "hitAttributeNV ";
+ }
+ else if (var.storage == StorageClassCallableDataKHR)
+ {
+ return ray_tracing_is_khr ? "callableDataEXT " : "callableDataNV ";
+ }
+ else if (var.storage == StorageClassIncomingCallableDataKHR)
+ {
+ return ray_tracing_is_khr ? "callableDataInEXT " : "callableDataInNV ";
+ }
+
+ return "";
+}
+
+void CompilerGLSL::emit_flattened_io_block_member(const std::string &basename, const SPIRType &type, const char *qual,
+ const SmallVector<uint32_t> &indices)
+{
+ uint32_t member_type_id = type.self;
+ const SPIRType *member_type = &type;
+ const SPIRType *parent_type = nullptr;
+ auto flattened_name = basename;
+ for (auto &index : indices)
+ {
+ flattened_name += "_";
+ flattened_name += to_member_name(*member_type, index);
+ parent_type = member_type;
+ member_type_id = member_type->member_types[index];
+ member_type = &get<SPIRType>(member_type_id);
+ }
+
+ assert(member_type->basetype != SPIRType::Struct);
+
+ // We're overriding struct member names, so ensure we do so on the primary type.
+ if (parent_type->type_alias)
+ parent_type = &get<SPIRType>(parent_type->type_alias);
+
+ // Sanitize underscores because joining the two identifiers might create more than 1 underscore in a row,
+ // which is not allowed.
+ ParsedIR::sanitize_underscores(flattened_name);
+
+ uint32_t last_index = indices.back();
+
+ // Pass in the varying qualifier here so it will appear in the correct declaration order.
+ // Replace member name while emitting it so it encodes both struct name and member name.
+ auto backup_name = get_member_name(parent_type->self, last_index);
+ auto member_name = to_member_name(*parent_type, last_index);
+ set_member_name(parent_type->self, last_index, flattened_name);
+ emit_struct_member(*parent_type, member_type_id, last_index, qual);
+ // Restore member name.
+ set_member_name(parent_type->self, last_index, member_name);
+}
+
+void CompilerGLSL::emit_flattened_io_block_struct(const std::string &basename, const SPIRType &type, const char *qual,
+ const SmallVector<uint32_t> &indices)
+{
+ auto sub_indices = indices;
+ sub_indices.push_back(0);
+
+ const SPIRType *member_type = &type;
+ for (auto &index : indices)
+ member_type = &get<SPIRType>(member_type->member_types[index]);
+
+ assert(member_type->basetype == SPIRType::Struct);
+
+ if (!member_type->array.empty())
+ SPIRV_CROSS_THROW("Cannot flatten array of structs in I/O blocks.");
+
+ for (uint32_t i = 0; i < uint32_t(member_type->member_types.size()); i++)
+ {
+ sub_indices.back() = i;
+ if (get<SPIRType>(member_type->member_types[i]).basetype == SPIRType::Struct)
+ emit_flattened_io_block_struct(basename, type, qual, sub_indices);
+ else
+ emit_flattened_io_block_member(basename, type, qual, sub_indices);
+ }
+}
+
+void CompilerGLSL::emit_flattened_io_block(const SPIRVariable &var, const char *qual)
+{
+ auto &var_type = get<SPIRType>(var.basetype);
+ if (!var_type.array.empty())
+ SPIRV_CROSS_THROW("Array of varying structs cannot be flattened to legacy-compatible varyings.");
+
+ // Emit flattened types based on the type alias. Normally, we are never supposed to emit
+ // struct declarations for aliased types.
+ auto &type = var_type.type_alias ? get<SPIRType>(var_type.type_alias) : var_type;
+
+ auto old_flags = ir.meta[type.self].decoration.decoration_flags;
+ // Emit the members as if they are part of a block to get all qualifiers.
+ ir.meta[type.self].decoration.decoration_flags.set(DecorationBlock);
+
+ type.member_name_cache.clear();
+
+ SmallVector<uint32_t> member_indices;
+ member_indices.push_back(0);
+ auto basename = to_name(var.self);
+
+ uint32_t i = 0;
+ for (auto &member : type.member_types)
+ {
+ add_member_name(type, i);
+ auto &membertype = get<SPIRType>(member);
+
+ member_indices.back() = i;
+ if (membertype.basetype == SPIRType::Struct)
+ emit_flattened_io_block_struct(basename, type, qual, member_indices);
+ else
+ emit_flattened_io_block_member(basename, type, qual, member_indices);
+ i++;
+ }
+
+ ir.meta[type.self].decoration.decoration_flags = old_flags;
+
+ // Treat this variable as fully flattened from now on.
+ flattened_structs[var.self] = true;
+}
+
+void CompilerGLSL::emit_interface_block(const SPIRVariable &var)
+{
+ auto &type = get<SPIRType>(var.basetype);
+
+ if (var.storage == StorageClassInput && type.basetype == SPIRType::Double &&
+ !options.es && options.version < 410)
+ {
+ require_extension_internal("GL_ARB_vertex_attrib_64bit");
+ }
+
+ // Either make it plain in/out or in/out blocks depending on what shader is doing ...
+ bool block = ir.meta[type.self].decoration.decoration_flags.get(DecorationBlock);
+ const char *qual = to_storage_qualifiers_glsl(var);
+
+ if (block)
+ {
+ // ESSL earlier than 310 and GLSL earlier than 150 did not support
+ // I/O variables which are struct types.
+ // To support this, flatten the struct into separate varyings instead.
+ if (options.force_flattened_io_blocks || (options.es && options.version < 310) ||
+ (!options.es && options.version < 150))
+ {
+ // I/O blocks on ES require version 310 with Android Extension Pack extensions, or core version 320.
+ // On desktop, I/O blocks were introduced with geometry shaders in GL 3.2 (GLSL 150).
+ emit_flattened_io_block(var, qual);
+ }
+ else
+ {
+ if (options.es && options.version < 320)
+ {
+ // Geometry and tessellation extensions imply this extension.
+ if (!has_extension("GL_EXT_geometry_shader") && !has_extension("GL_EXT_tessellation_shader"))
+ require_extension_internal("GL_EXT_shader_io_blocks");
+ }
+
+ // Workaround to make sure we can emit "patch in/out" correctly.
+ fixup_io_block_patch_primitive_qualifiers(var);
+
+ // Block names should never alias.
+ auto block_name = to_name(type.self, false);
+
+ // The namespace for I/O blocks is separate from other variables in GLSL.
+ auto &block_namespace = type.storage == StorageClassInput ? block_input_names : block_output_names;
+
+ // Shaders never use the block by interface name, so we don't
+ // have to track this other than updating name caches.
+ if (block_name.empty() || block_namespace.find(block_name) != end(block_namespace))
+ block_name = get_fallback_name(type.self);
+ else
+ block_namespace.insert(block_name);
+
+ // If for some reason buffer_name is an illegal name, make a final fallback to a workaround name.
+ // This cannot conflict with anything else, so we're safe now.
+ if (block_name.empty())
+ block_name = join("_", get<SPIRType>(var.basetype).self, "_", var.self);
+
+ // Instance names cannot alias block names.
+ resource_names.insert(block_name);
+
+ const char *block_qualifier;
+ if (has_decoration(var.self, DecorationPatch))
+ block_qualifier = "patch ";
+ else if (has_decoration(var.self, DecorationPerPrimitiveEXT))
+ block_qualifier = "perprimitiveEXT ";
+ else
+ block_qualifier = "";
+
+ statement(layout_for_variable(var), block_qualifier, qual, block_name);
+ begin_scope();
+
+ type.member_name_cache.clear();
+
+ uint32_t i = 0;
+ for (auto &member : type.member_types)
+ {
+ add_member_name(type, i);
+ emit_struct_member(type, member, i);
+ i++;
+ }
+
+ add_resource_name(var.self);
+ end_scope_decl(join(to_name(var.self), type_to_array_glsl(type, var.self)));
+ statement("");
+ }
+ }
+ else
+ {
+ // ESSL earlier than 310 and GLSL earlier than 150 did not support
+ // I/O variables which are struct types.
+ // To support this, flatten the struct into separate varyings instead.
+ if (type.basetype == SPIRType::Struct &&
+ (options.force_flattened_io_blocks || (options.es && options.version < 310) ||
+ (!options.es && options.version < 150)))
+ {
+ emit_flattened_io_block(var, qual);
+ }
+ else
+ {
+ add_resource_name(var.self);
+
+ // Legacy GLSL did not support int attributes, we automatically
+ // declare them as float and cast them on load/store
+ SPIRType newtype = type;
+ if (is_legacy() && var.storage == StorageClassInput && type.basetype == SPIRType::Int)
+ newtype.basetype = SPIRType::Float;
+
+ // Tessellation control and evaluation shaders must have either
+ // gl_MaxPatchVertices or unsized arrays for input arrays.
+ // Opt for unsized as it's the more "correct" variant to use.
+ if (type.storage == StorageClassInput && !type.array.empty() &&
+ !has_decoration(var.self, DecorationPatch) &&
+ (get_entry_point().model == ExecutionModelTessellationControl ||
+ get_entry_point().model == ExecutionModelTessellationEvaluation))
+ {
+ newtype.array.back() = 0;
+ newtype.array_size_literal.back() = true;
+ }
+
+ statement(layout_for_variable(var), to_qualifiers_glsl(var.self),
+ variable_decl(newtype, to_name(var.self), var.self), ";");
+ }
+ }
+}
+
+void CompilerGLSL::emit_uniform(const SPIRVariable &var)
+{
+ auto &type = get<SPIRType>(var.basetype);
+ if (type.basetype == SPIRType::Image && type.image.sampled == 2 && type.image.dim != DimSubpassData)
+ {
+ if (!options.es && options.version < 420)
+ require_extension_internal("GL_ARB_shader_image_load_store");
+ else if (options.es && options.version < 310)
+ SPIRV_CROSS_THROW("At least ESSL 3.10 required for shader image load store.");
+ }
+
+ add_resource_name(var.self);
+ statement(layout_for_variable(var), variable_decl(var), ";");
+}
+
+string CompilerGLSL::constant_value_macro_name(uint32_t id)
+{
+ return join("SPIRV_CROSS_CONSTANT_ID_", id);
+}
+
+void CompilerGLSL::emit_specialization_constant_op(const SPIRConstantOp &constant)
+{
+ auto &type = get<SPIRType>(constant.basetype);
+ // This will break. It is bogus and should not be legal.
+ if (type_is_top_level_block(type))
+ return;
+ add_resource_name(constant.self);
+ auto name = to_name(constant.self);
+ statement("const ", variable_decl(type, name), " = ", constant_op_expression(constant), ";");
+}
+
+int CompilerGLSL::get_constant_mapping_to_workgroup_component(const SPIRConstant &c) const
+{
+ auto &entry_point = get_entry_point();
+ int index = -1;
+
+ // Need to redirect specialization constants which are used as WorkGroupSize to the builtin,
+ // since the spec constant declarations are never explicitly declared.
+ if (entry_point.workgroup_size.constant == 0 && entry_point.flags.get(ExecutionModeLocalSizeId))
+ {
+ if (c.self == entry_point.workgroup_size.id_x)
+ index = 0;
+ else if (c.self == entry_point.workgroup_size.id_y)
+ index = 1;
+ else if (c.self == entry_point.workgroup_size.id_z)
+ index = 2;
+ }
+
+ return index;
+}
+
+void CompilerGLSL::emit_constant(const SPIRConstant &constant)
+{
+ auto &type = get<SPIRType>(constant.constant_type);
+
+ // This will break. It is bogus and should not be legal.
+ if (type_is_top_level_block(type))
+ return;
+
+ SpecializationConstant wg_x, wg_y, wg_z;
+ ID workgroup_size_id = get_work_group_size_specialization_constants(wg_x, wg_y, wg_z);
+
+ // This specialization constant is implicitly declared by emitting layout() in;
+ if (constant.self == workgroup_size_id)
+ return;
+
+ // These specialization constants are implicitly declared by emitting layout() in;
+ // In legacy GLSL, we will still need to emit macros for these, so a layout() in; declaration
+ // later can use macro overrides for work group size.
+ bool is_workgroup_size_constant = ConstantID(constant.self) == wg_x.id || ConstantID(constant.self) == wg_y.id ||
+ ConstantID(constant.self) == wg_z.id;
+
+ if (options.vulkan_semantics && is_workgroup_size_constant)
+ {
+ // Vulkan GLSL does not need to declare workgroup spec constants explicitly, it is handled in layout().
+ return;
+ }
+ else if (!options.vulkan_semantics && is_workgroup_size_constant &&
+ !has_decoration(constant.self, DecorationSpecId))
+ {
+ // Only bother declaring a workgroup size if it is actually a specialization constant, because we need macros.
+ return;
+ }
+
+ add_resource_name(constant.self);
+ auto name = to_name(constant.self);
+
+ // Only scalars have constant IDs.
+ if (has_decoration(constant.self, DecorationSpecId))
+ {
+ if (options.vulkan_semantics)
+ {
+ statement("layout(constant_id = ", get_decoration(constant.self, DecorationSpecId), ") const ",
+ variable_decl(type, name), " = ", constant_expression(constant), ";");
+ }
+ else
+ {
+ const string &macro_name = constant.specialization_constant_macro_name;
+ statement("#ifndef ", macro_name);
+ statement("#define ", macro_name, " ", constant_expression(constant));
+ statement("#endif");
+
+ // For workgroup size constants, only emit the macros.
+ if (!is_workgroup_size_constant)
+ statement("const ", variable_decl(type, name), " = ", macro_name, ";");
+ }
+ }
+ else
+ {
+ statement("const ", variable_decl(type, name), " = ", constant_expression(constant), ";");
+ }
+}
+
+void CompilerGLSL::emit_entry_point_declarations()
+{
+}
+
+void CompilerGLSL::replace_illegal_names(const unordered_set<string> &keywords)
+{
+ ir.for_each_typed_id<SPIRVariable>([&](uint32_t, const SPIRVariable &var) {
+ if (is_hidden_variable(var))
+ return;
+
+ auto *meta = ir.find_meta(var.self);
+ if (!meta)
+ return;
+
+ auto &m = meta->decoration;
+ if (keywords.find(m.alias) != end(keywords))
+ m.alias = join("_", m.alias);
+ });
+
+ ir.for_each_typed_id<SPIRFunction>([&](uint32_t, const SPIRFunction &func) {
+ auto *meta = ir.find_meta(func.self);
+ if (!meta)
+ return;
+
+ auto &m = meta->decoration;
+ if (keywords.find(m.alias) != end(keywords))
+ m.alias = join("_", m.alias);
+ });
+
+ ir.for_each_typed_id<SPIRType>([&](uint32_t, const SPIRType &type) {
+ auto *meta = ir.find_meta(type.self);
+ if (!meta)
+ return;
+
+ auto &m = meta->decoration;
+ if (keywords.find(m.alias) != end(keywords))
+ m.alias = join("_", m.alias);
+
+ for (auto &memb : meta->members)
+ if (keywords.find(memb.alias) != end(keywords))
+ memb.alias = join("_", memb.alias);
+ });
+}
+
+void CompilerGLSL::replace_illegal_names()
+{
+ // clang-format off
+ static const unordered_set<string> keywords = {
+ "abs", "acos", "acosh", "all", "any", "asin", "asinh", "atan", "atanh",
+ "atomicAdd", "atomicCompSwap", "atomicCounter", "atomicCounterDecrement", "atomicCounterIncrement",
+ "atomicExchange", "atomicMax", "atomicMin", "atomicOr", "atomicXor",
+ "bitCount", "bitfieldExtract", "bitfieldInsert", "bitfieldReverse",
+ "ceil", "cos", "cosh", "cross", "degrees",
+ "dFdx", "dFdxCoarse", "dFdxFine",
+ "dFdy", "dFdyCoarse", "dFdyFine",
+ "distance", "dot", "EmitStreamVertex", "EmitVertex", "EndPrimitive", "EndStreamPrimitive", "equal", "exp", "exp2",
+ "faceforward", "findLSB", "findMSB", "float16BitsToInt16", "float16BitsToUint16", "floatBitsToInt", "floatBitsToUint", "floor", "fma", "fract",
+ "frexp", "fwidth", "fwidthCoarse", "fwidthFine",
+ "greaterThan", "greaterThanEqual", "groupMemoryBarrier",
+ "imageAtomicAdd", "imageAtomicAnd", "imageAtomicCompSwap", "imageAtomicExchange", "imageAtomicMax", "imageAtomicMin", "imageAtomicOr", "imageAtomicXor",
+ "imageLoad", "imageSamples", "imageSize", "imageStore", "imulExtended", "int16BitsToFloat16", "intBitsToFloat", "interpolateAtOffset", "interpolateAtCentroid", "interpolateAtSample",
+ "inverse", "inversesqrt", "isinf", "isnan", "ldexp", "length", "lessThan", "lessThanEqual", "log", "log2",
+ "matrixCompMult", "max", "memoryBarrier", "memoryBarrierAtomicCounter", "memoryBarrierBuffer", "memoryBarrierImage", "memoryBarrierShared",
+ "min", "mix", "mod", "modf", "noise", "noise1", "noise2", "noise3", "noise4", "normalize", "not", "notEqual",
+ "outerProduct", "packDouble2x32", "packHalf2x16", "packInt2x16", "packInt4x16", "packSnorm2x16", "packSnorm4x8",
+ "packUint2x16", "packUint4x16", "packUnorm2x16", "packUnorm4x8", "pow",
+ "radians", "reflect", "refract", "round", "roundEven", "sign", "sin", "sinh", "smoothstep", "sqrt", "step",
+ "tan", "tanh", "texelFetch", "texelFetchOffset", "texture", "textureGather", "textureGatherOffset", "textureGatherOffsets",
+ "textureGrad", "textureGradOffset", "textureLod", "textureLodOffset", "textureOffset", "textureProj", "textureProjGrad",
+ "textureProjGradOffset", "textureProjLod", "textureProjLodOffset", "textureProjOffset", "textureQueryLevels", "textureQueryLod", "textureSamples", "textureSize",
+ "transpose", "trunc", "uaddCarry", "uint16BitsToFloat16", "uintBitsToFloat", "umulExtended", "unpackDouble2x32", "unpackHalf2x16", "unpackInt2x16", "unpackInt4x16",
+ "unpackSnorm2x16", "unpackSnorm4x8", "unpackUint2x16", "unpackUint4x16", "unpackUnorm2x16", "unpackUnorm4x8", "usubBorrow",
+
+ "active", "asm", "atomic_uint", "attribute", "bool", "break", "buffer",
+ "bvec2", "bvec3", "bvec4", "case", "cast", "centroid", "class", "coherent", "common", "const", "continue", "default", "discard",
+ "dmat2", "dmat2x2", "dmat2x3", "dmat2x4", "dmat3", "dmat3x2", "dmat3x3", "dmat3x4", "dmat4", "dmat4x2", "dmat4x3", "dmat4x4",
+ "do", "double", "dvec2", "dvec3", "dvec4", "else", "enum", "extern", "external", "false", "filter", "fixed", "flat", "float",
+ "for", "fvec2", "fvec3", "fvec4", "goto", "half", "highp", "hvec2", "hvec3", "hvec4", "if", "iimage1D", "iimage1DArray",
+ "iimage2D", "iimage2DArray", "iimage2DMS", "iimage2DMSArray", "iimage2DRect", "iimage3D", "iimageBuffer", "iimageCube",
+ "iimageCubeArray", "image1D", "image1DArray", "image2D", "image2DArray", "image2DMS", "image2DMSArray", "image2DRect",
+ "image3D", "imageBuffer", "imageCube", "imageCubeArray", "in", "inline", "inout", "input", "int", "interface", "invariant",
+ "isampler1D", "isampler1DArray", "isampler2D", "isampler2DArray", "isampler2DMS", "isampler2DMSArray", "isampler2DRect",
+ "isampler3D", "isamplerBuffer", "isamplerCube", "isamplerCubeArray", "ivec2", "ivec3", "ivec4", "layout", "long", "lowp",
+ "mat2", "mat2x2", "mat2x3", "mat2x4", "mat3", "mat3x2", "mat3x3", "mat3x4", "mat4", "mat4x2", "mat4x3", "mat4x4", "mediump",
+ "namespace", "noinline", "noperspective", "out", "output", "packed", "partition", "patch", "precise", "precision", "public", "readonly",
+ "resource", "restrict", "return", "sample", "sampler1D", "sampler1DArray", "sampler1DArrayShadow",
+ "sampler1DShadow", "sampler2D", "sampler2DArray", "sampler2DArrayShadow", "sampler2DMS", "sampler2DMSArray",
+ "sampler2DRect", "sampler2DRectShadow", "sampler2DShadow", "sampler3D", "sampler3DRect", "samplerBuffer",
+ "samplerCube", "samplerCubeArray", "samplerCubeArrayShadow", "samplerCubeShadow", "shared", "short", "sizeof", "smooth", "static",
+ "struct", "subroutine", "superp", "switch", "template", "this", "true", "typedef", "uimage1D", "uimage1DArray", "uimage2D",
+ "uimage2DArray", "uimage2DMS", "uimage2DMSArray", "uimage2DRect", "uimage3D", "uimageBuffer", "uimageCube",
+ "uimageCubeArray", "uint", "uniform", "union", "unsigned", "usampler1D", "usampler1DArray", "usampler2D", "usampler2DArray",
+ "usampler2DMS", "usampler2DMSArray", "usampler2DRect", "usampler3D", "usamplerBuffer", "usamplerCube",
+ "usamplerCubeArray", "using", "uvec2", "uvec3", "uvec4", "varying", "vec2", "vec3", "vec4", "void", "volatile",
+ "while", "writeonly",
+ };
+ // clang-format on
+
+ replace_illegal_names(keywords);
+}
+
+void CompilerGLSL::replace_fragment_output(SPIRVariable &var)
+{
+ auto &m = ir.meta[var.self].decoration;
+ uint32_t location = 0;
+ if (m.decoration_flags.get(DecorationLocation))
+ location = m.location;
+
+ // If our variable is arrayed, we must not emit the array part of this as the SPIR-V will
+ // do the access chain part of this for us.
+ auto &type = get<SPIRType>(var.basetype);
+
+ if (type.array.empty())
+ {
+ // Redirect the write to a specific render target in legacy GLSL.
+ m.alias = join("gl_FragData[", location, "]");
+
+ if (is_legacy_es() && location != 0)
+ require_extension_internal("GL_EXT_draw_buffers");
+ }
+ else if (type.array.size() == 1)
+ {
+ // If location is non-zero, we probably have to add an offset.
+ // This gets really tricky since we'd have to inject an offset in the access chain.
+ // FIXME: This seems like an extremely odd-ball case, so it's probably fine to leave it like this for now.
+ m.alias = "gl_FragData";
+ if (location != 0)
+ SPIRV_CROSS_THROW("Arrayed output variable used, but location is not 0. "
+ "This is unimplemented in SPIRV-Cross.");
+
+ if (is_legacy_es())
+ require_extension_internal("GL_EXT_draw_buffers");
+ }
+ else
+ SPIRV_CROSS_THROW("Array-of-array output variable used. This cannot be implemented in legacy GLSL.");
+
+ var.compat_builtin = true; // We don't want to declare this variable, but use the name as-is.
+}
+
+void CompilerGLSL::replace_fragment_outputs()
+{
+ ir.for_each_typed_id<SPIRVariable>([&](uint32_t, SPIRVariable &var) {
+ auto &type = this->get<SPIRType>(var.basetype);
+
+ if (!is_builtin_variable(var) && !var.remapped_variable && type.pointer && var.storage == StorageClassOutput)
+ replace_fragment_output(var);
+ });
+}
+
+string CompilerGLSL::remap_swizzle(const SPIRType &out_type, uint32_t input_components, const string &expr)
+{
+ if (out_type.vecsize == input_components)
+ return expr;
+ else if (input_components == 1 && !backend.can_swizzle_scalar)
+ return join(type_to_glsl(out_type), "(", expr, ")");
+ else
+ {
+ // FIXME: This will not work with packed expressions.
+ auto e = enclose_expression(expr) + ".";
+ // Just clamp the swizzle index if we have more outputs than inputs.
+ for (uint32_t c = 0; c < out_type.vecsize; c++)
+ e += index_to_swizzle(min(c, input_components - 1));
+ if (backend.swizzle_is_function && out_type.vecsize > 1)
+ e += "()";
+
+ remove_duplicate_swizzle(e);
+ return e;
+ }
+}
+
+void CompilerGLSL::emit_pls()
+{
+ auto &execution = get_entry_point();
+ if (execution.model != ExecutionModelFragment)
+ SPIRV_CROSS_THROW("Pixel local storage only supported in fragment shaders.");
+
+ if (!options.es)
+ SPIRV_CROSS_THROW("Pixel local storage only supported in OpenGL ES.");
+
+ if (options.version < 300)
+ SPIRV_CROSS_THROW("Pixel local storage only supported in ESSL 3.0 and above.");
+
+ if (!pls_inputs.empty())
+ {
+ statement("__pixel_local_inEXT _PLSIn");
+ begin_scope();
+ for (auto &input : pls_inputs)
+ statement(pls_decl(input), ";");
+ end_scope_decl();
+ statement("");
+ }
+
+ if (!pls_outputs.empty())
+ {
+ statement("__pixel_local_outEXT _PLSOut");
+ begin_scope();
+ for (auto &output : pls_outputs)
+ statement(pls_decl(output), ";");
+ end_scope_decl();
+ statement("");
+ }
+}
+
+void CompilerGLSL::fixup_image_load_store_access()
+{
+ if (!options.enable_storage_image_qualifier_deduction)
+ return;
+
+ ir.for_each_typed_id<SPIRVariable>([&](uint32_t var, const SPIRVariable &) {
+ auto &vartype = expression_type(var);
+ if (vartype.basetype == SPIRType::Image && vartype.image.sampled == 2)
+ {
+ // Very old glslangValidator and HLSL compilers do not emit required qualifiers here.
+ // Solve this by making the image access as restricted as possible and loosen up if we need to.
+ // If any no-read/no-write flags are actually set, assume that the compiler knows what it's doing.
+
+ if (!has_decoration(var, DecorationNonWritable) && !has_decoration(var, DecorationNonReadable))
+ {
+ set_decoration(var, DecorationNonWritable);
+ set_decoration(var, DecorationNonReadable);
+ }
+ }
+ });
+}
+
+static bool is_block_builtin(BuiltIn builtin)
+{
+ return builtin == BuiltInPosition || builtin == BuiltInPointSize || builtin == BuiltInClipDistance ||
+ builtin == BuiltInCullDistance;
+}
+
+bool CompilerGLSL::should_force_emit_builtin_block(StorageClass storage)
+{
+ // If the builtin block uses XFB, we need to force explicit redeclaration of the builtin block.
+
+ if (storage != StorageClassOutput)
+ return false;
+ bool should_force = false;
+
+ ir.for_each_typed_id<SPIRVariable>([&](uint32_t, SPIRVariable &var) {
+ if (should_force)
+ return;
+
+ auto &type = this->get<SPIRType>(var.basetype);
+ bool block = has_decoration(type.self, DecorationBlock);
+ if (var.storage == storage && block && is_builtin_variable(var))
+ {
+ uint32_t member_count = uint32_t(type.member_types.size());
+ for (uint32_t i = 0; i < member_count; i++)
+ {
+ if (has_member_decoration(type.self, i, DecorationBuiltIn) &&
+ is_block_builtin(BuiltIn(get_member_decoration(type.self, i, DecorationBuiltIn))) &&
+ has_member_decoration(type.self, i, DecorationOffset))
+ {
+ should_force = true;
+ }
+ }
+ }
+ else if (var.storage == storage && !block && is_builtin_variable(var))
+ {
+ if (is_block_builtin(BuiltIn(get_decoration(type.self, DecorationBuiltIn))) &&
+ has_decoration(var.self, DecorationOffset))
+ {
+ should_force = true;
+ }
+ }
+ });
+
+ // If we're declaring clip/cull planes with control points we need to force block declaration.
+ if ((get_execution_model() == ExecutionModelTessellationControl ||
+ get_execution_model() == ExecutionModelMeshEXT) &&
+ (clip_distance_count || cull_distance_count))
+ {
+ should_force = true;
+ }
+
+ // Either glslang bug or oversight, but global invariant position does not work in mesh shaders.
+ if (get_execution_model() == ExecutionModelMeshEXT && position_invariant)
+ should_force = true;
+
+ return should_force;
+}
+
+void CompilerGLSL::fixup_implicit_builtin_block_names(ExecutionModel model)
+{
+ ir.for_each_typed_id<SPIRVariable>([&](uint32_t, SPIRVariable &var) {
+ auto &type = this->get<SPIRType>(var.basetype);
+ bool block = has_decoration(type.self, DecorationBlock);
+ if ((var.storage == StorageClassOutput || var.storage == StorageClassInput) && block &&
+ is_builtin_variable(var))
+ {
+ if (model != ExecutionModelMeshEXT)
+ {
+ // Make sure the array has a supported name in the code.
+ if (var.storage == StorageClassOutput)
+ set_name(var.self, "gl_out");
+ else if (var.storage == StorageClassInput)
+ set_name(var.self, "gl_in");
+ }
+ else
+ {
+ auto flags = get_buffer_block_flags(var.self);
+ if (flags.get(DecorationPerPrimitiveEXT))
+ {
+ set_name(var.self, "gl_MeshPrimitivesEXT");
+ set_name(type.self, "gl_MeshPerPrimitiveEXT");
+ }
+ else
+ {
+ set_name(var.self, "gl_MeshVerticesEXT");
+ set_name(type.self, "gl_MeshPerVertexEXT");
+ }
+ }
+ }
+
+ if (model == ExecutionModelMeshEXT && var.storage == StorageClassOutput && !block)
+ {
+ auto *m = ir.find_meta(var.self);
+ if (m && m->decoration.builtin)
+ {
+ auto builtin_type = m->decoration.builtin_type;
+ if (builtin_type == BuiltInPrimitivePointIndicesEXT)
+ set_name(var.self, "gl_PrimitivePointIndicesEXT");
+ else if (builtin_type == BuiltInPrimitiveLineIndicesEXT)
+ set_name(var.self, "gl_PrimitiveLineIndicesEXT");
+ else if (builtin_type == BuiltInPrimitiveTriangleIndicesEXT)
+ set_name(var.self, "gl_PrimitiveTriangleIndicesEXT");
+ }
+ }
+ });
+}
+
+void CompilerGLSL::emit_declared_builtin_block(StorageClass storage, ExecutionModel model)
+{
+ Bitset emitted_builtins;
+ Bitset global_builtins;
+ const SPIRVariable *block_var = nullptr;
+ bool emitted_block = false;
+
+ // Need to use declared size in the type.
+ // These variables might have been declared, but not statically used, so we haven't deduced their size yet.
+ uint32_t cull_distance_size = 0;
+ uint32_t clip_distance_size = 0;
+
+ bool have_xfb_buffer_stride = false;
+ bool have_geom_stream = false;
+ bool have_any_xfb_offset = false;
+ uint32_t xfb_stride = 0, xfb_buffer = 0, geom_stream = 0;
+ std::unordered_map<uint32_t, uint32_t> builtin_xfb_offsets;
+
+ const auto builtin_is_per_vertex_set = [](BuiltIn builtin) -> bool {
+ return builtin == BuiltInPosition || builtin == BuiltInPointSize ||
+ builtin == BuiltInClipDistance || builtin == BuiltInCullDistance;
+ };
+
+ ir.for_each_typed_id<SPIRVariable>([&](uint32_t, SPIRVariable &var) {
+ auto &type = this->get<SPIRType>(var.basetype);
+ bool block = has_decoration(type.self, DecorationBlock);
+ Bitset builtins;
+
+ if (var.storage == storage && block && is_builtin_variable(var))
+ {
+ uint32_t index = 0;
+ for (auto &m : ir.meta[type.self].members)
+ {
+ if (m.builtin && builtin_is_per_vertex_set(m.builtin_type))
+ {
+ builtins.set(m.builtin_type);
+ if (m.builtin_type == BuiltInCullDistance)
+ cull_distance_size = to_array_size_literal(this->get<SPIRType>(type.member_types[index]));
+ else if (m.builtin_type == BuiltInClipDistance)
+ clip_distance_size = to_array_size_literal(this->get<SPIRType>(type.member_types[index]));
+
+ if (is_block_builtin(m.builtin_type) && m.decoration_flags.get(DecorationOffset))
+ {
+ have_any_xfb_offset = true;
+ builtin_xfb_offsets[m.builtin_type] = m.offset;
+ }
+
+ if (is_block_builtin(m.builtin_type) && m.decoration_flags.get(DecorationStream))
+ {
+ uint32_t stream = m.stream;
+ if (have_geom_stream && geom_stream != stream)
+ SPIRV_CROSS_THROW("IO block member Stream mismatch.");
+ have_geom_stream = true;
+ geom_stream = stream;
+ }
+ }
+ index++;
+ }
+
+ if (storage == StorageClassOutput && has_decoration(var.self, DecorationXfbBuffer) &&
+ has_decoration(var.self, DecorationXfbStride))
+ {
+ uint32_t buffer_index = get_decoration(var.self, DecorationXfbBuffer);
+ uint32_t stride = get_decoration(var.self, DecorationXfbStride);
+ if (have_xfb_buffer_stride && buffer_index != xfb_buffer)
+ SPIRV_CROSS_THROW("IO block member XfbBuffer mismatch.");
+ if (have_xfb_buffer_stride && stride != xfb_stride)
+ SPIRV_CROSS_THROW("IO block member XfbBuffer mismatch.");
+ have_xfb_buffer_stride = true;
+ xfb_buffer = buffer_index;
+ xfb_stride = stride;
+ }
+
+ if (storage == StorageClassOutput && has_decoration(var.self, DecorationStream))
+ {
+ uint32_t stream = get_decoration(var.self, DecorationStream);
+ if (have_geom_stream && geom_stream != stream)
+ SPIRV_CROSS_THROW("IO block member Stream mismatch.");
+ have_geom_stream = true;
+ geom_stream = stream;
+ }
+ }
+ else if (var.storage == storage && !block && is_builtin_variable(var))
+ {
+ // While we're at it, collect all declared global builtins (HLSL mostly ...).
+ auto &m = ir.meta[var.self].decoration;
+ if (m.builtin && builtin_is_per_vertex_set(m.builtin_type))
+ {
+ // For mesh/tesc output, Clip/Cull is an array-of-array. Look at innermost array type
+ // for correct result.
+ global_builtins.set(m.builtin_type);
+ if (m.builtin_type == BuiltInCullDistance)
+ cull_distance_size = to_array_size_literal(type, 0);
+ else if (m.builtin_type == BuiltInClipDistance)
+ clip_distance_size = to_array_size_literal(type, 0);
+
+ if (is_block_builtin(m.builtin_type) && m.decoration_flags.get(DecorationXfbStride) &&
+ m.decoration_flags.get(DecorationXfbBuffer) && m.decoration_flags.get(DecorationOffset))
+ {
+ have_any_xfb_offset = true;
+ builtin_xfb_offsets[m.builtin_type] = m.offset;
+ uint32_t buffer_index = m.xfb_buffer;
+ uint32_t stride = m.xfb_stride;
+ if (have_xfb_buffer_stride && buffer_index != xfb_buffer)
+ SPIRV_CROSS_THROW("IO block member XfbBuffer mismatch.");
+ if (have_xfb_buffer_stride && stride != xfb_stride)
+ SPIRV_CROSS_THROW("IO block member XfbBuffer mismatch.");
+ have_xfb_buffer_stride = true;
+ xfb_buffer = buffer_index;
+ xfb_stride = stride;
+ }
+
+ if (is_block_builtin(m.builtin_type) && m.decoration_flags.get(DecorationStream))
+ {
+ uint32_t stream = get_decoration(var.self, DecorationStream);
+ if (have_geom_stream && geom_stream != stream)
+ SPIRV_CROSS_THROW("IO block member Stream mismatch.");
+ have_geom_stream = true;
+ geom_stream = stream;
+ }
+ }
+ }
+
+ if (builtins.empty())
+ return;
+
+ if (emitted_block)
+ SPIRV_CROSS_THROW("Cannot use more than one builtin I/O block.");
+
+ emitted_builtins = builtins;
+ emitted_block = true;
+ block_var = &var;
+ });
+
+ global_builtins =
+ Bitset(global_builtins.get_lower() & ((1ull << BuiltInPosition) | (1ull << BuiltInPointSize) |
+ (1ull << BuiltInClipDistance) | (1ull << BuiltInCullDistance)));
+
+ // Try to collect all other declared builtins.
+ if (!emitted_block)
+ emitted_builtins = global_builtins;
+
+ // Can't declare an empty interface block.
+ if (emitted_builtins.empty())
+ return;
+
+ if (storage == StorageClassOutput)
+ {
+ SmallVector<string> attr;
+ if (have_xfb_buffer_stride && have_any_xfb_offset)
+ {
+ if (!options.es)
+ {
+ if (options.version < 440 && options.version >= 140)
+ require_extension_internal("GL_ARB_enhanced_layouts");
+ else if (options.version < 140)
+ SPIRV_CROSS_THROW("Component decoration is not supported in targets below GLSL 1.40.");
+ if (!options.es && options.version < 440)
+ require_extension_internal("GL_ARB_enhanced_layouts");
+ }
+ else if (options.es)
+ SPIRV_CROSS_THROW("Need GL_ARB_enhanced_layouts for xfb_stride or xfb_buffer.");
+ attr.push_back(join("xfb_buffer = ", xfb_buffer, ", xfb_stride = ", xfb_stride));
+ }
+
+ if (have_geom_stream)
+ {
+ if (get_execution_model() != ExecutionModelGeometry)
+ SPIRV_CROSS_THROW("Geometry streams can only be used in geometry shaders.");
+ if (options.es)
+ SPIRV_CROSS_THROW("Multiple geometry streams not supported in ESSL.");
+ if (options.version < 400)
+ require_extension_internal("GL_ARB_transform_feedback3");
+ attr.push_back(join("stream = ", geom_stream));
+ }
+
+ if (model == ExecutionModelMeshEXT)
+ statement("out gl_MeshPerVertexEXT");
+ else if (!attr.empty())
+ statement("layout(", merge(attr), ") out gl_PerVertex");
+ else
+ statement("out gl_PerVertex");
+ }
+ else
+ {
+ // If we have passthrough, there is no way PerVertex cannot be passthrough.
+ if (get_entry_point().geometry_passthrough)
+ statement("layout(passthrough) in gl_PerVertex");
+ else
+ statement("in gl_PerVertex");
+ }
+
+ begin_scope();
+ if (emitted_builtins.get(BuiltInPosition))
+ {
+ auto itr = builtin_xfb_offsets.find(BuiltInPosition);
+ if (itr != end(builtin_xfb_offsets))
+ statement("layout(xfb_offset = ", itr->second, ") vec4 gl_Position;");
+ else if (position_invariant)
+ statement("invariant vec4 gl_Position;");
+ else
+ statement("vec4 gl_Position;");
+ }
+
+ if (emitted_builtins.get(BuiltInPointSize))
+ {
+ auto itr = builtin_xfb_offsets.find(BuiltInPointSize);
+ if (itr != end(builtin_xfb_offsets))
+ statement("layout(xfb_offset = ", itr->second, ") float gl_PointSize;");
+ else
+ statement("float gl_PointSize;");
+ }
+
+ if (emitted_builtins.get(BuiltInClipDistance))
+ {
+ auto itr = builtin_xfb_offsets.find(BuiltInClipDistance);
+ if (itr != end(builtin_xfb_offsets))
+ statement("layout(xfb_offset = ", itr->second, ") float gl_ClipDistance[", clip_distance_size, "];");
+ else
+ statement("float gl_ClipDistance[", clip_distance_size, "];");
+ }
+
+ if (emitted_builtins.get(BuiltInCullDistance))
+ {
+ auto itr = builtin_xfb_offsets.find(BuiltInCullDistance);
+ if (itr != end(builtin_xfb_offsets))
+ statement("layout(xfb_offset = ", itr->second, ") float gl_CullDistance[", cull_distance_size, "];");
+ else
+ statement("float gl_CullDistance[", cull_distance_size, "];");
+ }
+
+ bool builtin_array = model == ExecutionModelTessellationControl ||
+ (model == ExecutionModelMeshEXT && storage == StorageClassOutput) ||
+ (model == ExecutionModelGeometry && storage == StorageClassInput) ||
+ (model == ExecutionModelTessellationEvaluation && storage == StorageClassInput);
+
+ if (builtin_array)
+ {
+ const char *instance_name;
+ if (model == ExecutionModelMeshEXT)
+ instance_name = "gl_MeshVerticesEXT"; // Per primitive is never synthesized.
+ else
+ instance_name = storage == StorageClassInput ? "gl_in" : "gl_out";
+
+ if (model == ExecutionModelTessellationControl && storage == StorageClassOutput)
+ end_scope_decl(join(instance_name, "[", get_entry_point().output_vertices, "]"));
+ else
+ end_scope_decl(join(instance_name, "[]"));
+ }
+ else
+ end_scope_decl();
+ statement("");
+}
+
+bool CompilerGLSL::variable_is_lut(const SPIRVariable &var) const
+{
+ bool statically_assigned = var.statically_assigned && var.static_expression != ID(0) && var.remapped_variable;
+
+ if (statically_assigned)
+ {
+ auto *constant = maybe_get<SPIRConstant>(var.static_expression);
+ if (constant && constant->is_used_as_lut)
+ return true;
+ }
+
+ return false;
+}
+
+void CompilerGLSL::emit_resources()
+{
+ auto &execution = get_entry_point();
+
+ replace_illegal_names();
+
+ // Legacy GL uses gl_FragData[], redeclare all fragment outputs
+ // with builtins.
+ if (execution.model == ExecutionModelFragment && is_legacy())
+ replace_fragment_outputs();
+
+ // Emit PLS blocks if we have such variables.
+ if (!pls_inputs.empty() || !pls_outputs.empty())
+ emit_pls();
+
+ switch (execution.model)
+ {
+ case ExecutionModelGeometry:
+ case ExecutionModelTessellationControl:
+ case ExecutionModelTessellationEvaluation:
+ case ExecutionModelMeshEXT:
+ fixup_implicit_builtin_block_names(execution.model);
+ break;
+
+ default:
+ break;
+ }
+
+ bool global_invariant_position = position_invariant && (options.es || options.version >= 120);
+
+ // Emit custom gl_PerVertex for SSO compatibility.
+ if (options.separate_shader_objects && !options.es && execution.model != ExecutionModelFragment)
+ {
+ switch (execution.model)
+ {
+ case ExecutionModelGeometry:
+ case ExecutionModelTessellationControl:
+ case ExecutionModelTessellationEvaluation:
+ emit_declared_builtin_block(StorageClassInput, execution.model);
+ emit_declared_builtin_block(StorageClassOutput, execution.model);
+ global_invariant_position = false;
+ break;
+
+ case ExecutionModelVertex:
+ case ExecutionModelMeshEXT:
+ emit_declared_builtin_block(StorageClassOutput, execution.model);
+ global_invariant_position = false;
+ break;
+
+ default:
+ break;
+ }
+ }
+ else if (should_force_emit_builtin_block(StorageClassOutput))
+ {
+ emit_declared_builtin_block(StorageClassOutput, execution.model);
+ global_invariant_position = false;
+ }
+ else if (execution.geometry_passthrough)
+ {
+ // Need to declare gl_in with Passthrough.
+ // If we're doing passthrough, we cannot emit an output block, so the output block test above will never pass.
+ emit_declared_builtin_block(StorageClassInput, execution.model);
+ }
+ else
+ {
+ // Need to redeclare clip/cull distance with explicit size to use them.
+ // SPIR-V mandates these builtins have a size declared.
+ const char *storage = execution.model == ExecutionModelFragment ? "in" : "out";
+ if (clip_distance_count != 0)
+ statement(storage, " float gl_ClipDistance[", clip_distance_count, "];");
+ if (cull_distance_count != 0)
+ statement(storage, " float gl_CullDistance[", cull_distance_count, "];");
+ if (clip_distance_count != 0 || cull_distance_count != 0)
+ statement("");
+ }
+
+ if (global_invariant_position)
+ {
+ statement("invariant gl_Position;");
+ statement("");
+ }
+
+ bool emitted = false;
+
+ // If emitted Vulkan GLSL,
+ // emit specialization constants as actual floats,
+ // spec op expressions will redirect to the constant name.
+ //
+ {
+ auto loop_lock = ir.create_loop_hard_lock();
+ for (auto &id_ : ir.ids_for_constant_undef_or_type)
+ {
+ auto &id = ir.ids[id_];
+
+ // Skip declaring any bogus constants or undefs which use block types.
+ // We don't declare block types directly, so this will never work.
+ // Should not be legal SPIR-V, so this is considered a workaround.
+
+ if (id.get_type() == TypeConstant)
+ {
+ auto &c = id.get<SPIRConstant>();
+
+ bool needs_declaration = c.specialization || c.is_used_as_lut;
+
+ if (needs_declaration)
+ {
+ if (!options.vulkan_semantics && c.specialization)
+ {
+ c.specialization_constant_macro_name =
+ constant_value_macro_name(get_decoration(c.self, DecorationSpecId));
+ }
+ emit_constant(c);
+ emitted = true;
+ }
+ }
+ else if (id.get_type() == TypeConstantOp)
+ {
+ emit_specialization_constant_op(id.get<SPIRConstantOp>());
+ emitted = true;
+ }
+ else if (id.get_type() == TypeType)
+ {
+ auto *type = &id.get<SPIRType>();
+
+ bool is_natural_struct = type->basetype == SPIRType::Struct && type->array.empty() && !type->pointer &&
+ (!has_decoration(type->self, DecorationBlock) &&
+ !has_decoration(type->self, DecorationBufferBlock));
+
+ // Special case, ray payload and hit attribute blocks are not really blocks, just regular structs.
+ if (type->basetype == SPIRType::Struct && type->pointer &&
+ has_decoration(type->self, DecorationBlock) &&
+ (type->storage == StorageClassRayPayloadKHR || type->storage == StorageClassIncomingRayPayloadKHR ||
+ type->storage == StorageClassHitAttributeKHR))
+ {
+ type = &get<SPIRType>(type->parent_type);
+ is_natural_struct = true;
+ }
+
+ if (is_natural_struct)
+ {
+ if (emitted)
+ statement("");
+ emitted = false;
+
+ emit_struct(*type);
+ }
+ }
+ else if (id.get_type() == TypeUndef)
+ {
+ auto &undef = id.get<SPIRUndef>();
+ auto &type = this->get<SPIRType>(undef.basetype);
+ // OpUndef can be void for some reason ...
+ if (type.basetype == SPIRType::Void)
+ return;
+
+ // This will break. It is bogus and should not be legal.
+ if (type_is_top_level_block(type))
+ return;
+
+ string initializer;
+ if (options.force_zero_initialized_variables && type_can_zero_initialize(type))
+ initializer = join(" = ", to_zero_initialized_expression(undef.basetype));
+
+ // FIXME: If used in a constant, we must declare it as one.
+ statement(variable_decl(type, to_name(undef.self), undef.self), initializer, ";");
+ emitted = true;
+ }
+ }
+ }
+
+ if (emitted)
+ statement("");
+
+ // If we needed to declare work group size late, check here.
+ // If the work group size depends on a specialization constant, we need to declare the layout() block
+ // after constants (and their macros) have been declared.
+ if (execution.model == ExecutionModelGLCompute && !options.vulkan_semantics &&
+ (execution.workgroup_size.constant != 0 || execution.flags.get(ExecutionModeLocalSizeId)))
+ {
+ SpecializationConstant wg_x, wg_y, wg_z;
+ get_work_group_size_specialization_constants(wg_x, wg_y, wg_z);
+
+ if ((wg_x.id != ConstantID(0)) || (wg_y.id != ConstantID(0)) || (wg_z.id != ConstantID(0)))
+ {
+ SmallVector<string> inputs;
+ build_workgroup_size(inputs, wg_x, wg_y, wg_z);
+ statement("layout(", merge(inputs), ") in;");
+ statement("");
+ }
+ }
+
+ emitted = false;
+
+ if (ir.addressing_model == AddressingModelPhysicalStorageBuffer64EXT)
+ {
+ // Output buffer reference blocks.
+ // Do this in two stages, one with forward declaration,
+ // and one without. Buffer reference blocks can reference themselves
+ // to support things like linked lists.
+ ir.for_each_typed_id<SPIRType>([&](uint32_t id, SPIRType &type) {
+ if (is_physical_pointer(type))
+ {
+ bool emit_type = true;
+ if (!is_physical_pointer_to_buffer_block(type))
+ {
+ // Only forward-declare if we intend to emit it in the non_block_pointer types.
+ // Otherwise, these are just "benign" pointer types that exist as a result of access chains.
+ emit_type = std::find(physical_storage_non_block_pointer_types.begin(),
+ physical_storage_non_block_pointer_types.end(),
+ id) != physical_storage_non_block_pointer_types.end();
+ }
+
+ if (emit_type)
+ emit_buffer_reference_block(id, true);
+ }
+ });
+
+ for (auto type : physical_storage_non_block_pointer_types)
+ emit_buffer_reference_block(type, false);
+
+ ir.for_each_typed_id<SPIRType>([&](uint32_t id, SPIRType &type) {
+ if (is_physical_pointer_to_buffer_block(type))
+ emit_buffer_reference_block(id, false);
+ });
+ }
+
+ // Output UBOs and SSBOs
+ ir.for_each_typed_id<SPIRVariable>([&](uint32_t, SPIRVariable &var) {
+ auto &type = this->get<SPIRType>(var.basetype);
+
+ bool is_block_storage = type.storage == StorageClassStorageBuffer || type.storage == StorageClassUniform ||
+ type.storage == StorageClassShaderRecordBufferKHR;
+ bool has_block_flags = ir.meta[type.self].decoration.decoration_flags.get(DecorationBlock) ||
+ ir.meta[type.self].decoration.decoration_flags.get(DecorationBufferBlock);
+
+ if (var.storage != StorageClassFunction && type.pointer && is_block_storage && !is_hidden_variable(var) &&
+ has_block_flags)
+ {
+ emit_buffer_block(var);
+ }
+ });
+
+ // Output push constant blocks
+ ir.for_each_typed_id<SPIRVariable>([&](uint32_t, SPIRVariable &var) {
+ auto &type = this->get<SPIRType>(var.basetype);
+ if (var.storage != StorageClassFunction && type.pointer && type.storage == StorageClassPushConstant &&
+ !is_hidden_variable(var))
+ {
+ emit_push_constant_block(var);
+ }
+ });
+
+ bool skip_separate_image_sampler = !combined_image_samplers.empty() || !options.vulkan_semantics;
+
+ // Output Uniform Constants (values, samplers, images, etc).
+ ir.for_each_typed_id<SPIRVariable>([&](uint32_t, SPIRVariable &var) {
+ auto &type = this->get<SPIRType>(var.basetype);
+
+ // If we're remapping separate samplers and images, only emit the combined samplers.
+ if (skip_separate_image_sampler)
+ {
+ // Sampler buffers are always used without a sampler, and they will also work in regular GL.
+ bool sampler_buffer = type.basetype == SPIRType::Image && type.image.dim == DimBuffer;
+ bool separate_image = type.basetype == SPIRType::Image && type.image.sampled == 1;
+ bool separate_sampler = type.basetype == SPIRType::Sampler;
+ if (!sampler_buffer && (separate_image || separate_sampler))
+ return;
+ }
+
+ if (var.storage != StorageClassFunction && type.pointer &&
+ (type.storage == StorageClassUniformConstant || type.storage == StorageClassAtomicCounter ||
+ type.storage == StorageClassRayPayloadKHR || type.storage == StorageClassIncomingRayPayloadKHR ||
+ type.storage == StorageClassCallableDataKHR || type.storage == StorageClassIncomingCallableDataKHR ||
+ type.storage == StorageClassHitAttributeKHR) &&
+ !is_hidden_variable(var))
+ {
+ emit_uniform(var);
+ emitted = true;
+ }
+ });
+
+ if (emitted)
+ statement("");
+ emitted = false;
+
+ bool emitted_base_instance = false;
+
+ // Output in/out interfaces.
+ ir.for_each_typed_id<SPIRVariable>([&](uint32_t, SPIRVariable &var) {
+ auto &type = this->get<SPIRType>(var.basetype);
+
+ bool is_hidden = is_hidden_variable(var);
+
+ // Unused output I/O variables might still be required to implement framebuffer fetch.
+ if (var.storage == StorageClassOutput && !is_legacy() &&
+ location_is_framebuffer_fetch(get_decoration(var.self, DecorationLocation)) != 0)
+ {
+ is_hidden = false;
+ }
+
+ if (var.storage != StorageClassFunction && type.pointer &&
+ (var.storage == StorageClassInput || var.storage == StorageClassOutput) &&
+ interface_variable_exists_in_entry_point(var.self) && !is_hidden)
+ {
+ if (options.es && get_execution_model() == ExecutionModelVertex && var.storage == StorageClassInput &&
+ type.array.size() == 1)
+ {
+ SPIRV_CROSS_THROW("OpenGL ES doesn't support array input variables in vertex shader.");
+ }
+ emit_interface_block(var);
+ emitted = true;
+ }
+ else if (is_builtin_variable(var))
+ {
+ auto builtin = BuiltIn(get_decoration(var.self, DecorationBuiltIn));
+ // For gl_InstanceIndex emulation on GLES, the API user needs to
+ // supply this uniform.
+
+ // The draw parameter extension is soft-enabled on GL with some fallbacks.
+ if (!options.vulkan_semantics)
+ {
+ if (!emitted_base_instance &&
+ ((options.vertex.support_nonzero_base_instance && builtin == BuiltInInstanceIndex) ||
+ (builtin == BuiltInBaseInstance)))
+ {
+ statement("#ifdef GL_ARB_shader_draw_parameters");
+ statement("#define SPIRV_Cross_BaseInstance gl_BaseInstanceARB");
+ statement("#else");
+ // A crude, but simple workaround which should be good enough for non-indirect draws.
+ statement("uniform int SPIRV_Cross_BaseInstance;");
+ statement("#endif");
+ emitted = true;
+ emitted_base_instance = true;
+ }
+ else if (builtin == BuiltInBaseVertex)
+ {
+ statement("#ifdef GL_ARB_shader_draw_parameters");
+ statement("#define SPIRV_Cross_BaseVertex gl_BaseVertexARB");
+ statement("#else");
+ // A crude, but simple workaround which should be good enough for non-indirect draws.
+ statement("uniform int SPIRV_Cross_BaseVertex;");
+ statement("#endif");
+ }
+ else if (builtin == BuiltInDrawIndex)
+ {
+ statement("#ifndef GL_ARB_shader_draw_parameters");
+ // Cannot really be worked around.
+ statement("#error GL_ARB_shader_draw_parameters is not supported.");
+ statement("#endif");
+ }
+ }
+ }
+ });
+
+ // Global variables.
+ for (auto global : global_variables)
+ {
+ auto &var = get<SPIRVariable>(global);
+ if (is_hidden_variable(var, true))
+ continue;
+
+ if (var.storage != StorageClassOutput)
+ {
+ if (!variable_is_lut(var))
+ {
+ add_resource_name(var.self);
+
+ string initializer;
+ if (options.force_zero_initialized_variables && var.storage == StorageClassPrivate &&
+ !var.initializer && !var.static_expression && type_can_zero_initialize(get_variable_data_type(var)))
+ {
+ initializer = join(" = ", to_zero_initialized_expression(get_variable_data_type_id(var)));
+ }
+
+ statement(variable_decl(var), initializer, ";");
+ emitted = true;
+ }
+ }
+ else if (var.initializer && maybe_get<SPIRConstant>(var.initializer) != nullptr)
+ {
+ emit_output_variable_initializer(var);
+ }
+ }
+
+ if (emitted)
+ statement("");
+}
+
+void CompilerGLSL::emit_output_variable_initializer(const SPIRVariable &var)
+{
+ // If a StorageClassOutput variable has an initializer, we need to initialize it in main().
+ auto &entry_func = this->get<SPIRFunction>(ir.default_entry_point);
+ auto &type = get<SPIRType>(var.basetype);
+ bool is_patch = has_decoration(var.self, DecorationPatch);
+ bool is_block = has_decoration(type.self, DecorationBlock);
+ bool is_control_point = get_execution_model() == ExecutionModelTessellationControl && !is_patch;
+
+ if (is_block)
+ {
+ uint32_t member_count = uint32_t(type.member_types.size());
+ bool type_is_array = type.array.size() == 1;
+ uint32_t array_size = 1;
+ if (type_is_array)
+ array_size = to_array_size_literal(type);
+ uint32_t iteration_count = is_control_point ? 1 : array_size;
+
+ // If the initializer is a block, we must initialize each block member one at a time.
+ for (uint32_t i = 0; i < member_count; i++)
+ {
+ // These outputs might not have been properly declared, so don't initialize them in that case.
+ if (has_member_decoration(type.self, i, DecorationBuiltIn))
+ {
+ if (get_member_decoration(type.self, i, DecorationBuiltIn) == BuiltInCullDistance &&
+ !cull_distance_count)
+ continue;
+
+ if (get_member_decoration(type.self, i, DecorationBuiltIn) == BuiltInClipDistance &&
+ !clip_distance_count)
+ continue;
+ }
+
+ // We need to build a per-member array first, essentially transposing from AoS to SoA.
+ // This code path hits when we have an array of blocks.
+ string lut_name;
+ if (type_is_array)
+ {
+ lut_name = join("_", var.self, "_", i, "_init");
+ uint32_t member_type_id = get<SPIRType>(var.basetype).member_types[i];
+ auto &member_type = get<SPIRType>(member_type_id);
+ auto array_type = member_type;
+ array_type.parent_type = member_type_id;
+ array_type.op = OpTypeArray;
+ array_type.array.push_back(array_size);
+ array_type.array_size_literal.push_back(true);
+
+ SmallVector<string> exprs;
+ exprs.reserve(array_size);
+ auto &c = get<SPIRConstant>(var.initializer);
+ for (uint32_t j = 0; j < array_size; j++)
+ exprs.push_back(to_expression(get<SPIRConstant>(c.subconstants[j]).subconstants[i]));
+ statement("const ", type_to_glsl(array_type), " ", lut_name, type_to_array_glsl(array_type, 0), " = ",
+ type_to_glsl_constructor(array_type), "(", merge(exprs, ", "), ");");
+ }
+
+ for (uint32_t j = 0; j < iteration_count; j++)
+ {
+ entry_func.fixup_hooks_in.push_back([=, &var]() {
+ AccessChainMeta meta;
+ auto &c = this->get<SPIRConstant>(var.initializer);
+
+ uint32_t invocation_id = 0;
+ uint32_t member_index_id = 0;
+ if (is_control_point)
+ {
+ uint32_t ids = ir.increase_bound_by(3);
+ auto &uint_type = set<SPIRType>(ids, OpTypeInt);
+ uint_type.basetype = SPIRType::UInt;
+ uint_type.width = 32;
+ set<SPIRExpression>(ids + 1, builtin_to_glsl(BuiltInInvocationId, StorageClassInput), ids, true);
+ set<SPIRConstant>(ids + 2, ids, i, false);
+ invocation_id = ids + 1;
+ member_index_id = ids + 2;
+ }
+
+ if (is_patch)
+ {
+ statement("if (gl_InvocationID == 0)");
+ begin_scope();
+ }
+
+ if (type_is_array && !is_control_point)
+ {
+ uint32_t indices[2] = { j, i };
+ auto chain = access_chain_internal(var.self, indices, 2, ACCESS_CHAIN_INDEX_IS_LITERAL_BIT, &meta);
+ statement(chain, " = ", lut_name, "[", j, "];");
+ }
+ else if (is_control_point)
+ {
+ uint32_t indices[2] = { invocation_id, member_index_id };
+ auto chain = access_chain_internal(var.self, indices, 2, 0, &meta);
+ statement(chain, " = ", lut_name, "[", builtin_to_glsl(BuiltInInvocationId, StorageClassInput), "];");
+ }
+ else
+ {
+ auto chain =
+ access_chain_internal(var.self, &i, 1, ACCESS_CHAIN_INDEX_IS_LITERAL_BIT, &meta);
+ statement(chain, " = ", to_expression(c.subconstants[i]), ";");
+ }
+
+ if (is_patch)
+ end_scope();
+ });
+ }
+ }
+ }
+ else if (is_control_point)
+ {
+ auto lut_name = join("_", var.self, "_init");
+ statement("const ", type_to_glsl(type), " ", lut_name, type_to_array_glsl(type, 0),
+ " = ", to_expression(var.initializer), ";");
+ entry_func.fixup_hooks_in.push_back([&, lut_name]() {
+ statement(to_expression(var.self), "[gl_InvocationID] = ", lut_name, "[gl_InvocationID];");
+ });
+ }
+ else if (has_decoration(var.self, DecorationBuiltIn) &&
+ BuiltIn(get_decoration(var.self, DecorationBuiltIn)) == BuiltInSampleMask)
+ {
+ // We cannot copy the array since gl_SampleMask is unsized in GLSL. Unroll time! <_<
+ entry_func.fixup_hooks_in.push_back([&] {
+ auto &c = this->get<SPIRConstant>(var.initializer);
+ uint32_t num_constants = uint32_t(c.subconstants.size());
+ for (uint32_t i = 0; i < num_constants; i++)
+ {
+ // Don't use to_expression on constant since it might be uint, just fish out the raw int.
+ statement(to_expression(var.self), "[", i, "] = ",
+ convert_to_string(this->get<SPIRConstant>(c.subconstants[i]).scalar_i32()), ";");
+ }
+ });
+ }
+ else
+ {
+ auto lut_name = join("_", var.self, "_init");
+ statement("const ", type_to_glsl(type), " ", lut_name,
+ type_to_array_glsl(type, var.self), " = ", to_expression(var.initializer), ";");
+ entry_func.fixup_hooks_in.push_back([&, lut_name, is_patch]() {
+ if (is_patch)
+ {
+ statement("if (gl_InvocationID == 0)");
+ begin_scope();
+ }
+ statement(to_expression(var.self), " = ", lut_name, ";");
+ if (is_patch)
+ end_scope();
+ });
+ }
+}
+
+void CompilerGLSL::emit_subgroup_arithmetic_workaround(const std::string &func, Op op, GroupOperation group_op)
+{
+ std::string result;
+ switch (group_op)
+ {
+ case GroupOperationReduce:
+ result = "reduction";
+ break;
+
+ case GroupOperationExclusiveScan:
+ result = "excl_scan";
+ break;
+
+ case GroupOperationInclusiveScan:
+ result = "incl_scan";
+ break;
+
+ default:
+ SPIRV_CROSS_THROW("Unsupported workaround for arithmetic group operation");
+ }
+
+ struct TypeInfo
+ {
+ std::string type;
+ std::string identity;
+ };
+
+ std::vector<TypeInfo> type_infos;
+ switch (op)
+ {
+ case OpGroupNonUniformIAdd:
+ {
+ type_infos.emplace_back(TypeInfo{ "uint", "0u" });
+ type_infos.emplace_back(TypeInfo{ "uvec2", "uvec2(0u)" });
+ type_infos.emplace_back(TypeInfo{ "uvec3", "uvec3(0u)" });
+ type_infos.emplace_back(TypeInfo{ "uvec4", "uvec4(0u)" });
+ type_infos.emplace_back(TypeInfo{ "int", "0" });
+ type_infos.emplace_back(TypeInfo{ "ivec2", "ivec2(0)" });
+ type_infos.emplace_back(TypeInfo{ "ivec3", "ivec3(0)" });
+ type_infos.emplace_back(TypeInfo{ "ivec4", "ivec4(0)" });
+ break;
+ }
+
+ case OpGroupNonUniformFAdd:
+ {
+ type_infos.emplace_back(TypeInfo{ "float", "0.0f" });
+ type_infos.emplace_back(TypeInfo{ "vec2", "vec2(0.0f)" });
+ type_infos.emplace_back(TypeInfo{ "vec3", "vec3(0.0f)" });
+ type_infos.emplace_back(TypeInfo{ "vec4", "vec4(0.0f)" });
+ // ARB_gpu_shader_fp64 is required in GL4.0 which in turn is required by NV_thread_shuffle
+ type_infos.emplace_back(TypeInfo{ "double", "0.0LF" });
+ type_infos.emplace_back(TypeInfo{ "dvec2", "dvec2(0.0LF)" });
+ type_infos.emplace_back(TypeInfo{ "dvec3", "dvec3(0.0LF)" });
+ type_infos.emplace_back(TypeInfo{ "dvec4", "dvec4(0.0LF)" });
+ break;
+ }
+
+ case OpGroupNonUniformIMul:
+ {
+ type_infos.emplace_back(TypeInfo{ "uint", "1u" });
+ type_infos.emplace_back(TypeInfo{ "uvec2", "uvec2(1u)" });
+ type_infos.emplace_back(TypeInfo{ "uvec3", "uvec3(1u)" });
+ type_infos.emplace_back(TypeInfo{ "uvec4", "uvec4(1u)" });
+ type_infos.emplace_back(TypeInfo{ "int", "1" });
+ type_infos.emplace_back(TypeInfo{ "ivec2", "ivec2(1)" });
+ type_infos.emplace_back(TypeInfo{ "ivec3", "ivec3(1)" });
+ type_infos.emplace_back(TypeInfo{ "ivec4", "ivec4(1)" });
+ break;
+ }
+
+ case OpGroupNonUniformFMul:
+ {
+ type_infos.emplace_back(TypeInfo{ "float", "1.0f" });
+ type_infos.emplace_back(TypeInfo{ "vec2", "vec2(1.0f)" });
+ type_infos.emplace_back(TypeInfo{ "vec3", "vec3(1.0f)" });
+ type_infos.emplace_back(TypeInfo{ "vec4", "vec4(1.0f)" });
+ type_infos.emplace_back(TypeInfo{ "double", "0.0LF" });
+ type_infos.emplace_back(TypeInfo{ "dvec2", "dvec2(1.0LF)" });
+ type_infos.emplace_back(TypeInfo{ "dvec3", "dvec3(1.0LF)" });
+ type_infos.emplace_back(TypeInfo{ "dvec4", "dvec4(1.0LF)" });
+ break;
+ }
+
+ default:
+ SPIRV_CROSS_THROW("Unsupported workaround for arithmetic group operation");
+ }
+
+ const bool op_is_addition = op == OpGroupNonUniformIAdd || op == OpGroupNonUniformFAdd;
+ const bool op_is_multiplication = op == OpGroupNonUniformIMul || op == OpGroupNonUniformFMul;
+ std::string op_symbol;
+ if (op_is_addition)
+ {
+ op_symbol = "+=";
+ }
+ else if (op_is_multiplication)
+ {
+ op_symbol = "*=";
+ }
+
+ for (const TypeInfo &t : type_infos)
+ {
+ statement(t.type, " ", func, "(", t.type, " v)");
+ begin_scope();
+ statement(t.type, " ", result, " = ", t.identity, ";");
+ statement("uvec4 active_threads = subgroupBallot(true);");
+ statement("if (subgroupBallotBitCount(active_threads) == gl_SubgroupSize)");
+ begin_scope();
+ statement("uint total = gl_SubgroupSize / 2u;");
+ statement(result, " = v;");
+ statement("for (uint i = 1u; i <= total; i <<= 1u)");
+ begin_scope();
+ statement("bool valid;");
+ if (group_op == GroupOperationReduce)
+ {
+ statement(t.type, " s = shuffleXorNV(", result, ", i, gl_SubgroupSize, valid);");
+ }
+ else if (group_op == GroupOperationExclusiveScan || group_op == GroupOperationInclusiveScan)
+ {
+ statement(t.type, " s = shuffleUpNV(", result, ", i, gl_SubgroupSize, valid);");
+ }
+ if (op_is_addition || op_is_multiplication)
+ {
+ statement(result, " ", op_symbol, " valid ? s : ", t.identity, ";");
+ }
+ end_scope();
+ if (group_op == GroupOperationExclusiveScan)
+ {
+ statement(result, " = shuffleUpNV(", result, ", 1u, gl_SubgroupSize);");
+ statement("if (subgroupElect())");
+ begin_scope();
+ statement(result, " = ", t.identity, ";");
+ end_scope();
+ }
+ end_scope();
+ statement("else");
+ begin_scope();
+ if (group_op == GroupOperationExclusiveScan)
+ {
+ statement("uint total = subgroupBallotBitCount(gl_SubgroupLtMask);");
+ }
+ else if (group_op == GroupOperationInclusiveScan)
+ {
+ statement("uint total = subgroupBallotBitCount(gl_SubgroupLeMask);");
+ }
+ statement("for (uint i = 0u; i < gl_SubgroupSize; ++i)");
+ begin_scope();
+ statement("bool valid = subgroupBallotBitExtract(active_threads, i);");
+ statement(t.type, " s = shuffleNV(v, i, gl_SubgroupSize);");
+ if (group_op == GroupOperationExclusiveScan || group_op == GroupOperationInclusiveScan)
+ {
+ statement("valid = valid && (i < total);");
+ }
+ if (op_is_addition || op_is_multiplication)
+ {
+ statement(result, " ", op_symbol, " valid ? s : ", t.identity, ";");
+ }
+ end_scope();
+ end_scope();
+ statement("return ", result, ";");
+ end_scope();
+ }
+}
+
+void CompilerGLSL::emit_extension_workarounds(spv::ExecutionModel model)
+{
+ static const char *workaround_types[] = { "int", "ivec2", "ivec3", "ivec4", "uint", "uvec2", "uvec3", "uvec4",
+ "float", "vec2", "vec3", "vec4", "double", "dvec2", "dvec3", "dvec4" };
+
+ if (!options.vulkan_semantics)
+ {
+ using Supp = ShaderSubgroupSupportHelper;
+ auto result = shader_subgroup_supporter.resolve();
+
+ if (shader_subgroup_supporter.is_feature_requested(Supp::SubgroupMask))
+ {
+ auto exts = Supp::get_candidates_for_feature(Supp::SubgroupMask, result);
+
+ for (auto &e : exts)
+ {
+ const char *name = Supp::get_extension_name(e);
+ statement(&e == &exts.front() ? "#if" : "#elif", " defined(", name, ")");
+
+ switch (e)
+ {
+ case Supp::NV_shader_thread_group:
+ statement("#define gl_SubgroupEqMask uvec4(gl_ThreadEqMaskNV, 0u, 0u, 0u)");
+ statement("#define gl_SubgroupGeMask uvec4(gl_ThreadGeMaskNV, 0u, 0u, 0u)");
+ statement("#define gl_SubgroupGtMask uvec4(gl_ThreadGtMaskNV, 0u, 0u, 0u)");
+ statement("#define gl_SubgroupLeMask uvec4(gl_ThreadLeMaskNV, 0u, 0u, 0u)");
+ statement("#define gl_SubgroupLtMask uvec4(gl_ThreadLtMaskNV, 0u, 0u, 0u)");
+ break;
+ case Supp::ARB_shader_ballot:
+ statement("#define gl_SubgroupEqMask uvec4(unpackUint2x32(gl_SubGroupEqMaskARB), 0u, 0u)");
+ statement("#define gl_SubgroupGeMask uvec4(unpackUint2x32(gl_SubGroupGeMaskARB), 0u, 0u)");
+ statement("#define gl_SubgroupGtMask uvec4(unpackUint2x32(gl_SubGroupGtMaskARB), 0u, 0u)");
+ statement("#define gl_SubgroupLeMask uvec4(unpackUint2x32(gl_SubGroupLeMaskARB), 0u, 0u)");
+ statement("#define gl_SubgroupLtMask uvec4(unpackUint2x32(gl_SubGroupLtMaskARB), 0u, 0u)");
+ break;
+ default:
+ break;
+ }
+ }
+ statement("#endif");
+ statement("");
+ }
+
+ if (shader_subgroup_supporter.is_feature_requested(Supp::SubgroupSize))
+ {
+ auto exts = Supp::get_candidates_for_feature(Supp::SubgroupSize, result);
+
+ for (auto &e : exts)
+ {
+ const char *name = Supp::get_extension_name(e);
+ statement(&e == &exts.front() ? "#if" : "#elif", " defined(", name, ")");
+
+ switch (e)
+ {
+ case Supp::NV_shader_thread_group:
+ statement("#define gl_SubgroupSize gl_WarpSizeNV");
+ break;
+ case Supp::ARB_shader_ballot:
+ statement("#define gl_SubgroupSize gl_SubGroupSizeARB");
+ break;
+ case Supp::AMD_gcn_shader:
+ statement("#define gl_SubgroupSize uint(gl_SIMDGroupSizeAMD)");
+ break;
+ default:
+ break;
+ }
+ }
+ statement("#endif");
+ statement("");
+ }
+
+ if (shader_subgroup_supporter.is_feature_requested(Supp::SubgroupInvocationID))
+ {
+ auto exts = Supp::get_candidates_for_feature(Supp::SubgroupInvocationID, result);
+
+ for (auto &e : exts)
+ {
+ const char *name = Supp::get_extension_name(e);
+ statement(&e == &exts.front() ? "#if" : "#elif", " defined(", name, ")");
+
+ switch (e)
+ {
+ case Supp::NV_shader_thread_group:
+ statement("#define gl_SubgroupInvocationID gl_ThreadInWarpNV");
+ break;
+ case Supp::ARB_shader_ballot:
+ statement("#define gl_SubgroupInvocationID gl_SubGroupInvocationARB");
+ break;
+ default:
+ break;
+ }
+ }
+ statement("#endif");
+ statement("");
+ }
+
+ if (shader_subgroup_supporter.is_feature_requested(Supp::SubgroupID))
+ {
+ auto exts = Supp::get_candidates_for_feature(Supp::SubgroupID, result);
+
+ for (auto &e : exts)
+ {
+ const char *name = Supp::get_extension_name(e);
+ statement(&e == &exts.front() ? "#if" : "#elif", " defined(", name, ")");
+
+ switch (e)
+ {
+ case Supp::NV_shader_thread_group:
+ statement("#define gl_SubgroupID gl_WarpIDNV");
+ break;
+ default:
+ break;
+ }
+ }
+ statement("#endif");
+ statement("");
+ }
+
+ if (shader_subgroup_supporter.is_feature_requested(Supp::NumSubgroups))
+ {
+ auto exts = Supp::get_candidates_for_feature(Supp::NumSubgroups, result);
+
+ for (auto &e : exts)
+ {
+ const char *name = Supp::get_extension_name(e);
+ statement(&e == &exts.front() ? "#if" : "#elif", " defined(", name, ")");
+
+ switch (e)
+ {
+ case Supp::NV_shader_thread_group:
+ statement("#define gl_NumSubgroups gl_WarpsPerSMNV");
+ break;
+ default:
+ break;
+ }
+ }
+ statement("#endif");
+ statement("");
+ }
+
+ if (shader_subgroup_supporter.is_feature_requested(Supp::SubgroupBroadcast_First))
+ {
+ auto exts = Supp::get_candidates_for_feature(Supp::SubgroupBroadcast_First, result);
+
+ for (auto &e : exts)
+ {
+ const char *name = Supp::get_extension_name(e);
+ statement(&e == &exts.front() ? "#if" : "#elif", " defined(", name, ")");
+
+ switch (e)
+ {
+ case Supp::NV_shader_thread_shuffle:
+ for (const char *t : workaround_types)
+ {
+ statement(t, " subgroupBroadcastFirst(", t,
+ " value) { return shuffleNV(value, findLSB(ballotThreadNV(true)), gl_WarpSizeNV); }");
+ }
+ for (const char *t : workaround_types)
+ {
+ statement(t, " subgroupBroadcast(", t,
+ " value, uint id) { return shuffleNV(value, id, gl_WarpSizeNV); }");
+ }
+ break;
+ case Supp::ARB_shader_ballot:
+ for (const char *t : workaround_types)
+ {
+ statement(t, " subgroupBroadcastFirst(", t,
+ " value) { return readFirstInvocationARB(value); }");
+ }
+ for (const char *t : workaround_types)
+ {
+ statement(t, " subgroupBroadcast(", t,
+ " value, uint id) { return readInvocationARB(value, id); }");
+ }
+ break;
+ default:
+ break;
+ }
+ }
+ statement("#endif");
+ statement("");
+ }
+
+ if (shader_subgroup_supporter.is_feature_requested(Supp::SubgroupBallotFindLSB_MSB))
+ {
+ auto exts = Supp::get_candidates_for_feature(Supp::SubgroupBallotFindLSB_MSB, result);
+
+ for (auto &e : exts)
+ {
+ const char *name = Supp::get_extension_name(e);
+ statement(&e == &exts.front() ? "#if" : "#elif", " defined(", name, ")");
+
+ switch (e)
+ {
+ case Supp::NV_shader_thread_group:
+ statement("uint subgroupBallotFindLSB(uvec4 value) { return findLSB(value.x); }");
+ statement("uint subgroupBallotFindMSB(uvec4 value) { return findMSB(value.x); }");
+ break;
+ default:
+ break;
+ }
+ }
+ statement("#else");
+ statement("uint subgroupBallotFindLSB(uvec4 value)");
+ begin_scope();
+ statement("int firstLive = findLSB(value.x);");
+ statement("return uint(firstLive != -1 ? firstLive : (findLSB(value.y) + 32));");
+ end_scope();
+ statement("uint subgroupBallotFindMSB(uvec4 value)");
+ begin_scope();
+ statement("int firstLive = findMSB(value.y);");
+ statement("return uint(firstLive != -1 ? (firstLive + 32) : findMSB(value.x));");
+ end_scope();
+ statement("#endif");
+ statement("");
+ }
+
+ if (shader_subgroup_supporter.is_feature_requested(Supp::SubgroupAll_Any_AllEqualBool))
+ {
+ auto exts = Supp::get_candidates_for_feature(Supp::SubgroupAll_Any_AllEqualBool, result);
+
+ for (auto &e : exts)
+ {
+ const char *name = Supp::get_extension_name(e);
+ statement(&e == &exts.front() ? "#if" : "#elif", " defined(", name, ")");
+
+ switch (e)
+ {
+ case Supp::NV_gpu_shader_5:
+ statement("bool subgroupAll(bool value) { return allThreadsNV(value); }");
+ statement("bool subgroupAny(bool value) { return anyThreadNV(value); }");
+ statement("bool subgroupAllEqual(bool value) { return allThreadsEqualNV(value); }");
+ break;
+ case Supp::ARB_shader_group_vote:
+ statement("bool subgroupAll(bool v) { return allInvocationsARB(v); }");
+ statement("bool subgroupAny(bool v) { return anyInvocationARB(v); }");
+ statement("bool subgroupAllEqual(bool v) { return allInvocationsEqualARB(v); }");
+ break;
+ case Supp::AMD_gcn_shader:
+ statement("bool subgroupAll(bool value) { return ballotAMD(value) == ballotAMD(true); }");
+ statement("bool subgroupAny(bool value) { return ballotAMD(value) != 0ull; }");
+ statement("bool subgroupAllEqual(bool value) { uint64_t b = ballotAMD(value); return b == 0ull || "
+ "b == ballotAMD(true); }");
+ break;
+ default:
+ break;
+ }
+ }
+ statement("#endif");
+ statement("");
+ }
+
+ if (shader_subgroup_supporter.is_feature_requested(Supp::SubgroupAllEqualT))
+ {
+ statement("#ifndef GL_KHR_shader_subgroup_vote");
+ statement(
+ "#define _SPIRV_CROSS_SUBGROUP_ALL_EQUAL_WORKAROUND(type) bool subgroupAllEqual(type value) { return "
+ "subgroupAllEqual(subgroupBroadcastFirst(value) == value); }");
+ for (const char *t : workaround_types)
+ statement("_SPIRV_CROSS_SUBGROUP_ALL_EQUAL_WORKAROUND(", t, ")");
+ statement("#undef _SPIRV_CROSS_SUBGROUP_ALL_EQUAL_WORKAROUND");
+ statement("#endif");
+ statement("");
+ }
+
+ if (shader_subgroup_supporter.is_feature_requested(Supp::SubgroupBallot))
+ {
+ auto exts = Supp::get_candidates_for_feature(Supp::SubgroupBallot, result);
+
+ for (auto &e : exts)
+ {
+ const char *name = Supp::get_extension_name(e);
+ statement(&e == &exts.front() ? "#if" : "#elif", " defined(", name, ")");
+
+ switch (e)
+ {
+ case Supp::NV_shader_thread_group:
+ statement("uvec4 subgroupBallot(bool v) { return uvec4(ballotThreadNV(v), 0u, 0u, 0u); }");
+ break;
+ case Supp::ARB_shader_ballot:
+ statement("uvec4 subgroupBallot(bool v) { return uvec4(unpackUint2x32(ballotARB(v)), 0u, 0u); }");
+ break;
+ default:
+ break;
+ }
+ }
+ statement("#endif");
+ statement("");
+ }
+
+ if (shader_subgroup_supporter.is_feature_requested(Supp::SubgroupElect))
+ {
+ statement("#ifndef GL_KHR_shader_subgroup_basic");
+ statement("bool subgroupElect()");
+ begin_scope();
+ statement("uvec4 activeMask = subgroupBallot(true);");
+ statement("uint firstLive = subgroupBallotFindLSB(activeMask);");
+ statement("return gl_SubgroupInvocationID == firstLive;");
+ end_scope();
+ statement("#endif");
+ statement("");
+ }
+
+ if (shader_subgroup_supporter.is_feature_requested(Supp::SubgroupBarrier))
+ {
+ // Extensions we're using in place of GL_KHR_shader_subgroup_basic state
+ // that subgroup execute in lockstep so this barrier is implicit.
+ // However the GL 4.6 spec also states that `barrier` implies a shared memory barrier,
+ // and a specific test of optimizing scans by leveraging lock-step invocation execution,
+ // has shown that a `memoryBarrierShared` is needed in place of a `subgroupBarrier`.
+ // https://github.com/buildaworldnet/IrrlichtBAW/commit/d8536857991b89a30a6b65d29441e51b64c2c7ad#diff-9f898d27be1ea6fc79b03d9b361e299334c1a347b6e4dc344ee66110c6aa596aR19
+ statement("#ifndef GL_KHR_shader_subgroup_basic");
+ statement("void subgroupBarrier() { memoryBarrierShared(); }");
+ statement("#endif");
+ statement("");
+ }
+
+ if (shader_subgroup_supporter.is_feature_requested(Supp::SubgroupMemBarrier))
+ {
+ if (model == spv::ExecutionModelGLCompute)
+ {
+ statement("#ifndef GL_KHR_shader_subgroup_basic");
+ statement("void subgroupMemoryBarrier() { groupMemoryBarrier(); }");
+ statement("void subgroupMemoryBarrierBuffer() { groupMemoryBarrier(); }");
+ statement("void subgroupMemoryBarrierShared() { memoryBarrierShared(); }");
+ statement("void subgroupMemoryBarrierImage() { groupMemoryBarrier(); }");
+ statement("#endif");
+ }
+ else
+ {
+ statement("#ifndef GL_KHR_shader_subgroup_basic");
+ statement("void subgroupMemoryBarrier() { memoryBarrier(); }");
+ statement("void subgroupMemoryBarrierBuffer() { memoryBarrierBuffer(); }");
+ statement("void subgroupMemoryBarrierImage() { memoryBarrierImage(); }");
+ statement("#endif");
+ }
+ statement("");
+ }
+
+ if (shader_subgroup_supporter.is_feature_requested(Supp::SubgroupInverseBallot_InclBitCount_ExclBitCout))
+ {
+ statement("#ifndef GL_KHR_shader_subgroup_ballot");
+ statement("bool subgroupInverseBallot(uvec4 value)");
+ begin_scope();
+ statement("return any(notEqual(value.xy & gl_SubgroupEqMask.xy, uvec2(0u)));");
+ end_scope();
+
+ statement("uint subgroupBallotInclusiveBitCount(uvec4 value)");
+ begin_scope();
+ statement("uvec2 v = value.xy & gl_SubgroupLeMask.xy;");
+ statement("ivec2 c = bitCount(v);");
+ statement_no_indent("#ifdef GL_NV_shader_thread_group");
+ statement("return uint(c.x);");
+ statement_no_indent("#else");
+ statement("return uint(c.x + c.y);");
+ statement_no_indent("#endif");
+ end_scope();
+
+ statement("uint subgroupBallotExclusiveBitCount(uvec4 value)");
+ begin_scope();
+ statement("uvec2 v = value.xy & gl_SubgroupLtMask.xy;");
+ statement("ivec2 c = bitCount(v);");
+ statement_no_indent("#ifdef GL_NV_shader_thread_group");
+ statement("return uint(c.x);");
+ statement_no_indent("#else");
+ statement("return uint(c.x + c.y);");
+ statement_no_indent("#endif");
+ end_scope();
+ statement("#endif");
+ statement("");
+ }
+
+ if (shader_subgroup_supporter.is_feature_requested(Supp::SubgroupBallotBitCount))
+ {
+ statement("#ifndef GL_KHR_shader_subgroup_ballot");
+ statement("uint subgroupBallotBitCount(uvec4 value)");
+ begin_scope();
+ statement("ivec2 c = bitCount(value.xy);");
+ statement_no_indent("#ifdef GL_NV_shader_thread_group");
+ statement("return uint(c.x);");
+ statement_no_indent("#else");
+ statement("return uint(c.x + c.y);");
+ statement_no_indent("#endif");
+ end_scope();
+ statement("#endif");
+ statement("");
+ }
+
+ if (shader_subgroup_supporter.is_feature_requested(Supp::SubgroupBallotBitExtract))
+ {
+ statement("#ifndef GL_KHR_shader_subgroup_ballot");
+ statement("bool subgroupBallotBitExtract(uvec4 value, uint index)");
+ begin_scope();
+ statement_no_indent("#ifdef GL_NV_shader_thread_group");
+ statement("uint shifted = value.x >> index;");
+ statement_no_indent("#else");
+ statement("uint shifted = value[index >> 5u] >> (index & 0x1fu);");
+ statement_no_indent("#endif");
+ statement("return (shifted & 1u) != 0u;");
+ end_scope();
+ statement("#endif");
+ statement("");
+ }
+
+ auto arithmetic_feature_helper =
+ [&](Supp::Feature feat, std::string func_name, spv::Op op, spv::GroupOperation group_op)
+ {
+ if (shader_subgroup_supporter.is_feature_requested(feat))
+ {
+ auto exts = Supp::get_candidates_for_feature(feat, result);
+ for (auto &e : exts)
+ {
+ const char *name = Supp::get_extension_name(e);
+ statement(&e == &exts.front() ? "#if" : "#elif", " defined(", name, ")");
+
+ switch (e)
+ {
+ case Supp::NV_shader_thread_shuffle:
+ emit_subgroup_arithmetic_workaround(func_name, op, group_op);
+ break;
+ default:
+ break;
+ }
+ }
+ statement("#endif");
+ statement("");
+ }
+ };
+
+ arithmetic_feature_helper(Supp::SubgroupArithmeticIAddReduce, "subgroupAdd", OpGroupNonUniformIAdd,
+ GroupOperationReduce);
+ arithmetic_feature_helper(Supp::SubgroupArithmeticIAddExclusiveScan, "subgroupExclusiveAdd",
+ OpGroupNonUniformIAdd, GroupOperationExclusiveScan);
+ arithmetic_feature_helper(Supp::SubgroupArithmeticIAddInclusiveScan, "subgroupInclusiveAdd",
+ OpGroupNonUniformIAdd, GroupOperationInclusiveScan);
+ arithmetic_feature_helper(Supp::SubgroupArithmeticFAddReduce, "subgroupAdd", OpGroupNonUniformFAdd,
+ GroupOperationReduce);
+ arithmetic_feature_helper(Supp::SubgroupArithmeticFAddExclusiveScan, "subgroupExclusiveAdd",
+ OpGroupNonUniformFAdd, GroupOperationExclusiveScan);
+ arithmetic_feature_helper(Supp::SubgroupArithmeticFAddInclusiveScan, "subgroupInclusiveAdd",
+ OpGroupNonUniformFAdd, GroupOperationInclusiveScan);
+
+ arithmetic_feature_helper(Supp::SubgroupArithmeticIMulReduce, "subgroupMul", OpGroupNonUniformIMul,
+ GroupOperationReduce);
+ arithmetic_feature_helper(Supp::SubgroupArithmeticIMulExclusiveScan, "subgroupExclusiveMul",
+ OpGroupNonUniformIMul, GroupOperationExclusiveScan);
+ arithmetic_feature_helper(Supp::SubgroupArithmeticIMulInclusiveScan, "subgroupInclusiveMul",
+ OpGroupNonUniformIMul, GroupOperationInclusiveScan);
+ arithmetic_feature_helper(Supp::SubgroupArithmeticFMulReduce, "subgroupMul", OpGroupNonUniformFMul,
+ GroupOperationReduce);
+ arithmetic_feature_helper(Supp::SubgroupArithmeticFMulExclusiveScan, "subgroupExclusiveMul",
+ OpGroupNonUniformFMul, GroupOperationExclusiveScan);
+ arithmetic_feature_helper(Supp::SubgroupArithmeticFMulInclusiveScan, "subgroupInclusiveMul",
+ OpGroupNonUniformFMul, GroupOperationInclusiveScan);
+ }
+
+ if (!workaround_ubo_load_overload_types.empty())
+ {
+ for (auto &type_id : workaround_ubo_load_overload_types)
+ {
+ auto &type = get<SPIRType>(type_id);
+
+ if (options.es && is_matrix(type))
+ {
+ // Need both variants.
+ // GLSL cannot overload on precision, so need to dispatch appropriately.
+ statement("highp ", type_to_glsl(type), " spvWorkaroundRowMajor(highp ", type_to_glsl(type), " wrap) { return wrap; }");
+ statement("mediump ", type_to_glsl(type), " spvWorkaroundRowMajorMP(mediump ", type_to_glsl(type), " wrap) { return wrap; }");
+ }
+ else
+ {
+ statement(type_to_glsl(type), " spvWorkaroundRowMajor(", type_to_glsl(type), " wrap) { return wrap; }");
+ }
+ }
+ statement("");
+ }
+}
+
+void CompilerGLSL::emit_polyfills(uint32_t polyfills, bool relaxed)
+{
+ const char *qual = "";
+ const char *suffix = (options.es && relaxed) ? "MP" : "";
+ if (options.es)
+ qual = relaxed ? "mediump " : "highp ";
+
+ if (polyfills & PolyfillTranspose2x2)
+ {
+ statement(qual, "mat2 spvTranspose", suffix, "(", qual, "mat2 m)");
+ begin_scope();
+ statement("return mat2(m[0][0], m[1][0], m[0][1], m[1][1]);");
+ end_scope();
+ statement("");
+ }
+
+ if (polyfills & PolyfillTranspose3x3)
+ {
+ statement(qual, "mat3 spvTranspose", suffix, "(", qual, "mat3 m)");
+ begin_scope();
+ statement("return mat3(m[0][0], m[1][0], m[2][0], m[0][1], m[1][1], m[2][1], m[0][2], m[1][2], m[2][2]);");
+ end_scope();
+ statement("");
+ }
+
+ if (polyfills & PolyfillTranspose4x4)
+ {
+ statement(qual, "mat4 spvTranspose", suffix, "(", qual, "mat4 m)");
+ begin_scope();
+ statement("return mat4(m[0][0], m[1][0], m[2][0], m[3][0], m[0][1], m[1][1], m[2][1], m[3][1], m[0][2], "
+ "m[1][2], m[2][2], m[3][2], m[0][3], m[1][3], m[2][3], m[3][3]);");
+ end_scope();
+ statement("");
+ }
+
+ if (polyfills & PolyfillDeterminant2x2)
+ {
+ statement(qual, "float spvDeterminant", suffix, "(", qual, "mat2 m)");
+ begin_scope();
+ statement("return m[0][0] * m[1][1] - m[0][1] * m[1][0];");
+ end_scope();
+ statement("");
+ }
+
+ if (polyfills & PolyfillDeterminant3x3)
+ {
+ statement(qual, "float spvDeterminant", suffix, "(", qual, "mat3 m)");
+ begin_scope();
+ statement("return dot(m[0], vec3(m[1][1] * m[2][2] - m[1][2] * m[2][1], "
+ "m[1][2] * m[2][0] - m[1][0] * m[2][2], "
+ "m[1][0] * m[2][1] - m[1][1] * m[2][0]));");
+ end_scope();
+ statement("");
+ }
+
+ if (polyfills & PolyfillDeterminant4x4)
+ {
+ statement(qual, "float spvDeterminant", suffix, "(", qual, "mat4 m)");
+ begin_scope();
+ statement("return dot(m[0], vec4("
+ "m[2][1] * m[3][2] * m[1][3] - m[3][1] * m[2][2] * m[1][3] + m[3][1] * m[1][2] * m[2][3] - m[1][1] * m[3][2] * m[2][3] - m[2][1] * m[1][2] * m[3][3] + m[1][1] * m[2][2] * m[3][3], "
+ "m[3][0] * m[2][2] * m[1][3] - m[2][0] * m[3][2] * m[1][3] - m[3][0] * m[1][2] * m[2][3] + m[1][0] * m[3][2] * m[2][3] + m[2][0] * m[1][2] * m[3][3] - m[1][0] * m[2][2] * m[3][3], "
+ "m[2][0] * m[3][1] * m[1][3] - m[3][0] * m[2][1] * m[1][3] + m[3][0] * m[1][1] * m[2][3] - m[1][0] * m[3][1] * m[2][3] - m[2][0] * m[1][1] * m[3][3] + m[1][0] * m[2][1] * m[3][3], "
+ "m[3][0] * m[2][1] * m[1][2] - m[2][0] * m[3][1] * m[1][2] - m[3][0] * m[1][1] * m[2][2] + m[1][0] * m[3][1] * m[2][2] + m[2][0] * m[1][1] * m[3][2] - m[1][0] * m[2][1] * m[3][2]));");
+ end_scope();
+ statement("");
+ }
+
+ if (polyfills & PolyfillMatrixInverse2x2)
+ {
+ statement(qual, "mat2 spvInverse", suffix, "(", qual, "mat2 m)");
+ begin_scope();
+ statement("return mat2(m[1][1], -m[0][1], -m[1][0], m[0][0]) "
+ "* (1.0 / (m[0][0] * m[1][1] - m[1][0] * m[0][1]));");
+ end_scope();
+ statement("");
+ }
+
+ if (polyfills & PolyfillMatrixInverse3x3)
+ {
+ statement(qual, "mat3 spvInverse", suffix, "(", qual, "mat3 m)");
+ begin_scope();
+ statement(qual, "vec3 t = vec3(m[1][1] * m[2][2] - m[1][2] * m[2][1], m[1][2] * m[2][0] - m[1][0] * m[2][2], m[1][0] * m[2][1] - m[1][1] * m[2][0]);");
+ statement("return mat3(t[0], "
+ "m[0][2] * m[2][1] - m[0][1] * m[2][2], "
+ "m[0][1] * m[1][2] - m[0][2] * m[1][1], "
+ "t[1], "
+ "m[0][0] * m[2][2] - m[0][2] * m[2][0], "
+ "m[0][2] * m[1][0] - m[0][0] * m[1][2], "
+ "t[2], "
+ "m[0][1] * m[2][0] - m[0][0] * m[2][1], "
+ "m[0][0] * m[1][1] - m[0][1] * m[1][0]) "
+ "* (1.0 / dot(m[0], t));");
+ end_scope();
+ statement("");
+ }
+
+ if (polyfills & PolyfillMatrixInverse4x4)
+ {
+ statement(qual, "mat4 spvInverse", suffix, "(", qual, "mat4 m)");
+ begin_scope();
+ statement(qual, "vec4 t = vec4("
+ "m[2][1] * m[3][2] * m[1][3] - m[3][1] * m[2][2] * m[1][3] + m[3][1] * m[1][2] * m[2][3] - m[1][1] * m[3][2] * m[2][3] - m[2][1] * m[1][2] * m[3][3] + m[1][1] * m[2][2] * m[3][3], "
+ "m[3][0] * m[2][2] * m[1][3] - m[2][0] * m[3][2] * m[1][3] - m[3][0] * m[1][2] * m[2][3] + m[1][0] * m[3][2] * m[2][3] + m[2][0] * m[1][2] * m[3][3] - m[1][0] * m[2][2] * m[3][3], "
+ "m[2][0] * m[3][1] * m[1][3] - m[3][0] * m[2][1] * m[1][3] + m[3][0] * m[1][1] * m[2][3] - m[1][0] * m[3][1] * m[2][3] - m[2][0] * m[1][1] * m[3][3] + m[1][0] * m[2][1] * m[3][3], "
+ "m[3][0] * m[2][1] * m[1][2] - m[2][0] * m[3][1] * m[1][2] - m[3][0] * m[1][1] * m[2][2] + m[1][0] * m[3][1] * m[2][2] + m[2][0] * m[1][1] * m[3][2] - m[1][0] * m[2][1] * m[3][2]);");
+ statement("return mat4("
+ "t[0], "
+ "m[3][1] * m[2][2] * m[0][3] - m[2][1] * m[3][2] * m[0][3] - m[3][1] * m[0][2] * m[2][3] + m[0][1] * m[3][2] * m[2][3] + m[2][1] * m[0][2] * m[3][3] - m[0][1] * m[2][2] * m[3][3], "
+ "m[1][1] * m[3][2] * m[0][3] - m[3][1] * m[1][2] * m[0][3] + m[3][1] * m[0][2] * m[1][3] - m[0][1] * m[3][2] * m[1][3] - m[1][1] * m[0][2] * m[3][3] + m[0][1] * m[1][2] * m[3][3], "
+ "m[2][1] * m[1][2] * m[0][3] - m[1][1] * m[2][2] * m[0][3] - m[2][1] * m[0][2] * m[1][3] + m[0][1] * m[2][2] * m[1][3] + m[1][1] * m[0][2] * m[2][3] - m[0][1] * m[1][2] * m[2][3], "
+ "t[1], "
+ "m[2][0] * m[3][2] * m[0][3] - m[3][0] * m[2][2] * m[0][3] + m[3][0] * m[0][2] * m[2][3] - m[0][0] * m[3][2] * m[2][3] - m[2][0] * m[0][2] * m[3][3] + m[0][0] * m[2][2] * m[3][3], "
+ "m[3][0] * m[1][2] * m[0][3] - m[1][0] * m[3][2] * m[0][3] - m[3][0] * m[0][2] * m[1][3] + m[0][0] * m[3][2] * m[1][3] + m[1][0] * m[0][2] * m[3][3] - m[0][0] * m[1][2] * m[3][3], "
+ "m[1][0] * m[2][2] * m[0][3] - m[2][0] * m[1][2] * m[0][3] + m[2][0] * m[0][2] * m[1][3] - m[0][0] * m[2][2] * m[1][3] - m[1][0] * m[0][2] * m[2][3] + m[0][0] * m[1][2] * m[2][3], "
+ "t[2], "
+ "m[3][0] * m[2][1] * m[0][3] - m[2][0] * m[3][1] * m[0][3] - m[3][0] * m[0][1] * m[2][3] + m[0][0] * m[3][1] * m[2][3] + m[2][0] * m[0][1] * m[3][3] - m[0][0] * m[2][1] * m[3][3], "
+ "m[1][0] * m[3][1] * m[0][3] - m[3][0] * m[1][1] * m[0][3] + m[3][0] * m[0][1] * m[1][3] - m[0][0] * m[3][1] * m[1][3] - m[1][0] * m[0][1] * m[3][3] + m[0][0] * m[1][1] * m[3][3], "
+ "m[2][0] * m[1][1] * m[0][3] - m[1][0] * m[2][1] * m[0][3] - m[2][0] * m[0][1] * m[1][3] + m[0][0] * m[2][1] * m[1][3] + m[1][0] * m[0][1] * m[2][3] - m[0][0] * m[1][1] * m[2][3], "
+ "t[3], "
+ "m[2][0] * m[3][1] * m[0][2] - m[3][0] * m[2][1] * m[0][2] + m[3][0] * m[0][1] * m[2][2] - m[0][0] * m[3][1] * m[2][2] - m[2][0] * m[0][1] * m[3][2] + m[0][0] * m[2][1] * m[3][2], "
+ "m[3][0] * m[1][1] * m[0][2] - m[1][0] * m[3][1] * m[0][2] - m[3][0] * m[0][1] * m[1][2] + m[0][0] * m[3][1] * m[1][2] + m[1][0] * m[0][1] * m[3][2] - m[0][0] * m[1][1] * m[3][2], "
+ "m[1][0] * m[2][1] * m[0][2] - m[2][0] * m[1][1] * m[0][2] + m[2][0] * m[0][1] * m[1][2] - m[0][0] * m[2][1] * m[1][2] - m[1][0] * m[0][1] * m[2][2] + m[0][0] * m[1][1] * m[2][2]) "
+ "* (1.0 / dot(m[0], t));");
+ end_scope();
+ statement("");
+ }
+
+ if (!relaxed)
+ {
+ static const Polyfill polys[3][3] = {
+ { PolyfillNMin16, PolyfillNMin32, PolyfillNMin64 },
+ { PolyfillNMax16, PolyfillNMax32, PolyfillNMax64 },
+ { PolyfillNClamp16, PolyfillNClamp32, PolyfillNClamp64 },
+ };
+
+ static const GLSLstd450 glsl_ops[] = { GLSLstd450NMin, GLSLstd450NMax, GLSLstd450NClamp };
+ static const char *spv_ops[] = { "spvNMin", "spvNMax", "spvNClamp" };
+ bool has_poly = false;
+
+ for (uint32_t i = 0; i < 3; i++)
+ {
+ for (uint32_t j = 0; j < 3; j++)
+ {
+ if ((polyfills & polys[i][j]) == 0)
+ continue;
+
+ const char *types[3][4] = {
+ { "float16_t", "f16vec2", "f16vec3", "f16vec4" },
+ { "float", "vec2", "vec3", "vec4" },
+ { "double", "dvec2", "dvec3", "dvec4" },
+ };
+
+ for (uint32_t k = 0; k < 4; k++)
+ {
+ auto *type = types[j][k];
+
+ if (i < 2)
+ {
+ statement("spirv_instruction(set = \"GLSL.std.450\", id = ", glsl_ops[i], ") ",
+ type, " ", spv_ops[i], "(", type, ", ", type, ");");
+ }
+ else
+ {
+ statement("spirv_instruction(set = \"GLSL.std.450\", id = ", glsl_ops[i], ") ",
+ type, " ", spv_ops[i], "(", type, ", ", type, ", ", type, ");");
+ }
+
+ has_poly = true;
+ }
+ }
+ }
+
+ if (has_poly)
+ statement("");
+ }
+ else
+ {
+ // Mediump intrinsics don't work correctly, so wrap the intrinsic in an outer shell that ensures mediump
+ // propagation.
+
+ static const Polyfill polys[3][3] = {
+ { PolyfillNMin16, PolyfillNMin32, PolyfillNMin64 },
+ { PolyfillNMax16, PolyfillNMax32, PolyfillNMax64 },
+ { PolyfillNClamp16, PolyfillNClamp32, PolyfillNClamp64 },
+ };
+
+ static const char *spv_ops[] = { "spvNMin", "spvNMax", "spvNClamp" };
+
+ for (uint32_t i = 0; i < 3; i++)
+ {
+ for (uint32_t j = 0; j < 3; j++)
+ {
+ if ((polyfills & polys[i][j]) == 0)
+ continue;
+
+ const char *types[3][4] = {
+ { "float16_t", "f16vec2", "f16vec3", "f16vec4" },
+ { "float", "vec2", "vec3", "vec4" },
+ { "double", "dvec2", "dvec3", "dvec4" },
+ };
+
+ for (uint32_t k = 0; k < 4; k++)
+ {
+ auto *type = types[j][k];
+
+ if (i < 2)
+ {
+ statement("mediump ", type, " ", spv_ops[i], "Relaxed(",
+ "mediump ", type, " a, mediump ", type, " b)");
+ begin_scope();
+ statement("mediump ", type, " res = ", spv_ops[i], "(a, b);");
+ statement("return res;");
+ end_scope();
+ statement("");
+ }
+ else
+ {
+ statement("mediump ", type, " ", spv_ops[i], "Relaxed(",
+ "mediump ", type, " a, mediump ", type, " b, mediump ", type, " c)");
+ begin_scope();
+ statement("mediump ", type, " res = ", spv_ops[i], "(a, b, c);");
+ statement("return res;");
+ end_scope();
+ statement("");
+ }
+ }
+ }
+ }
+ }
+}
+
+// Returns a string representation of the ID, usable as a function arg.
+// Default is to simply return the expression representation fo the arg ID.
+// Subclasses may override to modify the return value.
+string CompilerGLSL::to_func_call_arg(const SPIRFunction::Parameter &, uint32_t id)
+{
+ // Make sure that we use the name of the original variable, and not the parameter alias.
+ uint32_t name_id = id;
+ auto *var = maybe_get<SPIRVariable>(id);
+ if (var && var->basevariable)
+ name_id = var->basevariable;
+ return to_expression(name_id);
+}
+
+void CompilerGLSL::force_temporary_and_recompile(uint32_t id)
+{
+ auto res = forced_temporaries.insert(id);
+
+ // Forcing new temporaries guarantees forward progress.
+ if (res.second)
+ force_recompile_guarantee_forward_progress();
+ else
+ force_recompile();
+}
+
+uint32_t CompilerGLSL::consume_temporary_in_precision_context(uint32_t type_id, uint32_t id, Options::Precision precision)
+{
+ // Constants do not have innate precision.
+ auto handle_type = ir.ids[id].get_type();
+ if (handle_type == TypeConstant || handle_type == TypeConstantOp || handle_type == TypeUndef)
+ return id;
+
+ // Ignore anything that isn't 32-bit values.
+ auto &type = get<SPIRType>(type_id);
+ if (type.pointer)
+ return id;
+ if (type.basetype != SPIRType::Float && type.basetype != SPIRType::UInt && type.basetype != SPIRType::Int)
+ return id;
+
+ if (precision == Options::DontCare)
+ {
+ // If precision is consumed as don't care (operations only consisting of constants),
+ // we need to bind the expression to a temporary,
+ // otherwise we have no way of controlling the precision later.
+ auto itr = forced_temporaries.insert(id);
+ if (itr.second)
+ force_recompile_guarantee_forward_progress();
+ return id;
+ }
+
+ auto current_precision = has_decoration(id, DecorationRelaxedPrecision) ? Options::Mediump : Options::Highp;
+ if (current_precision == precision)
+ return id;
+
+ auto itr = temporary_to_mirror_precision_alias.find(id);
+ if (itr == temporary_to_mirror_precision_alias.end())
+ {
+ uint32_t alias_id = ir.increase_bound_by(1);
+ auto &m = ir.meta[alias_id];
+ if (auto *input_m = ir.find_meta(id))
+ m = *input_m;
+
+ const char *prefix;
+ if (precision == Options::Mediump)
+ {
+ set_decoration(alias_id, DecorationRelaxedPrecision);
+ prefix = "mp_copy_";
+ }
+ else
+ {
+ unset_decoration(alias_id, DecorationRelaxedPrecision);
+ prefix = "hp_copy_";
+ }
+
+ auto alias_name = join(prefix, to_name(id));
+ ParsedIR::sanitize_underscores(alias_name);
+ set_name(alias_id, alias_name);
+
+ emit_op(type_id, alias_id, to_expression(id), true);
+ temporary_to_mirror_precision_alias[id] = alias_id;
+ forced_temporaries.insert(id);
+ forced_temporaries.insert(alias_id);
+ force_recompile_guarantee_forward_progress();
+ id = alias_id;
+ }
+ else
+ {
+ id = itr->second;
+ }
+
+ return id;
+}
+
+void CompilerGLSL::handle_invalid_expression(uint32_t id)
+{
+ // We tried to read an invalidated expression.
+ // This means we need another pass at compilation, but next time,
+ // force temporary variables so that they cannot be invalidated.
+ force_temporary_and_recompile(id);
+
+ // If the invalid expression happened as a result of a CompositeInsert
+ // overwrite, we must block this from happening next iteration.
+ if (composite_insert_overwritten.count(id))
+ block_composite_insert_overwrite.insert(id);
+}
+
+// Converts the format of the current expression from packed to unpacked,
+// by wrapping the expression in a constructor of the appropriate type.
+// GLSL does not support packed formats, so simply return the expression.
+// Subclasses that do will override.
+string CompilerGLSL::unpack_expression_type(string expr_str, const SPIRType &, uint32_t, bool, bool)
+{
+ return expr_str;
+}
+
+// Sometimes we proactively enclosed an expression where it turns out we might have not needed it after all.
+void CompilerGLSL::strip_enclosed_expression(string &expr)
+{
+ if (expr.size() < 2 || expr.front() != '(' || expr.back() != ')')
+ return;
+
+ // Have to make sure that our first and last parens actually enclose everything inside it.
+ uint32_t paren_count = 0;
+ for (auto &c : expr)
+ {
+ if (c == '(')
+ paren_count++;
+ else if (c == ')')
+ {
+ paren_count--;
+
+ // If we hit 0 and this is not the final char, our first and final parens actually don't
+ // enclose the expression, and we cannot strip, e.g.: (a + b) * (c + d).
+ if (paren_count == 0 && &c != &expr.back())
+ return;
+ }
+ }
+ expr.erase(expr.size() - 1, 1);
+ expr.erase(begin(expr));
+}
+
+bool CompilerGLSL::needs_enclose_expression(const std::string &expr)
+{
+ bool need_parens = false;
+
+ // If the expression starts with a unary we need to enclose to deal with cases where we have back-to-back
+ // unary expressions.
+ if (!expr.empty())
+ {
+ auto c = expr.front();
+ if (c == '-' || c == '+' || c == '!' || c == '~' || c == '&' || c == '*')
+ need_parens = true;
+ }
+
+ if (!need_parens)
+ {
+ uint32_t paren_count = 0;
+ for (auto c : expr)
+ {
+ if (c == '(' || c == '[')
+ paren_count++;
+ else if (c == ')' || c == ']')
+ {
+ assert(paren_count);
+ paren_count--;
+ }
+ else if (c == ' ' && paren_count == 0)
+ {
+ need_parens = true;
+ break;
+ }
+ }
+ assert(paren_count == 0);
+ }
+
+ return need_parens;
+}
+
+string CompilerGLSL::enclose_expression(const string &expr)
+{
+ // If this expression contains any spaces which are not enclosed by parentheses,
+ // we need to enclose it so we can treat the whole string as an expression.
+ // This happens when two expressions have been part of a binary op earlier.
+ if (needs_enclose_expression(expr))
+ return join('(', expr, ')');
+ else
+ return expr;
+}
+
+string CompilerGLSL::dereference_expression(const SPIRType &expr_type, const std::string &expr)
+{
+ // If this expression starts with an address-of operator ('&'), then
+ // just return the part after the operator.
+ // TODO: Strip parens if unnecessary?
+ if (expr.front() == '&')
+ return expr.substr(1);
+ else if (backend.native_pointers)
+ return join('*', expr);
+ else if (is_physical_pointer(expr_type) && !is_physical_pointer_to_buffer_block(expr_type))
+ return join(enclose_expression(expr), ".value");
+ else
+ return expr;
+}
+
+string CompilerGLSL::address_of_expression(const std::string &expr)
+{
+ if (expr.size() > 3 && expr[0] == '(' && expr[1] == '*' && expr.back() == ')')
+ {
+ // If we have an expression which looks like (*foo), taking the address of it is the same as stripping
+ // the first two and last characters. We might have to enclose the expression.
+ // This doesn't work for cases like (*foo + 10),
+ // but this is an r-value expression which we cannot take the address of anyways.
+ return enclose_expression(expr.substr(2, expr.size() - 3));
+ }
+ else if (expr.front() == '*')
+ {
+ // If this expression starts with a dereference operator ('*'), then
+ // just return the part after the operator.
+ return expr.substr(1);
+ }
+ else
+ return join('&', enclose_expression(expr));
+}
+
+// Just like to_expression except that we enclose the expression inside parentheses if needed.
+string CompilerGLSL::to_enclosed_expression(uint32_t id, bool register_expression_read)
+{
+ return enclose_expression(to_expression(id, register_expression_read));
+}
+
+// Used explicitly when we want to read a row-major expression, but without any transpose shenanigans.
+// need_transpose must be forced to false.
+string CompilerGLSL::to_unpacked_row_major_matrix_expression(uint32_t id)
+{
+ return unpack_expression_type(to_expression(id), expression_type(id),
+ get_extended_decoration(id, SPIRVCrossDecorationPhysicalTypeID),
+ has_extended_decoration(id, SPIRVCrossDecorationPhysicalTypePacked), true);
+}
+
+string CompilerGLSL::to_unpacked_expression(uint32_t id, bool register_expression_read)
+{
+ // If we need to transpose, it will also take care of unpacking rules.
+ auto *e = maybe_get<SPIRExpression>(id);
+ bool need_transpose = e && e->need_transpose;
+ bool is_remapped = has_extended_decoration(id, SPIRVCrossDecorationPhysicalTypeID);
+ bool is_packed = has_extended_decoration(id, SPIRVCrossDecorationPhysicalTypePacked);
+
+ if (!need_transpose && (is_remapped || is_packed))
+ {
+ return unpack_expression_type(to_expression(id, register_expression_read),
+ get_pointee_type(expression_type_id(id)),
+ get_extended_decoration(id, SPIRVCrossDecorationPhysicalTypeID),
+ has_extended_decoration(id, SPIRVCrossDecorationPhysicalTypePacked), false);
+ }
+ else
+ return to_expression(id, register_expression_read);
+}
+
+string CompilerGLSL::to_enclosed_unpacked_expression(uint32_t id, bool register_expression_read)
+{
+ return enclose_expression(to_unpacked_expression(id, register_expression_read));
+}
+
+string CompilerGLSL::to_dereferenced_expression(uint32_t id, bool register_expression_read)
+{
+ auto &type = expression_type(id);
+
+ if (is_pointer(type) && should_dereference(id))
+ return dereference_expression(type, to_enclosed_expression(id, register_expression_read));
+ else
+ return to_expression(id, register_expression_read);
+}
+
+string CompilerGLSL::to_pointer_expression(uint32_t id, bool register_expression_read)
+{
+ auto &type = expression_type(id);
+ if (is_pointer(type) && expression_is_lvalue(id) && !should_dereference(id))
+ return address_of_expression(to_enclosed_expression(id, register_expression_read));
+ else
+ return to_unpacked_expression(id, register_expression_read);
+}
+
+string CompilerGLSL::to_enclosed_pointer_expression(uint32_t id, bool register_expression_read)
+{
+ auto &type = expression_type(id);
+ if (is_pointer(type) && expression_is_lvalue(id) && !should_dereference(id))
+ return address_of_expression(to_enclosed_expression(id, register_expression_read));
+ else
+ return to_enclosed_unpacked_expression(id, register_expression_read);
+}
+
+string CompilerGLSL::to_extract_component_expression(uint32_t id, uint32_t index)
+{
+ auto expr = to_enclosed_expression(id);
+ if (has_extended_decoration(id, SPIRVCrossDecorationPhysicalTypePacked))
+ return join(expr, "[", index, "]");
+ else
+ return join(expr, ".", index_to_swizzle(index));
+}
+
+string CompilerGLSL::to_extract_constant_composite_expression(uint32_t result_type, const SPIRConstant &c,
+ const uint32_t *chain, uint32_t length)
+{
+ // It is kinda silly if application actually enter this path since they know the constant up front.
+ // It is useful here to extract the plain constant directly.
+ SPIRConstant tmp;
+ tmp.constant_type = result_type;
+ auto &composite_type = get<SPIRType>(c.constant_type);
+ assert(composite_type.basetype != SPIRType::Struct && composite_type.array.empty());
+ assert(!c.specialization);
+
+ if (is_matrix(composite_type))
+ {
+ if (length == 2)
+ {
+ tmp.m.c[0].vecsize = 1;
+ tmp.m.columns = 1;
+ tmp.m.c[0].r[0] = c.m.c[chain[0]].r[chain[1]];
+ }
+ else
+ {
+ assert(length == 1);
+ tmp.m.c[0].vecsize = composite_type.vecsize;
+ tmp.m.columns = 1;
+ tmp.m.c[0] = c.m.c[chain[0]];
+ }
+ }
+ else
+ {
+ assert(length == 1);
+ tmp.m.c[0].vecsize = 1;
+ tmp.m.columns = 1;
+ tmp.m.c[0].r[0] = c.m.c[0].r[chain[0]];
+ }
+
+ return constant_expression(tmp);
+}
+
+string CompilerGLSL::to_rerolled_array_expression(const SPIRType &parent_type,
+ const string &base_expr, const SPIRType &type)
+{
+ bool remapped_boolean = parent_type.basetype == SPIRType::Struct &&
+ type.basetype == SPIRType::Boolean &&
+ backend.boolean_in_struct_remapped_type != SPIRType::Boolean;
+
+ SPIRType tmp_type { OpNop };
+ if (remapped_boolean)
+ {
+ tmp_type = get<SPIRType>(type.parent_type);
+ tmp_type.basetype = backend.boolean_in_struct_remapped_type;
+ }
+ else if (type.basetype == SPIRType::Boolean && backend.boolean_in_struct_remapped_type != SPIRType::Boolean)
+ {
+ // It's possible that we have an r-value expression that was OpLoaded from a struct.
+ // We have to reroll this and explicitly cast the input to bool, because the r-value is short.
+ tmp_type = get<SPIRType>(type.parent_type);
+ remapped_boolean = true;
+ }
+
+ uint32_t size = to_array_size_literal(type);
+ auto &parent = get<SPIRType>(type.parent_type);
+ string expr = "{ ";
+
+ for (uint32_t i = 0; i < size; i++)
+ {
+ auto subexpr = join(base_expr, "[", convert_to_string(i), "]");
+ if (!is_array(parent))
+ {
+ if (remapped_boolean)
+ subexpr = join(type_to_glsl(tmp_type), "(", subexpr, ")");
+ expr += subexpr;
+ }
+ else
+ expr += to_rerolled_array_expression(parent_type, subexpr, parent);
+
+ if (i + 1 < size)
+ expr += ", ";
+ }
+
+ expr += " }";
+ return expr;
+}
+
+string CompilerGLSL::to_composite_constructor_expression(const SPIRType &parent_type, uint32_t id, bool block_like_type)
+{
+ auto &type = expression_type(id);
+
+ bool reroll_array = false;
+ bool remapped_boolean = parent_type.basetype == SPIRType::Struct &&
+ type.basetype == SPIRType::Boolean &&
+ backend.boolean_in_struct_remapped_type != SPIRType::Boolean;
+
+ if (is_array(type))
+ {
+ reroll_array = !backend.array_is_value_type ||
+ (block_like_type && !backend.array_is_value_type_in_buffer_blocks);
+
+ if (remapped_boolean)
+ {
+ // Forced to reroll if we have to change bool[] to short[].
+ reroll_array = true;
+ }
+ }
+
+ if (reroll_array)
+ {
+ // For this case, we need to "re-roll" an array initializer from a temporary.
+ // We cannot simply pass the array directly, since it decays to a pointer and it cannot
+ // participate in a struct initializer. E.g.
+ // float arr[2] = { 1.0, 2.0 };
+ // Foo foo = { arr }; must be transformed to
+ // Foo foo = { { arr[0], arr[1] } };
+ // The array sizes cannot be deduced from specialization constants since we cannot use any loops.
+
+ // We're only triggering one read of the array expression, but this is fine since arrays have to be declared
+ // as temporaries anyways.
+ return to_rerolled_array_expression(parent_type, to_enclosed_expression(id), type);
+ }
+ else
+ {
+ auto expr = to_unpacked_expression(id);
+ if (remapped_boolean)
+ {
+ auto tmp_type = type;
+ tmp_type.basetype = backend.boolean_in_struct_remapped_type;
+ expr = join(type_to_glsl(tmp_type), "(", expr, ")");
+ }
+
+ return expr;
+ }
+}
+
+string CompilerGLSL::to_non_uniform_aware_expression(uint32_t id)
+{
+ string expr = to_expression(id);
+
+ if (has_decoration(id, DecorationNonUniform))
+ convert_non_uniform_expression(expr, id);
+
+ return expr;
+}
+
+string CompilerGLSL::to_expression(uint32_t id, bool register_expression_read)
+{
+ auto itr = invalid_expressions.find(id);
+ if (itr != end(invalid_expressions))
+ handle_invalid_expression(id);
+
+ if (ir.ids[id].get_type() == TypeExpression)
+ {
+ // We might have a more complex chain of dependencies.
+ // A possible scenario is that we
+ //
+ // %1 = OpLoad
+ // %2 = OpDoSomething %1 %1. here %2 will have a dependency on %1.
+ // %3 = OpDoSomethingAgain %2 %2. Here %3 will lose the link to %1 since we don't propagate the dependencies like that.
+ // OpStore %1 %foo // Here we can invalidate %1, and hence all expressions which depend on %1. Only %2 will know since it's part of invalid_expressions.
+ // %4 = OpDoSomethingAnotherTime %3 %3 // If we forward all expressions we will see %1 expression after store, not before.
+ //
+ // However, we can propagate up a list of depended expressions when we used %2, so we can check if %2 is invalid when reading %3 after the store,
+ // and see that we should not forward reads of the original variable.
+ auto &expr = get<SPIRExpression>(id);
+ for (uint32_t dep : expr.expression_dependencies)
+ if (invalid_expressions.find(dep) != end(invalid_expressions))
+ handle_invalid_expression(dep);
+ }
+
+ if (register_expression_read)
+ track_expression_read(id);
+
+ switch (ir.ids[id].get_type())
+ {
+ case TypeExpression:
+ {
+ auto &e = get<SPIRExpression>(id);
+ if (e.base_expression)
+ return to_enclosed_expression(e.base_expression) + e.expression;
+ else if (e.need_transpose)
+ {
+ // This should not be reached for access chains, since we always deal explicitly with transpose state
+ // when consuming an access chain expression.
+ uint32_t physical_type_id = get_extended_decoration(id, SPIRVCrossDecorationPhysicalTypeID);
+ bool is_packed = has_extended_decoration(id, SPIRVCrossDecorationPhysicalTypePacked);
+ bool relaxed = has_decoration(id, DecorationRelaxedPrecision);
+ return convert_row_major_matrix(e.expression, get<SPIRType>(e.expression_type), physical_type_id,
+ is_packed, relaxed);
+ }
+ else if (flattened_structs.count(id))
+ {
+ return load_flattened_struct(e.expression, get<SPIRType>(e.expression_type));
+ }
+ else
+ {
+ if (is_forcing_recompilation())
+ {
+ // During first compilation phase, certain expression patterns can trigger exponential growth of memory.
+ // Avoid this by returning dummy expressions during this phase.
+ // Do not use empty expressions here, because those are sentinels for other cases.
+ return "_";
+ }
+ else
+ return e.expression;
+ }
+ }
+
+ case TypeConstant:
+ {
+ auto &c = get<SPIRConstant>(id);
+ auto &type = get<SPIRType>(c.constant_type);
+
+ // WorkGroupSize may be a constant.
+ if (has_decoration(c.self, DecorationBuiltIn))
+ return builtin_to_glsl(BuiltIn(get_decoration(c.self, DecorationBuiltIn)), StorageClassGeneric);
+ else if (c.specialization)
+ {
+ if (backend.workgroup_size_is_hidden)
+ {
+ int wg_index = get_constant_mapping_to_workgroup_component(c);
+ if (wg_index >= 0)
+ {
+ auto wg_size = join(builtin_to_glsl(BuiltInWorkgroupSize, StorageClassInput), vector_swizzle(1, wg_index));
+ if (type.basetype != SPIRType::UInt)
+ wg_size = bitcast_expression(type, SPIRType::UInt, wg_size);
+ return wg_size;
+ }
+ }
+
+ if (expression_is_forwarded(id))
+ return constant_expression(c);
+
+ return to_name(id);
+ }
+ else if (c.is_used_as_lut)
+ return to_name(id);
+ else if (type.basetype == SPIRType::Struct && !backend.can_declare_struct_inline)
+ return to_name(id);
+ else if (!type.array.empty() && !backend.can_declare_arrays_inline)
+ return to_name(id);
+ else
+ return constant_expression(c);
+ }
+
+ case TypeConstantOp:
+ return to_name(id);
+
+ case TypeVariable:
+ {
+ auto &var = get<SPIRVariable>(id);
+ // If we try to use a loop variable before the loop header, we have to redirect it to the static expression,
+ // the variable has not been declared yet.
+ if (var.statically_assigned || (var.loop_variable && !var.loop_variable_enable))
+ {
+ // We might try to load from a loop variable before it has been initialized.
+ // Prefer static expression and fallback to initializer.
+ if (var.static_expression)
+ return to_expression(var.static_expression);
+ else if (var.initializer)
+ return to_expression(var.initializer);
+ else
+ {
+ // We cannot declare the variable yet, so have to fake it.
+ uint32_t undef_id = ir.increase_bound_by(1);
+ return emit_uninitialized_temporary_expression(get_variable_data_type_id(var), undef_id).expression;
+ }
+ }
+ else if (var.deferred_declaration)
+ {
+ var.deferred_declaration = false;
+ return variable_decl(var);
+ }
+ else if (flattened_structs.count(id))
+ {
+ return load_flattened_struct(to_name(id), get<SPIRType>(var.basetype));
+ }
+ else
+ {
+ auto &dec = ir.meta[var.self].decoration;
+ if (dec.builtin)
+ return builtin_to_glsl(dec.builtin_type, var.storage);
+ else
+ return to_name(id);
+ }
+ }
+
+ case TypeCombinedImageSampler:
+ // This type should never be taken the expression of directly.
+ // The intention is that texture sampling functions will extract the image and samplers
+ // separately and take their expressions as needed.
+ // GLSL does not use this type because OpSampledImage immediately creates a combined image sampler
+ // expression ala sampler2D(texture, sampler).
+ SPIRV_CROSS_THROW("Combined image samplers have no default expression representation.");
+
+ case TypeAccessChain:
+ // We cannot express this type. They only have meaning in other OpAccessChains, OpStore or OpLoad.
+ SPIRV_CROSS_THROW("Access chains have no default expression representation.");
+
+ default:
+ return to_name(id);
+ }
+}
+
+SmallVector<ConstantID> CompilerGLSL::get_composite_constant_ids(ConstantID const_id)
+{
+ if (auto *constant = maybe_get<SPIRConstant>(const_id))
+ {
+ const auto &type = get<SPIRType>(constant->constant_type);
+ if (is_array(type) || type.basetype == SPIRType::Struct)
+ return constant->subconstants;
+ if (is_matrix(type))
+ return SmallVector<ConstantID>(constant->m.id);
+ if (is_vector(type))
+ return SmallVector<ConstantID>(constant->m.c[0].id);
+ SPIRV_CROSS_THROW("Unexpected scalar constant!");
+ }
+ if (!const_composite_insert_ids.count(const_id))
+ SPIRV_CROSS_THROW("Unimplemented for this OpSpecConstantOp!");
+ return const_composite_insert_ids[const_id];
+}
+
+void CompilerGLSL::fill_composite_constant(SPIRConstant &constant, TypeID type_id,
+ const SmallVector<ConstantID> &initializers)
+{
+ auto &type = get<SPIRType>(type_id);
+ constant.specialization = true;
+ if (is_array(type) || type.basetype == SPIRType::Struct)
+ {
+ constant.subconstants = initializers;
+ }
+ else if (is_matrix(type))
+ {
+ constant.m.columns = type.columns;
+ for (uint32_t i = 0; i < type.columns; ++i)
+ {
+ constant.m.id[i] = initializers[i];
+ constant.m.c[i].vecsize = type.vecsize;
+ }
+ }
+ else if (is_vector(type))
+ {
+ constant.m.c[0].vecsize = type.vecsize;
+ for (uint32_t i = 0; i < type.vecsize; ++i)
+ constant.m.c[0].id[i] = initializers[i];
+ }
+ else
+ SPIRV_CROSS_THROW("Unexpected scalar in SpecConstantOp CompositeInsert!");
+}
+
+void CompilerGLSL::set_composite_constant(ConstantID const_id, TypeID type_id,
+ const SmallVector<ConstantID> &initializers)
+{
+ if (maybe_get<SPIRConstantOp>(const_id))
+ {
+ const_composite_insert_ids[const_id] = initializers;
+ return;
+ }
+
+ auto &constant = set<SPIRConstant>(const_id, type_id);
+ fill_composite_constant(constant, type_id, initializers);
+ forwarded_temporaries.insert(const_id);
+}
+
+TypeID CompilerGLSL::get_composite_member_type(TypeID type_id, uint32_t member_idx)
+{
+ auto &type = get<SPIRType>(type_id);
+ if (is_array(type))
+ return type.parent_type;
+ if (type.basetype == SPIRType::Struct)
+ return type.member_types[member_idx];
+ if (is_matrix(type))
+ return type.parent_type;
+ if (is_vector(type))
+ return type.parent_type;
+ SPIRV_CROSS_THROW("Shouldn't reach lower than vector handling OpSpecConstantOp CompositeInsert!");
+}
+
+string CompilerGLSL::constant_op_expression(const SPIRConstantOp &cop)
+{
+ auto &type = get<SPIRType>(cop.basetype);
+ bool binary = false;
+ bool unary = false;
+ string op;
+
+ if (is_legacy() && is_unsigned_opcode(cop.opcode))
+ SPIRV_CROSS_THROW("Unsigned integers are not supported on legacy targets.");
+
+ // TODO: Find a clean way to reuse emit_instruction.
+ switch (cop.opcode)
+ {
+ case OpSConvert:
+ case OpUConvert:
+ case OpFConvert:
+ op = type_to_glsl_constructor(type);
+ break;
+
+#define GLSL_BOP(opname, x) \
+ case Op##opname: \
+ binary = true; \
+ op = x; \
+ break
+
+#define GLSL_UOP(opname, x) \
+ case Op##opname: \
+ unary = true; \
+ op = x; \
+ break
+
+ GLSL_UOP(SNegate, "-");
+ GLSL_UOP(Not, "~");
+ GLSL_BOP(IAdd, "+");
+ GLSL_BOP(ISub, "-");
+ GLSL_BOP(IMul, "*");
+ GLSL_BOP(SDiv, "/");
+ GLSL_BOP(UDiv, "/");
+ GLSL_BOP(UMod, "%");
+ GLSL_BOP(SMod, "%");
+ GLSL_BOP(ShiftRightLogical, ">>");
+ GLSL_BOP(ShiftRightArithmetic, ">>");
+ GLSL_BOP(ShiftLeftLogical, "<<");
+ GLSL_BOP(BitwiseOr, "|");
+ GLSL_BOP(BitwiseXor, "^");
+ GLSL_BOP(BitwiseAnd, "&");
+ GLSL_BOP(LogicalOr, "||");
+ GLSL_BOP(LogicalAnd, "&&");
+ GLSL_UOP(LogicalNot, "!");
+ GLSL_BOP(LogicalEqual, "==");
+ GLSL_BOP(LogicalNotEqual, "!=");
+ GLSL_BOP(IEqual, "==");
+ GLSL_BOP(INotEqual, "!=");
+ GLSL_BOP(ULessThan, "<");
+ GLSL_BOP(SLessThan, "<");
+ GLSL_BOP(ULessThanEqual, "<=");
+ GLSL_BOP(SLessThanEqual, "<=");
+ GLSL_BOP(UGreaterThan, ">");
+ GLSL_BOP(SGreaterThan, ">");
+ GLSL_BOP(UGreaterThanEqual, ">=");
+ GLSL_BOP(SGreaterThanEqual, ">=");
+
+ case OpSRem:
+ {
+ uint32_t op0 = cop.arguments[0];
+ uint32_t op1 = cop.arguments[1];
+ return join(to_enclosed_expression(op0), " - ", to_enclosed_expression(op1), " * ", "(",
+ to_enclosed_expression(op0), " / ", to_enclosed_expression(op1), ")");
+ }
+
+ case OpSelect:
+ {
+ if (cop.arguments.size() < 3)
+ SPIRV_CROSS_THROW("Not enough arguments to OpSpecConstantOp.");
+
+ // This one is pretty annoying. It's triggered from
+ // uint(bool), int(bool) from spec constants.
+ // In order to preserve its compile-time constness in Vulkan GLSL,
+ // we need to reduce the OpSelect expression back to this simplified model.
+ // If we cannot, fail.
+ if (to_trivial_mix_op(type, op, cop.arguments[2], cop.arguments[1], cop.arguments[0]))
+ {
+ // Implement as a simple cast down below.
+ }
+ else
+ {
+ // Implement a ternary and pray the compiler understands it :)
+ return to_ternary_expression(type, cop.arguments[0], cop.arguments[1], cop.arguments[2]);
+ }
+ break;
+ }
+
+ case OpVectorShuffle:
+ {
+ string expr = type_to_glsl_constructor(type);
+ expr += "(";
+
+ uint32_t left_components = expression_type(cop.arguments[0]).vecsize;
+ string left_arg = to_enclosed_expression(cop.arguments[0]);
+ string right_arg = to_enclosed_expression(cop.arguments[1]);
+
+ for (uint32_t i = 2; i < uint32_t(cop.arguments.size()); i++)
+ {
+ uint32_t index = cop.arguments[i];
+ if (index == 0xFFFFFFFF)
+ {
+ SPIRConstant c;
+ c.constant_type = type.parent_type;
+ assert(type.parent_type != ID(0));
+ expr += constant_expression(c);
+ }
+ else if (index >= left_components)
+ {
+ expr += right_arg + "." + "xyzw"[index - left_components];
+ }
+ else
+ {
+ expr += left_arg + "." + "xyzw"[index];
+ }
+
+ if (i + 1 < uint32_t(cop.arguments.size()))
+ expr += ", ";
+ }
+
+ expr += ")";
+ return expr;
+ }
+
+ case OpCompositeExtract:
+ {
+ auto expr = access_chain_internal(cop.arguments[0], &cop.arguments[1], uint32_t(cop.arguments.size() - 1),
+ ACCESS_CHAIN_INDEX_IS_LITERAL_BIT, nullptr);
+ return expr;
+ }
+
+ case OpCompositeInsert:
+ {
+ SmallVector<ConstantID> new_init = get_composite_constant_ids(cop.arguments[1]);
+ uint32_t idx;
+ uint32_t target_id = cop.self;
+ uint32_t target_type_id = cop.basetype;
+ // We have to drill down to the part we want to modify, and create new
+ // constants for each containing part.
+ for (idx = 2; idx < cop.arguments.size() - 1; ++idx)
+ {
+ uint32_t new_const = ir.increase_bound_by(1);
+ uint32_t old_const = new_init[cop.arguments[idx]];
+ new_init[cop.arguments[idx]] = new_const;
+ set_composite_constant(target_id, target_type_id, new_init);
+ new_init = get_composite_constant_ids(old_const);
+ target_id = new_const;
+ target_type_id = get_composite_member_type(target_type_id, cop.arguments[idx]);
+ }
+ // Now replace the initializer with the one from this instruction.
+ new_init[cop.arguments[idx]] = cop.arguments[0];
+ set_composite_constant(target_id, target_type_id, new_init);
+ SPIRConstant tmp_const(cop.basetype);
+ fill_composite_constant(tmp_const, cop.basetype, const_composite_insert_ids[cop.self]);
+ return constant_expression(tmp_const);
+ }
+
+ default:
+ // Some opcodes are unimplemented here, these are currently not possible to test from glslang.
+ SPIRV_CROSS_THROW("Unimplemented spec constant op.");
+ }
+
+ uint32_t bit_width = 0;
+ if (unary || binary || cop.opcode == OpSConvert || cop.opcode == OpUConvert)
+ bit_width = expression_type(cop.arguments[0]).width;
+
+ SPIRType::BaseType input_type;
+ bool skip_cast_if_equal_type = opcode_is_sign_invariant(cop.opcode);
+
+ switch (cop.opcode)
+ {
+ case OpIEqual:
+ case OpINotEqual:
+ input_type = to_signed_basetype(bit_width);
+ break;
+
+ case OpSLessThan:
+ case OpSLessThanEqual:
+ case OpSGreaterThan:
+ case OpSGreaterThanEqual:
+ case OpSMod:
+ case OpSDiv:
+ case OpShiftRightArithmetic:
+ case OpSConvert:
+ case OpSNegate:
+ input_type = to_signed_basetype(bit_width);
+ break;
+
+ case OpULessThan:
+ case OpULessThanEqual:
+ case OpUGreaterThan:
+ case OpUGreaterThanEqual:
+ case OpUMod:
+ case OpUDiv:
+ case OpShiftRightLogical:
+ case OpUConvert:
+ input_type = to_unsigned_basetype(bit_width);
+ break;
+
+ default:
+ input_type = type.basetype;
+ break;
+ }
+
+#undef GLSL_BOP
+#undef GLSL_UOP
+ if (binary)
+ {
+ if (cop.arguments.size() < 2)
+ SPIRV_CROSS_THROW("Not enough arguments to OpSpecConstantOp.");
+
+ string cast_op0;
+ string cast_op1;
+ auto expected_type = binary_op_bitcast_helper(cast_op0, cast_op1, input_type, cop.arguments[0],
+ cop.arguments[1], skip_cast_if_equal_type);
+
+ if (type.basetype != input_type && type.basetype != SPIRType::Boolean)
+ {
+ expected_type.basetype = input_type;
+ auto expr = bitcast_glsl_op(type, expected_type);
+ expr += '(';
+ expr += join(cast_op0, " ", op, " ", cast_op1);
+ expr += ')';
+ return expr;
+ }
+ else
+ return join("(", cast_op0, " ", op, " ", cast_op1, ")");
+ }
+ else if (unary)
+ {
+ if (cop.arguments.size() < 1)
+ SPIRV_CROSS_THROW("Not enough arguments to OpSpecConstantOp.");
+
+ // Auto-bitcast to result type as needed.
+ // Works around various casting scenarios in glslang as there is no OpBitcast for specialization constants.
+ return join("(", op, bitcast_glsl(type, cop.arguments[0]), ")");
+ }
+ else if (cop.opcode == OpSConvert || cop.opcode == OpUConvert)
+ {
+ if (cop.arguments.size() < 1)
+ SPIRV_CROSS_THROW("Not enough arguments to OpSpecConstantOp.");
+
+ auto &arg_type = expression_type(cop.arguments[0]);
+ if (arg_type.width < type.width && input_type != arg_type.basetype)
+ {
+ auto expected = arg_type;
+ expected.basetype = input_type;
+ return join(op, "(", bitcast_glsl(expected, cop.arguments[0]), ")");
+ }
+ else
+ return join(op, "(", to_expression(cop.arguments[0]), ")");
+ }
+ else
+ {
+ if (cop.arguments.size() < 1)
+ SPIRV_CROSS_THROW("Not enough arguments to OpSpecConstantOp.");
+ return join(op, "(", to_expression(cop.arguments[0]), ")");
+ }
+}
+
+string CompilerGLSL::constant_expression(const SPIRConstant &c,
+ bool inside_block_like_struct_scope,
+ bool inside_struct_scope)
+{
+ auto &type = get<SPIRType>(c.constant_type);
+
+ if (is_pointer(type))
+ {
+ return backend.null_pointer_literal;
+ }
+ else if (!c.subconstants.empty())
+ {
+ // Handles Arrays and structures.
+ string res;
+
+ // Only consider the decay if we are inside a struct scope where we are emitting a member with Offset decoration.
+ // Outside a block-like struct declaration, we can always bind to a constant array with templated type.
+ // Should look at ArrayStride here as well, but it's possible to declare a constant struct
+ // with Offset = 0, using no ArrayStride on the enclosed array type.
+ // A particular CTS test hits this scenario.
+ bool array_type_decays = inside_block_like_struct_scope &&
+ is_array(type) &&
+ !backend.array_is_value_type_in_buffer_blocks;
+
+ // Allow Metal to use the array<T> template to make arrays a value type
+ bool needs_trailing_tracket = false;
+ if (backend.use_initializer_list && backend.use_typed_initializer_list && type.basetype == SPIRType::Struct &&
+ !is_array(type))
+ {
+ res = type_to_glsl_constructor(type) + "{ ";
+ }
+ else if (backend.use_initializer_list && backend.use_typed_initializer_list && backend.array_is_value_type &&
+ is_array(type) && !array_type_decays)
+ {
+ const auto *p_type = &type;
+ SPIRType tmp_type { OpNop };
+
+ if (inside_struct_scope &&
+ backend.boolean_in_struct_remapped_type != SPIRType::Boolean &&
+ type.basetype == SPIRType::Boolean)
+ {
+ tmp_type = type;
+ tmp_type.basetype = backend.boolean_in_struct_remapped_type;
+ p_type = &tmp_type;
+ }
+
+ res = type_to_glsl_constructor(*p_type) + "({ ";
+ needs_trailing_tracket = true;
+ }
+ else if (backend.use_initializer_list)
+ {
+ res = "{ ";
+ }
+ else
+ {
+ res = type_to_glsl_constructor(type) + "(";
+ }
+
+ uint32_t subconstant_index = 0;
+ for (auto &elem : c.subconstants)
+ {
+ if (auto *op = maybe_get<SPIRConstantOp>(elem))
+ {
+ res += constant_op_expression(*op);
+ }
+ else if (maybe_get<SPIRUndef>(elem) != nullptr)
+ {
+ res += to_name(elem);
+ }
+ else
+ {
+ auto &subc = get<SPIRConstant>(elem);
+ if (subc.specialization && !expression_is_forwarded(elem))
+ res += to_name(elem);
+ else
+ {
+ if (!is_array(type) && type.basetype == SPIRType::Struct)
+ {
+ // When we get down to emitting struct members, override the block-like information.
+ // For constants, we can freely mix and match block-like state.
+ inside_block_like_struct_scope =
+ has_member_decoration(type.self, subconstant_index, DecorationOffset);
+ }
+
+ if (type.basetype == SPIRType::Struct)
+ inside_struct_scope = true;
+
+ res += constant_expression(subc, inside_block_like_struct_scope, inside_struct_scope);
+ }
+ }
+
+ if (&elem != &c.subconstants.back())
+ res += ", ";
+
+ subconstant_index++;
+ }
+
+ res += backend.use_initializer_list ? " }" : ")";
+ if (needs_trailing_tracket)
+ res += ")";
+
+ return res;
+ }
+ else if (type.basetype == SPIRType::Struct && type.member_types.size() == 0)
+ {
+ // Metal tessellation likes empty structs which are then constant expressions.
+ if (backend.supports_empty_struct)
+ return "{ }";
+ else if (backend.use_typed_initializer_list)
+ return join(type_to_glsl(type), "{ 0 }");
+ else if (backend.use_initializer_list)
+ return "{ 0 }";
+ else
+ return join(type_to_glsl(type), "(0)");
+ }
+ else if (c.columns() == 1)
+ {
+ auto res = constant_expression_vector(c, 0);
+
+ if (inside_struct_scope &&
+ backend.boolean_in_struct_remapped_type != SPIRType::Boolean &&
+ type.basetype == SPIRType::Boolean)
+ {
+ SPIRType tmp_type = type;
+ tmp_type.basetype = backend.boolean_in_struct_remapped_type;
+ res = join(type_to_glsl(tmp_type), "(", res, ")");
+ }
+
+ return res;
+ }
+ else
+ {
+ string res = type_to_glsl(type) + "(";
+ for (uint32_t col = 0; col < c.columns(); col++)
+ {
+ if (c.specialization_constant_id(col) != 0)
+ res += to_name(c.specialization_constant_id(col));
+ else
+ res += constant_expression_vector(c, col);
+
+ if (col + 1 < c.columns())
+ res += ", ";
+ }
+ res += ")";
+
+ if (inside_struct_scope &&
+ backend.boolean_in_struct_remapped_type != SPIRType::Boolean &&
+ type.basetype == SPIRType::Boolean)
+ {
+ SPIRType tmp_type = type;
+ tmp_type.basetype = backend.boolean_in_struct_remapped_type;
+ res = join(type_to_glsl(tmp_type), "(", res, ")");
+ }
+
+ return res;
+ }
+}
+
+#ifdef _MSC_VER
+// snprintf does not exist or is buggy on older MSVC versions, some of them
+// being used by MinGW. Use sprintf instead and disable corresponding warning.
+#pragma warning(push)
+#pragma warning(disable : 4996)
+#endif
+
+string CompilerGLSL::convert_half_to_string(const SPIRConstant &c, uint32_t col, uint32_t row)
+{
+ string res;
+ float float_value = c.scalar_f16(col, row);
+
+ // There is no literal "hf" in GL_NV_gpu_shader5, so to avoid lots
+ // of complicated workarounds, just value-cast to the half type always.
+ if (std::isnan(float_value) || std::isinf(float_value))
+ {
+ SPIRType type { OpTypeFloat };
+ type.basetype = SPIRType::Half;
+ type.vecsize = 1;
+ type.columns = 1;
+
+ if (float_value == numeric_limits<float>::infinity())
+ res = join(type_to_glsl(type), "(1.0 / 0.0)");
+ else if (float_value == -numeric_limits<float>::infinity())
+ res = join(type_to_glsl(type), "(-1.0 / 0.0)");
+ else if (std::isnan(float_value))
+ res = join(type_to_glsl(type), "(0.0 / 0.0)");
+ else
+ SPIRV_CROSS_THROW("Cannot represent non-finite floating point constant.");
+ }
+ else
+ {
+ SPIRType type { OpTypeFloat };
+ type.basetype = SPIRType::Half;
+ type.vecsize = 1;
+ type.columns = 1;
+ res = join(type_to_glsl(type), "(", format_float(float_value), ")");
+ }
+
+ return res;
+}
+
+string CompilerGLSL::convert_float_to_string(const SPIRConstant &c, uint32_t col, uint32_t row)
+{
+ string res;
+ float float_value = c.scalar_f32(col, row);
+
+ if (std::isnan(float_value) || std::isinf(float_value))
+ {
+ // Use special representation.
+ if (!is_legacy())
+ {
+ SPIRType out_type { OpTypeFloat };
+ SPIRType in_type { OpTypeInt };
+ out_type.basetype = SPIRType::Float;
+ in_type.basetype = SPIRType::UInt;
+ out_type.vecsize = 1;
+ in_type.vecsize = 1;
+ out_type.width = 32;
+ in_type.width = 32;
+
+ char print_buffer[32];
+#ifdef _WIN32
+ sprintf(print_buffer, "0x%xu", c.scalar(col, row));
+#else
+ snprintf(print_buffer, sizeof(print_buffer), "0x%xu", c.scalar(col, row));
+#endif
+
+ const char *comment = "inf";
+ if (float_value == -numeric_limits<float>::infinity())
+ comment = "-inf";
+ else if (std::isnan(float_value))
+ comment = "nan";
+ res = join(bitcast_glsl_op(out_type, in_type), "(", print_buffer, " /* ", comment, " */)");
+ }
+ else
+ {
+ if (float_value == numeric_limits<float>::infinity())
+ {
+ if (backend.float_literal_suffix)
+ res = "(1.0f / 0.0f)";
+ else
+ res = "(1.0 / 0.0)";
+ }
+ else if (float_value == -numeric_limits<float>::infinity())
+ {
+ if (backend.float_literal_suffix)
+ res = "(-1.0f / 0.0f)";
+ else
+ res = "(-1.0 / 0.0)";
+ }
+ else if (std::isnan(float_value))
+ {
+ if (backend.float_literal_suffix)
+ res = "(0.0f / 0.0f)";
+ else
+ res = "(0.0 / 0.0)";
+ }
+ else
+ SPIRV_CROSS_THROW("Cannot represent non-finite floating point constant.");
+ }
+ }
+ else
+ {
+ res = format_float(float_value);
+ if (backend.float_literal_suffix)
+ res += "f";
+ }
+
+ return res;
+}
+
+std::string CompilerGLSL::convert_double_to_string(const SPIRConstant &c, uint32_t col, uint32_t row)
+{
+ string res;
+ double double_value = c.scalar_f64(col, row);
+
+ if (std::isnan(double_value) || std::isinf(double_value))
+ {
+ // Use special representation.
+ if (!is_legacy())
+ {
+ SPIRType out_type { OpTypeFloat };
+ SPIRType in_type { OpTypeInt };
+ out_type.basetype = SPIRType::Double;
+ in_type.basetype = SPIRType::UInt64;
+ out_type.vecsize = 1;
+ in_type.vecsize = 1;
+ out_type.width = 64;
+ in_type.width = 64;
+
+ uint64_t u64_value = c.scalar_u64(col, row);
+
+ if (options.es && options.version < 310) // GL_NV_gpu_shader5 fallback requires 310.
+ SPIRV_CROSS_THROW("64-bit integers not supported in ES profile before version 310.");
+ require_extension_internal("GL_ARB_gpu_shader_int64");
+
+ char print_buffer[64];
+#ifdef _WIN32
+ sprintf(print_buffer, "0x%llx%s", static_cast<unsigned long long>(u64_value),
+ backend.long_long_literal_suffix ? "ull" : "ul");
+#else
+ snprintf(print_buffer, sizeof(print_buffer), "0x%llx%s", static_cast<unsigned long long>(u64_value),
+ backend.long_long_literal_suffix ? "ull" : "ul");
+#endif
+
+ const char *comment = "inf";
+ if (double_value == -numeric_limits<double>::infinity())
+ comment = "-inf";
+ else if (std::isnan(double_value))
+ comment = "nan";
+ res = join(bitcast_glsl_op(out_type, in_type), "(", print_buffer, " /* ", comment, " */)");
+ }
+ else
+ {
+ if (options.es)
+ SPIRV_CROSS_THROW("FP64 not supported in ES profile.");
+ if (options.version < 400)
+ require_extension_internal("GL_ARB_gpu_shader_fp64");
+
+ if (double_value == numeric_limits<double>::infinity())
+ {
+ if (backend.double_literal_suffix)
+ res = "(1.0lf / 0.0lf)";
+ else
+ res = "(1.0 / 0.0)";
+ }
+ else if (double_value == -numeric_limits<double>::infinity())
+ {
+ if (backend.double_literal_suffix)
+ res = "(-1.0lf / 0.0lf)";
+ else
+ res = "(-1.0 / 0.0)";
+ }
+ else if (std::isnan(double_value))
+ {
+ if (backend.double_literal_suffix)
+ res = "(0.0lf / 0.0lf)";
+ else
+ res = "(0.0 / 0.0)";
+ }
+ else
+ SPIRV_CROSS_THROW("Cannot represent non-finite floating point constant.");
+ }
+ }
+ else
+ {
+ res = format_double(double_value);
+ if (backend.double_literal_suffix)
+ res += "lf";
+ }
+
+ return res;
+}
+
+#ifdef _MSC_VER
+#pragma warning(pop)
+#endif
+
+string CompilerGLSL::constant_expression_vector(const SPIRConstant &c, uint32_t vector)
+{
+ auto type = get<SPIRType>(c.constant_type);
+ type.columns = 1;
+
+ auto scalar_type = type;
+ scalar_type.vecsize = 1;
+
+ string res;
+ bool splat = backend.use_constructor_splatting && c.vector_size() > 1;
+ bool swizzle_splat = backend.can_swizzle_scalar && c.vector_size() > 1;
+
+ if (!type_is_floating_point(type))
+ {
+ // Cannot swizzle literal integers as a special case.
+ swizzle_splat = false;
+ }
+
+ if (splat || swizzle_splat)
+ {
+ // Cannot use constant splatting if we have specialization constants somewhere in the vector.
+ for (uint32_t i = 0; i < c.vector_size(); i++)
+ {
+ if (c.specialization_constant_id(vector, i) != 0)
+ {
+ splat = false;
+ swizzle_splat = false;
+ break;
+ }
+ }
+ }
+
+ if (splat || swizzle_splat)
+ {
+ if (type.width == 64)
+ {
+ uint64_t ident = c.scalar_u64(vector, 0);
+ for (uint32_t i = 1; i < c.vector_size(); i++)
+ {
+ if (ident != c.scalar_u64(vector, i))
+ {
+ splat = false;
+ swizzle_splat = false;
+ break;
+ }
+ }
+ }
+ else
+ {
+ uint32_t ident = c.scalar(vector, 0);
+ for (uint32_t i = 1; i < c.vector_size(); i++)
+ {
+ if (ident != c.scalar(vector, i))
+ {
+ splat = false;
+ swizzle_splat = false;
+ }
+ }
+ }
+ }
+
+ if (c.vector_size() > 1 && !swizzle_splat)
+ res += type_to_glsl(type) + "(";
+
+ switch (type.basetype)
+ {
+ case SPIRType::Half:
+ if (splat || swizzle_splat)
+ {
+ res += convert_half_to_string(c, vector, 0);
+ if (swizzle_splat)
+ res = remap_swizzle(get<SPIRType>(c.constant_type), 1, res);
+ }
+ else
+ {
+ for (uint32_t i = 0; i < c.vector_size(); i++)
+ {
+ if (c.vector_size() > 1 && c.specialization_constant_id(vector, i) != 0)
+ res += to_expression(c.specialization_constant_id(vector, i));
+ else
+ res += convert_half_to_string(c, vector, i);
+
+ if (i + 1 < c.vector_size())
+ res += ", ";
+ }
+ }
+ break;
+
+ case SPIRType::Float:
+ if (splat || swizzle_splat)
+ {
+ res += convert_float_to_string(c, vector, 0);
+ if (swizzle_splat)
+ res = remap_swizzle(get<SPIRType>(c.constant_type), 1, res);
+ }
+ else
+ {
+ for (uint32_t i = 0; i < c.vector_size(); i++)
+ {
+ if (c.vector_size() > 1 && c.specialization_constant_id(vector, i) != 0)
+ res += to_expression(c.specialization_constant_id(vector, i));
+ else
+ res += convert_float_to_string(c, vector, i);
+
+ if (i + 1 < c.vector_size())
+ res += ", ";
+ }
+ }
+ break;
+
+ case SPIRType::Double:
+ if (splat || swizzle_splat)
+ {
+ res += convert_double_to_string(c, vector, 0);
+ if (swizzle_splat)
+ res = remap_swizzle(get<SPIRType>(c.constant_type), 1, res);
+ }
+ else
+ {
+ for (uint32_t i = 0; i < c.vector_size(); i++)
+ {
+ if (c.vector_size() > 1 && c.specialization_constant_id(vector, i) != 0)
+ res += to_expression(c.specialization_constant_id(vector, i));
+ else
+ res += convert_double_to_string(c, vector, i);
+
+ if (i + 1 < c.vector_size())
+ res += ", ";
+ }
+ }
+ break;
+
+ case SPIRType::Int64:
+ {
+ auto tmp = type;
+ tmp.vecsize = 1;
+ tmp.columns = 1;
+ auto int64_type = type_to_glsl(tmp);
+
+ if (splat)
+ {
+ res += convert_to_string(c.scalar_i64(vector, 0), int64_type, backend.long_long_literal_suffix);
+ }
+ else
+ {
+ for (uint32_t i = 0; i < c.vector_size(); i++)
+ {
+ if (c.vector_size() > 1 && c.specialization_constant_id(vector, i) != 0)
+ res += to_expression(c.specialization_constant_id(vector, i));
+ else
+ res += convert_to_string(c.scalar_i64(vector, i), int64_type, backend.long_long_literal_suffix);
+
+ if (i + 1 < c.vector_size())
+ res += ", ";
+ }
+ }
+ break;
+ }
+
+ case SPIRType::UInt64:
+ if (splat)
+ {
+ res += convert_to_string(c.scalar_u64(vector, 0));
+ if (backend.long_long_literal_suffix)
+ res += "ull";
+ else
+ res += "ul";
+ }
+ else
+ {
+ for (uint32_t i = 0; i < c.vector_size(); i++)
+ {
+ if (c.vector_size() > 1 && c.specialization_constant_id(vector, i) != 0)
+ res += to_expression(c.specialization_constant_id(vector, i));
+ else
+ {
+ res += convert_to_string(c.scalar_u64(vector, i));
+ if (backend.long_long_literal_suffix)
+ res += "ull";
+ else
+ res += "ul";
+ }
+
+ if (i + 1 < c.vector_size())
+ res += ", ";
+ }
+ }
+ break;
+
+ case SPIRType::UInt:
+ if (splat)
+ {
+ res += convert_to_string(c.scalar(vector, 0));
+ if (is_legacy())
+ {
+ // Fake unsigned constant literals with signed ones if possible.
+ // Things like array sizes, etc, tend to be unsigned even though they could just as easily be signed.
+ if (c.scalar_i32(vector, 0) < 0)
+ SPIRV_CROSS_THROW("Tried to convert uint literal into int, but this made the literal negative.");
+ }
+ else if (backend.uint32_t_literal_suffix)
+ res += "u";
+ }
+ else
+ {
+ for (uint32_t i = 0; i < c.vector_size(); i++)
+ {
+ if (c.vector_size() > 1 && c.specialization_constant_id(vector, i) != 0)
+ res += to_expression(c.specialization_constant_id(vector, i));
+ else
+ {
+ res += convert_to_string(c.scalar(vector, i));
+ if (is_legacy())
+ {
+ // Fake unsigned constant literals with signed ones if possible.
+ // Things like array sizes, etc, tend to be unsigned even though they could just as easily be signed.
+ if (c.scalar_i32(vector, i) < 0)
+ SPIRV_CROSS_THROW("Tried to convert uint literal into int, but this made "
+ "the literal negative.");
+ }
+ else if (backend.uint32_t_literal_suffix)
+ res += "u";
+ }
+
+ if (i + 1 < c.vector_size())
+ res += ", ";
+ }
+ }
+ break;
+
+ case SPIRType::Int:
+ if (splat)
+ res += convert_to_string(c.scalar_i32(vector, 0));
+ else
+ {
+ for (uint32_t i = 0; i < c.vector_size(); i++)
+ {
+ if (c.vector_size() > 1 && c.specialization_constant_id(vector, i) != 0)
+ res += to_expression(c.specialization_constant_id(vector, i));
+ else
+ res += convert_to_string(c.scalar_i32(vector, i));
+ if (i + 1 < c.vector_size())
+ res += ", ";
+ }
+ }
+ break;
+
+ case SPIRType::UShort:
+ if (splat)
+ {
+ res += convert_to_string(c.scalar(vector, 0));
+ }
+ else
+ {
+ for (uint32_t i = 0; i < c.vector_size(); i++)
+ {
+ if (c.vector_size() > 1 && c.specialization_constant_id(vector, i) != 0)
+ res += to_expression(c.specialization_constant_id(vector, i));
+ else
+ {
+ if (*backend.uint16_t_literal_suffix)
+ {
+ res += convert_to_string(c.scalar_u16(vector, i));
+ res += backend.uint16_t_literal_suffix;
+ }
+ else
+ {
+ // If backend doesn't have a literal suffix, we need to value cast.
+ res += type_to_glsl(scalar_type);
+ res += "(";
+ res += convert_to_string(c.scalar_u16(vector, i));
+ res += ")";
+ }
+ }
+
+ if (i + 1 < c.vector_size())
+ res += ", ";
+ }
+ }
+ break;
+
+ case SPIRType::Short:
+ if (splat)
+ {
+ res += convert_to_string(c.scalar_i16(vector, 0));
+ }
+ else
+ {
+ for (uint32_t i = 0; i < c.vector_size(); i++)
+ {
+ if (c.vector_size() > 1 && c.specialization_constant_id(vector, i) != 0)
+ res += to_expression(c.specialization_constant_id(vector, i));
+ else
+ {
+ if (*backend.int16_t_literal_suffix)
+ {
+ res += convert_to_string(c.scalar_i16(vector, i));
+ res += backend.int16_t_literal_suffix;
+ }
+ else
+ {
+ // If backend doesn't have a literal suffix, we need to value cast.
+ res += type_to_glsl(scalar_type);
+ res += "(";
+ res += convert_to_string(c.scalar_i16(vector, i));
+ res += ")";
+ }
+ }
+
+ if (i + 1 < c.vector_size())
+ res += ", ";
+ }
+ }
+ break;
+
+ case SPIRType::UByte:
+ if (splat)
+ {
+ res += convert_to_string(c.scalar_u8(vector, 0));
+ }
+ else
+ {
+ for (uint32_t i = 0; i < c.vector_size(); i++)
+ {
+ if (c.vector_size() > 1 && c.specialization_constant_id(vector, i) != 0)
+ res += to_expression(c.specialization_constant_id(vector, i));
+ else
+ {
+ res += type_to_glsl(scalar_type);
+ res += "(";
+ res += convert_to_string(c.scalar_u8(vector, i));
+ res += ")";
+ }
+
+ if (i + 1 < c.vector_size())
+ res += ", ";
+ }
+ }
+ break;
+
+ case SPIRType::SByte:
+ if (splat)
+ {
+ res += convert_to_string(c.scalar_i8(vector, 0));
+ }
+ else
+ {
+ for (uint32_t i = 0; i < c.vector_size(); i++)
+ {
+ if (c.vector_size() > 1 && c.specialization_constant_id(vector, i) != 0)
+ res += to_expression(c.specialization_constant_id(vector, i));
+ else
+ {
+ res += type_to_glsl(scalar_type);
+ res += "(";
+ res += convert_to_string(c.scalar_i8(vector, i));
+ res += ")";
+ }
+
+ if (i + 1 < c.vector_size())
+ res += ", ";
+ }
+ }
+ break;
+
+ case SPIRType::Boolean:
+ if (splat)
+ res += c.scalar(vector, 0) ? "true" : "false";
+ else
+ {
+ for (uint32_t i = 0; i < c.vector_size(); i++)
+ {
+ if (c.vector_size() > 1 && c.specialization_constant_id(vector, i) != 0)
+ res += to_expression(c.specialization_constant_id(vector, i));
+ else
+ res += c.scalar(vector, i) ? "true" : "false";
+
+ if (i + 1 < c.vector_size())
+ res += ", ";
+ }
+ }
+ break;
+
+ default:
+ SPIRV_CROSS_THROW("Invalid constant expression basetype.");
+ }
+
+ if (c.vector_size() > 1 && !swizzle_splat)
+ res += ")";
+
+ return res;
+}
+
+SPIRExpression &CompilerGLSL::emit_uninitialized_temporary_expression(uint32_t type, uint32_t id)
+{
+ forced_temporaries.insert(id);
+ emit_uninitialized_temporary(type, id);
+ return set<SPIRExpression>(id, to_name(id), type, true);
+}
+
+void CompilerGLSL::emit_uninitialized_temporary(uint32_t result_type, uint32_t result_id)
+{
+ // If we're declaring temporaries inside continue blocks,
+ // we must declare the temporary in the loop header so that the continue block can avoid declaring new variables.
+ if (!block_temporary_hoisting && current_continue_block && !hoisted_temporaries.count(result_id))
+ {
+ auto &header = get<SPIRBlock>(current_continue_block->loop_dominator);
+ if (find_if(begin(header.declare_temporary), end(header.declare_temporary),
+ [result_type, result_id](const pair<uint32_t, uint32_t> &tmp) {
+ return tmp.first == result_type && tmp.second == result_id;
+ }) == end(header.declare_temporary))
+ {
+ header.declare_temporary.emplace_back(result_type, result_id);
+ hoisted_temporaries.insert(result_id);
+ force_recompile();
+ }
+ }
+ else if (hoisted_temporaries.count(result_id) == 0)
+ {
+ auto &type = get<SPIRType>(result_type);
+ auto &flags = get_decoration_bitset(result_id);
+
+ // The result_id has not been made into an expression yet, so use flags interface.
+ add_local_variable_name(result_id);
+
+ string initializer;
+ if (options.force_zero_initialized_variables && type_can_zero_initialize(type))
+ initializer = join(" = ", to_zero_initialized_expression(result_type));
+
+ statement(flags_to_qualifiers_glsl(type, flags), variable_decl(type, to_name(result_id)), initializer, ";");
+ }
+}
+
+string CompilerGLSL::declare_temporary(uint32_t result_type, uint32_t result_id)
+{
+ auto &type = get<SPIRType>(result_type);
+
+ // If we're declaring temporaries inside continue blocks,
+ // we must declare the temporary in the loop header so that the continue block can avoid declaring new variables.
+ if (!block_temporary_hoisting && current_continue_block && !hoisted_temporaries.count(result_id))
+ {
+ auto &header = get<SPIRBlock>(current_continue_block->loop_dominator);
+ if (find_if(begin(header.declare_temporary), end(header.declare_temporary),
+ [result_type, result_id](const pair<uint32_t, uint32_t> &tmp) {
+ return tmp.first == result_type && tmp.second == result_id;
+ }) == end(header.declare_temporary))
+ {
+ header.declare_temporary.emplace_back(result_type, result_id);
+ hoisted_temporaries.insert(result_id);
+ force_recompile_guarantee_forward_progress();
+ }
+
+ return join(to_name(result_id), " = ");
+ }
+ else if (hoisted_temporaries.count(result_id))
+ {
+ // The temporary has already been declared earlier, so just "declare" the temporary by writing to it.
+ return join(to_name(result_id), " = ");
+ }
+ else
+ {
+ // The result_id has not been made into an expression yet, so use flags interface.
+ add_local_variable_name(result_id);
+ auto &flags = get_decoration_bitset(result_id);
+ return join(flags_to_qualifiers_glsl(type, flags), variable_decl(type, to_name(result_id)), " = ");
+ }
+}
+
+bool CompilerGLSL::expression_is_forwarded(uint32_t id) const
+{
+ return forwarded_temporaries.count(id) != 0;
+}
+
+bool CompilerGLSL::expression_suppresses_usage_tracking(uint32_t id) const
+{
+ return suppressed_usage_tracking.count(id) != 0;
+}
+
+bool CompilerGLSL::expression_read_implies_multiple_reads(uint32_t id) const
+{
+ auto *expr = maybe_get<SPIRExpression>(id);
+ if (!expr)
+ return false;
+
+ // If we're emitting code at a deeper loop level than when we emitted the expression,
+ // we're probably reading the same expression over and over.
+ return current_loop_level > expr->emitted_loop_level;
+}
+
+SPIRExpression &CompilerGLSL::emit_op(uint32_t result_type, uint32_t result_id, const string &rhs, bool forwarding,
+ bool suppress_usage_tracking)
+{
+ if (forwarding && (forced_temporaries.find(result_id) == end(forced_temporaries)))
+ {
+ // Just forward it without temporary.
+ // If the forward is trivial, we do not force flushing to temporary for this expression.
+ forwarded_temporaries.insert(result_id);
+ if (suppress_usage_tracking)
+ suppressed_usage_tracking.insert(result_id);
+
+ return set<SPIRExpression>(result_id, rhs, result_type, true);
+ }
+ else
+ {
+ // If expression isn't immutable, bind it to a temporary and make the new temporary immutable (they always are).
+ statement(declare_temporary(result_type, result_id), rhs, ";");
+ return set<SPIRExpression>(result_id, to_name(result_id), result_type, true);
+ }
+}
+
+void CompilerGLSL::emit_unary_op(uint32_t result_type, uint32_t result_id, uint32_t op0, const char *op)
+{
+ bool forward = should_forward(op0);
+ emit_op(result_type, result_id, join(op, to_enclosed_unpacked_expression(op0)), forward);
+ inherit_expression_dependencies(result_id, op0);
+}
+
+void CompilerGLSL::emit_unary_op_cast(uint32_t result_type, uint32_t result_id, uint32_t op0, const char *op)
+{
+ auto &type = get<SPIRType>(result_type);
+ bool forward = should_forward(op0);
+ emit_op(result_type, result_id, join(type_to_glsl(type), "(", op, to_enclosed_unpacked_expression(op0), ")"), forward);
+ inherit_expression_dependencies(result_id, op0);
+}
+
+void CompilerGLSL::emit_mesh_tasks(SPIRBlock &block)
+{
+ statement("EmitMeshTasksEXT(",
+ to_unpacked_expression(block.mesh.groups[0]), ", ",
+ to_unpacked_expression(block.mesh.groups[1]), ", ",
+ to_unpacked_expression(block.mesh.groups[2]), ");");
+}
+
+void CompilerGLSL::emit_binary_op(uint32_t result_type, uint32_t result_id, uint32_t op0, uint32_t op1, const char *op)
+{
+ // Various FP arithmetic opcodes such as add, sub, mul will hit this.
+ bool force_temporary_precise = backend.support_precise_qualifier &&
+ has_decoration(result_id, DecorationNoContraction) &&
+ type_is_floating_point(get<SPIRType>(result_type));
+ bool forward = should_forward(op0) && should_forward(op1) && !force_temporary_precise;
+
+ emit_op(result_type, result_id,
+ join(to_enclosed_unpacked_expression(op0), " ", op, " ", to_enclosed_unpacked_expression(op1)), forward);
+
+ inherit_expression_dependencies(result_id, op0);
+ inherit_expression_dependencies(result_id, op1);
+}
+
+void CompilerGLSL::emit_unrolled_unary_op(uint32_t result_type, uint32_t result_id, uint32_t operand, const char *op)
+{
+ auto &type = get<SPIRType>(result_type);
+ auto expr = type_to_glsl_constructor(type);
+ expr += '(';
+ for (uint32_t i = 0; i < type.vecsize; i++)
+ {
+ // Make sure to call to_expression multiple times to ensure
+ // that these expressions are properly flushed to temporaries if needed.
+ expr += op;
+ expr += to_extract_component_expression(operand, i);
+
+ if (i + 1 < type.vecsize)
+ expr += ", ";
+ }
+ expr += ')';
+ emit_op(result_type, result_id, expr, should_forward(operand));
+
+ inherit_expression_dependencies(result_id, operand);
+}
+
+void CompilerGLSL::emit_unrolled_binary_op(uint32_t result_type, uint32_t result_id, uint32_t op0, uint32_t op1,
+ const char *op, bool negate, SPIRType::BaseType expected_type)
+{
+ auto &type0 = expression_type(op0);
+ auto &type1 = expression_type(op1);
+
+ SPIRType target_type0 = type0;
+ SPIRType target_type1 = type1;
+ target_type0.basetype = expected_type;
+ target_type1.basetype = expected_type;
+ target_type0.vecsize = 1;
+ target_type1.vecsize = 1;
+
+ auto &type = get<SPIRType>(result_type);
+ auto expr = type_to_glsl_constructor(type);
+ expr += '(';
+ for (uint32_t i = 0; i < type.vecsize; i++)
+ {
+ // Make sure to call to_expression multiple times to ensure
+ // that these expressions are properly flushed to temporaries if needed.
+ if (negate)
+ expr += "!(";
+
+ if (expected_type != SPIRType::Unknown && type0.basetype != expected_type)
+ expr += bitcast_expression(target_type0, type0.basetype, to_extract_component_expression(op0, i));
+ else
+ expr += to_extract_component_expression(op0, i);
+
+ expr += ' ';
+ expr += op;
+ expr += ' ';
+
+ if (expected_type != SPIRType::Unknown && type1.basetype != expected_type)
+ expr += bitcast_expression(target_type1, type1.basetype, to_extract_component_expression(op1, i));
+ else
+ expr += to_extract_component_expression(op1, i);
+
+ if (negate)
+ expr += ")";
+
+ if (i + 1 < type.vecsize)
+ expr += ", ";
+ }
+ expr += ')';
+ emit_op(result_type, result_id, expr, should_forward(op0) && should_forward(op1));
+
+ inherit_expression_dependencies(result_id, op0);
+ inherit_expression_dependencies(result_id, op1);
+}
+
+SPIRType CompilerGLSL::binary_op_bitcast_helper(string &cast_op0, string &cast_op1, SPIRType::BaseType &input_type,
+ uint32_t op0, uint32_t op1, bool skip_cast_if_equal_type)
+{
+ auto &type0 = expression_type(op0);
+ auto &type1 = expression_type(op1);
+
+ // We have to bitcast if our inputs are of different type, or if our types are not equal to expected inputs.
+ // For some functions like OpIEqual and INotEqual, we don't care if inputs are of different types than expected
+ // since equality test is exactly the same.
+ bool cast = (type0.basetype != type1.basetype) || (!skip_cast_if_equal_type && type0.basetype != input_type);
+
+ // Create a fake type so we can bitcast to it.
+ // We only deal with regular arithmetic types here like int, uints and so on.
+ SPIRType expected_type{type0.op};
+ expected_type.basetype = input_type;
+ expected_type.vecsize = type0.vecsize;
+ expected_type.columns = type0.columns;
+ expected_type.width = type0.width;
+
+ if (cast)
+ {
+ cast_op0 = bitcast_glsl(expected_type, op0);
+ cast_op1 = bitcast_glsl(expected_type, op1);
+ }
+ else
+ {
+ // If we don't cast, our actual input type is that of the first (or second) argument.
+ cast_op0 = to_enclosed_unpacked_expression(op0);
+ cast_op1 = to_enclosed_unpacked_expression(op1);
+ input_type = type0.basetype;
+ }
+
+ return expected_type;
+}
+
+bool CompilerGLSL::emit_complex_bitcast(uint32_t result_type, uint32_t id, uint32_t op0)
+{
+ // Some bitcasts may require complex casting sequences, and are implemented here.
+ // Otherwise a simply unary function will do with bitcast_glsl_op.
+
+ auto &output_type = get<SPIRType>(result_type);
+ auto &input_type = expression_type(op0);
+ string expr;
+
+ if (output_type.basetype == SPIRType::Half && input_type.basetype == SPIRType::Float && input_type.vecsize == 1)
+ expr = join("unpackFloat2x16(floatBitsToUint(", to_unpacked_expression(op0), "))");
+ else if (output_type.basetype == SPIRType::Float && input_type.basetype == SPIRType::Half &&
+ input_type.vecsize == 2)
+ expr = join("uintBitsToFloat(packFloat2x16(", to_unpacked_expression(op0), "))");
+ else
+ return false;
+
+ emit_op(result_type, id, expr, should_forward(op0));
+ return true;
+}
+
+void CompilerGLSL::emit_binary_op_cast(uint32_t result_type, uint32_t result_id, uint32_t op0, uint32_t op1,
+ const char *op, SPIRType::BaseType input_type,
+ bool skip_cast_if_equal_type,
+ bool implicit_integer_promotion)
+{
+ string cast_op0, cast_op1;
+ auto expected_type = binary_op_bitcast_helper(cast_op0, cast_op1, input_type, op0, op1, skip_cast_if_equal_type);
+ auto &out_type = get<SPIRType>(result_type);
+
+ // We might have casted away from the result type, so bitcast again.
+ // For example, arithmetic right shift with uint inputs.
+ // Special case boolean outputs since relational opcodes output booleans instead of int/uint.
+ auto bitop = join(cast_op0, " ", op, " ", cast_op1);
+ string expr;
+
+ if (implicit_integer_promotion)
+ {
+ // Simple value cast.
+ expr = join(type_to_glsl(out_type), '(', bitop, ')');
+ }
+ else if (out_type.basetype != input_type && out_type.basetype != SPIRType::Boolean)
+ {
+ expected_type.basetype = input_type;
+ expr = join(bitcast_glsl_op(out_type, expected_type), '(', bitop, ')');
+ }
+ else
+ {
+ expr = std::move(bitop);
+ }
+
+ emit_op(result_type, result_id, expr, should_forward(op0) && should_forward(op1));
+ inherit_expression_dependencies(result_id, op0);
+ inherit_expression_dependencies(result_id, op1);
+}
+
+void CompilerGLSL::emit_unary_func_op(uint32_t result_type, uint32_t result_id, uint32_t op0, const char *op)
+{
+ bool forward = should_forward(op0);
+ emit_op(result_type, result_id, join(op, "(", to_unpacked_expression(op0), ")"), forward);
+ inherit_expression_dependencies(result_id, op0);
+}
+
+void CompilerGLSL::emit_binary_func_op(uint32_t result_type, uint32_t result_id, uint32_t op0, uint32_t op1,
+ const char *op)
+{
+ // Opaque types (e.g. OpTypeSampledImage) must always be forwarded in GLSL
+ const auto &type = get_type(result_type);
+ bool must_forward = type_is_opaque_value(type);
+ bool forward = must_forward || (should_forward(op0) && should_forward(op1));
+ emit_op(result_type, result_id, join(op, "(", to_unpacked_expression(op0), ", ", to_unpacked_expression(op1), ")"),
+ forward);
+ inherit_expression_dependencies(result_id, op0);
+ inherit_expression_dependencies(result_id, op1);
+}
+
+void CompilerGLSL::emit_atomic_func_op(uint32_t result_type, uint32_t result_id, uint32_t op0, uint32_t op1,
+ const char *op)
+{
+ auto &type = get<SPIRType>(result_type);
+ if (type_is_floating_point(type))
+ {
+ if (!options.vulkan_semantics)
+ SPIRV_CROSS_THROW("Floating point atomics requires Vulkan semantics.");
+ if (options.es)
+ SPIRV_CROSS_THROW("Floating point atomics requires desktop GLSL.");
+ require_extension_internal("GL_EXT_shader_atomic_float");
+ }
+
+ forced_temporaries.insert(result_id);
+ emit_op(result_type, result_id,
+ join(op, "(", to_non_uniform_aware_expression(op0), ", ",
+ to_unpacked_expression(op1), ")"), false);
+ flush_all_atomic_capable_variables();
+}
+
+void CompilerGLSL::emit_atomic_func_op(uint32_t result_type, uint32_t result_id,
+ uint32_t op0, uint32_t op1, uint32_t op2,
+ const char *op)
+{
+ forced_temporaries.insert(result_id);
+ emit_op(result_type, result_id,
+ join(op, "(", to_non_uniform_aware_expression(op0), ", ",
+ to_unpacked_expression(op1), ", ", to_unpacked_expression(op2), ")"), false);
+ flush_all_atomic_capable_variables();
+}
+
+void CompilerGLSL::emit_unary_func_op_cast(uint32_t result_type, uint32_t result_id, uint32_t op0, const char *op,
+ SPIRType::BaseType input_type, SPIRType::BaseType expected_result_type)
+{
+ auto &out_type = get<SPIRType>(result_type);
+ auto &expr_type = expression_type(op0);
+ auto expected_type = out_type;
+
+ // Bit-widths might be different in unary cases because we use it for SConvert/UConvert and friends.
+ expected_type.basetype = input_type;
+ expected_type.width = expr_type.width;
+
+ string cast_op;
+ if (expr_type.basetype != input_type)
+ {
+ if (expr_type.basetype == SPIRType::Boolean)
+ cast_op = join(type_to_glsl(expected_type), "(", to_unpacked_expression(op0), ")");
+ else
+ cast_op = bitcast_glsl(expected_type, op0);
+ }
+ else
+ cast_op = to_unpacked_expression(op0);
+
+ string expr;
+ if (out_type.basetype != expected_result_type)
+ {
+ expected_type.basetype = expected_result_type;
+ expected_type.width = out_type.width;
+ if (out_type.basetype == SPIRType::Boolean)
+ expr = type_to_glsl(out_type);
+ else
+ expr = bitcast_glsl_op(out_type, expected_type);
+ expr += '(';
+ expr += join(op, "(", cast_op, ")");
+ expr += ')';
+ }
+ else
+ {
+ expr += join(op, "(", cast_op, ")");
+ }
+
+ emit_op(result_type, result_id, expr, should_forward(op0));
+ inherit_expression_dependencies(result_id, op0);
+}
+
+// Very special case. Handling bitfieldExtract requires us to deal with different bitcasts of different signs
+// and different vector sizes all at once. Need a special purpose method here.
+void CompilerGLSL::emit_trinary_func_op_bitextract(uint32_t result_type, uint32_t result_id, uint32_t op0, uint32_t op1,
+ uint32_t op2, const char *op,
+ SPIRType::BaseType expected_result_type,
+ SPIRType::BaseType input_type0, SPIRType::BaseType input_type1,
+ SPIRType::BaseType input_type2)
+{
+ auto &out_type = get<SPIRType>(result_type);
+ auto expected_type = out_type;
+ expected_type.basetype = input_type0;
+
+ string cast_op0 =
+ expression_type(op0).basetype != input_type0 ? bitcast_glsl(expected_type, op0) : to_unpacked_expression(op0);
+
+ auto op1_expr = to_unpacked_expression(op1);
+ auto op2_expr = to_unpacked_expression(op2);
+
+ // Use value casts here instead. Input must be exactly int or uint, but SPIR-V might be 16-bit.
+ expected_type.basetype = input_type1;
+ expected_type.vecsize = 1;
+ string cast_op1 = expression_type(op1).basetype != input_type1 ?
+ join(type_to_glsl_constructor(expected_type), "(", op1_expr, ")") :
+ op1_expr;
+
+ expected_type.basetype = input_type2;
+ expected_type.vecsize = 1;
+ string cast_op2 = expression_type(op2).basetype != input_type2 ?
+ join(type_to_glsl_constructor(expected_type), "(", op2_expr, ")") :
+ op2_expr;
+
+ string expr;
+ if (out_type.basetype != expected_result_type)
+ {
+ expected_type.vecsize = out_type.vecsize;
+ expected_type.basetype = expected_result_type;
+ expr = bitcast_glsl_op(out_type, expected_type);
+ expr += '(';
+ expr += join(op, "(", cast_op0, ", ", cast_op1, ", ", cast_op2, ")");
+ expr += ')';
+ }
+ else
+ {
+ expr += join(op, "(", cast_op0, ", ", cast_op1, ", ", cast_op2, ")");
+ }
+
+ emit_op(result_type, result_id, expr, should_forward(op0) && should_forward(op1) && should_forward(op2));
+ inherit_expression_dependencies(result_id, op0);
+ inherit_expression_dependencies(result_id, op1);
+ inherit_expression_dependencies(result_id, op2);
+}
+
+void CompilerGLSL::emit_trinary_func_op_cast(uint32_t result_type, uint32_t result_id, uint32_t op0, uint32_t op1,
+ uint32_t op2, const char *op, SPIRType::BaseType input_type)
+{
+ auto &out_type = get<SPIRType>(result_type);
+ auto expected_type = out_type;
+ expected_type.basetype = input_type;
+ string cast_op0 =
+ expression_type(op0).basetype != input_type ? bitcast_glsl(expected_type, op0) : to_unpacked_expression(op0);
+ string cast_op1 =
+ expression_type(op1).basetype != input_type ? bitcast_glsl(expected_type, op1) : to_unpacked_expression(op1);
+ string cast_op2 =
+ expression_type(op2).basetype != input_type ? bitcast_glsl(expected_type, op2) : to_unpacked_expression(op2);
+
+ string expr;
+ if (out_type.basetype != input_type)
+ {
+ expr = bitcast_glsl_op(out_type, expected_type);
+ expr += '(';
+ expr += join(op, "(", cast_op0, ", ", cast_op1, ", ", cast_op2, ")");
+ expr += ')';
+ }
+ else
+ {
+ expr += join(op, "(", cast_op0, ", ", cast_op1, ", ", cast_op2, ")");
+ }
+
+ emit_op(result_type, result_id, expr, should_forward(op0) && should_forward(op1) && should_forward(op2));
+ inherit_expression_dependencies(result_id, op0);
+ inherit_expression_dependencies(result_id, op1);
+ inherit_expression_dependencies(result_id, op2);
+}
+
+void CompilerGLSL::emit_binary_func_op_cast_clustered(uint32_t result_type, uint32_t result_id, uint32_t op0,
+ uint32_t op1, const char *op, SPIRType::BaseType input_type)
+{
+ // Special purpose method for implementing clustered subgroup opcodes.
+ // Main difference is that op1 does not participate in any casting, it needs to be a literal.
+ auto &out_type = get<SPIRType>(result_type);
+ auto expected_type = out_type;
+ expected_type.basetype = input_type;
+ string cast_op0 =
+ expression_type(op0).basetype != input_type ? bitcast_glsl(expected_type, op0) : to_unpacked_expression(op0);
+
+ string expr;
+ if (out_type.basetype != input_type)
+ {
+ expr = bitcast_glsl_op(out_type, expected_type);
+ expr += '(';
+ expr += join(op, "(", cast_op0, ", ", to_expression(op1), ")");
+ expr += ')';
+ }
+ else
+ {
+ expr += join(op, "(", cast_op0, ", ", to_expression(op1), ")");
+ }
+
+ emit_op(result_type, result_id, expr, should_forward(op0));
+ inherit_expression_dependencies(result_id, op0);
+}
+
+void CompilerGLSL::emit_binary_func_op_cast(uint32_t result_type, uint32_t result_id, uint32_t op0, uint32_t op1,
+ const char *op, SPIRType::BaseType input_type, bool skip_cast_if_equal_type)
+{
+ string cast_op0, cast_op1;
+ auto expected_type = binary_op_bitcast_helper(cast_op0, cast_op1, input_type, op0, op1, skip_cast_if_equal_type);
+ auto &out_type = get<SPIRType>(result_type);
+
+ // Special case boolean outputs since relational opcodes output booleans instead of int/uint.
+ string expr;
+ if (out_type.basetype != input_type && out_type.basetype != SPIRType::Boolean)
+ {
+ expected_type.basetype = input_type;
+ expr = bitcast_glsl_op(out_type, expected_type);
+ expr += '(';
+ expr += join(op, "(", cast_op0, ", ", cast_op1, ")");
+ expr += ')';
+ }
+ else
+ {
+ expr += join(op, "(", cast_op0, ", ", cast_op1, ")");
+ }
+
+ emit_op(result_type, result_id, expr, should_forward(op0) && should_forward(op1));
+ inherit_expression_dependencies(result_id, op0);
+ inherit_expression_dependencies(result_id, op1);
+}
+
+void CompilerGLSL::emit_trinary_func_op(uint32_t result_type, uint32_t result_id, uint32_t op0, uint32_t op1,
+ uint32_t op2, const char *op)
+{
+ bool forward = should_forward(op0) && should_forward(op1) && should_forward(op2);
+ emit_op(result_type, result_id,
+ join(op, "(", to_unpacked_expression(op0), ", ", to_unpacked_expression(op1), ", ",
+ to_unpacked_expression(op2), ")"),
+ forward);
+
+ inherit_expression_dependencies(result_id, op0);
+ inherit_expression_dependencies(result_id, op1);
+ inherit_expression_dependencies(result_id, op2);
+}
+
+void CompilerGLSL::emit_quaternary_func_op(uint32_t result_type, uint32_t result_id, uint32_t op0, uint32_t op1,
+ uint32_t op2, uint32_t op3, const char *op)
+{
+ bool forward = should_forward(op0) && should_forward(op1) && should_forward(op2) && should_forward(op3);
+ emit_op(result_type, result_id,
+ join(op, "(", to_unpacked_expression(op0), ", ", to_unpacked_expression(op1), ", ",
+ to_unpacked_expression(op2), ", ", to_unpacked_expression(op3), ")"),
+ forward);
+
+ inherit_expression_dependencies(result_id, op0);
+ inherit_expression_dependencies(result_id, op1);
+ inherit_expression_dependencies(result_id, op2);
+ inherit_expression_dependencies(result_id, op3);
+}
+
+void CompilerGLSL::emit_bitfield_insert_op(uint32_t result_type, uint32_t result_id, uint32_t op0, uint32_t op1,
+ uint32_t op2, uint32_t op3, const char *op,
+ SPIRType::BaseType offset_count_type)
+{
+ // Only need to cast offset/count arguments. Types of base/insert must be same as result type,
+ // and bitfieldInsert is sign invariant.
+ bool forward = should_forward(op0) && should_forward(op1) && should_forward(op2) && should_forward(op3);
+
+ auto op0_expr = to_unpacked_expression(op0);
+ auto op1_expr = to_unpacked_expression(op1);
+ auto op2_expr = to_unpacked_expression(op2);
+ auto op3_expr = to_unpacked_expression(op3);
+
+ assert(offset_count_type == SPIRType::UInt || offset_count_type == SPIRType::Int);
+ SPIRType target_type { OpTypeInt };
+ target_type.width = 32;
+ target_type.vecsize = 1;
+ target_type.basetype = offset_count_type;
+
+ if (expression_type(op2).basetype != offset_count_type)
+ {
+ // Value-cast here. Input might be 16-bit. GLSL requires int.
+ op2_expr = join(type_to_glsl_constructor(target_type), "(", op2_expr, ")");
+ }
+
+ if (expression_type(op3).basetype != offset_count_type)
+ {
+ // Value-cast here. Input might be 16-bit. GLSL requires int.
+ op3_expr = join(type_to_glsl_constructor(target_type), "(", op3_expr, ")");
+ }
+
+ emit_op(result_type, result_id, join(op, "(", op0_expr, ", ", op1_expr, ", ", op2_expr, ", ", op3_expr, ")"),
+ forward);
+
+ inherit_expression_dependencies(result_id, op0);
+ inherit_expression_dependencies(result_id, op1);
+ inherit_expression_dependencies(result_id, op2);
+ inherit_expression_dependencies(result_id, op3);
+}
+
+string CompilerGLSL::legacy_tex_op(const std::string &op, const SPIRType &imgtype, uint32_t tex)
+{
+ const char *type;
+ switch (imgtype.image.dim)
+ {
+ case spv::Dim1D:
+ // Force 2D path for ES.
+ if (options.es)
+ type = (imgtype.image.arrayed && !options.es) ? "2DArray" : "2D";
+ else
+ type = (imgtype.image.arrayed && !options.es) ? "1DArray" : "1D";
+ break;
+ case spv::Dim2D:
+ type = (imgtype.image.arrayed && !options.es) ? "2DArray" : "2D";
+ break;
+ case spv::Dim3D:
+ type = "3D";
+ break;
+ case spv::DimCube:
+ type = "Cube";
+ break;
+ case spv::DimRect:
+ type = "2DRect";
+ break;
+ case spv::DimBuffer:
+ type = "Buffer";
+ break;
+ case spv::DimSubpassData:
+ type = "2D";
+ break;
+ default:
+ type = "";
+ break;
+ }
+
+ // In legacy GLSL, an extension is required for textureLod in the fragment
+ // shader or textureGrad anywhere.
+ bool legacy_lod_ext = false;
+ auto &execution = get_entry_point();
+ if (op == "textureGrad" || op == "textureProjGrad" ||
+ ((op == "textureLod" || op == "textureProjLod") && execution.model != ExecutionModelVertex))
+ {
+ if (is_legacy_es())
+ {
+ legacy_lod_ext = true;
+ require_extension_internal("GL_EXT_shader_texture_lod");
+ }
+ else if (is_legacy_desktop())
+ require_extension_internal("GL_ARB_shader_texture_lod");
+ }
+
+ if (op == "textureLodOffset" || op == "textureProjLodOffset")
+ {
+ if (is_legacy_es())
+ SPIRV_CROSS_THROW(join(op, " not allowed in legacy ES"));
+
+ require_extension_internal("GL_EXT_gpu_shader4");
+ }
+
+ // GLES has very limited support for shadow samplers.
+ // Basically shadow2D and shadow2DProj work through EXT_shadow_samplers,
+ // everything else can just throw
+ bool is_comparison = is_depth_image(imgtype, tex);
+ if (is_comparison && is_legacy_es())
+ {
+ if (op == "texture" || op == "textureProj")
+ require_extension_internal("GL_EXT_shadow_samplers");
+ else
+ SPIRV_CROSS_THROW(join(op, " not allowed on depth samplers in legacy ES"));
+
+ if (imgtype.image.dim == spv::DimCube)
+ return "shadowCubeNV";
+ }
+
+ if (op == "textureSize")
+ {
+ if (is_legacy_es())
+ SPIRV_CROSS_THROW("textureSize not supported in legacy ES");
+ if (is_comparison)
+ SPIRV_CROSS_THROW("textureSize not supported on shadow sampler in legacy GLSL");
+ require_extension_internal("GL_EXT_gpu_shader4");
+ }
+
+ if (op == "texelFetch" && is_legacy_es())
+ SPIRV_CROSS_THROW("texelFetch not supported in legacy ES");
+
+ bool is_es_and_depth = is_legacy_es() && is_comparison;
+ std::string type_prefix = is_comparison ? "shadow" : "texture";
+
+ if (op == "texture")
+ return is_es_and_depth ? join(type_prefix, type, "EXT") : join(type_prefix, type);
+ else if (op == "textureLod")
+ return join(type_prefix, type, legacy_lod_ext ? "LodEXT" : "Lod");
+ else if (op == "textureProj")
+ return join(type_prefix, type, is_es_and_depth ? "ProjEXT" : "Proj");
+ else if (op == "textureGrad")
+ return join(type_prefix, type, is_legacy_es() ? "GradEXT" : is_legacy_desktop() ? "GradARB" : "Grad");
+ else if (op == "textureProjLod")
+ return join(type_prefix, type, legacy_lod_ext ? "ProjLodEXT" : "ProjLod");
+ else if (op == "textureLodOffset")
+ return join(type_prefix, type, "LodOffset");
+ else if (op == "textureProjGrad")
+ return join(type_prefix, type,
+ is_legacy_es() ? "ProjGradEXT" : is_legacy_desktop() ? "ProjGradARB" : "ProjGrad");
+ else if (op == "textureProjLodOffset")
+ return join(type_prefix, type, "ProjLodOffset");
+ else if (op == "textureSize")
+ return join("textureSize", type);
+ else if (op == "texelFetch")
+ return join("texelFetch", type);
+ else
+ {
+ SPIRV_CROSS_THROW(join("Unsupported legacy texture op: ", op));
+ }
+}
+
+bool CompilerGLSL::to_trivial_mix_op(const SPIRType &type, string &op, uint32_t left, uint32_t right, uint32_t lerp)
+{
+ auto *cleft = maybe_get<SPIRConstant>(left);
+ auto *cright = maybe_get<SPIRConstant>(right);
+ auto &lerptype = expression_type(lerp);
+
+ // If our targets aren't constants, we cannot use construction.
+ if (!cleft || !cright)
+ return false;
+
+ // If our targets are spec constants, we cannot use construction.
+ if (cleft->specialization || cright->specialization)
+ return false;
+
+ auto &value_type = get<SPIRType>(cleft->constant_type);
+
+ if (lerptype.basetype != SPIRType::Boolean)
+ return false;
+ if (value_type.basetype == SPIRType::Struct || is_array(value_type))
+ return false;
+ if (!backend.use_constructor_splatting && value_type.vecsize != lerptype.vecsize)
+ return false;
+
+ // Only valid way in SPIR-V 1.4 to use matrices in select is a scalar select.
+ // matrix(scalar) constructor fills in diagnonals, so gets messy very quickly.
+ // Just avoid this case.
+ if (value_type.columns > 1)
+ return false;
+
+ // If our bool selects between 0 and 1, we can cast from bool instead, making our trivial constructor.
+ bool ret = true;
+ for (uint32_t row = 0; ret && row < value_type.vecsize; row++)
+ {
+ switch (type.basetype)
+ {
+ case SPIRType::Short:
+ case SPIRType::UShort:
+ ret = cleft->scalar_u16(0, row) == 0 && cright->scalar_u16(0, row) == 1;
+ break;
+
+ case SPIRType::Int:
+ case SPIRType::UInt:
+ ret = cleft->scalar(0, row) == 0 && cright->scalar(0, row) == 1;
+ break;
+
+ case SPIRType::Half:
+ ret = cleft->scalar_f16(0, row) == 0.0f && cright->scalar_f16(0, row) == 1.0f;
+ break;
+
+ case SPIRType::Float:
+ ret = cleft->scalar_f32(0, row) == 0.0f && cright->scalar_f32(0, row) == 1.0f;
+ break;
+
+ case SPIRType::Double:
+ ret = cleft->scalar_f64(0, row) == 0.0 && cright->scalar_f64(0, row) == 1.0;
+ break;
+
+ case SPIRType::Int64:
+ case SPIRType::UInt64:
+ ret = cleft->scalar_u64(0, row) == 0 && cright->scalar_u64(0, row) == 1;
+ break;
+
+ default:
+ ret = false;
+ break;
+ }
+ }
+
+ if (ret)
+ op = type_to_glsl_constructor(type);
+ return ret;
+}
+
+string CompilerGLSL::to_ternary_expression(const SPIRType &restype, uint32_t select, uint32_t true_value,
+ uint32_t false_value)
+{
+ string expr;
+ auto &lerptype = expression_type(select);
+
+ if (lerptype.vecsize == 1)
+ expr = join(to_enclosed_expression(select), " ? ", to_enclosed_pointer_expression(true_value), " : ",
+ to_enclosed_pointer_expression(false_value));
+ else
+ {
+ auto swiz = [this](uint32_t expression, uint32_t i) { return to_extract_component_expression(expression, i); };
+
+ expr = type_to_glsl_constructor(restype);
+ expr += "(";
+ for (uint32_t i = 0; i < restype.vecsize; i++)
+ {
+ expr += swiz(select, i);
+ expr += " ? ";
+ expr += swiz(true_value, i);
+ expr += " : ";
+ expr += swiz(false_value, i);
+ if (i + 1 < restype.vecsize)
+ expr += ", ";
+ }
+ expr += ")";
+ }
+
+ return expr;
+}
+
+void CompilerGLSL::emit_mix_op(uint32_t result_type, uint32_t id, uint32_t left, uint32_t right, uint32_t lerp)
+{
+ auto &lerptype = expression_type(lerp);
+ auto &restype = get<SPIRType>(result_type);
+
+ // If this results in a variable pointer, assume it may be written through.
+ if (restype.pointer)
+ {
+ register_write(left);
+ register_write(right);
+ }
+
+ string mix_op;
+ bool has_boolean_mix = *backend.boolean_mix_function &&
+ ((options.es && options.version >= 310) || (!options.es && options.version >= 450));
+ bool trivial_mix = to_trivial_mix_op(restype, mix_op, left, right, lerp);
+
+ // Cannot use boolean mix when the lerp argument is just one boolean,
+ // fall back to regular trinary statements.
+ if (lerptype.vecsize == 1)
+ has_boolean_mix = false;
+
+ // If we can reduce the mix to a simple cast, do so.
+ // This helps for cases like int(bool), uint(bool) which is implemented with
+ // OpSelect bool 1 0.
+ if (trivial_mix)
+ {
+ emit_unary_func_op(result_type, id, lerp, mix_op.c_str());
+ }
+ else if (!has_boolean_mix && lerptype.basetype == SPIRType::Boolean)
+ {
+ // Boolean mix not supported on desktop without extension.
+ // Was added in OpenGL 4.5 with ES 3.1 compat.
+ //
+ // Could use GL_EXT_shader_integer_mix on desktop at least,
+ // but Apple doesn't support it. :(
+ // Just implement it as ternary expressions.
+ auto expr = to_ternary_expression(get<SPIRType>(result_type), lerp, right, left);
+ emit_op(result_type, id, expr, should_forward(left) && should_forward(right) && should_forward(lerp));
+ inherit_expression_dependencies(id, left);
+ inherit_expression_dependencies(id, right);
+ inherit_expression_dependencies(id, lerp);
+ }
+ else if (lerptype.basetype == SPIRType::Boolean)
+ emit_trinary_func_op(result_type, id, left, right, lerp, backend.boolean_mix_function);
+ else
+ emit_trinary_func_op(result_type, id, left, right, lerp, "mix");
+}
+
+string CompilerGLSL::to_combined_image_sampler(VariableID image_id, VariableID samp_id)
+{
+ // Keep track of the array indices we have used to load the image.
+ // We'll need to use the same array index into the combined image sampler array.
+ auto image_expr = to_non_uniform_aware_expression(image_id);
+ string array_expr;
+ auto array_index = image_expr.find_first_of('[');
+ if (array_index != string::npos)
+ array_expr = image_expr.substr(array_index, string::npos);
+
+ auto &args = current_function->arguments;
+
+ // For GLSL and ESSL targets, we must enumerate all possible combinations for sampler2D(texture2D, sampler) and redirect
+ // all possible combinations into new sampler2D uniforms.
+ auto *image = maybe_get_backing_variable(image_id);
+ auto *samp = maybe_get_backing_variable(samp_id);
+ if (image)
+ image_id = image->self;
+ if (samp)
+ samp_id = samp->self;
+
+ auto image_itr = find_if(begin(args), end(args),
+ [image_id](const SPIRFunction::Parameter &param) { return image_id == param.id; });
+
+ auto sampler_itr = find_if(begin(args), end(args),
+ [samp_id](const SPIRFunction::Parameter &param) { return samp_id == param.id; });
+
+ if (image_itr != end(args) || sampler_itr != end(args))
+ {
+ // If any parameter originates from a parameter, we will find it in our argument list.
+ bool global_image = image_itr == end(args);
+ bool global_sampler = sampler_itr == end(args);
+ VariableID iid = global_image ? image_id : VariableID(uint32_t(image_itr - begin(args)));
+ VariableID sid = global_sampler ? samp_id : VariableID(uint32_t(sampler_itr - begin(args)));
+
+ auto &combined = current_function->combined_parameters;
+ auto itr = find_if(begin(combined), end(combined), [=](const SPIRFunction::CombinedImageSamplerParameter &p) {
+ return p.global_image == global_image && p.global_sampler == global_sampler && p.image_id == iid &&
+ p.sampler_id == sid;
+ });
+
+ if (itr != end(combined))
+ return to_expression(itr->id) + array_expr;
+ else
+ {
+ SPIRV_CROSS_THROW("Cannot find mapping for combined sampler parameter, was "
+ "build_combined_image_samplers() used "
+ "before compile() was called?");
+ }
+ }
+ else
+ {
+ // For global sampler2D, look directly at the global remapping table.
+ auto &mapping = combined_image_samplers;
+ auto itr = find_if(begin(mapping), end(mapping), [image_id, samp_id](const CombinedImageSampler &combined) {
+ return combined.image_id == image_id && combined.sampler_id == samp_id;
+ });
+
+ if (itr != end(combined_image_samplers))
+ return to_expression(itr->combined_id) + array_expr;
+ else
+ {
+ SPIRV_CROSS_THROW("Cannot find mapping for combined sampler, was build_combined_image_samplers() used "
+ "before compile() was called?");
+ }
+ }
+}
+
+bool CompilerGLSL::is_supported_subgroup_op_in_opengl(spv::Op op, const uint32_t *ops)
+{
+ switch (op)
+ {
+ case OpGroupNonUniformElect:
+ case OpGroupNonUniformBallot:
+ case OpGroupNonUniformBallotFindLSB:
+ case OpGroupNonUniformBallotFindMSB:
+ case OpGroupNonUniformBroadcast:
+ case OpGroupNonUniformBroadcastFirst:
+ case OpGroupNonUniformAll:
+ case OpGroupNonUniformAny:
+ case OpGroupNonUniformAllEqual:
+ case OpControlBarrier:
+ case OpMemoryBarrier:
+ case OpGroupNonUniformBallotBitCount:
+ case OpGroupNonUniformBallotBitExtract:
+ case OpGroupNonUniformInverseBallot:
+ return true;
+ case OpGroupNonUniformIAdd:
+ case OpGroupNonUniformFAdd:
+ case OpGroupNonUniformIMul:
+ case OpGroupNonUniformFMul:
+ {
+ const GroupOperation operation = static_cast<GroupOperation>(ops[3]);
+ if (operation == GroupOperationReduce || operation == GroupOperationInclusiveScan ||
+ operation == GroupOperationExclusiveScan)
+ {
+ return true;
+ }
+ else
+ {
+ return false;
+ }
+ }
+ default:
+ return false;
+ }
+}
+
+void CompilerGLSL::emit_sampled_image_op(uint32_t result_type, uint32_t result_id, uint32_t image_id, uint32_t samp_id)
+{
+ if (options.vulkan_semantics && combined_image_samplers.empty())
+ {
+ emit_binary_func_op(result_type, result_id, image_id, samp_id,
+ type_to_glsl(get<SPIRType>(result_type), result_id).c_str());
+ }
+ else
+ {
+ // Make sure to suppress usage tracking. It is illegal to create temporaries of opaque types.
+ emit_op(result_type, result_id, to_combined_image_sampler(image_id, samp_id), true, true);
+ }
+
+ // Make sure to suppress usage tracking and any expression invalidation.
+ // It is illegal to create temporaries of opaque types.
+ forwarded_temporaries.erase(result_id);
+}
+
+static inline bool image_opcode_is_sample_no_dref(Op op)
+{
+ switch (op)
+ {
+ case OpImageSampleExplicitLod:
+ case OpImageSampleImplicitLod:
+ case OpImageSampleProjExplicitLod:
+ case OpImageSampleProjImplicitLod:
+ case OpImageFetch:
+ case OpImageRead:
+ case OpImageSparseSampleExplicitLod:
+ case OpImageSparseSampleImplicitLod:
+ case OpImageSparseSampleProjExplicitLod:
+ case OpImageSparseSampleProjImplicitLod:
+ case OpImageSparseFetch:
+ case OpImageSparseRead:
+ return true;
+
+ default:
+ return false;
+ }
+}
+
+void CompilerGLSL::emit_sparse_feedback_temporaries(uint32_t result_type_id, uint32_t id, uint32_t &feedback_id,
+ uint32_t &texel_id)
+{
+ // Need to allocate two temporaries.
+ if (options.es)
+ SPIRV_CROSS_THROW("Sparse texture feedback is not supported on ESSL.");
+ require_extension_internal("GL_ARB_sparse_texture2");
+
+ auto &temps = extra_sub_expressions[id];
+ if (temps == 0)
+ temps = ir.increase_bound_by(2);
+
+ feedback_id = temps + 0;
+ texel_id = temps + 1;
+
+ auto &return_type = get<SPIRType>(result_type_id);
+ if (return_type.basetype != SPIRType::Struct || return_type.member_types.size() != 2)
+ SPIRV_CROSS_THROW("Invalid return type for sparse feedback.");
+ emit_uninitialized_temporary(return_type.member_types[0], feedback_id);
+ emit_uninitialized_temporary(return_type.member_types[1], texel_id);
+}
+
+uint32_t CompilerGLSL::get_sparse_feedback_texel_id(uint32_t id) const
+{
+ auto itr = extra_sub_expressions.find(id);
+ if (itr == extra_sub_expressions.end())
+ return 0;
+ else
+ return itr->second + 1;
+}
+
+void CompilerGLSL::emit_texture_op(const Instruction &i, bool sparse)
+{
+ auto *ops = stream(i);
+ auto op = static_cast<Op>(i.op);
+
+ SmallVector<uint32_t> inherited_expressions;
+
+ uint32_t result_type_id = ops[0];
+ uint32_t id = ops[1];
+ auto &return_type = get<SPIRType>(result_type_id);
+
+ uint32_t sparse_code_id = 0;
+ uint32_t sparse_texel_id = 0;
+ if (sparse)
+ emit_sparse_feedback_temporaries(result_type_id, id, sparse_code_id, sparse_texel_id);
+
+ bool forward = false;
+ string expr = to_texture_op(i, sparse, &forward, inherited_expressions);
+
+ if (sparse)
+ {
+ statement(to_expression(sparse_code_id), " = ", expr, ";");
+ expr = join(type_to_glsl(return_type), "(", to_expression(sparse_code_id), ", ", to_expression(sparse_texel_id),
+ ")");
+ forward = true;
+ inherited_expressions.clear();
+ }
+
+ emit_op(result_type_id, id, expr, forward);
+ for (auto &inherit : inherited_expressions)
+ inherit_expression_dependencies(id, inherit);
+
+ // Do not register sparse ops as control dependent as they are always lowered to a temporary.
+ switch (op)
+ {
+ case OpImageSampleDrefImplicitLod:
+ case OpImageSampleImplicitLod:
+ case OpImageSampleProjImplicitLod:
+ case OpImageSampleProjDrefImplicitLod:
+ register_control_dependent_expression(id);
+ break;
+
+ default:
+ break;
+ }
+}
+
+std::string CompilerGLSL::to_texture_op(const Instruction &i, bool sparse, bool *forward,
+ SmallVector<uint32_t> &inherited_expressions)
+{
+ auto *ops = stream(i);
+ auto op = static_cast<Op>(i.op);
+ uint32_t length = i.length;
+
+ uint32_t result_type_id = ops[0];
+ VariableID img = ops[2];
+ uint32_t coord = ops[3];
+ uint32_t dref = 0;
+ uint32_t comp = 0;
+ bool gather = false;
+ bool proj = false;
+ bool fetch = false;
+ bool nonuniform_expression = false;
+ const uint32_t *opt = nullptr;
+
+ auto &result_type = get<SPIRType>(result_type_id);
+
+ inherited_expressions.push_back(coord);
+ if (has_decoration(img, DecorationNonUniform) && !maybe_get_backing_variable(img))
+ nonuniform_expression = true;
+
+ switch (op)
+ {
+ case OpImageSampleDrefImplicitLod:
+ case OpImageSampleDrefExplicitLod:
+ case OpImageSparseSampleDrefImplicitLod:
+ case OpImageSparseSampleDrefExplicitLod:
+ dref = ops[4];
+ opt = &ops[5];
+ length -= 5;
+ break;
+
+ case OpImageSampleProjDrefImplicitLod:
+ case OpImageSampleProjDrefExplicitLod:
+ case OpImageSparseSampleProjDrefImplicitLod:
+ case OpImageSparseSampleProjDrefExplicitLod:
+ dref = ops[4];
+ opt = &ops[5];
+ length -= 5;
+ proj = true;
+ break;
+
+ case OpImageDrefGather:
+ case OpImageSparseDrefGather:
+ dref = ops[4];
+ opt = &ops[5];
+ length -= 5;
+ gather = true;
+ if (options.es && options.version < 310)
+ SPIRV_CROSS_THROW("textureGather requires ESSL 310.");
+ else if (!options.es && options.version < 400)
+ SPIRV_CROSS_THROW("textureGather with depth compare requires GLSL 400.");
+ break;
+
+ case OpImageGather:
+ case OpImageSparseGather:
+ comp = ops[4];
+ opt = &ops[5];
+ length -= 5;
+ gather = true;
+ if (options.es && options.version < 310)
+ SPIRV_CROSS_THROW("textureGather requires ESSL 310.");
+ else if (!options.es && options.version < 400)
+ {
+ if (!expression_is_constant_null(comp))
+ SPIRV_CROSS_THROW("textureGather with component requires GLSL 400.");
+ require_extension_internal("GL_ARB_texture_gather");
+ }
+ break;
+
+ case OpImageFetch:
+ case OpImageSparseFetch:
+ case OpImageRead: // Reads == fetches in Metal (other langs will not get here)
+ opt = &ops[4];
+ length -= 4;
+ fetch = true;
+ break;
+
+ case OpImageSampleProjImplicitLod:
+ case OpImageSampleProjExplicitLod:
+ case OpImageSparseSampleProjImplicitLod:
+ case OpImageSparseSampleProjExplicitLod:
+ opt = &ops[4];
+ length -= 4;
+ proj = true;
+ break;
+
+ default:
+ opt = &ops[4];
+ length -= 4;
+ break;
+ }
+
+ // Bypass pointers because we need the real image struct
+ auto &type = expression_type(img);
+ auto &imgtype = get<SPIRType>(type.self);
+
+ uint32_t coord_components = 0;
+ switch (imgtype.image.dim)
+ {
+ case spv::Dim1D:
+ coord_components = 1;
+ break;
+ case spv::Dim2D:
+ coord_components = 2;
+ break;
+ case spv::Dim3D:
+ coord_components = 3;
+ break;
+ case spv::DimCube:
+ coord_components = 3;
+ break;
+ case spv::DimBuffer:
+ coord_components = 1;
+ break;
+ default:
+ coord_components = 2;
+ break;
+ }
+
+ if (dref)
+ inherited_expressions.push_back(dref);
+
+ if (proj)
+ coord_components++;
+ if (imgtype.image.arrayed)
+ coord_components++;
+
+ uint32_t bias = 0;
+ uint32_t lod = 0;
+ uint32_t grad_x = 0;
+ uint32_t grad_y = 0;
+ uint32_t coffset = 0;
+ uint32_t offset = 0;
+ uint32_t coffsets = 0;
+ uint32_t sample = 0;
+ uint32_t minlod = 0;
+ uint32_t flags = 0;
+
+ if (length)
+ {
+ flags = *opt++;
+ length--;
+ }
+
+ auto test = [&](uint32_t &v, uint32_t flag) {
+ if (length && (flags & flag))
+ {
+ v = *opt++;
+ inherited_expressions.push_back(v);
+ length--;
+ }
+ };
+
+ test(bias, ImageOperandsBiasMask);
+ test(lod, ImageOperandsLodMask);
+ test(grad_x, ImageOperandsGradMask);
+ test(grad_y, ImageOperandsGradMask);
+ test(coffset, ImageOperandsConstOffsetMask);
+ test(offset, ImageOperandsOffsetMask);
+ test(coffsets, ImageOperandsConstOffsetsMask);
+ test(sample, ImageOperandsSampleMask);
+ test(minlod, ImageOperandsMinLodMask);
+
+ TextureFunctionBaseArguments base_args = {};
+ base_args.img = img;
+ base_args.imgtype = &imgtype;
+ base_args.is_fetch = fetch != 0;
+ base_args.is_gather = gather != 0;
+ base_args.is_proj = proj != 0;
+
+ string expr;
+ TextureFunctionNameArguments name_args = {};
+
+ name_args.base = base_args;
+ name_args.has_array_offsets = coffsets != 0;
+ name_args.has_offset = coffset != 0 || offset != 0;
+ name_args.has_grad = grad_x != 0 || grad_y != 0;
+ name_args.has_dref = dref != 0;
+ name_args.is_sparse_feedback = sparse;
+ name_args.has_min_lod = minlod != 0;
+ name_args.lod = lod;
+ expr += to_function_name(name_args);
+ expr += "(";
+
+ uint32_t sparse_texel_id = 0;
+ if (sparse)
+ sparse_texel_id = get_sparse_feedback_texel_id(ops[1]);
+
+ TextureFunctionArguments args = {};
+ args.base = base_args;
+ args.coord = coord;
+ args.coord_components = coord_components;
+ args.dref = dref;
+ args.grad_x = grad_x;
+ args.grad_y = grad_y;
+ args.lod = lod;
+ args.has_array_offsets = coffsets != 0;
+
+ if (coffsets)
+ args.offset = coffsets;
+ else if (coffset)
+ args.offset = coffset;
+ else
+ args.offset = offset;
+
+ args.bias = bias;
+ args.component = comp;
+ args.sample = sample;
+ args.sparse_texel = sparse_texel_id;
+ args.min_lod = minlod;
+ args.nonuniform_expression = nonuniform_expression;
+ expr += to_function_args(args, forward);
+ expr += ")";
+
+ // texture(samplerXShadow) returns float. shadowX() returns vec4, but only in desktop GLSL. Swizzle here.
+ if (is_legacy() && !options.es && is_depth_image(imgtype, img))
+ expr += ".r";
+
+ // Sampling from a texture which was deduced to be a depth image, might actually return 1 component here.
+ // Remap back to 4 components as sampling opcodes expect.
+ if (backend.comparison_image_samples_scalar && image_opcode_is_sample_no_dref(op))
+ {
+ bool image_is_depth = false;
+ const auto *combined = maybe_get<SPIRCombinedImageSampler>(img);
+ VariableID image_id = combined ? combined->image : img;
+
+ if (combined && is_depth_image(imgtype, combined->image))
+ image_is_depth = true;
+ else if (is_depth_image(imgtype, img))
+ image_is_depth = true;
+
+ // We must also check the backing variable for the image.
+ // We might have loaded an OpImage, and used that handle for two different purposes.
+ // Once with comparison, once without.
+ auto *image_variable = maybe_get_backing_variable(image_id);
+ if (image_variable && is_depth_image(get<SPIRType>(image_variable->basetype), image_variable->self))
+ image_is_depth = true;
+
+ if (image_is_depth)
+ expr = remap_swizzle(result_type, 1, expr);
+ }
+
+ if (!sparse && !backend.support_small_type_sampling_result && result_type.width < 32)
+ {
+ // Just value cast (narrowing) to expected type since we cannot rely on narrowing to work automatically.
+ // Hopefully compiler picks this up and converts the texturing instruction to the appropriate precision.
+ expr = join(type_to_glsl_constructor(result_type), "(", expr, ")");
+ }
+
+ // Deals with reads from MSL. We might need to downconvert to fewer components.
+ if (op == OpImageRead)
+ expr = remap_swizzle(result_type, 4, expr);
+
+ return expr;
+}
+
+bool CompilerGLSL::expression_is_constant_null(uint32_t id) const
+{
+ auto *c = maybe_get<SPIRConstant>(id);
+ if (!c)
+ return false;
+ return c->constant_is_null();
+}
+
+bool CompilerGLSL::expression_is_non_value_type_array(uint32_t ptr)
+{
+ auto &type = expression_type(ptr);
+ if (!is_array(get_pointee_type(type)))
+ return false;
+
+ if (!backend.array_is_value_type)
+ return true;
+
+ auto *var = maybe_get_backing_variable(ptr);
+ if (!var)
+ return false;
+
+ auto &backed_type = get<SPIRType>(var->basetype);
+ return !backend.array_is_value_type_in_buffer_blocks && backed_type.basetype == SPIRType::Struct &&
+ has_member_decoration(backed_type.self, 0, DecorationOffset);
+}
+
+// Returns the function name for a texture sampling function for the specified image and sampling characteristics.
+// For some subclasses, the function is a method on the specified image.
+string CompilerGLSL::to_function_name(const TextureFunctionNameArguments &args)
+{
+ if (args.has_min_lod)
+ {
+ if (options.es)
+ SPIRV_CROSS_THROW("Sparse residency is not supported in ESSL.");
+ require_extension_internal("GL_ARB_sparse_texture_clamp");
+ }
+
+ string fname;
+ auto &imgtype = *args.base.imgtype;
+ VariableID tex = args.base.img;
+
+ // textureLod on sampler2DArrayShadow and samplerCubeShadow does not exist in GLSL for some reason.
+ // To emulate this, we will have to use textureGrad with a constant gradient of 0.
+ // The workaround will assert that the LOD is in fact constant 0, or we cannot emit correct code.
+ // This happens for HLSL SampleCmpLevelZero on Texture2DArray and TextureCube.
+ bool workaround_lod_array_shadow_as_grad = false;
+ if (((imgtype.image.arrayed && imgtype.image.dim == Dim2D) || imgtype.image.dim == DimCube) &&
+ is_depth_image(imgtype, tex) && args.lod && !args.base.is_fetch)
+ {
+ if (!expression_is_constant_null(args.lod))
+ {
+ SPIRV_CROSS_THROW("textureLod on sampler2DArrayShadow is not constant 0.0. This cannot be "
+ "expressed in GLSL.");
+ }
+ workaround_lod_array_shadow_as_grad = true;
+ }
+
+ if (args.is_sparse_feedback)
+ fname += "sparse";
+
+ if (args.base.is_fetch)
+ fname += args.is_sparse_feedback ? "TexelFetch" : "texelFetch";
+ else
+ {
+ fname += args.is_sparse_feedback ? "Texture" : "texture";
+
+ if (args.base.is_gather)
+ fname += "Gather";
+ if (args.has_array_offsets)
+ fname += "Offsets";
+ if (args.base.is_proj)
+ fname += "Proj";
+ if (args.has_grad || workaround_lod_array_shadow_as_grad)
+ fname += "Grad";
+ if (args.lod != 0 && !workaround_lod_array_shadow_as_grad)
+ fname += "Lod";
+ }
+
+ if (args.has_offset)
+ fname += "Offset";
+
+ if (args.has_min_lod)
+ fname += "Clamp";
+
+ if (args.is_sparse_feedback || args.has_min_lod)
+ fname += "ARB";
+
+ return (is_legacy() && !args.base.is_gather) ? legacy_tex_op(fname, imgtype, tex) : fname;
+}
+
+std::string CompilerGLSL::convert_separate_image_to_expression(uint32_t id)
+{
+ auto *var = maybe_get_backing_variable(id);
+
+ // If we are fetching from a plain OpTypeImage, we must combine with a dummy sampler in GLSL.
+ // In Vulkan GLSL, we can make use of the newer GL_EXT_samplerless_texture_functions.
+ if (var)
+ {
+ auto &type = get<SPIRType>(var->basetype);
+ if (type.basetype == SPIRType::Image && type.image.sampled == 1 && type.image.dim != DimBuffer)
+ {
+ if (options.vulkan_semantics)
+ {
+ if (dummy_sampler_id)
+ {
+ // Don't need to consider Shadow state since the dummy sampler is always non-shadow.
+ auto sampled_type = type;
+ sampled_type.basetype = SPIRType::SampledImage;
+ return join(type_to_glsl(sampled_type), "(", to_non_uniform_aware_expression(id), ", ",
+ to_expression(dummy_sampler_id), ")");
+ }
+ else
+ {
+ // Newer glslang supports this extension to deal with texture2D as argument to texture functions.
+ require_extension_internal("GL_EXT_samplerless_texture_functions");
+ }
+ }
+ else
+ {
+ if (!dummy_sampler_id)
+ SPIRV_CROSS_THROW("Cannot find dummy sampler ID. Was "
+ "build_dummy_sampler_for_combined_images() called?");
+
+ return to_combined_image_sampler(id, dummy_sampler_id);
+ }
+ }
+ }
+
+ return to_non_uniform_aware_expression(id);
+}
+
+// Returns the function args for a texture sampling function for the specified image and sampling characteristics.
+string CompilerGLSL::to_function_args(const TextureFunctionArguments &args, bool *p_forward)
+{
+ VariableID img = args.base.img;
+ auto &imgtype = *args.base.imgtype;
+
+ string farg_str;
+ if (args.base.is_fetch)
+ farg_str = convert_separate_image_to_expression(img);
+ else
+ farg_str = to_non_uniform_aware_expression(img);
+
+ if (args.nonuniform_expression && farg_str.find_first_of('[') != string::npos)
+ {
+ // Only emit nonuniformEXT() wrapper if the underlying expression is arrayed in some way.
+ farg_str = join(backend.nonuniform_qualifier, "(", farg_str, ")");
+ }
+
+ bool swizz_func = backend.swizzle_is_function;
+ auto swizzle = [swizz_func](uint32_t comps, uint32_t in_comps) -> const char * {
+ if (comps == in_comps)
+ return "";
+
+ switch (comps)
+ {
+ case 1:
+ return ".x";
+ case 2:
+ return swizz_func ? ".xy()" : ".xy";
+ case 3:
+ return swizz_func ? ".xyz()" : ".xyz";
+ default:
+ return "";
+ }
+ };
+
+ bool forward = should_forward(args.coord);
+
+ // The IR can give us more components than we need, so chop them off as needed.
+ auto swizzle_expr = swizzle(args.coord_components, expression_type(args.coord).vecsize);
+ // Only enclose the UV expression if needed.
+ auto coord_expr =
+ (*swizzle_expr == '\0') ? to_expression(args.coord) : (to_enclosed_expression(args.coord) + swizzle_expr);
+
+ // texelFetch only takes int, not uint.
+ auto &coord_type = expression_type(args.coord);
+ if (coord_type.basetype == SPIRType::UInt)
+ {
+ auto expected_type = coord_type;
+ expected_type.vecsize = args.coord_components;
+ expected_type.basetype = SPIRType::Int;
+ coord_expr = bitcast_expression(expected_type, coord_type.basetype, coord_expr);
+ }
+
+ // textureLod on sampler2DArrayShadow and samplerCubeShadow does not exist in GLSL for some reason.
+ // To emulate this, we will have to use textureGrad with a constant gradient of 0.
+ // The workaround will assert that the LOD is in fact constant 0, or we cannot emit correct code.
+ // This happens for HLSL SampleCmpLevelZero on Texture2DArray and TextureCube.
+ bool workaround_lod_array_shadow_as_grad =
+ ((imgtype.image.arrayed && imgtype.image.dim == Dim2D) || imgtype.image.dim == DimCube) &&
+ is_depth_image(imgtype, img) && args.lod != 0 && !args.base.is_fetch;
+
+ if (args.dref)
+ {
+ forward = forward && should_forward(args.dref);
+
+ // SPIR-V splits dref and coordinate.
+ if (args.base.is_gather ||
+ args.coord_components == 4) // GLSL also splits the arguments in two. Same for textureGather.
+ {
+ farg_str += ", ";
+ farg_str += to_expression(args.coord);
+ farg_str += ", ";
+ farg_str += to_expression(args.dref);
+ }
+ else if (args.base.is_proj)
+ {
+ // Have to reshuffle so we get vec4(coord, dref, proj), special case.
+ // Other shading languages splits up the arguments for coord and compare value like SPIR-V.
+ // The coordinate type for textureProj shadow is always vec4 even for sampler1DShadow.
+ farg_str += ", vec4(";
+
+ if (imgtype.image.dim == Dim1D)
+ {
+ // Could reuse coord_expr, but we will mess up the temporary usage checking.
+ farg_str += to_enclosed_expression(args.coord) + ".x";
+ farg_str += ", ";
+ farg_str += "0.0, ";
+ farg_str += to_expression(args.dref);
+ farg_str += ", ";
+ farg_str += to_enclosed_expression(args.coord) + ".y)";
+ }
+ else if (imgtype.image.dim == Dim2D)
+ {
+ // Could reuse coord_expr, but we will mess up the temporary usage checking.
+ farg_str += to_enclosed_expression(args.coord) + (swizz_func ? ".xy()" : ".xy");
+ farg_str += ", ";
+ farg_str += to_expression(args.dref);
+ farg_str += ", ";
+ farg_str += to_enclosed_expression(args.coord) + ".z)";
+ }
+ else
+ SPIRV_CROSS_THROW("Invalid type for textureProj with shadow.");
+ }
+ else
+ {
+ // Create a composite which merges coord/dref into a single vector.
+ auto type = expression_type(args.coord);
+ type.vecsize = args.coord_components + 1;
+ if (imgtype.image.dim == Dim1D && options.es)
+ type.vecsize++;
+ farg_str += ", ";
+ farg_str += type_to_glsl_constructor(type);
+ farg_str += "(";
+
+ if (imgtype.image.dim == Dim1D && options.es)
+ {
+ if (imgtype.image.arrayed)
+ {
+ farg_str += enclose_expression(coord_expr) + ".x";
+ farg_str += ", 0.0, ";
+ farg_str += enclose_expression(coord_expr) + ".y";
+ }
+ else
+ {
+ farg_str += coord_expr;
+ farg_str += ", 0.0";
+ }
+ }
+ else
+ farg_str += coord_expr;
+
+ farg_str += ", ";
+ farg_str += to_expression(args.dref);
+ farg_str += ")";
+ }
+ }
+ else
+ {
+ if (imgtype.image.dim == Dim1D && options.es)
+ {
+ // Have to fake a second coordinate.
+ if (type_is_floating_point(coord_type))
+ {
+ // Cannot mix proj and array.
+ if (imgtype.image.arrayed || args.base.is_proj)
+ {
+ coord_expr = join("vec3(", enclose_expression(coord_expr), ".x, 0.0, ",
+ enclose_expression(coord_expr), ".y)");
+ }
+ else
+ coord_expr = join("vec2(", coord_expr, ", 0.0)");
+ }
+ else
+ {
+ if (imgtype.image.arrayed)
+ {
+ coord_expr = join("ivec3(", enclose_expression(coord_expr),
+ ".x, 0, ",
+ enclose_expression(coord_expr), ".y)");
+ }
+ else
+ coord_expr = join("ivec2(", coord_expr, ", 0)");
+ }
+ }
+
+ farg_str += ", ";
+ farg_str += coord_expr;
+ }
+
+ if (args.grad_x || args.grad_y)
+ {
+ forward = forward && should_forward(args.grad_x);
+ forward = forward && should_forward(args.grad_y);
+ farg_str += ", ";
+ farg_str += to_expression(args.grad_x);
+ farg_str += ", ";
+ farg_str += to_expression(args.grad_y);
+ }
+
+ if (args.lod)
+ {
+ if (workaround_lod_array_shadow_as_grad)
+ {
+ // Implement textureGrad() instead. LOD == 0.0 is implemented as gradient of 0.0.
+ // Implementing this as plain texture() is not safe on some implementations.
+ if (imgtype.image.dim == Dim2D)
+ farg_str += ", vec2(0.0), vec2(0.0)";
+ else if (imgtype.image.dim == DimCube)
+ farg_str += ", vec3(0.0), vec3(0.0)";
+ }
+ else
+ {
+ forward = forward && should_forward(args.lod);
+ farg_str += ", ";
+
+ // Lod expression for TexelFetch in GLSL must be int, and only int.
+ if (args.base.is_fetch && imgtype.image.dim != DimBuffer && !imgtype.image.ms)
+ farg_str += bitcast_expression(SPIRType::Int, args.lod);
+ else
+ farg_str += to_expression(args.lod);
+ }
+ }
+ else if (args.base.is_fetch && imgtype.image.dim != DimBuffer && !imgtype.image.ms)
+ {
+ // Lod argument is optional in OpImageFetch, but we require a LOD value, pick 0 as the default.
+ farg_str += ", 0";
+ }
+
+ if (args.offset)
+ {
+ forward = forward && should_forward(args.offset);
+ farg_str += ", ";
+ farg_str += bitcast_expression(SPIRType::Int, args.offset);
+ }
+
+ if (args.sample)
+ {
+ farg_str += ", ";
+ farg_str += bitcast_expression(SPIRType::Int, args.sample);
+ }
+
+ if (args.min_lod)
+ {
+ farg_str += ", ";
+ farg_str += to_expression(args.min_lod);
+ }
+
+ if (args.sparse_texel)
+ {
+ // Sparse texel output parameter comes after everything else, except it's before the optional, component/bias arguments.
+ farg_str += ", ";
+ farg_str += to_expression(args.sparse_texel);
+ }
+
+ if (args.bias)
+ {
+ forward = forward && should_forward(args.bias);
+ farg_str += ", ";
+ farg_str += to_expression(args.bias);
+ }
+
+ if (args.component && !expression_is_constant_null(args.component))
+ {
+ forward = forward && should_forward(args.component);
+ farg_str += ", ";
+ farg_str += bitcast_expression(SPIRType::Int, args.component);
+ }
+
+ *p_forward = forward;
+
+ return farg_str;
+}
+
+Op CompilerGLSL::get_remapped_spirv_op(Op op) const
+{
+ if (options.relax_nan_checks)
+ {
+ switch (op)
+ {
+ case OpFUnordLessThan:
+ op = OpFOrdLessThan;
+ break;
+ case OpFUnordLessThanEqual:
+ op = OpFOrdLessThanEqual;
+ break;
+ case OpFUnordGreaterThan:
+ op = OpFOrdGreaterThan;
+ break;
+ case OpFUnordGreaterThanEqual:
+ op = OpFOrdGreaterThanEqual;
+ break;
+ case OpFUnordEqual:
+ op = OpFOrdEqual;
+ break;
+ case OpFOrdNotEqual:
+ op = OpFUnordNotEqual;
+ break;
+
+ default:
+ break;
+ }
+ }
+
+ return op;
+}
+
+GLSLstd450 CompilerGLSL::get_remapped_glsl_op(GLSLstd450 std450_op) const
+{
+ // Relax to non-NaN aware opcodes.
+ if (options.relax_nan_checks)
+ {
+ switch (std450_op)
+ {
+ case GLSLstd450NClamp:
+ std450_op = GLSLstd450FClamp;
+ break;
+ case GLSLstd450NMin:
+ std450_op = GLSLstd450FMin;
+ break;
+ case GLSLstd450NMax:
+ std450_op = GLSLstd450FMax;
+ break;
+ default:
+ break;
+ }
+ }
+
+ return std450_op;
+}
+
+void CompilerGLSL::emit_glsl_op(uint32_t result_type, uint32_t id, uint32_t eop, const uint32_t *args, uint32_t length)
+{
+ auto op = static_cast<GLSLstd450>(eop);
+
+ if (is_legacy() && is_unsigned_glsl_opcode(op))
+ SPIRV_CROSS_THROW("Unsigned integers are not supported on legacy GLSL targets.");
+
+ // If we need to do implicit bitcasts, make sure we do it with the correct type.
+ uint32_t integer_width = get_integer_width_for_glsl_instruction(op, args, length);
+ auto int_type = to_signed_basetype(integer_width);
+ auto uint_type = to_unsigned_basetype(integer_width);
+
+ op = get_remapped_glsl_op(op);
+
+ switch (op)
+ {
+ // FP fiddling
+ case GLSLstd450Round:
+ if (!is_legacy())
+ emit_unary_func_op(result_type, id, args[0], "round");
+ else
+ {
+ auto op0 = to_enclosed_expression(args[0]);
+ auto &op0_type = expression_type(args[0]);
+ auto expr = join("floor(", op0, " + ", type_to_glsl_constructor(op0_type), "(0.5))");
+ bool forward = should_forward(args[0]);
+ emit_op(result_type, id, expr, forward);
+ inherit_expression_dependencies(id, args[0]);
+ }
+ break;
+
+ case GLSLstd450RoundEven:
+ if (!is_legacy())
+ emit_unary_func_op(result_type, id, args[0], "roundEven");
+ else if (!options.es)
+ {
+ // This extension provides round() with round-to-even semantics.
+ require_extension_internal("GL_EXT_gpu_shader4");
+ emit_unary_func_op(result_type, id, args[0], "round");
+ }
+ else
+ SPIRV_CROSS_THROW("roundEven supported only in ESSL 300.");
+ break;
+
+ case GLSLstd450Trunc:
+ if (!is_legacy())
+ emit_unary_func_op(result_type, id, args[0], "trunc");
+ else
+ {
+ // Implement by value-casting to int and back.
+ bool forward = should_forward(args[0]);
+ auto op0 = to_unpacked_expression(args[0]);
+ auto &op0_type = expression_type(args[0]);
+ auto via_type = op0_type;
+ via_type.basetype = SPIRType::Int;
+ auto expr = join(type_to_glsl(op0_type), "(", type_to_glsl(via_type), "(", op0, "))");
+ emit_op(result_type, id, expr, forward);
+ inherit_expression_dependencies(id, args[0]);
+ }
+ break;
+
+ case GLSLstd450SAbs:
+ emit_unary_func_op_cast(result_type, id, args[0], "abs", int_type, int_type);
+ break;
+ case GLSLstd450FAbs:
+ emit_unary_func_op(result_type, id, args[0], "abs");
+ break;
+ case GLSLstd450SSign:
+ emit_unary_func_op_cast(result_type, id, args[0], "sign", int_type, int_type);
+ break;
+ case GLSLstd450FSign:
+ emit_unary_func_op(result_type, id, args[0], "sign");
+ break;
+ case GLSLstd450Floor:
+ emit_unary_func_op(result_type, id, args[0], "floor");
+ break;
+ case GLSLstd450Ceil:
+ emit_unary_func_op(result_type, id, args[0], "ceil");
+ break;
+ case GLSLstd450Fract:
+ emit_unary_func_op(result_type, id, args[0], "fract");
+ break;
+ case GLSLstd450Radians:
+ emit_unary_func_op(result_type, id, args[0], "radians");
+ break;
+ case GLSLstd450Degrees:
+ emit_unary_func_op(result_type, id, args[0], "degrees");
+ break;
+ case GLSLstd450Fma:
+ if ((!options.es && options.version < 400) || (options.es && options.version < 320))
+ {
+ auto expr = join(to_enclosed_expression(args[0]), " * ", to_enclosed_expression(args[1]), " + ",
+ to_enclosed_expression(args[2]));
+
+ emit_op(result_type, id, expr,
+ should_forward(args[0]) && should_forward(args[1]) && should_forward(args[2]));
+ for (uint32_t i = 0; i < 3; i++)
+ inherit_expression_dependencies(id, args[i]);
+ }
+ else
+ emit_trinary_func_op(result_type, id, args[0], args[1], args[2], "fma");
+ break;
+
+ case GLSLstd450Modf:
+ register_call_out_argument(args[1]);
+ if (!is_legacy())
+ {
+ forced_temporaries.insert(id);
+ emit_binary_func_op(result_type, id, args[0], args[1], "modf");
+ }
+ else
+ {
+ //NB. legacy GLSL doesn't have trunc() either, so we do a value cast
+ auto &op1_type = expression_type(args[1]);
+ auto via_type = op1_type;
+ via_type.basetype = SPIRType::Int;
+ statement(to_expression(args[1]), " = ",
+ type_to_glsl(op1_type), "(", type_to_glsl(via_type),
+ "(", to_expression(args[0]), "));");
+ emit_binary_op(result_type, id, args[0], args[1], "-");
+ }
+ break;
+
+ case GLSLstd450ModfStruct:
+ {
+ auto &type = get<SPIRType>(result_type);
+ emit_uninitialized_temporary_expression(result_type, id);
+ if (!is_legacy())
+ {
+ statement(to_expression(id), ".", to_member_name(type, 0), " = ", "modf(", to_expression(args[0]), ", ",
+ to_expression(id), ".", to_member_name(type, 1), ");");
+ }
+ else
+ {
+ //NB. legacy GLSL doesn't have trunc() either, so we do a value cast
+ auto &op0_type = expression_type(args[0]);
+ auto via_type = op0_type;
+ via_type.basetype = SPIRType::Int;
+ statement(to_expression(id), ".", to_member_name(type, 1), " = ", type_to_glsl(op0_type),
+ "(", type_to_glsl(via_type), "(", to_expression(args[0]), "));");
+ statement(to_expression(id), ".", to_member_name(type, 0), " = ", to_enclosed_expression(args[0]), " - ",
+ to_expression(id), ".", to_member_name(type, 1), ";");
+ }
+ break;
+ }
+
+ // Minmax
+ case GLSLstd450UMin:
+ emit_binary_func_op_cast(result_type, id, args[0], args[1], "min", uint_type, false);
+ break;
+
+ case GLSLstd450SMin:
+ emit_binary_func_op_cast(result_type, id, args[0], args[1], "min", int_type, false);
+ break;
+
+ case GLSLstd450FMin:
+ emit_binary_func_op(result_type, id, args[0], args[1], "min");
+ break;
+
+ case GLSLstd450FMax:
+ emit_binary_func_op(result_type, id, args[0], args[1], "max");
+ break;
+
+ case GLSLstd450UMax:
+ emit_binary_func_op_cast(result_type, id, args[0], args[1], "max", uint_type, false);
+ break;
+
+ case GLSLstd450SMax:
+ emit_binary_func_op_cast(result_type, id, args[0], args[1], "max", int_type, false);
+ break;
+
+ case GLSLstd450FClamp:
+ emit_trinary_func_op(result_type, id, args[0], args[1], args[2], "clamp");
+ break;
+
+ case GLSLstd450UClamp:
+ emit_trinary_func_op_cast(result_type, id, args[0], args[1], args[2], "clamp", uint_type);
+ break;
+
+ case GLSLstd450SClamp:
+ emit_trinary_func_op_cast(result_type, id, args[0], args[1], args[2], "clamp", int_type);
+ break;
+
+ // Trig
+ case GLSLstd450Sin:
+ emit_unary_func_op(result_type, id, args[0], "sin");
+ break;
+ case GLSLstd450Cos:
+ emit_unary_func_op(result_type, id, args[0], "cos");
+ break;
+ case GLSLstd450Tan:
+ emit_unary_func_op(result_type, id, args[0], "tan");
+ break;
+ case GLSLstd450Asin:
+ emit_unary_func_op(result_type, id, args[0], "asin");
+ break;
+ case GLSLstd450Acos:
+ emit_unary_func_op(result_type, id, args[0], "acos");
+ break;
+ case GLSLstd450Atan:
+ emit_unary_func_op(result_type, id, args[0], "atan");
+ break;
+ case GLSLstd450Sinh:
+ if (!is_legacy())
+ emit_unary_func_op(result_type, id, args[0], "sinh");
+ else
+ {
+ bool forward = should_forward(args[0]);
+ auto expr = join("(exp(", to_expression(args[0]), ") - exp(-", to_enclosed_expression(args[0]), ")) * 0.5");
+ emit_op(result_type, id, expr, forward);
+ inherit_expression_dependencies(id, args[0]);
+ }
+ break;
+ case GLSLstd450Cosh:
+ if (!is_legacy())
+ emit_unary_func_op(result_type, id, args[0], "cosh");
+ else
+ {
+ bool forward = should_forward(args[0]);
+ auto expr = join("(exp(", to_expression(args[0]), ") + exp(-", to_enclosed_expression(args[0]), ")) * 0.5");
+ emit_op(result_type, id, expr, forward);
+ inherit_expression_dependencies(id, args[0]);
+ }
+ break;
+ case GLSLstd450Tanh:
+ if (!is_legacy())
+ emit_unary_func_op(result_type, id, args[0], "tanh");
+ else
+ {
+ // Create temporaries to store the result of exp(arg) and exp(-arg).
+ uint32_t &ids = extra_sub_expressions[id];
+ if (!ids)
+ {
+ ids = ir.increase_bound_by(2);
+
+ // Inherit precision qualifier (legacy has no NoContraction).
+ if (has_decoration(id, DecorationRelaxedPrecision))
+ {
+ set_decoration(ids, DecorationRelaxedPrecision);
+ set_decoration(ids + 1, DecorationRelaxedPrecision);
+ }
+ }
+ uint32_t epos_id = ids;
+ uint32_t eneg_id = ids + 1;
+
+ emit_op(result_type, epos_id, join("exp(", to_expression(args[0]), ")"), false);
+ emit_op(result_type, eneg_id, join("exp(-", to_enclosed_expression(args[0]), ")"), false);
+ inherit_expression_dependencies(epos_id, args[0]);
+ inherit_expression_dependencies(eneg_id, args[0]);
+
+ auto expr = join("(", to_enclosed_expression(epos_id), " - ", to_enclosed_expression(eneg_id), ") / "
+ "(", to_enclosed_expression(epos_id), " + ", to_enclosed_expression(eneg_id), ")");
+ emit_op(result_type, id, expr, true);
+ inherit_expression_dependencies(id, epos_id);
+ inherit_expression_dependencies(id, eneg_id);
+ }
+ break;
+ case GLSLstd450Asinh:
+ if (!is_legacy())
+ emit_unary_func_op(result_type, id, args[0], "asinh");
+ else
+ emit_emulated_ahyper_op(result_type, id, args[0], GLSLstd450Asinh);
+ break;
+ case GLSLstd450Acosh:
+ if (!is_legacy())
+ emit_unary_func_op(result_type, id, args[0], "acosh");
+ else
+ emit_emulated_ahyper_op(result_type, id, args[0], GLSLstd450Acosh);
+ break;
+ case GLSLstd450Atanh:
+ if (!is_legacy())
+ emit_unary_func_op(result_type, id, args[0], "atanh");
+ else
+ emit_emulated_ahyper_op(result_type, id, args[0], GLSLstd450Atanh);
+ break;
+ case GLSLstd450Atan2:
+ emit_binary_func_op(result_type, id, args[0], args[1], "atan");
+ break;
+
+ // Exponentials
+ case GLSLstd450Pow:
+ emit_binary_func_op(result_type, id, args[0], args[1], "pow");
+ break;
+ case GLSLstd450Exp:
+ emit_unary_func_op(result_type, id, args[0], "exp");
+ break;
+ case GLSLstd450Log:
+ emit_unary_func_op(result_type, id, args[0], "log");
+ break;
+ case GLSLstd450Exp2:
+ emit_unary_func_op(result_type, id, args[0], "exp2");
+ break;
+ case GLSLstd450Log2:
+ emit_unary_func_op(result_type, id, args[0], "log2");
+ break;
+ case GLSLstd450Sqrt:
+ emit_unary_func_op(result_type, id, args[0], "sqrt");
+ break;
+ case GLSLstd450InverseSqrt:
+ emit_unary_func_op(result_type, id, args[0], "inversesqrt");
+ break;
+
+ // Matrix math
+ case GLSLstd450Determinant:
+ {
+ // No need to transpose - it doesn't affect the determinant
+ auto *e = maybe_get<SPIRExpression>(args[0]);
+ bool old_transpose = e && e->need_transpose;
+ if (old_transpose)
+ e->need_transpose = false;
+
+ if (options.version < 150) // also matches ES 100
+ {
+ auto &type = expression_type(args[0]);
+ assert(type.vecsize >= 2 && type.vecsize <= 4);
+ assert(type.vecsize == type.columns);
+
+ // ARB_gpu_shader_fp64 needs GLSL 150, other types are not valid
+ if (type.basetype != SPIRType::Float)
+ SPIRV_CROSS_THROW("Unsupported type for matrix determinant");
+
+ bool relaxed = has_decoration(id, DecorationRelaxedPrecision);
+ require_polyfill(static_cast<Polyfill>(PolyfillDeterminant2x2 << (type.vecsize - 2)),
+ relaxed);
+ emit_unary_func_op(result_type, id, args[0],
+ (options.es && relaxed) ? "spvDeterminantMP" : "spvDeterminant");
+ }
+ else
+ emit_unary_func_op(result_type, id, args[0], "determinant");
+
+ if (old_transpose)
+ e->need_transpose = true;
+ break;
+ }
+
+ case GLSLstd450MatrixInverse:
+ {
+ // The inverse of the transpose is the same as the transpose of
+ // the inverse, so we can just flip need_transpose of the result.
+ auto *a = maybe_get<SPIRExpression>(args[0]);
+ bool old_transpose = a && a->need_transpose;
+ if (old_transpose)
+ a->need_transpose = false;
+
+ const char *func = "inverse";
+ if (options.version < 140) // also matches ES 100
+ {
+ auto &type = get<SPIRType>(result_type);
+ assert(type.vecsize >= 2 && type.vecsize <= 4);
+ assert(type.vecsize == type.columns);
+
+ // ARB_gpu_shader_fp64 needs GLSL 150, other types are invalid
+ if (type.basetype != SPIRType::Float)
+ SPIRV_CROSS_THROW("Unsupported type for matrix inverse");
+
+ bool relaxed = has_decoration(id, DecorationRelaxedPrecision);
+ require_polyfill(static_cast<Polyfill>(PolyfillMatrixInverse2x2 << (type.vecsize - 2)),
+ relaxed);
+ func = (options.es && relaxed) ? "spvInverseMP" : "spvInverse";
+ }
+
+ bool forward = should_forward(args[0]);
+ auto &e = emit_op(result_type, id, join(func, "(", to_unpacked_expression(args[0]), ")"), forward);
+ inherit_expression_dependencies(id, args[0]);
+
+ if (old_transpose)
+ {
+ e.need_transpose = true;
+ a->need_transpose = true;
+ }
+ break;
+ }
+
+ // Lerping
+ case GLSLstd450FMix:
+ case GLSLstd450IMix:
+ {
+ emit_mix_op(result_type, id, args[0], args[1], args[2]);
+ break;
+ }
+ case GLSLstd450Step:
+ emit_binary_func_op(result_type, id, args[0], args[1], "step");
+ break;
+ case GLSLstd450SmoothStep:
+ emit_trinary_func_op(result_type, id, args[0], args[1], args[2], "smoothstep");
+ break;
+
+ // Packing
+ case GLSLstd450Frexp:
+ register_call_out_argument(args[1]);
+ forced_temporaries.insert(id);
+ emit_binary_func_op(result_type, id, args[0], args[1], "frexp");
+ break;
+
+ case GLSLstd450FrexpStruct:
+ {
+ auto &type = get<SPIRType>(result_type);
+ emit_uninitialized_temporary_expression(result_type, id);
+ statement(to_expression(id), ".", to_member_name(type, 0), " = ", "frexp(", to_expression(args[0]), ", ",
+ to_expression(id), ".", to_member_name(type, 1), ");");
+ break;
+ }
+
+ case GLSLstd450Ldexp:
+ {
+ bool forward = should_forward(args[0]) && should_forward(args[1]);
+
+ auto op0 = to_unpacked_expression(args[0]);
+ auto op1 = to_unpacked_expression(args[1]);
+ auto &op1_type = expression_type(args[1]);
+ if (op1_type.basetype != SPIRType::Int)
+ {
+ // Need a value cast here.
+ auto target_type = op1_type;
+ target_type.basetype = SPIRType::Int;
+ op1 = join(type_to_glsl_constructor(target_type), "(", op1, ")");
+ }
+
+ auto expr = join("ldexp(", op0, ", ", op1, ")");
+
+ emit_op(result_type, id, expr, forward);
+ inherit_expression_dependencies(id, args[0]);
+ inherit_expression_dependencies(id, args[1]);
+ break;
+ }
+
+ case GLSLstd450PackSnorm4x8:
+ emit_unary_func_op(result_type, id, args[0], "packSnorm4x8");
+ break;
+ case GLSLstd450PackUnorm4x8:
+ emit_unary_func_op(result_type, id, args[0], "packUnorm4x8");
+ break;
+ case GLSLstd450PackSnorm2x16:
+ emit_unary_func_op(result_type, id, args[0], "packSnorm2x16");
+ break;
+ case GLSLstd450PackUnorm2x16:
+ emit_unary_func_op(result_type, id, args[0], "packUnorm2x16");
+ break;
+ case GLSLstd450PackHalf2x16:
+ emit_unary_func_op(result_type, id, args[0], "packHalf2x16");
+ break;
+ case GLSLstd450UnpackSnorm4x8:
+ emit_unary_func_op(result_type, id, args[0], "unpackSnorm4x8");
+ break;
+ case GLSLstd450UnpackUnorm4x8:
+ emit_unary_func_op(result_type, id, args[0], "unpackUnorm4x8");
+ break;
+ case GLSLstd450UnpackSnorm2x16:
+ emit_unary_func_op(result_type, id, args[0], "unpackSnorm2x16");
+ break;
+ case GLSLstd450UnpackUnorm2x16:
+ emit_unary_func_op(result_type, id, args[0], "unpackUnorm2x16");
+ break;
+ case GLSLstd450UnpackHalf2x16:
+ emit_unary_func_op(result_type, id, args[0], "unpackHalf2x16");
+ break;
+
+ case GLSLstd450PackDouble2x32:
+ emit_unary_func_op(result_type, id, args[0], "packDouble2x32");
+ break;
+ case GLSLstd450UnpackDouble2x32:
+ emit_unary_func_op(result_type, id, args[0], "unpackDouble2x32");
+ break;
+
+ // Vector math
+ case GLSLstd450Length:
+ emit_unary_func_op(result_type, id, args[0], "length");
+ break;
+ case GLSLstd450Distance:
+ emit_binary_func_op(result_type, id, args[0], args[1], "distance");
+ break;
+ case GLSLstd450Cross:
+ emit_binary_func_op(result_type, id, args[0], args[1], "cross");
+ break;
+ case GLSLstd450Normalize:
+ emit_unary_func_op(result_type, id, args[0], "normalize");
+ break;
+ case GLSLstd450FaceForward:
+ emit_trinary_func_op(result_type, id, args[0], args[1], args[2], "faceforward");
+ break;
+ case GLSLstd450Reflect:
+ emit_binary_func_op(result_type, id, args[0], args[1], "reflect");
+ break;
+ case GLSLstd450Refract:
+ emit_trinary_func_op(result_type, id, args[0], args[1], args[2], "refract");
+ break;
+
+ // Bit-fiddling
+ case GLSLstd450FindILsb:
+ // findLSB always returns int.
+ emit_unary_func_op_cast(result_type, id, args[0], "findLSB", expression_type(args[0]).basetype, int_type);
+ break;
+
+ case GLSLstd450FindSMsb:
+ emit_unary_func_op_cast(result_type, id, args[0], "findMSB", int_type, int_type);
+ break;
+
+ case GLSLstd450FindUMsb:
+ emit_unary_func_op_cast(result_type, id, args[0], "findMSB", uint_type,
+ int_type); // findMSB always returns int.
+ break;
+
+ // Multisampled varying
+ case GLSLstd450InterpolateAtCentroid:
+ emit_unary_func_op(result_type, id, args[0], "interpolateAtCentroid");
+ break;
+ case GLSLstd450InterpolateAtSample:
+ emit_binary_func_op(result_type, id, args[0], args[1], "interpolateAtSample");
+ break;
+ case GLSLstd450InterpolateAtOffset:
+ emit_binary_func_op(result_type, id, args[0], args[1], "interpolateAtOffset");
+ break;
+
+ case GLSLstd450NMin:
+ case GLSLstd450NMax:
+ {
+ if (options.vulkan_semantics)
+ {
+ require_extension_internal("GL_EXT_spirv_intrinsics");
+ bool relaxed = has_decoration(id, DecorationRelaxedPrecision);
+ Polyfill poly = {};
+ switch (get<SPIRType>(result_type).width)
+ {
+ case 16:
+ poly = op == GLSLstd450NMin ? PolyfillNMin16 : PolyfillNMax16;
+ break;
+
+ case 32:
+ poly = op == GLSLstd450NMin ? PolyfillNMin32 : PolyfillNMax32;
+ break;
+
+ case 64:
+ poly = op == GLSLstd450NMin ? PolyfillNMin64 : PolyfillNMax64;
+ break;
+
+ default:
+ SPIRV_CROSS_THROW("Invalid bit width for NMin/NMax.");
+ }
+
+ require_polyfill(poly, relaxed);
+
+ // Function return decorations are broken, so need to do double polyfill.
+ if (relaxed)
+ require_polyfill(poly, false);
+
+ const char *op_str;
+ if (relaxed)
+ op_str = op == GLSLstd450NMin ? "spvNMinRelaxed" : "spvNMaxRelaxed";
+ else
+ op_str = op == GLSLstd450NMin ? "spvNMin" : "spvNMax";
+
+ emit_binary_func_op(result_type, id, args[0], args[1], op_str);
+ }
+ else
+ {
+ emit_nminmax_op(result_type, id, args[0], args[1], op);
+ }
+ break;
+ }
+
+ case GLSLstd450NClamp:
+ {
+ if (options.vulkan_semantics)
+ {
+ require_extension_internal("GL_EXT_spirv_intrinsics");
+ bool relaxed = has_decoration(id, DecorationRelaxedPrecision);
+ Polyfill poly = {};
+ switch (get<SPIRType>(result_type).width)
+ {
+ case 16:
+ poly = PolyfillNClamp16;
+ break;
+
+ case 32:
+ poly = PolyfillNClamp32;
+ break;
+
+ case 64:
+ poly = PolyfillNClamp64;
+ break;
+
+ default:
+ SPIRV_CROSS_THROW("Invalid bit width for NMin/NMax.");
+ }
+
+ require_polyfill(poly, relaxed);
+
+ // Function return decorations are broken, so need to do double polyfill.
+ if (relaxed)
+ require_polyfill(poly, false);
+
+ emit_trinary_func_op(result_type, id, args[0], args[1], args[2], relaxed ? "spvNClampRelaxed" : "spvNClamp");
+ }
+ else
+ {
+ // Make sure we have a unique ID here to avoid aliasing the extra sub-expressions between clamp and NMin sub-op.
+ // IDs cannot exceed 24 bits, so we can make use of the higher bits for some unique flags.
+ uint32_t &max_id = extra_sub_expressions[id | EXTRA_SUB_EXPRESSION_TYPE_AUX];
+ if (!max_id)
+ max_id = ir.increase_bound_by(1);
+
+ // Inherit precision qualifiers.
+ ir.meta[max_id] = ir.meta[id];
+
+ emit_nminmax_op(result_type, max_id, args[0], args[1], GLSLstd450NMax);
+ emit_nminmax_op(result_type, id, max_id, args[2], GLSLstd450NMin);
+ }
+ break;
+ }
+
+ default:
+ statement("// unimplemented GLSL op ", eop);
+ break;
+ }
+}
+
+void CompilerGLSL::emit_nminmax_op(uint32_t result_type, uint32_t id, uint32_t op0, uint32_t op1, GLSLstd450 op)
+{
+ // Need to emulate this call.
+ uint32_t &ids = extra_sub_expressions[id];
+ if (!ids)
+ {
+ ids = ir.increase_bound_by(5);
+ auto btype = get<SPIRType>(result_type);
+ btype.basetype = SPIRType::Boolean;
+ set<SPIRType>(ids, btype);
+ }
+
+ uint32_t btype_id = ids + 0;
+ uint32_t left_nan_id = ids + 1;
+ uint32_t right_nan_id = ids + 2;
+ uint32_t tmp_id = ids + 3;
+ uint32_t mixed_first_id = ids + 4;
+
+ // Inherit precision qualifiers.
+ ir.meta[tmp_id] = ir.meta[id];
+ ir.meta[mixed_first_id] = ir.meta[id];
+
+ if (!is_legacy())
+ {
+ emit_unary_func_op(btype_id, left_nan_id, op0, "isnan");
+ emit_unary_func_op(btype_id, right_nan_id, op1, "isnan");
+ }
+ else if (expression_type(op0).vecsize > 1)
+ {
+ // If the number doesn't equal itself, it must be NaN
+ emit_binary_func_op(btype_id, left_nan_id, op0, op0, "notEqual");
+ emit_binary_func_op(btype_id, right_nan_id, op1, op1, "notEqual");
+ }
+ else
+ {
+ emit_binary_op(btype_id, left_nan_id, op0, op0, "!=");
+ emit_binary_op(btype_id, right_nan_id, op1, op1, "!=");
+ }
+ emit_binary_func_op(result_type, tmp_id, op0, op1, op == GLSLstd450NMin ? "min" : "max");
+ emit_mix_op(result_type, mixed_first_id, tmp_id, op1, left_nan_id);
+ emit_mix_op(result_type, id, mixed_first_id, op0, right_nan_id);
+}
+
+void CompilerGLSL::emit_emulated_ahyper_op(uint32_t result_type, uint32_t id, uint32_t op0, GLSLstd450 op)
+{
+ const char *one = backend.float_literal_suffix ? "1.0f" : "1.0";
+ std::string expr;
+ bool forward = should_forward(op0);
+
+ switch (op)
+ {
+ case GLSLstd450Asinh:
+ expr = join("log(", to_enclosed_expression(op0), " + sqrt(",
+ to_enclosed_expression(op0), " * ", to_enclosed_expression(op0), " + ", one, "))");
+ emit_op(result_type, id, expr, forward);
+ break;
+
+ case GLSLstd450Acosh:
+ expr = join("log(", to_enclosed_expression(op0), " + sqrt(",
+ to_enclosed_expression(op0), " * ", to_enclosed_expression(op0), " - ", one, "))");
+ break;
+
+ case GLSLstd450Atanh:
+ expr = join("log((", one, " + ", to_enclosed_expression(op0), ") / "
+ "(", one, " - ", to_enclosed_expression(op0), ")) * 0.5",
+ backend.float_literal_suffix ? "f" : "");
+ break;
+
+ default:
+ SPIRV_CROSS_THROW("Invalid op.");
+ }
+
+ emit_op(result_type, id, expr, forward);
+ inherit_expression_dependencies(id, op0);
+}
+
+void CompilerGLSL::emit_spv_amd_shader_ballot_op(uint32_t result_type, uint32_t id, uint32_t eop, const uint32_t *args,
+ uint32_t)
+{
+ require_extension_internal("GL_AMD_shader_ballot");
+
+ enum AMDShaderBallot
+ {
+ SwizzleInvocationsAMD = 1,
+ SwizzleInvocationsMaskedAMD = 2,
+ WriteInvocationAMD = 3,
+ MbcntAMD = 4
+ };
+
+ auto op = static_cast<AMDShaderBallot>(eop);
+
+ switch (op)
+ {
+ case SwizzleInvocationsAMD:
+ emit_binary_func_op(result_type, id, args[0], args[1], "swizzleInvocationsAMD");
+ register_control_dependent_expression(id);
+ break;
+
+ case SwizzleInvocationsMaskedAMD:
+ emit_binary_func_op(result_type, id, args[0], args[1], "swizzleInvocationsMaskedAMD");
+ register_control_dependent_expression(id);
+ break;
+
+ case WriteInvocationAMD:
+ emit_trinary_func_op(result_type, id, args[0], args[1], args[2], "writeInvocationAMD");
+ register_control_dependent_expression(id);
+ break;
+
+ case MbcntAMD:
+ emit_unary_func_op(result_type, id, args[0], "mbcntAMD");
+ register_control_dependent_expression(id);
+ break;
+
+ default:
+ statement("// unimplemented SPV AMD shader ballot op ", eop);
+ break;
+ }
+}
+
+void CompilerGLSL::emit_spv_amd_shader_explicit_vertex_parameter_op(uint32_t result_type, uint32_t id, uint32_t eop,
+ const uint32_t *args, uint32_t)
+{
+ require_extension_internal("GL_AMD_shader_explicit_vertex_parameter");
+
+ enum AMDShaderExplicitVertexParameter
+ {
+ InterpolateAtVertexAMD = 1
+ };
+
+ auto op = static_cast<AMDShaderExplicitVertexParameter>(eop);
+
+ switch (op)
+ {
+ case InterpolateAtVertexAMD:
+ emit_binary_func_op(result_type, id, args[0], args[1], "interpolateAtVertexAMD");
+ break;
+
+ default:
+ statement("// unimplemented SPV AMD shader explicit vertex parameter op ", eop);
+ break;
+ }
+}
+
+void CompilerGLSL::emit_spv_amd_shader_trinary_minmax_op(uint32_t result_type, uint32_t id, uint32_t eop,
+ const uint32_t *args, uint32_t)
+{
+ require_extension_internal("GL_AMD_shader_trinary_minmax");
+
+ enum AMDShaderTrinaryMinMax
+ {
+ FMin3AMD = 1,
+ UMin3AMD = 2,
+ SMin3AMD = 3,
+ FMax3AMD = 4,
+ UMax3AMD = 5,
+ SMax3AMD = 6,
+ FMid3AMD = 7,
+ UMid3AMD = 8,
+ SMid3AMD = 9
+ };
+
+ auto op = static_cast<AMDShaderTrinaryMinMax>(eop);
+
+ switch (op)
+ {
+ case FMin3AMD:
+ case UMin3AMD:
+ case SMin3AMD:
+ emit_trinary_func_op(result_type, id, args[0], args[1], args[2], "min3");
+ break;
+
+ case FMax3AMD:
+ case UMax3AMD:
+ case SMax3AMD:
+ emit_trinary_func_op(result_type, id, args[0], args[1], args[2], "max3");
+ break;
+
+ case FMid3AMD:
+ case UMid3AMD:
+ case SMid3AMD:
+ emit_trinary_func_op(result_type, id, args[0], args[1], args[2], "mid3");
+ break;
+
+ default:
+ statement("// unimplemented SPV AMD shader trinary minmax op ", eop);
+ break;
+ }
+}
+
+void CompilerGLSL::emit_spv_amd_gcn_shader_op(uint32_t result_type, uint32_t id, uint32_t eop, const uint32_t *args,
+ uint32_t)
+{
+ require_extension_internal("GL_AMD_gcn_shader");
+
+ enum AMDGCNShader
+ {
+ CubeFaceIndexAMD = 1,
+ CubeFaceCoordAMD = 2,
+ TimeAMD = 3
+ };
+
+ auto op = static_cast<AMDGCNShader>(eop);
+
+ switch (op)
+ {
+ case CubeFaceIndexAMD:
+ emit_unary_func_op(result_type, id, args[0], "cubeFaceIndexAMD");
+ break;
+ case CubeFaceCoordAMD:
+ emit_unary_func_op(result_type, id, args[0], "cubeFaceCoordAMD");
+ break;
+ case TimeAMD:
+ {
+ string expr = "timeAMD()";
+ emit_op(result_type, id, expr, true);
+ register_control_dependent_expression(id);
+ break;
+ }
+
+ default:
+ statement("// unimplemented SPV AMD gcn shader op ", eop);
+ break;
+ }
+}
+
+void CompilerGLSL::emit_subgroup_op(const Instruction &i)
+{
+ const uint32_t *ops = stream(i);
+ auto op = static_cast<Op>(i.op);
+
+ if (!options.vulkan_semantics && !is_supported_subgroup_op_in_opengl(op, ops))
+ SPIRV_CROSS_THROW("This subgroup operation is only supported in Vulkan semantics.");
+
+ // If we need to do implicit bitcasts, make sure we do it with the correct type.
+ uint32_t integer_width = get_integer_width_for_instruction(i);
+ auto int_type = to_signed_basetype(integer_width);
+ auto uint_type = to_unsigned_basetype(integer_width);
+
+ switch (op)
+ {
+ case OpGroupNonUniformElect:
+ request_subgroup_feature(ShaderSubgroupSupportHelper::SubgroupElect);
+ break;
+
+ case OpGroupNonUniformBallotBitCount:
+ {
+ const GroupOperation operation = static_cast<GroupOperation>(ops[3]);
+ if (operation == GroupOperationReduce)
+ request_subgroup_feature(ShaderSubgroupSupportHelper::SubgroupBallotBitCount);
+ else if (operation == GroupOperationInclusiveScan || operation == GroupOperationExclusiveScan)
+ request_subgroup_feature(ShaderSubgroupSupportHelper::SubgroupInverseBallot_InclBitCount_ExclBitCout);
+ }
+ break;
+
+ case OpGroupNonUniformBallotBitExtract:
+ request_subgroup_feature(ShaderSubgroupSupportHelper::SubgroupBallotBitExtract);
+ break;
+
+ case OpGroupNonUniformInverseBallot:
+ request_subgroup_feature(ShaderSubgroupSupportHelper::SubgroupInverseBallot_InclBitCount_ExclBitCout);
+ break;
+
+ case OpGroupNonUniformBallot:
+ request_subgroup_feature(ShaderSubgroupSupportHelper::SubgroupBallot);
+ break;
+
+ case OpGroupNonUniformBallotFindLSB:
+ case OpGroupNonUniformBallotFindMSB:
+ request_subgroup_feature(ShaderSubgroupSupportHelper::SubgroupBallotFindLSB_MSB);
+ break;
+
+ case OpGroupNonUniformBroadcast:
+ case OpGroupNonUniformBroadcastFirst:
+ request_subgroup_feature(ShaderSubgroupSupportHelper::SubgroupBroadcast_First);
+ break;
+
+ case OpGroupNonUniformShuffle:
+ case OpGroupNonUniformShuffleXor:
+ require_extension_internal("GL_KHR_shader_subgroup_shuffle");
+ break;
+
+ case OpGroupNonUniformShuffleUp:
+ case OpGroupNonUniformShuffleDown:
+ require_extension_internal("GL_KHR_shader_subgroup_shuffle_relative");
+ break;
+
+ case OpGroupNonUniformAll:
+ case OpGroupNonUniformAny:
+ case OpGroupNonUniformAllEqual:
+ {
+ const SPIRType &type = expression_type(ops[3]);
+ if (type.basetype == SPIRType::BaseType::Boolean && type.vecsize == 1u)
+ request_subgroup_feature(ShaderSubgroupSupportHelper::SubgroupAll_Any_AllEqualBool);
+ else
+ request_subgroup_feature(ShaderSubgroupSupportHelper::SubgroupAllEqualT);
+ }
+ break;
+
+ // clang-format off
+#define GLSL_GROUP_OP(OP)\
+ case OpGroupNonUniform##OP:\
+ {\
+ auto operation = static_cast<GroupOperation>(ops[3]);\
+ if (operation == GroupOperationClusteredReduce)\
+ require_extension_internal("GL_KHR_shader_subgroup_clustered");\
+ else if (operation == GroupOperationReduce)\
+ request_subgroup_feature(ShaderSubgroupSupportHelper::SubgroupArithmetic##OP##Reduce);\
+ else if (operation == GroupOperationExclusiveScan)\
+ request_subgroup_feature(ShaderSubgroupSupportHelper::SubgroupArithmetic##OP##ExclusiveScan);\
+ else if (operation == GroupOperationInclusiveScan)\
+ request_subgroup_feature(ShaderSubgroupSupportHelper::SubgroupArithmetic##OP##InclusiveScan);\
+ else\
+ SPIRV_CROSS_THROW("Invalid group operation.");\
+ break;\
+ }
+
+ GLSL_GROUP_OP(IAdd)
+ GLSL_GROUP_OP(FAdd)
+ GLSL_GROUP_OP(IMul)
+ GLSL_GROUP_OP(FMul)
+
+#undef GLSL_GROUP_OP
+ // clang-format on
+
+ case OpGroupNonUniformFMin:
+ case OpGroupNonUniformFMax:
+ case OpGroupNonUniformSMin:
+ case OpGroupNonUniformSMax:
+ case OpGroupNonUniformUMin:
+ case OpGroupNonUniformUMax:
+ case OpGroupNonUniformBitwiseAnd:
+ case OpGroupNonUniformBitwiseOr:
+ case OpGroupNonUniformBitwiseXor:
+ case OpGroupNonUniformLogicalAnd:
+ case OpGroupNonUniformLogicalOr:
+ case OpGroupNonUniformLogicalXor:
+ {
+ auto operation = static_cast<GroupOperation>(ops[3]);
+ if (operation == GroupOperationClusteredReduce)
+ {
+ require_extension_internal("GL_KHR_shader_subgroup_clustered");
+ }
+ else if (operation == GroupOperationExclusiveScan || operation == GroupOperationInclusiveScan ||
+ operation == GroupOperationReduce)
+ {
+ require_extension_internal("GL_KHR_shader_subgroup_arithmetic");
+ }
+ else
+ SPIRV_CROSS_THROW("Invalid group operation.");
+ break;
+ }
+
+ case OpGroupNonUniformQuadSwap:
+ case OpGroupNonUniformQuadBroadcast:
+ require_extension_internal("GL_KHR_shader_subgroup_quad");
+ break;
+
+ default:
+ SPIRV_CROSS_THROW("Invalid opcode for subgroup.");
+ }
+
+ uint32_t result_type = ops[0];
+ uint32_t id = ops[1];
+
+ auto scope = static_cast<Scope>(evaluate_constant_u32(ops[2]));
+ if (scope != ScopeSubgroup)
+ SPIRV_CROSS_THROW("Only subgroup scope is supported.");
+
+ switch (op)
+ {
+ case OpGroupNonUniformElect:
+ emit_op(result_type, id, "subgroupElect()", true);
+ break;
+
+ case OpGroupNonUniformBroadcast:
+ emit_binary_func_op(result_type, id, ops[3], ops[4], "subgroupBroadcast");
+ break;
+
+ case OpGroupNonUniformBroadcastFirst:
+ emit_unary_func_op(result_type, id, ops[3], "subgroupBroadcastFirst");
+ break;
+
+ case OpGroupNonUniformBallot:
+ emit_unary_func_op(result_type, id, ops[3], "subgroupBallot");
+ break;
+
+ case OpGroupNonUniformInverseBallot:
+ emit_unary_func_op(result_type, id, ops[3], "subgroupInverseBallot");
+ break;
+
+ case OpGroupNonUniformBallotBitExtract:
+ emit_binary_func_op(result_type, id, ops[3], ops[4], "subgroupBallotBitExtract");
+ break;
+
+ case OpGroupNonUniformBallotFindLSB:
+ emit_unary_func_op(result_type, id, ops[3], "subgroupBallotFindLSB");
+ break;
+
+ case OpGroupNonUniformBallotFindMSB:
+ emit_unary_func_op(result_type, id, ops[3], "subgroupBallotFindMSB");
+ break;
+
+ case OpGroupNonUniformBallotBitCount:
+ {
+ auto operation = static_cast<GroupOperation>(ops[3]);
+ if (operation == GroupOperationReduce)
+ emit_unary_func_op(result_type, id, ops[4], "subgroupBallotBitCount");
+ else if (operation == GroupOperationInclusiveScan)
+ emit_unary_func_op(result_type, id, ops[4], "subgroupBallotInclusiveBitCount");
+ else if (operation == GroupOperationExclusiveScan)
+ emit_unary_func_op(result_type, id, ops[4], "subgroupBallotExclusiveBitCount");
+ else
+ SPIRV_CROSS_THROW("Invalid BitCount operation.");
+ break;
+ }
+
+ case OpGroupNonUniformShuffle:
+ emit_binary_func_op(result_type, id, ops[3], ops[4], "subgroupShuffle");
+ break;
+
+ case OpGroupNonUniformShuffleXor:
+ emit_binary_func_op(result_type, id, ops[3], ops[4], "subgroupShuffleXor");
+ break;
+
+ case OpGroupNonUniformShuffleUp:
+ emit_binary_func_op(result_type, id, ops[3], ops[4], "subgroupShuffleUp");
+ break;
+
+ case OpGroupNonUniformShuffleDown:
+ emit_binary_func_op(result_type, id, ops[3], ops[4], "subgroupShuffleDown");
+ break;
+
+ case OpGroupNonUniformAll:
+ emit_unary_func_op(result_type, id, ops[3], "subgroupAll");
+ break;
+
+ case OpGroupNonUniformAny:
+ emit_unary_func_op(result_type, id, ops[3], "subgroupAny");
+ break;
+
+ case OpGroupNonUniformAllEqual:
+ emit_unary_func_op(result_type, id, ops[3], "subgroupAllEqual");
+ break;
+
+ // clang-format off
+#define GLSL_GROUP_OP(op, glsl_op) \
+case OpGroupNonUniform##op: \
+ { \
+ auto operation = static_cast<GroupOperation>(ops[3]); \
+ if (operation == GroupOperationReduce) \
+ emit_unary_func_op(result_type, id, ops[4], "subgroup" #glsl_op); \
+ else if (operation == GroupOperationInclusiveScan) \
+ emit_unary_func_op(result_type, id, ops[4], "subgroupInclusive" #glsl_op); \
+ else if (operation == GroupOperationExclusiveScan) \
+ emit_unary_func_op(result_type, id, ops[4], "subgroupExclusive" #glsl_op); \
+ else if (operation == GroupOperationClusteredReduce) \
+ emit_binary_func_op(result_type, id, ops[4], ops[5], "subgroupClustered" #glsl_op); \
+ else \
+ SPIRV_CROSS_THROW("Invalid group operation."); \
+ break; \
+ }
+
+#define GLSL_GROUP_OP_CAST(op, glsl_op, type) \
+case OpGroupNonUniform##op: \
+ { \
+ auto operation = static_cast<GroupOperation>(ops[3]); \
+ if (operation == GroupOperationReduce) \
+ emit_unary_func_op_cast(result_type, id, ops[4], "subgroup" #glsl_op, type, type); \
+ else if (operation == GroupOperationInclusiveScan) \
+ emit_unary_func_op_cast(result_type, id, ops[4], "subgroupInclusive" #glsl_op, type, type); \
+ else if (operation == GroupOperationExclusiveScan) \
+ emit_unary_func_op_cast(result_type, id, ops[4], "subgroupExclusive" #glsl_op, type, type); \
+ else if (operation == GroupOperationClusteredReduce) \
+ emit_binary_func_op_cast_clustered(result_type, id, ops[4], ops[5], "subgroupClustered" #glsl_op, type); \
+ else \
+ SPIRV_CROSS_THROW("Invalid group operation."); \
+ break; \
+ }
+
+ GLSL_GROUP_OP(FAdd, Add)
+ GLSL_GROUP_OP(FMul, Mul)
+ GLSL_GROUP_OP(FMin, Min)
+ GLSL_GROUP_OP(FMax, Max)
+ GLSL_GROUP_OP(IAdd, Add)
+ GLSL_GROUP_OP(IMul, Mul)
+ GLSL_GROUP_OP_CAST(SMin, Min, int_type)
+ GLSL_GROUP_OP_CAST(SMax, Max, int_type)
+ GLSL_GROUP_OP_CAST(UMin, Min, uint_type)
+ GLSL_GROUP_OP_CAST(UMax, Max, uint_type)
+ GLSL_GROUP_OP(BitwiseAnd, And)
+ GLSL_GROUP_OP(BitwiseOr, Or)
+ GLSL_GROUP_OP(BitwiseXor, Xor)
+ GLSL_GROUP_OP(LogicalAnd, And)
+ GLSL_GROUP_OP(LogicalOr, Or)
+ GLSL_GROUP_OP(LogicalXor, Xor)
+#undef GLSL_GROUP_OP
+#undef GLSL_GROUP_OP_CAST
+ // clang-format on
+
+ case OpGroupNonUniformQuadSwap:
+ {
+ uint32_t direction = evaluate_constant_u32(ops[4]);
+ if (direction == 0)
+ emit_unary_func_op(result_type, id, ops[3], "subgroupQuadSwapHorizontal");
+ else if (direction == 1)
+ emit_unary_func_op(result_type, id, ops[3], "subgroupQuadSwapVertical");
+ else if (direction == 2)
+ emit_unary_func_op(result_type, id, ops[3], "subgroupQuadSwapDiagonal");
+ else
+ SPIRV_CROSS_THROW("Invalid quad swap direction.");
+ break;
+ }
+
+ case OpGroupNonUniformQuadBroadcast:
+ {
+ emit_binary_func_op(result_type, id, ops[3], ops[4], "subgroupQuadBroadcast");
+ break;
+ }
+
+ default:
+ SPIRV_CROSS_THROW("Invalid opcode for subgroup.");
+ }
+
+ register_control_dependent_expression(id);
+}
+
+string CompilerGLSL::bitcast_glsl_op(const SPIRType &out_type, const SPIRType &in_type)
+{
+ // OpBitcast can deal with pointers.
+ if (out_type.pointer || in_type.pointer)
+ {
+ if (out_type.vecsize == 2 || in_type.vecsize == 2)
+ require_extension_internal("GL_EXT_buffer_reference_uvec2");
+ return type_to_glsl(out_type);
+ }
+
+ if (out_type.basetype == in_type.basetype)
+ return "";
+
+ assert(out_type.basetype != SPIRType::Boolean);
+ assert(in_type.basetype != SPIRType::Boolean);
+
+ bool integral_cast = type_is_integral(out_type) && type_is_integral(in_type);
+ bool same_size_cast = out_type.width == in_type.width;
+
+ // Trivial bitcast case, casts between integers.
+ if (integral_cast && same_size_cast)
+ return type_to_glsl(out_type);
+
+ // Catch-all 8-bit arithmetic casts (GL_EXT_shader_explicit_arithmetic_types).
+ if (out_type.width == 8 && in_type.width >= 16 && integral_cast && in_type.vecsize == 1)
+ return "unpack8";
+ else if (in_type.width == 8 && out_type.width == 16 && integral_cast && out_type.vecsize == 1)
+ return "pack16";
+ else if (in_type.width == 8 && out_type.width == 32 && integral_cast && out_type.vecsize == 1)
+ return "pack32";
+
+ // Floating <-> Integer special casts. Just have to enumerate all cases. :(
+ // 16-bit, 32-bit and 64-bit floats.
+ if (out_type.basetype == SPIRType::UInt && in_type.basetype == SPIRType::Float)
+ {
+ if (is_legacy_es())
+ SPIRV_CROSS_THROW("Float -> Uint bitcast not supported on legacy ESSL.");
+ else if (!options.es && options.version < 330)
+ require_extension_internal("GL_ARB_shader_bit_encoding");
+ return "floatBitsToUint";
+ }
+ else if (out_type.basetype == SPIRType::Int && in_type.basetype == SPIRType::Float)
+ {
+ if (is_legacy_es())
+ SPIRV_CROSS_THROW("Float -> Int bitcast not supported on legacy ESSL.");
+ else if (!options.es && options.version < 330)
+ require_extension_internal("GL_ARB_shader_bit_encoding");
+ return "floatBitsToInt";
+ }
+ else if (out_type.basetype == SPIRType::Float && in_type.basetype == SPIRType::UInt)
+ {
+ if (is_legacy_es())
+ SPIRV_CROSS_THROW("Uint -> Float bitcast not supported on legacy ESSL.");
+ else if (!options.es && options.version < 330)
+ require_extension_internal("GL_ARB_shader_bit_encoding");
+ return "uintBitsToFloat";
+ }
+ else if (out_type.basetype == SPIRType::Float && in_type.basetype == SPIRType::Int)
+ {
+ if (is_legacy_es())
+ SPIRV_CROSS_THROW("Int -> Float bitcast not supported on legacy ESSL.");
+ else if (!options.es && options.version < 330)
+ require_extension_internal("GL_ARB_shader_bit_encoding");
+ return "intBitsToFloat";
+ }
+
+ else if (out_type.basetype == SPIRType::Int64 && in_type.basetype == SPIRType::Double)
+ return "doubleBitsToInt64";
+ else if (out_type.basetype == SPIRType::UInt64 && in_type.basetype == SPIRType::Double)
+ return "doubleBitsToUint64";
+ else if (out_type.basetype == SPIRType::Double && in_type.basetype == SPIRType::Int64)
+ return "int64BitsToDouble";
+ else if (out_type.basetype == SPIRType::Double && in_type.basetype == SPIRType::UInt64)
+ return "uint64BitsToDouble";
+ else if (out_type.basetype == SPIRType::Short && in_type.basetype == SPIRType::Half)
+ return "float16BitsToInt16";
+ else if (out_type.basetype == SPIRType::UShort && in_type.basetype == SPIRType::Half)
+ return "float16BitsToUint16";
+ else if (out_type.basetype == SPIRType::Half && in_type.basetype == SPIRType::Short)
+ return "int16BitsToFloat16";
+ else if (out_type.basetype == SPIRType::Half && in_type.basetype == SPIRType::UShort)
+ return "uint16BitsToFloat16";
+
+ // And finally, some even more special purpose casts.
+ if (out_type.basetype == SPIRType::UInt64 && in_type.basetype == SPIRType::UInt && in_type.vecsize == 2)
+ return "packUint2x32";
+ else if (out_type.basetype == SPIRType::UInt && in_type.basetype == SPIRType::UInt64 && out_type.vecsize == 2)
+ return "unpackUint2x32";
+ else if (out_type.basetype == SPIRType::Half && in_type.basetype == SPIRType::UInt && in_type.vecsize == 1)
+ return "unpackFloat2x16";
+ else if (out_type.basetype == SPIRType::UInt && in_type.basetype == SPIRType::Half && in_type.vecsize == 2)
+ return "packFloat2x16";
+ else if (out_type.basetype == SPIRType::Int && in_type.basetype == SPIRType::Short && in_type.vecsize == 2)
+ return "packInt2x16";
+ else if (out_type.basetype == SPIRType::Short && in_type.basetype == SPIRType::Int && in_type.vecsize == 1)
+ return "unpackInt2x16";
+ else if (out_type.basetype == SPIRType::UInt && in_type.basetype == SPIRType::UShort && in_type.vecsize == 2)
+ return "packUint2x16";
+ else if (out_type.basetype == SPIRType::UShort && in_type.basetype == SPIRType::UInt && in_type.vecsize == 1)
+ return "unpackUint2x16";
+ else if (out_type.basetype == SPIRType::Int64 && in_type.basetype == SPIRType::Short && in_type.vecsize == 4)
+ return "packInt4x16";
+ else if (out_type.basetype == SPIRType::Short && in_type.basetype == SPIRType::Int64 && in_type.vecsize == 1)
+ return "unpackInt4x16";
+ else if (out_type.basetype == SPIRType::UInt64 && in_type.basetype == SPIRType::UShort && in_type.vecsize == 4)
+ return "packUint4x16";
+ else if (out_type.basetype == SPIRType::UShort && in_type.basetype == SPIRType::UInt64 && in_type.vecsize == 1)
+ return "unpackUint4x16";
+
+ return "";
+}
+
+string CompilerGLSL::bitcast_glsl(const SPIRType &result_type, uint32_t argument)
+{
+ auto op = bitcast_glsl_op(result_type, expression_type(argument));
+ if (op.empty())
+ return to_enclosed_unpacked_expression(argument);
+ else
+ return join(op, "(", to_unpacked_expression(argument), ")");
+}
+
+std::string CompilerGLSL::bitcast_expression(SPIRType::BaseType target_type, uint32_t arg)
+{
+ auto expr = to_expression(arg);
+ auto &src_type = expression_type(arg);
+ if (src_type.basetype != target_type)
+ {
+ auto target = src_type;
+ target.basetype = target_type;
+ expr = join(bitcast_glsl_op(target, src_type), "(", expr, ")");
+ }
+
+ return expr;
+}
+
+std::string CompilerGLSL::bitcast_expression(const SPIRType &target_type, SPIRType::BaseType expr_type,
+ const std::string &expr)
+{
+ if (target_type.basetype == expr_type)
+ return expr;
+
+ auto src_type = target_type;
+ src_type.basetype = expr_type;
+ return join(bitcast_glsl_op(target_type, src_type), "(", expr, ")");
+}
+
+string CompilerGLSL::builtin_to_glsl(BuiltIn builtin, StorageClass storage)
+{
+ switch (builtin)
+ {
+ case BuiltInPosition:
+ return "gl_Position";
+ case BuiltInPointSize:
+ return "gl_PointSize";
+ case BuiltInClipDistance:
+ {
+ if (options.es)
+ require_extension_internal("GL_EXT_clip_cull_distance");
+ return "gl_ClipDistance";
+ }
+ case BuiltInCullDistance:
+ {
+ if (options.es)
+ require_extension_internal("GL_EXT_clip_cull_distance");
+ return "gl_CullDistance";
+ }
+ case BuiltInVertexId:
+ if (options.vulkan_semantics)
+ SPIRV_CROSS_THROW("Cannot implement gl_VertexID in Vulkan GLSL. This shader was created "
+ "with GL semantics.");
+ return "gl_VertexID";
+ case BuiltInInstanceId:
+ if (options.vulkan_semantics)
+ {
+ auto model = get_entry_point().model;
+ switch (model)
+ {
+ case spv::ExecutionModelIntersectionKHR:
+ case spv::ExecutionModelAnyHitKHR:
+ case spv::ExecutionModelClosestHitKHR:
+ // gl_InstanceID is allowed in these shaders.
+ break;
+
+ default:
+ SPIRV_CROSS_THROW("Cannot implement gl_InstanceID in Vulkan GLSL. This shader was "
+ "created with GL semantics.");
+ }
+ }
+ if (!options.es && options.version < 140)
+ {
+ require_extension_internal("GL_ARB_draw_instanced");
+ }
+ return "gl_InstanceID";
+ case BuiltInVertexIndex:
+ if (options.vulkan_semantics)
+ return "gl_VertexIndex";
+ else
+ return "gl_VertexID"; // gl_VertexID already has the base offset applied.
+ case BuiltInInstanceIndex:
+ if (options.vulkan_semantics)
+ return "gl_InstanceIndex";
+
+ if (!options.es && options.version < 140)
+ {
+ require_extension_internal("GL_ARB_draw_instanced");
+ }
+
+ if (options.vertex.support_nonzero_base_instance)
+ {
+ if (!options.vulkan_semantics)
+ {
+ // This is a soft-enable. We will opt-in to using gl_BaseInstanceARB if supported.
+ require_extension_internal("GL_ARB_shader_draw_parameters");
+ }
+ return "(gl_InstanceID + SPIRV_Cross_BaseInstance)"; // ... but not gl_InstanceID.
+ }
+ else
+ return "gl_InstanceID";
+ case BuiltInPrimitiveId:
+ if (storage == StorageClassInput && get_entry_point().model == ExecutionModelGeometry)
+ return "gl_PrimitiveIDIn";
+ else
+ return "gl_PrimitiveID";
+ case BuiltInInvocationId:
+ return "gl_InvocationID";
+ case BuiltInLayer:
+ return "gl_Layer";
+ case BuiltInViewportIndex:
+ return "gl_ViewportIndex";
+ case BuiltInTessLevelOuter:
+ return "gl_TessLevelOuter";
+ case BuiltInTessLevelInner:
+ return "gl_TessLevelInner";
+ case BuiltInTessCoord:
+ return "gl_TessCoord";
+ case BuiltInPatchVertices:
+ return "gl_PatchVerticesIn";
+ case BuiltInFragCoord:
+ return "gl_FragCoord";
+ case BuiltInPointCoord:
+ return "gl_PointCoord";
+ case BuiltInFrontFacing:
+ return "gl_FrontFacing";
+ case BuiltInFragDepth:
+ return "gl_FragDepth";
+ case BuiltInNumWorkgroups:
+ return "gl_NumWorkGroups";
+ case BuiltInWorkgroupSize:
+ return "gl_WorkGroupSize";
+ case BuiltInWorkgroupId:
+ return "gl_WorkGroupID";
+ case BuiltInLocalInvocationId:
+ return "gl_LocalInvocationID";
+ case BuiltInGlobalInvocationId:
+ return "gl_GlobalInvocationID";
+ case BuiltInLocalInvocationIndex:
+ return "gl_LocalInvocationIndex";
+ case BuiltInHelperInvocation:
+ return "gl_HelperInvocation";
+
+ case BuiltInBaseVertex:
+ if (options.es)
+ SPIRV_CROSS_THROW("BaseVertex not supported in ES profile.");
+
+ if (options.vulkan_semantics)
+ {
+ if (options.version < 460)
+ {
+ require_extension_internal("GL_ARB_shader_draw_parameters");
+ return "gl_BaseVertexARB";
+ }
+ return "gl_BaseVertex";
+ }
+ // On regular GL, this is soft-enabled and we emit ifdefs in code.
+ require_extension_internal("GL_ARB_shader_draw_parameters");
+ return "SPIRV_Cross_BaseVertex";
+
+ case BuiltInBaseInstance:
+ if (options.es)
+ SPIRV_CROSS_THROW("BaseInstance not supported in ES profile.");
+
+ if (options.vulkan_semantics)
+ {
+ if (options.version < 460)
+ {
+ require_extension_internal("GL_ARB_shader_draw_parameters");
+ return "gl_BaseInstanceARB";
+ }
+ return "gl_BaseInstance";
+ }
+ // On regular GL, this is soft-enabled and we emit ifdefs in code.
+ require_extension_internal("GL_ARB_shader_draw_parameters");
+ return "SPIRV_Cross_BaseInstance";
+
+ case BuiltInDrawIndex:
+ if (options.es)
+ SPIRV_CROSS_THROW("DrawIndex not supported in ES profile.");
+
+ if (options.vulkan_semantics)
+ {
+ if (options.version < 460)
+ {
+ require_extension_internal("GL_ARB_shader_draw_parameters");
+ return "gl_DrawIDARB";
+ }
+ return "gl_DrawID";
+ }
+ // On regular GL, this is soft-enabled and we emit ifdefs in code.
+ require_extension_internal("GL_ARB_shader_draw_parameters");
+ return "gl_DrawIDARB";
+
+ case BuiltInSampleId:
+ if (is_legacy())
+ SPIRV_CROSS_THROW("Sample variables not supported in legacy GLSL.");
+ else if (options.es && options.version < 320)
+ require_extension_internal("GL_OES_sample_variables");
+ else if (!options.es && options.version < 400)
+ require_extension_internal("GL_ARB_sample_shading");
+ return "gl_SampleID";
+
+ case BuiltInSampleMask:
+ if (is_legacy())
+ SPIRV_CROSS_THROW("Sample variables not supported in legacy GLSL.");
+ else if (options.es && options.version < 320)
+ require_extension_internal("GL_OES_sample_variables");
+ else if (!options.es && options.version < 400)
+ require_extension_internal("GL_ARB_sample_shading");
+
+ if (storage == StorageClassInput)
+ return "gl_SampleMaskIn";
+ else
+ return "gl_SampleMask";
+
+ case BuiltInSamplePosition:
+ if (is_legacy())
+ SPIRV_CROSS_THROW("Sample variables not supported in legacy GLSL.");
+ else if (options.es && options.version < 320)
+ require_extension_internal("GL_OES_sample_variables");
+ else if (!options.es && options.version < 400)
+ require_extension_internal("GL_ARB_sample_shading");
+ return "gl_SamplePosition";
+
+ case BuiltInViewIndex:
+ if (options.vulkan_semantics)
+ return "gl_ViewIndex";
+ else
+ return "gl_ViewID_OVR";
+
+ case BuiltInNumSubgroups:
+ request_subgroup_feature(ShaderSubgroupSupportHelper::NumSubgroups);
+ return "gl_NumSubgroups";
+
+ case BuiltInSubgroupId:
+ request_subgroup_feature(ShaderSubgroupSupportHelper::SubgroupID);
+ return "gl_SubgroupID";
+
+ case BuiltInSubgroupSize:
+ request_subgroup_feature(ShaderSubgroupSupportHelper::SubgroupSize);
+ return "gl_SubgroupSize";
+
+ case BuiltInSubgroupLocalInvocationId:
+ request_subgroup_feature(ShaderSubgroupSupportHelper::SubgroupInvocationID);
+ return "gl_SubgroupInvocationID";
+
+ case BuiltInSubgroupEqMask:
+ request_subgroup_feature(ShaderSubgroupSupportHelper::SubgroupMask);
+ return "gl_SubgroupEqMask";
+
+ case BuiltInSubgroupGeMask:
+ request_subgroup_feature(ShaderSubgroupSupportHelper::SubgroupMask);
+ return "gl_SubgroupGeMask";
+
+ case BuiltInSubgroupGtMask:
+ request_subgroup_feature(ShaderSubgroupSupportHelper::SubgroupMask);
+ return "gl_SubgroupGtMask";
+
+ case BuiltInSubgroupLeMask:
+ request_subgroup_feature(ShaderSubgroupSupportHelper::SubgroupMask);
+ return "gl_SubgroupLeMask";
+
+ case BuiltInSubgroupLtMask:
+ request_subgroup_feature(ShaderSubgroupSupportHelper::SubgroupMask);
+ return "gl_SubgroupLtMask";
+
+ case BuiltInLaunchIdKHR:
+ return ray_tracing_is_khr ? "gl_LaunchIDEXT" : "gl_LaunchIDNV";
+ case BuiltInLaunchSizeKHR:
+ return ray_tracing_is_khr ? "gl_LaunchSizeEXT" : "gl_LaunchSizeNV";
+ case BuiltInWorldRayOriginKHR:
+ return ray_tracing_is_khr ? "gl_WorldRayOriginEXT" : "gl_WorldRayOriginNV";
+ case BuiltInWorldRayDirectionKHR:
+ return ray_tracing_is_khr ? "gl_WorldRayDirectionEXT" : "gl_WorldRayDirectionNV";
+ case BuiltInObjectRayOriginKHR:
+ return ray_tracing_is_khr ? "gl_ObjectRayOriginEXT" : "gl_ObjectRayOriginNV";
+ case BuiltInObjectRayDirectionKHR:
+ return ray_tracing_is_khr ? "gl_ObjectRayDirectionEXT" : "gl_ObjectRayDirectionNV";
+ case BuiltInRayTminKHR:
+ return ray_tracing_is_khr ? "gl_RayTminEXT" : "gl_RayTminNV";
+ case BuiltInRayTmaxKHR:
+ return ray_tracing_is_khr ? "gl_RayTmaxEXT" : "gl_RayTmaxNV";
+ case BuiltInInstanceCustomIndexKHR:
+ return ray_tracing_is_khr ? "gl_InstanceCustomIndexEXT" : "gl_InstanceCustomIndexNV";
+ case BuiltInObjectToWorldKHR:
+ return ray_tracing_is_khr ? "gl_ObjectToWorldEXT" : "gl_ObjectToWorldNV";
+ case BuiltInWorldToObjectKHR:
+ return ray_tracing_is_khr ? "gl_WorldToObjectEXT" : "gl_WorldToObjectNV";
+ case BuiltInHitTNV:
+ // gl_HitTEXT is an alias of RayTMax in KHR.
+ return "gl_HitTNV";
+ case BuiltInHitKindKHR:
+ return ray_tracing_is_khr ? "gl_HitKindEXT" : "gl_HitKindNV";
+ case BuiltInIncomingRayFlagsKHR:
+ return ray_tracing_is_khr ? "gl_IncomingRayFlagsEXT" : "gl_IncomingRayFlagsNV";
+
+ case BuiltInBaryCoordKHR:
+ {
+ if (options.es && options.version < 320)
+ SPIRV_CROSS_THROW("gl_BaryCoordEXT requires ESSL 320.");
+ else if (!options.es && options.version < 450)
+ SPIRV_CROSS_THROW("gl_BaryCoordEXT requires GLSL 450.");
+
+ if (barycentric_is_nv)
+ {
+ require_extension_internal("GL_NV_fragment_shader_barycentric");
+ return "gl_BaryCoordNV";
+ }
+ else
+ {
+ require_extension_internal("GL_EXT_fragment_shader_barycentric");
+ return "gl_BaryCoordEXT";
+ }
+ }
+
+ case BuiltInBaryCoordNoPerspNV:
+ {
+ if (options.es && options.version < 320)
+ SPIRV_CROSS_THROW("gl_BaryCoordNoPerspEXT requires ESSL 320.");
+ else if (!options.es && options.version < 450)
+ SPIRV_CROSS_THROW("gl_BaryCoordNoPerspEXT requires GLSL 450.");
+
+ if (barycentric_is_nv)
+ {
+ require_extension_internal("GL_NV_fragment_shader_barycentric");
+ return "gl_BaryCoordNoPerspNV";
+ }
+ else
+ {
+ require_extension_internal("GL_EXT_fragment_shader_barycentric");
+ return "gl_BaryCoordNoPerspEXT";
+ }
+ }
+
+ case BuiltInFragStencilRefEXT:
+ {
+ if (!options.es)
+ {
+ require_extension_internal("GL_ARB_shader_stencil_export");
+ return "gl_FragStencilRefARB";
+ }
+ else
+ SPIRV_CROSS_THROW("Stencil export not supported in GLES.");
+ }
+
+ case BuiltInPrimitiveShadingRateKHR:
+ {
+ if (!options.vulkan_semantics)
+ SPIRV_CROSS_THROW("Can only use PrimitiveShadingRateKHR in Vulkan GLSL.");
+ require_extension_internal("GL_EXT_fragment_shading_rate");
+ return "gl_PrimitiveShadingRateEXT";
+ }
+
+ case BuiltInShadingRateKHR:
+ {
+ if (!options.vulkan_semantics)
+ SPIRV_CROSS_THROW("Can only use ShadingRateKHR in Vulkan GLSL.");
+ require_extension_internal("GL_EXT_fragment_shading_rate");
+ return "gl_ShadingRateEXT";
+ }
+
+ case BuiltInDeviceIndex:
+ if (!options.vulkan_semantics)
+ SPIRV_CROSS_THROW("Need Vulkan semantics for device group support.");
+ require_extension_internal("GL_EXT_device_group");
+ return "gl_DeviceIndex";
+
+ case BuiltInFullyCoveredEXT:
+ if (!options.es)
+ require_extension_internal("GL_NV_conservative_raster_underestimation");
+ else
+ SPIRV_CROSS_THROW("Need desktop GL to use GL_NV_conservative_raster_underestimation.");
+ return "gl_FragFullyCoveredNV";
+
+ case BuiltInPrimitiveTriangleIndicesEXT:
+ return "gl_PrimitiveTriangleIndicesEXT";
+ case BuiltInPrimitiveLineIndicesEXT:
+ return "gl_PrimitiveLineIndicesEXT";
+ case BuiltInPrimitivePointIndicesEXT:
+ return "gl_PrimitivePointIndicesEXT";
+ case BuiltInCullPrimitiveEXT:
+ return "gl_CullPrimitiveEXT";
+
+ default:
+ return join("gl_BuiltIn_", convert_to_string(builtin));
+ }
+}
+
+const char *CompilerGLSL::index_to_swizzle(uint32_t index)
+{
+ switch (index)
+ {
+ case 0:
+ return "x";
+ case 1:
+ return "y";
+ case 2:
+ return "z";
+ case 3:
+ return "w";
+ default:
+ return "x"; // Don't crash, but engage the "undefined behavior" described for out-of-bounds logical addressing in spec.
+ }
+}
+
+void CompilerGLSL::access_chain_internal_append_index(std::string &expr, uint32_t /*base*/, const SPIRType * /*type*/,
+ AccessChainFlags flags, bool &access_chain_is_arrayed,
+ uint32_t index)
+{
+ bool index_is_literal = (flags & ACCESS_CHAIN_INDEX_IS_LITERAL_BIT) != 0;
+ bool ptr_chain = (flags & ACCESS_CHAIN_PTR_CHAIN_BIT) != 0;
+ bool register_expression_read = (flags & ACCESS_CHAIN_SKIP_REGISTER_EXPRESSION_READ_BIT) == 0;
+
+ string idx_expr = index_is_literal ? convert_to_string(index) : to_unpacked_expression(index, register_expression_read);
+
+ // For the case where the base of an OpPtrAccessChain already ends in [n],
+ // we need to use the index as an offset to the existing index, otherwise,
+ // we can just use the index directly.
+ if (ptr_chain && access_chain_is_arrayed)
+ {
+ size_t split_pos = expr.find_last_of(']');
+ size_t enclose_split = expr.find_last_of(')');
+
+ // If we have already enclosed the expression, don't try to be clever, it will break.
+ if (split_pos > enclose_split || enclose_split == string::npos)
+ {
+ string expr_front = expr.substr(0, split_pos);
+ string expr_back = expr.substr(split_pos);
+ expr = expr_front + " + " + enclose_expression(idx_expr) + expr_back;
+ return;
+ }
+ }
+
+ expr += "[";
+ expr += idx_expr;
+ expr += "]";
+}
+
+bool CompilerGLSL::access_chain_needs_stage_io_builtin_translation(uint32_t)
+{
+ return true;
+}
+
+string CompilerGLSL::access_chain_internal(uint32_t base, const uint32_t *indices, uint32_t count,
+ AccessChainFlags flags, AccessChainMeta *meta)
+{
+ string expr;
+
+ bool index_is_literal = (flags & ACCESS_CHAIN_INDEX_IS_LITERAL_BIT) != 0;
+ bool msb_is_id = (flags & ACCESS_CHAIN_LITERAL_MSB_FORCE_ID) != 0;
+ bool chain_only = (flags & ACCESS_CHAIN_CHAIN_ONLY_BIT) != 0;
+ bool ptr_chain = (flags & ACCESS_CHAIN_PTR_CHAIN_BIT) != 0;
+ bool register_expression_read = (flags & ACCESS_CHAIN_SKIP_REGISTER_EXPRESSION_READ_BIT) == 0;
+ bool flatten_member_reference = (flags & ACCESS_CHAIN_FLATTEN_ALL_MEMBERS_BIT) != 0;
+
+ if (!chain_only)
+ {
+ // We handle transpose explicitly, so don't resolve that here.
+ auto *e = maybe_get<SPIRExpression>(base);
+ bool old_transpose = e && e->need_transpose;
+ if (e)
+ e->need_transpose = false;
+ expr = to_enclosed_expression(base, register_expression_read);
+ if (e)
+ e->need_transpose = old_transpose;
+ }
+
+ // Start traversing type hierarchy at the proper non-pointer types,
+ // but keep type_id referencing the original pointer for use below.
+ uint32_t type_id = expression_type_id(base);
+ const auto *type = &get_pointee_type(type_id);
+
+ if (!backend.native_pointers)
+ {
+ if (ptr_chain)
+ SPIRV_CROSS_THROW("Backend does not support native pointers and does not support OpPtrAccessChain.");
+
+ // Wrapped buffer reference pointer types will need to poke into the internal "value" member before
+ // continuing the access chain.
+ if (should_dereference(base))
+ expr = dereference_expression(get<SPIRType>(type_id), expr);
+ }
+ else if (should_dereference(base) && type->basetype != SPIRType::Struct && !ptr_chain)
+ expr = join("(", dereference_expression(*type, expr), ")");
+
+ bool access_chain_is_arrayed = expr.find_first_of('[') != string::npos;
+ bool row_major_matrix_needs_conversion = is_non_native_row_major_matrix(base);
+ bool is_packed = has_extended_decoration(base, SPIRVCrossDecorationPhysicalTypePacked);
+ uint32_t physical_type = get_extended_decoration(base, SPIRVCrossDecorationPhysicalTypeID);
+ bool is_invariant = has_decoration(base, DecorationInvariant);
+ bool relaxed_precision = has_decoration(base, DecorationRelaxedPrecision);
+ bool pending_array_enclose = false;
+ bool dimension_flatten = false;
+ bool access_meshlet_position_y = false;
+
+ if (auto *base_expr = maybe_get<SPIRExpression>(base))
+ {
+ access_meshlet_position_y = base_expr->access_meshlet_position_y;
+ }
+
+ // If we are translating access to a structured buffer, the first subscript '._m0' must be hidden
+ bool hide_first_subscript = count > 1 && is_user_type_structured(base);
+
+ const auto append_index = [&](uint32_t index, bool is_literal, bool is_ptr_chain = false) {
+ AccessChainFlags mod_flags = flags;
+ if (!is_literal)
+ mod_flags &= ~ACCESS_CHAIN_INDEX_IS_LITERAL_BIT;
+ if (!is_ptr_chain)
+ mod_flags &= ~ACCESS_CHAIN_PTR_CHAIN_BIT;
+ access_chain_internal_append_index(expr, base, type, mod_flags, access_chain_is_arrayed, index);
+ check_physical_type_cast(expr, type, physical_type);
+ };
+
+ for (uint32_t i = 0; i < count; i++)
+ {
+ uint32_t index = indices[i];
+
+ bool is_literal = index_is_literal;
+ if (is_literal && msb_is_id && (index >> 31u) != 0u)
+ {
+ is_literal = false;
+ index &= 0x7fffffffu;
+ }
+
+ bool ptr_chain_array_entry = ptr_chain && i == 0 && is_array(*type);
+
+ if (ptr_chain_array_entry)
+ {
+ // This is highly unusual code, since normally we'd use plain AccessChain, but it's still allowed.
+ // We are considered to have a pointer to array and one element shifts by one array at a time.
+ // If we use normal array indexing, we'll first decay to pointer, and lose the array-ness,
+ // so we have to take pointer to array explicitly.
+ if (!should_dereference(base))
+ expr = enclose_expression(address_of_expression(expr));
+ }
+
+ if (ptr_chain && i == 0)
+ {
+ // Pointer chains
+ // If we are flattening multidimensional arrays, only create opening bracket on first
+ // array index.
+ if (options.flatten_multidimensional_arrays)
+ {
+ dimension_flatten = type->array.size() >= 1;
+ pending_array_enclose = dimension_flatten;
+ if (pending_array_enclose)
+ expr += "[";
+ }
+
+ if (options.flatten_multidimensional_arrays && dimension_flatten)
+ {
+ // If we are flattening multidimensional arrays, do manual stride computation.
+ if (is_literal)
+ expr += convert_to_string(index);
+ else
+ expr += to_enclosed_expression(index, register_expression_read);
+
+ for (auto j = uint32_t(type->array.size()); j; j--)
+ {
+ expr += " * ";
+ expr += enclose_expression(to_array_size(*type, j - 1));
+ }
+
+ if (type->array.empty())
+ pending_array_enclose = false;
+ else
+ expr += " + ";
+
+ if (!pending_array_enclose)
+ expr += "]";
+ }
+ else
+ {
+ if (flags & ACCESS_CHAIN_PTR_CHAIN_POINTER_ARITH_BIT)
+ {
+ SPIRType tmp_type(OpTypeInt);
+ tmp_type.basetype = SPIRType::UInt64;
+ tmp_type.width = 64;
+ tmp_type.vecsize = 1;
+ tmp_type.columns = 1;
+
+ TypeID ptr_type_id = expression_type_id(base);
+ const SPIRType &ptr_type = get<SPIRType>(ptr_type_id);
+ const SPIRType &pointee_type = get_pointee_type(ptr_type);
+
+ // This only runs in native pointer backends.
+ // Can replace reinterpret_cast with a backend string if ever needed.
+ // We expect this to count as a de-reference.
+ // This leaks some MSL details, but feels slightly overkill to
+ // add yet another virtual interface just for this.
+ auto intptr_expr = join("reinterpret_cast<", type_to_glsl(tmp_type), ">(", expr, ")");
+ intptr_expr += join(" + ", to_enclosed_unpacked_expression(index), " * ",
+ get_decoration(ptr_type_id, DecorationArrayStride));
+
+ if (flags & ACCESS_CHAIN_PTR_CHAIN_CAST_TO_SCALAR_BIT)
+ {
+ is_packed = true;
+ expr = join("*reinterpret_cast<device packed_", type_to_glsl(pointee_type),
+ " *>(", intptr_expr, ")");
+ }
+ else
+ {
+ expr = join("*reinterpret_cast<", type_to_glsl(ptr_type), ">(", intptr_expr, ")");
+ }
+ }
+ else
+ append_index(index, is_literal, true);
+ }
+
+ if (type->basetype == SPIRType::ControlPointArray)
+ {
+ type_id = type->parent_type;
+ type = &get<SPIRType>(type_id);
+ }
+
+ access_chain_is_arrayed = true;
+
+ // Explicitly enclose the expression if this is one of the weird pointer-to-array cases.
+ // We don't want any future indexing to add to this array dereference.
+ // Enclosing the expression blocks that and avoids any shenanigans with operand priority.
+ if (ptr_chain_array_entry)
+ expr = join("(", expr, ")");
+ }
+ // Arrays
+ else if (!type->array.empty())
+ {
+ // If we are flattening multidimensional arrays, only create opening bracket on first
+ // array index.
+ if (options.flatten_multidimensional_arrays && !pending_array_enclose)
+ {
+ dimension_flatten = type->array.size() > 1;
+ pending_array_enclose = dimension_flatten;
+ if (pending_array_enclose)
+ expr += "[";
+ }
+
+ assert(type->parent_type);
+
+ auto *var = maybe_get<SPIRVariable>(base);
+ if (backend.force_gl_in_out_block && i == 0 && var && is_builtin_variable(*var) &&
+ !has_decoration(type->self, DecorationBlock))
+ {
+ // This deals with scenarios for tesc/geom where arrays of gl_Position[] are declared.
+ // Normally, these variables live in blocks when compiled from GLSL,
+ // but HLSL seems to just emit straight arrays here.
+ // We must pretend this access goes through gl_in/gl_out arrays
+ // to be able to access certain builtins as arrays.
+ // Similar concerns apply for mesh shaders where we have to redirect to gl_MeshVerticesEXT or MeshPrimitivesEXT.
+ auto builtin = ir.meta[base].decoration.builtin_type;
+ bool mesh_shader = get_execution_model() == ExecutionModelMeshEXT;
+
+ switch (builtin)
+ {
+ case BuiltInCullDistance:
+ case BuiltInClipDistance:
+ if (type->array.size() == 1) // Red herring. Only consider block IO for two-dimensional arrays here.
+ {
+ append_index(index, is_literal);
+ break;
+ }
+ // fallthrough
+ case BuiltInPosition:
+ case BuiltInPointSize:
+ if (mesh_shader)
+ expr = join("gl_MeshVerticesEXT[", to_expression(index, register_expression_read), "].", expr);
+ else if (var->storage == StorageClassInput)
+ expr = join("gl_in[", to_expression(index, register_expression_read), "].", expr);
+ else if (var->storage == StorageClassOutput)
+ expr = join("gl_out[", to_expression(index, register_expression_read), "].", expr);
+ else
+ append_index(index, is_literal);
+ break;
+
+ case BuiltInPrimitiveId:
+ case BuiltInLayer:
+ case BuiltInViewportIndex:
+ case BuiltInCullPrimitiveEXT:
+ case BuiltInPrimitiveShadingRateKHR:
+ if (mesh_shader)
+ expr = join("gl_MeshPrimitivesEXT[", to_expression(index, register_expression_read), "].", expr);
+ else
+ append_index(index, is_literal);
+ break;
+
+ default:
+ append_index(index, is_literal);
+ break;
+ }
+ }
+ else if (backend.force_merged_mesh_block && i == 0 && var &&
+ !is_builtin_variable(*var) && var->storage == StorageClassOutput)
+ {
+ if (is_per_primitive_variable(*var))
+ expr = join("gl_MeshPrimitivesEXT[", to_expression(index, register_expression_read), "].", expr);
+ else
+ expr = join("gl_MeshVerticesEXT[", to_expression(index, register_expression_read), "].", expr);
+ }
+ else if (options.flatten_multidimensional_arrays && dimension_flatten)
+ {
+ // If we are flattening multidimensional arrays, do manual stride computation.
+ auto &parent_type = get<SPIRType>(type->parent_type);
+
+ if (is_literal)
+ expr += convert_to_string(index);
+ else
+ expr += to_enclosed_expression(index, register_expression_read);
+
+ for (auto j = uint32_t(parent_type.array.size()); j; j--)
+ {
+ expr += " * ";
+ expr += enclose_expression(to_array_size(parent_type, j - 1));
+ }
+
+ if (parent_type.array.empty())
+ pending_array_enclose = false;
+ else
+ expr += " + ";
+
+ if (!pending_array_enclose)
+ expr += "]";
+ }
+ else if (index_is_literal || !builtin_translates_to_nonarray(BuiltIn(get_decoration(base, DecorationBuiltIn))))
+ {
+ // Some builtins are arrays in SPIR-V but not in other languages, e.g. gl_SampleMask[] is an array in SPIR-V but not in Metal.
+ // By throwing away the index, we imply the index was 0, which it must be for gl_SampleMask.
+ // For literal indices we are working on composites, so we ignore this since we have already converted to proper array.
+ append_index(index, is_literal);
+ }
+
+ if (var && has_decoration(var->self, DecorationBuiltIn) &&
+ get_decoration(var->self, DecorationBuiltIn) == BuiltInPosition &&
+ get_execution_model() == ExecutionModelMeshEXT)
+ {
+ access_meshlet_position_y = true;
+ }
+
+ type_id = type->parent_type;
+ type = &get<SPIRType>(type_id);
+
+ // If the physical type has an unnatural vecsize,
+ // we must assume it's a faked struct where the .data member
+ // is used for the real payload.
+ if (physical_type && (is_vector(*type) || is_scalar(*type)))
+ {
+ auto &phys = get<SPIRType>(physical_type);
+ if (phys.vecsize > 4)
+ expr += ".data";
+ }
+
+ access_chain_is_arrayed = true;
+ }
+ // For structs, the index refers to a constant, which indexes into the members, possibly through a redirection mapping.
+ // We also check if this member is a builtin, since we then replace the entire expression with the builtin one.
+ else if (type->basetype == SPIRType::Struct)
+ {
+ if (!is_literal)
+ index = evaluate_constant_u32(index);
+
+ if (index < uint32_t(type->member_type_index_redirection.size()))
+ index = type->member_type_index_redirection[index];
+
+ if (index >= type->member_types.size())
+ SPIRV_CROSS_THROW("Member index is out of bounds!");
+
+ if (hide_first_subscript)
+ {
+ // First "._m0" subscript has been hidden, subsequent fields must be emitted even for structured buffers
+ hide_first_subscript = false;
+ }
+ else
+ {
+ BuiltIn builtin = BuiltInMax;
+ if (is_member_builtin(*type, index, &builtin) && access_chain_needs_stage_io_builtin_translation(base))
+ {
+ if (access_chain_is_arrayed)
+ {
+ expr += ".";
+ expr += builtin_to_glsl(builtin, type->storage);
+ }
+ else
+ expr = builtin_to_glsl(builtin, type->storage);
+
+ if (builtin == BuiltInPosition && get_execution_model() == ExecutionModelMeshEXT)
+ {
+ access_meshlet_position_y = true;
+ }
+ }
+ else
+ {
+ // If the member has a qualified name, use it as the entire chain
+ string qual_mbr_name = get_member_qualified_name(type_id, index);
+ if (!qual_mbr_name.empty())
+ expr = qual_mbr_name;
+ else if (flatten_member_reference)
+ expr += join("_", to_member_name(*type, index));
+ else
+ {
+ // Any pointer de-refences for values are handled in the first access chain.
+ // For pointer chains, the pointer-ness is resolved through an array access.
+ // The only time this is not true is when accessing array of SSBO/UBO.
+ // This case is explicitly handled.
+ expr += to_member_reference(base, *type, index, ptr_chain || i != 0);
+ }
+ }
+ }
+
+ if (has_member_decoration(type->self, index, DecorationInvariant))
+ is_invariant = true;
+ if (has_member_decoration(type->self, index, DecorationRelaxedPrecision))
+ relaxed_precision = true;
+
+ is_packed = member_is_packed_physical_type(*type, index);
+ if (member_is_remapped_physical_type(*type, index))
+ physical_type = get_extended_member_decoration(type->self, index, SPIRVCrossDecorationPhysicalTypeID);
+ else
+ physical_type = 0;
+
+ row_major_matrix_needs_conversion = member_is_non_native_row_major_matrix(*type, index);
+ type = &get<SPIRType>(type->member_types[index]);
+ }
+ // Matrix -> Vector
+ else if (type->columns > 1)
+ {
+ // If we have a row-major matrix here, we need to defer any transpose in case this access chain
+ // is used to store a column. We can resolve it right here and now if we access a scalar directly,
+ // by flipping indexing order of the matrix.
+
+ expr += "[";
+ if (is_literal)
+ expr += convert_to_string(index);
+ else
+ expr += to_unpacked_expression(index, register_expression_read);
+ expr += "]";
+
+ // If the physical type has an unnatural vecsize,
+ // we must assume it's a faked struct where the .data member
+ // is used for the real payload.
+ if (physical_type)
+ {
+ auto &phys = get<SPIRType>(physical_type);
+ if (phys.vecsize > 4 || phys.columns > 4)
+ expr += ".data";
+ }
+
+ type_id = type->parent_type;
+ type = &get<SPIRType>(type_id);
+ }
+ // Vector -> Scalar
+ else if (type->vecsize > 1)
+ {
+ string deferred_index;
+ if (row_major_matrix_needs_conversion)
+ {
+ // Flip indexing order.
+ auto column_index = expr.find_last_of('[');
+ if (column_index != string::npos)
+ {
+ deferred_index = expr.substr(column_index);
+
+ auto end_deferred_index = deferred_index.find_last_of(']');
+ if (end_deferred_index != string::npos && end_deferred_index + 1 != deferred_index.size())
+ {
+ // If we have any data member fixups, it must be transposed so that it refers to this index.
+ // E.g. [0].data followed by [1] would be shuffled to [1][0].data which is wrong,
+ // and needs to be [1].data[0] instead.
+ end_deferred_index++;
+ deferred_index = deferred_index.substr(end_deferred_index) +
+ deferred_index.substr(0, end_deferred_index);
+ }
+
+ expr.resize(column_index);
+ }
+ }
+
+ // Internally, access chain implementation can also be used on composites,
+ // ignore scalar access workarounds in this case.
+ StorageClass effective_storage = StorageClassGeneric;
+ bool ignore_potential_sliced_writes = false;
+ if ((flags & ACCESS_CHAIN_FORCE_COMPOSITE_BIT) == 0)
+ {
+ if (expression_type(base).pointer)
+ effective_storage = get_expression_effective_storage_class(base);
+
+ // Special consideration for control points.
+ // Control points can only be written by InvocationID, so there is no need
+ // to consider scalar access chains here.
+ // Cleans up some cases where it's very painful to determine the accurate storage class
+ // since blocks can be partially masked ...
+ auto *var = maybe_get_backing_variable(base);
+ if (var && var->storage == StorageClassOutput &&
+ get_execution_model() == ExecutionModelTessellationControl &&
+ !has_decoration(var->self, DecorationPatch))
+ {
+ ignore_potential_sliced_writes = true;
+ }
+ }
+ else
+ ignore_potential_sliced_writes = true;
+
+ if (!row_major_matrix_needs_conversion && !ignore_potential_sliced_writes)
+ {
+ // On some backends, we might not be able to safely access individual scalars in a vector.
+ // To work around this, we might have to cast the access chain reference to something which can,
+ // like a pointer to scalar, which we can then index into.
+ prepare_access_chain_for_scalar_access(expr, get<SPIRType>(type->parent_type), effective_storage,
+ is_packed);
+ }
+
+ if (is_literal)
+ {
+ bool out_of_bounds = (index >= type->vecsize);
+
+ if (!is_packed && !row_major_matrix_needs_conversion)
+ {
+ expr += ".";
+ expr += index_to_swizzle(out_of_bounds ? 0 : index);
+ }
+ else
+ {
+ // For packed vectors, we can only access them as an array, not by swizzle.
+ expr += join("[", out_of_bounds ? 0 : index, "]");
+ }
+ }
+ else if (ir.ids[index].get_type() == TypeConstant && !is_packed && !row_major_matrix_needs_conversion)
+ {
+ auto &c = get<SPIRConstant>(index);
+ bool out_of_bounds = (c.scalar() >= type->vecsize);
+
+ if (c.specialization)
+ {
+ // If the index is a spec constant, we cannot turn extract into a swizzle.
+ expr += join("[", out_of_bounds ? "0" : to_expression(index), "]");
+ }
+ else
+ {
+ expr += ".";
+ expr += index_to_swizzle(out_of_bounds ? 0 : c.scalar());
+ }
+ }
+ else
+ {
+ expr += "[";
+ expr += to_unpacked_expression(index, register_expression_read);
+ expr += "]";
+ }
+
+ if (row_major_matrix_needs_conversion && !ignore_potential_sliced_writes)
+ {
+ if (prepare_access_chain_for_scalar_access(expr, get<SPIRType>(type->parent_type), effective_storage,
+ is_packed))
+ {
+ // We're in a pointer context now, so just remove any member dereference.
+ auto first_index = deferred_index.find_first_of('[');
+ if (first_index != string::npos && first_index != 0)
+ deferred_index = deferred_index.substr(first_index);
+ }
+ }
+
+ if (access_meshlet_position_y)
+ {
+ if (is_literal)
+ {
+ access_meshlet_position_y = index == 1;
+ }
+ else
+ {
+ const auto *c = maybe_get<SPIRConstant>(index);
+ if (c)
+ access_meshlet_position_y = c->scalar() == 1;
+ else
+ {
+ // We don't know, but we have to assume no.
+ // Flip Y in mesh shaders is an opt-in horrible hack, so we'll have to assume shaders try to behave.
+ access_meshlet_position_y = false;
+ }
+ }
+ }
+
+ expr += deferred_index;
+ row_major_matrix_needs_conversion = false;
+
+ is_packed = false;
+ physical_type = 0;
+ type_id = type->parent_type;
+ type = &get<SPIRType>(type_id);
+ }
+ else if (!backend.allow_truncated_access_chain)
+ SPIRV_CROSS_THROW("Cannot subdivide a scalar value!");
+ }
+
+ if (pending_array_enclose)
+ {
+ SPIRV_CROSS_THROW("Flattening of multidimensional arrays were enabled, "
+ "but the access chain was terminated in the middle of a multidimensional array. "
+ "This is not supported.");
+ }
+
+ if (meta)
+ {
+ meta->need_transpose = row_major_matrix_needs_conversion;
+ meta->storage_is_packed = is_packed;
+ meta->storage_is_invariant = is_invariant;
+ meta->storage_physical_type = physical_type;
+ meta->relaxed_precision = relaxed_precision;
+ meta->access_meshlet_position_y = access_meshlet_position_y;
+ }
+
+ return expr;
+}
+
+void CompilerGLSL::check_physical_type_cast(std::string &, const SPIRType *, uint32_t)
+{
+}
+
+bool CompilerGLSL::prepare_access_chain_for_scalar_access(std::string &, const SPIRType &, spv::StorageClass, bool &)
+{
+ return false;
+}
+
+string CompilerGLSL::to_flattened_struct_member(const string &basename, const SPIRType &type, uint32_t index)
+{
+ auto ret = join(basename, "_", to_member_name(type, index));
+ ParsedIR::sanitize_underscores(ret);
+ return ret;
+}
+
+uint32_t CompilerGLSL::get_physical_type_stride(const SPIRType &) const
+{
+ SPIRV_CROSS_THROW("Invalid to call get_physical_type_stride on a backend without native pointer support.");
+}
+
+string CompilerGLSL::access_chain(uint32_t base, const uint32_t *indices, uint32_t count, const SPIRType &target_type,
+ AccessChainMeta *meta, bool ptr_chain)
+{
+ if (flattened_buffer_blocks.count(base))
+ {
+ uint32_t matrix_stride = 0;
+ uint32_t array_stride = 0;
+ bool need_transpose = false;
+ flattened_access_chain_offset(expression_type(base), indices, count, 0, 16, &need_transpose, &matrix_stride,
+ &array_stride, ptr_chain);
+
+ if (meta)
+ {
+ meta->need_transpose = target_type.columns > 1 && need_transpose;
+ meta->storage_is_packed = false;
+ }
+
+ return flattened_access_chain(base, indices, count, target_type, 0, matrix_stride, array_stride,
+ need_transpose);
+ }
+ else if (flattened_structs.count(base) && count > 0)
+ {
+ AccessChainFlags flags = ACCESS_CHAIN_CHAIN_ONLY_BIT | ACCESS_CHAIN_SKIP_REGISTER_EXPRESSION_READ_BIT;
+ if (ptr_chain)
+ flags |= ACCESS_CHAIN_PTR_CHAIN_BIT;
+
+ if (flattened_structs[base])
+ {
+ flags |= ACCESS_CHAIN_FLATTEN_ALL_MEMBERS_BIT;
+ if (meta)
+ meta->flattened_struct = target_type.basetype == SPIRType::Struct;
+ }
+
+ auto chain = access_chain_internal(base, indices, count, flags, nullptr).substr(1);
+ if (meta)
+ {
+ meta->need_transpose = false;
+ meta->storage_is_packed = false;
+ }
+
+ auto basename = to_flattened_access_chain_expression(base);
+ auto ret = join(basename, "_", chain);
+ ParsedIR::sanitize_underscores(ret);
+ return ret;
+ }
+ else
+ {
+ AccessChainFlags flags = ACCESS_CHAIN_SKIP_REGISTER_EXPRESSION_READ_BIT;
+ if (ptr_chain)
+ {
+ flags |= ACCESS_CHAIN_PTR_CHAIN_BIT;
+ // PtrAccessChain could get complicated.
+ TypeID type_id = expression_type_id(base);
+ if (backend.native_pointers && has_decoration(type_id, DecorationArrayStride))
+ {
+ // If there is a mismatch we have to go via 64-bit pointer arithmetic :'(
+ // Using packed hacks only gets us so far, and is not designed to deal with pointer to
+ // random values. It works for structs though.
+ auto &pointee_type = get_pointee_type(get<SPIRType>(type_id));
+ uint32_t physical_stride = get_physical_type_stride(pointee_type);
+ uint32_t requested_stride = get_decoration(type_id, DecorationArrayStride);
+ if (physical_stride != requested_stride)
+ {
+ flags |= ACCESS_CHAIN_PTR_CHAIN_POINTER_ARITH_BIT;
+ if (is_vector(pointee_type))
+ flags |= ACCESS_CHAIN_PTR_CHAIN_CAST_TO_SCALAR_BIT;
+ }
+ }
+ }
+
+ return access_chain_internal(base, indices, count, flags, meta);
+ }
+}
+
+string CompilerGLSL::load_flattened_struct(const string &basename, const SPIRType &type)
+{
+ auto expr = type_to_glsl_constructor(type);
+ expr += '(';
+
+ for (uint32_t i = 0; i < uint32_t(type.member_types.size()); i++)
+ {
+ if (i)
+ expr += ", ";
+
+ auto &member_type = get<SPIRType>(type.member_types[i]);
+ if (member_type.basetype == SPIRType::Struct)
+ expr += load_flattened_struct(to_flattened_struct_member(basename, type, i), member_type);
+ else
+ expr += to_flattened_struct_member(basename, type, i);
+ }
+ expr += ')';
+ return expr;
+}
+
+std::string CompilerGLSL::to_flattened_access_chain_expression(uint32_t id)
+{
+ // Do not use to_expression as that will unflatten access chains.
+ string basename;
+ if (const auto *var = maybe_get<SPIRVariable>(id))
+ basename = to_name(var->self);
+ else if (const auto *expr = maybe_get<SPIRExpression>(id))
+ basename = expr->expression;
+ else
+ basename = to_expression(id);
+
+ return basename;
+}
+
+void CompilerGLSL::store_flattened_struct(const string &basename, uint32_t rhs_id, const SPIRType &type,
+ const SmallVector<uint32_t> &indices)
+{
+ SmallVector<uint32_t> sub_indices = indices;
+ sub_indices.push_back(0);
+
+ auto *member_type = &type;
+ for (auto &index : indices)
+ member_type = &get<SPIRType>(member_type->member_types[index]);
+
+ for (uint32_t i = 0; i < uint32_t(member_type->member_types.size()); i++)
+ {
+ sub_indices.back() = i;
+ auto lhs = join(basename, "_", to_member_name(*member_type, i));
+ ParsedIR::sanitize_underscores(lhs);
+
+ if (get<SPIRType>(member_type->member_types[i]).basetype == SPIRType::Struct)
+ {
+ store_flattened_struct(lhs, rhs_id, type, sub_indices);
+ }
+ else
+ {
+ auto rhs = to_expression(rhs_id) + to_multi_member_reference(type, sub_indices);
+ statement(lhs, " = ", rhs, ";");
+ }
+ }
+}
+
+void CompilerGLSL::store_flattened_struct(uint32_t lhs_id, uint32_t value)
+{
+ auto &type = expression_type(lhs_id);
+ auto basename = to_flattened_access_chain_expression(lhs_id);
+ store_flattened_struct(basename, value, type, {});
+}
+
+std::string CompilerGLSL::flattened_access_chain(uint32_t base, const uint32_t *indices, uint32_t count,
+ const SPIRType &target_type, uint32_t offset, uint32_t matrix_stride,
+ uint32_t /* array_stride */, bool need_transpose)
+{
+ if (!target_type.array.empty())
+ SPIRV_CROSS_THROW("Access chains that result in an array can not be flattened");
+ else if (target_type.basetype == SPIRType::Struct)
+ return flattened_access_chain_struct(base, indices, count, target_type, offset);
+ else if (target_type.columns > 1)
+ return flattened_access_chain_matrix(base, indices, count, target_type, offset, matrix_stride, need_transpose);
+ else
+ return flattened_access_chain_vector(base, indices, count, target_type, offset, matrix_stride, need_transpose);
+}
+
+std::string CompilerGLSL::flattened_access_chain_struct(uint32_t base, const uint32_t *indices, uint32_t count,
+ const SPIRType &target_type, uint32_t offset)
+{
+ std::string expr;
+
+ if (backend.can_declare_struct_inline)
+ {
+ expr += type_to_glsl_constructor(target_type);
+ expr += "(";
+ }
+ else
+ expr += "{";
+
+ for (uint32_t i = 0; i < uint32_t(target_type.member_types.size()); ++i)
+ {
+ if (i != 0)
+ expr += ", ";
+
+ const SPIRType &member_type = get<SPIRType>(target_type.member_types[i]);
+ uint32_t member_offset = type_struct_member_offset(target_type, i);
+
+ // The access chain terminates at the struct, so we need to find matrix strides and row-major information
+ // ahead of time.
+ bool need_transpose = false;
+ bool relaxed = false;
+ uint32_t matrix_stride = 0;
+ if (member_type.columns > 1)
+ {
+ auto decorations = combined_decoration_for_member(target_type, i);
+ need_transpose = decorations.get(DecorationRowMajor);
+ relaxed = decorations.get(DecorationRelaxedPrecision);
+ matrix_stride = type_struct_member_matrix_stride(target_type, i);
+ }
+
+ auto tmp = flattened_access_chain(base, indices, count, member_type, offset + member_offset, matrix_stride,
+ 0 /* array_stride */, need_transpose);
+
+ // Cannot forward transpositions, so resolve them here.
+ if (need_transpose)
+ expr += convert_row_major_matrix(tmp, member_type, 0, false, relaxed);
+ else
+ expr += tmp;
+ }
+
+ expr += backend.can_declare_struct_inline ? ")" : "}";
+
+ return expr;
+}
+
+std::string CompilerGLSL::flattened_access_chain_matrix(uint32_t base, const uint32_t *indices, uint32_t count,
+ const SPIRType &target_type, uint32_t offset,
+ uint32_t matrix_stride, bool need_transpose)
+{
+ assert(matrix_stride);
+ SPIRType tmp_type = target_type;
+ if (need_transpose)
+ swap(tmp_type.vecsize, tmp_type.columns);
+
+ std::string expr;
+
+ expr += type_to_glsl_constructor(tmp_type);
+ expr += "(";
+
+ for (uint32_t i = 0; i < tmp_type.columns; i++)
+ {
+ if (i != 0)
+ expr += ", ";
+
+ expr += flattened_access_chain_vector(base, indices, count, tmp_type, offset + i * matrix_stride, matrix_stride,
+ /* need_transpose= */ false);
+ }
+
+ expr += ")";
+
+ return expr;
+}
+
+std::string CompilerGLSL::flattened_access_chain_vector(uint32_t base, const uint32_t *indices, uint32_t count,
+ const SPIRType &target_type, uint32_t offset,
+ uint32_t matrix_stride, bool need_transpose)
+{
+ auto result = flattened_access_chain_offset(expression_type(base), indices, count, offset, 16);
+
+ auto buffer_name = to_name(expression_type(base).self);
+
+ if (need_transpose)
+ {
+ std::string expr;
+
+ if (target_type.vecsize > 1)
+ {
+ expr += type_to_glsl_constructor(target_type);
+ expr += "(";
+ }
+
+ for (uint32_t i = 0; i < target_type.vecsize; ++i)
+ {
+ if (i != 0)
+ expr += ", ";
+
+ uint32_t component_offset = result.second + i * matrix_stride;
+
+ assert(component_offset % (target_type.width / 8) == 0);
+ uint32_t index = component_offset / (target_type.width / 8);
+
+ expr += buffer_name;
+ expr += "[";
+ expr += result.first; // this is a series of N1 * k1 + N2 * k2 + ... that is either empty or ends with a +
+ expr += convert_to_string(index / 4);
+ expr += "]";
+
+ expr += vector_swizzle(1, index % 4);
+ }
+
+ if (target_type.vecsize > 1)
+ {
+ expr += ")";
+ }
+
+ return expr;
+ }
+ else
+ {
+ assert(result.second % (target_type.width / 8) == 0);
+ uint32_t index = result.second / (target_type.width / 8);
+
+ std::string expr;
+
+ expr += buffer_name;
+ expr += "[";
+ expr += result.first; // this is a series of N1 * k1 + N2 * k2 + ... that is either empty or ends with a +
+ expr += convert_to_string(index / 4);
+ expr += "]";
+
+ expr += vector_swizzle(target_type.vecsize, index % 4);
+
+ return expr;
+ }
+}
+
+std::pair<std::string, uint32_t> CompilerGLSL::flattened_access_chain_offset(
+ const SPIRType &basetype, const uint32_t *indices, uint32_t count, uint32_t offset, uint32_t word_stride,
+ bool *need_transpose, uint32_t *out_matrix_stride, uint32_t *out_array_stride, bool ptr_chain)
+{
+ // Start traversing type hierarchy at the proper non-pointer types.
+ const auto *type = &get_pointee_type(basetype);
+
+ std::string expr;
+
+ // Inherit matrix information in case we are access chaining a vector which might have come from a row major layout.
+ bool row_major_matrix_needs_conversion = need_transpose ? *need_transpose : false;
+ uint32_t matrix_stride = out_matrix_stride ? *out_matrix_stride : 0;
+ uint32_t array_stride = out_array_stride ? *out_array_stride : 0;
+
+ for (uint32_t i = 0; i < count; i++)
+ {
+ uint32_t index = indices[i];
+
+ // Pointers
+ if (ptr_chain && i == 0)
+ {
+ // Here, the pointer type will be decorated with an array stride.
+ array_stride = get_decoration(basetype.self, DecorationArrayStride);
+ if (!array_stride)
+ SPIRV_CROSS_THROW("SPIR-V does not define ArrayStride for buffer block.");
+
+ auto *constant = maybe_get<SPIRConstant>(index);
+ if (constant)
+ {
+ // Constant array access.
+ offset += constant->scalar() * array_stride;
+ }
+ else
+ {
+ // Dynamic array access.
+ if (array_stride % word_stride)
+ {
+ SPIRV_CROSS_THROW("Array stride for dynamic indexing must be divisible by the size "
+ "of a 4-component vector. "
+ "Likely culprit here is a float or vec2 array inside a push "
+ "constant block which is std430. "
+ "This cannot be flattened. Try using std140 layout instead.");
+ }
+
+ expr += to_enclosed_expression(index);
+ expr += " * ";
+ expr += convert_to_string(array_stride / word_stride);
+ expr += " + ";
+ }
+ }
+ // Arrays
+ else if (!type->array.empty())
+ {
+ auto *constant = maybe_get<SPIRConstant>(index);
+ if (constant)
+ {
+ // Constant array access.
+ offset += constant->scalar() * array_stride;
+ }
+ else
+ {
+ // Dynamic array access.
+ if (array_stride % word_stride)
+ {
+ SPIRV_CROSS_THROW("Array stride for dynamic indexing must be divisible by the size "
+ "of a 4-component vector. "
+ "Likely culprit here is a float or vec2 array inside a push "
+ "constant block which is std430. "
+ "This cannot be flattened. Try using std140 layout instead.");
+ }
+
+ expr += to_enclosed_expression(index, false);
+ expr += " * ";
+ expr += convert_to_string(array_stride / word_stride);
+ expr += " + ";
+ }
+
+ uint32_t parent_type = type->parent_type;
+ type = &get<SPIRType>(parent_type);
+
+ if (!type->array.empty())
+ array_stride = get_decoration(parent_type, DecorationArrayStride);
+ }
+ // For structs, the index refers to a constant, which indexes into the members.
+ // We also check if this member is a builtin, since we then replace the entire expression with the builtin one.
+ else if (type->basetype == SPIRType::Struct)
+ {
+ index = evaluate_constant_u32(index);
+
+ if (index >= type->member_types.size())
+ SPIRV_CROSS_THROW("Member index is out of bounds!");
+
+ offset += type_struct_member_offset(*type, index);
+
+ auto &struct_type = *type;
+ type = &get<SPIRType>(type->member_types[index]);
+
+ if (type->columns > 1)
+ {
+ matrix_stride = type_struct_member_matrix_stride(struct_type, index);
+ row_major_matrix_needs_conversion =
+ combined_decoration_for_member(struct_type, index).get(DecorationRowMajor);
+ }
+ else
+ row_major_matrix_needs_conversion = false;
+
+ if (!type->array.empty())
+ array_stride = type_struct_member_array_stride(struct_type, index);
+ }
+ // Matrix -> Vector
+ else if (type->columns > 1)
+ {
+ auto *constant = maybe_get<SPIRConstant>(index);
+ if (constant)
+ {
+ index = evaluate_constant_u32(index);
+ offset += index * (row_major_matrix_needs_conversion ? (type->width / 8) : matrix_stride);
+ }
+ else
+ {
+ uint32_t indexing_stride = row_major_matrix_needs_conversion ? (type->width / 8) : matrix_stride;
+ // Dynamic array access.
+ if (indexing_stride % word_stride)
+ {
+ SPIRV_CROSS_THROW("Matrix stride for dynamic indexing must be divisible by the size of a "
+ "4-component vector. "
+ "Likely culprit here is a row-major matrix being accessed dynamically. "
+ "This cannot be flattened. Try using std140 layout instead.");
+ }
+
+ expr += to_enclosed_expression(index, false);
+ expr += " * ";
+ expr += convert_to_string(indexing_stride / word_stride);
+ expr += " + ";
+ }
+
+ type = &get<SPIRType>(type->parent_type);
+ }
+ // Vector -> Scalar
+ else if (type->vecsize > 1)
+ {
+ auto *constant = maybe_get<SPIRConstant>(index);
+ if (constant)
+ {
+ index = evaluate_constant_u32(index);
+ offset += index * (row_major_matrix_needs_conversion ? matrix_stride : (type->width / 8));
+ }
+ else
+ {
+ uint32_t indexing_stride = row_major_matrix_needs_conversion ? matrix_stride : (type->width / 8);
+
+ // Dynamic array access.
+ if (indexing_stride % word_stride)
+ {
+ SPIRV_CROSS_THROW("Stride for dynamic vector indexing must be divisible by the "
+ "size of a 4-component vector. "
+ "This cannot be flattened in legacy targets.");
+ }
+
+ expr += to_enclosed_expression(index, false);
+ expr += " * ";
+ expr += convert_to_string(indexing_stride / word_stride);
+ expr += " + ";
+ }
+
+ type = &get<SPIRType>(type->parent_type);
+ }
+ else
+ SPIRV_CROSS_THROW("Cannot subdivide a scalar value!");
+ }
+
+ if (need_transpose)
+ *need_transpose = row_major_matrix_needs_conversion;
+ if (out_matrix_stride)
+ *out_matrix_stride = matrix_stride;
+ if (out_array_stride)
+ *out_array_stride = array_stride;
+
+ return std::make_pair(expr, offset);
+}
+
+bool CompilerGLSL::should_dereference(uint32_t id)
+{
+ const auto &type = expression_type(id);
+ // Non-pointer expressions don't need to be dereferenced.
+ if (!type.pointer)
+ return false;
+
+ // Handles shouldn't be dereferenced either.
+ if (!expression_is_lvalue(id))
+ return false;
+
+ // If id is a variable but not a phi variable, we should not dereference it.
+ if (auto *var = maybe_get<SPIRVariable>(id))
+ return var->phi_variable;
+
+ if (auto *expr = maybe_get<SPIRExpression>(id))
+ {
+ // If id is an access chain, we should not dereference it.
+ if (expr->access_chain)
+ return false;
+
+ // If id is a forwarded copy of a variable pointer, we should not dereference it.
+ SPIRVariable *var = nullptr;
+ while (expr->loaded_from && expression_is_forwarded(expr->self))
+ {
+ auto &src_type = expression_type(expr->loaded_from);
+ // To be a copy, the pointer and its source expression must be the
+ // same type. Can't check type.self, because for some reason that's
+ // usually the base type with pointers stripped off. This check is
+ // complex enough that I've hoisted it out of the while condition.
+ if (src_type.pointer != type.pointer || src_type.pointer_depth != type.pointer_depth ||
+ src_type.parent_type != type.parent_type)
+ break;
+ if ((var = maybe_get<SPIRVariable>(expr->loaded_from)))
+ break;
+ if (!(expr = maybe_get<SPIRExpression>(expr->loaded_from)))
+ break;
+ }
+
+ return !var || var->phi_variable;
+ }
+
+ // Otherwise, we should dereference this pointer expression.
+ return true;
+}
+
+bool CompilerGLSL::should_forward(uint32_t id) const
+{
+ // If id is a variable we will try to forward it regardless of force_temporary check below
+ // This is important because otherwise we'll get local sampler copies (highp sampler2D foo = bar) that are invalid in OpenGL GLSL
+
+ auto *var = maybe_get<SPIRVariable>(id);
+ if (var)
+ {
+ // Never forward volatile builtin variables, e.g. SPIR-V 1.6 HelperInvocation.
+ return !(has_decoration(id, DecorationBuiltIn) && has_decoration(id, DecorationVolatile));
+ }
+
+ // For debugging emit temporary variables for all expressions
+ if (options.force_temporary)
+ return false;
+
+ // If an expression carries enough dependencies we need to stop forwarding at some point,
+ // or we explode compilers. There are usually limits to how much we can nest expressions.
+ auto *expr = maybe_get<SPIRExpression>(id);
+ const uint32_t max_expression_dependencies = 64;
+ if (expr && expr->expression_dependencies.size() >= max_expression_dependencies)
+ return false;
+
+ if (expr && expr->loaded_from
+ && has_decoration(expr->loaded_from, DecorationBuiltIn)
+ && has_decoration(expr->loaded_from, DecorationVolatile))
+ {
+ // Never forward volatile builtin variables, e.g. SPIR-V 1.6 HelperInvocation.
+ return false;
+ }
+
+ // Immutable expression can always be forwarded.
+ if (is_immutable(id))
+ return true;
+
+ return false;
+}
+
+bool CompilerGLSL::should_suppress_usage_tracking(uint32_t id) const
+{
+ // Used only by opcodes which don't do any real "work", they just swizzle data in some fashion.
+ return !expression_is_forwarded(id) || expression_suppresses_usage_tracking(id);
+}
+
+void CompilerGLSL::track_expression_read(uint32_t id)
+{
+ switch (ir.ids[id].get_type())
+ {
+ case TypeExpression:
+ {
+ auto &e = get<SPIRExpression>(id);
+ for (auto implied_read : e.implied_read_expressions)
+ track_expression_read(implied_read);
+ break;
+ }
+
+ case TypeAccessChain:
+ {
+ auto &e = get<SPIRAccessChain>(id);
+ for (auto implied_read : e.implied_read_expressions)
+ track_expression_read(implied_read);
+ break;
+ }
+
+ default:
+ break;
+ }
+
+ // If we try to read a forwarded temporary more than once we will stamp out possibly complex code twice.
+ // In this case, it's better to just bind the complex expression to the temporary and read that temporary twice.
+ if (expression_is_forwarded(id) && !expression_suppresses_usage_tracking(id))
+ {
+ auto &v = expression_usage_counts[id];
+ v++;
+
+ // If we create an expression outside a loop,
+ // but access it inside a loop, we're implicitly reading it multiple times.
+ // If the expression in question is expensive, we should hoist it out to avoid relying on loop-invariant code motion
+ // working inside the backend compiler.
+ if (expression_read_implies_multiple_reads(id))
+ v++;
+
+ if (v >= 2)
+ {
+ //if (v == 2)
+ // fprintf(stderr, "ID %u was forced to temporary due to more than 1 expression use!\n", id);
+
+ // Force a recompile after this pass to avoid forwarding this variable.
+ force_temporary_and_recompile(id);
+ }
+ }
+}
+
+bool CompilerGLSL::args_will_forward(uint32_t id, const uint32_t *args, uint32_t num_args, bool pure)
+{
+ if (forced_temporaries.find(id) != end(forced_temporaries))
+ return false;
+
+ for (uint32_t i = 0; i < num_args; i++)
+ if (!should_forward(args[i]))
+ return false;
+
+ // We need to forward globals as well.
+ if (!pure)
+ {
+ for (auto global : global_variables)
+ if (!should_forward(global))
+ return false;
+ for (auto aliased : aliased_variables)
+ if (!should_forward(aliased))
+ return false;
+ }
+
+ return true;
+}
+
+void CompilerGLSL::register_impure_function_call()
+{
+ // Impure functions can modify globals and aliased variables, so invalidate them as well.
+ for (auto global : global_variables)
+ flush_dependees(get<SPIRVariable>(global));
+ for (auto aliased : aliased_variables)
+ flush_dependees(get<SPIRVariable>(aliased));
+}
+
+void CompilerGLSL::register_call_out_argument(uint32_t id)
+{
+ register_write(id);
+
+ auto *var = maybe_get<SPIRVariable>(id);
+ if (var)
+ flush_variable_declaration(var->self);
+}
+
+string CompilerGLSL::variable_decl_function_local(SPIRVariable &var)
+{
+ // These variables are always function local,
+ // so make sure we emit the variable without storage qualifiers.
+ // Some backends will inject custom variables locally in a function
+ // with a storage qualifier which is not function-local.
+ auto old_storage = var.storage;
+ var.storage = StorageClassFunction;
+ auto expr = variable_decl(var);
+ var.storage = old_storage;
+ return expr;
+}
+
+void CompilerGLSL::emit_variable_temporary_copies(const SPIRVariable &var)
+{
+ // Ensure that we declare phi-variable copies even if the original declaration isn't deferred
+ if (var.allocate_temporary_copy && !flushed_phi_variables.count(var.self))
+ {
+ auto &type = get<SPIRType>(var.basetype);
+ auto &flags = get_decoration_bitset(var.self);
+ statement(flags_to_qualifiers_glsl(type, flags), variable_decl(type, join("_", var.self, "_copy")), ";");
+ flushed_phi_variables.insert(var.self);
+ }
+}
+
+void CompilerGLSL::flush_variable_declaration(uint32_t id)
+{
+ // Ensure that we declare phi-variable copies even if the original declaration isn't deferred
+ auto *var = maybe_get<SPIRVariable>(id);
+ if (var && var->deferred_declaration)
+ {
+ string initializer;
+ if (options.force_zero_initialized_variables &&
+ (var->storage == StorageClassFunction || var->storage == StorageClassGeneric ||
+ var->storage == StorageClassPrivate) &&
+ !var->initializer && type_can_zero_initialize(get_variable_data_type(*var)))
+ {
+ initializer = join(" = ", to_zero_initialized_expression(get_variable_data_type_id(*var)));
+ }
+
+ statement(variable_decl_function_local(*var), initializer, ";");
+ var->deferred_declaration = false;
+ }
+ if (var)
+ {
+ emit_variable_temporary_copies(*var);
+ }
+}
+
+bool CompilerGLSL::remove_duplicate_swizzle(string &op)
+{
+ auto pos = op.find_last_of('.');
+ if (pos == string::npos || pos == 0)
+ return false;
+
+ string final_swiz = op.substr(pos + 1, string::npos);
+
+ if (backend.swizzle_is_function)
+ {
+ if (final_swiz.size() < 2)
+ return false;
+
+ if (final_swiz.substr(final_swiz.size() - 2, string::npos) == "()")
+ final_swiz.erase(final_swiz.size() - 2, string::npos);
+ else
+ return false;
+ }
+
+ // Check if final swizzle is of form .x, .xy, .xyz, .xyzw or similar.
+ // If so, and previous swizzle is of same length,
+ // we can drop the final swizzle altogether.
+ for (uint32_t i = 0; i < final_swiz.size(); i++)
+ {
+ static const char expected[] = { 'x', 'y', 'z', 'w' };
+ if (i >= 4 || final_swiz[i] != expected[i])
+ return false;
+ }
+
+ auto prevpos = op.find_last_of('.', pos - 1);
+ if (prevpos == string::npos)
+ return false;
+
+ prevpos++;
+
+ // Make sure there are only swizzles here ...
+ for (auto i = prevpos; i < pos; i++)
+ {
+ if (op[i] < 'w' || op[i] > 'z')
+ {
+ // If swizzles are foo.xyz() like in C++ backend for example, check for that.
+ if (backend.swizzle_is_function && i + 2 == pos && op[i] == '(' && op[i + 1] == ')')
+ break;
+ return false;
+ }
+ }
+
+ // If original swizzle is large enough, just carve out the components we need.
+ // E.g. foobar.wyx.xy will turn into foobar.wy.
+ if (pos - prevpos >= final_swiz.size())
+ {
+ op.erase(prevpos + final_swiz.size(), string::npos);
+
+ // Add back the function call ...
+ if (backend.swizzle_is_function)
+ op += "()";
+ }
+ return true;
+}
+
+// Optimizes away vector swizzles where we have something like
+// vec3 foo;
+// foo.xyz <-- swizzle expression does nothing.
+// This is a very common pattern after OpCompositeCombine.
+bool CompilerGLSL::remove_unity_swizzle(uint32_t base, string &op)
+{
+ auto pos = op.find_last_of('.');
+ if (pos == string::npos || pos == 0)
+ return false;
+
+ string final_swiz = op.substr(pos + 1, string::npos);
+
+ if (backend.swizzle_is_function)
+ {
+ if (final_swiz.size() < 2)
+ return false;
+
+ if (final_swiz.substr(final_swiz.size() - 2, string::npos) == "()")
+ final_swiz.erase(final_swiz.size() - 2, string::npos);
+ else
+ return false;
+ }
+
+ // Check if final swizzle is of form .x, .xy, .xyz, .xyzw or similar.
+ // If so, and previous swizzle is of same length,
+ // we can drop the final swizzle altogether.
+ for (uint32_t i = 0; i < final_swiz.size(); i++)
+ {
+ static const char expected[] = { 'x', 'y', 'z', 'w' };
+ if (i >= 4 || final_swiz[i] != expected[i])
+ return false;
+ }
+
+ auto &type = expression_type(base);
+
+ // Sanity checking ...
+ assert(type.columns == 1 && type.array.empty());
+
+ if (type.vecsize == final_swiz.size())
+ op.erase(pos, string::npos);
+ return true;
+}
+
+string CompilerGLSL::build_composite_combiner(uint32_t return_type, const uint32_t *elems, uint32_t length)
+{
+ ID base = 0;
+ string op;
+ string subop;
+
+ // Can only merge swizzles for vectors.
+ auto &type = get<SPIRType>(return_type);
+ bool can_apply_swizzle_opt = type.basetype != SPIRType::Struct && type.array.empty() && type.columns == 1;
+ bool swizzle_optimization = false;
+
+ for (uint32_t i = 0; i < length; i++)
+ {
+ auto *e = maybe_get<SPIRExpression>(elems[i]);
+
+ // If we're merging another scalar which belongs to the same base
+ // object, just merge the swizzles to avoid triggering more than 1 expression read as much as possible!
+ if (can_apply_swizzle_opt && e && e->base_expression && e->base_expression == base)
+ {
+ // Only supposed to be used for vector swizzle -> scalar.
+ assert(!e->expression.empty() && e->expression.front() == '.');
+ subop += e->expression.substr(1, string::npos);
+ swizzle_optimization = true;
+ }
+ else
+ {
+ // We'll likely end up with duplicated swizzles, e.g.
+ // foobar.xyz.xyz from patterns like
+ // OpVectorShuffle
+ // OpCompositeExtract x 3
+ // OpCompositeConstruct 3x + other scalar.
+ // Just modify op in-place.
+ if (swizzle_optimization)
+ {
+ if (backend.swizzle_is_function)
+ subop += "()";
+
+ // Don't attempt to remove unity swizzling if we managed to remove duplicate swizzles.
+ // The base "foo" might be vec4, while foo.xyz is vec3 (OpVectorShuffle) and looks like a vec3 due to the .xyz tacked on.
+ // We only want to remove the swizzles if we're certain that the resulting base will be the same vecsize.
+ // Essentially, we can only remove one set of swizzles, since that's what we have control over ...
+ // Case 1:
+ // foo.yxz.xyz: Duplicate swizzle kicks in, giving foo.yxz, we are done.
+ // foo.yxz was the result of OpVectorShuffle and we don't know the type of foo.
+ // Case 2:
+ // foo.xyz: Duplicate swizzle won't kick in.
+ // If foo is vec3, we can remove xyz, giving just foo.
+ if (!remove_duplicate_swizzle(subop))
+ remove_unity_swizzle(base, subop);
+
+ // Strips away redundant parens if we created them during component extraction.
+ strip_enclosed_expression(subop);
+ swizzle_optimization = false;
+ op += subop;
+ }
+ else
+ op += subop;
+
+ if (i)
+ op += ", ";
+
+ bool uses_buffer_offset =
+ type.basetype == SPIRType::Struct && has_member_decoration(type.self, i, DecorationOffset);
+ subop = to_composite_constructor_expression(type, elems[i], uses_buffer_offset);
+ }
+
+ base = e ? e->base_expression : ID(0);
+ }
+
+ if (swizzle_optimization)
+ {
+ if (backend.swizzle_is_function)
+ subop += "()";
+
+ if (!remove_duplicate_swizzle(subop))
+ remove_unity_swizzle(base, subop);
+ // Strips away redundant parens if we created them during component extraction.
+ strip_enclosed_expression(subop);
+ }
+
+ op += subop;
+ return op;
+}
+
+bool CompilerGLSL::skip_argument(uint32_t id) const
+{
+ if (!combined_image_samplers.empty() || !options.vulkan_semantics)
+ {
+ auto &type = expression_type(id);
+ if (type.basetype == SPIRType::Sampler || (type.basetype == SPIRType::Image && type.image.sampled == 1))
+ return true;
+ }
+ return false;
+}
+
+bool CompilerGLSL::optimize_read_modify_write(const SPIRType &type, const string &lhs, const string &rhs)
+{
+ // Do this with strings because we have a very clear pattern we can check for and it avoids
+ // adding lots of special cases to the code emission.
+ if (rhs.size() < lhs.size() + 3)
+ return false;
+
+ // Do not optimize matrices. They are a bit awkward to reason about in general
+ // (in which order does operation happen?), and it does not work on MSL anyways.
+ if (type.vecsize > 1 && type.columns > 1)
+ return false;
+
+ auto index = rhs.find(lhs);
+ if (index != 0)
+ return false;
+
+ // TODO: Shift operators, but it's not important for now.
+ auto op = rhs.find_first_of("+-/*%|&^", lhs.size() + 1);
+ if (op != lhs.size() + 1)
+ return false;
+
+ // Check that the op is followed by space. This excludes && and ||.
+ if (rhs[op + 1] != ' ')
+ return false;
+
+ char bop = rhs[op];
+ auto expr = rhs.substr(lhs.size() + 3);
+
+ // Avoids false positives where we get a = a * b + c.
+ // Normally, these expressions are always enclosed, but unexpected code paths may end up hitting this.
+ if (needs_enclose_expression(expr))
+ return false;
+
+ // Try to find increments and decrements. Makes it look neater as += 1, -= 1 is fairly rare to see in real code.
+ // Find some common patterns which are equivalent.
+ if ((bop == '+' || bop == '-') && (expr == "1" || expr == "uint(1)" || expr == "1u" || expr == "int(1u)"))
+ statement(lhs, bop, bop, ";");
+ else
+ statement(lhs, " ", bop, "= ", expr, ";");
+ return true;
+}
+
+void CompilerGLSL::register_control_dependent_expression(uint32_t expr)
+{
+ if (forwarded_temporaries.find(expr) == end(forwarded_temporaries))
+ return;
+
+ assert(current_emitting_block);
+ current_emitting_block->invalidate_expressions.push_back(expr);
+}
+
+void CompilerGLSL::emit_block_instructions(SPIRBlock &block)
+{
+ current_emitting_block = &block;
+
+ if (backend.requires_relaxed_precision_analysis)
+ {
+ // If PHI variables are consumed in unexpected precision contexts, copy them here.
+ for (size_t i = 0, n = block.phi_variables.size(); i < n; i++)
+ {
+ auto &phi = block.phi_variables[i];
+
+ // Ensure we only copy once. We know a-priori that this array will lay out
+ // the same function variables together.
+ if (i && block.phi_variables[i - 1].function_variable == phi.function_variable)
+ continue;
+
+ auto itr = temporary_to_mirror_precision_alias.find(phi.function_variable);
+ if (itr != temporary_to_mirror_precision_alias.end())
+ {
+ // Explicitly, we don't want to inherit RelaxedPrecision state in this CopyObject,
+ // so it helps to have handle_instruction_precision() on the outside of emit_instruction().
+ EmbeddedInstruction inst;
+ inst.op = OpCopyObject;
+ inst.length = 3;
+ inst.ops.push_back(expression_type_id(itr->first));
+ inst.ops.push_back(itr->second);
+ inst.ops.push_back(itr->first);
+ emit_instruction(inst);
+ }
+ }
+ }
+
+ for (auto &op : block.ops)
+ {
+ auto temporary_copy = handle_instruction_precision(op);
+ emit_instruction(op);
+ if (temporary_copy.dst_id)
+ {
+ // Explicitly, we don't want to inherit RelaxedPrecision state in this CopyObject,
+ // so it helps to have handle_instruction_precision() on the outside of emit_instruction().
+ EmbeddedInstruction inst;
+ inst.op = OpCopyObject;
+ inst.length = 3;
+ inst.ops.push_back(expression_type_id(temporary_copy.src_id));
+ inst.ops.push_back(temporary_copy.dst_id);
+ inst.ops.push_back(temporary_copy.src_id);
+
+ // Never attempt to hoist mirrored temporaries.
+ // They are hoisted in lock-step with their parents.
+ block_temporary_hoisting = true;
+ emit_instruction(inst);
+ block_temporary_hoisting = false;
+ }
+ }
+
+ current_emitting_block = nullptr;
+}
+
+void CompilerGLSL::disallow_forwarding_in_expression_chain(const SPIRExpression &expr)
+{
+ // Allow trivially forwarded expressions like OpLoad or trivial shuffles,
+ // these will be marked as having suppressed usage tracking.
+ // Our only concern is to make sure arithmetic operations are done in similar ways.
+ if (expression_is_forwarded(expr.self) && !expression_suppresses_usage_tracking(expr.self) &&
+ forced_invariant_temporaries.count(expr.self) == 0)
+ {
+ force_temporary_and_recompile(expr.self);
+ forced_invariant_temporaries.insert(expr.self);
+
+ for (auto &dependent : expr.expression_dependencies)
+ disallow_forwarding_in_expression_chain(get<SPIRExpression>(dependent));
+ }
+}
+
+void CompilerGLSL::handle_store_to_invariant_variable(uint32_t store_id, uint32_t value_id)
+{
+ // Variables or access chains marked invariant are complicated. We will need to make sure the code-gen leading up to
+ // this variable is consistent. The failure case for SPIRV-Cross is when an expression is forced to a temporary
+ // in one translation unit, but not another, e.g. due to multiple use of an expression.
+ // This causes variance despite the output variable being marked invariant, so the solution here is to force all dependent
+ // expressions to be temporaries.
+ // It is uncertain if this is enough to support invariant in all possible cases, but it should be good enough
+ // for all reasonable uses of invariant.
+ if (!has_decoration(store_id, DecorationInvariant))
+ return;
+
+ auto *expr = maybe_get<SPIRExpression>(value_id);
+ if (!expr)
+ return;
+
+ disallow_forwarding_in_expression_chain(*expr);
+}
+
+void CompilerGLSL::emit_store_statement(uint32_t lhs_expression, uint32_t rhs_expression)
+{
+ auto rhs = to_pointer_expression(rhs_expression);
+
+ // Statements to OpStore may be empty if it is a struct with zero members. Just forward the store to /dev/null.
+ if (!rhs.empty())
+ {
+ handle_store_to_invariant_variable(lhs_expression, rhs_expression);
+
+ if (!unroll_array_to_complex_store(lhs_expression, rhs_expression))
+ {
+ auto lhs = to_dereferenced_expression(lhs_expression);
+ if (has_decoration(lhs_expression, DecorationNonUniform))
+ convert_non_uniform_expression(lhs, lhs_expression);
+
+ // We might need to cast in order to store to a builtin.
+ cast_to_variable_store(lhs_expression, rhs, expression_type(rhs_expression));
+
+ // Tries to optimize assignments like "<lhs> = <lhs> op expr".
+ // While this is purely cosmetic, this is important for legacy ESSL where loop
+ // variable increments must be in either i++ or i += const-expr.
+ // Without this, we end up with i = i + 1, which is correct GLSL, but not correct GLES 2.0.
+ if (!optimize_read_modify_write(expression_type(rhs_expression), lhs, rhs))
+ statement(lhs, " = ", rhs, ";");
+ }
+ register_write(lhs_expression);
+ }
+}
+
+uint32_t CompilerGLSL::get_integer_width_for_instruction(const Instruction &instr) const
+{
+ if (instr.length < 3)
+ return 32;
+
+ auto *ops = stream(instr);
+
+ switch (instr.op)
+ {
+ case OpSConvert:
+ case OpConvertSToF:
+ case OpUConvert:
+ case OpConvertUToF:
+ case OpIEqual:
+ case OpINotEqual:
+ case OpSLessThan:
+ case OpSLessThanEqual:
+ case OpSGreaterThan:
+ case OpSGreaterThanEqual:
+ case OpULessThan:
+ case OpULessThanEqual:
+ case OpUGreaterThan:
+ case OpUGreaterThanEqual:
+ return expression_type(ops[2]).width;
+
+ case OpSMulExtended:
+ case OpUMulExtended:
+ return get<SPIRType>(get<SPIRType>(ops[0]).member_types[0]).width;
+
+ default:
+ {
+ // We can look at result type which is more robust.
+ auto *type = maybe_get<SPIRType>(ops[0]);
+ if (type && type_is_integral(*type))
+ return type->width;
+ else
+ return 32;
+ }
+ }
+}
+
+uint32_t CompilerGLSL::get_integer_width_for_glsl_instruction(GLSLstd450 op, const uint32_t *ops, uint32_t length) const
+{
+ if (length < 1)
+ return 32;
+
+ switch (op)
+ {
+ case GLSLstd450SAbs:
+ case GLSLstd450SSign:
+ case GLSLstd450UMin:
+ case GLSLstd450SMin:
+ case GLSLstd450UMax:
+ case GLSLstd450SMax:
+ case GLSLstd450UClamp:
+ case GLSLstd450SClamp:
+ case GLSLstd450FindSMsb:
+ case GLSLstd450FindUMsb:
+ return expression_type(ops[0]).width;
+
+ default:
+ {
+ // We don't need to care about other opcodes, just return 32.
+ return 32;
+ }
+ }
+}
+
+void CompilerGLSL::forward_relaxed_precision(uint32_t dst_id, const uint32_t *args, uint32_t length)
+{
+ // Only GLSL supports RelaxedPrecision directly.
+ // We cannot implement this in HLSL or MSL because it is tied to the type system.
+ // In SPIR-V, everything must masquerade as 32-bit.
+ if (!backend.requires_relaxed_precision_analysis)
+ return;
+
+ auto input_precision = analyze_expression_precision(args, length);
+
+ // For expressions which are loaded or directly forwarded, we inherit mediump implicitly.
+ // For dst_id to be analyzed properly, it must inherit any relaxed precision decoration from src_id.
+ if (input_precision == Options::Mediump)
+ set_decoration(dst_id, DecorationRelaxedPrecision);
+}
+
+CompilerGLSL::Options::Precision CompilerGLSL::analyze_expression_precision(const uint32_t *args, uint32_t length) const
+{
+ // Now, analyze the precision at which the arguments would run.
+ // GLSL rules are such that the precision used to evaluate an expression is equal to the highest precision
+ // for the inputs. Constants do not have inherent precision and do not contribute to this decision.
+ // If all inputs are constants, they inherit precision from outer expressions, including an l-value.
+ // In this case, we'll have to force a temporary for dst_id so that we can bind the constant expression with
+ // correct precision.
+ bool expression_has_highp = false;
+ bool expression_has_mediump = false;
+
+ for (uint32_t i = 0; i < length; i++)
+ {
+ uint32_t arg = args[i];
+
+ auto handle_type = ir.ids[arg].get_type();
+ if (handle_type == TypeConstant || handle_type == TypeConstantOp || handle_type == TypeUndef)
+ continue;
+
+ if (has_decoration(arg, DecorationRelaxedPrecision))
+ expression_has_mediump = true;
+ else
+ expression_has_highp = true;
+ }
+
+ if (expression_has_highp)
+ return Options::Highp;
+ else if (expression_has_mediump)
+ return Options::Mediump;
+ else
+ return Options::DontCare;
+}
+
+void CompilerGLSL::analyze_precision_requirements(uint32_t type_id, uint32_t dst_id, uint32_t *args, uint32_t length)
+{
+ if (!backend.requires_relaxed_precision_analysis)
+ return;
+
+ auto &type = get<SPIRType>(type_id);
+
+ // RelaxedPrecision only applies to 32-bit values.
+ if (type.basetype != SPIRType::Float && type.basetype != SPIRType::Int && type.basetype != SPIRType::UInt)
+ return;
+
+ bool operation_is_highp = !has_decoration(dst_id, DecorationRelaxedPrecision);
+
+ auto input_precision = analyze_expression_precision(args, length);
+ if (input_precision == Options::DontCare)
+ {
+ consume_temporary_in_precision_context(type_id, dst_id, input_precision);
+ return;
+ }
+
+ // In SPIR-V and GLSL, the semantics are flipped for how relaxed precision is determined.
+ // In SPIR-V, the operation itself marks RelaxedPrecision, meaning that inputs can be truncated to 16-bit.
+ // However, if the expression is not, inputs must be expanded to 32-bit first,
+ // since the operation must run at high precision.
+ // This is the awkward part, because if we have mediump inputs, or expressions which derived from mediump,
+ // we might have to forcefully bind the source IDs to highp temporaries. This is done by clearing decorations
+ // and forcing temporaries. Similarly for mediump operations. We bind highp expressions to mediump variables.
+ if ((operation_is_highp && input_precision == Options::Mediump) ||
+ (!operation_is_highp && input_precision == Options::Highp))
+ {
+ auto precision = operation_is_highp ? Options::Highp : Options::Mediump;
+ for (uint32_t i = 0; i < length; i++)
+ {
+ // Rewrites the opcode so that we consume an ID in correct precision context.
+ // This is pretty hacky, but it's the most straight forward way of implementing this without adding
+ // lots of extra passes to rewrite all code blocks.
+ args[i] = consume_temporary_in_precision_context(expression_type_id(args[i]), args[i], precision);
+ }
+ }
+}
+
+// This is probably not exhaustive ...
+static bool opcode_is_precision_sensitive_operation(Op op)
+{
+ switch (op)
+ {
+ case OpFAdd:
+ case OpFSub:
+ case OpFMul:
+ case OpFNegate:
+ case OpIAdd:
+ case OpISub:
+ case OpIMul:
+ case OpSNegate:
+ case OpFMod:
+ case OpFDiv:
+ case OpFRem:
+ case OpSMod:
+ case OpSDiv:
+ case OpSRem:
+ case OpUMod:
+ case OpUDiv:
+ case OpVectorTimesMatrix:
+ case OpMatrixTimesVector:
+ case OpMatrixTimesMatrix:
+ case OpDPdx:
+ case OpDPdy:
+ case OpDPdxCoarse:
+ case OpDPdyCoarse:
+ case OpDPdxFine:
+ case OpDPdyFine:
+ case OpFwidth:
+ case OpFwidthCoarse:
+ case OpFwidthFine:
+ case OpVectorTimesScalar:
+ case OpMatrixTimesScalar:
+ case OpOuterProduct:
+ case OpFConvert:
+ case OpSConvert:
+ case OpUConvert:
+ case OpConvertSToF:
+ case OpConvertUToF:
+ case OpConvertFToU:
+ case OpConvertFToS:
+ return true;
+
+ default:
+ return false;
+ }
+}
+
+// Instructions which just load data but don't do any arithmetic operation should just inherit the decoration.
+// SPIR-V doesn't require this, but it's somewhat implied it has to work this way, relaxed precision is only
+// relevant when operating on the IDs, not when shuffling things around.
+static bool opcode_is_precision_forwarding_instruction(Op op, uint32_t &arg_count)
+{
+ switch (op)
+ {
+ case OpLoad:
+ case OpAccessChain:
+ case OpInBoundsAccessChain:
+ case OpCompositeExtract:
+ case OpVectorExtractDynamic:
+ case OpSampledImage:
+ case OpImage:
+ case OpCopyObject:
+
+ case OpImageRead:
+ case OpImageFetch:
+ case OpImageSampleImplicitLod:
+ case OpImageSampleProjImplicitLod:
+ case OpImageSampleDrefImplicitLod:
+ case OpImageSampleProjDrefImplicitLod:
+ case OpImageSampleExplicitLod:
+ case OpImageSampleProjExplicitLod:
+ case OpImageSampleDrefExplicitLod:
+ case OpImageSampleProjDrefExplicitLod:
+ case OpImageGather:
+ case OpImageDrefGather:
+ case OpImageSparseRead:
+ case OpImageSparseFetch:
+ case OpImageSparseSampleImplicitLod:
+ case OpImageSparseSampleProjImplicitLod:
+ case OpImageSparseSampleDrefImplicitLod:
+ case OpImageSparseSampleProjDrefImplicitLod:
+ case OpImageSparseSampleExplicitLod:
+ case OpImageSparseSampleProjExplicitLod:
+ case OpImageSparseSampleDrefExplicitLod:
+ case OpImageSparseSampleProjDrefExplicitLod:
+ case OpImageSparseGather:
+ case OpImageSparseDrefGather:
+ arg_count = 1;
+ return true;
+
+ case OpVectorShuffle:
+ arg_count = 2;
+ return true;
+
+ case OpCompositeConstruct:
+ return true;
+
+ default:
+ break;
+ }
+
+ return false;
+}
+
+CompilerGLSL::TemporaryCopy CompilerGLSL::handle_instruction_precision(const Instruction &instruction)
+{
+ auto ops = stream_mutable(instruction);
+ auto opcode = static_cast<Op>(instruction.op);
+ uint32_t length = instruction.length;
+
+ if (backend.requires_relaxed_precision_analysis)
+ {
+ if (length > 2)
+ {
+ uint32_t forwarding_length = length - 2;
+
+ if (opcode_is_precision_sensitive_operation(opcode))
+ analyze_precision_requirements(ops[0], ops[1], &ops[2], forwarding_length);
+ else if (opcode == OpExtInst && length >= 5 && get<SPIRExtension>(ops[2]).ext == SPIRExtension::GLSL)
+ analyze_precision_requirements(ops[0], ops[1], &ops[4], forwarding_length - 2);
+ else if (opcode_is_precision_forwarding_instruction(opcode, forwarding_length))
+ forward_relaxed_precision(ops[1], &ops[2], forwarding_length);
+ }
+
+ uint32_t result_type = 0, result_id = 0;
+ if (instruction_to_result_type(result_type, result_id, opcode, ops, length))
+ {
+ auto itr = temporary_to_mirror_precision_alias.find(ops[1]);
+ if (itr != temporary_to_mirror_precision_alias.end())
+ return { itr->second, itr->first };
+ }
+ }
+
+ return {};
+}
+
+void CompilerGLSL::emit_instruction(const Instruction &instruction)
+{
+ auto ops = stream(instruction);
+ auto opcode = static_cast<Op>(instruction.op);
+ uint32_t length = instruction.length;
+
+#define GLSL_BOP(op) emit_binary_op(ops[0], ops[1], ops[2], ops[3], #op)
+#define GLSL_BOP_CAST(op, type) \
+ emit_binary_op_cast(ops[0], ops[1], ops[2], ops[3], #op, type, \
+ opcode_is_sign_invariant(opcode), implicit_integer_promotion)
+#define GLSL_UOP(op) emit_unary_op(ops[0], ops[1], ops[2], #op)
+#define GLSL_UOP_CAST(op) emit_unary_op_cast(ops[0], ops[1], ops[2], #op)
+#define GLSL_QFOP(op) emit_quaternary_func_op(ops[0], ops[1], ops[2], ops[3], ops[4], ops[5], #op)
+#define GLSL_TFOP(op) emit_trinary_func_op(ops[0], ops[1], ops[2], ops[3], ops[4], #op)
+#define GLSL_BFOP(op) emit_binary_func_op(ops[0], ops[1], ops[2], ops[3], #op)
+#define GLSL_BFOP_CAST(op, type) \
+ emit_binary_func_op_cast(ops[0], ops[1], ops[2], ops[3], #op, type, opcode_is_sign_invariant(opcode))
+#define GLSL_BFOP(op) emit_binary_func_op(ops[0], ops[1], ops[2], ops[3], #op)
+#define GLSL_UFOP(op) emit_unary_func_op(ops[0], ops[1], ops[2], #op)
+
+ // If we need to do implicit bitcasts, make sure we do it with the correct type.
+ uint32_t integer_width = get_integer_width_for_instruction(instruction);
+ auto int_type = to_signed_basetype(integer_width);
+ auto uint_type = to_unsigned_basetype(integer_width);
+
+ // Handle C implicit integer promotion rules.
+ // If we get implicit promotion to int, need to make sure we cast by value to intended return type,
+ // otherwise, future sign-dependent operations and bitcasts will break.
+ bool implicit_integer_promotion = integer_width < 32 && backend.implicit_c_integer_promotion_rules &&
+ opcode_can_promote_integer_implicitly(opcode) &&
+ get<SPIRType>(ops[0]).vecsize == 1;
+
+ opcode = get_remapped_spirv_op(opcode);
+
+ switch (opcode)
+ {
+ // Dealing with memory
+ case OpLoad:
+ {
+ uint32_t result_type = ops[0];
+ uint32_t id = ops[1];
+ uint32_t ptr = ops[2];
+
+ flush_variable_declaration(ptr);
+
+ // If we're loading from memory that cannot be changed by the shader,
+ // just forward the expression directly to avoid needless temporaries.
+ // If an expression is mutable and forwardable, we speculate that it is immutable.
+ bool forward = should_forward(ptr) && forced_temporaries.find(id) == end(forced_temporaries);
+
+ // If loading a non-native row-major matrix, mark the expression as need_transpose.
+ bool need_transpose = false;
+ bool old_need_transpose = false;
+
+ auto *ptr_expression = maybe_get<SPIRExpression>(ptr);
+
+ if (forward)
+ {
+ // If we're forwarding the load, we're also going to forward transpose state, so don't transpose while
+ // taking the expression.
+ if (ptr_expression && ptr_expression->need_transpose)
+ {
+ old_need_transpose = true;
+ ptr_expression->need_transpose = false;
+ need_transpose = true;
+ }
+ else if (is_non_native_row_major_matrix(ptr))
+ need_transpose = true;
+ }
+
+ // If we are forwarding this load,
+ // don't register the read to access chain here, defer that to when we actually use the expression,
+ // using the add_implied_read_expression mechanism.
+ string expr;
+
+ bool is_packed = has_extended_decoration(ptr, SPIRVCrossDecorationPhysicalTypePacked);
+ bool is_remapped = has_extended_decoration(ptr, SPIRVCrossDecorationPhysicalTypeID);
+ if (forward || (!is_packed && !is_remapped))
+ {
+ // For the simple case, we do not need to deal with repacking.
+ expr = to_dereferenced_expression(ptr, false);
+ }
+ else
+ {
+ // If we are not forwarding the expression, we need to unpack and resolve any physical type remapping here before
+ // storing the expression to a temporary.
+ expr = to_unpacked_expression(ptr);
+ }
+
+ auto &type = get<SPIRType>(result_type);
+ auto &expr_type = expression_type(ptr);
+
+ // If the expression has more vector components than the result type, insert
+ // a swizzle. This shouldn't happen normally on valid SPIR-V, but it might
+ // happen with e.g. the MSL backend replacing the type of an input variable.
+ if (expr_type.vecsize > type.vecsize)
+ expr = enclose_expression(expr + vector_swizzle(type.vecsize, 0));
+
+ if (forward && ptr_expression)
+ ptr_expression->need_transpose = old_need_transpose;
+
+ // We might need to cast in order to load from a builtin.
+ cast_from_variable_load(ptr, expr, type);
+
+ if (forward && ptr_expression)
+ ptr_expression->need_transpose = false;
+
+ // We might be trying to load a gl_Position[N], where we should be
+ // doing float4[](gl_in[i].gl_Position, ...) instead.
+ // Similar workarounds are required for input arrays in tessellation.
+ // Also, loading from gl_SampleMask array needs special unroll.
+ unroll_array_from_complex_load(id, ptr, expr);
+
+ if (!type_is_opaque_value(type) && has_decoration(ptr, DecorationNonUniform))
+ {
+ // If we're loading something non-opaque, we need to handle non-uniform descriptor access.
+ convert_non_uniform_expression(expr, ptr);
+ }
+
+ if (forward && ptr_expression)
+ ptr_expression->need_transpose = old_need_transpose;
+
+ bool flattened = ptr_expression && flattened_buffer_blocks.count(ptr_expression->loaded_from) != 0;
+
+ if (backend.needs_row_major_load_workaround && !is_non_native_row_major_matrix(ptr) && !flattened)
+ rewrite_load_for_wrapped_row_major(expr, result_type, ptr);
+
+ // By default, suppress usage tracking since using same expression multiple times does not imply any extra work.
+ // However, if we try to load a complex, composite object from a flattened buffer,
+ // we should avoid emitting the same code over and over and lower the result to a temporary.
+ bool usage_tracking = flattened && (type.basetype == SPIRType::Struct || (type.columns > 1));
+
+ SPIRExpression *e = nullptr;
+ if (!forward && expression_is_non_value_type_array(ptr))
+ {
+ // Complicated load case where we need to make a copy of ptr, but we cannot, because
+ // it is an array, and our backend does not support arrays as value types.
+ // Emit the temporary, and copy it explicitly.
+ e = &emit_uninitialized_temporary_expression(result_type, id);
+ emit_array_copy(nullptr, id, ptr, StorageClassFunction, get_expression_effective_storage_class(ptr));
+ }
+ else
+ e = &emit_op(result_type, id, expr, forward, !usage_tracking);
+
+ e->need_transpose = need_transpose;
+ register_read(id, ptr, forward);
+
+ if (forward)
+ {
+ // Pass through whether the result is of a packed type and the physical type ID.
+ if (has_extended_decoration(ptr, SPIRVCrossDecorationPhysicalTypePacked))
+ set_extended_decoration(id, SPIRVCrossDecorationPhysicalTypePacked);
+ if (has_extended_decoration(ptr, SPIRVCrossDecorationPhysicalTypeID))
+ {
+ set_extended_decoration(id, SPIRVCrossDecorationPhysicalTypeID,
+ get_extended_decoration(ptr, SPIRVCrossDecorationPhysicalTypeID));
+ }
+ }
+ else
+ {
+ // This might have been set on an earlier compilation iteration, force it to be unset.
+ unset_extended_decoration(id, SPIRVCrossDecorationPhysicalTypePacked);
+ unset_extended_decoration(id, SPIRVCrossDecorationPhysicalTypeID);
+ }
+
+ inherit_expression_dependencies(id, ptr);
+ if (forward)
+ add_implied_read_expression(*e, ptr);
+ break;
+ }
+
+ case OpInBoundsAccessChain:
+ case OpAccessChain:
+ case OpPtrAccessChain:
+ {
+ auto *var = maybe_get<SPIRVariable>(ops[2]);
+ if (var)
+ flush_variable_declaration(var->self);
+
+ // If the base is immutable, the access chain pointer must also be.
+ // If an expression is mutable and forwardable, we speculate that it is immutable.
+ AccessChainMeta meta;
+ bool ptr_chain = opcode == OpPtrAccessChain;
+ auto &target_type = get<SPIRType>(ops[0]);
+ auto e = access_chain(ops[2], &ops[3], length - 3, target_type, &meta, ptr_chain);
+
+ // If the base is flattened UBO of struct type, the expression has to be a composite.
+ // In that case, backends which do not support inline syntax need it to be bound to a temporary.
+ // Otherwise, invalid expressions like ({UBO[0].xyz, UBO[0].w, UBO[1]}).member are emitted.
+ bool requires_temporary = false;
+ if (flattened_buffer_blocks.count(ops[2]) && target_type.basetype == SPIRType::Struct)
+ requires_temporary = !backend.can_declare_struct_inline;
+
+ auto &expr = requires_temporary ?
+ emit_op(ops[0], ops[1], std::move(e), false) :
+ set<SPIRExpression>(ops[1], std::move(e), ops[0], should_forward(ops[2]));
+
+ auto *backing_variable = maybe_get_backing_variable(ops[2]);
+ expr.loaded_from = backing_variable ? backing_variable->self : ID(ops[2]);
+ expr.need_transpose = meta.need_transpose;
+ expr.access_chain = true;
+ expr.access_meshlet_position_y = meta.access_meshlet_position_y;
+
+ // Mark the result as being packed. Some platforms handled packed vectors differently than non-packed.
+ if (meta.storage_is_packed)
+ set_extended_decoration(ops[1], SPIRVCrossDecorationPhysicalTypePacked);
+ if (meta.storage_physical_type != 0)
+ set_extended_decoration(ops[1], SPIRVCrossDecorationPhysicalTypeID, meta.storage_physical_type);
+ if (meta.storage_is_invariant)
+ set_decoration(ops[1], DecorationInvariant);
+ if (meta.flattened_struct)
+ flattened_structs[ops[1]] = true;
+ if (meta.relaxed_precision && backend.requires_relaxed_precision_analysis)
+ set_decoration(ops[1], DecorationRelaxedPrecision);
+
+ // If we have some expression dependencies in our access chain, this access chain is technically a forwarded
+ // temporary which could be subject to invalidation.
+ // Need to assume we're forwarded while calling inherit_expression_depdendencies.
+ forwarded_temporaries.insert(ops[1]);
+ // The access chain itself is never forced to a temporary, but its dependencies might.
+ suppressed_usage_tracking.insert(ops[1]);
+
+ for (uint32_t i = 2; i < length; i++)
+ {
+ inherit_expression_dependencies(ops[1], ops[i]);
+ add_implied_read_expression(expr, ops[i]);
+ }
+
+ // If we have no dependencies after all, i.e., all indices in the access chain are immutable temporaries,
+ // we're not forwarded after all.
+ if (expr.expression_dependencies.empty())
+ forwarded_temporaries.erase(ops[1]);
+
+ break;
+ }
+
+ case OpStore:
+ {
+ auto *var = maybe_get<SPIRVariable>(ops[0]);
+
+ if (var && var->statically_assigned)
+ var->static_expression = ops[1];
+ else if (var && var->loop_variable && !var->loop_variable_enable)
+ var->static_expression = ops[1];
+ else if (var && var->remapped_variable && var->static_expression)
+ {
+ // Skip the write.
+ }
+ else if (flattened_structs.count(ops[0]))
+ {
+ store_flattened_struct(ops[0], ops[1]);
+ register_write(ops[0]);
+ }
+ else
+ {
+ emit_store_statement(ops[0], ops[1]);
+ }
+
+ // Storing a pointer results in a variable pointer, so we must conservatively assume
+ // we can write through it.
+ if (expression_type(ops[1]).pointer)
+ register_write(ops[1]);
+ break;
+ }
+
+ case OpArrayLength:
+ {
+ uint32_t result_type = ops[0];
+ uint32_t id = ops[1];
+ auto e = access_chain_internal(ops[2], &ops[3], length - 3, ACCESS_CHAIN_INDEX_IS_LITERAL_BIT, nullptr);
+ if (has_decoration(ops[2], DecorationNonUniform))
+ convert_non_uniform_expression(e, ops[2]);
+ set<SPIRExpression>(id, join(type_to_glsl(get<SPIRType>(result_type)), "(", e, ".length())"), result_type,
+ true);
+ break;
+ }
+
+ // Function calls
+ case OpFunctionCall:
+ {
+ uint32_t result_type = ops[0];
+ uint32_t id = ops[1];
+ uint32_t func = ops[2];
+ const auto *arg = &ops[3];
+ length -= 3;
+
+ auto &callee = get<SPIRFunction>(func);
+ auto &return_type = get<SPIRType>(callee.return_type);
+ bool pure = function_is_pure(callee);
+ bool control_dependent = function_is_control_dependent(callee);
+
+ bool callee_has_out_variables = false;
+ bool emit_return_value_as_argument = false;
+
+ // Invalidate out variables passed to functions since they can be OpStore'd to.
+ for (uint32_t i = 0; i < length; i++)
+ {
+ if (callee.arguments[i].write_count)
+ {
+ register_call_out_argument(arg[i]);
+ callee_has_out_variables = true;
+ }
+
+ flush_variable_declaration(arg[i]);
+ }
+
+ if (!return_type.array.empty() && !backend.can_return_array)
+ {
+ callee_has_out_variables = true;
+ emit_return_value_as_argument = true;
+ }
+
+ if (!pure)
+ register_impure_function_call();
+
+ string funexpr;
+ SmallVector<string> arglist;
+ funexpr += to_name(func) + "(";
+
+ if (emit_return_value_as_argument)
+ {
+ statement(type_to_glsl(return_type), " ", to_name(id), type_to_array_glsl(return_type, 0), ";");
+ arglist.push_back(to_name(id));
+ }
+
+ for (uint32_t i = 0; i < length; i++)
+ {
+ // Do not pass in separate images or samplers if we're remapping
+ // to combined image samplers.
+ if (skip_argument(arg[i]))
+ continue;
+
+ arglist.push_back(to_func_call_arg(callee.arguments[i], arg[i]));
+ }
+
+ for (auto &combined : callee.combined_parameters)
+ {
+ auto image_id = combined.global_image ? combined.image_id : VariableID(arg[combined.image_id]);
+ auto sampler_id = combined.global_sampler ? combined.sampler_id : VariableID(arg[combined.sampler_id]);
+ arglist.push_back(to_combined_image_sampler(image_id, sampler_id));
+ }
+
+ append_global_func_args(callee, length, arglist);
+
+ funexpr += merge(arglist);
+ funexpr += ")";
+
+ // Check for function call constraints.
+ check_function_call_constraints(arg, length);
+
+ if (return_type.basetype != SPIRType::Void)
+ {
+ // If the function actually writes to an out variable,
+ // take the conservative route and do not forward.
+ // The problem is that we might not read the function
+ // result (and emit the function) before an out variable
+ // is read (common case when return value is ignored!
+ // In order to avoid start tracking invalid variables,
+ // just avoid the forwarding problem altogether.
+ bool forward = args_will_forward(id, arg, length, pure) && !callee_has_out_variables && pure &&
+ (forced_temporaries.find(id) == end(forced_temporaries));
+
+ if (emit_return_value_as_argument)
+ {
+ statement(funexpr, ";");
+ set<SPIRExpression>(id, to_name(id), result_type, true);
+ }
+ else
+ emit_op(result_type, id, funexpr, forward);
+
+ // Function calls are implicit loads from all variables in question.
+ // Set dependencies for them.
+ for (uint32_t i = 0; i < length; i++)
+ register_read(id, arg[i], forward);
+
+ // If we're going to forward the temporary result,
+ // put dependencies on every variable that must not change.
+ if (forward)
+ register_global_read_dependencies(callee, id);
+ }
+ else
+ statement(funexpr, ";");
+
+ if (control_dependent)
+ register_control_dependent_expression(id);
+
+ break;
+ }
+
+ // Composite munging
+ case OpCompositeConstruct:
+ {
+ uint32_t result_type = ops[0];
+ uint32_t id = ops[1];
+ const auto *const elems = &ops[2];
+ length -= 2;
+
+ bool forward = true;
+ for (uint32_t i = 0; i < length; i++)
+ forward = forward && should_forward(elems[i]);
+
+ auto &out_type = get<SPIRType>(result_type);
+ auto *in_type = length > 0 ? &expression_type(elems[0]) : nullptr;
+
+ // Only splat if we have vector constructors.
+ // Arrays and structs must be initialized properly in full.
+ bool composite = !out_type.array.empty() || out_type.basetype == SPIRType::Struct;
+
+ bool splat = false;
+ bool swizzle_splat = false;
+
+ if (in_type)
+ {
+ splat = in_type->vecsize == 1 && in_type->columns == 1 && !composite && backend.use_constructor_splatting;
+ swizzle_splat = in_type->vecsize == 1 && in_type->columns == 1 && backend.can_swizzle_scalar;
+
+ if (ir.ids[elems[0]].get_type() == TypeConstant && !type_is_floating_point(*in_type))
+ {
+ // Cannot swizzle literal integers as a special case.
+ swizzle_splat = false;
+ }
+ }
+
+ if (splat || swizzle_splat)
+ {
+ uint32_t input = elems[0];
+ for (uint32_t i = 0; i < length; i++)
+ {
+ if (input != elems[i])
+ {
+ splat = false;
+ swizzle_splat = false;
+ }
+ }
+ }
+
+ if (out_type.basetype == SPIRType::Struct && !backend.can_declare_struct_inline)
+ forward = false;
+ if (!out_type.array.empty() && !backend.can_declare_arrays_inline)
+ forward = false;
+ if (type_is_empty(out_type) && !backend.supports_empty_struct)
+ forward = false;
+
+ string constructor_op;
+ if (backend.use_initializer_list && composite)
+ {
+ bool needs_trailing_tracket = false;
+ // Only use this path if we are building composites.
+ // This path cannot be used for arithmetic.
+ if (backend.use_typed_initializer_list && out_type.basetype == SPIRType::Struct && out_type.array.empty())
+ constructor_op += type_to_glsl_constructor(get<SPIRType>(result_type));
+ else if (backend.use_typed_initializer_list && backend.array_is_value_type && !out_type.array.empty())
+ {
+ // MSL path. Array constructor is baked into type here, do not use _constructor variant.
+ constructor_op += type_to_glsl_constructor(get<SPIRType>(result_type)) + "(";
+ needs_trailing_tracket = true;
+ }
+ constructor_op += "{ ";
+
+ if (type_is_empty(out_type) && !backend.supports_empty_struct)
+ constructor_op += "0";
+ else if (splat)
+ constructor_op += to_unpacked_expression(elems[0]);
+ else
+ constructor_op += build_composite_combiner(result_type, elems, length);
+ constructor_op += " }";
+ if (needs_trailing_tracket)
+ constructor_op += ")";
+ }
+ else if (swizzle_splat && !composite)
+ {
+ constructor_op = remap_swizzle(get<SPIRType>(result_type), 1, to_unpacked_expression(elems[0]));
+ }
+ else
+ {
+ constructor_op = type_to_glsl_constructor(get<SPIRType>(result_type)) + "(";
+ if (type_is_empty(out_type) && !backend.supports_empty_struct)
+ constructor_op += "0";
+ else if (splat)
+ constructor_op += to_unpacked_expression(elems[0]);
+ else
+ constructor_op += build_composite_combiner(result_type, elems, length);
+ constructor_op += ")";
+ }
+
+ if (!constructor_op.empty())
+ {
+ emit_op(result_type, id, constructor_op, forward);
+ for (uint32_t i = 0; i < length; i++)
+ inherit_expression_dependencies(id, elems[i]);
+ }
+ break;
+ }
+
+ case OpVectorInsertDynamic:
+ {
+ uint32_t result_type = ops[0];
+ uint32_t id = ops[1];
+ uint32_t vec = ops[2];
+ uint32_t comp = ops[3];
+ uint32_t index = ops[4];
+
+ flush_variable_declaration(vec);
+
+ // Make a copy, then use access chain to store the variable.
+ statement(declare_temporary(result_type, id), to_expression(vec), ";");
+ set<SPIRExpression>(id, to_name(id), result_type, true);
+ auto chain = access_chain_internal(id, &index, 1, 0, nullptr);
+ statement(chain, " = ", to_unpacked_expression(comp), ";");
+ break;
+ }
+
+ case OpVectorExtractDynamic:
+ {
+ uint32_t result_type = ops[0];
+ uint32_t id = ops[1];
+
+ auto expr = access_chain_internal(ops[2], &ops[3], 1, 0, nullptr);
+ emit_op(result_type, id, expr, should_forward(ops[2]));
+ inherit_expression_dependencies(id, ops[2]);
+ inherit_expression_dependencies(id, ops[3]);
+ break;
+ }
+
+ case OpCompositeExtract:
+ {
+ uint32_t result_type = ops[0];
+ uint32_t id = ops[1];
+ length -= 3;
+
+ auto &type = get<SPIRType>(result_type);
+
+ // We can only split the expression here if our expression is forwarded as a temporary.
+ bool allow_base_expression = forced_temporaries.find(id) == end(forced_temporaries);
+
+ // Do not allow base expression for struct members. We risk doing "swizzle" optimizations in this case.
+ auto &composite_type = expression_type(ops[2]);
+ bool composite_type_is_complex = composite_type.basetype == SPIRType::Struct || !composite_type.array.empty();
+ if (composite_type_is_complex)
+ allow_base_expression = false;
+
+ // Packed expressions or physical ID mapped expressions cannot be split up.
+ if (has_extended_decoration(ops[2], SPIRVCrossDecorationPhysicalTypePacked) ||
+ has_extended_decoration(ops[2], SPIRVCrossDecorationPhysicalTypeID))
+ allow_base_expression = false;
+
+ // Cannot use base expression for row-major matrix row-extraction since we need to interleave access pattern
+ // into the base expression.
+ if (is_non_native_row_major_matrix(ops[2]))
+ allow_base_expression = false;
+
+ AccessChainMeta meta;
+ SPIRExpression *e = nullptr;
+ auto *c = maybe_get<SPIRConstant>(ops[2]);
+
+ if (c && !c->specialization && !composite_type_is_complex)
+ {
+ auto expr = to_extract_constant_composite_expression(result_type, *c, ops + 3, length);
+ e = &emit_op(result_type, id, expr, true, true);
+ }
+ else if (allow_base_expression && should_forward(ops[2]) && type.vecsize == 1 && type.columns == 1 && length == 1)
+ {
+ // Only apply this optimization if result is scalar.
+
+ // We want to split the access chain from the base.
+ // This is so we can later combine different CompositeExtract results
+ // with CompositeConstruct without emitting code like
+ //
+ // vec3 temp = texture(...).xyz
+ // vec4(temp.x, temp.y, temp.z, 1.0).
+ //
+ // when we actually wanted to emit this
+ // vec4(texture(...).xyz, 1.0).
+ //
+ // Including the base will prevent this and would trigger multiple reads
+ // from expression causing it to be forced to an actual temporary in GLSL.
+ auto expr = access_chain_internal(ops[2], &ops[3], length,
+ ACCESS_CHAIN_INDEX_IS_LITERAL_BIT | ACCESS_CHAIN_CHAIN_ONLY_BIT |
+ ACCESS_CHAIN_FORCE_COMPOSITE_BIT, &meta);
+ e = &emit_op(result_type, id, expr, true, should_suppress_usage_tracking(ops[2]));
+ inherit_expression_dependencies(id, ops[2]);
+ e->base_expression = ops[2];
+
+ if (meta.relaxed_precision && backend.requires_relaxed_precision_analysis)
+ set_decoration(ops[1], DecorationRelaxedPrecision);
+ }
+ else
+ {
+ auto expr = access_chain_internal(ops[2], &ops[3], length,
+ ACCESS_CHAIN_INDEX_IS_LITERAL_BIT | ACCESS_CHAIN_FORCE_COMPOSITE_BIT, &meta);
+ e = &emit_op(result_type, id, expr, should_forward(ops[2]), should_suppress_usage_tracking(ops[2]));
+ inherit_expression_dependencies(id, ops[2]);
+ }
+
+ // Pass through some meta information to the loaded expression.
+ // We can still end up loading a buffer type to a variable, then CompositeExtract from it
+ // instead of loading everything through an access chain.
+ e->need_transpose = meta.need_transpose;
+ if (meta.storage_is_packed)
+ set_extended_decoration(id, SPIRVCrossDecorationPhysicalTypePacked);
+ if (meta.storage_physical_type != 0)
+ set_extended_decoration(id, SPIRVCrossDecorationPhysicalTypeID, meta.storage_physical_type);
+ if (meta.storage_is_invariant)
+ set_decoration(id, DecorationInvariant);
+
+ break;
+ }
+
+ case OpCompositeInsert:
+ {
+ uint32_t result_type = ops[0];
+ uint32_t id = ops[1];
+ uint32_t obj = ops[2];
+ uint32_t composite = ops[3];
+ const auto *elems = &ops[4];
+ length -= 4;
+
+ flush_variable_declaration(composite);
+
+ // CompositeInsert requires a copy + modification, but this is very awkward code in HLL.
+ // Speculate that the input composite is no longer used, and we can modify it in-place.
+ // There are various scenarios where this is not possible to satisfy.
+ bool can_modify_in_place = true;
+ forced_temporaries.insert(id);
+
+ // Cannot safely RMW PHI variables since they have no way to be invalidated,
+ // forcing temporaries is not going to help.
+ // This is similar for Constant and Undef inputs.
+ // The only safe thing to RMW is SPIRExpression.
+ // If the expression has already been used (i.e. used in a continue block), we have to keep using
+ // that loop variable, since we won't be able to override the expression after the fact.
+ // If the composite is hoisted, we might never be able to properly invalidate any usage
+ // of that composite in a subsequent loop iteration.
+ if (invalid_expressions.count(composite) ||
+ block_composite_insert_overwrite.count(composite) ||
+ hoisted_temporaries.count(id) || hoisted_temporaries.count(composite) ||
+ maybe_get<SPIRExpression>(composite) == nullptr)
+ {
+ can_modify_in_place = false;
+ }
+ else if (backend.requires_relaxed_precision_analysis &&
+ has_decoration(composite, DecorationRelaxedPrecision) !=
+ has_decoration(id, DecorationRelaxedPrecision) &&
+ get<SPIRType>(result_type).basetype != SPIRType::Struct)
+ {
+ // Similarly, if precision does not match for input and output,
+ // we cannot alias them. If we write a composite into a relaxed precision
+ // ID, we might get a false truncation.
+ can_modify_in_place = false;
+ }
+
+ if (can_modify_in_place)
+ {
+ // Have to make sure the modified SSA value is bound to a temporary so we can modify it in-place.
+ if (!forced_temporaries.count(composite))
+ force_temporary_and_recompile(composite);
+
+ auto chain = access_chain_internal(composite, elems, length, ACCESS_CHAIN_INDEX_IS_LITERAL_BIT, nullptr);
+ statement(chain, " = ", to_unpacked_expression(obj), ";");
+ set<SPIRExpression>(id, to_expression(composite), result_type, true);
+ invalid_expressions.insert(composite);
+ composite_insert_overwritten.insert(composite);
+ }
+ else
+ {
+ if (maybe_get<SPIRUndef>(composite) != nullptr)
+ {
+ emit_uninitialized_temporary_expression(result_type, id);
+ }
+ else
+ {
+ // Make a copy, then use access chain to store the variable.
+ statement(declare_temporary(result_type, id), to_expression(composite), ";");
+ set<SPIRExpression>(id, to_name(id), result_type, true);
+ }
+
+ auto chain = access_chain_internal(id, elems, length, ACCESS_CHAIN_INDEX_IS_LITERAL_BIT, nullptr);
+ statement(chain, " = ", to_unpacked_expression(obj), ";");
+ }
+
+ break;
+ }
+
+ case OpCopyMemory:
+ {
+ uint32_t lhs = ops[0];
+ uint32_t rhs = ops[1];
+ if (lhs != rhs)
+ {
+ uint32_t &tmp_id = extra_sub_expressions[instruction.offset | EXTRA_SUB_EXPRESSION_TYPE_STREAM_OFFSET];
+ if (!tmp_id)
+ tmp_id = ir.increase_bound_by(1);
+ uint32_t tmp_type_id = expression_type(rhs).parent_type;
+
+ EmbeddedInstruction fake_load, fake_store;
+ fake_load.op = OpLoad;
+ fake_load.length = 3;
+ fake_load.ops.push_back(tmp_type_id);
+ fake_load.ops.push_back(tmp_id);
+ fake_load.ops.push_back(rhs);
+
+ fake_store.op = OpStore;
+ fake_store.length = 2;
+ fake_store.ops.push_back(lhs);
+ fake_store.ops.push_back(tmp_id);
+
+ // Load and Store do a *lot* of workarounds, and we'd like to reuse them as much as possible.
+ // Synthesize a fake Load and Store pair for CopyMemory.
+ emit_instruction(fake_load);
+ emit_instruction(fake_store);
+ }
+ break;
+ }
+
+ case OpCopyLogical:
+ {
+ // This is used for copying object of different types, arrays and structs.
+ // We need to unroll the copy, element-by-element.
+ uint32_t result_type = ops[0];
+ uint32_t id = ops[1];
+ uint32_t rhs = ops[2];
+
+ emit_uninitialized_temporary_expression(result_type, id);
+ emit_copy_logical_type(id, result_type, rhs, expression_type_id(rhs), {});
+ break;
+ }
+
+ case OpCopyObject:
+ {
+ uint32_t result_type = ops[0];
+ uint32_t id = ops[1];
+ uint32_t rhs = ops[2];
+ bool pointer = get<SPIRType>(result_type).pointer;
+
+ auto *chain = maybe_get<SPIRAccessChain>(rhs);
+ auto *imgsamp = maybe_get<SPIRCombinedImageSampler>(rhs);
+ if (chain)
+ {
+ // Cannot lower to a SPIRExpression, just copy the object.
+ auto &e = set<SPIRAccessChain>(id, *chain);
+ e.self = id;
+ }
+ else if (imgsamp)
+ {
+ // Cannot lower to a SPIRExpression, just copy the object.
+ // GLSL does not currently use this type and will never get here, but MSL does.
+ // Handled here instead of CompilerMSL for better integration and general handling,
+ // and in case GLSL or other subclasses require it in the future.
+ auto &e = set<SPIRCombinedImageSampler>(id, *imgsamp);
+ e.self = id;
+ }
+ else if (expression_is_lvalue(rhs) && !pointer)
+ {
+ // Need a copy.
+ // For pointer types, we copy the pointer itself.
+ emit_op(result_type, id, to_unpacked_expression(rhs), false);
+ }
+ else
+ {
+ // RHS expression is immutable, so just forward it.
+ // Copying these things really make no sense, but
+ // seems to be allowed anyways.
+ auto &e = emit_op(result_type, id, to_expression(rhs), true, true);
+ if (pointer)
+ {
+ auto *var = maybe_get_backing_variable(rhs);
+ e.loaded_from = var ? var->self : ID(0);
+ }
+
+ // If we're copying an access chain, need to inherit the read expressions.
+ auto *rhs_expr = maybe_get<SPIRExpression>(rhs);
+ if (rhs_expr)
+ {
+ e.implied_read_expressions = rhs_expr->implied_read_expressions;
+ e.expression_dependencies = rhs_expr->expression_dependencies;
+ }
+ }
+ break;
+ }
+
+ case OpVectorShuffle:
+ {
+ uint32_t result_type = ops[0];
+ uint32_t id = ops[1];
+ uint32_t vec0 = ops[2];
+ uint32_t vec1 = ops[3];
+ const auto *elems = &ops[4];
+ length -= 4;
+
+ auto &type0 = expression_type(vec0);
+
+ // If we have the undefined swizzle index -1, we need to swizzle in undefined data,
+ // or in our case, T(0).
+ bool shuffle = false;
+ for (uint32_t i = 0; i < length; i++)
+ if (elems[i] >= type0.vecsize || elems[i] == 0xffffffffu)
+ shuffle = true;
+
+ // Cannot use swizzles with packed expressions, force shuffle path.
+ if (!shuffle && has_extended_decoration(vec0, SPIRVCrossDecorationPhysicalTypePacked))
+ shuffle = true;
+
+ string expr;
+ bool should_fwd, trivial_forward;
+
+ if (shuffle)
+ {
+ should_fwd = should_forward(vec0) && should_forward(vec1);
+ trivial_forward = should_suppress_usage_tracking(vec0) && should_suppress_usage_tracking(vec1);
+
+ // Constructor style and shuffling from two different vectors.
+ SmallVector<string> args;
+ for (uint32_t i = 0; i < length; i++)
+ {
+ if (elems[i] == 0xffffffffu)
+ {
+ // Use a constant 0 here.
+ // We could use the first component or similar, but then we risk propagating
+ // a value we might not need, and bog down codegen.
+ SPIRConstant c;
+ c.constant_type = type0.parent_type;
+ assert(type0.parent_type != ID(0));
+ args.push_back(constant_expression(c));
+ }
+ else if (elems[i] >= type0.vecsize)
+ args.push_back(to_extract_component_expression(vec1, elems[i] - type0.vecsize));
+ else
+ args.push_back(to_extract_component_expression(vec0, elems[i]));
+ }
+ expr += join(type_to_glsl_constructor(get<SPIRType>(result_type)), "(", merge(args), ")");
+ }
+ else
+ {
+ should_fwd = should_forward(vec0);
+ trivial_forward = should_suppress_usage_tracking(vec0);
+
+ // We only source from first vector, so can use swizzle.
+ // If the vector is packed, unpack it before applying a swizzle (needed for MSL)
+ expr += to_enclosed_unpacked_expression(vec0);
+ expr += ".";
+ for (uint32_t i = 0; i < length; i++)
+ {
+ assert(elems[i] != 0xffffffffu);
+ expr += index_to_swizzle(elems[i]);
+ }
+
+ if (backend.swizzle_is_function && length > 1)
+ expr += "()";
+ }
+
+ // A shuffle is trivial in that it doesn't actually *do* anything.
+ // We inherit the forwardedness from our arguments to avoid flushing out to temporaries when it's not really needed.
+
+ emit_op(result_type, id, expr, should_fwd, trivial_forward);
+
+ inherit_expression_dependencies(id, vec0);
+ if (vec0 != vec1)
+ inherit_expression_dependencies(id, vec1);
+ break;
+ }
+
+ // ALU
+ case OpIsNan:
+ if (!is_legacy())
+ GLSL_UFOP(isnan);
+ else
+ {
+ // Check if the number doesn't equal itself
+ auto &type = get<SPIRType>(ops[0]);
+ if (type.vecsize > 1)
+ emit_binary_func_op(ops[0], ops[1], ops[2], ops[2], "notEqual");
+ else
+ emit_binary_op(ops[0], ops[1], ops[2], ops[2], "!=");
+ }
+ break;
+
+ case OpIsInf:
+ if (!is_legacy())
+ GLSL_UFOP(isinf);
+ else
+ {
+ // inf * 2 == inf by IEEE 754 rules, note this also applies to 0.0
+ // This is more reliable than checking if product with zero is NaN
+ uint32_t result_type = ops[0];
+ uint32_t result_id = ops[1];
+ uint32_t operand = ops[2];
+
+ auto &type = get<SPIRType>(result_type);
+ std::string expr;
+ if (type.vecsize > 1)
+ {
+ expr = type_to_glsl_constructor(type);
+ expr += '(';
+ for (uint32_t i = 0; i < type.vecsize; i++)
+ {
+ auto comp = to_extract_component_expression(operand, i);
+ expr += join(comp, " != 0.0 && 2.0 * ", comp, " == ", comp);
+
+ if (i + 1 < type.vecsize)
+ expr += ", ";
+ }
+ expr += ')';
+ }
+ else
+ {
+ // Register an extra read to force writing out a temporary
+ auto oper = to_enclosed_expression(operand);
+ track_expression_read(operand);
+ expr += join(oper, " != 0.0 && 2.0 * ", oper, " == ", oper);
+ }
+ emit_op(result_type, result_id, expr, should_forward(operand));
+
+ inherit_expression_dependencies(result_id, operand);
+ }
+ break;
+
+ case OpSNegate:
+ if (implicit_integer_promotion || expression_type_id(ops[2]) != ops[0])
+ GLSL_UOP_CAST(-);
+ else
+ GLSL_UOP(-);
+ break;
+
+ case OpFNegate:
+ GLSL_UOP(-);
+ break;
+
+ case OpIAdd:
+ {
+ // For simple arith ops, prefer the output type if there's a mismatch to avoid extra bitcasts.
+ auto type = get<SPIRType>(ops[0]).basetype;
+ GLSL_BOP_CAST(+, type);
+ break;
+ }
+
+ case OpFAdd:
+ GLSL_BOP(+);
+ break;
+
+ case OpISub:
+ {
+ auto type = get<SPIRType>(ops[0]).basetype;
+ GLSL_BOP_CAST(-, type);
+ break;
+ }
+
+ case OpFSub:
+ GLSL_BOP(-);
+ break;
+
+ case OpIMul:
+ {
+ auto type = get<SPIRType>(ops[0]).basetype;
+ GLSL_BOP_CAST(*, type);
+ break;
+ }
+
+ case OpVectorTimesMatrix:
+ case OpMatrixTimesVector:
+ {
+ // If the matrix needs transpose, just flip the multiply order.
+ auto *e = maybe_get<SPIRExpression>(ops[opcode == OpMatrixTimesVector ? 2 : 3]);
+ if (e && e->need_transpose)
+ {
+ e->need_transpose = false;
+ string expr;
+
+ if (opcode == OpMatrixTimesVector)
+ expr = join(to_enclosed_unpacked_expression(ops[3]), " * ",
+ enclose_expression(to_unpacked_row_major_matrix_expression(ops[2])));
+ else
+ expr = join(enclose_expression(to_unpacked_row_major_matrix_expression(ops[3])), " * ",
+ to_enclosed_unpacked_expression(ops[2]));
+
+ bool forward = should_forward(ops[2]) && should_forward(ops[3]);
+ emit_op(ops[0], ops[1], expr, forward);
+ e->need_transpose = true;
+ inherit_expression_dependencies(ops[1], ops[2]);
+ inherit_expression_dependencies(ops[1], ops[3]);
+ }
+ else
+ GLSL_BOP(*);
+ break;
+ }
+
+ case OpMatrixTimesMatrix:
+ {
+ auto *a = maybe_get<SPIRExpression>(ops[2]);
+ auto *b = maybe_get<SPIRExpression>(ops[3]);
+
+ // If both matrices need transpose, we can multiply in flipped order and tag the expression as transposed.
+ // a^T * b^T = (b * a)^T.
+ if (a && b && a->need_transpose && b->need_transpose)
+ {
+ a->need_transpose = false;
+ b->need_transpose = false;
+ auto expr = join(enclose_expression(to_unpacked_row_major_matrix_expression(ops[3])), " * ",
+ enclose_expression(to_unpacked_row_major_matrix_expression(ops[2])));
+ bool forward = should_forward(ops[2]) && should_forward(ops[3]);
+ auto &e = emit_op(ops[0], ops[1], expr, forward);
+ e.need_transpose = true;
+ a->need_transpose = true;
+ b->need_transpose = true;
+ inherit_expression_dependencies(ops[1], ops[2]);
+ inherit_expression_dependencies(ops[1], ops[3]);
+ }
+ else
+ GLSL_BOP(*);
+
+ break;
+ }
+
+ case OpMatrixTimesScalar:
+ {
+ auto *a = maybe_get<SPIRExpression>(ops[2]);
+
+ // If the matrix need transpose, just mark the result as needing so.
+ if (a && a->need_transpose)
+ {
+ a->need_transpose = false;
+ auto expr = join(enclose_expression(to_unpacked_row_major_matrix_expression(ops[2])), " * ",
+ to_enclosed_unpacked_expression(ops[3]));
+ bool forward = should_forward(ops[2]) && should_forward(ops[3]);
+ auto &e = emit_op(ops[0], ops[1], expr, forward);
+ e.need_transpose = true;
+ a->need_transpose = true;
+ inherit_expression_dependencies(ops[1], ops[2]);
+ inherit_expression_dependencies(ops[1], ops[3]);
+ }
+ else
+ GLSL_BOP(*);
+ break;
+ }
+
+ case OpFMul:
+ case OpVectorTimesScalar:
+ GLSL_BOP(*);
+ break;
+
+ case OpOuterProduct:
+ if (options.version < 120) // Matches GLSL 1.10 / ESSL 1.00
+ {
+ uint32_t result_type = ops[0];
+ uint32_t id = ops[1];
+ uint32_t a = ops[2];
+ uint32_t b = ops[3];
+
+ auto &type = get<SPIRType>(result_type);
+ string expr = type_to_glsl_constructor(type);
+ expr += "(";
+ for (uint32_t col = 0; col < type.columns; col++)
+ {
+ expr += to_enclosed_expression(a);
+ expr += " * ";
+ expr += to_extract_component_expression(b, col);
+ if (col + 1 < type.columns)
+ expr += ", ";
+ }
+ expr += ")";
+ emit_op(result_type, id, expr, should_forward(a) && should_forward(b));
+ inherit_expression_dependencies(id, a);
+ inherit_expression_dependencies(id, b);
+ }
+ else
+ GLSL_BFOP(outerProduct);
+ break;
+
+ case OpDot:
+ GLSL_BFOP(dot);
+ break;
+
+ case OpTranspose:
+ if (options.version < 120) // Matches GLSL 1.10 / ESSL 1.00
+ {
+ // transpose() is not available, so instead, flip need_transpose,
+ // which can later be turned into an emulated transpose op by
+ // convert_row_major_matrix(), if necessary.
+ uint32_t result_type = ops[0];
+ uint32_t result_id = ops[1];
+ uint32_t input = ops[2];
+
+ // Force need_transpose to false temporarily to prevent
+ // to_expression() from doing the transpose.
+ bool need_transpose = false;
+ auto *input_e = maybe_get<SPIRExpression>(input);
+ if (input_e)
+ swap(need_transpose, input_e->need_transpose);
+
+ bool forward = should_forward(input);
+ auto &e = emit_op(result_type, result_id, to_expression(input), forward);
+ e.need_transpose = !need_transpose;
+
+ // Restore the old need_transpose flag.
+ if (input_e)
+ input_e->need_transpose = need_transpose;
+ }
+ else
+ GLSL_UFOP(transpose);
+ break;
+
+ case OpSRem:
+ {
+ uint32_t result_type = ops[0];
+ uint32_t result_id = ops[1];
+ uint32_t op0 = ops[2];
+ uint32_t op1 = ops[3];
+
+ // Needs special handling.
+ bool forward = should_forward(op0) && should_forward(op1);
+ auto expr = join(to_enclosed_expression(op0), " - ", to_enclosed_expression(op1), " * ", "(",
+ to_enclosed_expression(op0), " / ", to_enclosed_expression(op1), ")");
+
+ if (implicit_integer_promotion)
+ expr = join(type_to_glsl(get<SPIRType>(result_type)), '(', expr, ')');
+
+ emit_op(result_type, result_id, expr, forward);
+ inherit_expression_dependencies(result_id, op0);
+ inherit_expression_dependencies(result_id, op1);
+ break;
+ }
+
+ case OpSDiv:
+ GLSL_BOP_CAST(/, int_type);
+ break;
+
+ case OpUDiv:
+ GLSL_BOP_CAST(/, uint_type);
+ break;
+
+ case OpIAddCarry:
+ case OpISubBorrow:
+ {
+ if (options.es && options.version < 310)
+ SPIRV_CROSS_THROW("Extended arithmetic is only available from ESSL 310.");
+ else if (!options.es && options.version < 400)
+ SPIRV_CROSS_THROW("Extended arithmetic is only available from GLSL 400.");
+
+ uint32_t result_type = ops[0];
+ uint32_t result_id = ops[1];
+ uint32_t op0 = ops[2];
+ uint32_t op1 = ops[3];
+ auto &type = get<SPIRType>(result_type);
+ emit_uninitialized_temporary_expression(result_type, result_id);
+ const char *op = opcode == OpIAddCarry ? "uaddCarry" : "usubBorrow";
+
+ statement(to_expression(result_id), ".", to_member_name(type, 0), " = ", op, "(", to_expression(op0), ", ",
+ to_expression(op1), ", ", to_expression(result_id), ".", to_member_name(type, 1), ");");
+ break;
+ }
+
+ case OpUMulExtended:
+ case OpSMulExtended:
+ {
+ if (options.es && options.version < 310)
+ SPIRV_CROSS_THROW("Extended arithmetic is only available from ESSL 310.");
+ else if (!options.es && options.version < 400)
+ SPIRV_CROSS_THROW("Extended arithmetic is only available from GLSL 4000.");
+
+ uint32_t result_type = ops[0];
+ uint32_t result_id = ops[1];
+ uint32_t op0 = ops[2];
+ uint32_t op1 = ops[3];
+ auto &type = get<SPIRType>(result_type);
+ emit_uninitialized_temporary_expression(result_type, result_id);
+ const char *op = opcode == OpUMulExtended ? "umulExtended" : "imulExtended";
+
+ statement(op, "(", to_expression(op0), ", ", to_expression(op1), ", ", to_expression(result_id), ".",
+ to_member_name(type, 1), ", ", to_expression(result_id), ".", to_member_name(type, 0), ");");
+ break;
+ }
+
+ case OpFDiv:
+ GLSL_BOP(/);
+ break;
+
+ case OpShiftRightLogical:
+ GLSL_BOP_CAST(>>, uint_type);
+ break;
+
+ case OpShiftRightArithmetic:
+ GLSL_BOP_CAST(>>, int_type);
+ break;
+
+ case OpShiftLeftLogical:
+ {
+ auto type = get<SPIRType>(ops[0]).basetype;
+ GLSL_BOP_CAST(<<, type);
+ break;
+ }
+
+ case OpBitwiseOr:
+ {
+ auto type = get<SPIRType>(ops[0]).basetype;
+ GLSL_BOP_CAST(|, type);
+ break;
+ }
+
+ case OpBitwiseXor:
+ {
+ auto type = get<SPIRType>(ops[0]).basetype;
+ GLSL_BOP_CAST(^, type);
+ break;
+ }
+
+ case OpBitwiseAnd:
+ {
+ auto type = get<SPIRType>(ops[0]).basetype;
+ GLSL_BOP_CAST(&, type);
+ break;
+ }
+
+ case OpNot:
+ if (implicit_integer_promotion || expression_type_id(ops[2]) != ops[0])
+ GLSL_UOP_CAST(~);
+ else
+ GLSL_UOP(~);
+ break;
+
+ case OpUMod:
+ GLSL_BOP_CAST(%, uint_type);
+ break;
+
+ case OpSMod:
+ GLSL_BOP_CAST(%, int_type);
+ break;
+
+ case OpFMod:
+ GLSL_BFOP(mod);
+ break;
+
+ case OpFRem:
+ {
+ uint32_t result_type = ops[0];
+ uint32_t result_id = ops[1];
+ uint32_t op0 = ops[2];
+ uint32_t op1 = ops[3];
+
+ // Needs special handling.
+ bool forward = should_forward(op0) && should_forward(op1);
+ std::string expr;
+ if (!is_legacy())
+ {
+ expr = join(to_enclosed_expression(op0), " - ", to_enclosed_expression(op1), " * ", "trunc(",
+ to_enclosed_expression(op0), " / ", to_enclosed_expression(op1), ")");
+ }
+ else
+ {
+ // Legacy GLSL has no trunc, emulate by casting to int and back
+ auto &op0_type = expression_type(op0);
+ auto via_type = op0_type;
+ via_type.basetype = SPIRType::Int;
+ expr = join(to_enclosed_expression(op0), " - ", to_enclosed_expression(op1), " * ",
+ type_to_glsl(op0_type), "(", type_to_glsl(via_type), "(",
+ to_enclosed_expression(op0), " / ", to_enclosed_expression(op1), "))");
+ }
+
+ emit_op(result_type, result_id, expr, forward);
+ inherit_expression_dependencies(result_id, op0);
+ inherit_expression_dependencies(result_id, op1);
+ break;
+ }
+
+ // Relational
+ case OpAny:
+ GLSL_UFOP(any);
+ break;
+
+ case OpAll:
+ GLSL_UFOP(all);
+ break;
+
+ case OpSelect:
+ emit_mix_op(ops[0], ops[1], ops[4], ops[3], ops[2]);
+ break;
+
+ case OpLogicalOr:
+ {
+ // No vector variant in GLSL for logical OR.
+ auto result_type = ops[0];
+ auto id = ops[1];
+ auto &type = get<SPIRType>(result_type);
+
+ if (type.vecsize > 1)
+ emit_unrolled_binary_op(result_type, id, ops[2], ops[3], "||", false, SPIRType::Unknown);
+ else
+ GLSL_BOP(||);
+ break;
+ }
+
+ case OpLogicalAnd:
+ {
+ // No vector variant in GLSL for logical AND.
+ auto result_type = ops[0];
+ auto id = ops[1];
+ auto &type = get<SPIRType>(result_type);
+
+ if (type.vecsize > 1)
+ emit_unrolled_binary_op(result_type, id, ops[2], ops[3], "&&", false, SPIRType::Unknown);
+ else
+ GLSL_BOP(&&);
+ break;
+ }
+
+ case OpLogicalNot:
+ {
+ auto &type = get<SPIRType>(ops[0]);
+ if (type.vecsize > 1)
+ GLSL_UFOP(not );
+ else
+ GLSL_UOP(!);
+ break;
+ }
+
+ case OpIEqual:
+ {
+ if (expression_type(ops[2]).vecsize > 1)
+ GLSL_BFOP_CAST(equal, int_type);
+ else
+ GLSL_BOP_CAST(==, int_type);
+ break;
+ }
+
+ case OpLogicalEqual:
+ case OpFOrdEqual:
+ {
+ if (expression_type(ops[2]).vecsize > 1)
+ GLSL_BFOP(equal);
+ else
+ GLSL_BOP(==);
+ break;
+ }
+
+ case OpINotEqual:
+ {
+ if (expression_type(ops[2]).vecsize > 1)
+ GLSL_BFOP_CAST(notEqual, int_type);
+ else
+ GLSL_BOP_CAST(!=, int_type);
+ break;
+ }
+
+ case OpLogicalNotEqual:
+ case OpFOrdNotEqual:
+ case OpFUnordNotEqual:
+ {
+ // GLSL is fuzzy on what to do with ordered vs unordered not equal.
+ // glslang started emitting UnorderedNotEqual some time ago to harmonize with IEEE,
+ // but this means we have no easy way of implementing ordered not equal.
+ if (expression_type(ops[2]).vecsize > 1)
+ GLSL_BFOP(notEqual);
+ else
+ GLSL_BOP(!=);
+ break;
+ }
+
+ case OpUGreaterThan:
+ case OpSGreaterThan:
+ {
+ auto type = opcode == OpUGreaterThan ? uint_type : int_type;
+ if (expression_type(ops[2]).vecsize > 1)
+ GLSL_BFOP_CAST(greaterThan, type);
+ else
+ GLSL_BOP_CAST(>, type);
+ break;
+ }
+
+ case OpFOrdGreaterThan:
+ {
+ if (expression_type(ops[2]).vecsize > 1)
+ GLSL_BFOP(greaterThan);
+ else
+ GLSL_BOP(>);
+ break;
+ }
+
+ case OpUGreaterThanEqual:
+ case OpSGreaterThanEqual:
+ {
+ auto type = opcode == OpUGreaterThanEqual ? uint_type : int_type;
+ if (expression_type(ops[2]).vecsize > 1)
+ GLSL_BFOP_CAST(greaterThanEqual, type);
+ else
+ GLSL_BOP_CAST(>=, type);
+ break;
+ }
+
+ case OpFOrdGreaterThanEqual:
+ {
+ if (expression_type(ops[2]).vecsize > 1)
+ GLSL_BFOP(greaterThanEqual);
+ else
+ GLSL_BOP(>=);
+ break;
+ }
+
+ case OpULessThan:
+ case OpSLessThan:
+ {
+ auto type = opcode == OpULessThan ? uint_type : int_type;
+ if (expression_type(ops[2]).vecsize > 1)
+ GLSL_BFOP_CAST(lessThan, type);
+ else
+ GLSL_BOP_CAST(<, type);
+ break;
+ }
+
+ case OpFOrdLessThan:
+ {
+ if (expression_type(ops[2]).vecsize > 1)
+ GLSL_BFOP(lessThan);
+ else
+ GLSL_BOP(<);
+ break;
+ }
+
+ case OpULessThanEqual:
+ case OpSLessThanEqual:
+ {
+ auto type = opcode == OpULessThanEqual ? uint_type : int_type;
+ if (expression_type(ops[2]).vecsize > 1)
+ GLSL_BFOP_CAST(lessThanEqual, type);
+ else
+ GLSL_BOP_CAST(<=, type);
+ break;
+ }
+
+ case OpFOrdLessThanEqual:
+ {
+ if (expression_type(ops[2]).vecsize > 1)
+ GLSL_BFOP(lessThanEqual);
+ else
+ GLSL_BOP(<=);
+ break;
+ }
+
+ // Conversion
+ case OpSConvert:
+ case OpConvertSToF:
+ case OpUConvert:
+ case OpConvertUToF:
+ {
+ auto input_type = opcode == OpSConvert || opcode == OpConvertSToF ? int_type : uint_type;
+ uint32_t result_type = ops[0];
+ uint32_t id = ops[1];
+
+ auto &type = get<SPIRType>(result_type);
+ auto &arg_type = expression_type(ops[2]);
+ auto func = type_to_glsl_constructor(type);
+
+ if (arg_type.width < type.width || type_is_floating_point(type))
+ emit_unary_func_op_cast(result_type, id, ops[2], func.c_str(), input_type, type.basetype);
+ else
+ emit_unary_func_op(result_type, id, ops[2], func.c_str());
+ break;
+ }
+
+ case OpConvertFToU:
+ case OpConvertFToS:
+ {
+ // Cast to expected arithmetic type, then potentially bitcast away to desired signedness.
+ uint32_t result_type = ops[0];
+ uint32_t id = ops[1];
+ auto &type = get<SPIRType>(result_type);
+ auto expected_type = type;
+ auto &float_type = expression_type(ops[2]);
+ expected_type.basetype =
+ opcode == OpConvertFToS ? to_signed_basetype(type.width) : to_unsigned_basetype(type.width);
+
+ auto func = type_to_glsl_constructor(expected_type);
+ emit_unary_func_op_cast(result_type, id, ops[2], func.c_str(), float_type.basetype, expected_type.basetype);
+ break;
+ }
+
+ case OpFConvert:
+ {
+ uint32_t result_type = ops[0];
+ uint32_t id = ops[1];
+
+ auto func = type_to_glsl_constructor(get<SPIRType>(result_type));
+ emit_unary_func_op(result_type, id, ops[2], func.c_str());
+ break;
+ }
+
+ case OpBitcast:
+ {
+ uint32_t result_type = ops[0];
+ uint32_t id = ops[1];
+ uint32_t arg = ops[2];
+
+ if (!emit_complex_bitcast(result_type, id, arg))
+ {
+ auto op = bitcast_glsl_op(get<SPIRType>(result_type), expression_type(arg));
+ emit_unary_func_op(result_type, id, arg, op.c_str());
+ }
+ break;
+ }
+
+ case OpQuantizeToF16:
+ {
+ uint32_t result_type = ops[0];
+ uint32_t id = ops[1];
+ uint32_t arg = ops[2];
+
+ string op;
+ auto &type = get<SPIRType>(result_type);
+
+ switch (type.vecsize)
+ {
+ case 1:
+ op = join("unpackHalf2x16(packHalf2x16(vec2(", to_expression(arg), "))).x");
+ break;
+ case 2:
+ op = join("unpackHalf2x16(packHalf2x16(", to_expression(arg), "))");
+ break;
+ case 3:
+ {
+ auto op0 = join("unpackHalf2x16(packHalf2x16(", to_expression(arg), ".xy))");
+ auto op1 = join("unpackHalf2x16(packHalf2x16(", to_expression(arg), ".zz)).x");
+ op = join("vec3(", op0, ", ", op1, ")");
+ break;
+ }
+ case 4:
+ {
+ auto op0 = join("unpackHalf2x16(packHalf2x16(", to_expression(arg), ".xy))");
+ auto op1 = join("unpackHalf2x16(packHalf2x16(", to_expression(arg), ".zw))");
+ op = join("vec4(", op0, ", ", op1, ")");
+ break;
+ }
+ default:
+ SPIRV_CROSS_THROW("Illegal argument to OpQuantizeToF16.");
+ }
+
+ emit_op(result_type, id, op, should_forward(arg));
+ inherit_expression_dependencies(id, arg);
+ break;
+ }
+
+ // Derivatives
+ case OpDPdx:
+ GLSL_UFOP(dFdx);
+ if (is_legacy_es())
+ require_extension_internal("GL_OES_standard_derivatives");
+ register_control_dependent_expression(ops[1]);
+ break;
+
+ case OpDPdy:
+ GLSL_UFOP(dFdy);
+ if (is_legacy_es())
+ require_extension_internal("GL_OES_standard_derivatives");
+ register_control_dependent_expression(ops[1]);
+ break;
+
+ case OpDPdxFine:
+ GLSL_UFOP(dFdxFine);
+ if (options.es)
+ {
+ SPIRV_CROSS_THROW("GL_ARB_derivative_control is unavailable in OpenGL ES.");
+ }
+ if (options.version < 450)
+ require_extension_internal("GL_ARB_derivative_control");
+ register_control_dependent_expression(ops[1]);
+ break;
+
+ case OpDPdyFine:
+ GLSL_UFOP(dFdyFine);
+ if (options.es)
+ {
+ SPIRV_CROSS_THROW("GL_ARB_derivative_control is unavailable in OpenGL ES.");
+ }
+ if (options.version < 450)
+ require_extension_internal("GL_ARB_derivative_control");
+ register_control_dependent_expression(ops[1]);
+ break;
+
+ case OpDPdxCoarse:
+ if (options.es)
+ {
+ SPIRV_CROSS_THROW("GL_ARB_derivative_control is unavailable in OpenGL ES.");
+ }
+ GLSL_UFOP(dFdxCoarse);
+ if (options.version < 450)
+ require_extension_internal("GL_ARB_derivative_control");
+ register_control_dependent_expression(ops[1]);
+ break;
+
+ case OpDPdyCoarse:
+ GLSL_UFOP(dFdyCoarse);
+ if (options.es)
+ {
+ SPIRV_CROSS_THROW("GL_ARB_derivative_control is unavailable in OpenGL ES.");
+ }
+ if (options.version < 450)
+ require_extension_internal("GL_ARB_derivative_control");
+ register_control_dependent_expression(ops[1]);
+ break;
+
+ case OpFwidth:
+ GLSL_UFOP(fwidth);
+ if (is_legacy_es())
+ require_extension_internal("GL_OES_standard_derivatives");
+ register_control_dependent_expression(ops[1]);
+ break;
+
+ case OpFwidthCoarse:
+ GLSL_UFOP(fwidthCoarse);
+ if (options.es)
+ {
+ SPIRV_CROSS_THROW("GL_ARB_derivative_control is unavailable in OpenGL ES.");
+ }
+ if (options.version < 450)
+ require_extension_internal("GL_ARB_derivative_control");
+ register_control_dependent_expression(ops[1]);
+ break;
+
+ case OpFwidthFine:
+ GLSL_UFOP(fwidthFine);
+ if (options.es)
+ {
+ SPIRV_CROSS_THROW("GL_ARB_derivative_control is unavailable in OpenGL ES.");
+ }
+ if (options.version < 450)
+ require_extension_internal("GL_ARB_derivative_control");
+ register_control_dependent_expression(ops[1]);
+ break;
+
+ // Bitfield
+ case OpBitFieldInsert:
+ {
+ emit_bitfield_insert_op(ops[0], ops[1], ops[2], ops[3], ops[4], ops[5], "bitfieldInsert", SPIRType::Int);
+ break;
+ }
+
+ case OpBitFieldSExtract:
+ {
+ emit_trinary_func_op_bitextract(ops[0], ops[1], ops[2], ops[3], ops[4], "bitfieldExtract", int_type, int_type,
+ SPIRType::Int, SPIRType::Int);
+ break;
+ }
+
+ case OpBitFieldUExtract:
+ {
+ emit_trinary_func_op_bitextract(ops[0], ops[1], ops[2], ops[3], ops[4], "bitfieldExtract", uint_type, uint_type,
+ SPIRType::Int, SPIRType::Int);
+ break;
+ }
+
+ case OpBitReverse:
+ // BitReverse does not have issues with sign since result type must match input type.
+ GLSL_UFOP(bitfieldReverse);
+ break;
+
+ case OpBitCount:
+ {
+ auto basetype = expression_type(ops[2]).basetype;
+ emit_unary_func_op_cast(ops[0], ops[1], ops[2], "bitCount", basetype, int_type);
+ break;
+ }
+
+ // Atomics
+ case OpAtomicExchange:
+ {
+ uint32_t result_type = ops[0];
+ uint32_t id = ops[1];
+ uint32_t ptr = ops[2];
+ // Ignore semantics for now, probably only relevant to CL.
+ uint32_t val = ops[5];
+ const char *op = check_atomic_image(ptr) ? "imageAtomicExchange" : "atomicExchange";
+
+ emit_atomic_func_op(result_type, id, ptr, val, op);
+ break;
+ }
+
+ case OpAtomicCompareExchange:
+ {
+ uint32_t result_type = ops[0];
+ uint32_t id = ops[1];
+ uint32_t ptr = ops[2];
+ uint32_t val = ops[6];
+ uint32_t comp = ops[7];
+ const char *op = check_atomic_image(ptr) ? "imageAtomicCompSwap" : "atomicCompSwap";
+
+ emit_atomic_func_op(result_type, id, ptr, comp, val, op);
+ break;
+ }
+
+ case OpAtomicLoad:
+ {
+ // In plain GLSL, we have no atomic loads, so emulate this by fetch adding by 0 and hope compiler figures it out.
+ // Alternatively, we could rely on KHR_memory_model, but that's not very helpful for GL.
+ auto &type = expression_type(ops[2]);
+ forced_temporaries.insert(ops[1]);
+ bool atomic_image = check_atomic_image(ops[2]);
+ bool unsigned_type = (type.basetype == SPIRType::UInt) ||
+ (atomic_image && get<SPIRType>(type.image.type).basetype == SPIRType::UInt);
+ const char *op = atomic_image ? "imageAtomicAdd" : "atomicAdd";
+ const char *increment = unsigned_type ? "0u" : "0";
+ emit_op(ops[0], ops[1],
+ join(op, "(",
+ to_non_uniform_aware_expression(ops[2]), ", ", increment, ")"), false);
+ flush_all_atomic_capable_variables();
+ break;
+ }
+
+ case OpAtomicStore:
+ {
+ // In plain GLSL, we have no atomic stores, so emulate this with an atomic exchange where we don't consume the result.
+ // Alternatively, we could rely on KHR_memory_model, but that's not very helpful for GL.
+ uint32_t ptr = ops[0];
+ // Ignore semantics for now, probably only relevant to CL.
+ uint32_t val = ops[3];
+ const char *op = check_atomic_image(ptr) ? "imageAtomicExchange" : "atomicExchange";
+ statement(op, "(", to_non_uniform_aware_expression(ptr), ", ", to_expression(val), ");");
+ flush_all_atomic_capable_variables();
+ break;
+ }
+
+ case OpAtomicIIncrement:
+ case OpAtomicIDecrement:
+ {
+ forced_temporaries.insert(ops[1]);
+ auto &type = expression_type(ops[2]);
+ if (type.storage == StorageClassAtomicCounter)
+ {
+ // Legacy GLSL stuff, not sure if this is relevant to support.
+ if (opcode == OpAtomicIIncrement)
+ GLSL_UFOP(atomicCounterIncrement);
+ else
+ GLSL_UFOP(atomicCounterDecrement);
+ }
+ else
+ {
+ bool atomic_image = check_atomic_image(ops[2]);
+ bool unsigned_type = (type.basetype == SPIRType::UInt) ||
+ (atomic_image && get<SPIRType>(type.image.type).basetype == SPIRType::UInt);
+ const char *op = atomic_image ? "imageAtomicAdd" : "atomicAdd";
+
+ const char *increment = nullptr;
+ if (opcode == OpAtomicIIncrement && unsigned_type)
+ increment = "1u";
+ else if (opcode == OpAtomicIIncrement)
+ increment = "1";
+ else if (unsigned_type)
+ increment = "uint(-1)";
+ else
+ increment = "-1";
+
+ emit_op(ops[0], ops[1],
+ join(op, "(", to_non_uniform_aware_expression(ops[2]), ", ", increment, ")"), false);
+ }
+
+ flush_all_atomic_capable_variables();
+ break;
+ }
+
+ case OpAtomicIAdd:
+ case OpAtomicFAddEXT:
+ {
+ const char *op = check_atomic_image(ops[2]) ? "imageAtomicAdd" : "atomicAdd";
+ emit_atomic_func_op(ops[0], ops[1], ops[2], ops[5], op);
+ break;
+ }
+
+ case OpAtomicISub:
+ {
+ const char *op = check_atomic_image(ops[2]) ? "imageAtomicAdd" : "atomicAdd";
+ forced_temporaries.insert(ops[1]);
+ auto expr = join(op, "(", to_non_uniform_aware_expression(ops[2]), ", -", to_enclosed_expression(ops[5]), ")");
+ emit_op(ops[0], ops[1], expr, should_forward(ops[2]) && should_forward(ops[5]));
+ flush_all_atomic_capable_variables();
+ break;
+ }
+
+ case OpAtomicSMin:
+ case OpAtomicUMin:
+ {
+ const char *op = check_atomic_image(ops[2]) ? "imageAtomicMin" : "atomicMin";
+ emit_atomic_func_op(ops[0], ops[1], ops[2], ops[5], op);
+ break;
+ }
+
+ case OpAtomicSMax:
+ case OpAtomicUMax:
+ {
+ const char *op = check_atomic_image(ops[2]) ? "imageAtomicMax" : "atomicMax";
+ emit_atomic_func_op(ops[0], ops[1], ops[2], ops[5], op);
+ break;
+ }
+
+ case OpAtomicAnd:
+ {
+ const char *op = check_atomic_image(ops[2]) ? "imageAtomicAnd" : "atomicAnd";
+ emit_atomic_func_op(ops[0], ops[1], ops[2], ops[5], op);
+ break;
+ }
+
+ case OpAtomicOr:
+ {
+ const char *op = check_atomic_image(ops[2]) ? "imageAtomicOr" : "atomicOr";
+ emit_atomic_func_op(ops[0], ops[1], ops[2], ops[5], op);
+ break;
+ }
+
+ case OpAtomicXor:
+ {
+ const char *op = check_atomic_image(ops[2]) ? "imageAtomicXor" : "atomicXor";
+ emit_atomic_func_op(ops[0], ops[1], ops[2], ops[5], op);
+ break;
+ }
+
+ // Geometry shaders
+ case OpEmitVertex:
+ statement("EmitVertex();");
+ break;
+
+ case OpEndPrimitive:
+ statement("EndPrimitive();");
+ break;
+
+ case OpEmitStreamVertex:
+ {
+ if (options.es)
+ SPIRV_CROSS_THROW("Multi-stream geometry shaders not supported in ES.");
+ else if (!options.es && options.version < 400)
+ SPIRV_CROSS_THROW("Multi-stream geometry shaders only supported in GLSL 400.");
+
+ auto stream_expr = to_expression(ops[0]);
+ if (expression_type(ops[0]).basetype != SPIRType::Int)
+ stream_expr = join("int(", stream_expr, ")");
+ statement("EmitStreamVertex(", stream_expr, ");");
+ break;
+ }
+
+ case OpEndStreamPrimitive:
+ {
+ if (options.es)
+ SPIRV_CROSS_THROW("Multi-stream geometry shaders not supported in ES.");
+ else if (!options.es && options.version < 400)
+ SPIRV_CROSS_THROW("Multi-stream geometry shaders only supported in GLSL 400.");
+
+ auto stream_expr = to_expression(ops[0]);
+ if (expression_type(ops[0]).basetype != SPIRType::Int)
+ stream_expr = join("int(", stream_expr, ")");
+ statement("EndStreamPrimitive(", stream_expr, ");");
+ break;
+ }
+
+ // Textures
+ case OpImageSampleExplicitLod:
+ case OpImageSampleProjExplicitLod:
+ case OpImageSampleDrefExplicitLod:
+ case OpImageSampleProjDrefExplicitLod:
+ case OpImageSampleImplicitLod:
+ case OpImageSampleProjImplicitLod:
+ case OpImageSampleDrefImplicitLod:
+ case OpImageSampleProjDrefImplicitLod:
+ case OpImageFetch:
+ case OpImageGather:
+ case OpImageDrefGather:
+ // Gets a bit hairy, so move this to a separate instruction.
+ emit_texture_op(instruction, false);
+ break;
+
+ case OpImageSparseSampleExplicitLod:
+ case OpImageSparseSampleProjExplicitLod:
+ case OpImageSparseSampleDrefExplicitLod:
+ case OpImageSparseSampleProjDrefExplicitLod:
+ case OpImageSparseSampleImplicitLod:
+ case OpImageSparseSampleProjImplicitLod:
+ case OpImageSparseSampleDrefImplicitLod:
+ case OpImageSparseSampleProjDrefImplicitLod:
+ case OpImageSparseFetch:
+ case OpImageSparseGather:
+ case OpImageSparseDrefGather:
+ // Gets a bit hairy, so move this to a separate instruction.
+ emit_texture_op(instruction, true);
+ break;
+
+ case OpImageSparseTexelsResident:
+ if (options.es)
+ SPIRV_CROSS_THROW("Sparse feedback is not supported in GLSL.");
+ require_extension_internal("GL_ARB_sparse_texture2");
+ emit_unary_func_op_cast(ops[0], ops[1], ops[2], "sparseTexelsResidentARB", int_type, SPIRType::Boolean);
+ break;
+
+ case OpImage:
+ {
+ uint32_t result_type = ops[0];
+ uint32_t id = ops[1];
+
+ // Suppress usage tracking.
+ auto &e = emit_op(result_type, id, to_expression(ops[2]), true, true);
+
+ // When using the image, we need to know which variable it is actually loaded from.
+ auto *var = maybe_get_backing_variable(ops[2]);
+ e.loaded_from = var ? var->self : ID(0);
+ break;
+ }
+
+ case OpImageQueryLod:
+ {
+ const char *op = nullptr;
+ if (!options.es && options.version < 400)
+ {
+ require_extension_internal("GL_ARB_texture_query_lod");
+ // For some reason, the ARB spec is all-caps.
+ op = "textureQueryLOD";
+ }
+ else if (options.es)
+ {
+ if (options.version < 300)
+ SPIRV_CROSS_THROW("textureQueryLod not supported in legacy ES");
+ require_extension_internal("GL_EXT_texture_query_lod");
+ op = "textureQueryLOD";
+ }
+ else
+ op = "textureQueryLod";
+
+ auto sampler_expr = to_expression(ops[2]);
+ if (has_decoration(ops[2], DecorationNonUniform))
+ {
+ if (maybe_get_backing_variable(ops[2]))
+ convert_non_uniform_expression(sampler_expr, ops[2]);
+ else if (*backend.nonuniform_qualifier != '\0')
+ sampler_expr = join(backend.nonuniform_qualifier, "(", sampler_expr, ")");
+ }
+
+ bool forward = should_forward(ops[3]);
+ emit_op(ops[0], ops[1],
+ join(op, "(", sampler_expr, ", ", to_unpacked_expression(ops[3]), ")"),
+ forward);
+ inherit_expression_dependencies(ops[1], ops[2]);
+ inherit_expression_dependencies(ops[1], ops[3]);
+ register_control_dependent_expression(ops[1]);
+ break;
+ }
+
+ case OpImageQueryLevels:
+ {
+ uint32_t result_type = ops[0];
+ uint32_t id = ops[1];
+
+ if (!options.es && options.version < 430)
+ require_extension_internal("GL_ARB_texture_query_levels");
+ if (options.es)
+ SPIRV_CROSS_THROW("textureQueryLevels not supported in ES profile.");
+
+ auto expr = join("textureQueryLevels(", convert_separate_image_to_expression(ops[2]), ")");
+ auto &restype = get<SPIRType>(ops[0]);
+ expr = bitcast_expression(restype, SPIRType::Int, expr);
+ emit_op(result_type, id, expr, true);
+ break;
+ }
+
+ case OpImageQuerySamples:
+ {
+ auto &type = expression_type(ops[2]);
+ uint32_t result_type = ops[0];
+ uint32_t id = ops[1];
+
+ if (options.es)
+ SPIRV_CROSS_THROW("textureSamples and imageSamples not supported in ES profile.");
+ else if (options.version < 450)
+ require_extension_internal("GL_ARB_texture_query_samples");
+
+ string expr;
+ if (type.image.sampled == 2)
+ expr = join("imageSamples(", to_non_uniform_aware_expression(ops[2]), ")");
+ else
+ expr = join("textureSamples(", convert_separate_image_to_expression(ops[2]), ")");
+
+ auto &restype = get<SPIRType>(ops[0]);
+ expr = bitcast_expression(restype, SPIRType::Int, expr);
+ emit_op(result_type, id, expr, true);
+ break;
+ }
+
+ case OpSampledImage:
+ {
+ uint32_t result_type = ops[0];
+ uint32_t id = ops[1];
+ emit_sampled_image_op(result_type, id, ops[2], ops[3]);
+ inherit_expression_dependencies(id, ops[2]);
+ inherit_expression_dependencies(id, ops[3]);
+ break;
+ }
+
+ case OpImageQuerySizeLod:
+ {
+ uint32_t result_type = ops[0];
+ uint32_t id = ops[1];
+ uint32_t img = ops[2];
+ auto &type = expression_type(img);
+ auto &imgtype = get<SPIRType>(type.self);
+
+ std::string fname = "textureSize";
+ if (is_legacy_desktop())
+ {
+ fname = legacy_tex_op(fname, imgtype, img);
+ }
+ else if (is_legacy_es())
+ SPIRV_CROSS_THROW("textureSize is not supported in ESSL 100.");
+
+ auto expr = join(fname, "(", convert_separate_image_to_expression(img), ", ",
+ bitcast_expression(SPIRType::Int, ops[3]), ")");
+
+ // ES needs to emulate 1D images as 2D.
+ if (type.image.dim == Dim1D && options.es)
+ expr = join(expr, ".x");
+
+ auto &restype = get<SPIRType>(ops[0]);
+ expr = bitcast_expression(restype, SPIRType::Int, expr);
+ emit_op(result_type, id, expr, true);
+ break;
+ }
+
+ // Image load/store
+ case OpImageRead:
+ case OpImageSparseRead:
+ {
+ // We added Nonreadable speculatively to the OpImage variable due to glslangValidator
+ // not adding the proper qualifiers.
+ // If it turns out we need to read the image after all, remove the qualifier and recompile.
+ auto *var = maybe_get_backing_variable(ops[2]);
+ if (var)
+ {
+ auto &flags = get_decoration_bitset(var->self);
+ if (flags.get(DecorationNonReadable))
+ {
+ unset_decoration(var->self, DecorationNonReadable);
+ force_recompile();
+ }
+ }
+
+ uint32_t result_type = ops[0];
+ uint32_t id = ops[1];
+
+ bool pure;
+ string imgexpr;
+ auto &type = expression_type(ops[2]);
+
+ if (var && var->remapped_variable) // Remapped input, just read as-is without any op-code
+ {
+ if (type.image.ms)
+ SPIRV_CROSS_THROW("Trying to remap multisampled image to variable, this is not possible.");
+
+ auto itr =
+ find_if(begin(pls_inputs), end(pls_inputs), [var](const PlsRemap &pls) { return pls.id == var->self; });
+
+ if (itr == end(pls_inputs))
+ {
+ // For non-PLS inputs, we rely on subpass type remapping information to get it right
+ // since ImageRead always returns 4-component vectors and the backing type is opaque.
+ if (!var->remapped_components)
+ SPIRV_CROSS_THROW("subpassInput was remapped, but remap_components is not set correctly.");
+ imgexpr = remap_swizzle(get<SPIRType>(result_type), var->remapped_components, to_expression(ops[2]));
+ }
+ else
+ {
+ // PLS input could have different number of components than what the SPIR expects, swizzle to
+ // the appropriate vector size.
+ uint32_t components = pls_format_to_components(itr->format);
+ imgexpr = remap_swizzle(get<SPIRType>(result_type), components, to_expression(ops[2]));
+ }
+ pure = true;
+ }
+ else if (type.image.dim == DimSubpassData)
+ {
+ if (var && subpass_input_is_framebuffer_fetch(var->self))
+ {
+ imgexpr = to_expression(var->self);
+ }
+ else if (options.vulkan_semantics)
+ {
+ // With Vulkan semantics, use the proper Vulkan GLSL construct.
+ if (type.image.ms)
+ {
+ uint32_t operands = ops[4];
+ if (operands != ImageOperandsSampleMask || length != 6)
+ SPIRV_CROSS_THROW("Multisampled image used in OpImageRead, but unexpected "
+ "operand mask was used.");
+
+ uint32_t samples = ops[5];
+ imgexpr = join("subpassLoad(", to_non_uniform_aware_expression(ops[2]), ", ", to_expression(samples), ")");
+ }
+ else
+ imgexpr = join("subpassLoad(", to_non_uniform_aware_expression(ops[2]), ")");
+ }
+ else
+ {
+ if (type.image.ms)
+ {
+ uint32_t operands = ops[4];
+ if (operands != ImageOperandsSampleMask || length != 6)
+ SPIRV_CROSS_THROW("Multisampled image used in OpImageRead, but unexpected "
+ "operand mask was used.");
+
+ uint32_t samples = ops[5];
+ imgexpr = join("texelFetch(", to_non_uniform_aware_expression(ops[2]), ", ivec2(gl_FragCoord.xy), ",
+ to_expression(samples), ")");
+ }
+ else
+ {
+ // Implement subpass loads via texture barrier style sampling.
+ imgexpr = join("texelFetch(", to_non_uniform_aware_expression(ops[2]), ", ivec2(gl_FragCoord.xy), 0)");
+ }
+ }
+ imgexpr = remap_swizzle(get<SPIRType>(result_type), 4, imgexpr);
+ pure = true;
+ }
+ else
+ {
+ bool sparse = opcode == OpImageSparseRead;
+ uint32_t sparse_code_id = 0;
+ uint32_t sparse_texel_id = 0;
+ if (sparse)
+ emit_sparse_feedback_temporaries(ops[0], ops[1], sparse_code_id, sparse_texel_id);
+
+ // imageLoad only accepts int coords, not uint.
+ auto coord_expr = to_expression(ops[3]);
+ auto target_coord_type = expression_type(ops[3]);
+ target_coord_type.basetype = SPIRType::Int;
+ coord_expr = bitcast_expression(target_coord_type, expression_type(ops[3]).basetype, coord_expr);
+
+ // ES needs to emulate 1D images as 2D.
+ if (type.image.dim == Dim1D && options.es)
+ coord_expr = join("ivec2(", coord_expr, ", 0)");
+
+ // Plain image load/store.
+ if (sparse)
+ {
+ if (type.image.ms)
+ {
+ uint32_t operands = ops[4];
+ if (operands != ImageOperandsSampleMask || length != 6)
+ SPIRV_CROSS_THROW("Multisampled image used in OpImageRead, but unexpected "
+ "operand mask was used.");
+
+ uint32_t samples = ops[5];
+ statement(to_expression(sparse_code_id), " = sparseImageLoadARB(", to_non_uniform_aware_expression(ops[2]), ", ",
+ coord_expr, ", ", to_expression(samples), ", ", to_expression(sparse_texel_id), ");");
+ }
+ else
+ {
+ statement(to_expression(sparse_code_id), " = sparseImageLoadARB(", to_non_uniform_aware_expression(ops[2]), ", ",
+ coord_expr, ", ", to_expression(sparse_texel_id), ");");
+ }
+ imgexpr = join(type_to_glsl(get<SPIRType>(result_type)), "(", to_expression(sparse_code_id), ", ",
+ to_expression(sparse_texel_id), ")");
+ }
+ else
+ {
+ if (type.image.ms)
+ {
+ uint32_t operands = ops[4];
+ if (operands != ImageOperandsSampleMask || length != 6)
+ SPIRV_CROSS_THROW("Multisampled image used in OpImageRead, but unexpected "
+ "operand mask was used.");
+
+ uint32_t samples = ops[5];
+ imgexpr =
+ join("imageLoad(", to_non_uniform_aware_expression(ops[2]), ", ", coord_expr, ", ", to_expression(samples), ")");
+ }
+ else
+ imgexpr = join("imageLoad(", to_non_uniform_aware_expression(ops[2]), ", ", coord_expr, ")");
+ }
+
+ if (!sparse)
+ imgexpr = remap_swizzle(get<SPIRType>(result_type), 4, imgexpr);
+ pure = false;
+ }
+
+ if (var)
+ {
+ bool forward = forced_temporaries.find(id) == end(forced_temporaries);
+ auto &e = emit_op(result_type, id, imgexpr, forward);
+
+ // We only need to track dependencies if we're reading from image load/store.
+ if (!pure)
+ {
+ e.loaded_from = var->self;
+ if (forward)
+ var->dependees.push_back(id);
+ }
+ }
+ else
+ emit_op(result_type, id, imgexpr, false);
+
+ inherit_expression_dependencies(id, ops[2]);
+ if (type.image.ms)
+ inherit_expression_dependencies(id, ops[5]);
+ break;
+ }
+
+ case OpImageTexelPointer:
+ {
+ uint32_t result_type = ops[0];
+ uint32_t id = ops[1];
+
+ auto coord_expr = to_expression(ops[3]);
+ auto target_coord_type = expression_type(ops[3]);
+ target_coord_type.basetype = SPIRType::Int;
+ coord_expr = bitcast_expression(target_coord_type, expression_type(ops[3]).basetype, coord_expr);
+
+ auto expr = join(to_expression(ops[2]), ", ", coord_expr);
+ auto &e = set<SPIRExpression>(id, expr, result_type, true);
+
+ // When using the pointer, we need to know which variable it is actually loaded from.
+ auto *var = maybe_get_backing_variable(ops[2]);
+ e.loaded_from = var ? var->self : ID(0);
+ inherit_expression_dependencies(id, ops[3]);
+ break;
+ }
+
+ case OpImageWrite:
+ {
+ // We added Nonwritable speculatively to the OpImage variable due to glslangValidator
+ // not adding the proper qualifiers.
+ // If it turns out we need to write to the image after all, remove the qualifier and recompile.
+ auto *var = maybe_get_backing_variable(ops[0]);
+ if (var)
+ {
+ if (has_decoration(var->self, DecorationNonWritable))
+ {
+ unset_decoration(var->self, DecorationNonWritable);
+ force_recompile();
+ }
+ }
+
+ auto &type = expression_type(ops[0]);
+ auto &value_type = expression_type(ops[2]);
+ auto store_type = value_type;
+ store_type.vecsize = 4;
+
+ // imageStore only accepts int coords, not uint.
+ auto coord_expr = to_expression(ops[1]);
+ auto target_coord_type = expression_type(ops[1]);
+ target_coord_type.basetype = SPIRType::Int;
+ coord_expr = bitcast_expression(target_coord_type, expression_type(ops[1]).basetype, coord_expr);
+
+ // ES needs to emulate 1D images as 2D.
+ if (type.image.dim == Dim1D && options.es)
+ coord_expr = join("ivec2(", coord_expr, ", 0)");
+
+ if (type.image.ms)
+ {
+ uint32_t operands = ops[3];
+ if (operands != ImageOperandsSampleMask || length != 5)
+ SPIRV_CROSS_THROW("Multisampled image used in OpImageWrite, but unexpected operand mask was used.");
+ uint32_t samples = ops[4];
+ statement("imageStore(", to_non_uniform_aware_expression(ops[0]), ", ", coord_expr, ", ", to_expression(samples), ", ",
+ remap_swizzle(store_type, value_type.vecsize, to_expression(ops[2])), ");");
+ }
+ else
+ statement("imageStore(", to_non_uniform_aware_expression(ops[0]), ", ", coord_expr, ", ",
+ remap_swizzle(store_type, value_type.vecsize, to_expression(ops[2])), ");");
+
+ if (var && variable_storage_is_aliased(*var))
+ flush_all_aliased_variables();
+ break;
+ }
+
+ case OpImageQuerySize:
+ {
+ auto &type = expression_type(ops[2]);
+ uint32_t result_type = ops[0];
+ uint32_t id = ops[1];
+
+ if (type.basetype == SPIRType::Image)
+ {
+ string expr;
+ if (type.image.sampled == 2)
+ {
+ if (!options.es && options.version < 430)
+ require_extension_internal("GL_ARB_shader_image_size");
+ else if (options.es && options.version < 310)
+ SPIRV_CROSS_THROW("At least ESSL 3.10 required for imageSize.");
+
+ // The size of an image is always constant.
+ expr = join("imageSize(", to_non_uniform_aware_expression(ops[2]), ")");
+ }
+ else
+ {
+ // This path is hit for samplerBuffers and multisampled images which do not have LOD.
+ std::string fname = "textureSize";
+ if (is_legacy())
+ {
+ auto &imgtype = get<SPIRType>(type.self);
+ fname = legacy_tex_op(fname, imgtype, ops[2]);
+ }
+ expr = join(fname, "(", convert_separate_image_to_expression(ops[2]), ")");
+ }
+
+ auto &restype = get<SPIRType>(ops[0]);
+ expr = bitcast_expression(restype, SPIRType::Int, expr);
+ emit_op(result_type, id, expr, true);
+ }
+ else
+ SPIRV_CROSS_THROW("Invalid type for OpImageQuerySize.");
+ break;
+ }
+
+ case OpImageSampleWeightedQCOM:
+ case OpImageBoxFilterQCOM:
+ case OpImageBlockMatchSSDQCOM:
+ case OpImageBlockMatchSADQCOM:
+ {
+ require_extension_internal("GL_QCOM_image_processing");
+ uint32_t result_type_id = ops[0];
+ uint32_t id = ops[1];
+ string expr;
+ switch (opcode)
+ {
+ case OpImageSampleWeightedQCOM:
+ expr = "textureWeightedQCOM";
+ break;
+ case OpImageBoxFilterQCOM:
+ expr = "textureBoxFilterQCOM";
+ break;
+ case OpImageBlockMatchSSDQCOM:
+ expr = "textureBlockMatchSSDQCOM";
+ break;
+ case OpImageBlockMatchSADQCOM:
+ expr = "textureBlockMatchSADQCOM";
+ break;
+ default:
+ SPIRV_CROSS_THROW("Invalid opcode for QCOM_image_processing.");
+ }
+ expr += "(";
+
+ bool forward = false;
+ expr += to_expression(ops[2]);
+ expr += ", " + to_expression(ops[3]);
+
+ switch (opcode)
+ {
+ case OpImageSampleWeightedQCOM:
+ expr += ", " + to_non_uniform_aware_expression(ops[4]);
+ break;
+ case OpImageBoxFilterQCOM:
+ expr += ", " + to_expression(ops[4]);
+ break;
+ case OpImageBlockMatchSSDQCOM:
+ case OpImageBlockMatchSADQCOM:
+ expr += ", " + to_non_uniform_aware_expression(ops[4]);
+ expr += ", " + to_expression(ops[5]);
+ expr += ", " + to_expression(ops[6]);
+ break;
+ default:
+ SPIRV_CROSS_THROW("Invalid opcode for QCOM_image_processing.");
+ }
+
+ expr += ")";
+ emit_op(result_type_id, id, expr, forward);
+
+ inherit_expression_dependencies(id, ops[3]);
+ if (opcode == OpImageBlockMatchSSDQCOM || opcode == OpImageBlockMatchSADQCOM)
+ inherit_expression_dependencies(id, ops[5]);
+
+ break;
+ }
+
+ // Compute
+ case OpControlBarrier:
+ case OpMemoryBarrier:
+ {
+ uint32_t execution_scope = 0;
+ uint32_t memory;
+ uint32_t semantics;
+
+ if (opcode == OpMemoryBarrier)
+ {
+ memory = evaluate_constant_u32(ops[0]);
+ semantics = evaluate_constant_u32(ops[1]);
+ }
+ else
+ {
+ execution_scope = evaluate_constant_u32(ops[0]);
+ memory = evaluate_constant_u32(ops[1]);
+ semantics = evaluate_constant_u32(ops[2]);
+ }
+
+ if (execution_scope == ScopeSubgroup || memory == ScopeSubgroup)
+ {
+ // OpControlBarrier with ScopeSubgroup is subgroupBarrier()
+ if (opcode != OpControlBarrier)
+ {
+ request_subgroup_feature(ShaderSubgroupSupportHelper::SubgroupMemBarrier);
+ }
+ else
+ {
+ request_subgroup_feature(ShaderSubgroupSupportHelper::SubgroupBarrier);
+ }
+ }
+
+ if (execution_scope != ScopeSubgroup && get_entry_point().model == ExecutionModelTessellationControl)
+ {
+ // Control shaders only have barriers, and it implies memory barriers.
+ if (opcode == OpControlBarrier)
+ statement("barrier();");
+ break;
+ }
+
+ // We only care about these flags, acquire/release and friends are not relevant to GLSL.
+ semantics = mask_relevant_memory_semantics(semantics);
+
+ if (opcode == OpMemoryBarrier)
+ {
+ // If we are a memory barrier, and the next instruction is a control barrier, check if that memory barrier
+ // does what we need, so we avoid redundant barriers.
+ const Instruction *next = get_next_instruction_in_block(instruction);
+ if (next && next->op == OpControlBarrier)
+ {
+ auto *next_ops = stream(*next);
+ uint32_t next_memory = evaluate_constant_u32(next_ops[1]);
+ uint32_t next_semantics = evaluate_constant_u32(next_ops[2]);
+ next_semantics = mask_relevant_memory_semantics(next_semantics);
+
+ bool memory_scope_covered = false;
+ if (next_memory == memory)
+ memory_scope_covered = true;
+ else if (next_semantics == MemorySemanticsWorkgroupMemoryMask)
+ {
+ // If we only care about workgroup memory, either Device or Workgroup scope is fine,
+ // scope does not have to match.
+ if ((next_memory == ScopeDevice || next_memory == ScopeWorkgroup) &&
+ (memory == ScopeDevice || memory == ScopeWorkgroup))
+ {
+ memory_scope_covered = true;
+ }
+ }
+ else if (memory == ScopeWorkgroup && next_memory == ScopeDevice)
+ {
+ // The control barrier has device scope, but the memory barrier just has workgroup scope.
+ memory_scope_covered = true;
+ }
+
+ // If we have the same memory scope, and all memory types are covered, we're good.
+ if (memory_scope_covered && (semantics & next_semantics) == semantics)
+ break;
+ }
+ }
+
+ // We are synchronizing some memory or syncing execution,
+ // so we cannot forward any loads beyond the memory barrier.
+ if (semantics || opcode == OpControlBarrier)
+ {
+ assert(current_emitting_block);
+ flush_control_dependent_expressions(current_emitting_block->self);
+ flush_all_active_variables();
+ }
+
+ if (memory == ScopeWorkgroup) // Only need to consider memory within a group
+ {
+ if (semantics == MemorySemanticsWorkgroupMemoryMask)
+ {
+ // OpControlBarrier implies a memory barrier for shared memory as well.
+ bool implies_shared_barrier = opcode == OpControlBarrier && execution_scope == ScopeWorkgroup;
+ if (!implies_shared_barrier)
+ statement("memoryBarrierShared();");
+ }
+ else if (semantics != 0)
+ statement("groupMemoryBarrier();");
+ }
+ else if (memory == ScopeSubgroup)
+ {
+ const uint32_t all_barriers =
+ MemorySemanticsWorkgroupMemoryMask | MemorySemanticsUniformMemoryMask | MemorySemanticsImageMemoryMask;
+
+ if (semantics & (MemorySemanticsCrossWorkgroupMemoryMask | MemorySemanticsSubgroupMemoryMask))
+ {
+ // These are not relevant for GLSL, but assume it means memoryBarrier().
+ // memoryBarrier() does everything, so no need to test anything else.
+ statement("subgroupMemoryBarrier();");
+ }
+ else if ((semantics & all_barriers) == all_barriers)
+ {
+ // Short-hand instead of emitting 3 barriers.
+ statement("subgroupMemoryBarrier();");
+ }
+ else
+ {
+ // Pick out individual barriers.
+ if (semantics & MemorySemanticsWorkgroupMemoryMask)
+ statement("subgroupMemoryBarrierShared();");
+ if (semantics & MemorySemanticsUniformMemoryMask)
+ statement("subgroupMemoryBarrierBuffer();");
+ if (semantics & MemorySemanticsImageMemoryMask)
+ statement("subgroupMemoryBarrierImage();");
+ }
+ }
+ else
+ {
+ const uint32_t all_barriers =
+ MemorySemanticsWorkgroupMemoryMask | MemorySemanticsUniformMemoryMask | MemorySemanticsImageMemoryMask;
+
+ if (semantics & (MemorySemanticsCrossWorkgroupMemoryMask | MemorySemanticsSubgroupMemoryMask))
+ {
+ // These are not relevant for GLSL, but assume it means memoryBarrier().
+ // memoryBarrier() does everything, so no need to test anything else.
+ statement("memoryBarrier();");
+ }
+ else if ((semantics & all_barriers) == all_barriers)
+ {
+ // Short-hand instead of emitting 4 barriers.
+ statement("memoryBarrier();");
+ }
+ else
+ {
+ // Pick out individual barriers.
+ if (semantics & MemorySemanticsWorkgroupMemoryMask)
+ statement("memoryBarrierShared();");
+ if (semantics & MemorySemanticsUniformMemoryMask)
+ statement("memoryBarrierBuffer();");
+ if (semantics & MemorySemanticsImageMemoryMask)
+ statement("memoryBarrierImage();");
+ }
+ }
+
+ if (opcode == OpControlBarrier)
+ {
+ if (execution_scope == ScopeSubgroup)
+ statement("subgroupBarrier();");
+ else
+ statement("barrier();");
+ }
+ break;
+ }
+
+ case OpExtInst:
+ {
+ uint32_t extension_set = ops[2];
+ auto ext = get<SPIRExtension>(extension_set).ext;
+
+ if (ext == SPIRExtension::GLSL)
+ {
+ emit_glsl_op(ops[0], ops[1], ops[3], &ops[4], length - 4);
+ }
+ else if (ext == SPIRExtension::SPV_AMD_shader_ballot)
+ {
+ emit_spv_amd_shader_ballot_op(ops[0], ops[1], ops[3], &ops[4], length - 4);
+ }
+ else if (ext == SPIRExtension::SPV_AMD_shader_explicit_vertex_parameter)
+ {
+ emit_spv_amd_shader_explicit_vertex_parameter_op(ops[0], ops[1], ops[3], &ops[4], length - 4);
+ }
+ else if (ext == SPIRExtension::SPV_AMD_shader_trinary_minmax)
+ {
+ emit_spv_amd_shader_trinary_minmax_op(ops[0], ops[1], ops[3], &ops[4], length - 4);
+ }
+ else if (ext == SPIRExtension::SPV_AMD_gcn_shader)
+ {
+ emit_spv_amd_gcn_shader_op(ops[0], ops[1], ops[3], &ops[4], length - 4);
+ }
+ else if (ext == SPIRExtension::SPV_debug_info ||
+ ext == SPIRExtension::NonSemanticShaderDebugInfo ||
+ ext == SPIRExtension::NonSemanticGeneric)
+ {
+ break; // Ignore SPIR-V debug information extended instructions.
+ }
+ else if (ext == SPIRExtension::NonSemanticDebugPrintf)
+ {
+ // Operation 1 is printf.
+ if (ops[3] == 1)
+ {
+ if (!options.vulkan_semantics)
+ SPIRV_CROSS_THROW("Debug printf is only supported in Vulkan GLSL.\n");
+ require_extension_internal("GL_EXT_debug_printf");
+ auto &format_string = get<SPIRString>(ops[4]).str;
+ string expr = join("debugPrintfEXT(\"", format_string, "\"");
+ for (uint32_t i = 5; i < length; i++)
+ {
+ expr += ", ";
+ expr += to_expression(ops[i]);
+ }
+ statement(expr, ");");
+ }
+ }
+ else
+ {
+ statement("// unimplemented ext op ", instruction.op);
+ break;
+ }
+
+ break;
+ }
+
+ // Legacy sub-group stuff ...
+ case OpSubgroupBallotKHR:
+ {
+ uint32_t result_type = ops[0];
+ uint32_t id = ops[1];
+ string expr;
+ expr = join("uvec4(unpackUint2x32(ballotARB(" + to_expression(ops[2]) + ")), 0u, 0u)");
+ emit_op(result_type, id, expr, should_forward(ops[2]));
+
+ require_extension_internal("GL_ARB_shader_ballot");
+ inherit_expression_dependencies(id, ops[2]);
+ register_control_dependent_expression(ops[1]);
+ break;
+ }
+
+ case OpSubgroupFirstInvocationKHR:
+ {
+ uint32_t result_type = ops[0];
+ uint32_t id = ops[1];
+ emit_unary_func_op(result_type, id, ops[2], "readFirstInvocationARB");
+
+ require_extension_internal("GL_ARB_shader_ballot");
+ register_control_dependent_expression(ops[1]);
+ break;
+ }
+
+ case OpSubgroupReadInvocationKHR:
+ {
+ uint32_t result_type = ops[0];
+ uint32_t id = ops[1];
+ emit_binary_func_op(result_type, id, ops[2], ops[3], "readInvocationARB");
+
+ require_extension_internal("GL_ARB_shader_ballot");
+ register_control_dependent_expression(ops[1]);
+ break;
+ }
+
+ case OpSubgroupAllKHR:
+ {
+ uint32_t result_type = ops[0];
+ uint32_t id = ops[1];
+ emit_unary_func_op(result_type, id, ops[2], "allInvocationsARB");
+
+ require_extension_internal("GL_ARB_shader_group_vote");
+ register_control_dependent_expression(ops[1]);
+ break;
+ }
+
+ case OpSubgroupAnyKHR:
+ {
+ uint32_t result_type = ops[0];
+ uint32_t id = ops[1];
+ emit_unary_func_op(result_type, id, ops[2], "anyInvocationARB");
+
+ require_extension_internal("GL_ARB_shader_group_vote");
+ register_control_dependent_expression(ops[1]);
+ break;
+ }
+
+ case OpSubgroupAllEqualKHR:
+ {
+ uint32_t result_type = ops[0];
+ uint32_t id = ops[1];
+ emit_unary_func_op(result_type, id, ops[2], "allInvocationsEqualARB");
+
+ require_extension_internal("GL_ARB_shader_group_vote");
+ register_control_dependent_expression(ops[1]);
+ break;
+ }
+
+ case OpGroupIAddNonUniformAMD:
+ case OpGroupFAddNonUniformAMD:
+ {
+ uint32_t result_type = ops[0];
+ uint32_t id = ops[1];
+ emit_unary_func_op(result_type, id, ops[4], "addInvocationsNonUniformAMD");
+
+ require_extension_internal("GL_AMD_shader_ballot");
+ register_control_dependent_expression(ops[1]);
+ break;
+ }
+
+ case OpGroupFMinNonUniformAMD:
+ case OpGroupUMinNonUniformAMD:
+ case OpGroupSMinNonUniformAMD:
+ {
+ uint32_t result_type = ops[0];
+ uint32_t id = ops[1];
+ emit_unary_func_op(result_type, id, ops[4], "minInvocationsNonUniformAMD");
+
+ require_extension_internal("GL_AMD_shader_ballot");
+ register_control_dependent_expression(ops[1]);
+ break;
+ }
+
+ case OpGroupFMaxNonUniformAMD:
+ case OpGroupUMaxNonUniformAMD:
+ case OpGroupSMaxNonUniformAMD:
+ {
+ uint32_t result_type = ops[0];
+ uint32_t id = ops[1];
+ emit_unary_func_op(result_type, id, ops[4], "maxInvocationsNonUniformAMD");
+
+ require_extension_internal("GL_AMD_shader_ballot");
+ register_control_dependent_expression(ops[1]);
+ break;
+ }
+
+ case OpFragmentMaskFetchAMD:
+ {
+ auto &type = expression_type(ops[2]);
+ uint32_t result_type = ops[0];
+ uint32_t id = ops[1];
+
+ if (type.image.dim == spv::DimSubpassData)
+ {
+ emit_unary_func_op(result_type, id, ops[2], "fragmentMaskFetchAMD");
+ }
+ else
+ {
+ emit_binary_func_op(result_type, id, ops[2], ops[3], "fragmentMaskFetchAMD");
+ }
+
+ require_extension_internal("GL_AMD_shader_fragment_mask");
+ break;
+ }
+
+ case OpFragmentFetchAMD:
+ {
+ auto &type = expression_type(ops[2]);
+ uint32_t result_type = ops[0];
+ uint32_t id = ops[1];
+
+ if (type.image.dim == spv::DimSubpassData)
+ {
+ emit_binary_func_op(result_type, id, ops[2], ops[4], "fragmentFetchAMD");
+ }
+ else
+ {
+ emit_trinary_func_op(result_type, id, ops[2], ops[3], ops[4], "fragmentFetchAMD");
+ }
+
+ require_extension_internal("GL_AMD_shader_fragment_mask");
+ break;
+ }
+
+ // Vulkan 1.1 sub-group stuff ...
+ case OpGroupNonUniformElect:
+ case OpGroupNonUniformBroadcast:
+ case OpGroupNonUniformBroadcastFirst:
+ case OpGroupNonUniformBallot:
+ case OpGroupNonUniformInverseBallot:
+ case OpGroupNonUniformBallotBitExtract:
+ case OpGroupNonUniformBallotBitCount:
+ case OpGroupNonUniformBallotFindLSB:
+ case OpGroupNonUniformBallotFindMSB:
+ case OpGroupNonUniformShuffle:
+ case OpGroupNonUniformShuffleXor:
+ case OpGroupNonUniformShuffleUp:
+ case OpGroupNonUniformShuffleDown:
+ case OpGroupNonUniformAll:
+ case OpGroupNonUniformAny:
+ case OpGroupNonUniformAllEqual:
+ case OpGroupNonUniformFAdd:
+ case OpGroupNonUniformIAdd:
+ case OpGroupNonUniformFMul:
+ case OpGroupNonUniformIMul:
+ case OpGroupNonUniformFMin:
+ case OpGroupNonUniformFMax:
+ case OpGroupNonUniformSMin:
+ case OpGroupNonUniformSMax:
+ case OpGroupNonUniformUMin:
+ case OpGroupNonUniformUMax:
+ case OpGroupNonUniformBitwiseAnd:
+ case OpGroupNonUniformBitwiseOr:
+ case OpGroupNonUniformBitwiseXor:
+ case OpGroupNonUniformLogicalAnd:
+ case OpGroupNonUniformLogicalOr:
+ case OpGroupNonUniformLogicalXor:
+ case OpGroupNonUniformQuadSwap:
+ case OpGroupNonUniformQuadBroadcast:
+ emit_subgroup_op(instruction);
+ break;
+
+ case OpFUnordEqual:
+ case OpFUnordLessThan:
+ case OpFUnordGreaterThan:
+ case OpFUnordLessThanEqual:
+ case OpFUnordGreaterThanEqual:
+ {
+ // GLSL doesn't specify if floating point comparisons are ordered or unordered,
+ // but glslang always emits ordered floating point compares for GLSL.
+ // To get unordered compares, we can test the opposite thing and invert the result.
+ // This way, we force true when there is any NaN present.
+ uint32_t op0 = ops[2];
+ uint32_t op1 = ops[3];
+
+ string expr;
+ if (expression_type(op0).vecsize > 1)
+ {
+ const char *comp_op = nullptr;
+ switch (opcode)
+ {
+ case OpFUnordEqual:
+ comp_op = "notEqual";
+ break;
+
+ case OpFUnordLessThan:
+ comp_op = "greaterThanEqual";
+ break;
+
+ case OpFUnordLessThanEqual:
+ comp_op = "greaterThan";
+ break;
+
+ case OpFUnordGreaterThan:
+ comp_op = "lessThanEqual";
+ break;
+
+ case OpFUnordGreaterThanEqual:
+ comp_op = "lessThan";
+ break;
+
+ default:
+ assert(0);
+ break;
+ }
+
+ expr = join("not(", comp_op, "(", to_unpacked_expression(op0), ", ", to_unpacked_expression(op1), "))");
+ }
+ else
+ {
+ const char *comp_op = nullptr;
+ switch (opcode)
+ {
+ case OpFUnordEqual:
+ comp_op = " != ";
+ break;
+
+ case OpFUnordLessThan:
+ comp_op = " >= ";
+ break;
+
+ case OpFUnordLessThanEqual:
+ comp_op = " > ";
+ break;
+
+ case OpFUnordGreaterThan:
+ comp_op = " <= ";
+ break;
+
+ case OpFUnordGreaterThanEqual:
+ comp_op = " < ";
+ break;
+
+ default:
+ assert(0);
+ break;
+ }
+
+ expr = join("!(", to_enclosed_unpacked_expression(op0), comp_op, to_enclosed_unpacked_expression(op1), ")");
+ }
+
+ emit_op(ops[0], ops[1], expr, should_forward(op0) && should_forward(op1));
+ inherit_expression_dependencies(ops[1], op0);
+ inherit_expression_dependencies(ops[1], op1);
+ break;
+ }
+
+ case OpReportIntersectionKHR:
+ // NV is same opcode.
+ forced_temporaries.insert(ops[1]);
+ if (ray_tracing_is_khr)
+ GLSL_BFOP(reportIntersectionEXT);
+ else
+ GLSL_BFOP(reportIntersectionNV);
+ flush_control_dependent_expressions(current_emitting_block->self);
+ break;
+ case OpIgnoreIntersectionNV:
+ // KHR variant is a terminator.
+ statement("ignoreIntersectionNV();");
+ flush_control_dependent_expressions(current_emitting_block->self);
+ break;
+ case OpTerminateRayNV:
+ // KHR variant is a terminator.
+ statement("terminateRayNV();");
+ flush_control_dependent_expressions(current_emitting_block->self);
+ break;
+ case OpTraceNV:
+ statement("traceNV(", to_non_uniform_aware_expression(ops[0]), ", ", to_expression(ops[1]), ", ", to_expression(ops[2]), ", ",
+ to_expression(ops[3]), ", ", to_expression(ops[4]), ", ", to_expression(ops[5]), ", ",
+ to_expression(ops[6]), ", ", to_expression(ops[7]), ", ", to_expression(ops[8]), ", ",
+ to_expression(ops[9]), ", ", to_expression(ops[10]), ");");
+ flush_control_dependent_expressions(current_emitting_block->self);
+ break;
+ case OpTraceRayKHR:
+ if (!has_decoration(ops[10], DecorationLocation))
+ SPIRV_CROSS_THROW("A memory declaration object must be used in TraceRayKHR.");
+ statement("traceRayEXT(", to_non_uniform_aware_expression(ops[0]), ", ", to_expression(ops[1]), ", ", to_expression(ops[2]), ", ",
+ to_expression(ops[3]), ", ", to_expression(ops[4]), ", ", to_expression(ops[5]), ", ",
+ to_expression(ops[6]), ", ", to_expression(ops[7]), ", ", to_expression(ops[8]), ", ",
+ to_expression(ops[9]), ", ", get_decoration(ops[10], DecorationLocation), ");");
+ flush_control_dependent_expressions(current_emitting_block->self);
+ break;
+ case OpExecuteCallableNV:
+ statement("executeCallableNV(", to_expression(ops[0]), ", ", to_expression(ops[1]), ");");
+ flush_control_dependent_expressions(current_emitting_block->self);
+ break;
+ case OpExecuteCallableKHR:
+ if (!has_decoration(ops[1], DecorationLocation))
+ SPIRV_CROSS_THROW("A memory declaration object must be used in ExecuteCallableKHR.");
+ statement("executeCallableEXT(", to_expression(ops[0]), ", ", get_decoration(ops[1], DecorationLocation), ");");
+ flush_control_dependent_expressions(current_emitting_block->self);
+ break;
+
+ // Don't bother forwarding temporaries. Avoids having to test expression invalidation with ray query objects.
+ case OpRayQueryInitializeKHR:
+ flush_variable_declaration(ops[0]);
+ statement("rayQueryInitializeEXT(",
+ to_expression(ops[0]), ", ", to_expression(ops[1]), ", ",
+ to_expression(ops[2]), ", ", to_expression(ops[3]), ", ",
+ to_expression(ops[4]), ", ", to_expression(ops[5]), ", ",
+ to_expression(ops[6]), ", ", to_expression(ops[7]), ");");
+ break;
+ case OpRayQueryProceedKHR:
+ flush_variable_declaration(ops[0]);
+ emit_op(ops[0], ops[1], join("rayQueryProceedEXT(", to_expression(ops[2]), ")"), false);
+ break;
+ case OpRayQueryTerminateKHR:
+ flush_variable_declaration(ops[0]);
+ statement("rayQueryTerminateEXT(", to_expression(ops[0]), ");");
+ break;
+ case OpRayQueryGenerateIntersectionKHR:
+ flush_variable_declaration(ops[0]);
+ statement("rayQueryGenerateIntersectionEXT(", to_expression(ops[0]), ", ", to_expression(ops[1]), ");");
+ break;
+ case OpRayQueryConfirmIntersectionKHR:
+ flush_variable_declaration(ops[0]);
+ statement("rayQueryConfirmIntersectionEXT(", to_expression(ops[0]), ");");
+ break;
+#define GLSL_RAY_QUERY_GET_OP(op) \
+ case OpRayQueryGet##op##KHR: \
+ flush_variable_declaration(ops[2]); \
+ emit_op(ops[0], ops[1], join("rayQueryGet" #op "EXT(", to_expression(ops[2]), ")"), false); \
+ break
+#define GLSL_RAY_QUERY_GET_OP2(op) \
+ case OpRayQueryGet##op##KHR: \
+ flush_variable_declaration(ops[2]); \
+ emit_op(ops[0], ops[1], join("rayQueryGet" #op "EXT(", to_expression(ops[2]), ", ", "bool(", to_expression(ops[3]), "))"), false); \
+ break
+ GLSL_RAY_QUERY_GET_OP(RayTMin);
+ GLSL_RAY_QUERY_GET_OP(RayFlags);
+ GLSL_RAY_QUERY_GET_OP(WorldRayOrigin);
+ GLSL_RAY_QUERY_GET_OP(WorldRayDirection);
+ GLSL_RAY_QUERY_GET_OP(IntersectionCandidateAABBOpaque);
+ GLSL_RAY_QUERY_GET_OP2(IntersectionType);
+ GLSL_RAY_QUERY_GET_OP2(IntersectionT);
+ GLSL_RAY_QUERY_GET_OP2(IntersectionInstanceCustomIndex);
+ GLSL_RAY_QUERY_GET_OP2(IntersectionInstanceId);
+ GLSL_RAY_QUERY_GET_OP2(IntersectionInstanceShaderBindingTableRecordOffset);
+ GLSL_RAY_QUERY_GET_OP2(IntersectionGeometryIndex);
+ GLSL_RAY_QUERY_GET_OP2(IntersectionPrimitiveIndex);
+ GLSL_RAY_QUERY_GET_OP2(IntersectionBarycentrics);
+ GLSL_RAY_QUERY_GET_OP2(IntersectionFrontFace);
+ GLSL_RAY_QUERY_GET_OP2(IntersectionObjectRayDirection);
+ GLSL_RAY_QUERY_GET_OP2(IntersectionObjectRayOrigin);
+ GLSL_RAY_QUERY_GET_OP2(IntersectionObjectToWorld);
+ GLSL_RAY_QUERY_GET_OP2(IntersectionWorldToObject);
+#undef GLSL_RAY_QUERY_GET_OP
+#undef GLSL_RAY_QUERY_GET_OP2
+
+ case OpConvertUToAccelerationStructureKHR:
+ {
+ require_extension_internal("GL_EXT_ray_tracing");
+
+ bool elide_temporary = should_forward(ops[2]) && forced_temporaries.count(ops[1]) == 0 &&
+ !hoisted_temporaries.count(ops[1]);
+
+ if (elide_temporary)
+ {
+ GLSL_UFOP(accelerationStructureEXT);
+ }
+ else
+ {
+ // Force this path in subsequent iterations.
+ forced_temporaries.insert(ops[1]);
+
+ // We cannot declare a temporary acceleration structure in GLSL.
+ // If we get to this point, we'll have to emit a temporary uvec2,
+ // and cast to RTAS on demand.
+ statement(declare_temporary(expression_type_id(ops[2]), ops[1]), to_unpacked_expression(ops[2]), ";");
+ // Use raw SPIRExpression interface to block all usage tracking.
+ set<SPIRExpression>(ops[1], join("accelerationStructureEXT(", to_name(ops[1]), ")"), ops[0], true);
+ }
+ break;
+ }
+
+ case OpConvertUToPtr:
+ {
+ auto &type = get<SPIRType>(ops[0]);
+ if (type.storage != StorageClassPhysicalStorageBufferEXT)
+ SPIRV_CROSS_THROW("Only StorageClassPhysicalStorageBufferEXT is supported by OpConvertUToPtr.");
+
+ auto &in_type = expression_type(ops[2]);
+ if (in_type.vecsize == 2)
+ require_extension_internal("GL_EXT_buffer_reference_uvec2");
+
+ auto op = type_to_glsl(type);
+ emit_unary_func_op(ops[0], ops[1], ops[2], op.c_str());
+ break;
+ }
+
+ case OpConvertPtrToU:
+ {
+ auto &type = get<SPIRType>(ops[0]);
+ auto &ptr_type = expression_type(ops[2]);
+ if (ptr_type.storage != StorageClassPhysicalStorageBufferEXT)
+ SPIRV_CROSS_THROW("Only StorageClassPhysicalStorageBufferEXT is supported by OpConvertPtrToU.");
+
+ if (type.vecsize == 2)
+ require_extension_internal("GL_EXT_buffer_reference_uvec2");
+
+ auto op = type_to_glsl(type);
+ emit_unary_func_op(ops[0], ops[1], ops[2], op.c_str());
+ break;
+ }
+
+ case OpUndef:
+ // Undefined value has been declared.
+ break;
+
+ case OpLine:
+ {
+ emit_line_directive(ops[0], ops[1]);
+ break;
+ }
+
+ case OpNoLine:
+ break;
+
+ case OpDemoteToHelperInvocationEXT:
+ if (!options.vulkan_semantics)
+ SPIRV_CROSS_THROW("GL_EXT_demote_to_helper_invocation is only supported in Vulkan GLSL.");
+ require_extension_internal("GL_EXT_demote_to_helper_invocation");
+ statement(backend.demote_literal, ";");
+ break;
+
+ case OpIsHelperInvocationEXT:
+ if (!options.vulkan_semantics)
+ SPIRV_CROSS_THROW("GL_EXT_demote_to_helper_invocation is only supported in Vulkan GLSL.");
+ require_extension_internal("GL_EXT_demote_to_helper_invocation");
+ // Helper lane state with demote is volatile by nature.
+ // Do not forward this.
+ emit_op(ops[0], ops[1], "helperInvocationEXT()", false);
+ break;
+
+ case OpBeginInvocationInterlockEXT:
+ // If the interlock is complex, we emit this elsewhere.
+ if (!interlocked_is_complex)
+ {
+ statement("SPIRV_Cross_beginInvocationInterlock();");
+ flush_all_active_variables();
+ // Make sure forwarding doesn't propagate outside interlock region.
+ }
+ break;
+
+ case OpEndInvocationInterlockEXT:
+ // If the interlock is complex, we emit this elsewhere.
+ if (!interlocked_is_complex)
+ {
+ statement("SPIRV_Cross_endInvocationInterlock();");
+ flush_all_active_variables();
+ // Make sure forwarding doesn't propagate outside interlock region.
+ }
+ break;
+
+ case OpSetMeshOutputsEXT:
+ statement("SetMeshOutputsEXT(", to_unpacked_expression(ops[0]), ", ", to_unpacked_expression(ops[1]), ");");
+ break;
+
+ case OpReadClockKHR:
+ {
+ auto &type = get<SPIRType>(ops[0]);
+ auto scope = static_cast<Scope>(evaluate_constant_u32(ops[2]));
+ const char *op = nullptr;
+ // Forwarding clock statements leads to a scenario where an SSA value can take on different
+ // values every time it's evaluated. Block any forwarding attempt.
+ // We also might want to invalidate all expressions to function as a sort of optimization
+ // barrier, but might be overkill for now.
+ if (scope == ScopeDevice)
+ {
+ require_extension_internal("GL_EXT_shader_realtime_clock");
+ if (type.basetype == SPIRType::BaseType::UInt64)
+ op = "clockRealtimeEXT()";
+ else if (type.basetype == SPIRType::BaseType::UInt && type.vecsize == 2)
+ op = "clockRealtime2x32EXT()";
+ else
+ SPIRV_CROSS_THROW("Unsupported result type for OpReadClockKHR opcode.");
+ }
+ else if (scope == ScopeSubgroup)
+ {
+ require_extension_internal("GL_ARB_shader_clock");
+ if (type.basetype == SPIRType::BaseType::UInt64)
+ op = "clockARB()";
+ else if (type.basetype == SPIRType::BaseType::UInt && type.vecsize == 2)
+ op = "clock2x32ARB()";
+ else
+ SPIRV_CROSS_THROW("Unsupported result type for OpReadClockKHR opcode.");
+ }
+ else
+ SPIRV_CROSS_THROW("Unsupported scope for OpReadClockKHR opcode.");
+
+ emit_op(ops[0], ops[1], op, false);
+ break;
+ }
+
+ default:
+ statement("// unimplemented op ", instruction.op);
+ break;
+ }
+}
+
+// Appends function arguments, mapped from global variables, beyond the specified arg index.
+// This is used when a function call uses fewer arguments than the function defines.
+// This situation may occur if the function signature has been dynamically modified to
+// extract global variables referenced from within the function, and convert them to
+// function arguments. This is necessary for shader languages that do not support global
+// access to shader input content from within a function (eg. Metal). Each additional
+// function args uses the name of the global variable. Function nesting will modify the
+// functions and function calls all the way up the nesting chain.
+void CompilerGLSL::append_global_func_args(const SPIRFunction &func, uint32_t index, SmallVector<string> &arglist)
+{
+ auto &args = func.arguments;
+ uint32_t arg_cnt = uint32_t(args.size());
+ for (uint32_t arg_idx = index; arg_idx < arg_cnt; arg_idx++)
+ {
+ auto &arg = args[arg_idx];
+ assert(arg.alias_global_variable);
+
+ // If the underlying variable needs to be declared
+ // (ie. a local variable with deferred declaration), do so now.
+ uint32_t var_id = get<SPIRVariable>(arg.id).basevariable;
+ if (var_id)
+ flush_variable_declaration(var_id);
+
+ arglist.push_back(to_func_call_arg(arg, arg.id));
+ }
+}
+
+string CompilerGLSL::to_member_name(const SPIRType &type, uint32_t index)
+{
+ if (type.type_alias != TypeID(0) &&
+ !has_extended_decoration(type.type_alias, SPIRVCrossDecorationBufferBlockRepacked))
+ {
+ return to_member_name(get<SPIRType>(type.type_alias), index);
+ }
+
+ auto &memb = ir.meta[type.self].members;
+ if (index < memb.size() && !memb[index].alias.empty())
+ return memb[index].alias;
+ else
+ return join("_m", index);
+}
+
+string CompilerGLSL::to_member_reference(uint32_t, const SPIRType &type, uint32_t index, bool)
+{
+ return join(".", to_member_name(type, index));
+}
+
+string CompilerGLSL::to_multi_member_reference(const SPIRType &type, const SmallVector<uint32_t> &indices)
+{
+ string ret;
+ auto *member_type = &type;
+ for (auto &index : indices)
+ {
+ ret += join(".", to_member_name(*member_type, index));
+ member_type = &get<SPIRType>(member_type->member_types[index]);
+ }
+ return ret;
+}
+
+void CompilerGLSL::add_member_name(SPIRType &type, uint32_t index)
+{
+ auto &memb = ir.meta[type.self].members;
+ if (index < memb.size() && !memb[index].alias.empty())
+ {
+ auto &name = memb[index].alias;
+ if (name.empty())
+ return;
+
+ ParsedIR::sanitize_identifier(name, true, true);
+ update_name_cache(type.member_name_cache, name);
+ }
+}
+
+// Checks whether the ID is a row_major matrix that requires conversion before use
+bool CompilerGLSL::is_non_native_row_major_matrix(uint32_t id)
+{
+ // Natively supported row-major matrices do not need to be converted.
+ // Legacy targets do not support row major.
+ if (backend.native_row_major_matrix && !is_legacy())
+ return false;
+
+ auto *e = maybe_get<SPIRExpression>(id);
+ if (e)
+ return e->need_transpose;
+ else
+ return has_decoration(id, DecorationRowMajor);
+}
+
+// Checks whether the member is a row_major matrix that requires conversion before use
+bool CompilerGLSL::member_is_non_native_row_major_matrix(const SPIRType &type, uint32_t index)
+{
+ // Natively supported row-major matrices do not need to be converted.
+ if (backend.native_row_major_matrix && !is_legacy())
+ return false;
+
+ // Non-matrix or column-major matrix types do not need to be converted.
+ if (!has_member_decoration(type.self, index, DecorationRowMajor))
+ return false;
+
+ // Only square row-major matrices can be converted at this time.
+ // Converting non-square matrices will require defining custom GLSL function that
+ // swaps matrix elements while retaining the original dimensional form of the matrix.
+ const auto mbr_type = get<SPIRType>(type.member_types[index]);
+ if (mbr_type.columns != mbr_type.vecsize)
+ SPIRV_CROSS_THROW("Row-major matrices must be square on this platform.");
+
+ return true;
+}
+
+// Checks if we need to remap physical type IDs when declaring the type in a buffer.
+bool CompilerGLSL::member_is_remapped_physical_type(const SPIRType &type, uint32_t index) const
+{
+ return has_extended_member_decoration(type.self, index, SPIRVCrossDecorationPhysicalTypeID);
+}
+
+// Checks whether the member is in packed data type, that might need to be unpacked.
+bool CompilerGLSL::member_is_packed_physical_type(const SPIRType &type, uint32_t index) const
+{
+ return has_extended_member_decoration(type.self, index, SPIRVCrossDecorationPhysicalTypePacked);
+}
+
+// Wraps the expression string in a function call that converts the
+// row_major matrix result of the expression to a column_major matrix.
+// Base implementation uses the standard library transpose() function.
+// Subclasses may override to use a different function.
+string CompilerGLSL::convert_row_major_matrix(string exp_str, const SPIRType &exp_type, uint32_t /* physical_type_id */,
+ bool /*is_packed*/, bool relaxed)
+{
+ strip_enclosed_expression(exp_str);
+ if (!is_matrix(exp_type))
+ {
+ auto column_index = exp_str.find_last_of('[');
+ if (column_index == string::npos)
+ return exp_str;
+
+ auto column_expr = exp_str.substr(column_index);
+ exp_str.resize(column_index);
+
+ auto end_deferred_index = column_expr.find_last_of(']');
+ if (end_deferred_index != string::npos && end_deferred_index + 1 != column_expr.size())
+ {
+ // If we have any data member fixups, it must be transposed so that it refers to this index.
+ // E.g. [0].data followed by [1] would be shuffled to [1][0].data which is wrong,
+ // and needs to be [1].data[0] instead.
+ end_deferred_index++;
+ column_expr = column_expr.substr(end_deferred_index) +
+ column_expr.substr(0, end_deferred_index);
+ }
+
+ auto transposed_expr = type_to_glsl_constructor(exp_type) + "(";
+
+ // Loading a column from a row-major matrix. Unroll the load.
+ for (uint32_t c = 0; c < exp_type.vecsize; c++)
+ {
+ transposed_expr += join(exp_str, '[', c, ']', column_expr);
+ if (c + 1 < exp_type.vecsize)
+ transposed_expr += ", ";
+ }
+
+ transposed_expr += ")";
+ return transposed_expr;
+ }
+ else if (options.version < 120)
+ {
+ // GLSL 110, ES 100 do not have transpose(), so emulate it. Note that
+ // these GLSL versions do not support non-square matrices.
+ if (exp_type.vecsize == 2 && exp_type.columns == 2)
+ require_polyfill(PolyfillTranspose2x2, relaxed);
+ else if (exp_type.vecsize == 3 && exp_type.columns == 3)
+ require_polyfill(PolyfillTranspose3x3, relaxed);
+ else if (exp_type.vecsize == 4 && exp_type.columns == 4)
+ require_polyfill(PolyfillTranspose4x4, relaxed);
+ else
+ SPIRV_CROSS_THROW("Non-square matrices are not supported in legacy GLSL, cannot transpose.");
+ return join("spvTranspose", (options.es && relaxed) ? "MP" : "", "(", exp_str, ")");
+ }
+ else
+ return join("transpose(", exp_str, ")");
+}
+
+string CompilerGLSL::variable_decl(const SPIRType &type, const string &name, uint32_t id)
+{
+ string type_name = type_to_glsl(type, id);
+ remap_variable_type_name(type, name, type_name);
+ return join(type_name, " ", name, type_to_array_glsl(type, id));
+}
+
+bool CompilerGLSL::variable_decl_is_remapped_storage(const SPIRVariable &var, StorageClass storage) const
+{
+ return var.storage == storage;
+}
+
+// Emit a structure member. Subclasses may override to modify output,
+// or to dynamically add a padding member if needed.
+void CompilerGLSL::emit_struct_member(const SPIRType &type, uint32_t member_type_id, uint32_t index,
+ const string &qualifier, uint32_t)
+{
+ auto &membertype = get<SPIRType>(member_type_id);
+
+ Bitset memberflags;
+ auto &memb = ir.meta[type.self].members;
+ if (index < memb.size())
+ memberflags = memb[index].decoration_flags;
+
+ string qualifiers;
+ bool is_block = ir.meta[type.self].decoration.decoration_flags.get(DecorationBlock) ||
+ ir.meta[type.self].decoration.decoration_flags.get(DecorationBufferBlock);
+
+ if (is_block)
+ qualifiers = to_interpolation_qualifiers(memberflags);
+
+ statement(layout_for_member(type, index), qualifiers, qualifier, flags_to_qualifiers_glsl(membertype, memberflags),
+ variable_decl(membertype, to_member_name(type, index)), ";");
+}
+
+void CompilerGLSL::emit_struct_padding_target(const SPIRType &)
+{
+}
+
+string CompilerGLSL::flags_to_qualifiers_glsl(const SPIRType &type, const Bitset &flags)
+{
+ // GL_EXT_buffer_reference variables can be marked as restrict.
+ if (flags.get(DecorationRestrictPointerEXT))
+ return "restrict ";
+
+ string qual;
+
+ if (type_is_floating_point(type) && flags.get(DecorationNoContraction) && backend.support_precise_qualifier)
+ qual = "precise ";
+
+ // Structs do not have precision qualifiers, neither do doubles (desktop only anyways, so no mediump/highp).
+ bool type_supports_precision =
+ type.basetype == SPIRType::Float || type.basetype == SPIRType::Int || type.basetype == SPIRType::UInt ||
+ type.basetype == SPIRType::Image || type.basetype == SPIRType::SampledImage ||
+ type.basetype == SPIRType::Sampler;
+
+ if (!type_supports_precision)
+ return qual;
+
+ if (options.es)
+ {
+ auto &execution = get_entry_point();
+
+ if (type.basetype == SPIRType::UInt && is_legacy_es())
+ {
+ // HACK: This is a bool. See comment in type_to_glsl().
+ qual += "lowp ";
+ }
+ else if (flags.get(DecorationRelaxedPrecision))
+ {
+ bool implied_fmediump = type.basetype == SPIRType::Float &&
+ options.fragment.default_float_precision == Options::Mediump &&
+ execution.model == ExecutionModelFragment;
+
+ bool implied_imediump = (type.basetype == SPIRType::Int || type.basetype == SPIRType::UInt) &&
+ options.fragment.default_int_precision == Options::Mediump &&
+ execution.model == ExecutionModelFragment;
+
+ qual += (implied_fmediump || implied_imediump) ? "" : "mediump ";
+ }
+ else
+ {
+ bool implied_fhighp =
+ type.basetype == SPIRType::Float && ((options.fragment.default_float_precision == Options::Highp &&
+ execution.model == ExecutionModelFragment) ||
+ (execution.model != ExecutionModelFragment));
+
+ bool implied_ihighp = (type.basetype == SPIRType::Int || type.basetype == SPIRType::UInt) &&
+ ((options.fragment.default_int_precision == Options::Highp &&
+ execution.model == ExecutionModelFragment) ||
+ (execution.model != ExecutionModelFragment));
+
+ qual += (implied_fhighp || implied_ihighp) ? "" : "highp ";
+ }
+ }
+ else if (backend.allow_precision_qualifiers)
+ {
+ // Vulkan GLSL supports precision qualifiers, even in desktop profiles, which is convenient.
+ // The default is highp however, so only emit mediump in the rare case that a shader has these.
+ if (flags.get(DecorationRelaxedPrecision))
+ qual += "mediump ";
+ }
+
+ return qual;
+}
+
+string CompilerGLSL::to_precision_qualifiers_glsl(uint32_t id)
+{
+ auto &type = expression_type(id);
+ bool use_precision_qualifiers = backend.allow_precision_qualifiers;
+ if (use_precision_qualifiers && (type.basetype == SPIRType::Image || type.basetype == SPIRType::SampledImage))
+ {
+ // Force mediump for the sampler type. We cannot declare 16-bit or smaller image types.
+ auto &result_type = get<SPIRType>(type.image.type);
+ if (result_type.width < 32)
+ return "mediump ";
+ }
+ return flags_to_qualifiers_glsl(type, ir.meta[id].decoration.decoration_flags);
+}
+
+void CompilerGLSL::fixup_io_block_patch_primitive_qualifiers(const SPIRVariable &var)
+{
+ // Works around weird behavior in glslangValidator where
+ // a patch out block is translated to just block members getting the decoration.
+ // To make glslang not complain when we compile again, we have to transform this back to a case where
+ // the variable itself has Patch decoration, and not members.
+ // Same for perprimitiveEXT.
+ auto &type = get<SPIRType>(var.basetype);
+ if (has_decoration(type.self, DecorationBlock))
+ {
+ uint32_t member_count = uint32_t(type.member_types.size());
+ Decoration promoted_decoration = {};
+ bool do_promote_decoration = false;
+ for (uint32_t i = 0; i < member_count; i++)
+ {
+ if (has_member_decoration(type.self, i, DecorationPatch))
+ {
+ promoted_decoration = DecorationPatch;
+ do_promote_decoration = true;
+ break;
+ }
+ else if (has_member_decoration(type.self, i, DecorationPerPrimitiveEXT))
+ {
+ promoted_decoration = DecorationPerPrimitiveEXT;
+ do_promote_decoration = true;
+ break;
+ }
+ }
+
+ if (do_promote_decoration)
+ {
+ set_decoration(var.self, promoted_decoration);
+ for (uint32_t i = 0; i < member_count; i++)
+ unset_member_decoration(type.self, i, promoted_decoration);
+ }
+ }
+}
+
+string CompilerGLSL::to_qualifiers_glsl(uint32_t id)
+{
+ auto &flags = get_decoration_bitset(id);
+ string res;
+
+ auto *var = maybe_get<SPIRVariable>(id);
+
+ if (var && var->storage == StorageClassWorkgroup && !backend.shared_is_implied)
+ res += "shared ";
+ else if (var && var->storage == StorageClassTaskPayloadWorkgroupEXT && !backend.shared_is_implied)
+ res += "taskPayloadSharedEXT ";
+
+ res += to_interpolation_qualifiers(flags);
+ if (var)
+ res += to_storage_qualifiers_glsl(*var);
+
+ auto &type = expression_type(id);
+ if (type.image.dim != DimSubpassData && type.image.sampled == 2)
+ {
+ if (flags.get(DecorationCoherent))
+ res += "coherent ";
+ if (flags.get(DecorationRestrict))
+ res += "restrict ";
+
+ if (flags.get(DecorationNonWritable))
+ res += "readonly ";
+
+ bool formatted_load = type.image.format == ImageFormatUnknown;
+ if (flags.get(DecorationNonReadable))
+ {
+ res += "writeonly ";
+ formatted_load = false;
+ }
+
+ if (formatted_load)
+ {
+ if (!options.es)
+ require_extension_internal("GL_EXT_shader_image_load_formatted");
+ else
+ SPIRV_CROSS_THROW("Cannot use GL_EXT_shader_image_load_formatted in ESSL.");
+ }
+ }
+
+ res += to_precision_qualifiers_glsl(id);
+
+ return res;
+}
+
+string CompilerGLSL::argument_decl(const SPIRFunction::Parameter &arg)
+{
+ // glslangValidator seems to make all arguments pointer no matter what which is rather bizarre ...
+ auto &type = expression_type(arg.id);
+ const char *direction = "";
+
+ if (type.pointer)
+ {
+ if (arg.write_count && arg.read_count)
+ direction = "inout ";
+ else if (arg.write_count)
+ direction = "out ";
+ }
+
+ return join(direction, to_qualifiers_glsl(arg.id), variable_decl(type, to_name(arg.id), arg.id));
+}
+
+string CompilerGLSL::to_initializer_expression(const SPIRVariable &var)
+{
+ return to_unpacked_expression(var.initializer);
+}
+
+string CompilerGLSL::to_zero_initialized_expression(uint32_t type_id)
+{
+#ifndef NDEBUG
+ auto &type = get<SPIRType>(type_id);
+ assert(type.storage == StorageClassPrivate || type.storage == StorageClassFunction ||
+ type.storage == StorageClassGeneric);
+#endif
+ uint32_t id = ir.increase_bound_by(1);
+ ir.make_constant_null(id, type_id, false);
+ return constant_expression(get<SPIRConstant>(id));
+}
+
+bool CompilerGLSL::type_can_zero_initialize(const SPIRType &type) const
+{
+ if (type.pointer)
+ return false;
+
+ if (!type.array.empty() && options.flatten_multidimensional_arrays)
+ return false;
+
+ for (auto &literal : type.array_size_literal)
+ if (!literal)
+ return false;
+
+ for (auto &memb : type.member_types)
+ if (!type_can_zero_initialize(get<SPIRType>(memb)))
+ return false;
+
+ return true;
+}
+
+string CompilerGLSL::variable_decl(const SPIRVariable &variable)
+{
+ // Ignore the pointer type since GLSL doesn't have pointers.
+ auto &type = get_variable_data_type(variable);
+
+ if (type.pointer_depth > 1 && !backend.support_pointer_to_pointer)
+ SPIRV_CROSS_THROW("Cannot declare pointer-to-pointer types.");
+
+ auto res = join(to_qualifiers_glsl(variable.self), variable_decl(type, to_name(variable.self), variable.self));
+
+ if (variable.loop_variable && variable.static_expression)
+ {
+ uint32_t expr = variable.static_expression;
+ if (ir.ids[expr].get_type() != TypeUndef)
+ res += join(" = ", to_unpacked_expression(variable.static_expression));
+ else if (options.force_zero_initialized_variables && type_can_zero_initialize(type))
+ res += join(" = ", to_zero_initialized_expression(get_variable_data_type_id(variable)));
+ }
+ else if (variable.initializer && !variable_decl_is_remapped_storage(variable, StorageClassWorkgroup))
+ {
+ uint32_t expr = variable.initializer;
+ if (ir.ids[expr].get_type() != TypeUndef)
+ res += join(" = ", to_initializer_expression(variable));
+ else if (options.force_zero_initialized_variables && type_can_zero_initialize(type))
+ res += join(" = ", to_zero_initialized_expression(get_variable_data_type_id(variable)));
+ }
+
+ return res;
+}
+
+const char *CompilerGLSL::to_pls_qualifiers_glsl(const SPIRVariable &variable)
+{
+ auto &flags = get_decoration_bitset(variable.self);
+ if (flags.get(DecorationRelaxedPrecision))
+ return "mediump ";
+ else
+ return "highp ";
+}
+
+string CompilerGLSL::pls_decl(const PlsRemap &var)
+{
+ auto &variable = get<SPIRVariable>(var.id);
+
+ auto op_and_basetype = pls_format_to_basetype(var.format);
+
+ SPIRType type { op_and_basetype.first };
+ type.basetype = op_and_basetype.second;
+ auto vecsize = pls_format_to_components(var.format);
+ if (vecsize > 1)
+ {
+ type.op = OpTypeVector;
+ type.vecsize = vecsize;
+ }
+
+ return join(to_pls_layout(var.format), to_pls_qualifiers_glsl(variable), type_to_glsl(type), " ",
+ to_name(variable.self));
+}
+
+uint32_t CompilerGLSL::to_array_size_literal(const SPIRType &type) const
+{
+ return to_array_size_literal(type, uint32_t(type.array.size() - 1));
+}
+
+uint32_t CompilerGLSL::to_array_size_literal(const SPIRType &type, uint32_t index) const
+{
+ assert(type.array.size() == type.array_size_literal.size());
+
+ if (type.array_size_literal[index])
+ {
+ return type.array[index];
+ }
+ else
+ {
+ // Use the default spec constant value.
+ // This is the best we can do.
+ return evaluate_constant_u32(type.array[index]);
+ }
+}
+
+string CompilerGLSL::to_array_size(const SPIRType &type, uint32_t index)
+{
+ assert(type.array.size() == type.array_size_literal.size());
+
+ auto &size = type.array[index];
+ if (!type.array_size_literal[index])
+ return to_expression(size);
+ else if (size)
+ return convert_to_string(size);
+ else if (!backend.unsized_array_supported)
+ {
+ // For runtime-sized arrays, we can work around
+ // lack of standard support for this by simply having
+ // a single element array.
+ //
+ // Runtime length arrays must always be the last element
+ // in an interface block.
+ return "1";
+ }
+ else
+ return "";
+}
+
+string CompilerGLSL::type_to_array_glsl(const SPIRType &type, uint32_t)
+{
+ if (type.pointer && type.storage == StorageClassPhysicalStorageBufferEXT && type.basetype != SPIRType::Struct)
+ {
+ // We are using a wrapped pointer type, and we should not emit any array declarations here.
+ return "";
+ }
+
+ if (type.array.empty())
+ return "";
+
+ if (options.flatten_multidimensional_arrays)
+ {
+ string res;
+ res += "[";
+ for (auto i = uint32_t(type.array.size()); i; i--)
+ {
+ res += enclose_expression(to_array_size(type, i - 1));
+ if (i > 1)
+ res += " * ";
+ }
+ res += "]";
+ return res;
+ }
+ else
+ {
+ if (type.array.size() > 1)
+ {
+ if (!options.es && options.version < 430)
+ require_extension_internal("GL_ARB_arrays_of_arrays");
+ else if (options.es && options.version < 310)
+ SPIRV_CROSS_THROW("Arrays of arrays not supported before ESSL version 310. "
+ "Try using --flatten-multidimensional-arrays or set "
+ "options.flatten_multidimensional_arrays to true.");
+ }
+
+ string res;
+ for (auto i = uint32_t(type.array.size()); i; i--)
+ {
+ res += "[";
+ res += to_array_size(type, i - 1);
+ res += "]";
+ }
+ return res;
+ }
+}
+
+string CompilerGLSL::image_type_glsl(const SPIRType &type, uint32_t id, bool /*member*/)
+{
+ auto &imagetype = get<SPIRType>(type.image.type);
+ string res;
+
+ switch (imagetype.basetype)
+ {
+ case SPIRType::Int64:
+ res = "i64";
+ require_extension_internal("GL_EXT_shader_image_int64");
+ break;
+ case SPIRType::UInt64:
+ res = "u64";
+ require_extension_internal("GL_EXT_shader_image_int64");
+ break;
+ case SPIRType::Int:
+ case SPIRType::Short:
+ case SPIRType::SByte:
+ res = "i";
+ break;
+ case SPIRType::UInt:
+ case SPIRType::UShort:
+ case SPIRType::UByte:
+ res = "u";
+ break;
+ default:
+ break;
+ }
+
+ // For half image types, we will force mediump for the sampler, and cast to f16 after any sampling operation.
+ // We cannot express a true half texture type in GLSL. Neither for short integer formats for that matter.
+
+ if (type.basetype == SPIRType::Image && type.image.dim == DimSubpassData && options.vulkan_semantics)
+ return res + "subpassInput" + (type.image.ms ? "MS" : "");
+ else if (type.basetype == SPIRType::Image && type.image.dim == DimSubpassData &&
+ subpass_input_is_framebuffer_fetch(id))
+ {
+ SPIRType sampled_type = get<SPIRType>(type.image.type);
+ sampled_type.vecsize = 4;
+ return type_to_glsl(sampled_type);
+ }
+
+ // If we're emulating subpassInput with samplers, force sampler2D
+ // so we don't have to specify format.
+ if (type.basetype == SPIRType::Image && type.image.dim != DimSubpassData)
+ {
+ // Sampler buffers are always declared as samplerBuffer even though they might be separate images in the SPIR-V.
+ if (type.image.dim == DimBuffer && type.image.sampled == 1)
+ res += "sampler";
+ else
+ res += type.image.sampled == 2 ? "image" : "texture";
+ }
+ else
+ res += "sampler";
+
+ switch (type.image.dim)
+ {
+ case Dim1D:
+ // ES doesn't support 1D. Fake it with 2D.
+ res += options.es ? "2D" : "1D";
+ break;
+ case Dim2D:
+ res += "2D";
+ break;
+ case Dim3D:
+ res += "3D";
+ break;
+ case DimCube:
+ res += "Cube";
+ break;
+ case DimRect:
+ if (options.es)
+ SPIRV_CROSS_THROW("Rectangle textures are not supported on OpenGL ES.");
+
+ if (is_legacy_desktop())
+ require_extension_internal("GL_ARB_texture_rectangle");
+
+ res += "2DRect";
+ break;
+
+ case DimBuffer:
+ if (options.es && options.version < 320)
+ require_extension_internal("GL_EXT_texture_buffer");
+ else if (!options.es && options.version < 300)
+ require_extension_internal("GL_EXT_texture_buffer_object");
+ res += "Buffer";
+ break;
+
+ case DimSubpassData:
+ res += "2D";
+ break;
+ default:
+ SPIRV_CROSS_THROW("Only 1D, 2D, 2DRect, 3D, Buffer, InputTarget and Cube textures supported.");
+ }
+
+ if (type.image.ms)
+ res += "MS";
+ if (type.image.arrayed)
+ {
+ if (is_legacy_desktop())
+ require_extension_internal("GL_EXT_texture_array");
+ res += "Array";
+ }
+
+ // "Shadow" state in GLSL only exists for samplers and combined image samplers.
+ if (((type.basetype == SPIRType::SampledImage) || (type.basetype == SPIRType::Sampler)) &&
+ is_depth_image(type, id))
+ {
+ res += "Shadow";
+
+ if (type.image.dim == DimCube && is_legacy())
+ {
+ if (!options.es)
+ require_extension_internal("GL_EXT_gpu_shader4");
+ else
+ {
+ require_extension_internal("GL_NV_shadow_samplers_cube");
+ res += "NV";
+ }
+ }
+ }
+
+ return res;
+}
+
+string CompilerGLSL::type_to_glsl_constructor(const SPIRType &type)
+{
+ if (backend.use_array_constructor && type.array.size() > 1)
+ {
+ if (options.flatten_multidimensional_arrays)
+ SPIRV_CROSS_THROW("Cannot flatten constructors of multidimensional array constructors, "
+ "e.g. float[][]().");
+ else if (!options.es && options.version < 430)
+ require_extension_internal("GL_ARB_arrays_of_arrays");
+ else if (options.es && options.version < 310)
+ SPIRV_CROSS_THROW("Arrays of arrays not supported before ESSL version 310.");
+ }
+
+ auto e = type_to_glsl(type);
+ if (backend.use_array_constructor)
+ {
+ for (uint32_t i = 0; i < type.array.size(); i++)
+ e += "[]";
+ }
+ return e;
+}
+
+// The optional id parameter indicates the object whose type we are trying
+// to find the description for. It is optional. Most type descriptions do not
+// depend on a specific object's use of that type.
+string CompilerGLSL::type_to_glsl(const SPIRType &type, uint32_t id)
+{
+ if (is_physical_pointer(type) && !is_physical_pointer_to_buffer_block(type))
+ {
+ // Need to create a magic type name which compacts the entire type information.
+ auto *parent = &get_pointee_type(type);
+ string name = type_to_glsl(*parent);
+
+ uint32_t array_stride = get_decoration(type.parent_type, DecorationArrayStride);
+
+ // Resolve all array dimensions in one go since once we lose the pointer type,
+ // array information is left to to_array_type_glsl. The base type loses array information.
+ while (is_array(*parent))
+ {
+ if (parent->array_size_literal.back())
+ name += join(type.array.back(), "_");
+ else
+ name += join("id", type.array.back(), "_");
+
+ name += "stride_" + std::to_string(array_stride);
+
+ array_stride = get_decoration(parent->parent_type, DecorationArrayStride);
+ parent = &get<SPIRType>(parent->parent_type);
+ }
+
+ name += "Pointer";
+ return name;
+ }
+
+ switch (type.basetype)
+ {
+ case SPIRType::Struct:
+ // Need OpName lookup here to get a "sensible" name for a struct.
+ if (backend.explicit_struct_type)
+ return join("struct ", to_name(type.self));
+ else
+ return to_name(type.self);
+
+ case SPIRType::Image:
+ case SPIRType::SampledImage:
+ return image_type_glsl(type, id);
+
+ case SPIRType::Sampler:
+ // The depth field is set by calling code based on the variable ID of the sampler, effectively reintroducing
+ // this distinction into the type system.
+ return comparison_ids.count(id) ? "samplerShadow" : "sampler";
+
+ case SPIRType::AccelerationStructure:
+ return ray_tracing_is_khr ? "accelerationStructureEXT" : "accelerationStructureNV";
+
+ case SPIRType::RayQuery:
+ return "rayQueryEXT";
+
+ case SPIRType::Void:
+ return "void";
+
+ default:
+ break;
+ }
+
+ if (type.basetype == SPIRType::UInt && is_legacy())
+ {
+ if (options.es)
+ // HACK: spirv-cross changes bools into uints and generates code which compares them to
+ // zero. Input code will have already been validated as not to have contained any uints,
+ // so any remaining uints must in fact be bools. However, simply returning "bool" here
+ // will result in invalid code. Instead, return an int.
+ return backend.basic_int_type;
+ else
+ require_extension_internal("GL_EXT_gpu_shader4");
+ }
+
+ if (type.basetype == SPIRType::AtomicCounter)
+ {
+ if (options.es && options.version < 310)
+ SPIRV_CROSS_THROW("At least ESSL 3.10 required for atomic counters.");
+ else if (!options.es && options.version < 420)
+ require_extension_internal("GL_ARB_shader_atomic_counters");
+ }
+
+ if (type.vecsize == 1 && type.columns == 1) // Scalar builtin
+ {
+ switch (type.basetype)
+ {
+ case SPIRType::Boolean:
+ return "bool";
+ case SPIRType::SByte:
+ return backend.basic_int8_type;
+ case SPIRType::UByte:
+ return backend.basic_uint8_type;
+ case SPIRType::Short:
+ return backend.basic_int16_type;
+ case SPIRType::UShort:
+ return backend.basic_uint16_type;
+ case SPIRType::Int:
+ return backend.basic_int_type;
+ case SPIRType::UInt:
+ return backend.basic_uint_type;
+ case SPIRType::AtomicCounter:
+ return "atomic_uint";
+ case SPIRType::Half:
+ return "float16_t";
+ case SPIRType::Float:
+ return "float";
+ case SPIRType::Double:
+ return "double";
+ case SPIRType::Int64:
+ return "int64_t";
+ case SPIRType::UInt64:
+ return "uint64_t";
+ default:
+ return "???";
+ }
+ }
+ else if (type.vecsize > 1 && type.columns == 1) // Vector builtin
+ {
+ switch (type.basetype)
+ {
+ case SPIRType::Boolean:
+ return join("bvec", type.vecsize);
+ case SPIRType::SByte:
+ return join("i8vec", type.vecsize);
+ case SPIRType::UByte:
+ return join("u8vec", type.vecsize);
+ case SPIRType::Short:
+ return join("i16vec", type.vecsize);
+ case SPIRType::UShort:
+ return join("u16vec", type.vecsize);
+ case SPIRType::Int:
+ return join("ivec", type.vecsize);
+ case SPIRType::UInt:
+ return join("uvec", type.vecsize);
+ case SPIRType::Half:
+ return join("f16vec", type.vecsize);
+ case SPIRType::Float:
+ return join("vec", type.vecsize);
+ case SPIRType::Double:
+ return join("dvec", type.vecsize);
+ case SPIRType::Int64:
+ return join("i64vec", type.vecsize);
+ case SPIRType::UInt64:
+ return join("u64vec", type.vecsize);
+ default:
+ return "???";
+ }
+ }
+ else if (type.vecsize == type.columns) // Simple Matrix builtin
+ {
+ switch (type.basetype)
+ {
+ case SPIRType::Boolean:
+ return join("bmat", type.vecsize);
+ case SPIRType::Int:
+ return join("imat", type.vecsize);
+ case SPIRType::UInt:
+ return join("umat", type.vecsize);
+ case SPIRType::Half:
+ return join("f16mat", type.vecsize);
+ case SPIRType::Float:
+ return join("mat", type.vecsize);
+ case SPIRType::Double:
+ return join("dmat", type.vecsize);
+ // Matrix types not supported for int64/uint64.
+ default:
+ return "???";
+ }
+ }
+ else
+ {
+ switch (type.basetype)
+ {
+ case SPIRType::Boolean:
+ return join("bmat", type.columns, "x", type.vecsize);
+ case SPIRType::Int:
+ return join("imat", type.columns, "x", type.vecsize);
+ case SPIRType::UInt:
+ return join("umat", type.columns, "x", type.vecsize);
+ case SPIRType::Half:
+ return join("f16mat", type.columns, "x", type.vecsize);
+ case SPIRType::Float:
+ return join("mat", type.columns, "x", type.vecsize);
+ case SPIRType::Double:
+ return join("dmat", type.columns, "x", type.vecsize);
+ // Matrix types not supported for int64/uint64.
+ default:
+ return "???";
+ }
+ }
+}
+
+void CompilerGLSL::add_variable(unordered_set<string> &variables_primary,
+ const unordered_set<string> &variables_secondary, string &name)
+{
+ if (name.empty())
+ return;
+
+ ParsedIR::sanitize_underscores(name);
+ if (ParsedIR::is_globally_reserved_identifier(name, true))
+ {
+ name.clear();
+ return;
+ }
+
+ update_name_cache(variables_primary, variables_secondary, name);
+}
+
+void CompilerGLSL::add_local_variable_name(uint32_t id)
+{
+ add_variable(local_variable_names, block_names, ir.meta[id].decoration.alias);
+}
+
+void CompilerGLSL::add_resource_name(uint32_t id)
+{
+ add_variable(resource_names, block_names, ir.meta[id].decoration.alias);
+}
+
+void CompilerGLSL::add_header_line(const std::string &line)
+{
+ header_lines.push_back(line);
+}
+
+bool CompilerGLSL::has_extension(const std::string &ext) const
+{
+ auto itr = find(begin(forced_extensions), end(forced_extensions), ext);
+ return itr != end(forced_extensions);
+}
+
+void CompilerGLSL::require_extension(const std::string &ext)
+{
+ if (!has_extension(ext))
+ forced_extensions.push_back(ext);
+}
+
+const SmallVector<std::string> &CompilerGLSL::get_required_extensions() const
+{
+ return forced_extensions;
+}
+
+void CompilerGLSL::require_extension_internal(const string &ext)
+{
+ if (backend.supports_extensions && !has_extension(ext))
+ {
+ forced_extensions.push_back(ext);
+ force_recompile();
+ }
+}
+
+void CompilerGLSL::flatten_buffer_block(VariableID id)
+{
+ auto &var = get<SPIRVariable>(id);
+ auto &type = get<SPIRType>(var.basetype);
+ auto name = to_name(type.self, false);
+ auto &flags = get_decoration_bitset(type.self);
+
+ if (!type.array.empty())
+ SPIRV_CROSS_THROW(name + " is an array of UBOs.");
+ if (type.basetype != SPIRType::Struct)
+ SPIRV_CROSS_THROW(name + " is not a struct.");
+ if (!flags.get(DecorationBlock))
+ SPIRV_CROSS_THROW(name + " is not a block.");
+ if (type.member_types.empty())
+ SPIRV_CROSS_THROW(name + " is an empty struct.");
+
+ flattened_buffer_blocks.insert(id);
+}
+
+bool CompilerGLSL::builtin_translates_to_nonarray(spv::BuiltIn /*builtin*/) const
+{
+ return false; // GLSL itself does not need to translate array builtin types to non-array builtin types
+}
+
+bool CompilerGLSL::is_user_type_structured(uint32_t /*id*/) const
+{
+ return false; // GLSL itself does not have structured user type, but HLSL does with StructuredBuffer and RWStructuredBuffer resources.
+}
+
+bool CompilerGLSL::check_atomic_image(uint32_t id)
+{
+ auto &type = expression_type(id);
+ if (type.storage == StorageClassImage)
+ {
+ if (options.es && options.version < 320)
+ require_extension_internal("GL_OES_shader_image_atomic");
+
+ auto *var = maybe_get_backing_variable(id);
+ if (var)
+ {
+ if (has_decoration(var->self, DecorationNonWritable) || has_decoration(var->self, DecorationNonReadable))
+ {
+ unset_decoration(var->self, DecorationNonWritable);
+ unset_decoration(var->self, DecorationNonReadable);
+ force_recompile();
+ }
+ }
+ return true;
+ }
+ else
+ return false;
+}
+
+void CompilerGLSL::add_function_overload(const SPIRFunction &func)
+{
+ Hasher hasher;
+ for (auto &arg : func.arguments)
+ {
+ // Parameters can vary with pointer type or not,
+ // but that will not change the signature in GLSL/HLSL,
+ // so strip the pointer type before hashing.
+ uint32_t type_id = get_pointee_type_id(arg.type);
+ auto &type = get<SPIRType>(type_id);
+
+ if (!combined_image_samplers.empty())
+ {
+ // If we have combined image samplers, we cannot really trust the image and sampler arguments
+ // we pass down to callees, because they may be shuffled around.
+ // Ignore these arguments, to make sure that functions need to differ in some other way
+ // to be considered different overloads.
+ if (type.basetype == SPIRType::SampledImage ||
+ (type.basetype == SPIRType::Image && type.image.sampled == 1) || type.basetype == SPIRType::Sampler)
+ {
+ continue;
+ }
+ }
+
+ hasher.u32(type_id);
+ }
+ uint64_t types_hash = hasher.get();
+
+ auto function_name = to_name(func.self);
+ auto itr = function_overloads.find(function_name);
+ if (itr != end(function_overloads))
+ {
+ // There exists a function with this name already.
+ auto &overloads = itr->second;
+ if (overloads.count(types_hash) != 0)
+ {
+ // Overload conflict, assign a new name.
+ add_resource_name(func.self);
+ function_overloads[to_name(func.self)].insert(types_hash);
+ }
+ else
+ {
+ // Can reuse the name.
+ overloads.insert(types_hash);
+ }
+ }
+ else
+ {
+ // First time we see this function name.
+ add_resource_name(func.self);
+ function_overloads[to_name(func.self)].insert(types_hash);
+ }
+}
+
+void CompilerGLSL::emit_function_prototype(SPIRFunction &func, const Bitset &return_flags)
+{
+ if (func.self != ir.default_entry_point)
+ add_function_overload(func);
+
+ // Avoid shadow declarations.
+ local_variable_names = resource_names;
+
+ string decl;
+
+ auto &type = get<SPIRType>(func.return_type);
+ decl += flags_to_qualifiers_glsl(type, return_flags);
+ decl += type_to_glsl(type);
+ decl += type_to_array_glsl(type, 0);
+ decl += " ";
+
+ if (func.self == ir.default_entry_point)
+ {
+ // If we need complex fallback in GLSL, we just wrap main() in a function
+ // and interlock the entire shader ...
+ if (interlocked_is_complex)
+ decl += "spvMainInterlockedBody";
+ else
+ decl += "main";
+
+ processing_entry_point = true;
+ }
+ else
+ decl += to_name(func.self);
+
+ decl += "(";
+ SmallVector<string> arglist;
+ for (auto &arg : func.arguments)
+ {
+ // Do not pass in separate images or samplers if we're remapping
+ // to combined image samplers.
+ if (skip_argument(arg.id))
+ continue;
+
+ // Might change the variable name if it already exists in this function.
+ // SPIRV OpName doesn't have any semantic effect, so it's valid for an implementation
+ // to use same name for variables.
+ // Since we want to make the GLSL debuggable and somewhat sane, use fallback names for variables which are duplicates.
+ add_local_variable_name(arg.id);
+
+ arglist.push_back(argument_decl(arg));
+
+ // Hold a pointer to the parameter so we can invalidate the readonly field if needed.
+ auto *var = maybe_get<SPIRVariable>(arg.id);
+ if (var)
+ var->parameter = &arg;
+ }
+
+ for (auto &arg : func.shadow_arguments)
+ {
+ // Might change the variable name if it already exists in this function.
+ // SPIRV OpName doesn't have any semantic effect, so it's valid for an implementation
+ // to use same name for variables.
+ // Since we want to make the GLSL debuggable and somewhat sane, use fallback names for variables which are duplicates.
+ add_local_variable_name(arg.id);
+
+ arglist.push_back(argument_decl(arg));
+
+ // Hold a pointer to the parameter so we can invalidate the readonly field if needed.
+ auto *var = maybe_get<SPIRVariable>(arg.id);
+ if (var)
+ var->parameter = &arg;
+ }
+
+ decl += merge(arglist);
+ decl += ")";
+ statement(decl);
+}
+
+void CompilerGLSL::emit_function(SPIRFunction &func, const Bitset &return_flags)
+{
+ // Avoid potential cycles.
+ if (func.active)
+ return;
+ func.active = true;
+
+ // If we depend on a function, emit that function before we emit our own function.
+ for (auto block : func.blocks)
+ {
+ auto &b = get<SPIRBlock>(block);
+ for (auto &i : b.ops)
+ {
+ auto ops = stream(i);
+ auto op = static_cast<Op>(i.op);
+
+ if (op == OpFunctionCall)
+ {
+ // Recursively emit functions which are called.
+ uint32_t id = ops[2];
+ emit_function(get<SPIRFunction>(id), ir.meta[ops[1]].decoration.decoration_flags);
+ }
+ }
+ }
+
+ if (func.entry_line.file_id != 0)
+ emit_line_directive(func.entry_line.file_id, func.entry_line.line_literal);
+ emit_function_prototype(func, return_flags);
+ begin_scope();
+
+ if (func.self == ir.default_entry_point)
+ emit_entry_point_declarations();
+
+ current_function = &func;
+ auto &entry_block = get<SPIRBlock>(func.entry_block);
+
+ sort(begin(func.constant_arrays_needed_on_stack), end(func.constant_arrays_needed_on_stack));
+ for (auto &array : func.constant_arrays_needed_on_stack)
+ {
+ auto &c = get<SPIRConstant>(array);
+ auto &type = get<SPIRType>(c.constant_type);
+ statement(variable_decl(type, join("_", array, "_array_copy")), " = ", constant_expression(c), ";");
+ }
+
+ for (auto &v : func.local_variables)
+ {
+ auto &var = get<SPIRVariable>(v);
+ var.deferred_declaration = false;
+
+ if (variable_decl_is_remapped_storage(var, StorageClassWorkgroup))
+ {
+ // Special variable type which cannot have initializer,
+ // need to be declared as standalone variables.
+ // Comes from MSL which can push global variables as local variables in main function.
+ add_local_variable_name(var.self);
+ statement(variable_decl(var), ";");
+ var.deferred_declaration = false;
+ }
+ else if (var.storage == StorageClassPrivate)
+ {
+ // These variables will not have had their CFG usage analyzed, so move it to the entry block.
+ // Comes from MSL which can push global variables as local variables in main function.
+ // We could just declare them right now, but we would miss out on an important initialization case which is
+ // LUT declaration in MSL.
+ // If we don't declare the variable when it is assigned we're forced to go through a helper function
+ // which copies elements one by one.
+ add_local_variable_name(var.self);
+
+ if (var.initializer)
+ {
+ statement(variable_decl(var), ";");
+ var.deferred_declaration = false;
+ }
+ else
+ {
+ auto &dominated = entry_block.dominated_variables;
+ if (find(begin(dominated), end(dominated), var.self) == end(dominated))
+ entry_block.dominated_variables.push_back(var.self);
+ var.deferred_declaration = true;
+ }
+ }
+ else if (var.storage == StorageClassFunction && var.remapped_variable && var.static_expression)
+ {
+ // No need to declare this variable, it has a static expression.
+ var.deferred_declaration = false;
+ }
+ else if (expression_is_lvalue(v))
+ {
+ add_local_variable_name(var.self);
+
+ // Loop variables should never be declared early, they are explicitly emitted in a loop.
+ if (var.initializer && !var.loop_variable)
+ statement(variable_decl_function_local(var), ";");
+ else
+ {
+ // Don't declare variable until first use to declutter the GLSL output quite a lot.
+ // If we don't touch the variable before first branch,
+ // declare it then since we need variable declaration to be in top scope.
+ var.deferred_declaration = true;
+ }
+ }
+ else
+ {
+ // HACK: SPIR-V in older glslang output likes to use samplers and images as local variables, but GLSL does not allow this.
+ // For these types (non-lvalue), we enforce forwarding through a shadowed variable.
+ // This means that when we OpStore to these variables, we just write in the expression ID directly.
+ // This breaks any kind of branching, since the variable must be statically assigned.
+ // Branching on samplers and images would be pretty much impossible to fake in GLSL.
+ var.statically_assigned = true;
+ }
+
+ var.loop_variable_enable = false;
+
+ // Loop variables are never declared outside their for-loop, so block any implicit declaration.
+ if (var.loop_variable)
+ {
+ var.deferred_declaration = false;
+ // Need to reset the static expression so we can fallback to initializer if need be.
+ var.static_expression = 0;
+ }
+ }
+
+ // Enforce declaration order for regression testing purposes.
+ for (auto &block_id : func.blocks)
+ {
+ auto &block = get<SPIRBlock>(block_id);
+ sort(begin(block.dominated_variables), end(block.dominated_variables));
+ }
+
+ for (auto &line : current_function->fixup_hooks_in)
+ line();
+
+ emit_block_chain(entry_block);
+
+ end_scope();
+ processing_entry_point = false;
+ statement("");
+
+ // Make sure deferred declaration state for local variables is cleared when we are done with function.
+ // We risk declaring Private/Workgroup variables in places we are not supposed to otherwise.
+ for (auto &v : func.local_variables)
+ {
+ auto &var = get<SPIRVariable>(v);
+ var.deferred_declaration = false;
+ }
+}
+
+void CompilerGLSL::emit_fixup()
+{
+ if (is_vertex_like_shader())
+ {
+ if (options.vertex.fixup_clipspace)
+ {
+ const char *suffix = backend.float_literal_suffix ? "f" : "";
+ statement("gl_Position.z = 2.0", suffix, " * gl_Position.z - gl_Position.w;");
+ }
+
+ if (options.vertex.flip_vert_y)
+ statement("gl_Position.y = -gl_Position.y;");
+ }
+}
+
+void CompilerGLSL::flush_phi(BlockID from, BlockID to)
+{
+ auto &child = get<SPIRBlock>(to);
+ if (child.ignore_phi_from_block == from)
+ return;
+
+ unordered_set<uint32_t> temporary_phi_variables;
+
+ for (auto itr = begin(child.phi_variables); itr != end(child.phi_variables); ++itr)
+ {
+ auto &phi = *itr;
+
+ if (phi.parent == from)
+ {
+ auto &var = get<SPIRVariable>(phi.function_variable);
+
+ // A Phi variable might be a loop variable, so flush to static expression.
+ if (var.loop_variable && !var.loop_variable_enable)
+ var.static_expression = phi.local_variable;
+ else
+ {
+ flush_variable_declaration(phi.function_variable);
+
+ // Check if we are going to write to a Phi variable that another statement will read from
+ // as part of another Phi node in our target block.
+ // For this case, we will need to copy phi.function_variable to a temporary, and use that for future reads.
+ // This is judged to be extremely rare, so deal with it here using a simple, but suboptimal algorithm.
+ bool need_saved_temporary =
+ find_if(itr + 1, end(child.phi_variables), [&](const SPIRBlock::Phi &future_phi) -> bool {
+ return future_phi.local_variable == ID(phi.function_variable) && future_phi.parent == from;
+ }) != end(child.phi_variables);
+
+ if (need_saved_temporary)
+ {
+ // Need to make sure we declare the phi variable with a copy at the right scope.
+ // We cannot safely declare a temporary here since we might be inside a continue block.
+ if (!var.allocate_temporary_copy)
+ {
+ var.allocate_temporary_copy = true;
+ force_recompile();
+ }
+ statement("_", phi.function_variable, "_copy", " = ", to_name(phi.function_variable), ";");
+ temporary_phi_variables.insert(phi.function_variable);
+ }
+
+ // This might be called in continue block, so make sure we
+ // use this to emit ESSL 1.0 compliant increments/decrements.
+ auto lhs = to_expression(phi.function_variable);
+
+ string rhs;
+ if (temporary_phi_variables.count(phi.local_variable))
+ rhs = join("_", phi.local_variable, "_copy");
+ else
+ rhs = to_pointer_expression(phi.local_variable);
+
+ if (!optimize_read_modify_write(get<SPIRType>(var.basetype), lhs, rhs))
+ statement(lhs, " = ", rhs, ";");
+ }
+
+ register_write(phi.function_variable);
+ }
+ }
+}
+
+void CompilerGLSL::branch_to_continue(BlockID from, BlockID to)
+{
+ auto &to_block = get<SPIRBlock>(to);
+ if (from == to)
+ return;
+
+ assert(is_continue(to));
+ if (to_block.complex_continue)
+ {
+ // Just emit the whole block chain as is.
+ auto usage_counts = expression_usage_counts;
+
+ emit_block_chain(to_block);
+
+ // Expression usage counts are moot after returning from the continue block.
+ expression_usage_counts = usage_counts;
+ }
+ else
+ {
+ auto &from_block = get<SPIRBlock>(from);
+ bool outside_control_flow = false;
+ uint32_t loop_dominator = 0;
+
+ // FIXME: Refactor this to not use the old loop_dominator tracking.
+ if (from_block.merge_block)
+ {
+ // If we are a loop header, we don't set the loop dominator,
+ // so just use "self" here.
+ loop_dominator = from;
+ }
+ else if (from_block.loop_dominator != BlockID(SPIRBlock::NoDominator))
+ {
+ loop_dominator = from_block.loop_dominator;
+ }
+
+ if (loop_dominator != 0)
+ {
+ auto &cfg = get_cfg_for_current_function();
+
+ // For non-complex continue blocks, we implicitly branch to the continue block
+ // by having the continue block be part of the loop header in for (; ; continue-block).
+ outside_control_flow = cfg.node_terminates_control_flow_in_sub_graph(loop_dominator, from);
+ }
+
+ // Some simplification for for-loops. We always end up with a useless continue;
+ // statement since we branch to a loop block.
+ // Walk the CFG, if we unconditionally execute the block calling continue assuming we're in the loop block,
+ // we can avoid writing out an explicit continue statement.
+ // Similar optimization to return statements if we know we're outside flow control.
+ if (!outside_control_flow)
+ statement("continue;");
+ }
+}
+
+void CompilerGLSL::branch(BlockID from, BlockID to)
+{
+ flush_phi(from, to);
+ flush_control_dependent_expressions(from);
+
+ bool to_is_continue = is_continue(to);
+
+ // This is only a continue if we branch to our loop dominator.
+ if ((ir.block_meta[to] & ParsedIR::BLOCK_META_LOOP_HEADER_BIT) != 0 && get<SPIRBlock>(from).loop_dominator == to)
+ {
+ // This can happen if we had a complex continue block which was emitted.
+ // Once the continue block tries to branch to the loop header, just emit continue;
+ // and end the chain here.
+ statement("continue;");
+ }
+ else if (from != to && is_break(to))
+ {
+ // We cannot break to ourselves, so check explicitly for from != to.
+ // This case can trigger if a loop header is all three of these things:
+ // - Continue block
+ // - Loop header
+ // - Break merge target all at once ...
+
+ // Very dirty workaround.
+ // Switch constructs are able to break, but they cannot break out of a loop at the same time,
+ // yet SPIR-V allows it.
+ // Only sensible solution is to make a ladder variable, which we declare at the top of the switch block,
+ // write to the ladder here, and defer the break.
+ // The loop we're breaking out of must dominate the switch block, or there is no ladder breaking case.
+ if (is_loop_break(to))
+ {
+ for (size_t n = current_emitting_switch_stack.size(); n; n--)
+ {
+ auto *current_emitting_switch = current_emitting_switch_stack[n - 1];
+
+ if (current_emitting_switch &&
+ current_emitting_switch->loop_dominator != BlockID(SPIRBlock::NoDominator) &&
+ get<SPIRBlock>(current_emitting_switch->loop_dominator).merge_block == to)
+ {
+ if (!current_emitting_switch->need_ladder_break)
+ {
+ force_recompile();
+ current_emitting_switch->need_ladder_break = true;
+ }
+
+ statement("_", current_emitting_switch->self, "_ladder_break = true;");
+ }
+ else
+ break;
+ }
+ }
+ statement("break;");
+ }
+ else if (to_is_continue || from == to)
+ {
+ // For from == to case can happen for a do-while loop which branches into itself.
+ // We don't mark these cases as continue blocks, but the only possible way to branch into
+ // ourselves is through means of continue blocks.
+
+ // If we are merging to a continue block, there is no need to emit the block chain for continue here.
+ // We can branch to the continue block after we merge execution.
+
+ // Here we make use of structured control flow rules from spec:
+ // 2.11: - the merge block declared by a header block cannot be a merge block declared by any other header block
+ // - each header block must strictly dominate its merge block, unless the merge block is unreachable in the CFG
+ // If we are branching to a merge block, we must be inside a construct which dominates the merge block.
+ auto &block_meta = ir.block_meta[to];
+ bool branching_to_merge =
+ (block_meta & (ParsedIR::BLOCK_META_SELECTION_MERGE_BIT | ParsedIR::BLOCK_META_MULTISELECT_MERGE_BIT |
+ ParsedIR::BLOCK_META_LOOP_MERGE_BIT)) != 0;
+ if (!to_is_continue || !branching_to_merge)
+ branch_to_continue(from, to);
+ }
+ else if (!is_conditional(to))
+ emit_block_chain(get<SPIRBlock>(to));
+
+ // It is important that we check for break before continue.
+ // A block might serve two purposes, a break block for the inner scope, and
+ // a continue block in the outer scope.
+ // Inner scope always takes precedence.
+}
+
+void CompilerGLSL::branch(BlockID from, uint32_t cond, BlockID true_block, BlockID false_block)
+{
+ auto &from_block = get<SPIRBlock>(from);
+ BlockID merge_block = from_block.merge == SPIRBlock::MergeSelection ? from_block.next_block : BlockID(0);
+
+ // If we branch directly to our selection merge target, we don't need a code path.
+ bool true_block_needs_code = true_block != merge_block || flush_phi_required(from, true_block);
+ bool false_block_needs_code = false_block != merge_block || flush_phi_required(from, false_block);
+
+ if (!true_block_needs_code && !false_block_needs_code)
+ return;
+
+ // We might have a loop merge here. Only consider selection flattening constructs.
+ // Loop hints are handled explicitly elsewhere.
+ if (from_block.hint == SPIRBlock::HintFlatten || from_block.hint == SPIRBlock::HintDontFlatten)
+ emit_block_hints(from_block);
+
+ if (true_block_needs_code)
+ {
+ statement("if (", to_expression(cond), ")");
+ begin_scope();
+ branch(from, true_block);
+ end_scope();
+
+ if (false_block_needs_code)
+ {
+ statement("else");
+ begin_scope();
+ branch(from, false_block);
+ end_scope();
+ }
+ }
+ else if (false_block_needs_code)
+ {
+ // Only need false path, use negative conditional.
+ statement("if (!", to_enclosed_expression(cond), ")");
+ begin_scope();
+ branch(from, false_block);
+ end_scope();
+ }
+}
+
+// FIXME: This currently cannot handle complex continue blocks
+// as in do-while.
+// This should be seen as a "trivial" continue block.
+string CompilerGLSL::emit_continue_block(uint32_t continue_block, bool follow_true_block, bool follow_false_block)
+{
+ auto *block = &get<SPIRBlock>(continue_block);
+
+ // While emitting the continue block, declare_temporary will check this
+ // if we have to emit temporaries.
+ current_continue_block = block;
+
+ SmallVector<string> statements;
+
+ // Capture all statements into our list.
+ auto *old = redirect_statement;
+ redirect_statement = &statements;
+
+ // Stamp out all blocks one after each other.
+ while ((ir.block_meta[block->self] & ParsedIR::BLOCK_META_LOOP_HEADER_BIT) == 0)
+ {
+ // Write out all instructions we have in this block.
+ emit_block_instructions(*block);
+
+ // For plain branchless for/while continue blocks.
+ if (block->next_block)
+ {
+ flush_phi(continue_block, block->next_block);
+ block = &get<SPIRBlock>(block->next_block);
+ }
+ // For do while blocks. The last block will be a select block.
+ else if (block->true_block && follow_true_block)
+ {
+ flush_phi(continue_block, block->true_block);
+ block = &get<SPIRBlock>(block->true_block);
+ }
+ else if (block->false_block && follow_false_block)
+ {
+ flush_phi(continue_block, block->false_block);
+ block = &get<SPIRBlock>(block->false_block);
+ }
+ else
+ {
+ SPIRV_CROSS_THROW("Invalid continue block detected!");
+ }
+ }
+
+ // Restore old pointer.
+ redirect_statement = old;
+
+ // Somewhat ugly, strip off the last ';' since we use ',' instead.
+ // Ideally, we should select this behavior in statement().
+ for (auto &s : statements)
+ {
+ if (!s.empty() && s.back() == ';')
+ s.erase(s.size() - 1, 1);
+ }
+
+ current_continue_block = nullptr;
+ return merge(statements);
+}
+
+void CompilerGLSL::emit_while_loop_initializers(const SPIRBlock &block)
+{
+ // While loops do not take initializers, so declare all of them outside.
+ for (auto &loop_var : block.loop_variables)
+ {
+ auto &var = get<SPIRVariable>(loop_var);
+ statement(variable_decl(var), ";");
+ }
+}
+
+string CompilerGLSL::emit_for_loop_initializers(const SPIRBlock &block)
+{
+ if (block.loop_variables.empty())
+ return "";
+
+ bool same_types = for_loop_initializers_are_same_type(block);
+ // We can only declare for loop initializers if all variables are of same type.
+ // If we cannot do this, declare individual variables before the loop header.
+
+ // We might have a loop variable candidate which was not assigned to for some reason.
+ uint32_t missing_initializers = 0;
+ for (auto &variable : block.loop_variables)
+ {
+ uint32_t expr = get<SPIRVariable>(variable).static_expression;
+
+ // Sometimes loop variables are initialized with OpUndef, but we can just declare
+ // a plain variable without initializer in this case.
+ if (expr == 0 || ir.ids[expr].get_type() == TypeUndef)
+ missing_initializers++;
+ }
+
+ if (block.loop_variables.size() == 1 && missing_initializers == 0)
+ {
+ return variable_decl(get<SPIRVariable>(block.loop_variables.front()));
+ }
+ else if (!same_types || missing_initializers == uint32_t(block.loop_variables.size()))
+ {
+ for (auto &loop_var : block.loop_variables)
+ statement(variable_decl(get<SPIRVariable>(loop_var)), ";");
+ return "";
+ }
+ else
+ {
+ // We have a mix of loop variables, either ones with a clear initializer, or ones without.
+ // Separate the two streams.
+ string expr;
+
+ for (auto &loop_var : block.loop_variables)
+ {
+ uint32_t static_expr = get<SPIRVariable>(loop_var).static_expression;
+ if (static_expr == 0 || ir.ids[static_expr].get_type() == TypeUndef)
+ {
+ statement(variable_decl(get<SPIRVariable>(loop_var)), ";");
+ }
+ else
+ {
+ auto &var = get<SPIRVariable>(loop_var);
+ auto &type = get_variable_data_type(var);
+ if (expr.empty())
+ {
+ // For loop initializers are of the form <type id = value, id = value, id = value, etc ...
+ expr = join(to_qualifiers_glsl(var.self), type_to_glsl(type), " ");
+ }
+ else
+ {
+ expr += ", ";
+ // In MSL, being based on C++, the asterisk marking a pointer
+ // binds to the identifier, not the type.
+ if (type.pointer)
+ expr += "* ";
+ }
+
+ expr += join(to_name(loop_var), " = ", to_pointer_expression(var.static_expression));
+ }
+ }
+ return expr;
+ }
+}
+
+bool CompilerGLSL::for_loop_initializers_are_same_type(const SPIRBlock &block)
+{
+ if (block.loop_variables.size() <= 1)
+ return true;
+
+ uint32_t expected = 0;
+ Bitset expected_flags;
+ for (auto &var : block.loop_variables)
+ {
+ // Don't care about uninitialized variables as they will not be part of the initializers.
+ uint32_t expr = get<SPIRVariable>(var).static_expression;
+ if (expr == 0 || ir.ids[expr].get_type() == TypeUndef)
+ continue;
+
+ if (expected == 0)
+ {
+ expected = get<SPIRVariable>(var).basetype;
+ expected_flags = get_decoration_bitset(var);
+ }
+ else if (expected != get<SPIRVariable>(var).basetype)
+ return false;
+
+ // Precision flags and things like that must also match.
+ if (expected_flags != get_decoration_bitset(var))
+ return false;
+ }
+
+ return true;
+}
+
+void CompilerGLSL::emit_block_instructions_with_masked_debug(SPIRBlock &block)
+{
+ // Have to block debug instructions such as OpLine here, since it will be treated as a statement otherwise,
+ // which breaks loop optimizations.
+ // Any line directive would be declared outside the loop body, which would just be confusing either way.
+ bool old_block_debug_directives = block_debug_directives;
+ block_debug_directives = true;
+ emit_block_instructions(block);
+ block_debug_directives = old_block_debug_directives;
+}
+
+bool CompilerGLSL::attempt_emit_loop_header(SPIRBlock &block, SPIRBlock::Method method)
+{
+ SPIRBlock::ContinueBlockType continue_type = continue_block_type(get<SPIRBlock>(block.continue_block));
+
+ if (method == SPIRBlock::MergeToSelectForLoop || method == SPIRBlock::MergeToSelectContinueForLoop)
+ {
+ uint32_t current_count = statement_count;
+ // If we're trying to create a true for loop,
+ // we need to make sure that all opcodes before branch statement do not actually emit any code.
+ // We can then take the condition expression and create a for (; cond ; ) { body; } structure instead.
+ emit_block_instructions_with_masked_debug(block);
+
+ bool condition_is_temporary = forced_temporaries.find(block.condition) == end(forced_temporaries);
+
+ bool flushes_phi = flush_phi_required(block.self, block.true_block) ||
+ flush_phi_required(block.self, block.false_block);
+
+ // This can work! We only did trivial things which could be forwarded in block body!
+ if (!flushes_phi && current_count == statement_count && condition_is_temporary)
+ {
+ switch (continue_type)
+ {
+ case SPIRBlock::ForLoop:
+ {
+ // This block may be a dominating block, so make sure we flush undeclared variables before building the for loop header.
+ flush_undeclared_variables(block);
+
+ // Important that we do this in this order because
+ // emitting the continue block can invalidate the condition expression.
+ auto initializer = emit_for_loop_initializers(block);
+ auto condition = to_expression(block.condition);
+
+ // Condition might have to be inverted.
+ if (execution_is_noop(get<SPIRBlock>(block.true_block), get<SPIRBlock>(block.merge_block)))
+ condition = join("!", enclose_expression(condition));
+
+ emit_block_hints(block);
+ if (method != SPIRBlock::MergeToSelectContinueForLoop)
+ {
+ auto continue_block = emit_continue_block(block.continue_block, false, false);
+ statement("for (", initializer, "; ", condition, "; ", continue_block, ")");
+ }
+ else
+ statement("for (", initializer, "; ", condition, "; )");
+ break;
+ }
+
+ case SPIRBlock::WhileLoop:
+ {
+ // This block may be a dominating block, so make sure we flush undeclared variables before building the while loop header.
+ flush_undeclared_variables(block);
+ emit_while_loop_initializers(block);
+ emit_block_hints(block);
+
+ auto condition = to_expression(block.condition);
+ // Condition might have to be inverted.
+ if (execution_is_noop(get<SPIRBlock>(block.true_block), get<SPIRBlock>(block.merge_block)))
+ condition = join("!", enclose_expression(condition));
+
+ statement("while (", condition, ")");
+ break;
+ }
+
+ default:
+ block.disable_block_optimization = true;
+ force_recompile();
+ begin_scope(); // We'll see an end_scope() later.
+ return false;
+ }
+
+ begin_scope();
+ return true;
+ }
+ else
+ {
+ block.disable_block_optimization = true;
+ force_recompile();
+ begin_scope(); // We'll see an end_scope() later.
+ return false;
+ }
+ }
+ else if (method == SPIRBlock::MergeToDirectForLoop)
+ {
+ auto &child = get<SPIRBlock>(block.next_block);
+
+ // This block may be a dominating block, so make sure we flush undeclared variables before building the for loop header.
+ flush_undeclared_variables(child);
+
+ uint32_t current_count = statement_count;
+
+ // If we're trying to create a true for loop,
+ // we need to make sure that all opcodes before branch statement do not actually emit any code.
+ // We can then take the condition expression and create a for (; cond ; ) { body; } structure instead.
+ emit_block_instructions_with_masked_debug(child);
+
+ bool condition_is_temporary = forced_temporaries.find(child.condition) == end(forced_temporaries);
+
+ bool flushes_phi = flush_phi_required(child.self, child.true_block) ||
+ flush_phi_required(child.self, child.false_block);
+
+ if (!flushes_phi && current_count == statement_count && condition_is_temporary)
+ {
+ uint32_t target_block = child.true_block;
+
+ switch (continue_type)
+ {
+ case SPIRBlock::ForLoop:
+ {
+ // Important that we do this in this order because
+ // emitting the continue block can invalidate the condition expression.
+ auto initializer = emit_for_loop_initializers(block);
+ auto condition = to_expression(child.condition);
+
+ // Condition might have to be inverted.
+ if (execution_is_noop(get<SPIRBlock>(child.true_block), get<SPIRBlock>(block.merge_block)))
+ {
+ condition = join("!", enclose_expression(condition));
+ target_block = child.false_block;
+ }
+
+ auto continue_block = emit_continue_block(block.continue_block, false, false);
+ emit_block_hints(block);
+ statement("for (", initializer, "; ", condition, "; ", continue_block, ")");
+ break;
+ }
+
+ case SPIRBlock::WhileLoop:
+ {
+ emit_while_loop_initializers(block);
+ emit_block_hints(block);
+
+ auto condition = to_expression(child.condition);
+ // Condition might have to be inverted.
+ if (execution_is_noop(get<SPIRBlock>(child.true_block), get<SPIRBlock>(block.merge_block)))
+ {
+ condition = join("!", enclose_expression(condition));
+ target_block = child.false_block;
+ }
+
+ statement("while (", condition, ")");
+ break;
+ }
+
+ default:
+ block.disable_block_optimization = true;
+ force_recompile();
+ begin_scope(); // We'll see an end_scope() later.
+ return false;
+ }
+
+ begin_scope();
+ branch(child.self, target_block);
+ return true;
+ }
+ else
+ {
+ block.disable_block_optimization = true;
+ force_recompile();
+ begin_scope(); // We'll see an end_scope() later.
+ return false;
+ }
+ }
+ else
+ return false;
+}
+
+void CompilerGLSL::flush_undeclared_variables(SPIRBlock &block)
+{
+ for (auto &v : block.dominated_variables)
+ flush_variable_declaration(v);
+}
+
+void CompilerGLSL::emit_hoisted_temporaries(SmallVector<pair<TypeID, ID>> &temporaries)
+{
+ // If we need to force temporaries for certain IDs due to continue blocks, do it before starting loop header.
+ // Need to sort these to ensure that reference output is stable.
+ sort(begin(temporaries), end(temporaries),
+ [](const pair<TypeID, ID> &a, const pair<TypeID, ID> &b) { return a.second < b.second; });
+
+ for (auto &tmp : temporaries)
+ {
+ auto &type = get<SPIRType>(tmp.first);
+
+ // There are some rare scenarios where we are asked to declare pointer types as hoisted temporaries.
+ // This should be ignored unless we're doing actual variable pointers and backend supports it.
+ // Access chains cannot normally be lowered to temporaries in GLSL and HLSL.
+ if (type.pointer && !backend.native_pointers)
+ continue;
+
+ add_local_variable_name(tmp.second);
+ auto &flags = get_decoration_bitset(tmp.second);
+
+ // Not all targets support pointer literals, so don't bother with that case.
+ string initializer;
+ if (options.force_zero_initialized_variables && type_can_zero_initialize(type))
+ initializer = join(" = ", to_zero_initialized_expression(tmp.first));
+
+ statement(flags_to_qualifiers_glsl(type, flags), variable_decl(type, to_name(tmp.second)), initializer, ";");
+
+ hoisted_temporaries.insert(tmp.second);
+ forced_temporaries.insert(tmp.second);
+
+ // The temporary might be read from before it's assigned, set up the expression now.
+ set<SPIRExpression>(tmp.second, to_name(tmp.second), tmp.first, true);
+
+ // If we have hoisted temporaries in multi-precision contexts, emit that here too ...
+ // We will not be able to analyze hoisted-ness for dependent temporaries that we hallucinate here.
+ auto mirrored_precision_itr = temporary_to_mirror_precision_alias.find(tmp.second);
+ if (mirrored_precision_itr != temporary_to_mirror_precision_alias.end())
+ {
+ uint32_t mirror_id = mirrored_precision_itr->second;
+ auto &mirror_flags = get_decoration_bitset(mirror_id);
+ statement(flags_to_qualifiers_glsl(type, mirror_flags),
+ variable_decl(type, to_name(mirror_id)),
+ initializer, ";");
+ // The temporary might be read from before it's assigned, set up the expression now.
+ set<SPIRExpression>(mirror_id, to_name(mirror_id), tmp.first, true);
+ hoisted_temporaries.insert(mirror_id);
+ }
+ }
+}
+
+void CompilerGLSL::emit_block_chain(SPIRBlock &block)
+{
+ bool select_branch_to_true_block = false;
+ bool select_branch_to_false_block = false;
+ bool skip_direct_branch = false;
+ bool emitted_loop_header_variables = false;
+ bool force_complex_continue_block = false;
+ ValueSaver<uint32_t> loop_level_saver(current_loop_level);
+
+ if (block.merge == SPIRBlock::MergeLoop)
+ add_loop_level();
+
+ // If we're emitting PHI variables with precision aliases, we have to emit them as hoisted temporaries.
+ for (auto var_id : block.dominated_variables)
+ {
+ auto &var = get<SPIRVariable>(var_id);
+ if (var.phi_variable)
+ {
+ auto mirrored_precision_itr = temporary_to_mirror_precision_alias.find(var_id);
+ if (mirrored_precision_itr != temporary_to_mirror_precision_alias.end() &&
+ find_if(block.declare_temporary.begin(), block.declare_temporary.end(),
+ [mirrored_precision_itr](const std::pair<TypeID, VariableID> &p) {
+ return p.second == mirrored_precision_itr->second;
+ }) == block.declare_temporary.end())
+ {
+ block.declare_temporary.push_back({ var.basetype, mirrored_precision_itr->second });
+ }
+ }
+ }
+
+ emit_hoisted_temporaries(block.declare_temporary);
+
+ SPIRBlock::ContinueBlockType continue_type = SPIRBlock::ContinueNone;
+ if (block.continue_block)
+ {
+ continue_type = continue_block_type(get<SPIRBlock>(block.continue_block));
+ // If we know we cannot emit a loop, mark the block early as a complex loop so we don't force unnecessary recompiles.
+ if (continue_type == SPIRBlock::ComplexLoop)
+ block.complex_continue = true;
+ }
+
+ // If we have loop variables, stop masking out access to the variable now.
+ for (auto var_id : block.loop_variables)
+ {
+ auto &var = get<SPIRVariable>(var_id);
+ var.loop_variable_enable = true;
+ // We're not going to declare the variable directly, so emit a copy here.
+ emit_variable_temporary_copies(var);
+ }
+
+ // Remember deferred declaration state. We will restore it before returning.
+ SmallVector<bool, 64> rearm_dominated_variables(block.dominated_variables.size());
+ for (size_t i = 0; i < block.dominated_variables.size(); i++)
+ {
+ uint32_t var_id = block.dominated_variables[i];
+ auto &var = get<SPIRVariable>(var_id);
+ rearm_dominated_variables[i] = var.deferred_declaration;
+ }
+
+ // This is the method often used by spirv-opt to implement loops.
+ // The loop header goes straight into the continue block.
+ // However, don't attempt this on ESSL 1.0, because if a loop variable is used in a continue block,
+ // it *MUST* be used in the continue block. This loop method will not work.
+ if (!is_legacy_es() && block_is_loop_candidate(block, SPIRBlock::MergeToSelectContinueForLoop))
+ {
+ flush_undeclared_variables(block);
+ if (attempt_emit_loop_header(block, SPIRBlock::MergeToSelectContinueForLoop))
+ {
+ if (execution_is_noop(get<SPIRBlock>(block.true_block), get<SPIRBlock>(block.merge_block)))
+ select_branch_to_false_block = true;
+ else
+ select_branch_to_true_block = true;
+
+ emitted_loop_header_variables = true;
+ force_complex_continue_block = true;
+ }
+ }
+ // This is the older loop behavior in glslang which branches to loop body directly from the loop header.
+ else if (block_is_loop_candidate(block, SPIRBlock::MergeToSelectForLoop))
+ {
+ flush_undeclared_variables(block);
+ if (attempt_emit_loop_header(block, SPIRBlock::MergeToSelectForLoop))
+ {
+ // The body of while, is actually just the true (or false) block, so always branch there unconditionally.
+ if (execution_is_noop(get<SPIRBlock>(block.true_block), get<SPIRBlock>(block.merge_block)))
+ select_branch_to_false_block = true;
+ else
+ select_branch_to_true_block = true;
+
+ emitted_loop_header_variables = true;
+ }
+ }
+ // This is the newer loop behavior in glslang which branches from Loop header directly to
+ // a new block, which in turn has a OpBranchSelection without a selection merge.
+ else if (block_is_loop_candidate(block, SPIRBlock::MergeToDirectForLoop))
+ {
+ flush_undeclared_variables(block);
+ if (attempt_emit_loop_header(block, SPIRBlock::MergeToDirectForLoop))
+ {
+ skip_direct_branch = true;
+ emitted_loop_header_variables = true;
+ }
+ }
+ else if (continue_type == SPIRBlock::DoWhileLoop)
+ {
+ flush_undeclared_variables(block);
+ emit_while_loop_initializers(block);
+ emitted_loop_header_variables = true;
+ // We have some temporaries where the loop header is the dominator.
+ // We risk a case where we have code like:
+ // for (;;) { create-temporary; break; } consume-temporary;
+ // so force-declare temporaries here.
+ emit_hoisted_temporaries(block.potential_declare_temporary);
+ statement("do");
+ begin_scope();
+
+ emit_block_instructions(block);
+ }
+ else if (block.merge == SPIRBlock::MergeLoop)
+ {
+ flush_undeclared_variables(block);
+ emit_while_loop_initializers(block);
+ emitted_loop_header_variables = true;
+
+ // We have a generic loop without any distinguishable pattern like for, while or do while.
+ get<SPIRBlock>(block.continue_block).complex_continue = true;
+ continue_type = SPIRBlock::ComplexLoop;
+
+ // We have some temporaries where the loop header is the dominator.
+ // We risk a case where we have code like:
+ // for (;;) { create-temporary; break; } consume-temporary;
+ // so force-declare temporaries here.
+ emit_hoisted_temporaries(block.potential_declare_temporary);
+ emit_block_hints(block);
+ statement("for (;;)");
+ begin_scope();
+
+ emit_block_instructions(block);
+ }
+ else
+ {
+ emit_block_instructions(block);
+ }
+
+ // If we didn't successfully emit a loop header and we had loop variable candidates, we have a problem
+ // as writes to said loop variables might have been masked out, we need a recompile.
+ if (!emitted_loop_header_variables && !block.loop_variables.empty())
+ {
+ force_recompile_guarantee_forward_progress();
+ for (auto var : block.loop_variables)
+ get<SPIRVariable>(var).loop_variable = false;
+ block.loop_variables.clear();
+ }
+
+ flush_undeclared_variables(block);
+ bool emit_next_block = true;
+
+ // Handle end of block.
+ switch (block.terminator)
+ {
+ case SPIRBlock::Direct:
+ // True when emitting complex continue block.
+ if (block.loop_dominator == block.next_block)
+ {
+ branch(block.self, block.next_block);
+ emit_next_block = false;
+ }
+ // True if MergeToDirectForLoop succeeded.
+ else if (skip_direct_branch)
+ emit_next_block = false;
+ else if (is_continue(block.next_block) || is_break(block.next_block) || is_conditional(block.next_block))
+ {
+ branch(block.self, block.next_block);
+ emit_next_block = false;
+ }
+ break;
+
+ case SPIRBlock::Select:
+ // True if MergeToSelectForLoop or MergeToSelectContinueForLoop succeeded.
+ if (select_branch_to_true_block)
+ {
+ if (force_complex_continue_block)
+ {
+ assert(block.true_block == block.continue_block);
+
+ // We're going to emit a continue block directly here, so make sure it's marked as complex.
+ auto &complex_continue = get<SPIRBlock>(block.continue_block).complex_continue;
+ bool old_complex = complex_continue;
+ complex_continue = true;
+ branch(block.self, block.true_block);
+ complex_continue = old_complex;
+ }
+ else
+ branch(block.self, block.true_block);
+ }
+ else if (select_branch_to_false_block)
+ {
+ if (force_complex_continue_block)
+ {
+ assert(block.false_block == block.continue_block);
+
+ // We're going to emit a continue block directly here, so make sure it's marked as complex.
+ auto &complex_continue = get<SPIRBlock>(block.continue_block).complex_continue;
+ bool old_complex = complex_continue;
+ complex_continue = true;
+ branch(block.self, block.false_block);
+ complex_continue = old_complex;
+ }
+ else
+ branch(block.self, block.false_block);
+ }
+ else
+ branch(block.self, block.condition, block.true_block, block.false_block);
+ break;
+
+ case SPIRBlock::MultiSelect:
+ {
+ auto &type = expression_type(block.condition);
+ bool unsigned_case = type.basetype == SPIRType::UInt || type.basetype == SPIRType::UShort ||
+ type.basetype == SPIRType::UByte || type.basetype == SPIRType::UInt64;
+
+ if (block.merge == SPIRBlock::MergeNone)
+ SPIRV_CROSS_THROW("Switch statement is not structured");
+
+ if (!backend.support_64bit_switch && (type.basetype == SPIRType::UInt64 || type.basetype == SPIRType::Int64))
+ {
+ // SPIR-V spec suggests this is allowed, but we cannot support it in higher level languages.
+ SPIRV_CROSS_THROW("Cannot use 64-bit switch selectors.");
+ }
+
+ const char *label_suffix = "";
+ if (type.basetype == SPIRType::UInt && backend.uint32_t_literal_suffix)
+ label_suffix = "u";
+ else if (type.basetype == SPIRType::Int64 && backend.support_64bit_switch)
+ label_suffix = "l";
+ else if (type.basetype == SPIRType::UInt64 && backend.support_64bit_switch)
+ label_suffix = "ul";
+ else if (type.basetype == SPIRType::UShort)
+ label_suffix = backend.uint16_t_literal_suffix;
+ else if (type.basetype == SPIRType::Short)
+ label_suffix = backend.int16_t_literal_suffix;
+
+ current_emitting_switch_stack.push_back(&block);
+
+ if (block.need_ladder_break)
+ statement("bool _", block.self, "_ladder_break = false;");
+
+ // Find all unique case constructs.
+ unordered_map<uint32_t, SmallVector<uint64_t>> case_constructs;
+ SmallVector<uint32_t> block_declaration_order;
+ SmallVector<uint64_t> literals_to_merge;
+
+ // If a switch case branches to the default block for some reason, we can just remove that literal from consideration
+ // and let the default: block handle it.
+ // 2.11 in SPIR-V spec states that for fall-through cases, there is a very strict declaration order which we can take advantage of here.
+ // We only need to consider possible fallthrough if order[i] branches to order[i + 1].
+ auto &cases = get_case_list(block);
+ for (auto &c : cases)
+ {
+ if (c.block != block.next_block && c.block != block.default_block)
+ {
+ if (!case_constructs.count(c.block))
+ block_declaration_order.push_back(c.block);
+ case_constructs[c.block].push_back(c.value);
+ }
+ else if (c.block == block.next_block && block.default_block != block.next_block)
+ {
+ // We might have to flush phi inside specific case labels.
+ // If we can piggyback on default:, do so instead.
+ literals_to_merge.push_back(c.value);
+ }
+ }
+
+ // Empty literal array -> default.
+ if (block.default_block != block.next_block)
+ {
+ auto &default_block = get<SPIRBlock>(block.default_block);
+
+ // We need to slide in the default block somewhere in this chain
+ // if there are fall-through scenarios since the default is declared separately in OpSwitch.
+ // Only consider trivial fall-through cases here.
+ size_t num_blocks = block_declaration_order.size();
+ bool injected_block = false;
+
+ for (size_t i = 0; i < num_blocks; i++)
+ {
+ auto &case_block = get<SPIRBlock>(block_declaration_order[i]);
+ if (execution_is_direct_branch(case_block, default_block))
+ {
+ // Fallthrough to default block, we must inject the default block here.
+ block_declaration_order.insert(begin(block_declaration_order) + i + 1, block.default_block);
+ injected_block = true;
+ break;
+ }
+ else if (execution_is_direct_branch(default_block, case_block))
+ {
+ // Default case is falling through to another case label, we must inject the default block here.
+ block_declaration_order.insert(begin(block_declaration_order) + i, block.default_block);
+ injected_block = true;
+ break;
+ }
+ }
+
+ // Order does not matter.
+ if (!injected_block)
+ block_declaration_order.push_back(block.default_block);
+ else if (is_legacy_es())
+ SPIRV_CROSS_THROW("Default case label fallthrough to other case label is not supported in ESSL 1.0.");
+
+ case_constructs[block.default_block] = {};
+ }
+
+ size_t num_blocks = block_declaration_order.size();
+
+ const auto to_case_label = [](uint64_t literal, uint32_t width, bool is_unsigned_case) -> string
+ {
+ if (is_unsigned_case)
+ return convert_to_string(literal);
+
+ // For smaller cases, the literals are compiled as 32 bit wide
+ // literals so we don't need to care for all sizes specifically.
+ if (width <= 32)
+ {
+ return convert_to_string(int64_t(int32_t(literal)));
+ }
+
+ return convert_to_string(int64_t(literal));
+ };
+
+ const auto to_legacy_case_label = [&](uint32_t condition, const SmallVector<uint64_t> &labels,
+ const char *suffix) -> string {
+ string ret;
+ size_t count = labels.size();
+ for (size_t i = 0; i < count; i++)
+ {
+ if (i)
+ ret += " || ";
+ ret += join(count > 1 ? "(" : "", to_enclosed_expression(condition), " == ", labels[i], suffix,
+ count > 1 ? ")" : "");
+ }
+ return ret;
+ };
+
+ // We need to deal with a complex scenario for OpPhi. If we have case-fallthrough and Phi in the picture,
+ // we need to flush phi nodes outside the switch block in a branch,
+ // and skip any Phi handling inside the case label to make fall-through work as expected.
+ // This kind of code-gen is super awkward and it's a last resort. Normally we would want to handle this
+ // inside the case label if at all possible.
+ for (size_t i = 1; backend.support_case_fallthrough && i < num_blocks; i++)
+ {
+ if (flush_phi_required(block.self, block_declaration_order[i]) &&
+ flush_phi_required(block_declaration_order[i - 1], block_declaration_order[i]))
+ {
+ uint32_t target_block = block_declaration_order[i];
+
+ // Make sure we flush Phi, it might have been marked to be ignored earlier.
+ get<SPIRBlock>(target_block).ignore_phi_from_block = 0;
+
+ auto &literals = case_constructs[target_block];
+
+ if (literals.empty())
+ {
+ // Oh boy, gotta make a complete negative test instead! o.o
+ // Find all possible literals that would *not* make us enter the default block.
+ // If none of those literals match, we flush Phi ...
+ SmallVector<string> conditions;
+ for (size_t j = 0; j < num_blocks; j++)
+ {
+ auto &negative_literals = case_constructs[block_declaration_order[j]];
+ for (auto &case_label : negative_literals)
+ conditions.push_back(join(to_enclosed_expression(block.condition),
+ " != ", to_case_label(case_label, type.width, unsigned_case)));
+ }
+
+ statement("if (", merge(conditions, " && "), ")");
+ begin_scope();
+ flush_phi(block.self, target_block);
+ end_scope();
+ }
+ else
+ {
+ SmallVector<string> conditions;
+ conditions.reserve(literals.size());
+ for (auto &case_label : literals)
+ conditions.push_back(join(to_enclosed_expression(block.condition),
+ " == ", to_case_label(case_label, type.width, unsigned_case)));
+ statement("if (", merge(conditions, " || "), ")");
+ begin_scope();
+ flush_phi(block.self, target_block);
+ end_scope();
+ }
+
+ // Mark the block so that we don't flush Phi from header to case label.
+ get<SPIRBlock>(target_block).ignore_phi_from_block = block.self;
+ }
+ }
+
+ // If there is only one default block, and no cases, this is a case where SPIRV-opt decided to emulate
+ // non-structured exits with the help of a switch block.
+ // This is buggy on FXC, so just emit the logical equivalent of a do { } while(false), which is more idiomatic.
+ bool block_like_switch = cases.empty();
+
+ // If this is true, the switch is completely meaningless, and we should just avoid it.
+ bool collapsed_switch = block_like_switch && block.default_block == block.next_block;
+
+ if (!collapsed_switch)
+ {
+ if (block_like_switch || is_legacy_es())
+ {
+ // ESSL 1.0 is not guaranteed to support do/while.
+ if (is_legacy_es())
+ {
+ uint32_t counter = statement_count;
+ statement("for (int spvDummy", counter, " = 0; spvDummy", counter, " < 1; spvDummy", counter,
+ "++)");
+ }
+ else
+ statement("do");
+ }
+ else
+ {
+ emit_block_hints(block);
+ statement("switch (", to_unpacked_expression(block.condition), ")");
+ }
+ begin_scope();
+ }
+
+ for (size_t i = 0; i < num_blocks; i++)
+ {
+ uint32_t target_block = block_declaration_order[i];
+ auto &literals = case_constructs[target_block];
+
+ if (literals.empty())
+ {
+ // Default case.
+ if (!block_like_switch)
+ {
+ if (is_legacy_es())
+ statement("else");
+ else
+ statement("default:");
+ }
+ }
+ else
+ {
+ if (is_legacy_es())
+ {
+ statement((i ? "else " : ""), "if (", to_legacy_case_label(block.condition, literals, label_suffix),
+ ")");
+ }
+ else
+ {
+ for (auto &case_literal : literals)
+ {
+ // The case label value must be sign-extended properly in SPIR-V, so we can assume 32-bit values here.
+ statement("case ", to_case_label(case_literal, type.width, unsigned_case), label_suffix, ":");
+ }
+ }
+ }
+
+ auto &case_block = get<SPIRBlock>(target_block);
+ if (backend.support_case_fallthrough && i + 1 < num_blocks &&
+ execution_is_direct_branch(case_block, get<SPIRBlock>(block_declaration_order[i + 1])))
+ {
+ // We will fall through here, so just terminate the block chain early.
+ // We still need to deal with Phi potentially.
+ // No need for a stack-like thing here since we only do fall-through when there is a
+ // single trivial branch to fall-through target..
+ current_emitting_switch_fallthrough = true;
+ }
+ else
+ current_emitting_switch_fallthrough = false;
+
+ if (!block_like_switch)
+ begin_scope();
+ branch(block.self, target_block);
+ if (!block_like_switch)
+ end_scope();
+
+ current_emitting_switch_fallthrough = false;
+ }
+
+ // Might still have to flush phi variables if we branch from loop header directly to merge target.
+ // This is supposed to emit all cases where we branch from header to merge block directly.
+ // There are two main scenarios where cannot rely on default fallthrough.
+ // - There is an explicit default: label already.
+ // In this case, literals_to_merge need to form their own "default" case, so that we avoid executing that block.
+ // - Header -> Merge requires flushing PHI. In this case, we need to collect all cases and flush PHI there.
+ bool header_merge_requires_phi = flush_phi_required(block.self, block.next_block);
+ bool need_fallthrough_block = block.default_block == block.next_block || !literals_to_merge.empty();
+ if (!collapsed_switch && ((header_merge_requires_phi && need_fallthrough_block) || !literals_to_merge.empty()))
+ {
+ for (auto &case_literal : literals_to_merge)
+ statement("case ", to_case_label(case_literal, type.width, unsigned_case), label_suffix, ":");
+
+ if (block.default_block == block.next_block)
+ {
+ if (is_legacy_es())
+ statement("else");
+ else
+ statement("default:");
+ }
+
+ begin_scope();
+ flush_phi(block.self, block.next_block);
+ statement("break;");
+ end_scope();
+ }
+
+ if (!collapsed_switch)
+ {
+ if (block_like_switch && !is_legacy_es())
+ end_scope_decl("while(false)");
+ else
+ end_scope();
+ }
+ else
+ flush_phi(block.self, block.next_block);
+
+ if (block.need_ladder_break)
+ {
+ statement("if (_", block.self, "_ladder_break)");
+ begin_scope();
+ statement("break;");
+ end_scope();
+ }
+
+ current_emitting_switch_stack.pop_back();
+ break;
+ }
+
+ case SPIRBlock::Return:
+ {
+ for (auto &line : current_function->fixup_hooks_out)
+ line();
+
+ if (processing_entry_point)
+ emit_fixup();
+
+ auto &cfg = get_cfg_for_current_function();
+
+ if (block.return_value)
+ {
+ auto &type = expression_type(block.return_value);
+ if (!type.array.empty() && !backend.can_return_array)
+ {
+ // If we cannot return arrays, we will have a special out argument we can write to instead.
+ // The backend is responsible for setting this up, and redirection the return values as appropriate.
+ if (ir.ids[block.return_value].get_type() != TypeUndef)
+ {
+ emit_array_copy("spvReturnValue", 0, block.return_value, StorageClassFunction,
+ get_expression_effective_storage_class(block.return_value));
+ }
+
+ if (!cfg.node_terminates_control_flow_in_sub_graph(current_function->entry_block, block.self) ||
+ block.loop_dominator != BlockID(SPIRBlock::NoDominator))
+ {
+ statement("return;");
+ }
+ }
+ else
+ {
+ // OpReturnValue can return Undef, so don't emit anything for this case.
+ if (ir.ids[block.return_value].get_type() != TypeUndef)
+ statement("return ", to_unpacked_expression(block.return_value), ";");
+ }
+ }
+ else if (!cfg.node_terminates_control_flow_in_sub_graph(current_function->entry_block, block.self) ||
+ block.loop_dominator != BlockID(SPIRBlock::NoDominator))
+ {
+ // If this block is the very final block and not called from control flow,
+ // we do not need an explicit return which looks out of place. Just end the function here.
+ // In the very weird case of for(;;) { return; } executing return is unconditional,
+ // but we actually need a return here ...
+ statement("return;");
+ }
+ break;
+ }
+
+ // If the Kill is terminating a block with a (probably synthetic) return value, emit a return value statement.
+ case SPIRBlock::Kill:
+ statement(backend.discard_literal, ";");
+ if (block.return_value)
+ statement("return ", to_unpacked_expression(block.return_value), ";");
+ break;
+
+ case SPIRBlock::Unreachable:
+ {
+ // Avoid emitting false fallthrough, which can happen for
+ // if (cond) break; else discard; inside a case label.
+ // Discard is not always implementable as a terminator.
+
+ auto &cfg = get_cfg_for_current_function();
+ bool inner_dominator_is_switch = false;
+ ID id = block.self;
+
+ while (id)
+ {
+ auto &iter_block = get<SPIRBlock>(id);
+ if (iter_block.terminator == SPIRBlock::MultiSelect ||
+ iter_block.merge == SPIRBlock::MergeLoop)
+ {
+ ID next_block = iter_block.merge == SPIRBlock::MergeLoop ?
+ iter_block.merge_block : iter_block.next_block;
+ bool outside_construct = next_block && cfg.find_common_dominator(next_block, block.self) == next_block;
+ if (!outside_construct)
+ {
+ inner_dominator_is_switch = iter_block.terminator == SPIRBlock::MultiSelect;
+ break;
+ }
+ }
+
+ if (cfg.get_preceding_edges(id).empty())
+ break;
+
+ id = cfg.get_immediate_dominator(id);
+ }
+
+ if (inner_dominator_is_switch)
+ statement("break; // unreachable workaround");
+
+ emit_next_block = false;
+ break;
+ }
+
+ case SPIRBlock::IgnoreIntersection:
+ statement("ignoreIntersectionEXT;");
+ break;
+
+ case SPIRBlock::TerminateRay:
+ statement("terminateRayEXT;");
+ break;
+
+ case SPIRBlock::EmitMeshTasks:
+ emit_mesh_tasks(block);
+ break;
+
+ default:
+ SPIRV_CROSS_THROW("Unimplemented block terminator.");
+ }
+
+ if (block.next_block && emit_next_block)
+ {
+ // If we hit this case, we're dealing with an unconditional branch, which means we will output
+ // that block after this. If we had selection merge, we already flushed phi variables.
+ if (block.merge != SPIRBlock::MergeSelection)
+ {
+ flush_phi(block.self, block.next_block);
+ // For a direct branch, need to remember to invalidate expressions in the next linear block instead.
+ get<SPIRBlock>(block.next_block).invalidate_expressions = block.invalidate_expressions;
+ }
+
+ // For switch fallthrough cases, we terminate the chain here, but we still need to handle Phi.
+ if (!current_emitting_switch_fallthrough)
+ {
+ // For merge selects we might have ignored the fact that a merge target
+ // could have been a break; or continue;
+ // We will need to deal with it here.
+ if (is_loop_break(block.next_block))
+ {
+ // Cannot check for just break, because switch statements will also use break.
+ assert(block.merge == SPIRBlock::MergeSelection);
+ statement("break;");
+ }
+ else if (is_continue(block.next_block))
+ {
+ assert(block.merge == SPIRBlock::MergeSelection);
+ branch_to_continue(block.self, block.next_block);
+ }
+ else if (BlockID(block.self) != block.next_block)
+ emit_block_chain(get<SPIRBlock>(block.next_block));
+ }
+ }
+
+ if (block.merge == SPIRBlock::MergeLoop)
+ {
+ if (continue_type == SPIRBlock::DoWhileLoop)
+ {
+ // Make sure that we run the continue block to get the expressions set, but this
+ // should become an empty string.
+ // We have no fallbacks if we cannot forward everything to temporaries ...
+ const auto &continue_block = get<SPIRBlock>(block.continue_block);
+ bool positive_test = execution_is_noop(get<SPIRBlock>(continue_block.true_block),
+ get<SPIRBlock>(continue_block.loop_dominator));
+
+ uint32_t current_count = statement_count;
+ auto statements = emit_continue_block(block.continue_block, positive_test, !positive_test);
+ if (statement_count != current_count)
+ {
+ // The DoWhile block has side effects, force ComplexLoop pattern next pass.
+ get<SPIRBlock>(block.continue_block).complex_continue = true;
+ force_recompile();
+ }
+
+ // Might have to invert the do-while test here.
+ auto condition = to_expression(continue_block.condition);
+ if (!positive_test)
+ condition = join("!", enclose_expression(condition));
+
+ end_scope_decl(join("while (", condition, ")"));
+ }
+ else
+ end_scope();
+
+ loop_level_saver.release();
+
+ // We cannot break out of two loops at once, so don't check for break; here.
+ // Using block.self as the "from" block isn't quite right, but it has the same scope
+ // and dominance structure, so it's fine.
+ if (is_continue(block.merge_block))
+ branch_to_continue(block.self, block.merge_block);
+ else
+ emit_block_chain(get<SPIRBlock>(block.merge_block));
+ }
+
+ // Forget about control dependent expressions now.
+ block.invalidate_expressions.clear();
+
+ // After we return, we must be out of scope, so if we somehow have to re-emit this function,
+ // re-declare variables if necessary.
+ assert(rearm_dominated_variables.size() == block.dominated_variables.size());
+ for (size_t i = 0; i < block.dominated_variables.size(); i++)
+ {
+ uint32_t var = block.dominated_variables[i];
+ get<SPIRVariable>(var).deferred_declaration = rearm_dominated_variables[i];
+ }
+
+ // Just like for deferred declaration, we need to forget about loop variable enable
+ // if our block chain is reinstantiated later.
+ for (auto &var_id : block.loop_variables)
+ get<SPIRVariable>(var_id).loop_variable_enable = false;
+}
+
+void CompilerGLSL::begin_scope()
+{
+ statement("{");
+ indent++;
+}
+
+void CompilerGLSL::end_scope()
+{
+ if (!indent)
+ SPIRV_CROSS_THROW("Popping empty indent stack.");
+ indent--;
+ statement("}");
+}
+
+void CompilerGLSL::end_scope(const string &trailer)
+{
+ if (!indent)
+ SPIRV_CROSS_THROW("Popping empty indent stack.");
+ indent--;
+ statement("}", trailer);
+}
+
+void CompilerGLSL::end_scope_decl()
+{
+ if (!indent)
+ SPIRV_CROSS_THROW("Popping empty indent stack.");
+ indent--;
+ statement("};");
+}
+
+void CompilerGLSL::end_scope_decl(const string &decl)
+{
+ if (!indent)
+ SPIRV_CROSS_THROW("Popping empty indent stack.");
+ indent--;
+ statement("} ", decl, ";");
+}
+
+void CompilerGLSL::check_function_call_constraints(const uint32_t *args, uint32_t length)
+{
+ // If our variable is remapped, and we rely on type-remapping information as
+ // well, then we cannot pass the variable as a function parameter.
+ // Fixing this is non-trivial without stamping out variants of the same function,
+ // so for now warn about this and suggest workarounds instead.
+ for (uint32_t i = 0; i < length; i++)
+ {
+ auto *var = maybe_get<SPIRVariable>(args[i]);
+ if (!var || !var->remapped_variable)
+ continue;
+
+ auto &type = get<SPIRType>(var->basetype);
+ if (type.basetype == SPIRType::Image && type.image.dim == DimSubpassData)
+ {
+ SPIRV_CROSS_THROW("Tried passing a remapped subpassInput variable to a function. "
+ "This will not work correctly because type-remapping information is lost. "
+ "To workaround, please consider not passing the subpass input as a function parameter, "
+ "or use in/out variables instead which do not need type remapping information.");
+ }
+ }
+}
+
+const Instruction *CompilerGLSL::get_next_instruction_in_block(const Instruction &instr)
+{
+ // FIXME: This is kind of hacky. There should be a cleaner way.
+ auto offset = uint32_t(&instr - current_emitting_block->ops.data());
+ if ((offset + 1) < current_emitting_block->ops.size())
+ return &current_emitting_block->ops[offset + 1];
+ else
+ return nullptr;
+}
+
+uint32_t CompilerGLSL::mask_relevant_memory_semantics(uint32_t semantics)
+{
+ return semantics & (MemorySemanticsAtomicCounterMemoryMask | MemorySemanticsImageMemoryMask |
+ MemorySemanticsWorkgroupMemoryMask | MemorySemanticsUniformMemoryMask |
+ MemorySemanticsCrossWorkgroupMemoryMask | MemorySemanticsSubgroupMemoryMask);
+}
+
+bool CompilerGLSL::emit_array_copy(const char *expr, uint32_t lhs_id, uint32_t rhs_id, StorageClass, StorageClass)
+{
+ string lhs;
+ if (expr)
+ lhs = expr;
+ else
+ lhs = to_expression(lhs_id);
+
+ statement(lhs, " = ", to_expression(rhs_id), ";");
+ return true;
+}
+
+bool CompilerGLSL::unroll_array_to_complex_store(uint32_t target_id, uint32_t source_id)
+{
+ if (!backend.force_gl_in_out_block)
+ return false;
+ // This path is only relevant for GL backends.
+
+ auto *var = maybe_get<SPIRVariable>(target_id);
+ if (!var || var->storage != StorageClassOutput)
+ return false;
+
+ if (!is_builtin_variable(*var) || BuiltIn(get_decoration(var->self, DecorationBuiltIn)) != BuiltInSampleMask)
+ return false;
+
+ auto &type = expression_type(source_id);
+ string array_expr;
+ if (type.array_size_literal.back())
+ {
+ array_expr = convert_to_string(type.array.back());
+ if (type.array.back() == 0)
+ SPIRV_CROSS_THROW("Cannot unroll an array copy from unsized array.");
+ }
+ else
+ array_expr = to_expression(type.array.back());
+
+ SPIRType target_type { OpTypeInt };
+ target_type.basetype = SPIRType::Int;
+
+ statement("for (int i = 0; i < int(", array_expr, "); i++)");
+ begin_scope();
+ statement(to_expression(target_id), "[i] = ",
+ bitcast_expression(target_type, type.basetype, join(to_expression(source_id), "[i]")),
+ ";");
+ end_scope();
+
+ return true;
+}
+
+void CompilerGLSL::unroll_array_from_complex_load(uint32_t target_id, uint32_t source_id, std::string &expr)
+{
+ if (!backend.force_gl_in_out_block)
+ return;
+ // This path is only relevant for GL backends.
+
+ auto *var = maybe_get<SPIRVariable>(source_id);
+ if (!var)
+ return;
+
+ if (var->storage != StorageClassInput && var->storage != StorageClassOutput)
+ return;
+
+ auto &type = get_variable_data_type(*var);
+ if (type.array.empty())
+ return;
+
+ auto builtin = BuiltIn(get_decoration(var->self, DecorationBuiltIn));
+ bool is_builtin = is_builtin_variable(*var) &&
+ (builtin == BuiltInPointSize ||
+ builtin == BuiltInPosition ||
+ builtin == BuiltInSampleMask);
+ bool is_tess = is_tessellation_shader();
+ bool is_patch = has_decoration(var->self, DecorationPatch);
+ bool is_sample_mask = is_builtin && builtin == BuiltInSampleMask;
+
+ // Tessellation input arrays are special in that they are unsized, so we cannot directly copy from it.
+ // We must unroll the array load.
+ // For builtins, we couldn't catch this case normally,
+ // because this is resolved in the OpAccessChain in most cases.
+ // If we load the entire array, we have no choice but to unroll here.
+ if (!is_patch && (is_builtin || is_tess))
+ {
+ auto new_expr = join("_", target_id, "_unrolled");
+ statement(variable_decl(type, new_expr, target_id), ";");
+ string array_expr;
+ if (type.array_size_literal.back())
+ {
+ array_expr = convert_to_string(type.array.back());
+ if (type.array.back() == 0)
+ SPIRV_CROSS_THROW("Cannot unroll an array copy from unsized array.");
+ }
+ else
+ array_expr = to_expression(type.array.back());
+
+ // The array size might be a specialization constant, so use a for-loop instead.
+ statement("for (int i = 0; i < int(", array_expr, "); i++)");
+ begin_scope();
+ if (is_builtin && !is_sample_mask)
+ statement(new_expr, "[i] = gl_in[i].", expr, ";");
+ else if (is_sample_mask)
+ {
+ SPIRType target_type { OpTypeInt };
+ target_type.basetype = SPIRType::Int;
+ statement(new_expr, "[i] = ", bitcast_expression(target_type, type.basetype, join(expr, "[i]")), ";");
+ }
+ else
+ statement(new_expr, "[i] = ", expr, "[i];");
+ end_scope();
+
+ expr = std::move(new_expr);
+ }
+}
+
+void CompilerGLSL::cast_from_variable_load(uint32_t source_id, std::string &expr, const SPIRType &expr_type)
+{
+ // We will handle array cases elsewhere.
+ if (!expr_type.array.empty())
+ return;
+
+ auto *var = maybe_get_backing_variable(source_id);
+ if (var)
+ source_id = var->self;
+
+ // Only interested in standalone builtin variables.
+ if (!has_decoration(source_id, DecorationBuiltIn))
+ {
+ // Except for int attributes in legacy GLSL, which are cast from float.
+ if (is_legacy() && expr_type.basetype == SPIRType::Int && var && var->storage == StorageClassInput)
+ expr = join(type_to_glsl(expr_type), "(", expr, ")");
+ return;
+ }
+
+ auto builtin = static_cast<BuiltIn>(get_decoration(source_id, DecorationBuiltIn));
+ auto expected_type = expr_type.basetype;
+
+ // TODO: Fill in for more builtins.
+ switch (builtin)
+ {
+ case BuiltInLayer:
+ case BuiltInPrimitiveId:
+ case BuiltInViewportIndex:
+ case BuiltInInstanceId:
+ case BuiltInInstanceIndex:
+ case BuiltInVertexId:
+ case BuiltInVertexIndex:
+ case BuiltInSampleId:
+ case BuiltInBaseVertex:
+ case BuiltInBaseInstance:
+ case BuiltInDrawIndex:
+ case BuiltInFragStencilRefEXT:
+ case BuiltInInstanceCustomIndexNV:
+ case BuiltInSampleMask:
+ case BuiltInPrimitiveShadingRateKHR:
+ case BuiltInShadingRateKHR:
+ expected_type = SPIRType::Int;
+ break;
+
+ case BuiltInGlobalInvocationId:
+ case BuiltInLocalInvocationId:
+ case BuiltInWorkgroupId:
+ case BuiltInLocalInvocationIndex:
+ case BuiltInWorkgroupSize:
+ case BuiltInNumWorkgroups:
+ case BuiltInIncomingRayFlagsNV:
+ case BuiltInLaunchIdNV:
+ case BuiltInLaunchSizeNV:
+ case BuiltInPrimitiveTriangleIndicesEXT:
+ case BuiltInPrimitiveLineIndicesEXT:
+ case BuiltInPrimitivePointIndicesEXT:
+ expected_type = SPIRType::UInt;
+ break;
+
+ default:
+ break;
+ }
+
+ if (expected_type != expr_type.basetype)
+ expr = bitcast_expression(expr_type, expected_type, expr);
+}
+
+SPIRType::BaseType CompilerGLSL::get_builtin_basetype(BuiltIn builtin, SPIRType::BaseType default_type)
+{
+ // TODO: Fill in for more builtins.
+ switch (builtin)
+ {
+ case BuiltInLayer:
+ case BuiltInPrimitiveId:
+ case BuiltInViewportIndex:
+ case BuiltInFragStencilRefEXT:
+ case BuiltInSampleMask:
+ case BuiltInPrimitiveShadingRateKHR:
+ case BuiltInShadingRateKHR:
+ return SPIRType::Int;
+
+ default:
+ return default_type;
+ }
+}
+
+void CompilerGLSL::cast_to_variable_store(uint32_t target_id, std::string &expr, const SPIRType &expr_type)
+{
+ auto *var = maybe_get_backing_variable(target_id);
+ if (var)
+ target_id = var->self;
+
+ // Only interested in standalone builtin variables.
+ if (!has_decoration(target_id, DecorationBuiltIn))
+ return;
+
+ auto builtin = static_cast<BuiltIn>(get_decoration(target_id, DecorationBuiltIn));
+ auto expected_type = get_builtin_basetype(builtin, expr_type.basetype);
+
+ if (expected_type != expr_type.basetype)
+ {
+ auto type = expr_type;
+ type.basetype = expected_type;
+ expr = bitcast_expression(type, expr_type.basetype, expr);
+ }
+}
+
+void CompilerGLSL::convert_non_uniform_expression(string &expr, uint32_t ptr_id)
+{
+ if (*backend.nonuniform_qualifier == '\0')
+ return;
+
+ auto *var = maybe_get_backing_variable(ptr_id);
+ if (!var)
+ return;
+
+ if (var->storage != StorageClassUniformConstant &&
+ var->storage != StorageClassStorageBuffer &&
+ var->storage != StorageClassUniform)
+ return;
+
+ auto &backing_type = get<SPIRType>(var->basetype);
+ if (backing_type.array.empty())
+ return;
+
+ // If we get here, we know we're accessing an arrayed resource which
+ // might require nonuniform qualifier.
+
+ auto start_array_index = expr.find_first_of('[');
+
+ if (start_array_index == string::npos)
+ return;
+
+ // We've opened a bracket, track expressions until we can close the bracket.
+ // This must be our resource index.
+ size_t end_array_index = string::npos;
+ unsigned bracket_count = 1;
+ for (size_t index = start_array_index + 1; index < expr.size(); index++)
+ {
+ if (expr[index] == ']')
+ {
+ if (--bracket_count == 0)
+ {
+ end_array_index = index;
+ break;
+ }
+ }
+ else if (expr[index] == '[')
+ bracket_count++;
+ }
+
+ assert(bracket_count == 0);
+
+ // Doesn't really make sense to declare a non-arrayed image with nonuniformEXT, but there's
+ // nothing we can do here to express that.
+ if (start_array_index == string::npos || end_array_index == string::npos || end_array_index < start_array_index)
+ return;
+
+ start_array_index++;
+
+ expr = join(expr.substr(0, start_array_index), backend.nonuniform_qualifier, "(",
+ expr.substr(start_array_index, end_array_index - start_array_index), ")",
+ expr.substr(end_array_index, string::npos));
+}
+
+void CompilerGLSL::emit_block_hints(const SPIRBlock &block)
+{
+ if ((options.es && options.version < 310) || (!options.es && options.version < 140))
+ return;
+
+ switch (block.hint)
+ {
+ case SPIRBlock::HintFlatten:
+ require_extension_internal("GL_EXT_control_flow_attributes");
+ statement("SPIRV_CROSS_FLATTEN");
+ break;
+ case SPIRBlock::HintDontFlatten:
+ require_extension_internal("GL_EXT_control_flow_attributes");
+ statement("SPIRV_CROSS_BRANCH");
+ break;
+ case SPIRBlock::HintUnroll:
+ require_extension_internal("GL_EXT_control_flow_attributes");
+ statement("SPIRV_CROSS_UNROLL");
+ break;
+ case SPIRBlock::HintDontUnroll:
+ require_extension_internal("GL_EXT_control_flow_attributes");
+ statement("SPIRV_CROSS_LOOP");
+ break;
+ default:
+ break;
+ }
+}
+
+void CompilerGLSL::preserve_alias_on_reset(uint32_t id)
+{
+ preserved_aliases[id] = get_name(id);
+}
+
+void CompilerGLSL::reset_name_caches()
+{
+ for (auto &preserved : preserved_aliases)
+ set_name(preserved.first, preserved.second);
+
+ preserved_aliases.clear();
+ resource_names.clear();
+ block_input_names.clear();
+ block_output_names.clear();
+ block_ubo_names.clear();
+ block_ssbo_names.clear();
+ block_names.clear();
+ function_overloads.clear();
+}
+
+void CompilerGLSL::fixup_anonymous_struct_names(std::unordered_set<uint32_t> &visited, const SPIRType &type)
+{
+ if (visited.count(type.self))
+ return;
+ visited.insert(type.self);
+
+ for (uint32_t i = 0; i < uint32_t(type.member_types.size()); i++)
+ {
+ auto &mbr_type = get<SPIRType>(type.member_types[i]);
+
+ if (mbr_type.basetype == SPIRType::Struct)
+ {
+ // If there are multiple aliases, the output might be somewhat unpredictable,
+ // but the only real alternative in that case is to do nothing, which isn't any better.
+ // This check should be fine in practice.
+ if (get_name(mbr_type.self).empty() && !get_member_name(type.self, i).empty())
+ {
+ auto anon_name = join("anon_", get_member_name(type.self, i));
+ ParsedIR::sanitize_underscores(anon_name);
+ set_name(mbr_type.self, anon_name);
+ }
+
+ fixup_anonymous_struct_names(visited, mbr_type);
+ }
+ }
+}
+
+void CompilerGLSL::fixup_anonymous_struct_names()
+{
+ // HLSL codegen can often end up emitting anonymous structs inside blocks, which
+ // breaks GL linking since all names must match ...
+ // Try to emit sensible code, so attempt to find such structs and emit anon_$member.
+
+ // Breaks exponential explosion with weird type trees.
+ std::unordered_set<uint32_t> visited;
+
+ ir.for_each_typed_id<SPIRType>([&](uint32_t, SPIRType &type) {
+ if (type.basetype == SPIRType::Struct &&
+ (has_decoration(type.self, DecorationBlock) ||
+ has_decoration(type.self, DecorationBufferBlock)))
+ {
+ fixup_anonymous_struct_names(visited, type);
+ }
+ });
+}
+
+void CompilerGLSL::fixup_type_alias()
+{
+ // Due to how some backends work, the "master" type of type_alias must be a block-like type if it exists.
+ ir.for_each_typed_id<SPIRType>([&](uint32_t self, SPIRType &type) {
+ if (!type.type_alias)
+ return;
+
+ if (has_decoration(type.self, DecorationBlock) || has_decoration(type.self, DecorationBufferBlock))
+ {
+ // Top-level block types should never alias anything else.
+ type.type_alias = 0;
+ }
+ else if (type_is_block_like(type) && type.self == ID(self))
+ {
+ // A block-like type is any type which contains Offset decoration, but not top-level blocks,
+ // i.e. blocks which are placed inside buffers.
+ // Become the master.
+ ir.for_each_typed_id<SPIRType>([&](uint32_t other_id, SPIRType &other_type) {
+ if (other_id == self)
+ return;
+
+ if (other_type.type_alias == type.type_alias)
+ other_type.type_alias = self;
+ });
+
+ this->get<SPIRType>(type.type_alias).type_alias = self;
+ type.type_alias = 0;
+ }
+ });
+}
+
+void CompilerGLSL::reorder_type_alias()
+{
+ // Reorder declaration of types so that the master of the type alias is always emitted first.
+ // We need this in case a type B depends on type A (A must come before in the vector), but A is an alias of a type Abuffer, which
+ // means declaration of A doesn't happen (yet), and order would be B, ABuffer and not ABuffer, B. Fix this up here.
+ auto loop_lock = ir.create_loop_hard_lock();
+
+ auto &type_ids = ir.ids_for_type[TypeType];
+ for (auto alias_itr = begin(type_ids); alias_itr != end(type_ids); ++alias_itr)
+ {
+ auto &type = get<SPIRType>(*alias_itr);
+ if (type.type_alias != TypeID(0) &&
+ !has_extended_decoration(type.type_alias, SPIRVCrossDecorationBufferBlockRepacked))
+ {
+ // We will skip declaring this type, so make sure the type_alias type comes before.
+ auto master_itr = find(begin(type_ids), end(type_ids), ID(type.type_alias));
+ assert(master_itr != end(type_ids));
+
+ if (alias_itr < master_itr)
+ {
+ // Must also swap the type order for the constant-type joined array.
+ auto &joined_types = ir.ids_for_constant_undef_or_type;
+ auto alt_alias_itr = find(begin(joined_types), end(joined_types), *alias_itr);
+ auto alt_master_itr = find(begin(joined_types), end(joined_types), *master_itr);
+ assert(alt_alias_itr != end(joined_types));
+ assert(alt_master_itr != end(joined_types));
+
+ swap(*alias_itr, *master_itr);
+ swap(*alt_alias_itr, *alt_master_itr);
+ }
+ }
+ }
+}
+
+void CompilerGLSL::emit_line_directive(uint32_t file_id, uint32_t line_literal)
+{
+ // If we are redirecting statements, ignore the line directive.
+ // Common case here is continue blocks.
+ if (redirect_statement)
+ return;
+
+ // If we're emitting code in a sensitive context such as condition blocks in for loops, don't emit
+ // any line directives, because it's not possible.
+ if (block_debug_directives)
+ return;
+
+ if (options.emit_line_directives)
+ {
+ require_extension_internal("GL_GOOGLE_cpp_style_line_directive");
+ statement_no_indent("#line ", line_literal, " \"", get<SPIRString>(file_id).str, "\"");
+ }
+}
+
+void CompilerGLSL::emit_copy_logical_type(uint32_t lhs_id, uint32_t lhs_type_id, uint32_t rhs_id, uint32_t rhs_type_id,
+ SmallVector<uint32_t> chain)
+{
+ // Fully unroll all member/array indices one by one.
+
+ auto &lhs_type = get<SPIRType>(lhs_type_id);
+ auto &rhs_type = get<SPIRType>(rhs_type_id);
+
+ if (!lhs_type.array.empty())
+ {
+ // Could use a loop here to support specialization constants, but it gets rather complicated with nested array types,
+ // and this is a rather obscure opcode anyways, keep it simple unless we are forced to.
+ uint32_t array_size = to_array_size_literal(lhs_type);
+ chain.push_back(0);
+
+ for (uint32_t i = 0; i < array_size; i++)
+ {
+ chain.back() = i;
+ emit_copy_logical_type(lhs_id, lhs_type.parent_type, rhs_id, rhs_type.parent_type, chain);
+ }
+ }
+ else if (lhs_type.basetype == SPIRType::Struct)
+ {
+ chain.push_back(0);
+ uint32_t member_count = uint32_t(lhs_type.member_types.size());
+ for (uint32_t i = 0; i < member_count; i++)
+ {
+ chain.back() = i;
+ emit_copy_logical_type(lhs_id, lhs_type.member_types[i], rhs_id, rhs_type.member_types[i], chain);
+ }
+ }
+ else
+ {
+ // Need to handle unpack/packing fixups since this can differ wildly between the logical types,
+ // particularly in MSL.
+ // To deal with this, we emit access chains and go through emit_store_statement
+ // to deal with all the special cases we can encounter.
+
+ AccessChainMeta lhs_meta, rhs_meta;
+ auto lhs = access_chain_internal(lhs_id, chain.data(), uint32_t(chain.size()),
+ ACCESS_CHAIN_INDEX_IS_LITERAL_BIT, &lhs_meta);
+ auto rhs = access_chain_internal(rhs_id, chain.data(), uint32_t(chain.size()),
+ ACCESS_CHAIN_INDEX_IS_LITERAL_BIT, &rhs_meta);
+
+ uint32_t id = ir.increase_bound_by(2);
+ lhs_id = id;
+ rhs_id = id + 1;
+
+ {
+ auto &lhs_expr = set<SPIRExpression>(lhs_id, std::move(lhs), lhs_type_id, true);
+ lhs_expr.need_transpose = lhs_meta.need_transpose;
+
+ if (lhs_meta.storage_is_packed)
+ set_extended_decoration(lhs_id, SPIRVCrossDecorationPhysicalTypePacked);
+ if (lhs_meta.storage_physical_type != 0)
+ set_extended_decoration(lhs_id, SPIRVCrossDecorationPhysicalTypeID, lhs_meta.storage_physical_type);
+
+ forwarded_temporaries.insert(lhs_id);
+ suppressed_usage_tracking.insert(lhs_id);
+ }
+
+ {
+ auto &rhs_expr = set<SPIRExpression>(rhs_id, std::move(rhs), rhs_type_id, true);
+ rhs_expr.need_transpose = rhs_meta.need_transpose;
+
+ if (rhs_meta.storage_is_packed)
+ set_extended_decoration(rhs_id, SPIRVCrossDecorationPhysicalTypePacked);
+ if (rhs_meta.storage_physical_type != 0)
+ set_extended_decoration(rhs_id, SPIRVCrossDecorationPhysicalTypeID, rhs_meta.storage_physical_type);
+
+ forwarded_temporaries.insert(rhs_id);
+ suppressed_usage_tracking.insert(rhs_id);
+ }
+
+ emit_store_statement(lhs_id, rhs_id);
+ }
+}
+
+bool CompilerGLSL::subpass_input_is_framebuffer_fetch(uint32_t id) const
+{
+ if (!has_decoration(id, DecorationInputAttachmentIndex))
+ return false;
+
+ uint32_t input_attachment_index = get_decoration(id, DecorationInputAttachmentIndex);
+ for (auto &remap : subpass_to_framebuffer_fetch_attachment)
+ if (remap.first == input_attachment_index)
+ return true;
+
+ return false;
+}
+
+const SPIRVariable *CompilerGLSL::find_subpass_input_by_attachment_index(uint32_t index) const
+{
+ const SPIRVariable *ret = nullptr;
+ ir.for_each_typed_id<SPIRVariable>([&](uint32_t, const SPIRVariable &var) {
+ if (has_decoration(var.self, DecorationInputAttachmentIndex) &&
+ get_decoration(var.self, DecorationInputAttachmentIndex) == index)
+ {
+ ret = &var;
+ }
+ });
+ return ret;
+}
+
+const SPIRVariable *CompilerGLSL::find_color_output_by_location(uint32_t location) const
+{
+ const SPIRVariable *ret = nullptr;
+ ir.for_each_typed_id<SPIRVariable>([&](uint32_t, const SPIRVariable &var) {
+ if (var.storage == StorageClassOutput && get_decoration(var.self, DecorationLocation) == location)
+ ret = &var;
+ });
+ return ret;
+}
+
+void CompilerGLSL::emit_inout_fragment_outputs_copy_to_subpass_inputs()
+{
+ for (auto &remap : subpass_to_framebuffer_fetch_attachment)
+ {
+ auto *subpass_var = find_subpass_input_by_attachment_index(remap.first);
+ auto *output_var = find_color_output_by_location(remap.second);
+ if (!subpass_var)
+ continue;
+ if (!output_var)
+ SPIRV_CROSS_THROW("Need to declare the corresponding fragment output variable to be able "
+ "to read from it.");
+ if (is_array(get<SPIRType>(output_var->basetype)))
+ SPIRV_CROSS_THROW("Cannot use GL_EXT_shader_framebuffer_fetch with arrays of color outputs.");
+
+ auto &func = get<SPIRFunction>(get_entry_point().self);
+ func.fixup_hooks_in.push_back([=]() {
+ if (is_legacy())
+ {
+ statement(to_expression(subpass_var->self), " = ", "gl_LastFragData[",
+ get_decoration(output_var->self, DecorationLocation), "];");
+ }
+ else
+ {
+ uint32_t num_rt_components = this->get<SPIRType>(output_var->basetype).vecsize;
+ statement(to_expression(subpass_var->self), vector_swizzle(num_rt_components, 0), " = ",
+ to_expression(output_var->self), ";");
+ }
+ });
+ }
+}
+
+bool CompilerGLSL::variable_is_depth_or_compare(VariableID id) const
+{
+ return is_depth_image(get<SPIRType>(get<SPIRVariable>(id).basetype), id);
+}
+
+const char *CompilerGLSL::ShaderSubgroupSupportHelper::get_extension_name(Candidate c)
+{
+ static const char *const retval[CandidateCount] = { "GL_KHR_shader_subgroup_ballot",
+ "GL_KHR_shader_subgroup_basic",
+ "GL_KHR_shader_subgroup_vote",
+ "GL_KHR_shader_subgroup_arithmetic",
+ "GL_NV_gpu_shader_5",
+ "GL_NV_shader_thread_group",
+ "GL_NV_shader_thread_shuffle",
+ "GL_ARB_shader_ballot",
+ "GL_ARB_shader_group_vote",
+ "GL_AMD_gcn_shader" };
+ return retval[c];
+}
+
+SmallVector<std::string> CompilerGLSL::ShaderSubgroupSupportHelper::get_extra_required_extension_names(Candidate c)
+{
+ switch (c)
+ {
+ case ARB_shader_ballot:
+ return { "GL_ARB_shader_int64" };
+ case AMD_gcn_shader:
+ return { "GL_AMD_gpu_shader_int64", "GL_NV_gpu_shader5" };
+ default:
+ return {};
+ }
+}
+
+const char *CompilerGLSL::ShaderSubgroupSupportHelper::get_extra_required_extension_predicate(Candidate c)
+{
+ switch (c)
+ {
+ case ARB_shader_ballot:
+ return "defined(GL_ARB_shader_int64)";
+ case AMD_gcn_shader:
+ return "(defined(GL_AMD_gpu_shader_int64) || defined(GL_NV_gpu_shader5))";
+ default:
+ return "";
+ }
+}
+
+CompilerGLSL::ShaderSubgroupSupportHelper::FeatureVector CompilerGLSL::ShaderSubgroupSupportHelper::
+ get_feature_dependencies(Feature feature)
+{
+ switch (feature)
+ {
+ case SubgroupAllEqualT:
+ return { SubgroupBroadcast_First, SubgroupAll_Any_AllEqualBool };
+ case SubgroupElect:
+ return { SubgroupBallotFindLSB_MSB, SubgroupBallot, SubgroupInvocationID };
+ case SubgroupInverseBallot_InclBitCount_ExclBitCout:
+ return { SubgroupMask };
+ case SubgroupBallotBitCount:
+ return { SubgroupBallot };
+ case SubgroupArithmeticIAddReduce:
+ case SubgroupArithmeticIAddInclusiveScan:
+ case SubgroupArithmeticFAddReduce:
+ case SubgroupArithmeticFAddInclusiveScan:
+ case SubgroupArithmeticIMulReduce:
+ case SubgroupArithmeticIMulInclusiveScan:
+ case SubgroupArithmeticFMulReduce:
+ case SubgroupArithmeticFMulInclusiveScan:
+ return { SubgroupSize, SubgroupBallot, SubgroupBallotBitCount, SubgroupMask, SubgroupBallotBitExtract };
+ case SubgroupArithmeticIAddExclusiveScan:
+ case SubgroupArithmeticFAddExclusiveScan:
+ case SubgroupArithmeticIMulExclusiveScan:
+ case SubgroupArithmeticFMulExclusiveScan:
+ return { SubgroupSize, SubgroupBallot, SubgroupBallotBitCount,
+ SubgroupMask, SubgroupElect, SubgroupBallotBitExtract };
+ default:
+ return {};
+ }
+}
+
+CompilerGLSL::ShaderSubgroupSupportHelper::FeatureMask CompilerGLSL::ShaderSubgroupSupportHelper::
+ get_feature_dependency_mask(Feature feature)
+{
+ return build_mask(get_feature_dependencies(feature));
+}
+
+bool CompilerGLSL::ShaderSubgroupSupportHelper::can_feature_be_implemented_without_extensions(Feature feature)
+{
+ static const bool retval[FeatureCount] = {
+ false, false, false, false, false, false,
+ true, // SubgroupBalloFindLSB_MSB
+ false, false, false, false,
+ true, // SubgroupMemBarrier - replaced with workgroup memory barriers
+ false, false, true, false,
+ false, false, false, false, false, false, // iadd, fadd
+ false, false, false, false, false, false, // imul , fmul
+ };
+
+ return retval[feature];
+}
+
+CompilerGLSL::ShaderSubgroupSupportHelper::Candidate CompilerGLSL::ShaderSubgroupSupportHelper::
+ get_KHR_extension_for_feature(Feature feature)
+{
+ static const Candidate extensions[FeatureCount] = {
+ KHR_shader_subgroup_ballot, KHR_shader_subgroup_basic, KHR_shader_subgroup_basic, KHR_shader_subgroup_basic,
+ KHR_shader_subgroup_basic, KHR_shader_subgroup_ballot, KHR_shader_subgroup_ballot, KHR_shader_subgroup_vote,
+ KHR_shader_subgroup_vote, KHR_shader_subgroup_basic, KHR_shader_subgroup_basic, KHR_shader_subgroup_basic,
+ KHR_shader_subgroup_ballot, KHR_shader_subgroup_ballot, KHR_shader_subgroup_ballot, KHR_shader_subgroup_ballot,
+ KHR_shader_subgroup_arithmetic, KHR_shader_subgroup_arithmetic, KHR_shader_subgroup_arithmetic,
+ KHR_shader_subgroup_arithmetic, KHR_shader_subgroup_arithmetic, KHR_shader_subgroup_arithmetic,
+ KHR_shader_subgroup_arithmetic, KHR_shader_subgroup_arithmetic, KHR_shader_subgroup_arithmetic,
+ KHR_shader_subgroup_arithmetic, KHR_shader_subgroup_arithmetic, KHR_shader_subgroup_arithmetic,
+ };
+
+ return extensions[feature];
+}
+
+void CompilerGLSL::ShaderSubgroupSupportHelper::request_feature(Feature feature)
+{
+ feature_mask |= (FeatureMask(1) << feature) | get_feature_dependency_mask(feature);
+}
+
+bool CompilerGLSL::ShaderSubgroupSupportHelper::is_feature_requested(Feature feature) const
+{
+ return (feature_mask & (1u << feature)) != 0;
+}
+
+CompilerGLSL::ShaderSubgroupSupportHelper::Result CompilerGLSL::ShaderSubgroupSupportHelper::resolve() const
+{
+ Result res;
+
+ for (uint32_t i = 0u; i < FeatureCount; ++i)
+ {
+ if (feature_mask & (1u << i))
+ {
+ auto feature = static_cast<Feature>(i);
+ std::unordered_set<uint32_t> unique_candidates;
+
+ auto candidates = get_candidates_for_feature(feature);
+ unique_candidates.insert(candidates.begin(), candidates.end());
+
+ auto deps = get_feature_dependencies(feature);
+ for (Feature d : deps)
+ {
+ candidates = get_candidates_for_feature(d);
+ if (!candidates.empty())
+ unique_candidates.insert(candidates.begin(), candidates.end());
+ }
+
+ for (uint32_t c : unique_candidates)
+ ++res.weights[static_cast<Candidate>(c)];
+ }
+ }
+
+ return res;
+}
+
+CompilerGLSL::ShaderSubgroupSupportHelper::CandidateVector CompilerGLSL::ShaderSubgroupSupportHelper::
+ get_candidates_for_feature(Feature ft, const Result &r)
+{
+ auto c = get_candidates_for_feature(ft);
+ auto cmp = [&r](Candidate a, Candidate b) {
+ if (r.weights[a] == r.weights[b])
+ return a < b; // Prefer candidates with lower enum value
+ return r.weights[a] > r.weights[b];
+ };
+ std::sort(c.begin(), c.end(), cmp);
+ return c;
+}
+
+CompilerGLSL::ShaderSubgroupSupportHelper::CandidateVector CompilerGLSL::ShaderSubgroupSupportHelper::
+ get_candidates_for_feature(Feature feature)
+{
+ switch (feature)
+ {
+ case SubgroupMask:
+ return { KHR_shader_subgroup_ballot, NV_shader_thread_group, ARB_shader_ballot };
+ case SubgroupSize:
+ return { KHR_shader_subgroup_basic, NV_shader_thread_group, AMD_gcn_shader, ARB_shader_ballot };
+ case SubgroupInvocationID:
+ return { KHR_shader_subgroup_basic, NV_shader_thread_group, ARB_shader_ballot };
+ case SubgroupID:
+ return { KHR_shader_subgroup_basic, NV_shader_thread_group };
+ case NumSubgroups:
+ return { KHR_shader_subgroup_basic, NV_shader_thread_group };
+ case SubgroupBroadcast_First:
+ return { KHR_shader_subgroup_ballot, NV_shader_thread_shuffle, ARB_shader_ballot };
+ case SubgroupBallotFindLSB_MSB:
+ return { KHR_shader_subgroup_ballot, NV_shader_thread_group };
+ case SubgroupAll_Any_AllEqualBool:
+ return { KHR_shader_subgroup_vote, NV_gpu_shader_5, ARB_shader_group_vote, AMD_gcn_shader };
+ case SubgroupAllEqualT:
+ return {}; // depends on other features only
+ case SubgroupElect:
+ return {}; // depends on other features only
+ case SubgroupBallot:
+ return { KHR_shader_subgroup_ballot, NV_shader_thread_group, ARB_shader_ballot };
+ case SubgroupBarrier:
+ return { KHR_shader_subgroup_basic, NV_shader_thread_group, ARB_shader_ballot, AMD_gcn_shader };
+ case SubgroupMemBarrier:
+ return { KHR_shader_subgroup_basic };
+ case SubgroupInverseBallot_InclBitCount_ExclBitCout:
+ return {};
+ case SubgroupBallotBitExtract:
+ return { NV_shader_thread_group };
+ case SubgroupBallotBitCount:
+ return {};
+ case SubgroupArithmeticIAddReduce:
+ case SubgroupArithmeticIAddExclusiveScan:
+ case SubgroupArithmeticIAddInclusiveScan:
+ case SubgroupArithmeticFAddReduce:
+ case SubgroupArithmeticFAddExclusiveScan:
+ case SubgroupArithmeticFAddInclusiveScan:
+ case SubgroupArithmeticIMulReduce:
+ case SubgroupArithmeticIMulExclusiveScan:
+ case SubgroupArithmeticIMulInclusiveScan:
+ case SubgroupArithmeticFMulReduce:
+ case SubgroupArithmeticFMulExclusiveScan:
+ case SubgroupArithmeticFMulInclusiveScan:
+ return { KHR_shader_subgroup_arithmetic, NV_shader_thread_shuffle };
+ default:
+ return {};
+ }
+}
+
+CompilerGLSL::ShaderSubgroupSupportHelper::FeatureMask CompilerGLSL::ShaderSubgroupSupportHelper::build_mask(
+ const SmallVector<Feature> &features)
+{
+ FeatureMask mask = 0;
+ for (Feature f : features)
+ mask |= FeatureMask(1) << f;
+ return mask;
+}
+
+CompilerGLSL::ShaderSubgroupSupportHelper::Result::Result()
+{
+ for (auto &weight : weights)
+ weight = 0;
+
+ // Make sure KHR_shader_subgroup extensions are always prefered.
+ const uint32_t big_num = FeatureCount;
+ weights[KHR_shader_subgroup_ballot] = big_num;
+ weights[KHR_shader_subgroup_basic] = big_num;
+ weights[KHR_shader_subgroup_vote] = big_num;
+ weights[KHR_shader_subgroup_arithmetic] = big_num;
+}
+
+void CompilerGLSL::request_workaround_wrapper_overload(TypeID id)
+{
+ // Must be ordered to maintain deterministic output, so vector is appropriate.
+ if (find(begin(workaround_ubo_load_overload_types), end(workaround_ubo_load_overload_types), id) ==
+ end(workaround_ubo_load_overload_types))
+ {
+ force_recompile();
+ workaround_ubo_load_overload_types.push_back(id);
+ }
+}
+
+void CompilerGLSL::rewrite_load_for_wrapped_row_major(std::string &expr, TypeID loaded_type, ID ptr)
+{
+ // Loading row-major matrices from UBOs on older AMD Windows OpenGL drivers is problematic.
+ // To load these types correctly, we must first wrap them in a dummy function which only purpose is to
+ // ensure row_major decoration is actually respected.
+ auto *var = maybe_get_backing_variable(ptr);
+ if (!var)
+ return;
+
+ auto &backing_type = get<SPIRType>(var->basetype);
+ bool is_ubo = backing_type.basetype == SPIRType::Struct && backing_type.storage == StorageClassUniform &&
+ has_decoration(backing_type.self, DecorationBlock);
+ if (!is_ubo)
+ return;
+
+ auto *type = &get<SPIRType>(loaded_type);
+ bool rewrite = false;
+ bool relaxed = options.es;
+
+ if (is_matrix(*type))
+ {
+ // To avoid adding a lot of unnecessary meta tracking to forward the row_major state,
+ // we will simply look at the base struct itself. It is exceptionally rare to mix and match row-major/col-major state.
+ // If there is any row-major action going on, we apply the workaround.
+ // It is harmless to apply the workaround to column-major matrices, so this is still a valid solution.
+ // If an access chain occurred, the workaround is not required, so loading vectors or scalars don't need workaround.
+ type = &backing_type;
+ }
+ else
+ {
+ // If we're loading a composite, we don't have overloads like these.
+ relaxed = false;
+ }
+
+ if (type->basetype == SPIRType::Struct)
+ {
+ // If we're loading a struct where any member is a row-major matrix, apply the workaround.
+ for (uint32_t i = 0; i < uint32_t(type->member_types.size()); i++)
+ {
+ auto decorations = combined_decoration_for_member(*type, i);
+ if (decorations.get(DecorationRowMajor))
+ rewrite = true;
+
+ // Since we decide on a per-struct basis, only use mediump wrapper if all candidates are mediump.
+ if (!decorations.get(DecorationRelaxedPrecision))
+ relaxed = false;
+ }
+ }
+
+ if (rewrite)
+ {
+ request_workaround_wrapper_overload(loaded_type);
+ expr = join("spvWorkaroundRowMajor", (relaxed ? "MP" : ""), "(", expr, ")");
+ }
+}
+
+void CompilerGLSL::mask_stage_output_by_location(uint32_t location, uint32_t component)
+{
+ masked_output_locations.insert({ location, component });
+}
+
+void CompilerGLSL::mask_stage_output_by_builtin(BuiltIn builtin)
+{
+ masked_output_builtins.insert(builtin);
+}
+
+bool CompilerGLSL::is_stage_output_variable_masked(const SPIRVariable &var) const
+{
+ auto &type = get<SPIRType>(var.basetype);
+ bool is_block = has_decoration(type.self, DecorationBlock);
+ // Blocks by themselves are never masked. Must be masked per-member.
+ if (is_block)
+ return false;
+
+ bool is_builtin = has_decoration(var.self, DecorationBuiltIn);
+
+ if (is_builtin)
+ {
+ return is_stage_output_builtin_masked(BuiltIn(get_decoration(var.self, DecorationBuiltIn)));
+ }
+ else
+ {
+ if (!has_decoration(var.self, DecorationLocation))
+ return false;
+
+ return is_stage_output_location_masked(
+ get_decoration(var.self, DecorationLocation),
+ get_decoration(var.self, DecorationComponent));
+ }
+}
+
+bool CompilerGLSL::is_stage_output_block_member_masked(const SPIRVariable &var, uint32_t index, bool strip_array) const
+{
+ auto &type = get<SPIRType>(var.basetype);
+ bool is_block = has_decoration(type.self, DecorationBlock);
+ if (!is_block)
+ return false;
+
+ BuiltIn builtin = BuiltInMax;
+ if (is_member_builtin(type, index, &builtin))
+ {
+ return is_stage_output_builtin_masked(builtin);
+ }
+ else
+ {
+ uint32_t location = get_declared_member_location(var, index, strip_array);
+ uint32_t component = get_member_decoration(type.self, index, DecorationComponent);
+ return is_stage_output_location_masked(location, component);
+ }
+}
+
+bool CompilerGLSL::is_per_primitive_variable(const SPIRVariable &var) const
+{
+ if (has_decoration(var.self, DecorationPerPrimitiveEXT))
+ return true;
+
+ auto &type = get<SPIRType>(var.basetype);
+ if (!has_decoration(type.self, DecorationBlock))
+ return false;
+
+ for (uint32_t i = 0, n = uint32_t(type.member_types.size()); i < n; i++)
+ if (!has_member_decoration(type.self, i, DecorationPerPrimitiveEXT))
+ return false;
+
+ return true;
+}
+
+bool CompilerGLSL::is_stage_output_location_masked(uint32_t location, uint32_t component) const
+{
+ return masked_output_locations.count({ location, component }) != 0;
+}
+
+bool CompilerGLSL::is_stage_output_builtin_masked(spv::BuiltIn builtin) const
+{
+ return masked_output_builtins.count(builtin) != 0;
+}
+
+uint32_t CompilerGLSL::get_declared_member_location(const SPIRVariable &var, uint32_t mbr_idx, bool strip_array) const
+{
+ auto &block_type = get<SPIRType>(var.basetype);
+ if (has_member_decoration(block_type.self, mbr_idx, DecorationLocation))
+ return get_member_decoration(block_type.self, mbr_idx, DecorationLocation);
+ else
+ return get_accumulated_member_location(var, mbr_idx, strip_array);
+}
+
+uint32_t CompilerGLSL::get_accumulated_member_location(const SPIRVariable &var, uint32_t mbr_idx, bool strip_array) const
+{
+ auto &type = strip_array ? get_variable_element_type(var) : get_variable_data_type(var);
+ uint32_t location = get_decoration(var.self, DecorationLocation);
+
+ for (uint32_t i = 0; i < mbr_idx; i++)
+ {
+ auto &mbr_type = get<SPIRType>(type.member_types[i]);
+
+ // Start counting from any place we have a new location decoration.
+ if (has_member_decoration(type.self, mbr_idx, DecorationLocation))
+ location = get_member_decoration(type.self, mbr_idx, DecorationLocation);
+
+ uint32_t location_count = type_to_location_count(mbr_type);
+ location += location_count;
+ }
+
+ return location;
+}
+
+StorageClass CompilerGLSL::get_expression_effective_storage_class(uint32_t ptr)
+{
+ auto *var = maybe_get_backing_variable(ptr);
+
+ // If the expression has been lowered to a temporary, we need to use the Generic storage class.
+ // We're looking for the effective storage class of a given expression.
+ // An access chain or forwarded OpLoads from such access chains
+ // will generally have the storage class of the underlying variable, but if the load was not forwarded
+ // we have lost any address space qualifiers.
+ bool forced_temporary = ir.ids[ptr].get_type() == TypeExpression && !get<SPIRExpression>(ptr).access_chain &&
+ (forced_temporaries.count(ptr) != 0 || forwarded_temporaries.count(ptr) == 0);
+
+ if (var && !forced_temporary)
+ {
+ if (variable_decl_is_remapped_storage(*var, StorageClassWorkgroup))
+ return StorageClassWorkgroup;
+ if (variable_decl_is_remapped_storage(*var, StorageClassStorageBuffer))
+ return StorageClassStorageBuffer;
+
+ // Normalize SSBOs to StorageBuffer here.
+ if (var->storage == StorageClassUniform &&
+ has_decoration(get<SPIRType>(var->basetype).self, DecorationBufferBlock))
+ return StorageClassStorageBuffer;
+ else
+ return var->storage;
+ }
+ else
+ return expression_type(ptr).storage;
+}
+
+uint32_t CompilerGLSL::type_to_location_count(const SPIRType &type) const
+{
+ uint32_t count;
+ if (type.basetype == SPIRType::Struct)
+ {
+ uint32_t mbr_count = uint32_t(type.member_types.size());
+ count = 0;
+ for (uint32_t i = 0; i < mbr_count; i++)
+ count += type_to_location_count(get<SPIRType>(type.member_types[i]));
+ }
+ else
+ {
+ count = type.columns > 1 ? type.columns : 1;
+ }
+
+ uint32_t dim_count = uint32_t(type.array.size());
+ for (uint32_t i = 0; i < dim_count; i++)
+ count *= to_array_size_literal(type, i);
+
+ return count;
+}
+
+std::string CompilerGLSL::format_float(float value) const
+{
+ if (float_formatter)
+ return float_formatter->format_float(value);
+
+ // default behavior
+ return convert_to_string(value, current_locale_radix_character);
+}
+
+std::string CompilerGLSL::format_double(double value) const
+{
+ if (float_formatter)
+ return float_formatter->format_double(value);
+
+ // default behavior
+ return convert_to_string(value, current_locale_radix_character);
+}
+