diff options
Diffstat (limited to 'thirdparty/spirv-cross/spirv_msl.cpp')
-rw-r--r-- | thirdparty/spirv-cross/spirv_msl.cpp | 18810 |
1 files changed, 18810 insertions, 0 deletions
diff --git a/thirdparty/spirv-cross/spirv_msl.cpp b/thirdparty/spirv-cross/spirv_msl.cpp new file mode 100644 index 0000000000..383ce688e9 --- /dev/null +++ b/thirdparty/spirv-cross/spirv_msl.cpp @@ -0,0 +1,18810 @@ +/* + * Copyright 2016-2021 The Brenwill Workshop Ltd. + * SPDX-License-Identifier: Apache-2.0 OR MIT + * + * Licensed under the Apache License, Version 2.0 (the "License"); + * you may not use this file except in compliance with the License. + * You may obtain a copy of the License at + * + * http://www.apache.org/licenses/LICENSE-2.0 + * + * Unless required by applicable law or agreed to in writing, software + * distributed under the License is distributed on an "AS IS" BASIS, + * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + * See the License for the specific language governing permissions and + * limitations under the License. + */ + +/* + * At your option, you may choose to accept this material under either: + * 1. The Apache License, Version 2.0, found at <http://www.apache.org/licenses/LICENSE-2.0>, or + * 2. The MIT License, found at <http://opensource.org/licenses/MIT>. + */ + +#include "spirv_msl.hpp" +#include "GLSL.std.450.h" + +#include <algorithm> +#include <assert.h> +#include <numeric> + +using namespace spv; +using namespace SPIRV_CROSS_NAMESPACE; +using namespace std; + +static const uint32_t k_unknown_location = ~0u; +static const uint32_t k_unknown_component = ~0u; +static const char *force_inline = "static inline __attribute__((always_inline))"; + +CompilerMSL::CompilerMSL(std::vector<uint32_t> spirv_) + : CompilerGLSL(std::move(spirv_)) +{ +} + +CompilerMSL::CompilerMSL(const uint32_t *ir_, size_t word_count) + : CompilerGLSL(ir_, word_count) +{ +} + +CompilerMSL::CompilerMSL(const ParsedIR &ir_) + : CompilerGLSL(ir_) +{ +} + +CompilerMSL::CompilerMSL(ParsedIR &&ir_) + : CompilerGLSL(std::move(ir_)) +{ +} + +void CompilerMSL::add_msl_shader_input(const MSLShaderInterfaceVariable &si) +{ + inputs_by_location[{si.location, si.component}] = si; + if (si.builtin != BuiltInMax && !inputs_by_builtin.count(si.builtin)) + inputs_by_builtin[si.builtin] = si; +} + +void CompilerMSL::add_msl_shader_output(const MSLShaderInterfaceVariable &so) +{ + outputs_by_location[{so.location, so.component}] = so; + if (so.builtin != BuiltInMax && !outputs_by_builtin.count(so.builtin)) + outputs_by_builtin[so.builtin] = so; +} + +void CompilerMSL::add_msl_resource_binding(const MSLResourceBinding &binding) +{ + StageSetBinding tuple = { binding.stage, binding.desc_set, binding.binding }; + resource_bindings[tuple] = { binding, false }; + + // If we might need to pad argument buffer members to positionally align + // arg buffer indexes, also maintain a lookup by argument buffer index. + if (msl_options.pad_argument_buffer_resources) + { + StageSetBinding arg_idx_tuple = { binding.stage, binding.desc_set, k_unknown_component }; + +#define ADD_ARG_IDX_TO_BINDING_NUM_LOOKUP(rez) \ + arg_idx_tuple.binding = binding.msl_##rez; \ + resource_arg_buff_idx_to_binding_number[arg_idx_tuple] = binding.binding + + switch (binding.basetype) + { + case SPIRType::Void: + case SPIRType::Boolean: + case SPIRType::SByte: + case SPIRType::UByte: + case SPIRType::Short: + case SPIRType::UShort: + case SPIRType::Int: + case SPIRType::UInt: + case SPIRType::Int64: + case SPIRType::UInt64: + case SPIRType::AtomicCounter: + case SPIRType::Half: + case SPIRType::Float: + case SPIRType::Double: + ADD_ARG_IDX_TO_BINDING_NUM_LOOKUP(buffer); + break; + case SPIRType::Image: + ADD_ARG_IDX_TO_BINDING_NUM_LOOKUP(texture); + break; + case SPIRType::Sampler: + ADD_ARG_IDX_TO_BINDING_NUM_LOOKUP(sampler); + break; + case SPIRType::SampledImage: + ADD_ARG_IDX_TO_BINDING_NUM_LOOKUP(texture); + ADD_ARG_IDX_TO_BINDING_NUM_LOOKUP(sampler); + break; + default: + SPIRV_CROSS_THROW("Unexpected argument buffer resource base type. When padding argument buffer elements, " + "all descriptor set resources must be supplied with a base type by the app."); + } +#undef ADD_ARG_IDX_TO_BINDING_NUM_LOOKUP + } +} + +void CompilerMSL::add_dynamic_buffer(uint32_t desc_set, uint32_t binding, uint32_t index) +{ + SetBindingPair pair = { desc_set, binding }; + buffers_requiring_dynamic_offset[pair] = { index, 0 }; +} + +void CompilerMSL::add_inline_uniform_block(uint32_t desc_set, uint32_t binding) +{ + SetBindingPair pair = { desc_set, binding }; + inline_uniform_blocks.insert(pair); +} + +void CompilerMSL::add_discrete_descriptor_set(uint32_t desc_set) +{ + if (desc_set < kMaxArgumentBuffers) + argument_buffer_discrete_mask |= 1u << desc_set; +} + +void CompilerMSL::set_argument_buffer_device_address_space(uint32_t desc_set, bool device_storage) +{ + if (desc_set < kMaxArgumentBuffers) + { + if (device_storage) + argument_buffer_device_storage_mask |= 1u << desc_set; + else + argument_buffer_device_storage_mask &= ~(1u << desc_set); + } +} + +bool CompilerMSL::is_msl_shader_input_used(uint32_t location) +{ + // Don't report internal location allocations to app. + return location_inputs_in_use.count(location) != 0 && + location_inputs_in_use_fallback.count(location) == 0; +} + +bool CompilerMSL::is_msl_shader_output_used(uint32_t location) +{ + // Don't report internal location allocations to app. + return location_outputs_in_use.count(location) != 0 && + location_outputs_in_use_fallback.count(location) == 0; +} + +uint32_t CompilerMSL::get_automatic_builtin_input_location(spv::BuiltIn builtin) const +{ + auto itr = builtin_to_automatic_input_location.find(builtin); + if (itr == builtin_to_automatic_input_location.end()) + return k_unknown_location; + else + return itr->second; +} + +uint32_t CompilerMSL::get_automatic_builtin_output_location(spv::BuiltIn builtin) const +{ + auto itr = builtin_to_automatic_output_location.find(builtin); + if (itr == builtin_to_automatic_output_location.end()) + return k_unknown_location; + else + return itr->second; +} + +bool CompilerMSL::is_msl_resource_binding_used(ExecutionModel model, uint32_t desc_set, uint32_t binding) const +{ + StageSetBinding tuple = { model, desc_set, binding }; + auto itr = resource_bindings.find(tuple); + return itr != end(resource_bindings) && itr->second.second; +} + +bool CompilerMSL::is_var_runtime_size_array(const SPIRVariable &var) const +{ + auto& type = get_variable_data_type(var); + return is_runtime_size_array(type) && get_resource_array_size(type, var.self) == 0; +} + +// Returns the size of the array of resources used by the variable with the specified type and id. +// The size is first retrieved from the type, but in the case of runtime array sizing, +// the size is retrieved from the resource binding added using add_msl_resource_binding(). +uint32_t CompilerMSL::get_resource_array_size(const SPIRType &type, uint32_t id) const +{ + uint32_t array_size = to_array_size_literal(type); + + // If we have argument buffers, we need to honor the ABI by using the correct array size + // from the layout. Only use shader declared size if we're not using argument buffers. + uint32_t desc_set = get_decoration(id, DecorationDescriptorSet); + if (!descriptor_set_is_argument_buffer(desc_set) && array_size) + return array_size; + + StageSetBinding tuple = { get_entry_point().model, desc_set, + get_decoration(id, DecorationBinding) }; + auto itr = resource_bindings.find(tuple); + return itr != end(resource_bindings) ? itr->second.first.count : array_size; +} + +uint32_t CompilerMSL::get_automatic_msl_resource_binding(uint32_t id) const +{ + return get_extended_decoration(id, SPIRVCrossDecorationResourceIndexPrimary); +} + +uint32_t CompilerMSL::get_automatic_msl_resource_binding_secondary(uint32_t id) const +{ + return get_extended_decoration(id, SPIRVCrossDecorationResourceIndexSecondary); +} + +uint32_t CompilerMSL::get_automatic_msl_resource_binding_tertiary(uint32_t id) const +{ + return get_extended_decoration(id, SPIRVCrossDecorationResourceIndexTertiary); +} + +uint32_t CompilerMSL::get_automatic_msl_resource_binding_quaternary(uint32_t id) const +{ + return get_extended_decoration(id, SPIRVCrossDecorationResourceIndexQuaternary); +} + +void CompilerMSL::set_fragment_output_components(uint32_t location, uint32_t components) +{ + fragment_output_components[location] = components; +} + +bool CompilerMSL::builtin_translates_to_nonarray(spv::BuiltIn builtin) const +{ + return (builtin == BuiltInSampleMask); +} + +void CompilerMSL::build_implicit_builtins() +{ + bool need_sample_pos = active_input_builtins.get(BuiltInSamplePosition); + bool need_vertex_params = capture_output_to_buffer && get_execution_model() == ExecutionModelVertex && + !msl_options.vertex_for_tessellation; + bool need_tesc_params = is_tesc_shader(); + bool need_tese_params = is_tese_shader() && msl_options.raw_buffer_tese_input; + bool need_subgroup_mask = + active_input_builtins.get(BuiltInSubgroupEqMask) || active_input_builtins.get(BuiltInSubgroupGeMask) || + active_input_builtins.get(BuiltInSubgroupGtMask) || active_input_builtins.get(BuiltInSubgroupLeMask) || + active_input_builtins.get(BuiltInSubgroupLtMask); + bool need_subgroup_ge_mask = !msl_options.is_ios() && (active_input_builtins.get(BuiltInSubgroupGeMask) || + active_input_builtins.get(BuiltInSubgroupGtMask)); + bool need_multiview = get_execution_model() == ExecutionModelVertex && !msl_options.view_index_from_device_index && + msl_options.multiview_layered_rendering && + (msl_options.multiview || active_input_builtins.get(BuiltInViewIndex)); + bool need_dispatch_base = + msl_options.dispatch_base && get_execution_model() == ExecutionModelGLCompute && + (active_input_builtins.get(BuiltInWorkgroupId) || active_input_builtins.get(BuiltInGlobalInvocationId)); + bool need_grid_params = get_execution_model() == ExecutionModelVertex && msl_options.vertex_for_tessellation; + bool need_vertex_base_params = + need_grid_params && + (active_input_builtins.get(BuiltInVertexId) || active_input_builtins.get(BuiltInVertexIndex) || + active_input_builtins.get(BuiltInBaseVertex) || active_input_builtins.get(BuiltInInstanceId) || + active_input_builtins.get(BuiltInInstanceIndex) || active_input_builtins.get(BuiltInBaseInstance)); + bool need_local_invocation_index = msl_options.emulate_subgroups && active_input_builtins.get(BuiltInSubgroupId); + bool need_workgroup_size = msl_options.emulate_subgroups && active_input_builtins.get(BuiltInNumSubgroups); + bool force_frag_depth_passthrough = + get_execution_model() == ExecutionModelFragment && !uses_explicit_early_fragment_test() && need_subpass_input && + msl_options.enable_frag_depth_builtin && msl_options.input_attachment_is_ds_attachment; + + if (need_subpass_input || need_sample_pos || need_subgroup_mask || need_vertex_params || need_tesc_params || + need_tese_params || need_multiview || need_dispatch_base || need_vertex_base_params || need_grid_params || + needs_sample_id || needs_subgroup_invocation_id || needs_subgroup_size || needs_helper_invocation || + has_additional_fixed_sample_mask() || need_local_invocation_index || need_workgroup_size || force_frag_depth_passthrough) + { + bool has_frag_coord = false; + bool has_sample_id = false; + bool has_vertex_idx = false; + bool has_base_vertex = false; + bool has_instance_idx = false; + bool has_base_instance = false; + bool has_invocation_id = false; + bool has_primitive_id = false; + bool has_subgroup_invocation_id = false; + bool has_subgroup_size = false; + bool has_view_idx = false; + bool has_layer = false; + bool has_helper_invocation = false; + bool has_local_invocation_index = false; + bool has_workgroup_size = false; + bool has_frag_depth = false; + uint32_t workgroup_id_type = 0; + + ir.for_each_typed_id<SPIRVariable>([&](uint32_t, SPIRVariable &var) { + if (var.storage != StorageClassInput && var.storage != StorageClassOutput) + return; + if (!interface_variable_exists_in_entry_point(var.self)) + return; + if (!has_decoration(var.self, DecorationBuiltIn)) + return; + + BuiltIn builtin = ir.meta[var.self].decoration.builtin_type; + + if (var.storage == StorageClassOutput) + { + if (has_additional_fixed_sample_mask() && builtin == BuiltInSampleMask) + { + builtin_sample_mask_id = var.self; + mark_implicit_builtin(StorageClassOutput, BuiltInSampleMask, var.self); + does_shader_write_sample_mask = true; + } + + if (force_frag_depth_passthrough && builtin == BuiltInFragDepth) + { + builtin_frag_depth_id = var.self; + mark_implicit_builtin(StorageClassOutput, BuiltInFragDepth, var.self); + has_frag_depth = true; + } + } + + if (var.storage != StorageClassInput) + return; + + // Use Metal's native frame-buffer fetch API for subpass inputs. + if (need_subpass_input && (!msl_options.use_framebuffer_fetch_subpasses)) + { + switch (builtin) + { + case BuiltInFragCoord: + mark_implicit_builtin(StorageClassInput, BuiltInFragCoord, var.self); + builtin_frag_coord_id = var.self; + has_frag_coord = true; + break; + case BuiltInLayer: + if (!msl_options.arrayed_subpass_input || msl_options.multiview) + break; + mark_implicit_builtin(StorageClassInput, BuiltInLayer, var.self); + builtin_layer_id = var.self; + has_layer = true; + break; + case BuiltInViewIndex: + if (!msl_options.multiview) + break; + mark_implicit_builtin(StorageClassInput, BuiltInViewIndex, var.self); + builtin_view_idx_id = var.self; + has_view_idx = true; + break; + default: + break; + } + } + + if ((need_sample_pos || needs_sample_id) && builtin == BuiltInSampleId) + { + builtin_sample_id_id = var.self; + mark_implicit_builtin(StorageClassInput, BuiltInSampleId, var.self); + has_sample_id = true; + } + + if (need_vertex_params) + { + switch (builtin) + { + case BuiltInVertexIndex: + builtin_vertex_idx_id = var.self; + mark_implicit_builtin(StorageClassInput, BuiltInVertexIndex, var.self); + has_vertex_idx = true; + break; + case BuiltInBaseVertex: + builtin_base_vertex_id = var.self; + mark_implicit_builtin(StorageClassInput, BuiltInBaseVertex, var.self); + has_base_vertex = true; + break; + case BuiltInInstanceIndex: + builtin_instance_idx_id = var.self; + mark_implicit_builtin(StorageClassInput, BuiltInInstanceIndex, var.self); + has_instance_idx = true; + break; + case BuiltInBaseInstance: + builtin_base_instance_id = var.self; + mark_implicit_builtin(StorageClassInput, BuiltInBaseInstance, var.self); + has_base_instance = true; + break; + default: + break; + } + } + + if (need_tesc_params && builtin == BuiltInInvocationId) + { + builtin_invocation_id_id = var.self; + mark_implicit_builtin(StorageClassInput, BuiltInInvocationId, var.self); + has_invocation_id = true; + } + + if ((need_tesc_params || need_tese_params) && builtin == BuiltInPrimitiveId) + { + builtin_primitive_id_id = var.self; + mark_implicit_builtin(StorageClassInput, BuiltInPrimitiveId, var.self); + has_primitive_id = true; + } + + if (need_tese_params && builtin == BuiltInTessLevelOuter) + { + tess_level_outer_var_id = var.self; + } + + if (need_tese_params && builtin == BuiltInTessLevelInner) + { + tess_level_inner_var_id = var.self; + } + + if ((need_subgroup_mask || needs_subgroup_invocation_id) && builtin == BuiltInSubgroupLocalInvocationId) + { + builtin_subgroup_invocation_id_id = var.self; + mark_implicit_builtin(StorageClassInput, BuiltInSubgroupLocalInvocationId, var.self); + has_subgroup_invocation_id = true; + } + + if ((need_subgroup_ge_mask || needs_subgroup_size) && builtin == BuiltInSubgroupSize) + { + builtin_subgroup_size_id = var.self; + mark_implicit_builtin(StorageClassInput, BuiltInSubgroupSize, var.self); + has_subgroup_size = true; + } + + if (need_multiview) + { + switch (builtin) + { + case BuiltInInstanceIndex: + // The view index here is derived from the instance index. + builtin_instance_idx_id = var.self; + mark_implicit_builtin(StorageClassInput, BuiltInInstanceIndex, var.self); + has_instance_idx = true; + break; + case BuiltInBaseInstance: + // If a non-zero base instance is used, we need to adjust for it when calculating the view index. + builtin_base_instance_id = var.self; + mark_implicit_builtin(StorageClassInput, BuiltInBaseInstance, var.self); + has_base_instance = true; + break; + case BuiltInViewIndex: + builtin_view_idx_id = var.self; + mark_implicit_builtin(StorageClassInput, BuiltInViewIndex, var.self); + has_view_idx = true; + break; + default: + break; + } + } + + if (needs_helper_invocation && builtin == BuiltInHelperInvocation) + { + builtin_helper_invocation_id = var.self; + mark_implicit_builtin(StorageClassInput, BuiltInHelperInvocation, var.self); + has_helper_invocation = true; + } + + if (need_local_invocation_index && builtin == BuiltInLocalInvocationIndex) + { + builtin_local_invocation_index_id = var.self; + mark_implicit_builtin(StorageClassInput, BuiltInLocalInvocationIndex, var.self); + has_local_invocation_index = true; + } + + if (need_workgroup_size && builtin == BuiltInLocalInvocationId) + { + builtin_workgroup_size_id = var.self; + mark_implicit_builtin(StorageClassInput, BuiltInWorkgroupSize, var.self); + has_workgroup_size = true; + } + + // The base workgroup needs to have the same type and vector size + // as the workgroup or invocation ID, so keep track of the type that + // was used. + if (need_dispatch_base && workgroup_id_type == 0 && + (builtin == BuiltInWorkgroupId || builtin == BuiltInGlobalInvocationId)) + workgroup_id_type = var.basetype; + }); + + // Use Metal's native frame-buffer fetch API for subpass inputs. + if ((!has_frag_coord || (msl_options.multiview && !has_view_idx) || + (msl_options.arrayed_subpass_input && !msl_options.multiview && !has_layer)) && + (!msl_options.use_framebuffer_fetch_subpasses) && need_subpass_input) + { + if (!has_frag_coord) + { + uint32_t offset = ir.increase_bound_by(3); + uint32_t type_id = offset; + uint32_t type_ptr_id = offset + 1; + uint32_t var_id = offset + 2; + + // Create gl_FragCoord. + SPIRType vec4_type { OpTypeVector }; + vec4_type.basetype = SPIRType::Float; + vec4_type.width = 32; + vec4_type.vecsize = 4; + set<SPIRType>(type_id, vec4_type); + + SPIRType vec4_type_ptr = vec4_type; + vec4_type_ptr.op = OpTypePointer; + vec4_type_ptr.pointer = true; + vec4_type_ptr.pointer_depth++; + vec4_type_ptr.parent_type = type_id; + vec4_type_ptr.storage = StorageClassInput; + auto &ptr_type = set<SPIRType>(type_ptr_id, vec4_type_ptr); + ptr_type.self = type_id; + + set<SPIRVariable>(var_id, type_ptr_id, StorageClassInput); + set_decoration(var_id, DecorationBuiltIn, BuiltInFragCoord); + builtin_frag_coord_id = var_id; + mark_implicit_builtin(StorageClassInput, BuiltInFragCoord, var_id); + } + + if (!has_layer && msl_options.arrayed_subpass_input && !msl_options.multiview) + { + uint32_t offset = ir.increase_bound_by(2); + uint32_t type_ptr_id = offset; + uint32_t var_id = offset + 1; + + // Create gl_Layer. + SPIRType uint_type_ptr = get_uint_type(); + uint_type_ptr.op = OpTypePointer; + uint_type_ptr.pointer = true; + uint_type_ptr.pointer_depth++; + uint_type_ptr.parent_type = get_uint_type_id(); + uint_type_ptr.storage = StorageClassInput; + auto &ptr_type = set<SPIRType>(type_ptr_id, uint_type_ptr); + ptr_type.self = get_uint_type_id(); + + set<SPIRVariable>(var_id, type_ptr_id, StorageClassInput); + set_decoration(var_id, DecorationBuiltIn, BuiltInLayer); + builtin_layer_id = var_id; + mark_implicit_builtin(StorageClassInput, BuiltInLayer, var_id); + } + + if (!has_view_idx && msl_options.multiview) + { + uint32_t offset = ir.increase_bound_by(2); + uint32_t type_ptr_id = offset; + uint32_t var_id = offset + 1; + + // Create gl_ViewIndex. + SPIRType uint_type_ptr = get_uint_type(); + uint_type_ptr.op = OpTypePointer; + uint_type_ptr.pointer = true; + uint_type_ptr.pointer_depth++; + uint_type_ptr.parent_type = get_uint_type_id(); + uint_type_ptr.storage = StorageClassInput; + auto &ptr_type = set<SPIRType>(type_ptr_id, uint_type_ptr); + ptr_type.self = get_uint_type_id(); + + set<SPIRVariable>(var_id, type_ptr_id, StorageClassInput); + set_decoration(var_id, DecorationBuiltIn, BuiltInViewIndex); + builtin_view_idx_id = var_id; + mark_implicit_builtin(StorageClassInput, BuiltInViewIndex, var_id); + } + } + + if (!has_sample_id && (need_sample_pos || needs_sample_id)) + { + uint32_t offset = ir.increase_bound_by(2); + uint32_t type_ptr_id = offset; + uint32_t var_id = offset + 1; + + // Create gl_SampleID. + SPIRType uint_type_ptr = get_uint_type(); + uint_type_ptr.op = OpTypePointer; + uint_type_ptr.pointer = true; + uint_type_ptr.pointer_depth++; + uint_type_ptr.parent_type = get_uint_type_id(); + uint_type_ptr.storage = StorageClassInput; + auto &ptr_type = set<SPIRType>(type_ptr_id, uint_type_ptr); + ptr_type.self = get_uint_type_id(); + + set<SPIRVariable>(var_id, type_ptr_id, StorageClassInput); + set_decoration(var_id, DecorationBuiltIn, BuiltInSampleId); + builtin_sample_id_id = var_id; + mark_implicit_builtin(StorageClassInput, BuiltInSampleId, var_id); + } + + if ((need_vertex_params && (!has_vertex_idx || !has_base_vertex || !has_instance_idx || !has_base_instance)) || + (need_multiview && (!has_instance_idx || !has_base_instance || !has_view_idx))) + { + uint32_t type_ptr_id = ir.increase_bound_by(1); + + SPIRType uint_type_ptr = get_uint_type(); + uint_type_ptr.op = OpTypePointer; + uint_type_ptr.pointer = true; + uint_type_ptr.pointer_depth++; + uint_type_ptr.parent_type = get_uint_type_id(); + uint_type_ptr.storage = StorageClassInput; + auto &ptr_type = set<SPIRType>(type_ptr_id, uint_type_ptr); + ptr_type.self = get_uint_type_id(); + + if (need_vertex_params && !has_vertex_idx) + { + uint32_t var_id = ir.increase_bound_by(1); + + // Create gl_VertexIndex. + set<SPIRVariable>(var_id, type_ptr_id, StorageClassInput); + set_decoration(var_id, DecorationBuiltIn, BuiltInVertexIndex); + builtin_vertex_idx_id = var_id; + mark_implicit_builtin(StorageClassInput, BuiltInVertexIndex, var_id); + } + + if (need_vertex_params && !has_base_vertex) + { + uint32_t var_id = ir.increase_bound_by(1); + + // Create gl_BaseVertex. + set<SPIRVariable>(var_id, type_ptr_id, StorageClassInput); + set_decoration(var_id, DecorationBuiltIn, BuiltInBaseVertex); + builtin_base_vertex_id = var_id; + mark_implicit_builtin(StorageClassInput, BuiltInBaseVertex, var_id); + } + + if (!has_instance_idx) // Needed by both multiview and tessellation + { + uint32_t var_id = ir.increase_bound_by(1); + + // Create gl_InstanceIndex. + set<SPIRVariable>(var_id, type_ptr_id, StorageClassInput); + set_decoration(var_id, DecorationBuiltIn, BuiltInInstanceIndex); + builtin_instance_idx_id = var_id; + mark_implicit_builtin(StorageClassInput, BuiltInInstanceIndex, var_id); + } + + if (!has_base_instance) // Needed by both multiview and tessellation + { + uint32_t var_id = ir.increase_bound_by(1); + + // Create gl_BaseInstance. + set<SPIRVariable>(var_id, type_ptr_id, StorageClassInput); + set_decoration(var_id, DecorationBuiltIn, BuiltInBaseInstance); + builtin_base_instance_id = var_id; + mark_implicit_builtin(StorageClassInput, BuiltInBaseInstance, var_id); + } + + if (need_multiview) + { + // Multiview shaders are not allowed to write to gl_Layer, ostensibly because + // it is implicitly written from gl_ViewIndex, but we have to do that explicitly. + // Note that we can't just abuse gl_ViewIndex for this purpose: it's an input, but + // gl_Layer is an output in vertex-pipeline shaders. + uint32_t type_ptr_out_id = ir.increase_bound_by(2); + SPIRType uint_type_ptr_out = get_uint_type(); + uint_type_ptr.op = OpTypePointer; + uint_type_ptr_out.pointer = true; + uint_type_ptr_out.pointer_depth++; + uint_type_ptr_out.parent_type = get_uint_type_id(); + uint_type_ptr_out.storage = StorageClassOutput; + auto &ptr_out_type = set<SPIRType>(type_ptr_out_id, uint_type_ptr_out); + ptr_out_type.self = get_uint_type_id(); + uint32_t var_id = type_ptr_out_id + 1; + set<SPIRVariable>(var_id, type_ptr_out_id, StorageClassOutput); + set_decoration(var_id, DecorationBuiltIn, BuiltInLayer); + builtin_layer_id = var_id; + mark_implicit_builtin(StorageClassOutput, BuiltInLayer, var_id); + } + + if (need_multiview && !has_view_idx) + { + uint32_t var_id = ir.increase_bound_by(1); + + // Create gl_ViewIndex. + set<SPIRVariable>(var_id, type_ptr_id, StorageClassInput); + set_decoration(var_id, DecorationBuiltIn, BuiltInViewIndex); + builtin_view_idx_id = var_id; + mark_implicit_builtin(StorageClassInput, BuiltInViewIndex, var_id); + } + } + + if ((need_tesc_params && (msl_options.multi_patch_workgroup || !has_invocation_id || !has_primitive_id)) || + (need_tese_params && !has_primitive_id) || need_grid_params) + { + uint32_t type_ptr_id = ir.increase_bound_by(1); + + SPIRType uint_type_ptr = get_uint_type(); + uint_type_ptr.op = OpTypePointer; + uint_type_ptr.pointer = true; + uint_type_ptr.pointer_depth++; + uint_type_ptr.parent_type = get_uint_type_id(); + uint_type_ptr.storage = StorageClassInput; + auto &ptr_type = set<SPIRType>(type_ptr_id, uint_type_ptr); + ptr_type.self = get_uint_type_id(); + + if ((need_tesc_params && msl_options.multi_patch_workgroup) || need_grid_params) + { + uint32_t var_id = ir.increase_bound_by(1); + + // Create gl_GlobalInvocationID. + set<SPIRVariable>(var_id, type_ptr_id, StorageClassInput); + set_decoration(var_id, DecorationBuiltIn, BuiltInGlobalInvocationId); + builtin_invocation_id_id = var_id; + mark_implicit_builtin(StorageClassInput, BuiltInGlobalInvocationId, var_id); + } + else if (need_tesc_params && !has_invocation_id) + { + uint32_t var_id = ir.increase_bound_by(1); + + // Create gl_InvocationID. + set<SPIRVariable>(var_id, type_ptr_id, StorageClassInput); + set_decoration(var_id, DecorationBuiltIn, BuiltInInvocationId); + builtin_invocation_id_id = var_id; + mark_implicit_builtin(StorageClassInput, BuiltInInvocationId, var_id); + } + + if ((need_tesc_params || need_tese_params) && !has_primitive_id) + { + uint32_t var_id = ir.increase_bound_by(1); + + // Create gl_PrimitiveID. + set<SPIRVariable>(var_id, type_ptr_id, StorageClassInput); + set_decoration(var_id, DecorationBuiltIn, BuiltInPrimitiveId); + builtin_primitive_id_id = var_id; + mark_implicit_builtin(StorageClassInput, BuiltInPrimitiveId, var_id); + } + + if (need_grid_params) + { + uint32_t var_id = ir.increase_bound_by(1); + + set<SPIRVariable>(var_id, build_extended_vector_type(get_uint_type_id(), 3), StorageClassInput); + set_extended_decoration(var_id, SPIRVCrossDecorationBuiltInStageInputSize); + get_entry_point().interface_variables.push_back(var_id); + set_name(var_id, "spvStageInputSize"); + builtin_stage_input_size_id = var_id; + } + } + + if (!has_subgroup_invocation_id && (need_subgroup_mask || needs_subgroup_invocation_id)) + { + uint32_t offset = ir.increase_bound_by(2); + uint32_t type_ptr_id = offset; + uint32_t var_id = offset + 1; + + // Create gl_SubgroupInvocationID. + SPIRType uint_type_ptr = get_uint_type(); + uint_type_ptr.op = OpTypePointer; + uint_type_ptr.pointer = true; + uint_type_ptr.pointer_depth++; + uint_type_ptr.parent_type = get_uint_type_id(); + uint_type_ptr.storage = StorageClassInput; + auto &ptr_type = set<SPIRType>(type_ptr_id, uint_type_ptr); + ptr_type.self = get_uint_type_id(); + + set<SPIRVariable>(var_id, type_ptr_id, StorageClassInput); + set_decoration(var_id, DecorationBuiltIn, BuiltInSubgroupLocalInvocationId); + builtin_subgroup_invocation_id_id = var_id; + mark_implicit_builtin(StorageClassInput, BuiltInSubgroupLocalInvocationId, var_id); + } + + if (!has_subgroup_size && (need_subgroup_ge_mask || needs_subgroup_size)) + { + uint32_t offset = ir.increase_bound_by(2); + uint32_t type_ptr_id = offset; + uint32_t var_id = offset + 1; + + // Create gl_SubgroupSize. + SPIRType uint_type_ptr = get_uint_type(); + uint_type_ptr.op = OpTypePointer; + uint_type_ptr.pointer = true; + uint_type_ptr.pointer_depth++; + uint_type_ptr.parent_type = get_uint_type_id(); + uint_type_ptr.storage = StorageClassInput; + auto &ptr_type = set<SPIRType>(type_ptr_id, uint_type_ptr); + ptr_type.self = get_uint_type_id(); + + set<SPIRVariable>(var_id, type_ptr_id, StorageClassInput); + set_decoration(var_id, DecorationBuiltIn, BuiltInSubgroupSize); + builtin_subgroup_size_id = var_id; + mark_implicit_builtin(StorageClassInput, BuiltInSubgroupSize, var_id); + } + + if (need_dispatch_base || need_vertex_base_params) + { + if (workgroup_id_type == 0) + workgroup_id_type = build_extended_vector_type(get_uint_type_id(), 3); + uint32_t var_id; + if (msl_options.supports_msl_version(1, 2)) + { + // If we have MSL 1.2, we can (ab)use the [[grid_origin]] builtin + // to convey this information and save a buffer slot. + uint32_t offset = ir.increase_bound_by(1); + var_id = offset; + + set<SPIRVariable>(var_id, workgroup_id_type, StorageClassInput); + set_extended_decoration(var_id, SPIRVCrossDecorationBuiltInDispatchBase); + get_entry_point().interface_variables.push_back(var_id); + } + else + { + // Otherwise, we need to fall back to a good ol' fashioned buffer. + uint32_t offset = ir.increase_bound_by(2); + var_id = offset; + uint32_t type_id = offset + 1; + + SPIRType var_type = get<SPIRType>(workgroup_id_type); + var_type.storage = StorageClassUniform; + set<SPIRType>(type_id, var_type); + + set<SPIRVariable>(var_id, type_id, StorageClassUniform); + // This should never match anything. + set_decoration(var_id, DecorationDescriptorSet, ~(5u)); + set_decoration(var_id, DecorationBinding, msl_options.indirect_params_buffer_index); + set_extended_decoration(var_id, SPIRVCrossDecorationResourceIndexPrimary, + msl_options.indirect_params_buffer_index); + } + set_name(var_id, "spvDispatchBase"); + builtin_dispatch_base_id = var_id; + } + + if (has_additional_fixed_sample_mask() && !does_shader_write_sample_mask) + { + uint32_t offset = ir.increase_bound_by(2); + uint32_t var_id = offset + 1; + + // Create gl_SampleMask. + SPIRType uint_type_ptr_out = get_uint_type(); + uint_type_ptr_out.op = OpTypePointer; + uint_type_ptr_out.pointer = true; + uint_type_ptr_out.pointer_depth++; + uint_type_ptr_out.parent_type = get_uint_type_id(); + uint_type_ptr_out.storage = StorageClassOutput; + + auto &ptr_out_type = set<SPIRType>(offset, uint_type_ptr_out); + ptr_out_type.self = get_uint_type_id(); + set<SPIRVariable>(var_id, offset, StorageClassOutput); + set_decoration(var_id, DecorationBuiltIn, BuiltInSampleMask); + builtin_sample_mask_id = var_id; + mark_implicit_builtin(StorageClassOutput, BuiltInSampleMask, var_id); + } + + if (!has_helper_invocation && needs_helper_invocation) + { + uint32_t offset = ir.increase_bound_by(3); + uint32_t type_id = offset; + uint32_t type_ptr_id = offset + 1; + uint32_t var_id = offset + 2; + + // Create gl_HelperInvocation. + SPIRType bool_type { OpTypeBool }; + bool_type.basetype = SPIRType::Boolean; + bool_type.width = 8; + bool_type.vecsize = 1; + set<SPIRType>(type_id, bool_type); + + SPIRType bool_type_ptr_in = bool_type; + bool_type_ptr_in.op = spv::OpTypePointer; + bool_type_ptr_in.pointer = true; + bool_type_ptr_in.pointer_depth++; + bool_type_ptr_in.parent_type = type_id; + bool_type_ptr_in.storage = StorageClassInput; + + auto &ptr_in_type = set<SPIRType>(type_ptr_id, bool_type_ptr_in); + ptr_in_type.self = type_id; + set<SPIRVariable>(var_id, type_ptr_id, StorageClassInput); + set_decoration(var_id, DecorationBuiltIn, BuiltInHelperInvocation); + builtin_helper_invocation_id = var_id; + mark_implicit_builtin(StorageClassInput, BuiltInHelperInvocation, var_id); + } + + if (need_local_invocation_index && !has_local_invocation_index) + { + uint32_t offset = ir.increase_bound_by(2); + uint32_t type_ptr_id = offset; + uint32_t var_id = offset + 1; + + // Create gl_LocalInvocationIndex. + SPIRType uint_type_ptr = get_uint_type(); + uint_type_ptr.op = OpTypePointer; + uint_type_ptr.pointer = true; + uint_type_ptr.pointer_depth++; + uint_type_ptr.parent_type = get_uint_type_id(); + uint_type_ptr.storage = StorageClassInput; + + auto &ptr_type = set<SPIRType>(type_ptr_id, uint_type_ptr); + ptr_type.self = get_uint_type_id(); + set<SPIRVariable>(var_id, type_ptr_id, StorageClassInput); + set_decoration(var_id, DecorationBuiltIn, BuiltInLocalInvocationIndex); + builtin_local_invocation_index_id = var_id; + mark_implicit_builtin(StorageClassInput, BuiltInLocalInvocationIndex, var_id); + } + + if (need_workgroup_size && !has_workgroup_size) + { + uint32_t offset = ir.increase_bound_by(2); + uint32_t type_ptr_id = offset; + uint32_t var_id = offset + 1; + + // Create gl_WorkgroupSize. + uint32_t type_id = build_extended_vector_type(get_uint_type_id(), 3); + SPIRType uint_type_ptr = get<SPIRType>(type_id); + uint_type_ptr.op = OpTypePointer; + uint_type_ptr.pointer = true; + uint_type_ptr.pointer_depth++; + uint_type_ptr.parent_type = type_id; + uint_type_ptr.storage = StorageClassInput; + + auto &ptr_type = set<SPIRType>(type_ptr_id, uint_type_ptr); + ptr_type.self = type_id; + set<SPIRVariable>(var_id, type_ptr_id, StorageClassInput); + set_decoration(var_id, DecorationBuiltIn, BuiltInWorkgroupSize); + builtin_workgroup_size_id = var_id; + mark_implicit_builtin(StorageClassInput, BuiltInWorkgroupSize, var_id); + } + + if (!has_frag_depth && force_frag_depth_passthrough) + { + uint32_t offset = ir.increase_bound_by(3); + uint32_t type_id = offset; + uint32_t type_ptr_id = offset + 1; + uint32_t var_id = offset + 2; + + // Create gl_FragDepth + SPIRType float_type { OpTypeFloat }; + float_type.basetype = SPIRType::Float; + float_type.width = 32; + float_type.vecsize = 1; + set<SPIRType>(type_id, float_type); + + SPIRType float_type_ptr_in = float_type; + float_type_ptr_in.op = spv::OpTypePointer; + float_type_ptr_in.pointer = true; + float_type_ptr_in.pointer_depth++; + float_type_ptr_in.parent_type = type_id; + float_type_ptr_in.storage = StorageClassOutput; + + auto &ptr_in_type = set<SPIRType>(type_ptr_id, float_type_ptr_in); + ptr_in_type.self = type_id; + set<SPIRVariable>(var_id, type_ptr_id, StorageClassOutput); + set_decoration(var_id, DecorationBuiltIn, BuiltInFragDepth); + builtin_frag_depth_id = var_id; + mark_implicit_builtin(StorageClassOutput, BuiltInFragDepth, var_id); + active_output_builtins.set(BuiltInFragDepth); + } + } + + if (needs_swizzle_buffer_def) + { + uint32_t var_id = build_constant_uint_array_pointer(); + set_name(var_id, "spvSwizzleConstants"); + // This should never match anything. + set_decoration(var_id, DecorationDescriptorSet, kSwizzleBufferBinding); + set_decoration(var_id, DecorationBinding, msl_options.swizzle_buffer_index); + set_extended_decoration(var_id, SPIRVCrossDecorationResourceIndexPrimary, msl_options.swizzle_buffer_index); + swizzle_buffer_id = var_id; + } + + if (needs_buffer_size_buffer()) + { + uint32_t var_id = build_constant_uint_array_pointer(); + set_name(var_id, "spvBufferSizeConstants"); + // This should never match anything. + set_decoration(var_id, DecorationDescriptorSet, kBufferSizeBufferBinding); + set_decoration(var_id, DecorationBinding, msl_options.buffer_size_buffer_index); + set_extended_decoration(var_id, SPIRVCrossDecorationResourceIndexPrimary, msl_options.buffer_size_buffer_index); + buffer_size_buffer_id = var_id; + } + + if (needs_view_mask_buffer()) + { + uint32_t var_id = build_constant_uint_array_pointer(); + set_name(var_id, "spvViewMask"); + // This should never match anything. + set_decoration(var_id, DecorationDescriptorSet, ~(4u)); + set_decoration(var_id, DecorationBinding, msl_options.view_mask_buffer_index); + set_extended_decoration(var_id, SPIRVCrossDecorationResourceIndexPrimary, msl_options.view_mask_buffer_index); + view_mask_buffer_id = var_id; + } + + if (!buffers_requiring_dynamic_offset.empty()) + { + uint32_t var_id = build_constant_uint_array_pointer(); + set_name(var_id, "spvDynamicOffsets"); + // This should never match anything. + set_decoration(var_id, DecorationDescriptorSet, ~(5u)); + set_decoration(var_id, DecorationBinding, msl_options.dynamic_offsets_buffer_index); + set_extended_decoration(var_id, SPIRVCrossDecorationResourceIndexPrimary, + msl_options.dynamic_offsets_buffer_index); + dynamic_offsets_buffer_id = var_id; + } + + // If we're returning a struct from a vertex-like entry point, we must return a position attribute. + bool need_position = (get_execution_model() == ExecutionModelVertex || is_tese_shader()) && + !capture_output_to_buffer && !get_is_rasterization_disabled() && + !active_output_builtins.get(BuiltInPosition); + + if (need_position) + { + // If we can get away with returning void from entry point, we don't need to care. + // If there is at least one other stage output, we need to return [[position]], + // so we need to create one if it doesn't appear in the SPIR-V. Before adding the + // implicit variable, check if it actually exists already, but just has not been used + // or initialized, and if so, mark it as active, and do not create the implicit variable. + bool has_output = false; + ir.for_each_typed_id<SPIRVariable>([&](uint32_t, SPIRVariable &var) { + if (var.storage == StorageClassOutput && interface_variable_exists_in_entry_point(var.self)) + { + has_output = true; + + // Check if the var is the Position builtin + if (has_decoration(var.self, DecorationBuiltIn) && get_decoration(var.self, DecorationBuiltIn) == BuiltInPosition) + active_output_builtins.set(BuiltInPosition); + + // If the var is a struct, check if any members is the Position builtin + auto &var_type = get_variable_element_type(var); + if (var_type.basetype == SPIRType::Struct) + { + auto mbr_cnt = var_type.member_types.size(); + for (uint32_t mbr_idx = 0; mbr_idx < mbr_cnt; mbr_idx++) + { + auto builtin = BuiltInMax; + bool is_builtin = is_member_builtin(var_type, mbr_idx, &builtin); + if (is_builtin && builtin == BuiltInPosition) + active_output_builtins.set(BuiltInPosition); + } + } + } + }); + need_position = has_output && !active_output_builtins.get(BuiltInPosition); + } + + if (need_position) + { + uint32_t offset = ir.increase_bound_by(3); + uint32_t type_id = offset; + uint32_t type_ptr_id = offset + 1; + uint32_t var_id = offset + 2; + + // Create gl_Position. + SPIRType vec4_type { OpTypeVector }; + vec4_type.basetype = SPIRType::Float; + vec4_type.width = 32; + vec4_type.vecsize = 4; + set<SPIRType>(type_id, vec4_type); + + SPIRType vec4_type_ptr = vec4_type; + vec4_type_ptr.op = OpTypePointer; + vec4_type_ptr.pointer = true; + vec4_type_ptr.pointer_depth++; + vec4_type_ptr.parent_type = type_id; + vec4_type_ptr.storage = StorageClassOutput; + auto &ptr_type = set<SPIRType>(type_ptr_id, vec4_type_ptr); + ptr_type.self = type_id; + + set<SPIRVariable>(var_id, type_ptr_id, StorageClassOutput); + set_decoration(var_id, DecorationBuiltIn, BuiltInPosition); + mark_implicit_builtin(StorageClassOutput, BuiltInPosition, var_id); + } +} + +// Checks if the specified builtin variable (e.g. gl_InstanceIndex) is marked as active. +// If not, it marks it as active and forces a recompilation. +// This might be used when the optimization of inactive builtins was too optimistic (e.g. when "spvOut" is emitted). +void CompilerMSL::ensure_builtin(spv::StorageClass storage, spv::BuiltIn builtin) +{ + Bitset *active_builtins = nullptr; + switch (storage) + { + case StorageClassInput: + active_builtins = &active_input_builtins; + break; + + case StorageClassOutput: + active_builtins = &active_output_builtins; + break; + + default: + break; + } + + // At this point, the specified builtin variable must have already been declared in the entry point. + // If not, mark as active and force recompile. + if (active_builtins != nullptr && !active_builtins->get(builtin)) + { + active_builtins->set(builtin); + force_recompile(); + } +} + +void CompilerMSL::mark_implicit_builtin(StorageClass storage, BuiltIn builtin, uint32_t id) +{ + Bitset *active_builtins = nullptr; + switch (storage) + { + case StorageClassInput: + active_builtins = &active_input_builtins; + break; + + case StorageClassOutput: + active_builtins = &active_output_builtins; + break; + + default: + break; + } + + assert(active_builtins != nullptr); + active_builtins->set(builtin); + + auto &var = get_entry_point().interface_variables; + if (find(begin(var), end(var), VariableID(id)) == end(var)) + var.push_back(id); +} + +uint32_t CompilerMSL::build_constant_uint_array_pointer() +{ + uint32_t offset = ir.increase_bound_by(3); + uint32_t type_ptr_id = offset; + uint32_t type_ptr_ptr_id = offset + 1; + uint32_t var_id = offset + 2; + + // Create a buffer to hold extra data, including the swizzle constants. + SPIRType uint_type_pointer = get_uint_type(); + uint_type_pointer.op = OpTypePointer; + uint_type_pointer.pointer = true; + uint_type_pointer.pointer_depth++; + uint_type_pointer.parent_type = get_uint_type_id(); + uint_type_pointer.storage = StorageClassUniform; + set<SPIRType>(type_ptr_id, uint_type_pointer); + set_decoration(type_ptr_id, DecorationArrayStride, 4); + + SPIRType uint_type_pointer2 = uint_type_pointer; + uint_type_pointer2.pointer_depth++; + uint_type_pointer2.parent_type = type_ptr_id; + set<SPIRType>(type_ptr_ptr_id, uint_type_pointer2); + + set<SPIRVariable>(var_id, type_ptr_ptr_id, StorageClassUniformConstant); + return var_id; +} + +static string create_sampler_address(const char *prefix, MSLSamplerAddress addr) +{ + switch (addr) + { + case MSL_SAMPLER_ADDRESS_CLAMP_TO_EDGE: + return join(prefix, "address::clamp_to_edge"); + case MSL_SAMPLER_ADDRESS_CLAMP_TO_ZERO: + return join(prefix, "address::clamp_to_zero"); + case MSL_SAMPLER_ADDRESS_CLAMP_TO_BORDER: + return join(prefix, "address::clamp_to_border"); + case MSL_SAMPLER_ADDRESS_REPEAT: + return join(prefix, "address::repeat"); + case MSL_SAMPLER_ADDRESS_MIRRORED_REPEAT: + return join(prefix, "address::mirrored_repeat"); + default: + SPIRV_CROSS_THROW("Invalid sampler addressing mode."); + } +} + +SPIRType &CompilerMSL::get_stage_in_struct_type() +{ + auto &si_var = get<SPIRVariable>(stage_in_var_id); + return get_variable_data_type(si_var); +} + +SPIRType &CompilerMSL::get_stage_out_struct_type() +{ + auto &so_var = get<SPIRVariable>(stage_out_var_id); + return get_variable_data_type(so_var); +} + +SPIRType &CompilerMSL::get_patch_stage_in_struct_type() +{ + auto &si_var = get<SPIRVariable>(patch_stage_in_var_id); + return get_variable_data_type(si_var); +} + +SPIRType &CompilerMSL::get_patch_stage_out_struct_type() +{ + auto &so_var = get<SPIRVariable>(patch_stage_out_var_id); + return get_variable_data_type(so_var); +} + +std::string CompilerMSL::get_tess_factor_struct_name() +{ + if (is_tessellating_triangles()) + return "MTLTriangleTessellationFactorsHalf"; + return "MTLQuadTessellationFactorsHalf"; +} + +SPIRType &CompilerMSL::get_uint_type() +{ + return get<SPIRType>(get_uint_type_id()); +} + +uint32_t CompilerMSL::get_uint_type_id() +{ + if (uint_type_id != 0) + return uint_type_id; + + uint_type_id = ir.increase_bound_by(1); + + SPIRType type { OpTypeInt }; + type.basetype = SPIRType::UInt; + type.width = 32; + set<SPIRType>(uint_type_id, type); + return uint_type_id; +} + +void CompilerMSL::emit_entry_point_declarations() +{ + // FIXME: Get test coverage here ... + // Constant arrays of non-primitive types (i.e. matrices) won't link properly into Metal libraries + declare_complex_constant_arrays(); + + // Emit constexpr samplers here. + for (auto &samp : constexpr_samplers_by_id) + { + auto &var = get<SPIRVariable>(samp.first); + auto &type = get<SPIRType>(var.basetype); + if (type.basetype == SPIRType::Sampler) + add_resource_name(samp.first); + + SmallVector<string> args; + auto &s = samp.second; + + if (s.coord != MSL_SAMPLER_COORD_NORMALIZED) + args.push_back("coord::pixel"); + + if (s.min_filter == s.mag_filter) + { + if (s.min_filter != MSL_SAMPLER_FILTER_NEAREST) + args.push_back("filter::linear"); + } + else + { + if (s.min_filter != MSL_SAMPLER_FILTER_NEAREST) + args.push_back("min_filter::linear"); + if (s.mag_filter != MSL_SAMPLER_FILTER_NEAREST) + args.push_back("mag_filter::linear"); + } + + switch (s.mip_filter) + { + case MSL_SAMPLER_MIP_FILTER_NONE: + // Default + break; + case MSL_SAMPLER_MIP_FILTER_NEAREST: + args.push_back("mip_filter::nearest"); + break; + case MSL_SAMPLER_MIP_FILTER_LINEAR: + args.push_back("mip_filter::linear"); + break; + default: + SPIRV_CROSS_THROW("Invalid mip filter."); + } + + if (s.s_address == s.t_address && s.s_address == s.r_address) + { + if (s.s_address != MSL_SAMPLER_ADDRESS_CLAMP_TO_EDGE) + args.push_back(create_sampler_address("", s.s_address)); + } + else + { + if (s.s_address != MSL_SAMPLER_ADDRESS_CLAMP_TO_EDGE) + args.push_back(create_sampler_address("s_", s.s_address)); + if (s.t_address != MSL_SAMPLER_ADDRESS_CLAMP_TO_EDGE) + args.push_back(create_sampler_address("t_", s.t_address)); + if (s.r_address != MSL_SAMPLER_ADDRESS_CLAMP_TO_EDGE) + args.push_back(create_sampler_address("r_", s.r_address)); + } + + if (s.compare_enable) + { + switch (s.compare_func) + { + case MSL_SAMPLER_COMPARE_FUNC_ALWAYS: + args.push_back("compare_func::always"); + break; + case MSL_SAMPLER_COMPARE_FUNC_NEVER: + args.push_back("compare_func::never"); + break; + case MSL_SAMPLER_COMPARE_FUNC_EQUAL: + args.push_back("compare_func::equal"); + break; + case MSL_SAMPLER_COMPARE_FUNC_NOT_EQUAL: + args.push_back("compare_func::not_equal"); + break; + case MSL_SAMPLER_COMPARE_FUNC_LESS: + args.push_back("compare_func::less"); + break; + case MSL_SAMPLER_COMPARE_FUNC_LESS_EQUAL: + args.push_back("compare_func::less_equal"); + break; + case MSL_SAMPLER_COMPARE_FUNC_GREATER: + args.push_back("compare_func::greater"); + break; + case MSL_SAMPLER_COMPARE_FUNC_GREATER_EQUAL: + args.push_back("compare_func::greater_equal"); + break; + default: + SPIRV_CROSS_THROW("Invalid sampler compare function."); + } + } + + if (s.s_address == MSL_SAMPLER_ADDRESS_CLAMP_TO_BORDER || s.t_address == MSL_SAMPLER_ADDRESS_CLAMP_TO_BORDER || + s.r_address == MSL_SAMPLER_ADDRESS_CLAMP_TO_BORDER) + { + switch (s.border_color) + { + case MSL_SAMPLER_BORDER_COLOR_OPAQUE_BLACK: + args.push_back("border_color::opaque_black"); + break; + case MSL_SAMPLER_BORDER_COLOR_OPAQUE_WHITE: + args.push_back("border_color::opaque_white"); + break; + case MSL_SAMPLER_BORDER_COLOR_TRANSPARENT_BLACK: + args.push_back("border_color::transparent_black"); + break; + default: + SPIRV_CROSS_THROW("Invalid sampler border color."); + } + } + + if (s.anisotropy_enable) + args.push_back(join("max_anisotropy(", s.max_anisotropy, ")")); + if (s.lod_clamp_enable) + { + args.push_back(join("lod_clamp(", format_float(s.lod_clamp_min), ", ", format_float(s.lod_clamp_max), ")")); + } + + // If we would emit no arguments, then omit the parentheses entirely. Otherwise, + // we'll wind up with a "most vexing parse" situation. + if (args.empty()) + statement("constexpr sampler ", + type.basetype == SPIRType::SampledImage ? to_sampler_expression(samp.first) : to_name(samp.first), + ";"); + else + statement("constexpr sampler ", + type.basetype == SPIRType::SampledImage ? to_sampler_expression(samp.first) : to_name(samp.first), + "(", merge(args), ");"); + } + + // Emit dynamic buffers here. + for (auto &dynamic_buffer : buffers_requiring_dynamic_offset) + { + if (!dynamic_buffer.second.second) + { + // Could happen if no buffer was used at requested binding point. + continue; + } + + const auto &var = get<SPIRVariable>(dynamic_buffer.second.second); + uint32_t var_id = var.self; + const auto &type = get_variable_data_type(var); + string name = to_name(var.self); + uint32_t desc_set = get_decoration(var.self, DecorationDescriptorSet); + uint32_t arg_id = argument_buffer_ids[desc_set]; + uint32_t base_index = dynamic_buffer.second.first; + + if (is_array(type)) + { + is_using_builtin_array = true; + statement(get_argument_address_space(var), " ", type_to_glsl(type), "* ", to_restrict(var_id, true), name, + type_to_array_glsl(type, var_id), " ="); + + uint32_t array_size = get_resource_array_size(type, var_id); + if (array_size == 0) + SPIRV_CROSS_THROW("Size of runtime array with dynamic offset could not be determined from resource bindings."); + + begin_scope(); + + for (uint32_t i = 0; i < array_size; i++) + { + statement("(", get_argument_address_space(var), " ", type_to_glsl(type), "* ", + to_restrict(var_id, false), ")((", get_argument_address_space(var), " char* ", + to_restrict(var_id, false), ")", to_name(arg_id), ".", ensure_valid_name(name, "m"), + "[", i, "]", " + ", to_name(dynamic_offsets_buffer_id), "[", base_index + i, "]),"); + } + + end_scope_decl(); + statement_no_indent(""); + is_using_builtin_array = false; + } + else + { + statement(get_argument_address_space(var), " auto& ", to_restrict(var_id, true), name, " = *(", + get_argument_address_space(var), " ", type_to_glsl(type), "* ", to_restrict(var_id, false), ")((", + get_argument_address_space(var), " char* ", to_restrict(var_id, false), ")", to_name(arg_id), ".", + ensure_valid_name(name, "m"), " + ", to_name(dynamic_offsets_buffer_id), "[", base_index, "]);"); + } + } + + bool has_runtime_array_declaration = false; + for (SPIRVariable *arg : entry_point_bindings) + { + const auto &var = *arg; + const auto &type = get_variable_data_type(var); + const auto &buffer_type = get_variable_element_type(var); + const string name = to_name(var.self); + + if (is_var_runtime_size_array(var)) + { + if (msl_options.argument_buffers_tier < Options::ArgumentBuffersTier::Tier2) + { + SPIRV_CROSS_THROW("Unsized array of descriptors requires argument buffer tier 2"); + } + + string resource_name; + if (descriptor_set_is_argument_buffer(get_decoration(var.self, DecorationDescriptorSet))) + resource_name = ir.meta[var.self].decoration.qualified_alias; + else + resource_name = name + "_"; + + switch (type.basetype) + { + case SPIRType::Image: + case SPIRType::Sampler: + case SPIRType::AccelerationStructure: + statement("spvDescriptorArray<", type_to_glsl(buffer_type, var.self), "> ", name, " {", resource_name, "};"); + break; + case SPIRType::SampledImage: + statement("spvDescriptorArray<", type_to_glsl(buffer_type, var.self), "> ", name, " {", resource_name, "};"); + // Unsupported with argument buffer for now. + statement("spvDescriptorArray<sampler> ", name, "Smplr {", name, "Smplr_};"); + break; + case SPIRType::Struct: + statement("spvDescriptorArray<", get_argument_address_space(var), " ", type_to_glsl(buffer_type), "*> ", + name, " {", resource_name, "};"); + break; + default: + break; + } + has_runtime_array_declaration = true; + } + else if (!type.array.empty() && type.basetype == SPIRType::Struct) + { + // Emit only buffer arrays here. + statement(get_argument_address_space(var), " ", type_to_glsl(buffer_type), "* ", + to_restrict(var.self, true), name, "[] ="); + begin_scope(); + uint32_t array_size = get_resource_array_size(type, var.self); + for (uint32_t i = 0; i < array_size; ++i) + statement(name, "_", i, ","); + end_scope_decl(); + statement_no_indent(""); + } + } + + if (has_runtime_array_declaration) + statement_no_indent(""); + + // Emit buffer aliases here. + for (auto &var_id : buffer_aliases_discrete) + { + const auto &var = get<SPIRVariable>(var_id); + const auto &type = get_variable_data_type(var); + auto addr_space = get_argument_address_space(var); + auto name = to_name(var_id); + + uint32_t desc_set = get_decoration(var_id, DecorationDescriptorSet); + uint32_t desc_binding = get_decoration(var_id, DecorationBinding); + auto alias_name = join("spvBufferAliasSet", desc_set, "Binding", desc_binding); + + statement(addr_space, " auto& ", to_restrict(var_id, true), + name, + " = *(", addr_space, " ", type_to_glsl(type), "*)", alias_name, ";"); + } + // Discrete descriptors are processed in entry point emission every compiler iteration. + buffer_aliases_discrete.clear(); + + for (auto &var_pair : buffer_aliases_argument) + { + uint32_t var_id = var_pair.first; + uint32_t alias_id = var_pair.second; + + const auto &var = get<SPIRVariable>(var_id); + const auto &type = get_variable_data_type(var); + auto addr_space = get_argument_address_space(var); + + if (type.array.empty()) + { + statement(addr_space, " auto& ", to_restrict(var_id, true), to_name(var_id), " = (", addr_space, " ", + type_to_glsl(type), "&)", ir.meta[alias_id].decoration.qualified_alias, ";"); + } + else + { + const char *desc_addr_space = descriptor_address_space(var_id, var.storage, "thread"); + + // Esoteric type cast. Reference to array of pointers. + // Auto here defers to UBO or SSBO. The address space of the reference needs to refer to the + // address space of the argument buffer itself, which is usually constant, but can be const device for + // large argument buffers. + is_using_builtin_array = true; + statement(desc_addr_space, " auto& ", to_restrict(var_id, true), to_name(var_id), " = (", addr_space, " ", + type_to_glsl(type), "* ", desc_addr_space, " (&)", + type_to_array_glsl(type, var_id), ")", ir.meta[alias_id].decoration.qualified_alias, ";"); + is_using_builtin_array = false; + } + } + + // Emit disabled fragment outputs. + std::sort(disabled_frag_outputs.begin(), disabled_frag_outputs.end()); + for (uint32_t var_id : disabled_frag_outputs) + { + auto &var = get<SPIRVariable>(var_id); + add_local_variable_name(var_id); + statement(CompilerGLSL::variable_decl(var), ";"); + var.deferred_declaration = false; + } +} + +string CompilerMSL::compile() +{ + replace_illegal_entry_point_names(); + ir.fixup_reserved_names(); + + // Do not deal with GLES-isms like precision, older extensions and such. + options.vulkan_semantics = true; + options.es = false; + options.version = 450; + backend.null_pointer_literal = "nullptr"; + backend.float_literal_suffix = false; + backend.uint32_t_literal_suffix = true; + backend.int16_t_literal_suffix = ""; + backend.uint16_t_literal_suffix = ""; + backend.basic_int_type = "int"; + backend.basic_uint_type = "uint"; + backend.basic_int8_type = "char"; + backend.basic_uint8_type = "uchar"; + backend.basic_int16_type = "short"; + backend.basic_uint16_type = "ushort"; + backend.boolean_mix_function = "select"; + backend.swizzle_is_function = false; + backend.shared_is_implied = false; + backend.use_initializer_list = true; + backend.use_typed_initializer_list = true; + backend.native_row_major_matrix = false; + backend.unsized_array_supported = false; + backend.can_declare_arrays_inline = false; + backend.allow_truncated_access_chain = true; + backend.comparison_image_samples_scalar = true; + backend.native_pointers = true; + backend.nonuniform_qualifier = ""; + backend.support_small_type_sampling_result = true; + backend.supports_empty_struct = true; + backend.support_64bit_switch = true; + backend.boolean_in_struct_remapped_type = SPIRType::Short; + + // Allow Metal to use the array<T> template unless we force it off. + backend.can_return_array = !msl_options.force_native_arrays; + backend.array_is_value_type = !msl_options.force_native_arrays; + // Arrays which are part of buffer objects are never considered to be value types (just plain C-style). + backend.array_is_value_type_in_buffer_blocks = false; + backend.support_pointer_to_pointer = true; + backend.implicit_c_integer_promotion_rules = true; + + capture_output_to_buffer = msl_options.capture_output_to_buffer; + is_rasterization_disabled = msl_options.disable_rasterization || capture_output_to_buffer; + + // Initialize array here rather than constructor, MSVC 2013 workaround. + for (auto &id : next_metal_resource_ids) + id = 0; + + fixup_anonymous_struct_names(); + fixup_type_alias(); + replace_illegal_names(); + sync_entry_point_aliases_and_names(); + + build_function_control_flow_graphs_and_analyze(); + update_active_builtins(); + analyze_image_and_sampler_usage(); + analyze_sampled_image_usage(); + analyze_interlocked_resource_usage(); + preprocess_op_codes(); + build_implicit_builtins(); + + if (needs_manual_helper_invocation_updates() && + (active_input_builtins.get(BuiltInHelperInvocation) || needs_helper_invocation)) + { + string builtin_helper_invocation = builtin_to_glsl(BuiltInHelperInvocation, StorageClassInput); + string discard_expr = join(builtin_helper_invocation, " = true, discard_fragment()"); + if (msl_options.force_fragment_with_side_effects_execution) + discard_expr = join("!", builtin_helper_invocation, " ? (", discard_expr, ") : (void)0"); + backend.discard_literal = discard_expr; + backend.demote_literal = discard_expr; + } + else + { + backend.discard_literal = "discard_fragment()"; + backend.demote_literal = "discard_fragment()"; + } + + fixup_image_load_store_access(); + + set_enabled_interface_variables(get_active_interface_variables()); + if (msl_options.force_active_argument_buffer_resources) + activate_argument_buffer_resources(); + + if (swizzle_buffer_id) + add_active_interface_variable(swizzle_buffer_id); + if (buffer_size_buffer_id) + add_active_interface_variable(buffer_size_buffer_id); + if (view_mask_buffer_id) + add_active_interface_variable(view_mask_buffer_id); + if (dynamic_offsets_buffer_id) + add_active_interface_variable(dynamic_offsets_buffer_id); + if (builtin_layer_id) + add_active_interface_variable(builtin_layer_id); + if (builtin_dispatch_base_id && !msl_options.supports_msl_version(1, 2)) + add_active_interface_variable(builtin_dispatch_base_id); + if (builtin_sample_mask_id) + add_active_interface_variable(builtin_sample_mask_id); + if (builtin_frag_depth_id) + add_active_interface_variable(builtin_frag_depth_id); + + // Create structs to hold input, output and uniform variables. + // Do output first to ensure out. is declared at top of entry function. + qual_pos_var_name = ""; + stage_out_var_id = add_interface_block(StorageClassOutput); + patch_stage_out_var_id = add_interface_block(StorageClassOutput, true); + stage_in_var_id = add_interface_block(StorageClassInput); + if (is_tese_shader()) + patch_stage_in_var_id = add_interface_block(StorageClassInput, true); + + if (is_tesc_shader()) + stage_out_ptr_var_id = add_interface_block_pointer(stage_out_var_id, StorageClassOutput); + if (is_tessellation_shader()) + stage_in_ptr_var_id = add_interface_block_pointer(stage_in_var_id, StorageClassInput); + + // Metal vertex functions that define no output must disable rasterization and return void. + if (!stage_out_var_id) + is_rasterization_disabled = true; + + // Convert the use of global variables to recursively-passed function parameters + localize_global_variables(); + extract_global_variables_from_functions(); + + // Mark any non-stage-in structs to be tightly packed. + mark_packable_structs(); + reorder_type_alias(); + + // Add fixup hooks required by shader inputs and outputs. This needs to happen before + // the loop, so the hooks aren't added multiple times. + fix_up_shader_inputs_outputs(); + + // If we are using argument buffers, we create argument buffer structures for them here. + // These buffers will be used in the entry point, not the individual resources. + if (msl_options.argument_buffers) + { + if (!msl_options.supports_msl_version(2, 0)) + SPIRV_CROSS_THROW("Argument buffers can only be used with MSL 2.0 and up."); + analyze_argument_buffers(); + } + + uint32_t pass_count = 0; + do + { + reset(pass_count); + + // Start bindings at zero. + next_metal_resource_index_buffer = 0; + next_metal_resource_index_texture = 0; + next_metal_resource_index_sampler = 0; + for (auto &id : next_metal_resource_ids) + id = 0; + + // Move constructor for this type is broken on GCC 4.9 ... + buffer.reset(); + + emit_header(); + emit_custom_templates(); + emit_custom_functions(); + emit_specialization_constants_and_structs(); + emit_resources(); + emit_function(get<SPIRFunction>(ir.default_entry_point), Bitset()); + + pass_count++; + } while (is_forcing_recompilation()); + + return buffer.str(); +} + +// Register the need to output any custom functions. +void CompilerMSL::preprocess_op_codes() +{ + OpCodePreprocessor preproc(*this); + traverse_all_reachable_opcodes(get<SPIRFunction>(ir.default_entry_point), preproc); + + suppress_missing_prototypes = preproc.suppress_missing_prototypes; + + if (preproc.uses_atomics) + { + add_header_line("#include <metal_atomic>"); + add_pragma_line("#pragma clang diagnostic ignored \"-Wunused-variable\""); + } + + // Before MSL 2.1 (2.2 for textures), Metal vertex functions that write to + // resources must disable rasterization and return void. + if ((preproc.uses_buffer_write && !msl_options.supports_msl_version(2, 1)) || + (preproc.uses_image_write && !msl_options.supports_msl_version(2, 2))) + is_rasterization_disabled = true; + + // Tessellation control shaders are run as compute functions in Metal, and so + // must capture their output to a buffer. + if (is_tesc_shader() || (get_execution_model() == ExecutionModelVertex && msl_options.vertex_for_tessellation)) + { + is_rasterization_disabled = true; + capture_output_to_buffer = true; + } + + if (preproc.needs_subgroup_invocation_id) + needs_subgroup_invocation_id = true; + if (preproc.needs_subgroup_size) + needs_subgroup_size = true; + // build_implicit_builtins() hasn't run yet, and in fact, this needs to execute + // before then so that gl_SampleID will get added; so we also need to check if + // that function would add gl_FragCoord. + if (preproc.needs_sample_id || msl_options.force_sample_rate_shading || + (is_sample_rate() && (active_input_builtins.get(BuiltInFragCoord) || + (need_subpass_input_ms && !msl_options.use_framebuffer_fetch_subpasses)))) + needs_sample_id = true; + if (preproc.needs_helper_invocation) + needs_helper_invocation = true; + + // OpKill is removed by the parser, so we need to identify those by inspecting + // blocks. + ir.for_each_typed_id<SPIRBlock>([&preproc](uint32_t, SPIRBlock &block) { + if (block.terminator == SPIRBlock::Kill) + preproc.uses_discard = true; + }); + + // Fragment shaders that both write to storage resources and discard fragments + // need checks on the writes, to work around Metal allowing these writes despite + // the fragment being dead. We also require to force Metal to execute fragment + // shaders instead of being prematurely discarded. + if (preproc.uses_discard && (preproc.uses_buffer_write || preproc.uses_image_write)) + { + bool should_enable = (msl_options.check_discarded_frag_stores || msl_options.force_fragment_with_side_effects_execution); + frag_shader_needs_discard_checks |= msl_options.check_discarded_frag_stores; + needs_helper_invocation |= should_enable; + // Fragment discard store checks imply manual HelperInvocation updates. + msl_options.manual_helper_invocation_updates |= should_enable; + } + + if (is_intersection_query()) + { + add_header_line("#if __METAL_VERSION__ >= 230"); + add_header_line("#include <metal_raytracing>"); + add_header_line("using namespace metal::raytracing;"); + add_header_line("#endif"); + } +} + +// Move the Private and Workgroup global variables to the entry function. +// Non-constant variables cannot have global scope in Metal. +void CompilerMSL::localize_global_variables() +{ + auto &entry_func = get<SPIRFunction>(ir.default_entry_point); + auto iter = global_variables.begin(); + while (iter != global_variables.end()) + { + uint32_t v_id = *iter; + auto &var = get<SPIRVariable>(v_id); + if (var.storage == StorageClassPrivate || var.storage == StorageClassWorkgroup) + { + if (!variable_is_lut(var)) + entry_func.add_local_variable(v_id); + iter = global_variables.erase(iter); + } + else + iter++; + } +} + +// For any global variable accessed directly by a function, +// extract that variable and add it as an argument to that function. +void CompilerMSL::extract_global_variables_from_functions() +{ + // Uniforms + unordered_set<uint32_t> global_var_ids; + ir.for_each_typed_id<SPIRVariable>([&](uint32_t, SPIRVariable &var) { + // Some builtins resolve directly to a function call which does not need any declared variables. + // Skip these. + if (var.storage == StorageClassInput && has_decoration(var.self, DecorationBuiltIn)) + { + auto bi_type = BuiltIn(get_decoration(var.self, DecorationBuiltIn)); + if (bi_type == BuiltInHelperInvocation && !needs_manual_helper_invocation_updates()) + return; + if (bi_type == BuiltInHelperInvocation && needs_manual_helper_invocation_updates()) + { + if (msl_options.is_ios() && !msl_options.supports_msl_version(2, 3)) + SPIRV_CROSS_THROW("simd_is_helper_thread() requires version 2.3 on iOS."); + else if (msl_options.is_macos() && !msl_options.supports_msl_version(2, 1)) + SPIRV_CROSS_THROW("simd_is_helper_thread() requires version 2.1 on macOS."); + // Make sure this is declared and initialized. + // Force this to have the proper name. + set_name(var.self, builtin_to_glsl(BuiltInHelperInvocation, StorageClassInput)); + auto &entry_func = this->get<SPIRFunction>(ir.default_entry_point); + entry_func.add_local_variable(var.self); + vars_needing_early_declaration.push_back(var.self); + entry_func.fixup_hooks_in.push_back([this, &var]() + { statement(to_name(var.self), " = simd_is_helper_thread();"); }); + } + } + + if (var.storage == StorageClassInput || var.storage == StorageClassOutput || + var.storage == StorageClassUniform || var.storage == StorageClassUniformConstant || + var.storage == StorageClassPushConstant || var.storage == StorageClassStorageBuffer) + { + global_var_ids.insert(var.self); + } + }); + + // Local vars that are declared in the main function and accessed directly by a function + auto &entry_func = get<SPIRFunction>(ir.default_entry_point); + for (auto &var : entry_func.local_variables) + if (get<SPIRVariable>(var).storage != StorageClassFunction) + global_var_ids.insert(var); + + std::set<uint32_t> added_arg_ids; + unordered_set<uint32_t> processed_func_ids; + extract_global_variables_from_function(ir.default_entry_point, added_arg_ids, global_var_ids, processed_func_ids); +} + +// MSL does not support the use of global variables for shader input content. +// For any global variable accessed directly by the specified function, extract that variable, +// add it as an argument to that function, and the arg to the added_arg_ids collection. +void CompilerMSL::extract_global_variables_from_function(uint32_t func_id, std::set<uint32_t> &added_arg_ids, + unordered_set<uint32_t> &global_var_ids, + unordered_set<uint32_t> &processed_func_ids) +{ + // Avoid processing a function more than once + if (processed_func_ids.find(func_id) != processed_func_ids.end()) + { + // Return function global variables + added_arg_ids = function_global_vars[func_id]; + return; + } + + processed_func_ids.insert(func_id); + + auto &func = get<SPIRFunction>(func_id); + + // Recursively establish global args added to functions on which we depend. + for (auto block : func.blocks) + { + auto &b = get<SPIRBlock>(block); + for (auto &i : b.ops) + { + auto ops = stream(i); + auto op = static_cast<Op>(i.op); + + switch (op) + { + case OpLoad: + case OpInBoundsAccessChain: + case OpAccessChain: + case OpPtrAccessChain: + case OpArrayLength: + { + uint32_t base_id = ops[2]; + if (global_var_ids.find(base_id) != global_var_ids.end()) + added_arg_ids.insert(base_id); + + // Use Metal's native frame-buffer fetch API for subpass inputs. + auto &type = get<SPIRType>(ops[0]); + if (type.basetype == SPIRType::Image && type.image.dim == DimSubpassData && + (!msl_options.use_framebuffer_fetch_subpasses)) + { + // Implicitly reads gl_FragCoord. + assert(builtin_frag_coord_id != 0); + added_arg_ids.insert(builtin_frag_coord_id); + if (msl_options.multiview) + { + // Implicitly reads gl_ViewIndex. + assert(builtin_view_idx_id != 0); + added_arg_ids.insert(builtin_view_idx_id); + } + else if (msl_options.arrayed_subpass_input) + { + // Implicitly reads gl_Layer. + assert(builtin_layer_id != 0); + added_arg_ids.insert(builtin_layer_id); + } + } + + break; + } + + case OpFunctionCall: + { + // First see if any of the function call args are globals + for (uint32_t arg_idx = 3; arg_idx < i.length; arg_idx++) + { + uint32_t arg_id = ops[arg_idx]; + if (global_var_ids.find(arg_id) != global_var_ids.end()) + added_arg_ids.insert(arg_id); + } + + // Then recurse into the function itself to extract globals used internally in the function + uint32_t inner_func_id = ops[2]; + std::set<uint32_t> inner_func_args; + extract_global_variables_from_function(inner_func_id, inner_func_args, global_var_ids, + processed_func_ids); + added_arg_ids.insert(inner_func_args.begin(), inner_func_args.end()); + break; + } + + case OpStore: + { + uint32_t base_id = ops[0]; + if (global_var_ids.find(base_id) != global_var_ids.end()) + { + added_arg_ids.insert(base_id); + + if (msl_options.input_attachment_is_ds_attachment && base_id == builtin_frag_depth_id) + writes_to_depth = true; + } + + uint32_t rvalue_id = ops[1]; + if (global_var_ids.find(rvalue_id) != global_var_ids.end()) + added_arg_ids.insert(rvalue_id); + + if (needs_frag_discard_checks()) + added_arg_ids.insert(builtin_helper_invocation_id); + + break; + } + + case OpSelect: + { + uint32_t base_id = ops[3]; + if (global_var_ids.find(base_id) != global_var_ids.end()) + added_arg_ids.insert(base_id); + base_id = ops[4]; + if (global_var_ids.find(base_id) != global_var_ids.end()) + added_arg_ids.insert(base_id); + break; + } + + case OpAtomicExchange: + case OpAtomicCompareExchange: + case OpAtomicStore: + case OpAtomicIIncrement: + case OpAtomicIDecrement: + case OpAtomicIAdd: + case OpAtomicFAddEXT: + case OpAtomicISub: + case OpAtomicSMin: + case OpAtomicUMin: + case OpAtomicSMax: + case OpAtomicUMax: + case OpAtomicAnd: + case OpAtomicOr: + case OpAtomicXor: + case OpImageWrite: + { + if (needs_frag_discard_checks()) + added_arg_ids.insert(builtin_helper_invocation_id); + uint32_t ptr = 0; + if (op == OpAtomicStore || op == OpImageWrite) + ptr = ops[0]; + else + ptr = ops[2]; + if (global_var_ids.find(ptr) != global_var_ids.end()) + added_arg_ids.insert(ptr); + break; + } + + // Emulate texture2D atomic operations + case OpImageTexelPointer: + { + // When using the pointer, we need to know which variable it is actually loaded from. + uint32_t base_id = ops[2]; + auto *var = maybe_get_backing_variable(base_id); + if (var) + { + if (atomic_image_vars_emulated.count(var->self) && + !get<SPIRType>(var->basetype).array.empty()) + { + SPIRV_CROSS_THROW( + "Cannot emulate array of storage images with atomics. Use MSL 3.1 for native support."); + } + + if (global_var_ids.find(base_id) != global_var_ids.end()) + added_arg_ids.insert(base_id); + } + break; + } + + case OpExtInst: + { + uint32_t extension_set = ops[2]; + if (get<SPIRExtension>(extension_set).ext == SPIRExtension::GLSL) + { + auto op_450 = static_cast<GLSLstd450>(ops[3]); + switch (op_450) + { + case GLSLstd450InterpolateAtCentroid: + case GLSLstd450InterpolateAtSample: + case GLSLstd450InterpolateAtOffset: + { + // For these, we really need the stage-in block. It is theoretically possible to pass the + // interpolant object, but a) doing so would require us to create an entirely new variable + // with Interpolant type, and b) if we have a struct or array, handling all the members and + // elements could get unwieldy fast. + added_arg_ids.insert(stage_in_var_id); + break; + } + + case GLSLstd450Modf: + case GLSLstd450Frexp: + { + uint32_t base_id = ops[5]; + if (global_var_ids.find(base_id) != global_var_ids.end()) + added_arg_ids.insert(base_id); + break; + } + + default: + break; + } + } + break; + } + + case OpGroupNonUniformInverseBallot: + { + added_arg_ids.insert(builtin_subgroup_invocation_id_id); + break; + } + + case OpGroupNonUniformBallotFindLSB: + case OpGroupNonUniformBallotFindMSB: + { + added_arg_ids.insert(builtin_subgroup_size_id); + break; + } + + case OpGroupNonUniformBallotBitCount: + { + auto operation = static_cast<GroupOperation>(ops[3]); + switch (operation) + { + case GroupOperationReduce: + added_arg_ids.insert(builtin_subgroup_size_id); + break; + case GroupOperationInclusiveScan: + case GroupOperationExclusiveScan: + added_arg_ids.insert(builtin_subgroup_invocation_id_id); + break; + default: + break; + } + break; + } + + case OpDemoteToHelperInvocation: + if (needs_manual_helper_invocation_updates() && + (active_input_builtins.get(BuiltInHelperInvocation) || needs_helper_invocation)) + added_arg_ids.insert(builtin_helper_invocation_id); + break; + + case OpIsHelperInvocationEXT: + if (needs_manual_helper_invocation_updates()) + added_arg_ids.insert(builtin_helper_invocation_id); + break; + + case OpRayQueryInitializeKHR: + case OpRayQueryProceedKHR: + case OpRayQueryTerminateKHR: + case OpRayQueryGenerateIntersectionKHR: + case OpRayQueryConfirmIntersectionKHR: + { + // Ray query accesses memory directly, need check pass down object if using Private storage class. + uint32_t base_id = ops[0]; + if (global_var_ids.find(base_id) != global_var_ids.end()) + added_arg_ids.insert(base_id); + break; + } + + case OpRayQueryGetRayTMinKHR: + case OpRayQueryGetRayFlagsKHR: + case OpRayQueryGetWorldRayOriginKHR: + case OpRayQueryGetWorldRayDirectionKHR: + case OpRayQueryGetIntersectionCandidateAABBOpaqueKHR: + case OpRayQueryGetIntersectionTypeKHR: + case OpRayQueryGetIntersectionTKHR: + case OpRayQueryGetIntersectionInstanceCustomIndexKHR: + case OpRayQueryGetIntersectionInstanceIdKHR: + case OpRayQueryGetIntersectionInstanceShaderBindingTableRecordOffsetKHR: + case OpRayQueryGetIntersectionGeometryIndexKHR: + case OpRayQueryGetIntersectionPrimitiveIndexKHR: + case OpRayQueryGetIntersectionBarycentricsKHR: + case OpRayQueryGetIntersectionFrontFaceKHR: + case OpRayQueryGetIntersectionObjectRayDirectionKHR: + case OpRayQueryGetIntersectionObjectRayOriginKHR: + case OpRayQueryGetIntersectionObjectToWorldKHR: + case OpRayQueryGetIntersectionWorldToObjectKHR: + { + // Ray query accesses memory directly, need check pass down object if using Private storage class. + uint32_t base_id = ops[2]; + if (global_var_ids.find(base_id) != global_var_ids.end()) + added_arg_ids.insert(base_id); + break; + } + + default: + break; + } + + if (needs_manual_helper_invocation_updates() && b.terminator == SPIRBlock::Kill && + (active_input_builtins.get(BuiltInHelperInvocation) || needs_helper_invocation)) + added_arg_ids.insert(builtin_helper_invocation_id); + + // TODO: Add all other operations which can affect memory. + // We should consider a more unified system here to reduce boiler-plate. + // This kind of analysis is done in several places ... + } + } + + function_global_vars[func_id] = added_arg_ids; + + // Add the global variables as arguments to the function + if (func_id != ir.default_entry_point) + { + bool control_point_added_in = false; + bool control_point_added_out = false; + bool patch_added_in = false; + bool patch_added_out = false; + + for (uint32_t arg_id : added_arg_ids) + { + auto &var = get<SPIRVariable>(arg_id); + uint32_t type_id = var.basetype; + auto *p_type = &get<SPIRType>(type_id); + BuiltIn bi_type = BuiltIn(get_decoration(arg_id, DecorationBuiltIn)); + + bool is_patch = has_decoration(arg_id, DecorationPatch) || is_patch_block(*p_type); + bool is_block = has_decoration(p_type->self, DecorationBlock); + bool is_control_point_storage = + !is_patch && ((is_tessellation_shader() && var.storage == StorageClassInput) || + (is_tesc_shader() && var.storage == StorageClassOutput)); + bool is_patch_block_storage = is_patch && is_block && var.storage == StorageClassOutput; + bool is_builtin = is_builtin_variable(var); + bool variable_is_stage_io = + !is_builtin || bi_type == BuiltInPosition || bi_type == BuiltInPointSize || + bi_type == BuiltInClipDistance || bi_type == BuiltInCullDistance || + p_type->basetype == SPIRType::Struct; + bool is_redirected_to_global_stage_io = (is_control_point_storage || is_patch_block_storage) && + variable_is_stage_io; + + // If output is masked it is not considered part of the global stage IO interface. + if (is_redirected_to_global_stage_io && var.storage == StorageClassOutput) + is_redirected_to_global_stage_io = !is_stage_output_variable_masked(var); + + if (is_redirected_to_global_stage_io) + { + // Tessellation control shaders see inputs and per-point outputs as arrays. + // Similarly, tessellation evaluation shaders see per-point inputs as arrays. + // We collected them into a structure; we must pass the array of this + // structure to the function. + std::string name; + if (is_patch) + name = var.storage == StorageClassInput ? patch_stage_in_var_name : patch_stage_out_var_name; + else + name = var.storage == StorageClassInput ? "gl_in" : "gl_out"; + + if (var.storage == StorageClassOutput && has_decoration(p_type->self, DecorationBlock)) + { + // If we're redirecting a block, we might still need to access the original block + // variable if we're masking some members. + for (uint32_t mbr_idx = 0; mbr_idx < uint32_t(p_type->member_types.size()); mbr_idx++) + { + if (is_stage_output_block_member_masked(var, mbr_idx, true)) + { + func.add_parameter(var.basetype, var.self, true); + break; + } + } + } + + if (var.storage == StorageClassInput) + { + auto &added_in = is_patch ? patch_added_in : control_point_added_in; + if (added_in) + continue; + arg_id = is_patch ? patch_stage_in_var_id : stage_in_ptr_var_id; + added_in = true; + } + else if (var.storage == StorageClassOutput) + { + auto &added_out = is_patch ? patch_added_out : control_point_added_out; + if (added_out) + continue; + arg_id = is_patch ? patch_stage_out_var_id : stage_out_ptr_var_id; + added_out = true; + } + + type_id = get<SPIRVariable>(arg_id).basetype; + uint32_t next_id = ir.increase_bound_by(1); + func.add_parameter(type_id, next_id, true); + set<SPIRVariable>(next_id, type_id, StorageClassFunction, 0, arg_id); + + set_name(next_id, name); + if (is_tese_shader() && msl_options.raw_buffer_tese_input && var.storage == StorageClassInput) + set_decoration(next_id, DecorationNonWritable); + } + else if (is_builtin && has_decoration(p_type->self, DecorationBlock)) + { + // Get the pointee type + type_id = get_pointee_type_id(type_id); + p_type = &get<SPIRType>(type_id); + + uint32_t mbr_idx = 0; + for (auto &mbr_type_id : p_type->member_types) + { + BuiltIn builtin = BuiltInMax; + is_builtin = is_member_builtin(*p_type, mbr_idx, &builtin); + if (is_builtin && has_active_builtin(builtin, var.storage)) + { + // Add a arg variable with the same type and decorations as the member + uint32_t next_ids = ir.increase_bound_by(2); + uint32_t ptr_type_id = next_ids + 0; + uint32_t var_id = next_ids + 1; + + // Make sure we have an actual pointer type, + // so that we will get the appropriate address space when declaring these builtins. + auto &ptr = set<SPIRType>(ptr_type_id, get<SPIRType>(mbr_type_id)); + ptr.self = mbr_type_id; + ptr.storage = var.storage; + ptr.pointer = true; + ptr.pointer_depth++; + ptr.parent_type = mbr_type_id; + + func.add_parameter(mbr_type_id, var_id, true); + set<SPIRVariable>(var_id, ptr_type_id, StorageClassFunction); + ir.meta[var_id].decoration = ir.meta[type_id].members[mbr_idx]; + } + mbr_idx++; + } + } + else + { + uint32_t next_id = ir.increase_bound_by(1); + func.add_parameter(type_id, next_id, true); + set<SPIRVariable>(next_id, type_id, StorageClassFunction, 0, arg_id); + + // Ensure the new variable has all the same meta info + ir.meta[next_id] = ir.meta[arg_id]; + } + } + } +} + +// For all variables that are some form of non-input-output interface block, mark that all the structs +// that are recursively contained within the type referenced by that variable should be packed tightly. +void CompilerMSL::mark_packable_structs() +{ + ir.for_each_typed_id<SPIRVariable>([&](uint32_t, SPIRVariable &var) { + if (var.storage != StorageClassFunction && !is_hidden_variable(var)) + { + auto &type = this->get<SPIRType>(var.basetype); + if (type.pointer && + (type.storage == StorageClassUniform || type.storage == StorageClassUniformConstant || + type.storage == StorageClassPushConstant || type.storage == StorageClassStorageBuffer) && + (has_decoration(type.self, DecorationBlock) || has_decoration(type.self, DecorationBufferBlock))) + mark_as_packable(type); + } + + if (var.storage == StorageClassWorkgroup) + { + auto *type = &this->get<SPIRType>(var.basetype); + if (type->basetype == SPIRType::Struct) + mark_as_workgroup_struct(*type); + } + }); + + // Physical storage buffer pointers can appear outside of the context of a variable, if the address + // is calculated from a ulong or uvec2 and cast to a pointer, so check if they need to be packed too. + ir.for_each_typed_id<SPIRType>([&](uint32_t, SPIRType &type) { + if (type.basetype == SPIRType::Struct && type.pointer && type.storage == StorageClassPhysicalStorageBuffer) + mark_as_packable(type); + }); +} + +// If the specified type is a struct, it and any nested structs +// are marked as packable with the SPIRVCrossDecorationBufferBlockRepacked decoration, +void CompilerMSL::mark_as_packable(SPIRType &type) +{ + // If this is not the base type (eg. it's a pointer or array), tunnel down + if (type.parent_type) + { + mark_as_packable(get<SPIRType>(type.parent_type)); + return; + } + + // Handle possible recursion when a struct contains a pointer to its own type nested somewhere. + if (type.basetype == SPIRType::Struct && !has_extended_decoration(type.self, SPIRVCrossDecorationBufferBlockRepacked)) + { + set_extended_decoration(type.self, SPIRVCrossDecorationBufferBlockRepacked); + + // Recurse + uint32_t mbr_cnt = uint32_t(type.member_types.size()); + for (uint32_t mbr_idx = 0; mbr_idx < mbr_cnt; mbr_idx++) + { + uint32_t mbr_type_id = type.member_types[mbr_idx]; + auto &mbr_type = get<SPIRType>(mbr_type_id); + mark_as_packable(mbr_type); + if (mbr_type.type_alias) + { + auto &mbr_type_alias = get<SPIRType>(mbr_type.type_alias); + mark_as_packable(mbr_type_alias); + } + } + } +} + +// If the specified type is a struct, it and any nested structs +// are marked as used with workgroup storage using the SPIRVCrossDecorationWorkgroupStruct decoration. +void CompilerMSL::mark_as_workgroup_struct(SPIRType &type) +{ + // If this is not the base type (eg. it's a pointer or array), tunnel down + if (type.parent_type) + { + mark_as_workgroup_struct(get<SPIRType>(type.parent_type)); + return; + } + + // Handle possible recursion when a struct contains a pointer to its own type nested somewhere. + if (type.basetype == SPIRType::Struct && !has_extended_decoration(type.self, SPIRVCrossDecorationWorkgroupStruct)) + { + set_extended_decoration(type.self, SPIRVCrossDecorationWorkgroupStruct); + + // Recurse + uint32_t mbr_cnt = uint32_t(type.member_types.size()); + for (uint32_t mbr_idx = 0; mbr_idx < mbr_cnt; mbr_idx++) + { + uint32_t mbr_type_id = type.member_types[mbr_idx]; + auto &mbr_type = get<SPIRType>(mbr_type_id); + mark_as_workgroup_struct(mbr_type); + if (mbr_type.type_alias) + { + auto &mbr_type_alias = get<SPIRType>(mbr_type.type_alias); + mark_as_workgroup_struct(mbr_type_alias); + } + } + } +} + +// If a shader input exists at the location, it is marked as being used by this shader +void CompilerMSL::mark_location_as_used_by_shader(uint32_t location, const SPIRType &type, + StorageClass storage, bool fallback) +{ + uint32_t count = type_to_location_count(type); + switch (storage) + { + case StorageClassInput: + for (uint32_t i = 0; i < count; i++) + { + location_inputs_in_use.insert(location + i); + if (fallback) + location_inputs_in_use_fallback.insert(location + i); + } + break; + case StorageClassOutput: + for (uint32_t i = 0; i < count; i++) + { + location_outputs_in_use.insert(location + i); + if (fallback) + location_outputs_in_use_fallback.insert(location + i); + } + break; + default: + return; + } +} + +uint32_t CompilerMSL::get_target_components_for_fragment_location(uint32_t location) const +{ + auto itr = fragment_output_components.find(location); + if (itr == end(fragment_output_components)) + return 4; + else + return itr->second; +} + +uint32_t CompilerMSL::build_extended_vector_type(uint32_t type_id, uint32_t components, SPIRType::BaseType basetype) +{ + assert(components > 1); + uint32_t new_type_id = ir.increase_bound_by(1); + const auto *p_old_type = &get<SPIRType>(type_id); + const SPIRType *old_ptr_t = nullptr; + const SPIRType *old_array_t = nullptr; + + if (is_pointer(*p_old_type)) + { + old_ptr_t = p_old_type; + p_old_type = &get_pointee_type(*old_ptr_t); + } + + if (is_array(*p_old_type)) + { + old_array_t = p_old_type; + p_old_type = &get_type(old_array_t->parent_type); + } + + auto *type = &set<SPIRType>(new_type_id, *p_old_type); + assert(is_scalar(*type) || is_vector(*type)); + type->op = OpTypeVector; + type->vecsize = components; + if (basetype != SPIRType::Unknown) + type->basetype = basetype; + type->self = new_type_id; + // We want parent type to point to the scalar type. + type->parent_type = is_scalar(*p_old_type) ? TypeID(p_old_type->self) : p_old_type->parent_type; + assert(is_scalar(get<SPIRType>(type->parent_type))); + type->array.clear(); + type->array_size_literal.clear(); + type->pointer = false; + + if (old_array_t) + { + uint32_t array_type_id = ir.increase_bound_by(1); + type = &set<SPIRType>(array_type_id, *type); + type->op = OpTypeArray; + type->parent_type = new_type_id; + type->array = old_array_t->array; + type->array_size_literal = old_array_t->array_size_literal; + new_type_id = array_type_id; + } + + if (old_ptr_t) + { + uint32_t ptr_type_id = ir.increase_bound_by(1); + type = &set<SPIRType>(ptr_type_id, *type); + type->op = OpTypePointer; + type->parent_type = new_type_id; + type->storage = old_ptr_t->storage; + type->pointer = true; + type->pointer_depth++; + new_type_id = ptr_type_id; + } + + return new_type_id; +} + +uint32_t CompilerMSL::build_msl_interpolant_type(uint32_t type_id, bool is_noperspective) +{ + uint32_t new_type_id = ir.increase_bound_by(1); + SPIRType &type = set<SPIRType>(new_type_id, get<SPIRType>(type_id)); + type.basetype = SPIRType::Interpolant; + type.parent_type = type_id; + // In Metal, the pull-model interpolant type encodes perspective-vs-no-perspective in the type itself. + // Add this decoration so we know which argument to pass to the template. + if (is_noperspective) + set_decoration(new_type_id, DecorationNoPerspective); + return new_type_id; +} + +bool CompilerMSL::add_component_variable_to_interface_block(spv::StorageClass storage, const std::string &ib_var_ref, + SPIRVariable &var, + const SPIRType &type, + InterfaceBlockMeta &meta) +{ + // Deal with Component decorations. + const InterfaceBlockMeta::LocationMeta *location_meta = nullptr; + uint32_t location = ~0u; + if (has_decoration(var.self, DecorationLocation)) + { + location = get_decoration(var.self, DecorationLocation); + auto location_meta_itr = meta.location_meta.find(location); + if (location_meta_itr != end(meta.location_meta)) + location_meta = &location_meta_itr->second; + } + + // Check if we need to pad fragment output to match a certain number of components. + if (location_meta) + { + bool pad_fragment_output = has_decoration(var.self, DecorationLocation) && + msl_options.pad_fragment_output_components && + get_entry_point().model == ExecutionModelFragment && storage == StorageClassOutput; + + auto &entry_func = get<SPIRFunction>(ir.default_entry_point); + uint32_t start_component = get_decoration(var.self, DecorationComponent); + uint32_t type_components = type.vecsize; + uint32_t num_components = location_meta->num_components; + + if (pad_fragment_output) + { + uint32_t locn = get_decoration(var.self, DecorationLocation); + num_components = max<uint32_t>(num_components, get_target_components_for_fragment_location(locn)); + } + + // We have already declared an IO block member as m_location_N. + // Just emit an early-declared variable and fixup as needed. + // Arrays need to be unrolled here since each location might need a different number of components. + entry_func.add_local_variable(var.self); + vars_needing_early_declaration.push_back(var.self); + + if (var.storage == StorageClassInput) + { + entry_func.fixup_hooks_in.push_back([=, &type, &var]() { + if (!type.array.empty()) + { + uint32_t array_size = to_array_size_literal(type); + for (uint32_t loc_off = 0; loc_off < array_size; loc_off++) + { + statement(to_name(var.self), "[", loc_off, "]", " = ", ib_var_ref, + ".m_location_", location + loc_off, + vector_swizzle(type_components, start_component), ";"); + } + } + else + { + statement(to_name(var.self), " = ", ib_var_ref, ".m_location_", location, + vector_swizzle(type_components, start_component), ";"); + } + }); + } + else + { + entry_func.fixup_hooks_out.push_back([=, &type, &var]() { + if (!type.array.empty()) + { + uint32_t array_size = to_array_size_literal(type); + for (uint32_t loc_off = 0; loc_off < array_size; loc_off++) + { + statement(ib_var_ref, ".m_location_", location + loc_off, + vector_swizzle(type_components, start_component), " = ", + to_name(var.self), "[", loc_off, "];"); + } + } + else + { + statement(ib_var_ref, ".m_location_", location, + vector_swizzle(type_components, start_component), " = ", to_name(var.self), ";"); + } + }); + } + return true; + } + else + return false; +} + +void CompilerMSL::add_plain_variable_to_interface_block(StorageClass storage, const string &ib_var_ref, + SPIRType &ib_type, SPIRVariable &var, InterfaceBlockMeta &meta) +{ + bool is_builtin = is_builtin_variable(var); + BuiltIn builtin = BuiltIn(get_decoration(var.self, DecorationBuiltIn)); + bool is_flat = has_decoration(var.self, DecorationFlat); + bool is_noperspective = has_decoration(var.self, DecorationNoPerspective); + bool is_centroid = has_decoration(var.self, DecorationCentroid); + bool is_sample = has_decoration(var.self, DecorationSample); + + // Add a reference to the variable type to the interface struct. + uint32_t ib_mbr_idx = uint32_t(ib_type.member_types.size()); + uint32_t type_id = ensure_correct_builtin_type(var.basetype, builtin); + var.basetype = type_id; + + type_id = get_pointee_type_id(var.basetype); + if (meta.strip_array && is_array(get<SPIRType>(type_id))) + type_id = get<SPIRType>(type_id).parent_type; + auto &type = get<SPIRType>(type_id); + uint32_t target_components = 0; + uint32_t type_components = type.vecsize; + + bool padded_output = false; + bool padded_input = false; + uint32_t start_component = 0; + + auto &entry_func = get<SPIRFunction>(ir.default_entry_point); + + if (add_component_variable_to_interface_block(storage, ib_var_ref, var, type, meta)) + return; + + bool pad_fragment_output = has_decoration(var.self, DecorationLocation) && + msl_options.pad_fragment_output_components && + get_entry_point().model == ExecutionModelFragment && storage == StorageClassOutput; + + if (pad_fragment_output) + { + uint32_t locn = get_decoration(var.self, DecorationLocation); + target_components = get_target_components_for_fragment_location(locn); + if (type_components < target_components) + { + // Make a new type here. + type_id = build_extended_vector_type(type_id, target_components); + padded_output = true; + } + } + + if (storage == StorageClassInput && pull_model_inputs.count(var.self)) + ib_type.member_types.push_back(build_msl_interpolant_type(type_id, is_noperspective)); + else + ib_type.member_types.push_back(type_id); + + // Give the member a name + string mbr_name = ensure_valid_name(to_expression(var.self), "m"); + set_member_name(ib_type.self, ib_mbr_idx, mbr_name); + + // Update the original variable reference to include the structure reference + string qual_var_name = ib_var_ref + "." + mbr_name; + // If using pull-model interpolation, need to add a call to the correct interpolation method. + if (storage == StorageClassInput && pull_model_inputs.count(var.self)) + { + if (is_centroid) + qual_var_name += ".interpolate_at_centroid()"; + else if (is_sample) + qual_var_name += join(".interpolate_at_sample(", to_expression(builtin_sample_id_id), ")"); + else + qual_var_name += ".interpolate_at_center()"; + } + + if (padded_output || padded_input) + { + entry_func.add_local_variable(var.self); + vars_needing_early_declaration.push_back(var.self); + + if (padded_output) + { + entry_func.fixup_hooks_out.push_back([=, &var]() { + statement(qual_var_name, vector_swizzle(type_components, start_component), " = ", to_name(var.self), + ";"); + }); + } + else + { + entry_func.fixup_hooks_in.push_back([=, &var]() { + statement(to_name(var.self), " = ", qual_var_name, vector_swizzle(type_components, start_component), + ";"); + }); + } + } + else if (!meta.strip_array) + ir.meta[var.self].decoration.qualified_alias = qual_var_name; + + if (var.storage == StorageClassOutput && var.initializer != ID(0)) + { + if (padded_output || padded_input) + { + entry_func.fixup_hooks_in.push_back( + [=, &var]() { statement(to_name(var.self), " = ", to_expression(var.initializer), ";"); }); + } + else + { + if (meta.strip_array) + { + entry_func.fixup_hooks_in.push_back([=, &var]() { + uint32_t index = get_extended_decoration(var.self, SPIRVCrossDecorationInterfaceMemberIndex); + auto invocation = to_tesc_invocation_id(); + statement(to_expression(stage_out_ptr_var_id), "[", + invocation, "].", + to_member_name(ib_type, index), " = ", to_expression(var.initializer), "[", + invocation, "];"); + }); + } + else + { + entry_func.fixup_hooks_in.push_back([=, &var]() { + statement(qual_var_name, " = ", to_expression(var.initializer), ";"); + }); + } + } + } + + // Copy the variable location from the original variable to the member + if (get_decoration_bitset(var.self).get(DecorationLocation)) + { + uint32_t locn = get_decoration(var.self, DecorationLocation); + uint32_t comp = get_decoration(var.self, DecorationComponent); + if (storage == StorageClassInput) + { + type_id = ensure_correct_input_type(var.basetype, locn, comp, 0, meta.strip_array); + var.basetype = type_id; + + type_id = get_pointee_type_id(type_id); + if (meta.strip_array && is_array(get<SPIRType>(type_id))) + type_id = get<SPIRType>(type_id).parent_type; + if (pull_model_inputs.count(var.self)) + ib_type.member_types[ib_mbr_idx] = build_msl_interpolant_type(type_id, is_noperspective); + else + ib_type.member_types[ib_mbr_idx] = type_id; + } + set_member_decoration(ib_type.self, ib_mbr_idx, DecorationLocation, locn); + if (comp) + set_member_decoration(ib_type.self, ib_mbr_idx, DecorationComponent, comp); + mark_location_as_used_by_shader(locn, get<SPIRType>(type_id), storage); + } + else if (is_builtin && is_tessellation_shader() && storage == StorageClassInput && inputs_by_builtin.count(builtin)) + { + uint32_t locn = inputs_by_builtin[builtin].location; + set_member_decoration(ib_type.self, ib_mbr_idx, DecorationLocation, locn); + mark_location_as_used_by_shader(locn, type, storage); + } + else if (is_builtin && capture_output_to_buffer && storage == StorageClassOutput && outputs_by_builtin.count(builtin)) + { + uint32_t locn = outputs_by_builtin[builtin].location; + set_member_decoration(ib_type.self, ib_mbr_idx, DecorationLocation, locn); + mark_location_as_used_by_shader(locn, type, storage); + } + + if (get_decoration_bitset(var.self).get(DecorationComponent)) + { + uint32_t component = get_decoration(var.self, DecorationComponent); + set_member_decoration(ib_type.self, ib_mbr_idx, DecorationComponent, component); + } + + if (get_decoration_bitset(var.self).get(DecorationIndex)) + { + uint32_t index = get_decoration(var.self, DecorationIndex); + set_member_decoration(ib_type.self, ib_mbr_idx, DecorationIndex, index); + } + + // Mark the member as builtin if needed + if (is_builtin) + { + set_member_decoration(ib_type.self, ib_mbr_idx, DecorationBuiltIn, builtin); + if (builtin == BuiltInPosition && storage == StorageClassOutput) + qual_pos_var_name = qual_var_name; + } + + // Copy interpolation decorations if needed + if (storage != StorageClassInput || !pull_model_inputs.count(var.self)) + { + if (is_flat) + set_member_decoration(ib_type.self, ib_mbr_idx, DecorationFlat); + if (is_noperspective) + set_member_decoration(ib_type.self, ib_mbr_idx, DecorationNoPerspective); + if (is_centroid) + set_member_decoration(ib_type.self, ib_mbr_idx, DecorationCentroid); + if (is_sample) + set_member_decoration(ib_type.self, ib_mbr_idx, DecorationSample); + } + + set_extended_member_decoration(ib_type.self, ib_mbr_idx, SPIRVCrossDecorationInterfaceOrigID, var.self); +} + +void CompilerMSL::add_composite_variable_to_interface_block(StorageClass storage, const string &ib_var_ref, + SPIRType &ib_type, SPIRVariable &var, + InterfaceBlockMeta &meta) +{ + auto &entry_func = get<SPIRFunction>(ir.default_entry_point); + auto &var_type = meta.strip_array ? get_variable_element_type(var) : get_variable_data_type(var); + uint32_t elem_cnt = 0; + + if (add_component_variable_to_interface_block(storage, ib_var_ref, var, var_type, meta)) + return; + + if (is_matrix(var_type)) + { + if (is_array(var_type)) + SPIRV_CROSS_THROW("MSL cannot emit arrays-of-matrices in input and output variables."); + + elem_cnt = var_type.columns; + } + else if (is_array(var_type)) + { + if (var_type.array.size() != 1) + SPIRV_CROSS_THROW("MSL cannot emit arrays-of-arrays in input and output variables."); + + elem_cnt = to_array_size_literal(var_type); + } + + bool is_builtin = is_builtin_variable(var); + BuiltIn builtin = BuiltIn(get_decoration(var.self, DecorationBuiltIn)); + bool is_flat = has_decoration(var.self, DecorationFlat); + bool is_noperspective = has_decoration(var.self, DecorationNoPerspective); + bool is_centroid = has_decoration(var.self, DecorationCentroid); + bool is_sample = has_decoration(var.self, DecorationSample); + + auto *usable_type = &var_type; + if (usable_type->pointer) + usable_type = &get<SPIRType>(usable_type->parent_type); + while (is_array(*usable_type) || is_matrix(*usable_type)) + usable_type = &get<SPIRType>(usable_type->parent_type); + + // If a builtin, force it to have the proper name. + if (is_builtin) + set_name(var.self, builtin_to_glsl(builtin, StorageClassFunction)); + + bool flatten_from_ib_var = false; + string flatten_from_ib_mbr_name; + + if (storage == StorageClassOutput && is_builtin && builtin == BuiltInClipDistance) + { + // Also declare [[clip_distance]] attribute here. + uint32_t clip_array_mbr_idx = uint32_t(ib_type.member_types.size()); + ib_type.member_types.push_back(get_variable_data_type_id(var)); + set_member_decoration(ib_type.self, clip_array_mbr_idx, DecorationBuiltIn, BuiltInClipDistance); + + flatten_from_ib_mbr_name = builtin_to_glsl(BuiltInClipDistance, StorageClassOutput); + set_member_name(ib_type.self, clip_array_mbr_idx, flatten_from_ib_mbr_name); + + // When we flatten, we flatten directly from the "out" struct, + // not from a function variable. + flatten_from_ib_var = true; + + if (!msl_options.enable_clip_distance_user_varying) + return; + } + else if (!meta.strip_array) + { + // Only flatten/unflatten IO composites for non-tessellation cases where arrays are not stripped. + entry_func.add_local_variable(var.self); + // We need to declare the variable early and at entry-point scope. + vars_needing_early_declaration.push_back(var.self); + } + + for (uint32_t i = 0; i < elem_cnt; i++) + { + // Add a reference to the variable type to the interface struct. + uint32_t ib_mbr_idx = uint32_t(ib_type.member_types.size()); + + uint32_t target_components = 0; + bool padded_output = false; + uint32_t type_id = usable_type->self; + + // Check if we need to pad fragment output to match a certain number of components. + if (get_decoration_bitset(var.self).get(DecorationLocation) && msl_options.pad_fragment_output_components && + get_entry_point().model == ExecutionModelFragment && storage == StorageClassOutput) + { + uint32_t locn = get_decoration(var.self, DecorationLocation) + i; + target_components = get_target_components_for_fragment_location(locn); + if (usable_type->vecsize < target_components) + { + // Make a new type here. + type_id = build_extended_vector_type(usable_type->self, target_components); + padded_output = true; + } + } + + if (storage == StorageClassInput && pull_model_inputs.count(var.self)) + ib_type.member_types.push_back(build_msl_interpolant_type(get_pointee_type_id(type_id), is_noperspective)); + else + ib_type.member_types.push_back(get_pointee_type_id(type_id)); + + // Give the member a name + string mbr_name = ensure_valid_name(join(to_expression(var.self), "_", i), "m"); + set_member_name(ib_type.self, ib_mbr_idx, mbr_name); + + // There is no qualified alias since we need to flatten the internal array on return. + if (get_decoration_bitset(var.self).get(DecorationLocation)) + { + uint32_t locn = get_decoration(var.self, DecorationLocation) + i; + uint32_t comp = get_decoration(var.self, DecorationComponent); + if (storage == StorageClassInput) + { + var.basetype = ensure_correct_input_type(var.basetype, locn, comp, 0, meta.strip_array); + uint32_t mbr_type_id = ensure_correct_input_type(usable_type->self, locn, comp, 0, meta.strip_array); + if (storage == StorageClassInput && pull_model_inputs.count(var.self)) + ib_type.member_types[ib_mbr_idx] = build_msl_interpolant_type(mbr_type_id, is_noperspective); + else + ib_type.member_types[ib_mbr_idx] = mbr_type_id; + } + set_member_decoration(ib_type.self, ib_mbr_idx, DecorationLocation, locn); + if (comp) + set_member_decoration(ib_type.self, ib_mbr_idx, DecorationComponent, comp); + mark_location_as_used_by_shader(locn, *usable_type, storage); + } + else if (is_builtin && is_tessellation_shader() && storage == StorageClassInput && inputs_by_builtin.count(builtin)) + { + uint32_t locn = inputs_by_builtin[builtin].location + i; + set_member_decoration(ib_type.self, ib_mbr_idx, DecorationLocation, locn); + mark_location_as_used_by_shader(locn, *usable_type, storage); + } + else if (is_builtin && capture_output_to_buffer && storage == StorageClassOutput && outputs_by_builtin.count(builtin)) + { + uint32_t locn = outputs_by_builtin[builtin].location + i; + set_member_decoration(ib_type.self, ib_mbr_idx, DecorationLocation, locn); + mark_location_as_used_by_shader(locn, *usable_type, storage); + } + else if (is_builtin && (builtin == BuiltInClipDistance || builtin == BuiltInCullDistance)) + { + // Declare the Clip/CullDistance as [[user(clip/cullN)]]. + set_member_decoration(ib_type.self, ib_mbr_idx, DecorationBuiltIn, builtin); + set_member_decoration(ib_type.self, ib_mbr_idx, DecorationIndex, i); + } + + if (get_decoration_bitset(var.self).get(DecorationIndex)) + { + uint32_t index = get_decoration(var.self, DecorationIndex); + set_member_decoration(ib_type.self, ib_mbr_idx, DecorationIndex, index); + } + + if (storage != StorageClassInput || !pull_model_inputs.count(var.self)) + { + // Copy interpolation decorations if needed + if (is_flat) + set_member_decoration(ib_type.self, ib_mbr_idx, DecorationFlat); + if (is_noperspective) + set_member_decoration(ib_type.self, ib_mbr_idx, DecorationNoPerspective); + if (is_centroid) + set_member_decoration(ib_type.self, ib_mbr_idx, DecorationCentroid); + if (is_sample) + set_member_decoration(ib_type.self, ib_mbr_idx, DecorationSample); + } + + set_extended_member_decoration(ib_type.self, ib_mbr_idx, SPIRVCrossDecorationInterfaceOrigID, var.self); + + // Only flatten/unflatten IO composites for non-tessellation cases where arrays are not stripped. + if (!meta.strip_array) + { + switch (storage) + { + case StorageClassInput: + entry_func.fixup_hooks_in.push_back([=, &var]() { + if (pull_model_inputs.count(var.self)) + { + string lerp_call; + if (is_centroid) + lerp_call = ".interpolate_at_centroid()"; + else if (is_sample) + lerp_call = join(".interpolate_at_sample(", to_expression(builtin_sample_id_id), ")"); + else + lerp_call = ".interpolate_at_center()"; + statement(to_name(var.self), "[", i, "] = ", ib_var_ref, ".", mbr_name, lerp_call, ";"); + } + else + { + statement(to_name(var.self), "[", i, "] = ", ib_var_ref, ".", mbr_name, ";"); + } + }); + break; + + case StorageClassOutput: + entry_func.fixup_hooks_out.push_back([=, &var]() { + if (padded_output) + { + auto &padded_type = this->get<SPIRType>(type_id); + statement( + ib_var_ref, ".", mbr_name, " = ", + remap_swizzle(padded_type, usable_type->vecsize, join(to_name(var.self), "[", i, "]")), + ";"); + } + else if (flatten_from_ib_var) + statement(ib_var_ref, ".", mbr_name, " = ", ib_var_ref, ".", flatten_from_ib_mbr_name, "[", i, + "];"); + else + statement(ib_var_ref, ".", mbr_name, " = ", to_name(var.self), "[", i, "];"); + }); + break; + + default: + break; + } + } + } +} + +void CompilerMSL::add_composite_member_variable_to_interface_block(StorageClass storage, + const string &ib_var_ref, SPIRType &ib_type, + SPIRVariable &var, SPIRType &var_type, + uint32_t mbr_idx, InterfaceBlockMeta &meta, + const string &mbr_name_qual, + const string &var_chain_qual, + uint32_t &location, uint32_t &var_mbr_idx, + const Bitset &interpolation_qual) +{ + auto &entry_func = get<SPIRFunction>(ir.default_entry_point); + + BuiltIn builtin = BuiltInMax; + bool is_builtin = is_member_builtin(var_type, mbr_idx, &builtin); + bool is_flat = interpolation_qual.get(DecorationFlat) || + has_member_decoration(var_type.self, mbr_idx, DecorationFlat) || + has_decoration(var.self, DecorationFlat); + bool is_noperspective = interpolation_qual.get(DecorationNoPerspective) || + has_member_decoration(var_type.self, mbr_idx, DecorationNoPerspective) || + has_decoration(var.self, DecorationNoPerspective); + bool is_centroid = interpolation_qual.get(DecorationCentroid) || + has_member_decoration(var_type.self, mbr_idx, DecorationCentroid) || + has_decoration(var.self, DecorationCentroid); + bool is_sample = interpolation_qual.get(DecorationSample) || + has_member_decoration(var_type.self, mbr_idx, DecorationSample) || + has_decoration(var.self, DecorationSample); + + Bitset inherited_qual; + if (is_flat) + inherited_qual.set(DecorationFlat); + if (is_noperspective) + inherited_qual.set(DecorationNoPerspective); + if (is_centroid) + inherited_qual.set(DecorationCentroid); + if (is_sample) + inherited_qual.set(DecorationSample); + + uint32_t mbr_type_id = var_type.member_types[mbr_idx]; + auto &mbr_type = get<SPIRType>(mbr_type_id); + + bool mbr_is_indexable = false; + uint32_t elem_cnt = 1; + if (is_matrix(mbr_type)) + { + if (is_array(mbr_type)) + SPIRV_CROSS_THROW("MSL cannot emit arrays-of-matrices in input and output variables."); + + mbr_is_indexable = true; + elem_cnt = mbr_type.columns; + } + else if (is_array(mbr_type)) + { + if (mbr_type.array.size() != 1) + SPIRV_CROSS_THROW("MSL cannot emit arrays-of-arrays in input and output variables."); + + mbr_is_indexable = true; + elem_cnt = to_array_size_literal(mbr_type); + } + + auto *usable_type = &mbr_type; + if (usable_type->pointer) + usable_type = &get<SPIRType>(usable_type->parent_type); + while (is_array(*usable_type) || is_matrix(*usable_type)) + usable_type = &get<SPIRType>(usable_type->parent_type); + + bool flatten_from_ib_var = false; + string flatten_from_ib_mbr_name; + + if (storage == StorageClassOutput && is_builtin && builtin == BuiltInClipDistance) + { + // Also declare [[clip_distance]] attribute here. + uint32_t clip_array_mbr_idx = uint32_t(ib_type.member_types.size()); + ib_type.member_types.push_back(mbr_type_id); + set_member_decoration(ib_type.self, clip_array_mbr_idx, DecorationBuiltIn, BuiltInClipDistance); + + flatten_from_ib_mbr_name = builtin_to_glsl(BuiltInClipDistance, StorageClassOutput); + set_member_name(ib_type.self, clip_array_mbr_idx, flatten_from_ib_mbr_name); + + // When we flatten, we flatten directly from the "out" struct, + // not from a function variable. + flatten_from_ib_var = true; + + if (!msl_options.enable_clip_distance_user_varying) + return; + } + + // Recursively handle nested structures. + if (mbr_type.basetype == SPIRType::Struct) + { + for (uint32_t i = 0; i < elem_cnt; i++) + { + string mbr_name = append_member_name(mbr_name_qual, var_type, mbr_idx) + (mbr_is_indexable ? join("_", i) : ""); + string var_chain = join(var_chain_qual, ".", to_member_name(var_type, mbr_idx), (mbr_is_indexable ? join("[", i, "]") : "")); + uint32_t sub_mbr_cnt = uint32_t(mbr_type.member_types.size()); + for (uint32_t sub_mbr_idx = 0; sub_mbr_idx < sub_mbr_cnt; sub_mbr_idx++) + { + add_composite_member_variable_to_interface_block(storage, ib_var_ref, ib_type, + var, mbr_type, sub_mbr_idx, + meta, mbr_name, var_chain, + location, var_mbr_idx, inherited_qual); + // FIXME: Recursive structs and tessellation breaks here. + var_mbr_idx++; + } + } + return; + } + + for (uint32_t i = 0; i < elem_cnt; i++) + { + // Add a reference to the variable type to the interface struct. + uint32_t ib_mbr_idx = uint32_t(ib_type.member_types.size()); + if (storage == StorageClassInput && pull_model_inputs.count(var.self)) + ib_type.member_types.push_back(build_msl_interpolant_type(usable_type->self, is_noperspective)); + else + ib_type.member_types.push_back(usable_type->self); + + // Give the member a name + string mbr_name = ensure_valid_name(append_member_name(mbr_name_qual, var_type, mbr_idx) + (mbr_is_indexable ? join("_", i) : ""), "m"); + set_member_name(ib_type.self, ib_mbr_idx, mbr_name); + + // Once we determine the location of the first member within nested structures, + // from a var of the topmost structure, the remaining flattened members of + // the nested structures will have consecutive location values. At this point, + // we've recursively tunnelled into structs, arrays, and matrices, and are + // down to a single location for each member now. + if (!is_builtin && location != UINT32_MAX) + { + set_member_decoration(ib_type.self, ib_mbr_idx, DecorationLocation, location); + mark_location_as_used_by_shader(location, *usable_type, storage); + location++; + } + else if (has_member_decoration(var_type.self, mbr_idx, DecorationLocation)) + { + location = get_member_decoration(var_type.self, mbr_idx, DecorationLocation) + i; + set_member_decoration(ib_type.self, ib_mbr_idx, DecorationLocation, location); + mark_location_as_used_by_shader(location, *usable_type, storage); + location++; + } + else if (has_decoration(var.self, DecorationLocation)) + { + location = get_accumulated_member_location(var, mbr_idx, meta.strip_array) + i; + set_member_decoration(ib_type.self, ib_mbr_idx, DecorationLocation, location); + mark_location_as_used_by_shader(location, *usable_type, storage); + location++; + } + else if (is_builtin && is_tessellation_shader() && storage == StorageClassInput && inputs_by_builtin.count(builtin)) + { + location = inputs_by_builtin[builtin].location + i; + set_member_decoration(ib_type.self, ib_mbr_idx, DecorationLocation, location); + mark_location_as_used_by_shader(location, *usable_type, storage); + location++; + } + else if (is_builtin && capture_output_to_buffer && storage == StorageClassOutput && outputs_by_builtin.count(builtin)) + { + location = outputs_by_builtin[builtin].location + i; + set_member_decoration(ib_type.self, ib_mbr_idx, DecorationLocation, location); + mark_location_as_used_by_shader(location, *usable_type, storage); + location++; + } + else if (is_builtin && (builtin == BuiltInClipDistance || builtin == BuiltInCullDistance)) + { + // Declare the Clip/CullDistance as [[user(clip/cullN)]]. + set_member_decoration(ib_type.self, ib_mbr_idx, DecorationBuiltIn, builtin); + set_member_decoration(ib_type.self, ib_mbr_idx, DecorationIndex, i); + } + + if (has_member_decoration(var_type.self, mbr_idx, DecorationComponent)) + SPIRV_CROSS_THROW("DecorationComponent on matrices and arrays is not supported."); + + if (storage != StorageClassInput || !pull_model_inputs.count(var.self)) + { + // Copy interpolation decorations if needed + if (is_flat) + set_member_decoration(ib_type.self, ib_mbr_idx, DecorationFlat); + if (is_noperspective) + set_member_decoration(ib_type.self, ib_mbr_idx, DecorationNoPerspective); + if (is_centroid) + set_member_decoration(ib_type.self, ib_mbr_idx, DecorationCentroid); + if (is_sample) + set_member_decoration(ib_type.self, ib_mbr_idx, DecorationSample); + } + + set_extended_member_decoration(ib_type.self, ib_mbr_idx, SPIRVCrossDecorationInterfaceOrigID, var.self); + set_extended_member_decoration(ib_type.self, ib_mbr_idx, SPIRVCrossDecorationInterfaceMemberIndex, var_mbr_idx); + + // Unflatten or flatten from [[stage_in]] or [[stage_out]] as appropriate. + if (!meta.strip_array && meta.allow_local_declaration) + { + string var_chain = join(var_chain_qual, ".", to_member_name(var_type, mbr_idx), (mbr_is_indexable ? join("[", i, "]") : "")); + switch (storage) + { + case StorageClassInput: + entry_func.fixup_hooks_in.push_back([=, &var]() { + string lerp_call; + if (pull_model_inputs.count(var.self)) + { + if (is_centroid) + lerp_call = ".interpolate_at_centroid()"; + else if (is_sample) + lerp_call = join(".interpolate_at_sample(", to_expression(builtin_sample_id_id), ")"); + else + lerp_call = ".interpolate_at_center()"; + } + statement(var_chain, " = ", ib_var_ref, ".", mbr_name, lerp_call, ";"); + }); + break; + + case StorageClassOutput: + entry_func.fixup_hooks_out.push_back([=]() { + if (flatten_from_ib_var) + statement(ib_var_ref, ".", mbr_name, " = ", ib_var_ref, ".", flatten_from_ib_mbr_name, "[", i, "];"); + else + statement(ib_var_ref, ".", mbr_name, " = ", var_chain, ";"); + }); + break; + + default: + break; + } + } + } +} + +void CompilerMSL::add_plain_member_variable_to_interface_block(StorageClass storage, + const string &ib_var_ref, SPIRType &ib_type, + SPIRVariable &var, SPIRType &var_type, + uint32_t mbr_idx, InterfaceBlockMeta &meta, + const string &mbr_name_qual, + const string &var_chain_qual, + uint32_t &location, uint32_t &var_mbr_idx) +{ + auto &entry_func = get<SPIRFunction>(ir.default_entry_point); + + BuiltIn builtin = BuiltInMax; + bool is_builtin = is_member_builtin(var_type, mbr_idx, &builtin); + bool is_flat = + has_member_decoration(var_type.self, mbr_idx, DecorationFlat) || has_decoration(var.self, DecorationFlat); + bool is_noperspective = has_member_decoration(var_type.self, mbr_idx, DecorationNoPerspective) || + has_decoration(var.self, DecorationNoPerspective); + bool is_centroid = has_member_decoration(var_type.self, mbr_idx, DecorationCentroid) || + has_decoration(var.self, DecorationCentroid); + bool is_sample = + has_member_decoration(var_type.self, mbr_idx, DecorationSample) || has_decoration(var.self, DecorationSample); + + // Add a reference to the member to the interface struct. + uint32_t mbr_type_id = var_type.member_types[mbr_idx]; + uint32_t ib_mbr_idx = uint32_t(ib_type.member_types.size()); + mbr_type_id = ensure_correct_builtin_type(mbr_type_id, builtin); + var_type.member_types[mbr_idx] = mbr_type_id; + if (storage == StorageClassInput && pull_model_inputs.count(var.self)) + ib_type.member_types.push_back(build_msl_interpolant_type(mbr_type_id, is_noperspective)); + else + ib_type.member_types.push_back(mbr_type_id); + + // Give the member a name + string mbr_name = ensure_valid_name(append_member_name(mbr_name_qual, var_type, mbr_idx), "m"); + set_member_name(ib_type.self, ib_mbr_idx, mbr_name); + + // Update the original variable reference to include the structure reference + string qual_var_name = ib_var_ref + "." + mbr_name; + // If using pull-model interpolation, need to add a call to the correct interpolation method. + if (storage == StorageClassInput && pull_model_inputs.count(var.self)) + { + if (is_centroid) + qual_var_name += ".interpolate_at_centroid()"; + else if (is_sample) + qual_var_name += join(".interpolate_at_sample(", to_expression(builtin_sample_id_id), ")"); + else + qual_var_name += ".interpolate_at_center()"; + } + + bool flatten_stage_out = false; + string var_chain = var_chain_qual + "." + to_member_name(var_type, mbr_idx); + if (is_builtin && !meta.strip_array) + { + // For the builtin gl_PerVertex, we cannot treat it as a block anyways, + // so redirect to qualified name. + set_member_qualified_name(var_type.self, mbr_idx, qual_var_name); + } + else if (!meta.strip_array && meta.allow_local_declaration) + { + // Unflatten or flatten from [[stage_in]] or [[stage_out]] as appropriate. + switch (storage) + { + case StorageClassInput: + entry_func.fixup_hooks_in.push_back([=]() { + statement(var_chain, " = ", qual_var_name, ";"); + }); + break; + + case StorageClassOutput: + flatten_stage_out = true; + entry_func.fixup_hooks_out.push_back([=]() { + statement(qual_var_name, " = ", var_chain, ";"); + }); + break; + + default: + break; + } + } + + // Once we determine the location of the first member within nested structures, + // from a var of the topmost structure, the remaining flattened members of + // the nested structures will have consecutive location values. At this point, + // we've recursively tunnelled into structs, arrays, and matrices, and are + // down to a single location for each member now. + if (!is_builtin && location != UINT32_MAX) + { + set_member_decoration(ib_type.self, ib_mbr_idx, DecorationLocation, location); + mark_location_as_used_by_shader(location, get<SPIRType>(mbr_type_id), storage); + location += type_to_location_count(get<SPIRType>(mbr_type_id)); + } + else if (has_member_decoration(var_type.self, mbr_idx, DecorationLocation)) + { + location = get_member_decoration(var_type.self, mbr_idx, DecorationLocation); + uint32_t comp = get_member_decoration(var_type.self, mbr_idx, DecorationComponent); + if (storage == StorageClassInput) + { + mbr_type_id = ensure_correct_input_type(mbr_type_id, location, comp, 0, meta.strip_array); + var_type.member_types[mbr_idx] = mbr_type_id; + if (storage == StorageClassInput && pull_model_inputs.count(var.self)) + ib_type.member_types[ib_mbr_idx] = build_msl_interpolant_type(mbr_type_id, is_noperspective); + else + ib_type.member_types[ib_mbr_idx] = mbr_type_id; + } + set_member_decoration(ib_type.self, ib_mbr_idx, DecorationLocation, location); + mark_location_as_used_by_shader(location, get<SPIRType>(mbr_type_id), storage); + location += type_to_location_count(get<SPIRType>(mbr_type_id)); + } + else if (has_decoration(var.self, DecorationLocation)) + { + location = get_accumulated_member_location(var, mbr_idx, meta.strip_array); + if (storage == StorageClassInput) + { + mbr_type_id = ensure_correct_input_type(mbr_type_id, location, 0, 0, meta.strip_array); + var_type.member_types[mbr_idx] = mbr_type_id; + if (storage == StorageClassInput && pull_model_inputs.count(var.self)) + ib_type.member_types[ib_mbr_idx] = build_msl_interpolant_type(mbr_type_id, is_noperspective); + else + ib_type.member_types[ib_mbr_idx] = mbr_type_id; + } + set_member_decoration(ib_type.self, ib_mbr_idx, DecorationLocation, location); + mark_location_as_used_by_shader(location, get<SPIRType>(mbr_type_id), storage); + location += type_to_location_count(get<SPIRType>(mbr_type_id)); + } + else if (is_builtin && is_tessellation_shader() && storage == StorageClassInput && inputs_by_builtin.count(builtin)) + { + location = inputs_by_builtin[builtin].location; + set_member_decoration(ib_type.self, ib_mbr_idx, DecorationLocation, location); + mark_location_as_used_by_shader(location, get<SPIRType>(mbr_type_id), storage); + location += type_to_location_count(get<SPIRType>(mbr_type_id)); + } + else if (is_builtin && capture_output_to_buffer && storage == StorageClassOutput && outputs_by_builtin.count(builtin)) + { + location = outputs_by_builtin[builtin].location; + set_member_decoration(ib_type.self, ib_mbr_idx, DecorationLocation, location); + mark_location_as_used_by_shader(location, get<SPIRType>(mbr_type_id), storage); + location += type_to_location_count(get<SPIRType>(mbr_type_id)); + } + + // Copy the component location, if present. + if (has_member_decoration(var_type.self, mbr_idx, DecorationComponent)) + { + uint32_t comp = get_member_decoration(var_type.self, mbr_idx, DecorationComponent); + set_member_decoration(ib_type.self, ib_mbr_idx, DecorationComponent, comp); + } + + // Mark the member as builtin if needed + if (is_builtin) + { + set_member_decoration(ib_type.self, ib_mbr_idx, DecorationBuiltIn, builtin); + if (builtin == BuiltInPosition && storage == StorageClassOutput) + qual_pos_var_name = qual_var_name; + } + + const SPIRConstant *c = nullptr; + if (!flatten_stage_out && var.storage == StorageClassOutput && + var.initializer != ID(0) && (c = maybe_get<SPIRConstant>(var.initializer))) + { + if (meta.strip_array) + { + entry_func.fixup_hooks_in.push_back([=, &var]() { + auto &type = this->get<SPIRType>(var.basetype); + uint32_t index = get_extended_member_decoration(var.self, mbr_idx, SPIRVCrossDecorationInterfaceMemberIndex); + + auto invocation = to_tesc_invocation_id(); + auto constant_chain = join(to_expression(var.initializer), "[", invocation, "]"); + statement(to_expression(stage_out_ptr_var_id), "[", + invocation, "].", + to_member_name(ib_type, index), " = ", + constant_chain, ".", to_member_name(type, mbr_idx), ";"); + }); + } + else + { + entry_func.fixup_hooks_in.push_back([=]() { + statement(qual_var_name, " = ", constant_expression( + this->get<SPIRConstant>(c->subconstants[mbr_idx])), ";"); + }); + } + } + + if (storage != StorageClassInput || !pull_model_inputs.count(var.self)) + { + // Copy interpolation decorations if needed + if (is_flat) + set_member_decoration(ib_type.self, ib_mbr_idx, DecorationFlat); + if (is_noperspective) + set_member_decoration(ib_type.self, ib_mbr_idx, DecorationNoPerspective); + if (is_centroid) + set_member_decoration(ib_type.self, ib_mbr_idx, DecorationCentroid); + if (is_sample) + set_member_decoration(ib_type.self, ib_mbr_idx, DecorationSample); + } + + set_extended_member_decoration(ib_type.self, ib_mbr_idx, SPIRVCrossDecorationInterfaceOrigID, var.self); + set_extended_member_decoration(ib_type.self, ib_mbr_idx, SPIRVCrossDecorationInterfaceMemberIndex, var_mbr_idx); +} + +// In Metal, the tessellation levels are stored as tightly packed half-precision floating point values. +// But, stage-in attribute offsets and strides must be multiples of four, so we can't pass the levels +// individually. Therefore, we must pass them as vectors. Triangles get a single float4, with the outer +// levels in 'xyz' and the inner level in 'w'. Quads get a float4 containing the outer levels and a +// float2 containing the inner levels. +void CompilerMSL::add_tess_level_input_to_interface_block(const std::string &ib_var_ref, SPIRType &ib_type, + SPIRVariable &var) +{ + auto &var_type = get_variable_element_type(var); + + BuiltIn builtin = BuiltIn(get_decoration(var.self, DecorationBuiltIn)); + bool triangles = is_tessellating_triangles(); + string mbr_name; + + // Add a reference to the variable type to the interface struct. + uint32_t ib_mbr_idx = uint32_t(ib_type.member_types.size()); + + const auto mark_locations = [&](const SPIRType &new_var_type) { + if (get_decoration_bitset(var.self).get(DecorationLocation)) + { + uint32_t locn = get_decoration(var.self, DecorationLocation); + set_member_decoration(ib_type.self, ib_mbr_idx, DecorationLocation, locn); + mark_location_as_used_by_shader(locn, new_var_type, StorageClassInput); + } + else if (inputs_by_builtin.count(builtin)) + { + uint32_t locn = inputs_by_builtin[builtin].location; + set_member_decoration(ib_type.self, ib_mbr_idx, DecorationLocation, locn); + mark_location_as_used_by_shader(locn, new_var_type, StorageClassInput); + } + }; + + if (triangles) + { + // Triangles are tricky, because we want only one member in the struct. + mbr_name = "gl_TessLevel"; + + // If we already added the other one, we can skip this step. + if (!added_builtin_tess_level) + { + uint32_t type_id = build_extended_vector_type(var_type.self, 4); + + ib_type.member_types.push_back(type_id); + + // Give the member a name + set_member_name(ib_type.self, ib_mbr_idx, mbr_name); + + // We cannot decorate both, but the important part is that + // it's marked as builtin so we can get automatic attribute assignment if needed. + set_member_decoration(ib_type.self, ib_mbr_idx, DecorationBuiltIn, builtin); + + mark_locations(var_type); + added_builtin_tess_level = true; + } + } + else + { + mbr_name = builtin_to_glsl(builtin, StorageClassFunction); + + uint32_t type_id = build_extended_vector_type(var_type.self, builtin == BuiltInTessLevelOuter ? 4 : 2); + + uint32_t ptr_type_id = ir.increase_bound_by(1); + auto &new_var_type = set<SPIRType>(ptr_type_id, get<SPIRType>(type_id)); + new_var_type.pointer = true; + new_var_type.pointer_depth++; + new_var_type.storage = StorageClassInput; + new_var_type.parent_type = type_id; + + ib_type.member_types.push_back(type_id); + + // Give the member a name + set_member_name(ib_type.self, ib_mbr_idx, mbr_name); + set_member_decoration(ib_type.self, ib_mbr_idx, DecorationBuiltIn, builtin); + + mark_locations(new_var_type); + } + + add_tess_level_input(ib_var_ref, mbr_name, var); +} + +void CompilerMSL::add_tess_level_input(const std::string &base_ref, const std::string &mbr_name, SPIRVariable &var) +{ + auto &entry_func = get<SPIRFunction>(ir.default_entry_point); + BuiltIn builtin = BuiltIn(get_decoration(var.self, DecorationBuiltIn)); + + // Force the variable to have the proper name. + string var_name = builtin_to_glsl(builtin, StorageClassFunction); + set_name(var.self, var_name); + + // We need to declare the variable early and at entry-point scope. + entry_func.add_local_variable(var.self); + vars_needing_early_declaration.push_back(var.self); + bool triangles = is_tessellating_triangles(); + + if (builtin == BuiltInTessLevelOuter) + { + entry_func.fixup_hooks_in.push_back( + [=]() + { + statement(var_name, "[0] = ", base_ref, ".", mbr_name, "[0];"); + statement(var_name, "[1] = ", base_ref, ".", mbr_name, "[1];"); + statement(var_name, "[2] = ", base_ref, ".", mbr_name, "[2];"); + if (!triangles) + statement(var_name, "[3] = ", base_ref, ".", mbr_name, "[3];"); + }); + } + else + { + entry_func.fixup_hooks_in.push_back([=]() { + if (triangles) + { + if (msl_options.raw_buffer_tese_input) + statement(var_name, "[0] = ", base_ref, ".", mbr_name, ";"); + else + statement(var_name, "[0] = ", base_ref, ".", mbr_name, "[3];"); + } + else + { + statement(var_name, "[0] = ", base_ref, ".", mbr_name, "[0];"); + statement(var_name, "[1] = ", base_ref, ".", mbr_name, "[1];"); + } + }); + } +} + +bool CompilerMSL::variable_storage_requires_stage_io(spv::StorageClass storage) const +{ + if (storage == StorageClassOutput) + return !capture_output_to_buffer; + else if (storage == StorageClassInput) + return !(is_tesc_shader() && msl_options.multi_patch_workgroup) && + !(is_tese_shader() && msl_options.raw_buffer_tese_input); + else + return false; +} + +string CompilerMSL::to_tesc_invocation_id() +{ + if (msl_options.multi_patch_workgroup) + { + // n.b. builtin_invocation_id_id here is the dispatch global invocation ID, + // not the TC invocation ID. + return join(to_expression(builtin_invocation_id_id), ".x % ", get_entry_point().output_vertices); + } + else + return builtin_to_glsl(BuiltInInvocationId, StorageClassInput); +} + +void CompilerMSL::emit_local_masked_variable(const SPIRVariable &masked_var, bool strip_array) +{ + auto &entry_func = get<SPIRFunction>(ir.default_entry_point); + bool threadgroup_storage = variable_decl_is_remapped_storage(masked_var, StorageClassWorkgroup); + + if (threadgroup_storage && msl_options.multi_patch_workgroup) + { + // We need one threadgroup block per patch, so fake this. + entry_func.fixup_hooks_in.push_back([this, &masked_var]() { + auto &type = get_variable_data_type(masked_var); + add_local_variable_name(masked_var.self); + + const uint32_t max_control_points_per_patch = 32u; + uint32_t max_num_instances = + (max_control_points_per_patch + get_entry_point().output_vertices - 1u) / + get_entry_point().output_vertices; + statement("threadgroup ", type_to_glsl(type), " ", + "spvStorage", to_name(masked_var.self), "[", max_num_instances, "]", + type_to_array_glsl(type, 0), ";"); + + // Assign a threadgroup slice to each PrimitiveID. + // We assume here that workgroup size is rounded to 32, + // since that's the maximum number of control points per patch. + // We cannot size the array based on fixed dispatch parameters, + // since Metal does not allow that. :( + // FIXME: We will likely need an option to support passing down target workgroup size, + // so we can emit appropriate size here. + statement("threadgroup auto ", + "&", to_name(masked_var.self), + " = spvStorage", to_name(masked_var.self), "[", + "(", to_expression(builtin_invocation_id_id), ".x / ", + get_entry_point().output_vertices, ") % ", + max_num_instances, "];"); + }); + } + else + { + entry_func.add_local_variable(masked_var.self); + } + + if (!threadgroup_storage) + { + vars_needing_early_declaration.push_back(masked_var.self); + } + else if (masked_var.initializer) + { + // Cannot directly initialize threadgroup variables. Need fixup hooks. + ID initializer = masked_var.initializer; + if (strip_array) + { + entry_func.fixup_hooks_in.push_back([this, &masked_var, initializer]() { + auto invocation = to_tesc_invocation_id(); + statement(to_expression(masked_var.self), "[", + invocation, "] = ", + to_expression(initializer), "[", + invocation, "];"); + }); + } + else + { + entry_func.fixup_hooks_in.push_back([this, &masked_var, initializer]() { + statement(to_expression(masked_var.self), " = ", to_expression(initializer), ";"); + }); + } + } +} + +void CompilerMSL::add_variable_to_interface_block(StorageClass storage, const string &ib_var_ref, SPIRType &ib_type, + SPIRVariable &var, InterfaceBlockMeta &meta) +{ + auto &entry_func = get<SPIRFunction>(ir.default_entry_point); + // Tessellation control I/O variables and tessellation evaluation per-point inputs are + // usually declared as arrays. In these cases, we want to add the element type to the + // interface block, since in Metal it's the interface block itself which is arrayed. + auto &var_type = meta.strip_array ? get_variable_element_type(var) : get_variable_data_type(var); + bool is_builtin = is_builtin_variable(var); + auto builtin = BuiltIn(get_decoration(var.self, DecorationBuiltIn)); + bool is_block = has_decoration(var_type.self, DecorationBlock); + + // If stage variables are masked out, emit them as plain variables instead. + // For builtins, we query them one by one later. + // IO blocks are not masked here, we need to mask them per-member instead. + if (storage == StorageClassOutput && is_stage_output_variable_masked(var)) + { + // If we ignore an output, we must still emit it, since it might be used by app. + // Instead, just emit it as early declaration. + emit_local_masked_variable(var, meta.strip_array); + return; + } + + if (storage == StorageClassInput && has_decoration(var.self, DecorationPerVertexKHR)) + SPIRV_CROSS_THROW("PerVertexKHR decoration is not supported in MSL."); + + // If variable names alias, they will end up with wrong names in the interface struct, because + // there might be aliases in the member name cache and there would be a mismatch in fixup_in code. + // Make sure to register the variables as unique resource names ahead of time. + // This would normally conflict with the name cache when emitting local variables, + // but this happens in the setup stage, before we hit compilation loops. + // The name cache is cleared before we actually emit code, so this is safe. + add_resource_name(var.self); + + if (var_type.basetype == SPIRType::Struct) + { + bool block_requires_flattening = + variable_storage_requires_stage_io(storage) || (is_block && var_type.array.empty()); + bool needs_local_declaration = !is_builtin && block_requires_flattening && meta.allow_local_declaration; + + if (needs_local_declaration) + { + // For I/O blocks or structs, we will need to pass the block itself around + // to functions if they are used globally in leaf functions. + // Rather than passing down member by member, + // we unflatten I/O blocks while running the shader, + // and pass the actual struct type down to leaf functions. + // We then unflatten inputs, and flatten outputs in the "fixup" stages. + emit_local_masked_variable(var, meta.strip_array); + } + + if (!block_requires_flattening) + { + // In Metal tessellation shaders, the interface block itself is arrayed. This makes things + // very complicated, since stage-in structures in MSL don't support nested structures. + // Luckily, for stage-out when capturing output, we can avoid this and just add + // composite members directly, because the stage-out structure is stored to a buffer, + // not returned. + add_plain_variable_to_interface_block(storage, ib_var_ref, ib_type, var, meta); + } + else + { + bool masked_block = false; + uint32_t location = UINT32_MAX; + uint32_t var_mbr_idx = 0; + uint32_t elem_cnt = 1; + if (is_matrix(var_type)) + { + if (is_array(var_type)) + SPIRV_CROSS_THROW("MSL cannot emit arrays-of-matrices in input and output variables."); + + elem_cnt = var_type.columns; + } + else if (is_array(var_type)) + { + if (var_type.array.size() != 1) + SPIRV_CROSS_THROW("MSL cannot emit arrays-of-arrays in input and output variables."); + + elem_cnt = to_array_size_literal(var_type); + } + + for (uint32_t elem_idx = 0; elem_idx < elem_cnt; elem_idx++) + { + // Flatten the struct members into the interface struct + for (uint32_t mbr_idx = 0; mbr_idx < uint32_t(var_type.member_types.size()); mbr_idx++) + { + builtin = BuiltInMax; + is_builtin = is_member_builtin(var_type, mbr_idx, &builtin); + auto &mbr_type = get<SPIRType>(var_type.member_types[mbr_idx]); + + if (storage == StorageClassOutput && is_stage_output_block_member_masked(var, mbr_idx, meta.strip_array)) + { + location = UINT32_MAX; // Skip this member and resolve location again on next var member + + if (is_block) + masked_block = true; + + // Non-builtin block output variables are just ignored, since they will still access + // the block variable as-is. They're just not flattened. + if (is_builtin && !meta.strip_array) + { + // Emit a fake variable instead. + uint32_t ids = ir.increase_bound_by(2); + uint32_t ptr_type_id = ids + 0; + uint32_t var_id = ids + 1; + + auto ptr_type = mbr_type; + ptr_type.pointer = true; + ptr_type.pointer_depth++; + ptr_type.parent_type = var_type.member_types[mbr_idx]; + ptr_type.storage = StorageClassOutput; + + uint32_t initializer = 0; + if (var.initializer) + if (auto *c = maybe_get<SPIRConstant>(var.initializer)) + initializer = c->subconstants[mbr_idx]; + + set<SPIRType>(ptr_type_id, ptr_type); + set<SPIRVariable>(var_id, ptr_type_id, StorageClassOutput, initializer); + entry_func.add_local_variable(var_id); + vars_needing_early_declaration.push_back(var_id); + set_name(var_id, builtin_to_glsl(builtin, StorageClassOutput)); + set_decoration(var_id, DecorationBuiltIn, builtin); + } + } + else if (!is_builtin || has_active_builtin(builtin, storage)) + { + bool is_composite_type = is_matrix(mbr_type) || is_array(mbr_type) || mbr_type.basetype == SPIRType::Struct; + bool attribute_load_store = + storage == StorageClassInput && get_execution_model() != ExecutionModelFragment; + bool storage_is_stage_io = variable_storage_requires_stage_io(storage); + + // Clip/CullDistance always need to be declared as user attributes. + if (builtin == BuiltInClipDistance || builtin == BuiltInCullDistance) + is_builtin = false; + + const string var_name = to_name(var.self); + string mbr_name_qual = var_name; + string var_chain_qual = var_name; + if (elem_cnt > 1) + { + mbr_name_qual += join("_", elem_idx); + var_chain_qual += join("[", elem_idx, "]"); + } + + if ((!is_builtin || attribute_load_store) && storage_is_stage_io && is_composite_type) + { + add_composite_member_variable_to_interface_block(storage, ib_var_ref, ib_type, + var, var_type, mbr_idx, meta, + mbr_name_qual, var_chain_qual, + location, var_mbr_idx, {}); + } + else + { + add_plain_member_variable_to_interface_block(storage, ib_var_ref, ib_type, + var, var_type, mbr_idx, meta, + mbr_name_qual, var_chain_qual, + location, var_mbr_idx); + } + } + var_mbr_idx++; + } + } + + // If we're redirecting a block, we might still need to access the original block + // variable if we're masking some members. + if (masked_block && !needs_local_declaration && (!is_builtin_variable(var) || is_tesc_shader())) + { + if (is_builtin_variable(var)) + { + // Ensure correct names for the block members if we're actually going to + // declare gl_PerVertex. + for (uint32_t mbr_idx = 0; mbr_idx < uint32_t(var_type.member_types.size()); mbr_idx++) + { + set_member_name(var_type.self, mbr_idx, builtin_to_glsl( + BuiltIn(get_member_decoration(var_type.self, mbr_idx, DecorationBuiltIn)), + StorageClassOutput)); + } + + set_name(var_type.self, "gl_PerVertex"); + set_name(var.self, "gl_out_masked"); + stage_out_masked_builtin_type_id = var_type.self; + } + emit_local_masked_variable(var, meta.strip_array); + } + } + } + else if (is_tese_shader() && storage == StorageClassInput && !meta.strip_array && is_builtin && + (builtin == BuiltInTessLevelOuter || builtin == BuiltInTessLevelInner)) + { + add_tess_level_input_to_interface_block(ib_var_ref, ib_type, var); + } + else if (var_type.basetype == SPIRType::Boolean || var_type.basetype == SPIRType::Char || + type_is_integral(var_type) || type_is_floating_point(var_type)) + { + if (!is_builtin || has_active_builtin(builtin, storage)) + { + bool is_composite_type = is_matrix(var_type) || is_array(var_type); + bool storage_is_stage_io = variable_storage_requires_stage_io(storage); + bool attribute_load_store = storage == StorageClassInput && get_execution_model() != ExecutionModelFragment; + + // Clip/CullDistance always needs to be declared as user attributes. + if (builtin == BuiltInClipDistance || builtin == BuiltInCullDistance) + is_builtin = false; + + // MSL does not allow matrices or arrays in input or output variables, so need to handle it specially. + if ((!is_builtin || attribute_load_store) && storage_is_stage_io && is_composite_type) + { + add_composite_variable_to_interface_block(storage, ib_var_ref, ib_type, var, meta); + } + else + { + add_plain_variable_to_interface_block(storage, ib_var_ref, ib_type, var, meta); + } + } + } +} + +// Fix up the mapping of variables to interface member indices, which is used to compile access chains +// for per-vertex variables in a tessellation control shader. +void CompilerMSL::fix_up_interface_member_indices(StorageClass storage, uint32_t ib_type_id) +{ + // Only needed for tessellation shaders and pull-model interpolants. + // Need to redirect interface indices back to variables themselves. + // For structs, each member of the struct need a separate instance. + if (!is_tesc_shader() && !(is_tese_shader() && storage == StorageClassInput) && + !(get_execution_model() == ExecutionModelFragment && storage == StorageClassInput && + !pull_model_inputs.empty())) + return; + + auto mbr_cnt = uint32_t(ir.meta[ib_type_id].members.size()); + for (uint32_t i = 0; i < mbr_cnt; i++) + { + uint32_t var_id = get_extended_member_decoration(ib_type_id, i, SPIRVCrossDecorationInterfaceOrigID); + if (!var_id) + continue; + auto &var = get<SPIRVariable>(var_id); + + auto &type = get_variable_element_type(var); + + bool flatten_composites = variable_storage_requires_stage_io(var.storage); + bool is_block = has_decoration(type.self, DecorationBlock); + + uint32_t mbr_idx = uint32_t(-1); + if (type.basetype == SPIRType::Struct && (flatten_composites || is_block)) + mbr_idx = get_extended_member_decoration(ib_type_id, i, SPIRVCrossDecorationInterfaceMemberIndex); + + if (mbr_idx != uint32_t(-1)) + { + // Only set the lowest InterfaceMemberIndex for each variable member. + // IB struct members will be emitted in-order w.r.t. interface member index. + if (!has_extended_member_decoration(var_id, mbr_idx, SPIRVCrossDecorationInterfaceMemberIndex)) + set_extended_member_decoration(var_id, mbr_idx, SPIRVCrossDecorationInterfaceMemberIndex, i); + } + else + { + // Only set the lowest InterfaceMemberIndex for each variable. + // IB struct members will be emitted in-order w.r.t. interface member index. + if (!has_extended_decoration(var_id, SPIRVCrossDecorationInterfaceMemberIndex)) + set_extended_decoration(var_id, SPIRVCrossDecorationInterfaceMemberIndex, i); + } + } +} + +// Add an interface structure for the type of storage, which is either StorageClassInput or StorageClassOutput. +// Returns the ID of the newly added variable, or zero if no variable was added. +uint32_t CompilerMSL::add_interface_block(StorageClass storage, bool patch) +{ + // Accumulate the variables that should appear in the interface struct. + SmallVector<SPIRVariable *> vars; + bool incl_builtins = storage == StorageClassOutput || is_tessellation_shader(); + bool has_seen_barycentric = false; + + InterfaceBlockMeta meta; + + // Varying interfaces between stages which use "user()" attribute can be dealt with + // without explicit packing and unpacking of components. For any variables which link against the runtime + // in some way (vertex attributes, fragment output, etc), we'll need to deal with it somehow. + bool pack_components = + (storage == StorageClassInput && get_execution_model() == ExecutionModelVertex) || + (storage == StorageClassOutput && get_execution_model() == ExecutionModelFragment) || + (storage == StorageClassOutput && get_execution_model() == ExecutionModelVertex && capture_output_to_buffer); + + ir.for_each_typed_id<SPIRVariable>([&](uint32_t var_id, SPIRVariable &var) { + if (var.storage != storage) + return; + + auto &type = this->get<SPIRType>(var.basetype); + + bool is_builtin = is_builtin_variable(var); + bool is_block = has_decoration(type.self, DecorationBlock); + + auto bi_type = BuiltInMax; + bool builtin_is_gl_in_out = false; + if (is_builtin && !is_block) + { + bi_type = BuiltIn(get_decoration(var_id, DecorationBuiltIn)); + builtin_is_gl_in_out = bi_type == BuiltInPosition || bi_type == BuiltInPointSize || + bi_type == BuiltInClipDistance || bi_type == BuiltInCullDistance; + } + + if (is_builtin && is_block) + builtin_is_gl_in_out = true; + + uint32_t location = get_decoration(var_id, DecorationLocation); + + bool builtin_is_stage_in_out = builtin_is_gl_in_out || + bi_type == BuiltInLayer || bi_type == BuiltInViewportIndex || + bi_type == BuiltInBaryCoordKHR || bi_type == BuiltInBaryCoordNoPerspKHR || + bi_type == BuiltInFragDepth || + bi_type == BuiltInFragStencilRefEXT || bi_type == BuiltInSampleMask; + + // These builtins are part of the stage in/out structs. + bool is_interface_block_builtin = + builtin_is_stage_in_out || (is_tese_shader() && !msl_options.raw_buffer_tese_input && + (bi_type == BuiltInTessLevelOuter || bi_type == BuiltInTessLevelInner)); + + bool is_active = interface_variable_exists_in_entry_point(var.self); + if (is_builtin && is_active) + { + // Only emit the builtin if it's active in this entry point. Interface variable list might lie. + if (is_block) + { + // If any builtin is active, the block is active. + uint32_t mbr_cnt = uint32_t(type.member_types.size()); + for (uint32_t i = 0; !is_active && i < mbr_cnt; i++) + is_active = has_active_builtin(BuiltIn(get_member_decoration(type.self, i, DecorationBuiltIn)), storage); + } + else + { + is_active = has_active_builtin(bi_type, storage); + } + } + + bool filter_patch_decoration = (has_decoration(var_id, DecorationPatch) || is_patch_block(type)) == patch; + + bool hidden = is_hidden_variable(var, incl_builtins); + + // ClipDistance is never hidden, we need to emulate it when used as an input. + if (bi_type == BuiltInClipDistance || bi_type == BuiltInCullDistance) + hidden = false; + + // It's not enough to simply avoid marking fragment outputs if the pipeline won't + // accept them. We can't put them in the struct at all, or otherwise the compiler + // complains that the outputs weren't explicitly marked. + // Frag depth and stencil outputs are incompatible with explicit early fragment tests. + // In GLSL, depth and stencil outputs are just ignored when explicit early fragment tests are required. + // In Metal, it's a compilation error, so we need to exclude them from the output struct. + if (get_execution_model() == ExecutionModelFragment && storage == StorageClassOutput && !patch && + ((is_builtin && ((bi_type == BuiltInFragDepth && (!msl_options.enable_frag_depth_builtin || uses_explicit_early_fragment_test())) || + (bi_type == BuiltInFragStencilRefEXT && (!msl_options.enable_frag_stencil_ref_builtin || uses_explicit_early_fragment_test())))) || + (!is_builtin && !(msl_options.enable_frag_output_mask & (1 << location))))) + { + hidden = true; + disabled_frag_outputs.push_back(var_id); + // If a builtin, force it to have the proper name, and mark it as not part of the output struct. + if (is_builtin) + { + set_name(var_id, builtin_to_glsl(bi_type, StorageClassFunction)); + mask_stage_output_by_builtin(bi_type); + } + } + + // Barycentric inputs must be emitted in stage-in, because they can have interpolation arguments. + if (is_active && (bi_type == BuiltInBaryCoordKHR || bi_type == BuiltInBaryCoordNoPerspKHR)) + { + if (has_seen_barycentric) + SPIRV_CROSS_THROW("Cannot declare both BaryCoordNV and BaryCoordNoPerspNV in same shader in MSL."); + has_seen_barycentric = true; + hidden = false; + } + + if (is_active && !hidden && type.pointer && filter_patch_decoration && + (!is_builtin || is_interface_block_builtin)) + { + vars.push_back(&var); + + if (!is_builtin) + { + // Need to deal specially with DecorationComponent. + // Multiple variables can alias the same Location, and try to make sure each location is declared only once. + // We will swizzle data in and out to make this work. + // This is only relevant for vertex inputs and fragment outputs. + // Technically tessellation as well, but it is too complicated to support. + uint32_t component = get_decoration(var_id, DecorationComponent); + if (component != 0) + { + if (is_tessellation_shader()) + SPIRV_CROSS_THROW("Component decoration is not supported in tessellation shaders."); + else if (pack_components) + { + uint32_t array_size = 1; + if (!type.array.empty()) + array_size = to_array_size_literal(type); + + for (uint32_t location_offset = 0; location_offset < array_size; location_offset++) + { + auto &location_meta = meta.location_meta[location + location_offset]; + location_meta.num_components = max<uint32_t>(location_meta.num_components, component + type.vecsize); + + // For variables sharing location, decorations and base type must match. + location_meta.base_type_id = type.self; + location_meta.flat = has_decoration(var.self, DecorationFlat); + location_meta.noperspective = has_decoration(var.self, DecorationNoPerspective); + location_meta.centroid = has_decoration(var.self, DecorationCentroid); + location_meta.sample = has_decoration(var.self, DecorationSample); + } + } + } + } + } + + if (is_tese_shader() && msl_options.raw_buffer_tese_input && patch && storage == StorageClassInput && + (bi_type == BuiltInTessLevelOuter || bi_type == BuiltInTessLevelInner)) + { + // In this case, we won't add the builtin to the interface struct, + // but we still need the hook to run to populate the arrays. + string base_ref = join(tess_factor_buffer_var_name, "[", to_expression(builtin_primitive_id_id), "]"); + const char *mbr_name = + bi_type == BuiltInTessLevelOuter ? "edgeTessellationFactor" : "insideTessellationFactor"; + add_tess_level_input(base_ref, mbr_name, var); + if (inputs_by_builtin.count(bi_type)) + { + uint32_t locn = inputs_by_builtin[bi_type].location; + mark_location_as_used_by_shader(locn, type, StorageClassInput); + } + } + }); + + // If no variables qualify, leave. + // For patch input in a tessellation evaluation shader, the per-vertex stage inputs + // are included in a special patch control point array. + if (vars.empty() && + !(!msl_options.raw_buffer_tese_input && storage == StorageClassInput && patch && stage_in_var_id)) + return 0; + + // Add a new typed variable for this interface structure. + // The initializer expression is allocated here, but populated when the function + // declaraion is emitted, because it is cleared after each compilation pass. + uint32_t next_id = ir.increase_bound_by(3); + uint32_t ib_type_id = next_id++; + auto &ib_type = set<SPIRType>(ib_type_id, OpTypeStruct); + ib_type.basetype = SPIRType::Struct; + ib_type.storage = storage; + set_decoration(ib_type_id, DecorationBlock); + + uint32_t ib_var_id = next_id++; + auto &var = set<SPIRVariable>(ib_var_id, ib_type_id, storage, 0); + var.initializer = next_id++; + + string ib_var_ref; + auto &entry_func = get<SPIRFunction>(ir.default_entry_point); + switch (storage) + { + case StorageClassInput: + ib_var_ref = patch ? patch_stage_in_var_name : stage_in_var_name; + switch (get_execution_model()) + { + case ExecutionModelTessellationControl: + // Add a hook to populate the shared workgroup memory containing the gl_in array. + entry_func.fixup_hooks_in.push_back([=]() { + // Can't use PatchVertices, PrimitiveId, or InvocationId yet; the hooks for those may not have run yet. + if (msl_options.multi_patch_workgroup) + { + // n.b. builtin_invocation_id_id here is the dispatch global invocation ID, + // not the TC invocation ID. + statement("device ", to_name(ir.default_entry_point), "_", ib_var_ref, "* gl_in = &", + input_buffer_var_name, "[min(", to_expression(builtin_invocation_id_id), ".x / ", + get_entry_point().output_vertices, + ", spvIndirectParams[1] - 1) * spvIndirectParams[0]];"); + } + else + { + // It's safe to use InvocationId here because it's directly mapped to a + // Metal builtin, and therefore doesn't need a hook. + statement("if (", to_expression(builtin_invocation_id_id), " < spvIndirectParams[0])"); + statement(" ", input_wg_var_name, "[", to_expression(builtin_invocation_id_id), + "] = ", ib_var_ref, ";"); + statement("threadgroup_barrier(mem_flags::mem_threadgroup);"); + statement("if (", to_expression(builtin_invocation_id_id), + " >= ", get_entry_point().output_vertices, ")"); + statement(" return;"); + } + }); + break; + case ExecutionModelTessellationEvaluation: + if (!msl_options.raw_buffer_tese_input) + break; + if (patch) + { + entry_func.fixup_hooks_in.push_back( + [=]() + { + statement("const device ", to_name(ir.default_entry_point), "_", ib_var_ref, "& ", ib_var_ref, + " = ", patch_input_buffer_var_name, "[", to_expression(builtin_primitive_id_id), + "];"); + }); + } + else + { + entry_func.fixup_hooks_in.push_back( + [=]() + { + statement("const device ", to_name(ir.default_entry_point), "_", ib_var_ref, "* gl_in = &", + input_buffer_var_name, "[", to_expression(builtin_primitive_id_id), " * ", + get_entry_point().output_vertices, "];"); + }); + } + break; + default: + break; + } + break; + + case StorageClassOutput: + { + ib_var_ref = patch ? patch_stage_out_var_name : stage_out_var_name; + + // Add the output interface struct as a local variable to the entry function. + // If the entry point should return the output struct, set the entry function + // to return the output interface struct, otherwise to return nothing. + // Watch out for the rare case where the terminator of the last entry point block is a + // Kill, instead of a Return. Based on SPIR-V's block-domination rules, we assume that + // any block that has a Kill will also have a terminating Return, except the last block. + // Indicate the output var requires early initialization. + bool ep_should_return_output = !get_is_rasterization_disabled(); + uint32_t rtn_id = ep_should_return_output ? ib_var_id : 0; + if (!capture_output_to_buffer) + { + entry_func.add_local_variable(ib_var_id); + for (auto &blk_id : entry_func.blocks) + { + auto &blk = get<SPIRBlock>(blk_id); + if (blk.terminator == SPIRBlock::Return || (blk.terminator == SPIRBlock::Kill && blk_id == entry_func.blocks.back())) + blk.return_value = rtn_id; + } + vars_needing_early_declaration.push_back(ib_var_id); + } + else + { + switch (get_execution_model()) + { + case ExecutionModelVertex: + case ExecutionModelTessellationEvaluation: + // Instead of declaring a struct variable to hold the output and then + // copying that to the output buffer, we'll declare the output variable + // as a reference to the final output element in the buffer. Then we can + // avoid the extra copy. + entry_func.fixup_hooks_in.push_back([=]() { + if (stage_out_var_id) + { + // The first member of the indirect buffer is always the number of vertices + // to draw. + // We zero-base the InstanceID & VertexID variables for HLSL emulation elsewhere, so don't do it twice + if (get_execution_model() == ExecutionModelVertex && msl_options.vertex_for_tessellation) + { + statement("device ", to_name(ir.default_entry_point), "_", ib_var_ref, "& ", ib_var_ref, + " = ", output_buffer_var_name, "[", to_expression(builtin_invocation_id_id), + ".y * ", to_expression(builtin_stage_input_size_id), ".x + ", + to_expression(builtin_invocation_id_id), ".x];"); + } + else if (msl_options.enable_base_index_zero) + { + statement("device ", to_name(ir.default_entry_point), "_", ib_var_ref, "& ", ib_var_ref, + " = ", output_buffer_var_name, "[", to_expression(builtin_instance_idx_id), + " * spvIndirectParams[0] + ", to_expression(builtin_vertex_idx_id), "];"); + } + else + { + statement("device ", to_name(ir.default_entry_point), "_", ib_var_ref, "& ", ib_var_ref, + " = ", output_buffer_var_name, "[(", to_expression(builtin_instance_idx_id), + " - ", to_expression(builtin_base_instance_id), ") * spvIndirectParams[0] + ", + to_expression(builtin_vertex_idx_id), " - ", + to_expression(builtin_base_vertex_id), "];"); + } + } + }); + break; + case ExecutionModelTessellationControl: + if (msl_options.multi_patch_workgroup) + { + // We cannot use PrimitiveId here, because the hook may not have run yet. + if (patch) + { + entry_func.fixup_hooks_in.push_back([=]() { + statement("device ", to_name(ir.default_entry_point), "_", ib_var_ref, "& ", ib_var_ref, + " = ", patch_output_buffer_var_name, "[", to_expression(builtin_invocation_id_id), + ".x / ", get_entry_point().output_vertices, "];"); + }); + } + else + { + entry_func.fixup_hooks_in.push_back([=]() { + statement("device ", to_name(ir.default_entry_point), "_", ib_var_ref, "* gl_out = &", + output_buffer_var_name, "[", to_expression(builtin_invocation_id_id), ".x - ", + to_expression(builtin_invocation_id_id), ".x % ", + get_entry_point().output_vertices, "];"); + }); + } + } + else + { + if (patch) + { + entry_func.fixup_hooks_in.push_back([=]() { + statement("device ", to_name(ir.default_entry_point), "_", ib_var_ref, "& ", ib_var_ref, + " = ", patch_output_buffer_var_name, "[", to_expression(builtin_primitive_id_id), + "];"); + }); + } + else + { + entry_func.fixup_hooks_in.push_back([=]() { + statement("device ", to_name(ir.default_entry_point), "_", ib_var_ref, "* gl_out = &", + output_buffer_var_name, "[", to_expression(builtin_primitive_id_id), " * ", + get_entry_point().output_vertices, "];"); + }); + } + } + break; + default: + break; + } + } + break; + } + + default: + break; + } + + set_name(ib_type_id, to_name(ir.default_entry_point) + "_" + ib_var_ref); + set_name(ib_var_id, ib_var_ref); + + for (auto *p_var : vars) + { + bool strip_array = (is_tesc_shader() || (is_tese_shader() && storage == StorageClassInput)) && !patch; + + // Fixing up flattened stores in TESC is impossible since the memory is group shared either via + // device (not masked) or threadgroup (masked) storage classes and it's race condition city. + meta.strip_array = strip_array; + meta.allow_local_declaration = !strip_array && !(is_tesc_shader() && storage == StorageClassOutput); + add_variable_to_interface_block(storage, ib_var_ref, ib_type, *p_var, meta); + } + + if (((is_tesc_shader() && msl_options.multi_patch_workgroup) || + (is_tese_shader() && msl_options.raw_buffer_tese_input)) && + storage == StorageClassInput) + { + // For tessellation inputs, add all outputs from the previous stage to ensure + // the struct containing them is the correct size and layout. + for (auto &input : inputs_by_location) + { + if (location_inputs_in_use.count(input.first.location) != 0) + continue; + + if (patch != (input.second.rate == MSL_SHADER_VARIABLE_RATE_PER_PATCH)) + continue; + + // Tessellation levels have their own struct, so there's no need to add them here. + if (input.second.builtin == BuiltInTessLevelOuter || input.second.builtin == BuiltInTessLevelInner) + continue; + + // Create a fake variable to put at the location. + uint32_t offset = ir.increase_bound_by(5); + uint32_t type_id = offset; + uint32_t vec_type_id = offset + 1; + uint32_t array_type_id = offset + 2; + uint32_t ptr_type_id = offset + 3; + uint32_t var_id = offset + 4; + + SPIRType type { OpTypeInt }; + switch (input.second.format) + { + case MSL_SHADER_VARIABLE_FORMAT_UINT16: + case MSL_SHADER_VARIABLE_FORMAT_ANY16: + type.basetype = SPIRType::UShort; + type.width = 16; + break; + case MSL_SHADER_VARIABLE_FORMAT_ANY32: + default: + type.basetype = SPIRType::UInt; + type.width = 32; + break; + } + set<SPIRType>(type_id, type); + if (input.second.vecsize > 1) + { + type.op = OpTypeVector; + type.vecsize = input.second.vecsize; + set<SPIRType>(vec_type_id, type); + type_id = vec_type_id; + } + + type.op = OpTypeArray; + type.array.push_back(0); + type.array_size_literal.push_back(true); + type.parent_type = type_id; + set<SPIRType>(array_type_id, type); + type.self = type_id; + + type.op = OpTypePointer; + type.pointer = true; + type.pointer_depth++; + type.parent_type = array_type_id; + type.storage = storage; + auto &ptr_type = set<SPIRType>(ptr_type_id, type); + ptr_type.self = array_type_id; + + auto &fake_var = set<SPIRVariable>(var_id, ptr_type_id, storage); + set_decoration(var_id, DecorationLocation, input.first.location); + if (input.first.component) + set_decoration(var_id, DecorationComponent, input.first.component); + + meta.strip_array = true; + meta.allow_local_declaration = false; + add_variable_to_interface_block(storage, ib_var_ref, ib_type, fake_var, meta); + } + } + + if (capture_output_to_buffer && storage == StorageClassOutput) + { + // For captured output, add all inputs from the next stage to ensure + // the struct containing them is the correct size and layout. This is + // necessary for certain implicit builtins that may nonetheless be read, + // even when they aren't written. + for (auto &output : outputs_by_location) + { + if (location_outputs_in_use.count(output.first.location) != 0) + continue; + + // Create a fake variable to put at the location. + uint32_t offset = ir.increase_bound_by(5); + uint32_t type_id = offset; + uint32_t vec_type_id = offset + 1; + uint32_t array_type_id = offset + 2; + uint32_t ptr_type_id = offset + 3; + uint32_t var_id = offset + 4; + + SPIRType type { OpTypeInt }; + switch (output.second.format) + { + case MSL_SHADER_VARIABLE_FORMAT_UINT16: + case MSL_SHADER_VARIABLE_FORMAT_ANY16: + type.basetype = SPIRType::UShort; + type.width = 16; + break; + case MSL_SHADER_VARIABLE_FORMAT_ANY32: + default: + type.basetype = SPIRType::UInt; + type.width = 32; + break; + } + set<SPIRType>(type_id, type); + if (output.second.vecsize > 1) + { + type.op = OpTypeVector; + type.vecsize = output.second.vecsize; + set<SPIRType>(vec_type_id, type); + type_id = vec_type_id; + } + + if (is_tesc_shader()) + { + type.op = OpTypeArray; + type.array.push_back(0); + type.array_size_literal.push_back(true); + type.parent_type = type_id; + set<SPIRType>(array_type_id, type); + } + + type.op = OpTypePointer; + type.pointer = true; + type.pointer_depth++; + type.parent_type = is_tesc_shader() ? array_type_id : type_id; + type.storage = storage; + auto &ptr_type = set<SPIRType>(ptr_type_id, type); + ptr_type.self = type.parent_type; + + auto &fake_var = set<SPIRVariable>(var_id, ptr_type_id, storage); + set_decoration(var_id, DecorationLocation, output.first.location); + if (output.first.component) + set_decoration(var_id, DecorationComponent, output.first.component); + + meta.strip_array = true; + meta.allow_local_declaration = false; + add_variable_to_interface_block(storage, ib_var_ref, ib_type, fake_var, meta); + } + } + + // When multiple variables need to access same location, + // unroll locations one by one and we will flatten output or input as necessary. + for (auto &loc : meta.location_meta) + { + uint32_t location = loc.first; + auto &location_meta = loc.second; + + uint32_t ib_mbr_idx = uint32_t(ib_type.member_types.size()); + uint32_t type_id = build_extended_vector_type(location_meta.base_type_id, location_meta.num_components); + ib_type.member_types.push_back(type_id); + + set_member_name(ib_type.self, ib_mbr_idx, join("m_location_", location)); + set_member_decoration(ib_type.self, ib_mbr_idx, DecorationLocation, location); + mark_location_as_used_by_shader(location, get<SPIRType>(type_id), storage); + + if (location_meta.flat) + set_member_decoration(ib_type.self, ib_mbr_idx, DecorationFlat); + if (location_meta.noperspective) + set_member_decoration(ib_type.self, ib_mbr_idx, DecorationNoPerspective); + if (location_meta.centroid) + set_member_decoration(ib_type.self, ib_mbr_idx, DecorationCentroid); + if (location_meta.sample) + set_member_decoration(ib_type.self, ib_mbr_idx, DecorationSample); + } + + // Sort the members of the structure by their locations. + MemberSorter member_sorter(ib_type, ir.meta[ib_type_id], MemberSorter::LocationThenBuiltInType); + member_sorter.sort(); + + // The member indices were saved to the original variables, but after the members + // were sorted, those indices are now likely incorrect. Fix those up now. + fix_up_interface_member_indices(storage, ib_type_id); + + // For patch inputs, add one more member, holding the array of control point data. + if (is_tese_shader() && !msl_options.raw_buffer_tese_input && storage == StorageClassInput && patch && + stage_in_var_id) + { + uint32_t pcp_type_id = ir.increase_bound_by(1); + auto &pcp_type = set<SPIRType>(pcp_type_id, ib_type); + pcp_type.basetype = SPIRType::ControlPointArray; + pcp_type.parent_type = pcp_type.type_alias = get_stage_in_struct_type().self; + pcp_type.storage = storage; + ir.meta[pcp_type_id] = ir.meta[ib_type.self]; + uint32_t mbr_idx = uint32_t(ib_type.member_types.size()); + ib_type.member_types.push_back(pcp_type_id); + set_member_name(ib_type.self, mbr_idx, "gl_in"); + } + + if (storage == StorageClassInput) + set_decoration(ib_var_id, DecorationNonWritable); + + return ib_var_id; +} + +uint32_t CompilerMSL::add_interface_block_pointer(uint32_t ib_var_id, StorageClass storage) +{ + if (!ib_var_id) + return 0; + + uint32_t ib_ptr_var_id; + uint32_t next_id = ir.increase_bound_by(3); + auto &ib_type = expression_type(ib_var_id); + if (is_tesc_shader() || (is_tese_shader() && msl_options.raw_buffer_tese_input)) + { + // Tessellation control per-vertex I/O is presented as an array, so we must + // do the same with our struct here. + uint32_t ib_ptr_type_id = next_id++; + auto &ib_ptr_type = set<SPIRType>(ib_ptr_type_id, ib_type); + ib_ptr_type.op = OpTypePointer; + ib_ptr_type.parent_type = ib_ptr_type.type_alias = ib_type.self; + ib_ptr_type.pointer = true; + ib_ptr_type.pointer_depth++; + ib_ptr_type.storage = storage == StorageClassInput ? + ((is_tesc_shader() && msl_options.multi_patch_workgroup) || + (is_tese_shader() && msl_options.raw_buffer_tese_input) ? + StorageClassStorageBuffer : + StorageClassWorkgroup) : + StorageClassStorageBuffer; + ir.meta[ib_ptr_type_id] = ir.meta[ib_type.self]; + // To ensure that get_variable_data_type() doesn't strip off the pointer, + // which we need, use another pointer. + uint32_t ib_ptr_ptr_type_id = next_id++; + auto &ib_ptr_ptr_type = set<SPIRType>(ib_ptr_ptr_type_id, ib_ptr_type); + ib_ptr_ptr_type.parent_type = ib_ptr_type_id; + ib_ptr_ptr_type.type_alias = ib_type.self; + ib_ptr_ptr_type.storage = StorageClassFunction; + ir.meta[ib_ptr_ptr_type_id] = ir.meta[ib_type.self]; + + ib_ptr_var_id = next_id; + set<SPIRVariable>(ib_ptr_var_id, ib_ptr_ptr_type_id, StorageClassFunction, 0); + set_name(ib_ptr_var_id, storage == StorageClassInput ? "gl_in" : "gl_out"); + if (storage == StorageClassInput) + set_decoration(ib_ptr_var_id, DecorationNonWritable); + } + else + { + // Tessellation evaluation per-vertex inputs are also presented as arrays. + // But, in Metal, this array uses a very special type, 'patch_control_point<T>', + // which is a container that can be used to access the control point data. + // To represent this, a special 'ControlPointArray' type has been added to the + // SPIRV-Cross type system. It should only be generated by and seen in the MSL + // backend (i.e. this one). + uint32_t pcp_type_id = next_id++; + auto &pcp_type = set<SPIRType>(pcp_type_id, ib_type); + pcp_type.basetype = SPIRType::ControlPointArray; + pcp_type.parent_type = pcp_type.type_alias = ib_type.self; + pcp_type.storage = storage; + ir.meta[pcp_type_id] = ir.meta[ib_type.self]; + + ib_ptr_var_id = next_id; + set<SPIRVariable>(ib_ptr_var_id, pcp_type_id, storage, 0); + set_name(ib_ptr_var_id, "gl_in"); + ir.meta[ib_ptr_var_id].decoration.qualified_alias = join(patch_stage_in_var_name, ".gl_in"); + } + return ib_ptr_var_id; +} + +// Ensure that the type is compatible with the builtin. +// If it is, simply return the given type ID. +// Otherwise, create a new type, and return it's ID. +uint32_t CompilerMSL::ensure_correct_builtin_type(uint32_t type_id, BuiltIn builtin) +{ + auto &type = get<SPIRType>(type_id); + auto &pointee_type = get_pointee_type(type); + + if ((builtin == BuiltInSampleMask && is_array(pointee_type)) || + ((builtin == BuiltInLayer || builtin == BuiltInViewportIndex || builtin == BuiltInFragStencilRefEXT) && + pointee_type.basetype != SPIRType::UInt)) + { + uint32_t next_id = ir.increase_bound_by(is_pointer(type) ? 2 : 1); + uint32_t base_type_id = next_id++; + auto &base_type = set<SPIRType>(base_type_id, OpTypeInt); + base_type.basetype = SPIRType::UInt; + base_type.width = 32; + + if (!is_pointer(type)) + return base_type_id; + + uint32_t ptr_type_id = next_id++; + auto &ptr_type = set<SPIRType>(ptr_type_id, base_type); + ptr_type.op = spv::OpTypePointer; + ptr_type.pointer = true; + ptr_type.pointer_depth++; + ptr_type.storage = type.storage; + ptr_type.parent_type = base_type_id; + return ptr_type_id; + } + + return type_id; +} + +// Ensure that the type is compatible with the shader input. +// If it is, simply return the given type ID. +// Otherwise, create a new type, and return its ID. +uint32_t CompilerMSL::ensure_correct_input_type(uint32_t type_id, uint32_t location, uint32_t component, uint32_t num_components, bool strip_array) +{ + auto &type = get<SPIRType>(type_id); + + uint32_t max_array_dimensions = strip_array ? 1 : 0; + + // Struct and array types must match exactly. + if (type.basetype == SPIRType::Struct || type.array.size() > max_array_dimensions) + return type_id; + + auto p_va = inputs_by_location.find({location, component}); + if (p_va == end(inputs_by_location)) + { + if (num_components > type.vecsize) + return build_extended_vector_type(type_id, num_components); + else + return type_id; + } + + if (num_components == 0) + num_components = p_va->second.vecsize; + + switch (p_va->second.format) + { + case MSL_SHADER_VARIABLE_FORMAT_UINT8: + { + switch (type.basetype) + { + case SPIRType::UByte: + case SPIRType::UShort: + case SPIRType::UInt: + if (num_components > type.vecsize) + return build_extended_vector_type(type_id, num_components); + else + return type_id; + + case SPIRType::Short: + return build_extended_vector_type(type_id, num_components > type.vecsize ? num_components : type.vecsize, + SPIRType::UShort); + case SPIRType::Int: + return build_extended_vector_type(type_id, num_components > type.vecsize ? num_components : type.vecsize, + SPIRType::UInt); + + default: + SPIRV_CROSS_THROW("Vertex attribute type mismatch between host and shader"); + } + } + + case MSL_SHADER_VARIABLE_FORMAT_UINT16: + { + switch (type.basetype) + { + case SPIRType::UShort: + case SPIRType::UInt: + if (num_components > type.vecsize) + return build_extended_vector_type(type_id, num_components); + else + return type_id; + + case SPIRType::Int: + return build_extended_vector_type(type_id, num_components > type.vecsize ? num_components : type.vecsize, + SPIRType::UInt); + + default: + SPIRV_CROSS_THROW("Vertex attribute type mismatch between host and shader"); + } + } + + default: + if (num_components > type.vecsize) + type_id = build_extended_vector_type(type_id, num_components); + break; + } + + return type_id; +} + +void CompilerMSL::mark_struct_members_packed(const SPIRType &type) +{ + // Handle possible recursion when a struct contains a pointer to its own type nested somewhere. + if (has_extended_decoration(type.self, SPIRVCrossDecorationPhysicalTypePacked)) + return; + + set_extended_decoration(type.self, SPIRVCrossDecorationPhysicalTypePacked); + + // Problem case! Struct needs to be placed at an awkward alignment. + // Mark every member of the child struct as packed. + uint32_t mbr_cnt = uint32_t(type.member_types.size()); + for (uint32_t i = 0; i < mbr_cnt; i++) + { + auto &mbr_type = get<SPIRType>(type.member_types[i]); + if (mbr_type.basetype == SPIRType::Struct) + { + // Recursively mark structs as packed. + auto *struct_type = &mbr_type; + while (!struct_type->array.empty()) + struct_type = &get<SPIRType>(struct_type->parent_type); + mark_struct_members_packed(*struct_type); + } + else if (!is_scalar(mbr_type)) + set_extended_member_decoration(type.self, i, SPIRVCrossDecorationPhysicalTypePacked); + } +} + +void CompilerMSL::mark_scalar_layout_structs(const SPIRType &type) +{ + uint32_t mbr_cnt = uint32_t(type.member_types.size()); + for (uint32_t i = 0; i < mbr_cnt; i++) + { + // Handle possible recursion when a struct contains a pointer to its own type nested somewhere. + auto &mbr_type = get<SPIRType>(type.member_types[i]); + if (mbr_type.basetype == SPIRType::Struct && !(mbr_type.pointer && mbr_type.storage == StorageClassPhysicalStorageBuffer)) + { + auto *struct_type = &mbr_type; + while (!struct_type->array.empty()) + struct_type = &get<SPIRType>(struct_type->parent_type); + + if (has_extended_decoration(struct_type->self, SPIRVCrossDecorationPhysicalTypePacked)) + continue; + + uint32_t msl_alignment = get_declared_struct_member_alignment_msl(type, i); + uint32_t msl_size = get_declared_struct_member_size_msl(type, i); + uint32_t spirv_offset = type_struct_member_offset(type, i); + uint32_t spirv_offset_next; + if (i + 1 < mbr_cnt) + spirv_offset_next = type_struct_member_offset(type, i + 1); + else + spirv_offset_next = spirv_offset + msl_size; + + // Both are complicated cases. In scalar layout, a struct of float3 might just consume 12 bytes, + // and the next member will be placed at offset 12. + bool struct_is_misaligned = (spirv_offset % msl_alignment) != 0; + bool struct_is_too_large = spirv_offset + msl_size > spirv_offset_next; + uint32_t array_stride = 0; + bool struct_needs_explicit_padding = false; + + // Verify that if a struct is used as an array that ArrayStride matches the effective size of the struct. + if (!mbr_type.array.empty()) + { + array_stride = type_struct_member_array_stride(type, i); + uint32_t dimensions = uint32_t(mbr_type.array.size() - 1); + for (uint32_t dim = 0; dim < dimensions; dim++) + { + uint32_t array_size = to_array_size_literal(mbr_type, dim); + array_stride /= max<uint32_t>(array_size, 1u); + } + + // Set expected struct size based on ArrayStride. + struct_needs_explicit_padding = true; + + // If struct size is larger than array stride, we might be able to fit, if we tightly pack. + if (get_declared_struct_size_msl(*struct_type) > array_stride) + struct_is_too_large = true; + } + + if (struct_is_misaligned || struct_is_too_large) + mark_struct_members_packed(*struct_type); + mark_scalar_layout_structs(*struct_type); + + if (struct_needs_explicit_padding) + { + msl_size = get_declared_struct_size_msl(*struct_type, true, true); + if (array_stride < msl_size) + { + SPIRV_CROSS_THROW("Cannot express an array stride smaller than size of struct type."); + } + else + { + if (has_extended_decoration(struct_type->self, SPIRVCrossDecorationPaddingTarget)) + { + if (array_stride != + get_extended_decoration(struct_type->self, SPIRVCrossDecorationPaddingTarget)) + SPIRV_CROSS_THROW( + "A struct is used with different array strides. Cannot express this in MSL."); + } + else + set_extended_decoration(struct_type->self, SPIRVCrossDecorationPaddingTarget, array_stride); + } + } + } + } +} + +// Sort the members of the struct type by offset, and pack and then pad members where needed +// to align MSL members with SPIR-V offsets. The struct members are iterated twice. Packing +// occurs first, followed by padding, because packing a member reduces both its size and its +// natural alignment, possibly requiring a padding member to be added ahead of it. +void CompilerMSL::align_struct(SPIRType &ib_type, unordered_set<uint32_t> &aligned_structs) +{ + // We align structs recursively, so stop any redundant work. + ID &ib_type_id = ib_type.self; + if (aligned_structs.count(ib_type_id)) + return; + aligned_structs.insert(ib_type_id); + + // Sort the members of the interface structure by their offset. + // They should already be sorted per SPIR-V spec anyway. + MemberSorter member_sorter(ib_type, ir.meta[ib_type_id], MemberSorter::Offset); + member_sorter.sort(); + + auto mbr_cnt = uint32_t(ib_type.member_types.size()); + + for (uint32_t mbr_idx = 0; mbr_idx < mbr_cnt; mbr_idx++) + { + // Pack any dependent struct types before we pack a parent struct. + auto &mbr_type = get<SPIRType>(ib_type.member_types[mbr_idx]); + if (mbr_type.basetype == SPIRType::Struct) + align_struct(mbr_type, aligned_structs); + } + + // Test the alignment of each member, and if a member should be closer to the previous + // member than the default spacing expects, it is likely that the previous member is in + // a packed format. If so, and the previous member is packable, pack it. + // For example ... this applies to any 3-element vector that is followed by a scalar. + uint32_t msl_offset = 0; + for (uint32_t mbr_idx = 0; mbr_idx < mbr_cnt; mbr_idx++) + { + // This checks the member in isolation, if the member needs some kind of type remapping to conform to SPIR-V + // offsets, array strides and matrix strides. + ensure_member_packing_rules_msl(ib_type, mbr_idx); + + // Align current offset to the current member's default alignment. If the member was packed, it will observe + // the updated alignment here. + uint32_t msl_align_mask = get_declared_struct_member_alignment_msl(ib_type, mbr_idx) - 1; + uint32_t aligned_msl_offset = (msl_offset + msl_align_mask) & ~msl_align_mask; + + // Fetch the member offset as declared in the SPIRV. + uint32_t spirv_mbr_offset = get_member_decoration(ib_type_id, mbr_idx, DecorationOffset); + if (spirv_mbr_offset > aligned_msl_offset) + { + // Since MSL and SPIR-V have slightly different struct member alignment and + // size rules, we'll pad to standard C-packing rules with a char[] array. If the member is farther + // away than C-packing, expects, add an inert padding member before the the member. + uint32_t padding_bytes = spirv_mbr_offset - aligned_msl_offset; + set_extended_member_decoration(ib_type_id, mbr_idx, SPIRVCrossDecorationPaddingTarget, padding_bytes); + + // Re-align as a sanity check that aligning post-padding matches up. + msl_offset += padding_bytes; + aligned_msl_offset = (msl_offset + msl_align_mask) & ~msl_align_mask; + } + else if (spirv_mbr_offset < aligned_msl_offset) + { + // This should not happen, but deal with unexpected scenarios. + // It *might* happen if a sub-struct has a larger alignment requirement in MSL than SPIR-V. + SPIRV_CROSS_THROW("Cannot represent buffer block correctly in MSL."); + } + + assert(aligned_msl_offset == spirv_mbr_offset); + + // Increment the current offset to be positioned immediately after the current member. + // Don't do this for the last member since it can be unsized, and it is not relevant for padding purposes here. + if (mbr_idx + 1 < mbr_cnt) + msl_offset = aligned_msl_offset + get_declared_struct_member_size_msl(ib_type, mbr_idx); + } +} + +bool CompilerMSL::validate_member_packing_rules_msl(const SPIRType &type, uint32_t index) const +{ + auto &mbr_type = get<SPIRType>(type.member_types[index]); + uint32_t spirv_offset = get_member_decoration(type.self, index, DecorationOffset); + + if (index + 1 < type.member_types.size()) + { + // First, we will check offsets. If SPIR-V offset + MSL size > SPIR-V offset of next member, + // we *must* perform some kind of remapping, no way getting around it. + // We can always pad after this member if necessary, so that case is fine. + uint32_t spirv_offset_next = get_member_decoration(type.self, index + 1, DecorationOffset); + assert(spirv_offset_next >= spirv_offset); + uint32_t maximum_size = spirv_offset_next - spirv_offset; + uint32_t msl_mbr_size = get_declared_struct_member_size_msl(type, index); + if (msl_mbr_size > maximum_size) + return false; + } + + if (is_array(mbr_type)) + { + // If we have an array type, array stride must match exactly with SPIR-V. + + // An exception to this requirement is if we have one array element. + // This comes from DX scalar layout workaround. + // If app tries to be cheeky and access the member out of bounds, this will not work, but this is the best we can do. + // In OpAccessChain with logical memory models, access chains must be in-bounds in SPIR-V specification. + bool relax_array_stride = mbr_type.array.back() == 1 && mbr_type.array_size_literal.back(); + + if (!relax_array_stride) + { + uint32_t spirv_array_stride = type_struct_member_array_stride(type, index); + uint32_t msl_array_stride = get_declared_struct_member_array_stride_msl(type, index); + if (spirv_array_stride != msl_array_stride) + return false; + } + } + + if (is_matrix(mbr_type)) + { + // Need to check MatrixStride as well. + uint32_t spirv_matrix_stride = type_struct_member_matrix_stride(type, index); + uint32_t msl_matrix_stride = get_declared_struct_member_matrix_stride_msl(type, index); + if (spirv_matrix_stride != msl_matrix_stride) + return false; + } + + // Now, we check alignment. + uint32_t msl_alignment = get_declared_struct_member_alignment_msl(type, index); + if ((spirv_offset % msl_alignment) != 0) + return false; + + // We're in the clear. + return true; +} + +// Here we need to verify that the member type we declare conforms to Offset, ArrayStride or MatrixStride restrictions. +// If there is a mismatch, we need to emit remapped types, either normal types, or "packed_X" types. +// In odd cases we need to emit packed and remapped types, for e.g. weird matrices or arrays with weird array strides. +void CompilerMSL::ensure_member_packing_rules_msl(SPIRType &ib_type, uint32_t index) +{ + if (validate_member_packing_rules_msl(ib_type, index)) + return; + + // We failed validation. + // This case will be nightmare-ish to deal with. This could possibly happen if struct alignment does not quite + // match up with what we want. Scalar block layout comes to mind here where we might have to work around the rule + // that struct alignment == max alignment of all members and struct size depends on this alignment. + // Can't repack structs, but can repack pointers to structs. + auto &mbr_type = get<SPIRType>(ib_type.member_types[index]); + bool is_buff_ptr = mbr_type.pointer && mbr_type.storage == StorageClassPhysicalStorageBuffer; + if (mbr_type.basetype == SPIRType::Struct && !is_buff_ptr) + SPIRV_CROSS_THROW("Cannot perform any repacking for structs when it is used as a member of another struct."); + + // Perform remapping here. + // There is nothing to be gained by using packed scalars, so don't attempt it. + if (!is_scalar(ib_type)) + set_extended_member_decoration(ib_type.self, index, SPIRVCrossDecorationPhysicalTypePacked); + + // Try validating again, now with packed. + if (validate_member_packing_rules_msl(ib_type, index)) + return; + + // We're in deep trouble, and we need to create a new PhysicalType which matches up with what we expect. + // A lot of work goes here ... + // We will need remapping on Load and Store to translate the types between Logical and Physical. + + // First, we check if we have small vector std140 array. + // We detect this if we have an array of vectors, and array stride is greater than number of elements. + if (!mbr_type.array.empty() && !is_matrix(mbr_type)) + { + uint32_t array_stride = type_struct_member_array_stride(ib_type, index); + + // Hack off array-of-arrays until we find the array stride per element we must have to make it work. + uint32_t dimensions = uint32_t(mbr_type.array.size() - 1); + for (uint32_t dim = 0; dim < dimensions; dim++) + array_stride /= max<uint32_t>(to_array_size_literal(mbr_type, dim), 1u); + + // Pointers are 8 bytes + uint32_t mbr_width_in_bytes = is_buff_ptr ? 8 : (mbr_type.width / 8); + uint32_t elems_per_stride = array_stride / mbr_width_in_bytes; + + if (elems_per_stride == 3) + SPIRV_CROSS_THROW("Cannot use ArrayStride of 3 elements in remapping scenarios."); + else if (elems_per_stride > 4 && elems_per_stride != 8) + SPIRV_CROSS_THROW("Cannot represent vectors with more than 4 elements in MSL."); + + if (elems_per_stride == 8) + { + if (mbr_type.width == 16) + add_spv_func_and_recompile(SPVFuncImplPaddedStd140); + else + SPIRV_CROSS_THROW("Unexpected type in std140 wide array resolve."); + } + + auto physical_type = mbr_type; + physical_type.vecsize = elems_per_stride; + physical_type.parent_type = 0; + + // If this is a physical buffer pointer, replace type with a ulongn vector. + if (is_buff_ptr) + { + physical_type.width = 64; + physical_type.basetype = to_unsigned_basetype(physical_type.width); + physical_type.pointer = false; + physical_type.pointer_depth = false; + physical_type.forward_pointer = false; + } + + uint32_t type_id = ir.increase_bound_by(1); + set<SPIRType>(type_id, physical_type); + set_extended_member_decoration(ib_type.self, index, SPIRVCrossDecorationPhysicalTypeID, type_id); + set_decoration(type_id, DecorationArrayStride, array_stride); + + // Remove packed_ for vectors of size 1, 2 and 4. + unset_extended_member_decoration(ib_type.self, index, SPIRVCrossDecorationPhysicalTypePacked); + } + else if (is_matrix(mbr_type)) + { + // MatrixStride might be std140-esque. + uint32_t matrix_stride = type_struct_member_matrix_stride(ib_type, index); + + uint32_t elems_per_stride = matrix_stride / (mbr_type.width / 8); + + if (elems_per_stride == 3) + SPIRV_CROSS_THROW("Cannot use ArrayStride of 3 elements in remapping scenarios."); + else if (elems_per_stride > 4 && elems_per_stride != 8) + SPIRV_CROSS_THROW("Cannot represent vectors with more than 4 elements in MSL."); + + if (elems_per_stride == 8) + { + if (mbr_type.basetype != SPIRType::Half) + SPIRV_CROSS_THROW("Unexpected type in std140 wide matrix stride resolve."); + add_spv_func_and_recompile(SPVFuncImplPaddedStd140); + } + + bool row_major = has_member_decoration(ib_type.self, index, DecorationRowMajor); + auto physical_type = mbr_type; + physical_type.parent_type = 0; + + if (row_major) + physical_type.columns = elems_per_stride; + else + physical_type.vecsize = elems_per_stride; + uint32_t type_id = ir.increase_bound_by(1); + set<SPIRType>(type_id, physical_type); + set_extended_member_decoration(ib_type.self, index, SPIRVCrossDecorationPhysicalTypeID, type_id); + + // Remove packed_ for vectors of size 1, 2 and 4. + unset_extended_member_decoration(ib_type.self, index, SPIRVCrossDecorationPhysicalTypePacked); + } + else + SPIRV_CROSS_THROW("Found a buffer packing case which we cannot represent in MSL."); + + // Try validating again, now with physical type remapping. + if (validate_member_packing_rules_msl(ib_type, index)) + return; + + // We might have a particular odd scalar layout case where the last element of an array + // does not take up as much space as the ArrayStride or MatrixStride. This can happen with DX cbuffers. + // The "proper" workaround for this is extremely painful and essentially impossible in the edge case of float3[], + // so we hack around it by declaring the offending array or matrix with one less array size/col/row, + // and rely on padding to get the correct value. We will technically access arrays out of bounds into the padding region, + // but it should spill over gracefully without too much trouble. We rely on behavior like this for unsized arrays anyways. + + // E.g. we might observe a physical layout of: + // { float2 a[2]; float b; } in cbuffer layout where ArrayStride of a is 16, but offset of b is 24, packed right after a[1] ... + uint32_t type_id = get_extended_member_decoration(ib_type.self, index, SPIRVCrossDecorationPhysicalTypeID); + auto &type = get<SPIRType>(type_id); + + // Modify the physical type in-place. This is safe since each physical type workaround is a copy. + if (is_array(type)) + { + if (type.array.back() > 1) + { + if (!type.array_size_literal.back()) + SPIRV_CROSS_THROW("Cannot apply scalar layout workaround with spec constant array size."); + type.array.back() -= 1; + } + else + { + // We have an array of size 1, so we cannot decrement that. Our only option now is to + // force a packed layout instead, and drop the physical type remap since ArrayStride is meaningless now. + unset_extended_member_decoration(ib_type.self, index, SPIRVCrossDecorationPhysicalTypeID); + set_extended_member_decoration(ib_type.self, index, SPIRVCrossDecorationPhysicalTypePacked); + } + } + else if (is_matrix(type)) + { + bool row_major = has_member_decoration(ib_type.self, index, DecorationRowMajor); + if (!row_major) + { + // Slice off one column. If we only have 2 columns, this might turn the matrix into a vector with one array element instead. + if (type.columns > 2) + { + type.columns--; + } + else if (type.columns == 2) + { + type.columns = 1; + assert(type.array.empty()); + type.op = OpTypeArray; + type.array.push_back(1); + type.array_size_literal.push_back(true); + } + } + else + { + // Slice off one row. If we only have 2 rows, this might turn the matrix into a vector with one array element instead. + if (type.vecsize > 2) + { + type.vecsize--; + } + else if (type.vecsize == 2) + { + type.vecsize = type.columns; + type.columns = 1; + assert(type.array.empty()); + type.op = OpTypeArray; + type.array.push_back(1); + type.array_size_literal.push_back(true); + } + } + } + + // This better validate now, or we must fail gracefully. + if (!validate_member_packing_rules_msl(ib_type, index)) + SPIRV_CROSS_THROW("Found a buffer packing case which we cannot represent in MSL."); +} + +void CompilerMSL::emit_store_statement(uint32_t lhs_expression, uint32_t rhs_expression) +{ + auto &type = expression_type(rhs_expression); + + bool lhs_remapped_type = has_extended_decoration(lhs_expression, SPIRVCrossDecorationPhysicalTypeID); + bool lhs_packed_type = has_extended_decoration(lhs_expression, SPIRVCrossDecorationPhysicalTypePacked); + auto *lhs_e = maybe_get<SPIRExpression>(lhs_expression); + auto *rhs_e = maybe_get<SPIRExpression>(rhs_expression); + + bool transpose = lhs_e && lhs_e->need_transpose; + + if (has_decoration(lhs_expression, DecorationBuiltIn) && + BuiltIn(get_decoration(lhs_expression, DecorationBuiltIn)) == BuiltInSampleMask && + is_array(type)) + { + // Storing an array to SampleMask, have to remove the array-ness before storing. + statement(to_expression(lhs_expression), " = ", to_enclosed_unpacked_expression(rhs_expression), "[0];"); + register_write(lhs_expression); + } + else if (!lhs_remapped_type && !lhs_packed_type) + { + // No physical type remapping, and no packed type, so can just emit a store directly. + + // We might not be dealing with remapped physical types or packed types, + // but we might be doing a clean store to a row-major matrix. + // In this case, we just flip transpose states, and emit the store, a transpose must be in the RHS expression, if any. + if (is_matrix(type) && lhs_e && lhs_e->need_transpose) + { + lhs_e->need_transpose = false; + + if (rhs_e && rhs_e->need_transpose) + { + // Direct copy, but might need to unpack RHS. + // Skip the transpose, as we will transpose when writing to LHS and transpose(transpose(T)) == T. + rhs_e->need_transpose = false; + statement(to_expression(lhs_expression), " = ", to_unpacked_row_major_matrix_expression(rhs_expression), + ";"); + rhs_e->need_transpose = true; + } + else + statement(to_expression(lhs_expression), " = transpose(", to_unpacked_expression(rhs_expression), ");"); + + lhs_e->need_transpose = true; + register_write(lhs_expression); + } + else if (lhs_e && lhs_e->need_transpose) + { + lhs_e->need_transpose = false; + + // Storing a column to a row-major matrix. Unroll the write. + for (uint32_t c = 0; c < type.vecsize; c++) + { + auto lhs_expr = to_dereferenced_expression(lhs_expression); + auto column_index = lhs_expr.find_last_of('['); + if (column_index != string::npos) + { + statement(lhs_expr.insert(column_index, join('[', c, ']')), " = ", + to_extract_component_expression(rhs_expression, c), ";"); + } + } + lhs_e->need_transpose = true; + register_write(lhs_expression); + } + else + CompilerGLSL::emit_store_statement(lhs_expression, rhs_expression); + } + else if (!lhs_remapped_type && !is_matrix(type) && !transpose) + { + // Even if the target type is packed, we can directly store to it. We cannot store to packed matrices directly, + // since they are declared as array of vectors instead, and we need the fallback path below. + CompilerGLSL::emit_store_statement(lhs_expression, rhs_expression); + } + else + { + // Special handling when storing to a remapped physical type. + // This is mostly to deal with std140 padded matrices or vectors. + + TypeID physical_type_id = lhs_remapped_type ? + ID(get_extended_decoration(lhs_expression, SPIRVCrossDecorationPhysicalTypeID)) : + type.self; + + auto &physical_type = get<SPIRType>(physical_type_id); + + string cast_addr_space = "thread"; + auto *p_var_lhs = maybe_get_backing_variable(lhs_expression); + if (p_var_lhs) + cast_addr_space = get_type_address_space(get<SPIRType>(p_var_lhs->basetype), lhs_expression); + + if (is_matrix(type)) + { + const char *packed_pfx = lhs_packed_type ? "packed_" : ""; + + // Packed matrices are stored as arrays of packed vectors, so we need + // to assign the vectors one at a time. + // For row-major matrices, we need to transpose the *right-hand* side, + // not the left-hand side. + + // Lots of cases to cover here ... + + bool rhs_transpose = rhs_e && rhs_e->need_transpose; + SPIRType write_type = type; + string cast_expr; + + // We're dealing with transpose manually. + if (rhs_transpose) + rhs_e->need_transpose = false; + + if (transpose) + { + // We're dealing with transpose manually. + lhs_e->need_transpose = false; + write_type.vecsize = type.columns; + write_type.columns = 1; + + if (physical_type.columns != type.columns) + cast_expr = join("(", cast_addr_space, " ", packed_pfx, type_to_glsl(write_type), "&)"); + + if (rhs_transpose) + { + // If RHS is also transposed, we can just copy row by row. + for (uint32_t i = 0; i < type.vecsize; i++) + { + statement(cast_expr, to_enclosed_expression(lhs_expression), "[", i, "]", " = ", + to_unpacked_row_major_matrix_expression(rhs_expression), "[", i, "];"); + } + } + else + { + auto vector_type = expression_type(rhs_expression); + vector_type.vecsize = vector_type.columns; + vector_type.columns = 1; + + // Transpose on the fly. Emitting a lot of full transpose() ops and extracting lanes seems very bad, + // so pick out individual components instead. + for (uint32_t i = 0; i < type.vecsize; i++) + { + string rhs_row = type_to_glsl_constructor(vector_type) + "("; + for (uint32_t j = 0; j < vector_type.vecsize; j++) + { + rhs_row += join(to_enclosed_unpacked_expression(rhs_expression), "[", j, "][", i, "]"); + if (j + 1 < vector_type.vecsize) + rhs_row += ", "; + } + rhs_row += ")"; + + statement(cast_expr, to_enclosed_expression(lhs_expression), "[", i, "]", " = ", rhs_row, ";"); + } + } + + // We're dealing with transpose manually. + lhs_e->need_transpose = true; + } + else + { + write_type.columns = 1; + + if (physical_type.vecsize != type.vecsize) + cast_expr = join("(", cast_addr_space, " ", packed_pfx, type_to_glsl(write_type), "&)"); + + if (rhs_transpose) + { + auto vector_type = expression_type(rhs_expression); + vector_type.columns = 1; + + // Transpose on the fly. Emitting a lot of full transpose() ops and extracting lanes seems very bad, + // so pick out individual components instead. + for (uint32_t i = 0; i < type.columns; i++) + { + string rhs_row = type_to_glsl_constructor(vector_type) + "("; + for (uint32_t j = 0; j < vector_type.vecsize; j++) + { + // Need to explicitly unpack expression since we've mucked with transpose state. + auto unpacked_expr = to_unpacked_row_major_matrix_expression(rhs_expression); + rhs_row += join(unpacked_expr, "[", j, "][", i, "]"); + if (j + 1 < vector_type.vecsize) + rhs_row += ", "; + } + rhs_row += ")"; + + statement(cast_expr, to_enclosed_expression(lhs_expression), "[", i, "]", " = ", rhs_row, ";"); + } + } + else + { + // Copy column-by-column. + for (uint32_t i = 0; i < type.columns; i++) + { + statement(cast_expr, to_enclosed_expression(lhs_expression), "[", i, "]", " = ", + to_enclosed_unpacked_expression(rhs_expression), "[", i, "];"); + } + } + } + + // We're dealing with transpose manually. + if (rhs_transpose) + rhs_e->need_transpose = true; + } + else if (transpose) + { + lhs_e->need_transpose = false; + + SPIRType write_type = type; + write_type.vecsize = 1; + write_type.columns = 1; + + // Storing a column to a row-major matrix. Unroll the write. + for (uint32_t c = 0; c < type.vecsize; c++) + { + auto lhs_expr = to_enclosed_expression(lhs_expression); + auto column_index = lhs_expr.find_last_of('['); + + // Get rid of any ".data" half8 handling here, we're casting to scalar anyway. + auto end_column_index = lhs_expr.find_last_of(']'); + auto end_dot_index = lhs_expr.find_last_of('.'); + if (end_dot_index != string::npos && end_dot_index > end_column_index) + lhs_expr.resize(end_dot_index); + + if (column_index != string::npos) + { + statement("((", cast_addr_space, " ", type_to_glsl(write_type), "*)&", + lhs_expr.insert(column_index, join('[', c, ']', ")")), " = ", + to_extract_component_expression(rhs_expression, c), ";"); + } + } + + lhs_e->need_transpose = true; + } + else if ((is_matrix(physical_type) || is_array(physical_type)) && + physical_type.vecsize <= 4 && + physical_type.vecsize > type.vecsize) + { + assert(type.vecsize >= 1 && type.vecsize <= 3); + + // If we have packed types, we cannot use swizzled stores. + // We could technically unroll the store for each element if needed. + // When remapping to a std140 physical type, we always get float4, + // and the packed decoration should always be removed. + assert(!lhs_packed_type); + + string lhs = to_dereferenced_expression(lhs_expression); + string rhs = to_pointer_expression(rhs_expression); + + // Unpack the expression so we can store to it with a float or float2. + // It's still an l-value, so it's fine. Most other unpacking of expressions turn them into r-values instead. + lhs = join("(", cast_addr_space, " ", type_to_glsl(type), "&)", enclose_expression(lhs)); + if (!optimize_read_modify_write(expression_type(rhs_expression), lhs, rhs)) + statement(lhs, " = ", rhs, ";"); + } + else if (!is_matrix(type)) + { + string lhs = to_dereferenced_expression(lhs_expression); + string rhs = to_pointer_expression(rhs_expression); + if (!optimize_read_modify_write(expression_type(rhs_expression), lhs, rhs)) + statement(lhs, " = ", rhs, ";"); + } + + register_write(lhs_expression); + } +} + +static bool expression_ends_with(const string &expr_str, const std::string &ending) +{ + if (expr_str.length() >= ending.length()) + return (expr_str.compare(expr_str.length() - ending.length(), ending.length(), ending) == 0); + else + return false; +} + +// Converts the format of the current expression from packed to unpacked, +// by wrapping the expression in a constructor of the appropriate type. +// Also, handle special physical ID remapping scenarios, similar to emit_store_statement(). +string CompilerMSL::unpack_expression_type(string expr_str, const SPIRType &type, uint32_t physical_type_id, + bool packed, bool row_major) +{ + // Trivial case, nothing to do. + if (physical_type_id == 0 && !packed) + return expr_str; + + const SPIRType *physical_type = nullptr; + if (physical_type_id) + physical_type = &get<SPIRType>(physical_type_id); + + static const char *swizzle_lut[] = { + ".x", + ".xy", + ".xyz", + "", + }; + + // TODO: Move everything to the template wrapper? + bool uses_std140_wrapper = physical_type && physical_type->vecsize > 4; + + if (physical_type && is_vector(*physical_type) && is_array(*physical_type) && + !uses_std140_wrapper && + physical_type->vecsize > type.vecsize && !expression_ends_with(expr_str, swizzle_lut[type.vecsize - 1])) + { + // std140 array cases for vectors. + assert(type.vecsize >= 1 && type.vecsize <= 3); + return enclose_expression(expr_str) + swizzle_lut[type.vecsize - 1]; + } + else if (physical_type && is_matrix(*physical_type) && is_vector(type) && + !uses_std140_wrapper && + physical_type->vecsize > type.vecsize) + { + // Extract column from padded matrix. + assert(type.vecsize >= 1 && type.vecsize <= 4); + return enclose_expression(expr_str) + swizzle_lut[type.vecsize - 1]; + } + else if (is_matrix(type)) + { + // Packed matrices are stored as arrays of packed vectors. Unfortunately, + // we can't just pass the array straight to the matrix constructor. We have to + // pass each vector individually, so that they can be unpacked to normal vectors. + if (!physical_type) + physical_type = &type; + + uint32_t vecsize = type.vecsize; + uint32_t columns = type.columns; + if (row_major) + swap(vecsize, columns); + + uint32_t physical_vecsize = row_major ? physical_type->columns : physical_type->vecsize; + + const char *base_type = type.width == 16 ? "half" : "float"; + string unpack_expr = join(base_type, columns, "x", vecsize, "("); + + const char *load_swiz = ""; + const char *data_swiz = physical_vecsize > 4 ? ".data" : ""; + + if (physical_vecsize != vecsize) + load_swiz = swizzle_lut[vecsize - 1]; + + for (uint32_t i = 0; i < columns; i++) + { + if (i > 0) + unpack_expr += ", "; + + if (packed) + unpack_expr += join(base_type, physical_vecsize, "(", expr_str, "[", i, "]", ")", load_swiz); + else + unpack_expr += join(expr_str, "[", i, "]", data_swiz, load_swiz); + } + + unpack_expr += ")"; + return unpack_expr; + } + else + { + return join(type_to_glsl(type), "(", expr_str, ")"); + } +} + +// Emits the file header info +void CompilerMSL::emit_header() +{ + // This particular line can be overridden during compilation, so make it a flag and not a pragma line. + if (suppress_missing_prototypes) + statement("#pragma clang diagnostic ignored \"-Wmissing-prototypes\""); + if (suppress_incompatible_pointer_types_discard_qualifiers) + statement("#pragma clang diagnostic ignored \"-Wincompatible-pointer-types-discards-qualifiers\""); + + // Disable warning about missing braces for array<T> template to make arrays a value type + if (spv_function_implementations.count(SPVFuncImplUnsafeArray) != 0) + statement("#pragma clang diagnostic ignored \"-Wmissing-braces\""); + + for (auto &pragma : pragma_lines) + statement(pragma); + + if (!pragma_lines.empty() || suppress_missing_prototypes) + statement(""); + + statement("#include <metal_stdlib>"); + statement("#include <simd/simd.h>"); + + for (auto &header : header_lines) + statement(header); + + statement(""); + statement("using namespace metal;"); + statement(""); + + for (auto &td : typedef_lines) + statement(td); + + if (!typedef_lines.empty()) + statement(""); +} + +void CompilerMSL::add_pragma_line(const string &line) +{ + auto rslt = pragma_lines.insert(line); + if (rslt.second) + force_recompile(); +} + +void CompilerMSL::add_typedef_line(const string &line) +{ + auto rslt = typedef_lines.insert(line); + if (rslt.second) + force_recompile(); +} + +// Template struct like spvUnsafeArray<> need to be declared *before* any resources are declared +void CompilerMSL::emit_custom_templates() +{ + static const char * const address_spaces[] = { + "thread", "constant", "device", "threadgroup", "threadgroup_imageblock", "ray_data", "object_data" + }; + + for (const auto &spv_func : spv_function_implementations) + { + switch (spv_func) + { + case SPVFuncImplUnsafeArray: + statement("template<typename T, size_t Num>"); + statement("struct spvUnsafeArray"); + begin_scope(); + statement("T elements[Num ? Num : 1];"); + statement(""); + statement("thread T& operator [] (size_t pos) thread"); + begin_scope(); + statement("return elements[pos];"); + end_scope(); + statement("constexpr const thread T& operator [] (size_t pos) const thread"); + begin_scope(); + statement("return elements[pos];"); + end_scope(); + statement(""); + statement("device T& operator [] (size_t pos) device"); + begin_scope(); + statement("return elements[pos];"); + end_scope(); + statement("constexpr const device T& operator [] (size_t pos) const device"); + begin_scope(); + statement("return elements[pos];"); + end_scope(); + statement(""); + statement("constexpr const constant T& operator [] (size_t pos) const constant"); + begin_scope(); + statement("return elements[pos];"); + end_scope(); + statement(""); + statement("threadgroup T& operator [] (size_t pos) threadgroup"); + begin_scope(); + statement("return elements[pos];"); + end_scope(); + statement("constexpr const threadgroup T& operator [] (size_t pos) const threadgroup"); + begin_scope(); + statement("return elements[pos];"); + end_scope(); + end_scope_decl(); + statement(""); + break; + + case SPVFuncImplStorageMatrix: + statement("template<typename T, int Cols, int Rows=Cols>"); + statement("struct spvStorageMatrix"); + begin_scope(); + statement("vec<T, Rows> columns[Cols];"); + statement(""); + for (size_t method_idx = 0; method_idx < sizeof(address_spaces) / sizeof(address_spaces[0]); ++method_idx) + { + // Some address spaces require particular features. + if (method_idx == 4) // threadgroup_imageblock + statement("#ifdef __HAVE_IMAGEBLOCKS__"); + else if (method_idx == 5) // ray_data + statement("#ifdef __HAVE_RAYTRACING__"); + else if (method_idx == 6) // object_data + statement("#ifdef __HAVE_MESH__"); + const string &method_as = address_spaces[method_idx]; + statement("spvStorageMatrix() ", method_as, " = default;"); + if (method_idx != 1) // constant + { + statement(method_as, " spvStorageMatrix& operator=(initializer_list<vec<T, Rows>> cols) ", + method_as); + begin_scope(); + statement("size_t i;"); + statement("thread vec<T, Rows>* col;"); + statement("for (i = 0, col = cols.begin(); i < Cols; ++i, ++col)"); + statement(" columns[i] = *col;"); + statement("return *this;"); + end_scope(); + } + statement(""); + for (size_t param_idx = 0; param_idx < sizeof(address_spaces) / sizeof(address_spaces[0]); ++param_idx) + { + if (param_idx != method_idx) + { + if (param_idx == 4) // threadgroup_imageblock + statement("#ifdef __HAVE_IMAGEBLOCKS__"); + else if (param_idx == 5) // ray_data + statement("#ifdef __HAVE_RAYTRACING__"); + else if (param_idx == 6) // object_data + statement("#ifdef __HAVE_MESH__"); + } + const string ¶m_as = address_spaces[param_idx]; + statement("spvStorageMatrix(const ", param_as, " matrix<T, Cols, Rows>& m) ", method_as); + begin_scope(); + statement("for (size_t i = 0; i < Cols; ++i)"); + statement(" columns[i] = m.columns[i];"); + end_scope(); + statement("spvStorageMatrix(const ", param_as, " spvStorageMatrix& m) ", method_as, " = default;"); + if (method_idx != 1) // constant + { + statement(method_as, " spvStorageMatrix& operator=(const ", param_as, + " matrix<T, Cols, Rows>& m) ", method_as); + begin_scope(); + statement("for (size_t i = 0; i < Cols; ++i)"); + statement(" columns[i] = m.columns[i];"); + statement("return *this;"); + end_scope(); + statement(method_as, " spvStorageMatrix& operator=(const ", param_as, " spvStorageMatrix& m) ", + method_as, " = default;"); + } + if (param_idx != method_idx && param_idx >= 4) + statement("#endif"); + statement(""); + } + statement("operator matrix<T, Cols, Rows>() const ", method_as); + begin_scope(); + statement("matrix<T, Cols, Rows> m;"); + statement("for (int i = 0; i < Cols; ++i)"); + statement(" m.columns[i] = columns[i];"); + statement("return m;"); + end_scope(); + statement(""); + statement("vec<T, Rows> operator[](size_t idx) const ", method_as); + begin_scope(); + statement("return columns[idx];"); + end_scope(); + if (method_idx != 1) // constant + { + statement(method_as, " vec<T, Rows>& operator[](size_t idx) ", method_as); + begin_scope(); + statement("return columns[idx];"); + end_scope(); + } + if (method_idx >= 4) + statement("#endif"); + statement(""); + } + end_scope_decl(); + statement(""); + statement("template<typename T, int Cols, int Rows>"); + statement("matrix<T, Rows, Cols> transpose(spvStorageMatrix<T, Cols, Rows> m)"); + begin_scope(); + statement("return transpose(matrix<T, Cols, Rows>(m));"); + end_scope(); + statement(""); + statement("typedef spvStorageMatrix<half, 2, 2> spvStorage_half2x2;"); + statement("typedef spvStorageMatrix<half, 2, 3> spvStorage_half2x3;"); + statement("typedef spvStorageMatrix<half, 2, 4> spvStorage_half2x4;"); + statement("typedef spvStorageMatrix<half, 3, 2> spvStorage_half3x2;"); + statement("typedef spvStorageMatrix<half, 3, 3> spvStorage_half3x3;"); + statement("typedef spvStorageMatrix<half, 3, 4> spvStorage_half3x4;"); + statement("typedef spvStorageMatrix<half, 4, 2> spvStorage_half4x2;"); + statement("typedef spvStorageMatrix<half, 4, 3> spvStorage_half4x3;"); + statement("typedef spvStorageMatrix<half, 4, 4> spvStorage_half4x4;"); + statement("typedef spvStorageMatrix<float, 2, 2> spvStorage_float2x2;"); + statement("typedef spvStorageMatrix<float, 2, 3> spvStorage_float2x3;"); + statement("typedef spvStorageMatrix<float, 2, 4> spvStorage_float2x4;"); + statement("typedef spvStorageMatrix<float, 3, 2> spvStorage_float3x2;"); + statement("typedef spvStorageMatrix<float, 3, 3> spvStorage_float3x3;"); + statement("typedef spvStorageMatrix<float, 3, 4> spvStorage_float3x4;"); + statement("typedef spvStorageMatrix<float, 4, 2> spvStorage_float4x2;"); + statement("typedef spvStorageMatrix<float, 4, 3> spvStorage_float4x3;"); + statement("typedef spvStorageMatrix<float, 4, 4> spvStorage_float4x4;"); + statement(""); + break; + + default: + break; + } + } +} + +// Emits any needed custom function bodies. +// Metal helper functions must be static force-inline, i.e. static inline __attribute__((always_inline)) +// otherwise they will cause problems when linked together in a single Metallib. +void CompilerMSL::emit_custom_functions() +{ + // Use when outputting overloaded functions to cover different address spaces. + static const char *texture_addr_spaces[] = { "device", "constant", "thread" }; + static uint32_t texture_addr_space_count = sizeof(texture_addr_spaces) / sizeof(char*); + + if (spv_function_implementations.count(SPVFuncImplArrayCopyMultidim)) + spv_function_implementations.insert(SPVFuncImplArrayCopy); + + if (spv_function_implementations.count(SPVFuncImplDynamicImageSampler)) + { + // Unfortunately, this one needs a lot of the other functions to compile OK. + if (!msl_options.supports_msl_version(2)) + SPIRV_CROSS_THROW( + "spvDynamicImageSampler requires default-constructible texture objects, which require MSL 2.0."); + spv_function_implementations.insert(SPVFuncImplForwardArgs); + spv_function_implementations.insert(SPVFuncImplTextureSwizzle); + if (msl_options.swizzle_texture_samples) + spv_function_implementations.insert(SPVFuncImplGatherSwizzle); + for (uint32_t i = SPVFuncImplChromaReconstructNearest2Plane; + i <= SPVFuncImplChromaReconstructLinear420XMidpointYMidpoint3Plane; i++) + spv_function_implementations.insert(static_cast<SPVFuncImpl>(i)); + spv_function_implementations.insert(SPVFuncImplExpandITUFullRange); + spv_function_implementations.insert(SPVFuncImplExpandITUNarrowRange); + spv_function_implementations.insert(SPVFuncImplConvertYCbCrBT709); + spv_function_implementations.insert(SPVFuncImplConvertYCbCrBT601); + spv_function_implementations.insert(SPVFuncImplConvertYCbCrBT2020); + } + + for (uint32_t i = SPVFuncImplChromaReconstructNearest2Plane; + i <= SPVFuncImplChromaReconstructLinear420XMidpointYMidpoint3Plane; i++) + if (spv_function_implementations.count(static_cast<SPVFuncImpl>(i))) + spv_function_implementations.insert(SPVFuncImplForwardArgs); + + if (spv_function_implementations.count(SPVFuncImplTextureSwizzle) || + spv_function_implementations.count(SPVFuncImplGatherSwizzle) || + spv_function_implementations.count(SPVFuncImplGatherCompareSwizzle)) + { + spv_function_implementations.insert(SPVFuncImplForwardArgs); + spv_function_implementations.insert(SPVFuncImplGetSwizzle); + } + + for (const auto &spv_func : spv_function_implementations) + { + switch (spv_func) + { + case SPVFuncImplMod: + statement("// Implementation of the GLSL mod() function, which is slightly different than Metal fmod()"); + statement("template<typename Tx, typename Ty>"); + statement("inline Tx mod(Tx x, Ty y)"); + begin_scope(); + statement("return x - y * floor(x / y);"); + end_scope(); + statement(""); + break; + + case SPVFuncImplRadians: + statement("// Implementation of the GLSL radians() function"); + statement("template<typename T>"); + statement("inline T radians(T d)"); + begin_scope(); + statement("return d * T(0.01745329251);"); + end_scope(); + statement(""); + break; + + case SPVFuncImplDegrees: + statement("// Implementation of the GLSL degrees() function"); + statement("template<typename T>"); + statement("inline T degrees(T r)"); + begin_scope(); + statement("return r * T(57.2957795131);"); + end_scope(); + statement(""); + break; + + case SPVFuncImplFindILsb: + statement("// Implementation of the GLSL findLSB() function"); + statement("template<typename T>"); + statement("inline T spvFindLSB(T x)"); + begin_scope(); + statement("return select(ctz(x), T(-1), x == T(0));"); + end_scope(); + statement(""); + break; + + case SPVFuncImplFindUMsb: + statement("// Implementation of the unsigned GLSL findMSB() function"); + statement("template<typename T>"); + statement("inline T spvFindUMSB(T x)"); + begin_scope(); + statement("return select(clz(T(0)) - (clz(x) + T(1)), T(-1), x == T(0));"); + end_scope(); + statement(""); + break; + + case SPVFuncImplFindSMsb: + statement("// Implementation of the signed GLSL findMSB() function"); + statement("template<typename T>"); + statement("inline T spvFindSMSB(T x)"); + begin_scope(); + statement("T v = select(x, T(-1) - x, x < T(0));"); + statement("return select(clz(T(0)) - (clz(v) + T(1)), T(-1), v == T(0));"); + end_scope(); + statement(""); + break; + + case SPVFuncImplSSign: + statement("// Implementation of the GLSL sign() function for integer types"); + statement("template<typename T, typename E = typename enable_if<is_integral<T>::value>::type>"); + statement("inline T sign(T x)"); + begin_scope(); + statement("return select(select(select(x, T(0), x == T(0)), T(1), x > T(0)), T(-1), x < T(0));"); + end_scope(); + statement(""); + break; + + case SPVFuncImplArrayCopy: + case SPVFuncImplArrayCopyMultidim: + { + // Unfortunately we cannot template on the address space, so combinatorial explosion it is. + static const char *function_name_tags[] = { + "FromConstantToStack", "FromConstantToThreadGroup", "FromStackToStack", + "FromStackToThreadGroup", "FromThreadGroupToStack", "FromThreadGroupToThreadGroup", + "FromDeviceToDevice", "FromConstantToDevice", "FromStackToDevice", + "FromThreadGroupToDevice", "FromDeviceToStack", "FromDeviceToThreadGroup", + }; + + static const char *src_address_space[] = { + "constant", "constant", "thread const", "thread const", + "threadgroup const", "threadgroup const", "device const", "constant", + "thread const", "threadgroup const", "device const", "device const", + }; + + static const char *dst_address_space[] = { + "thread", "threadgroup", "thread", "threadgroup", "thread", "threadgroup", + "device", "device", "device", "device", "thread", "threadgroup", + }; + + for (uint32_t variant = 0; variant < 12; variant++) + { + bool is_multidim = spv_func == SPVFuncImplArrayCopyMultidim; + const char* dim = is_multidim ? "[N][M]" : "[N]"; + statement("template<typename T, uint N", is_multidim ? ", uint M>" : ">"); + statement("inline void spvArrayCopy", function_name_tags[variant], "(", + dst_address_space[variant], " T (&dst)", dim, ", ", + src_address_space[variant], " T (&src)", dim, ")"); + begin_scope(); + statement("for (uint i = 0; i < N; i++)"); + begin_scope(); + if (is_multidim) + statement("spvArrayCopy", function_name_tags[variant], "(dst[i], src[i]);"); + else + statement("dst[i] = src[i];"); + end_scope(); + end_scope(); + statement(""); + } + break; + } + + // Support for Metal 2.1's new texture_buffer type. + case SPVFuncImplTexelBufferCoords: + { + if (msl_options.texel_buffer_texture_width > 0) + { + string tex_width_str = convert_to_string(msl_options.texel_buffer_texture_width); + statement("// Returns 2D texture coords corresponding to 1D texel buffer coords"); + statement(force_inline); + statement("uint2 spvTexelBufferCoord(uint tc)"); + begin_scope(); + statement(join("return uint2(tc % ", tex_width_str, ", tc / ", tex_width_str, ");")); + end_scope(); + statement(""); + } + else + { + statement("// Returns 2D texture coords corresponding to 1D texel buffer coords"); + statement( + "#define spvTexelBufferCoord(tc, tex) uint2((tc) % (tex).get_width(), (tc) / (tex).get_width())"); + statement(""); + } + break; + } + + // Emulate texture2D atomic operations + case SPVFuncImplImage2DAtomicCoords: + { + if (msl_options.supports_msl_version(1, 2)) + { + statement("// The required alignment of a linear texture of R32Uint format."); + statement("constant uint spvLinearTextureAlignmentOverride [[function_constant(", + msl_options.r32ui_alignment_constant_id, ")]];"); + statement("constant uint spvLinearTextureAlignment = ", + "is_function_constant_defined(spvLinearTextureAlignmentOverride) ? ", + "spvLinearTextureAlignmentOverride : ", msl_options.r32ui_linear_texture_alignment, ";"); + } + else + { + statement("// The required alignment of a linear texture of R32Uint format."); + statement("constant uint spvLinearTextureAlignment = ", msl_options.r32ui_linear_texture_alignment, + ";"); + } + statement("// Returns buffer coords corresponding to 2D texture coords for emulating 2D texture atomics"); + statement("#define spvImage2DAtomicCoord(tc, tex) (((((tex).get_width() + ", + " spvLinearTextureAlignment / 4 - 1) & ~(", + " spvLinearTextureAlignment / 4 - 1)) * (tc).y) + (tc).x)"); + statement(""); + break; + } + + // Fix up gradient vectors when sampling a cube texture for Apple Silicon. + // h/t Alexey Knyazev (https://github.com/KhronosGroup/MoltenVK/issues/2068#issuecomment-1817799067) for the code. + case SPVFuncImplGradientCube: + statement("static inline gradientcube spvGradientCube(float3 P, float3 dPdx, float3 dPdy)"); + begin_scope(); + statement("// Major axis selection"); + statement("float3 absP = abs(P);"); + statement("bool xMajor = absP.x >= max(absP.y, absP.z);"); + statement("bool yMajor = absP.y >= absP.z;"); + statement("float3 Q = xMajor ? P.yzx : (yMajor ? P.xzy : P);"); + statement("float3 dQdx = xMajor ? dPdx.yzx : (yMajor ? dPdx.xzy : dPdx);"); + statement("float3 dQdy = xMajor ? dPdy.yzx : (yMajor ? dPdy.xzy : dPdy);"); + statement_no_indent(""); + statement("// Skip a couple of operations compared to usual projection"); + statement("float4 d = float4(dQdx.xy, dQdy.xy) - (Q.xy / Q.z).xyxy * float4(dQdx.zz, dQdy.zz);"); + statement_no_indent(""); + statement("// Final swizzle to put the intermediate values into non-ignored components"); + statement("// X major: X and Z"); + statement("// Y major: X and Y"); + statement("// Z major: Y and Z"); + statement("return gradientcube(xMajor ? d.xxy : d.xyx, xMajor ? d.zzw : d.zwz);"); + end_scope(); + statement(""); + break; + + // "fadd" intrinsic support + case SPVFuncImplFAdd: + statement("template<typename T>"); + statement("[[clang::optnone]] T spvFAdd(T l, T r)"); + begin_scope(); + statement("return fma(T(1), l, r);"); + end_scope(); + statement(""); + break; + + // "fsub" intrinsic support + case SPVFuncImplFSub: + statement("template<typename T>"); + statement("[[clang::optnone]] T spvFSub(T l, T r)"); + begin_scope(); + statement("return fma(T(-1), r, l);"); + end_scope(); + statement(""); + break; + + // "fmul' intrinsic support + case SPVFuncImplFMul: + statement("template<typename T>"); + statement("[[clang::optnone]] T spvFMul(T l, T r)"); + begin_scope(); + statement("return fma(l, r, T(0));"); + end_scope(); + statement(""); + + statement("template<typename T, int Cols, int Rows>"); + statement("[[clang::optnone]] vec<T, Cols> spvFMulVectorMatrix(vec<T, Rows> v, matrix<T, Cols, Rows> m)"); + begin_scope(); + statement("vec<T, Cols> res = vec<T, Cols>(0);"); + statement("for (uint i = Rows; i > 0; --i)"); + begin_scope(); + statement("vec<T, Cols> tmp(0);"); + statement("for (uint j = 0; j < Cols; ++j)"); + begin_scope(); + statement("tmp[j] = m[j][i - 1];"); + end_scope(); + statement("res = fma(tmp, vec<T, Cols>(v[i - 1]), res);"); + end_scope(); + statement("return res;"); + end_scope(); + statement(""); + + statement("template<typename T, int Cols, int Rows>"); + statement("[[clang::optnone]] vec<T, Rows> spvFMulMatrixVector(matrix<T, Cols, Rows> m, vec<T, Cols> v)"); + begin_scope(); + statement("vec<T, Rows> res = vec<T, Rows>(0);"); + statement("for (uint i = Cols; i > 0; --i)"); + begin_scope(); + statement("res = fma(m[i - 1], vec<T, Rows>(v[i - 1]), res);"); + end_scope(); + statement("return res;"); + end_scope(); + statement(""); + + statement("template<typename T, int LCols, int LRows, int RCols, int RRows>"); + statement("[[clang::optnone]] matrix<T, RCols, LRows> spvFMulMatrixMatrix(matrix<T, LCols, LRows> l, matrix<T, RCols, RRows> r)"); + begin_scope(); + statement("matrix<T, RCols, LRows> res;"); + statement("for (uint i = 0; i < RCols; i++)"); + begin_scope(); + statement("vec<T, RCols> tmp(0);"); + statement("for (uint j = 0; j < LCols; j++)"); + begin_scope(); + statement("tmp = fma(vec<T, RCols>(r[i][j]), l[j], tmp);"); + end_scope(); + statement("res[i] = tmp;"); + end_scope(); + statement("return res;"); + end_scope(); + statement(""); + break; + + case SPVFuncImplQuantizeToF16: + // Ensure fast-math is disabled to match Vulkan results. + // SpvHalfTypeSelector is used to match the half* template type to the float* template type. + // Depending on GPU, MSL does not always flush converted subnormal halfs to zero, + // as required by OpQuantizeToF16, so check for subnormals and flush them to zero. + statement("template <typename F> struct SpvHalfTypeSelector;"); + statement("template <> struct SpvHalfTypeSelector<float> { public: using H = half; };"); + statement("template<uint N> struct SpvHalfTypeSelector<vec<float, N>> { using H = vec<half, N>; };"); + statement("template<typename F, typename H = typename SpvHalfTypeSelector<F>::H>"); + statement("[[clang::optnone]] F spvQuantizeToF16(F fval)"); + begin_scope(); + statement("H hval = H(fval);"); + statement("hval = select(copysign(H(0), hval), hval, isnormal(hval) || isinf(hval) || isnan(hval));"); + statement("return F(hval);"); + end_scope(); + statement(""); + break; + + // Emulate texturecube_array with texture2d_array for iOS where this type is not available + case SPVFuncImplCubemapTo2DArrayFace: + statement(force_inline); + statement("float3 spvCubemapTo2DArrayFace(float3 P)"); + begin_scope(); + statement("float3 Coords = abs(P.xyz);"); + statement("float CubeFace = 0;"); + statement("float ProjectionAxis = 0;"); + statement("float u = 0;"); + statement("float v = 0;"); + statement("if (Coords.x >= Coords.y && Coords.x >= Coords.z)"); + begin_scope(); + statement("CubeFace = P.x >= 0 ? 0 : 1;"); + statement("ProjectionAxis = Coords.x;"); + statement("u = P.x >= 0 ? -P.z : P.z;"); + statement("v = -P.y;"); + end_scope(); + statement("else if (Coords.y >= Coords.x && Coords.y >= Coords.z)"); + begin_scope(); + statement("CubeFace = P.y >= 0 ? 2 : 3;"); + statement("ProjectionAxis = Coords.y;"); + statement("u = P.x;"); + statement("v = P.y >= 0 ? P.z : -P.z;"); + end_scope(); + statement("else"); + begin_scope(); + statement("CubeFace = P.z >= 0 ? 4 : 5;"); + statement("ProjectionAxis = Coords.z;"); + statement("u = P.z >= 0 ? P.x : -P.x;"); + statement("v = -P.y;"); + end_scope(); + statement("u = 0.5 * (u/ProjectionAxis + 1);"); + statement("v = 0.5 * (v/ProjectionAxis + 1);"); + statement("return float3(u, v, CubeFace);"); + end_scope(); + statement(""); + break; + + case SPVFuncImplInverse4x4: + statement("// Returns the determinant of a 2x2 matrix."); + statement(force_inline); + statement("float spvDet2x2(float a1, float a2, float b1, float b2)"); + begin_scope(); + statement("return a1 * b2 - b1 * a2;"); + end_scope(); + statement(""); + + statement("// Returns the determinant of a 3x3 matrix."); + statement(force_inline); + statement("float spvDet3x3(float a1, float a2, float a3, float b1, float b2, float b3, float c1, " + "float c2, float c3)"); + begin_scope(); + statement("return a1 * spvDet2x2(b2, b3, c2, c3) - b1 * spvDet2x2(a2, a3, c2, c3) + c1 * spvDet2x2(a2, a3, " + "b2, b3);"); + end_scope(); + statement(""); + statement("// Returns the inverse of a matrix, by using the algorithm of calculating the classical"); + statement("// adjoint and dividing by the determinant. The contents of the matrix are changed."); + statement(force_inline); + statement("float4x4 spvInverse4x4(float4x4 m)"); + begin_scope(); + statement("float4x4 adj; // The adjoint matrix (inverse after dividing by determinant)"); + statement_no_indent(""); + statement("// Create the transpose of the cofactors, as the classical adjoint of the matrix."); + statement("adj[0][0] = spvDet3x3(m[1][1], m[1][2], m[1][3], m[2][1], m[2][2], m[2][3], m[3][1], m[3][2], " + "m[3][3]);"); + statement("adj[0][1] = -spvDet3x3(m[0][1], m[0][2], m[0][3], m[2][1], m[2][2], m[2][3], m[3][1], m[3][2], " + "m[3][3]);"); + statement("adj[0][2] = spvDet3x3(m[0][1], m[0][2], m[0][3], m[1][1], m[1][2], m[1][3], m[3][1], m[3][2], " + "m[3][3]);"); + statement("adj[0][3] = -spvDet3x3(m[0][1], m[0][2], m[0][3], m[1][1], m[1][2], m[1][3], m[2][1], m[2][2], " + "m[2][3]);"); + statement_no_indent(""); + statement("adj[1][0] = -spvDet3x3(m[1][0], m[1][2], m[1][3], m[2][0], m[2][2], m[2][3], m[3][0], m[3][2], " + "m[3][3]);"); + statement("adj[1][1] = spvDet3x3(m[0][0], m[0][2], m[0][3], m[2][0], m[2][2], m[2][3], m[3][0], m[3][2], " + "m[3][3]);"); + statement("adj[1][2] = -spvDet3x3(m[0][0], m[0][2], m[0][3], m[1][0], m[1][2], m[1][3], m[3][0], m[3][2], " + "m[3][3]);"); + statement("adj[1][3] = spvDet3x3(m[0][0], m[0][2], m[0][3], m[1][0], m[1][2], m[1][3], m[2][0], m[2][2], " + "m[2][3]);"); + statement_no_indent(""); + statement("adj[2][0] = spvDet3x3(m[1][0], m[1][1], m[1][3], m[2][0], m[2][1], m[2][3], m[3][0], m[3][1], " + "m[3][3]);"); + statement("adj[2][1] = -spvDet3x3(m[0][0], m[0][1], m[0][3], m[2][0], m[2][1], m[2][3], m[3][0], m[3][1], " + "m[3][3]);"); + statement("adj[2][2] = spvDet3x3(m[0][0], m[0][1], m[0][3], m[1][0], m[1][1], m[1][3], m[3][0], m[3][1], " + "m[3][3]);"); + statement("adj[2][3] = -spvDet3x3(m[0][0], m[0][1], m[0][3], m[1][0], m[1][1], m[1][3], m[2][0], m[2][1], " + "m[2][3]);"); + statement_no_indent(""); + statement("adj[3][0] = -spvDet3x3(m[1][0], m[1][1], m[1][2], m[2][0], m[2][1], m[2][2], m[3][0], m[3][1], " + "m[3][2]);"); + statement("adj[3][1] = spvDet3x3(m[0][0], m[0][1], m[0][2], m[2][0], m[2][1], m[2][2], m[3][0], m[3][1], " + "m[3][2]);"); + statement("adj[3][2] = -spvDet3x3(m[0][0], m[0][1], m[0][2], m[1][0], m[1][1], m[1][2], m[3][0], m[3][1], " + "m[3][2]);"); + statement("adj[3][3] = spvDet3x3(m[0][0], m[0][1], m[0][2], m[1][0], m[1][1], m[1][2], m[2][0], m[2][1], " + "m[2][2]);"); + statement_no_indent(""); + statement("// Calculate the determinant as a combination of the cofactors of the first row."); + statement("float det = (adj[0][0] * m[0][0]) + (adj[0][1] * m[1][0]) + (adj[0][2] * m[2][0]) + (adj[0][3] " + "* m[3][0]);"); + statement_no_indent(""); + statement("// Divide the classical adjoint matrix by the determinant."); + statement("// If determinant is zero, matrix is not invertable, so leave it unchanged."); + statement("return (det != 0.0f) ? (adj * (1.0f / det)) : m;"); + end_scope(); + statement(""); + break; + + case SPVFuncImplInverse3x3: + if (spv_function_implementations.count(SPVFuncImplInverse4x4) == 0) + { + statement("// Returns the determinant of a 2x2 matrix."); + statement(force_inline); + statement("float spvDet2x2(float a1, float a2, float b1, float b2)"); + begin_scope(); + statement("return a1 * b2 - b1 * a2;"); + end_scope(); + statement(""); + } + + statement("// Returns the inverse of a matrix, by using the algorithm of calculating the classical"); + statement("// adjoint and dividing by the determinant. The contents of the matrix are changed."); + statement(force_inline); + statement("float3x3 spvInverse3x3(float3x3 m)"); + begin_scope(); + statement("float3x3 adj; // The adjoint matrix (inverse after dividing by determinant)"); + statement_no_indent(""); + statement("// Create the transpose of the cofactors, as the classical adjoint of the matrix."); + statement("adj[0][0] = spvDet2x2(m[1][1], m[1][2], m[2][1], m[2][2]);"); + statement("adj[0][1] = -spvDet2x2(m[0][1], m[0][2], m[2][1], m[2][2]);"); + statement("adj[0][2] = spvDet2x2(m[0][1], m[0][2], m[1][1], m[1][2]);"); + statement_no_indent(""); + statement("adj[1][0] = -spvDet2x2(m[1][0], m[1][2], m[2][0], m[2][2]);"); + statement("adj[1][1] = spvDet2x2(m[0][0], m[0][2], m[2][0], m[2][2]);"); + statement("adj[1][2] = -spvDet2x2(m[0][0], m[0][2], m[1][0], m[1][2]);"); + statement_no_indent(""); + statement("adj[2][0] = spvDet2x2(m[1][0], m[1][1], m[2][0], m[2][1]);"); + statement("adj[2][1] = -spvDet2x2(m[0][0], m[0][1], m[2][0], m[2][1]);"); + statement("adj[2][2] = spvDet2x2(m[0][0], m[0][1], m[1][0], m[1][1]);"); + statement_no_indent(""); + statement("// Calculate the determinant as a combination of the cofactors of the first row."); + statement("float det = (adj[0][0] * m[0][0]) + (adj[0][1] * m[1][0]) + (adj[0][2] * m[2][0]);"); + statement_no_indent(""); + statement("// Divide the classical adjoint matrix by the determinant."); + statement("// If determinant is zero, matrix is not invertable, so leave it unchanged."); + statement("return (det != 0.0f) ? (adj * (1.0f / det)) : m;"); + end_scope(); + statement(""); + break; + + case SPVFuncImplInverse2x2: + statement("// Returns the inverse of a matrix, by using the algorithm of calculating the classical"); + statement("// adjoint and dividing by the determinant. The contents of the matrix are changed."); + statement(force_inline); + statement("float2x2 spvInverse2x2(float2x2 m)"); + begin_scope(); + statement("float2x2 adj; // The adjoint matrix (inverse after dividing by determinant)"); + statement_no_indent(""); + statement("// Create the transpose of the cofactors, as the classical adjoint of the matrix."); + statement("adj[0][0] = m[1][1];"); + statement("adj[0][1] = -m[0][1];"); + statement_no_indent(""); + statement("adj[1][0] = -m[1][0];"); + statement("adj[1][1] = m[0][0];"); + statement_no_indent(""); + statement("// Calculate the determinant as a combination of the cofactors of the first row."); + statement("float det = (adj[0][0] * m[0][0]) + (adj[0][1] * m[1][0]);"); + statement_no_indent(""); + statement("// Divide the classical adjoint matrix by the determinant."); + statement("// If determinant is zero, matrix is not invertable, so leave it unchanged."); + statement("return (det != 0.0f) ? (adj * (1.0f / det)) : m;"); + end_scope(); + statement(""); + break; + + case SPVFuncImplForwardArgs: + statement("template<typename T> struct spvRemoveReference { typedef T type; };"); + statement("template<typename T> struct spvRemoveReference<thread T&> { typedef T type; };"); + statement("template<typename T> struct spvRemoveReference<thread T&&> { typedef T type; };"); + statement("template<typename T> inline constexpr thread T&& spvForward(thread typename " + "spvRemoveReference<T>::type& x)"); + begin_scope(); + statement("return static_cast<thread T&&>(x);"); + end_scope(); + statement("template<typename T> inline constexpr thread T&& spvForward(thread typename " + "spvRemoveReference<T>::type&& x)"); + begin_scope(); + statement("return static_cast<thread T&&>(x);"); + end_scope(); + statement(""); + break; + + case SPVFuncImplGetSwizzle: + statement("enum class spvSwizzle : uint"); + begin_scope(); + statement("none = 0,"); + statement("zero,"); + statement("one,"); + statement("red,"); + statement("green,"); + statement("blue,"); + statement("alpha"); + end_scope_decl(); + statement(""); + statement("template<typename T>"); + statement("inline T spvGetSwizzle(vec<T, 4> x, T c, spvSwizzle s)"); + begin_scope(); + statement("switch (s)"); + begin_scope(); + statement("case spvSwizzle::none:"); + statement(" return c;"); + statement("case spvSwizzle::zero:"); + statement(" return 0;"); + statement("case spvSwizzle::one:"); + statement(" return 1;"); + statement("case spvSwizzle::red:"); + statement(" return x.r;"); + statement("case spvSwizzle::green:"); + statement(" return x.g;"); + statement("case spvSwizzle::blue:"); + statement(" return x.b;"); + statement("case spvSwizzle::alpha:"); + statement(" return x.a;"); + end_scope(); + end_scope(); + statement(""); + break; + + case SPVFuncImplTextureSwizzle: + statement("// Wrapper function that swizzles texture samples and fetches."); + statement("template<typename T>"); + statement("inline vec<T, 4> spvTextureSwizzle(vec<T, 4> x, uint s)"); + begin_scope(); + statement("if (!s)"); + statement(" return x;"); + statement("return vec<T, 4>(spvGetSwizzle(x, x.r, spvSwizzle((s >> 0) & 0xFF)), " + "spvGetSwizzle(x, x.g, spvSwizzle((s >> 8) & 0xFF)), spvGetSwizzle(x, x.b, spvSwizzle((s >> 16) " + "& 0xFF)), " + "spvGetSwizzle(x, x.a, spvSwizzle((s >> 24) & 0xFF)));"); + end_scope(); + statement(""); + statement("template<typename T>"); + statement("inline T spvTextureSwizzle(T x, uint s)"); + begin_scope(); + statement("return spvTextureSwizzle(vec<T, 4>(x, 0, 0, 1), s).x;"); + end_scope(); + statement(""); + break; + + case SPVFuncImplGatherSwizzle: + statement("// Wrapper function that swizzles texture gathers."); + statement("template<typename T, template<typename, access = access::sample, typename = void> class Tex, " + "typename... Ts>"); + statement("inline vec<T, 4> spvGatherSwizzle(const thread Tex<T>& t, sampler s, " + "uint sw, component c, Ts... params) METAL_CONST_ARG(c)"); + begin_scope(); + statement("if (sw)"); + begin_scope(); + statement("switch (spvSwizzle((sw >> (uint(c) * 8)) & 0xFF))"); + begin_scope(); + statement("case spvSwizzle::none:"); + statement(" break;"); + statement("case spvSwizzle::zero:"); + statement(" return vec<T, 4>(0, 0, 0, 0);"); + statement("case spvSwizzle::one:"); + statement(" return vec<T, 4>(1, 1, 1, 1);"); + statement("case spvSwizzle::red:"); + statement(" return t.gather(s, spvForward<Ts>(params)..., component::x);"); + statement("case spvSwizzle::green:"); + statement(" return t.gather(s, spvForward<Ts>(params)..., component::y);"); + statement("case spvSwizzle::blue:"); + statement(" return t.gather(s, spvForward<Ts>(params)..., component::z);"); + statement("case spvSwizzle::alpha:"); + statement(" return t.gather(s, spvForward<Ts>(params)..., component::w);"); + end_scope(); + end_scope(); + // texture::gather insists on its component parameter being a constant + // expression, so we need this silly workaround just to compile the shader. + statement("switch (c)"); + begin_scope(); + statement("case component::x:"); + statement(" return t.gather(s, spvForward<Ts>(params)..., component::x);"); + statement("case component::y:"); + statement(" return t.gather(s, spvForward<Ts>(params)..., component::y);"); + statement("case component::z:"); + statement(" return t.gather(s, spvForward<Ts>(params)..., component::z);"); + statement("case component::w:"); + statement(" return t.gather(s, spvForward<Ts>(params)..., component::w);"); + end_scope(); + end_scope(); + statement(""); + break; + + case SPVFuncImplGatherCompareSwizzle: + statement("// Wrapper function that swizzles depth texture gathers."); + statement("template<typename T, template<typename, access = access::sample, typename = void> class Tex, " + "typename... Ts>"); + statement("inline vec<T, 4> spvGatherCompareSwizzle(const thread Tex<T>& t, sampler " + "s, uint sw, Ts... params) "); + begin_scope(); + statement("if (sw)"); + begin_scope(); + statement("switch (spvSwizzle(sw & 0xFF))"); + begin_scope(); + statement("case spvSwizzle::none:"); + statement("case spvSwizzle::red:"); + statement(" break;"); + statement("case spvSwizzle::zero:"); + statement("case spvSwizzle::green:"); + statement("case spvSwizzle::blue:"); + statement("case spvSwizzle::alpha:"); + statement(" return vec<T, 4>(0, 0, 0, 0);"); + statement("case spvSwizzle::one:"); + statement(" return vec<T, 4>(1, 1, 1, 1);"); + end_scope(); + end_scope(); + statement("return t.gather_compare(s, spvForward<Ts>(params)...);"); + end_scope(); + statement(""); + break; + + case SPVFuncImplGatherConstOffsets: + // Because we are passing a texture reference, we have to output an overloaded version of this function for each address space. + for (uint32_t i = 0; i < texture_addr_space_count; i++) + { + statement("// Wrapper function that processes a ", texture_addr_spaces[i], " texture gather with a constant offset array."); + statement("template<typename T, template<typename, access = access::sample, typename = void> class Tex, " + "typename Toff, typename... Tp>"); + statement("inline vec<T, 4> spvGatherConstOffsets(const ", texture_addr_spaces[i], " Tex<T>& t, sampler s, " + "Toff coffsets, component c, Tp... params) METAL_CONST_ARG(c)"); + begin_scope(); + statement("vec<T, 4> rslts[4];"); + statement("for (uint i = 0; i < 4; i++)"); + begin_scope(); + statement("switch (c)"); + begin_scope(); + // Work around texture::gather() requiring its component parameter to be a constant expression + statement("case component::x:"); + statement(" rslts[i] = t.gather(s, spvForward<Tp>(params)..., coffsets[i], component::x);"); + statement(" break;"); + statement("case component::y:"); + statement(" rslts[i] = t.gather(s, spvForward<Tp>(params)..., coffsets[i], component::y);"); + statement(" break;"); + statement("case component::z:"); + statement(" rslts[i] = t.gather(s, spvForward<Tp>(params)..., coffsets[i], component::z);"); + statement(" break;"); + statement("case component::w:"); + statement(" rslts[i] = t.gather(s, spvForward<Tp>(params)..., coffsets[i], component::w);"); + statement(" break;"); + end_scope(); + end_scope(); + // Pull all values from the i0j0 component of each gather footprint + statement("return vec<T, 4>(rslts[0].w, rslts[1].w, rslts[2].w, rslts[3].w);"); + end_scope(); + statement(""); + } + break; + + case SPVFuncImplGatherCompareConstOffsets: + // Because we are passing a texture reference, we have to output an overloaded version of this function for each address space. + for (uint32_t i = 0; i < texture_addr_space_count; i++) + { + statement("// Wrapper function that processes a ", texture_addr_spaces[i], " texture gather with a constant offset array."); + statement("template<typename T, template<typename, access = access::sample, typename = void> class Tex, " + "typename Toff, typename... Tp>"); + statement("inline vec<T, 4> spvGatherCompareConstOffsets(const ", texture_addr_spaces[i], " Tex<T>& t, sampler s, " + "Toff coffsets, Tp... params)"); + begin_scope(); + statement("vec<T, 4> rslts[4];"); + statement("for (uint i = 0; i < 4; i++)"); + begin_scope(); + statement(" rslts[i] = t.gather_compare(s, spvForward<Tp>(params)..., coffsets[i]);"); + end_scope(); + // Pull all values from the i0j0 component of each gather footprint + statement("return vec<T, 4>(rslts[0].w, rslts[1].w, rslts[2].w, rslts[3].w);"); + end_scope(); + statement(""); + } + break; + + case SPVFuncImplSubgroupBroadcast: + // Metal doesn't allow broadcasting boolean values directly, but we can work around that by broadcasting + // them as integers. + statement("template<typename T>"); + statement("inline T spvSubgroupBroadcast(T value, ushort lane)"); + begin_scope(); + if (msl_options.use_quadgroup_operation()) + statement("return quad_broadcast(value, lane);"); + else + statement("return simd_broadcast(value, lane);"); + end_scope(); + statement(""); + statement("template<>"); + statement("inline bool spvSubgroupBroadcast(bool value, ushort lane)"); + begin_scope(); + if (msl_options.use_quadgroup_operation()) + statement("return !!quad_broadcast((ushort)value, lane);"); + else + statement("return !!simd_broadcast((ushort)value, lane);"); + end_scope(); + statement(""); + statement("template<uint N>"); + statement("inline vec<bool, N> spvSubgroupBroadcast(vec<bool, N> value, ushort lane)"); + begin_scope(); + if (msl_options.use_quadgroup_operation()) + statement("return (vec<bool, N>)quad_broadcast((vec<ushort, N>)value, lane);"); + else + statement("return (vec<bool, N>)simd_broadcast((vec<ushort, N>)value, lane);"); + end_scope(); + statement(""); + break; + + case SPVFuncImplSubgroupBroadcastFirst: + statement("template<typename T>"); + statement("inline T spvSubgroupBroadcastFirst(T value)"); + begin_scope(); + if (msl_options.use_quadgroup_operation()) + statement("return quad_broadcast_first(value);"); + else + statement("return simd_broadcast_first(value);"); + end_scope(); + statement(""); + statement("template<>"); + statement("inline bool spvSubgroupBroadcastFirst(bool value)"); + begin_scope(); + if (msl_options.use_quadgroup_operation()) + statement("return !!quad_broadcast_first((ushort)value);"); + else + statement("return !!simd_broadcast_first((ushort)value);"); + end_scope(); + statement(""); + statement("template<uint N>"); + statement("inline vec<bool, N> spvSubgroupBroadcastFirst(vec<bool, N> value)"); + begin_scope(); + if (msl_options.use_quadgroup_operation()) + statement("return (vec<bool, N>)quad_broadcast_first((vec<ushort, N>)value);"); + else + statement("return (vec<bool, N>)simd_broadcast_first((vec<ushort, N>)value);"); + end_scope(); + statement(""); + break; + + case SPVFuncImplSubgroupBallot: + statement("inline uint4 spvSubgroupBallot(bool value)"); + begin_scope(); + if (msl_options.use_quadgroup_operation()) + { + statement("return uint4((quad_vote::vote_t)quad_ballot(value), 0, 0, 0);"); + } + else if (msl_options.is_ios()) + { + // The current simd_vote on iOS uses a 32-bit integer-like object. + statement("return uint4((simd_vote::vote_t)simd_ballot(value), 0, 0, 0);"); + } + else + { + statement("simd_vote vote = simd_ballot(value);"); + statement("// simd_ballot() returns a 64-bit integer-like object, but"); + statement("// SPIR-V callers expect a uint4. We must convert."); + statement("// FIXME: This won't include higher bits if Apple ever supports"); + statement("// 128 lanes in an SIMD-group."); + statement("return uint4(as_type<uint2>((simd_vote::vote_t)vote), 0, 0);"); + } + end_scope(); + statement(""); + break; + + case SPVFuncImplSubgroupBallotBitExtract: + statement("inline bool spvSubgroupBallotBitExtract(uint4 ballot, uint bit)"); + begin_scope(); + statement("return !!extract_bits(ballot[bit / 32], bit % 32, 1);"); + end_scope(); + statement(""); + break; + + case SPVFuncImplSubgroupBallotFindLSB: + statement("inline uint spvSubgroupBallotFindLSB(uint4 ballot, uint gl_SubgroupSize)"); + begin_scope(); + if (msl_options.is_ios()) + { + statement("uint4 mask = uint4(extract_bits(0xFFFFFFFF, 0, gl_SubgroupSize), uint3(0));"); + } + else + { + statement("uint4 mask = uint4(extract_bits(0xFFFFFFFF, 0, min(gl_SubgroupSize, 32u)), " + "extract_bits(0xFFFFFFFF, 0, (uint)max((int)gl_SubgroupSize - 32, 0)), uint2(0));"); + } + statement("ballot &= mask;"); + statement("return select(ctz(ballot.x), select(32 + ctz(ballot.y), select(64 + ctz(ballot.z), select(96 + " + "ctz(ballot.w), uint(-1), ballot.w == 0), ballot.z == 0), ballot.y == 0), ballot.x == 0);"); + end_scope(); + statement(""); + break; + + case SPVFuncImplSubgroupBallotFindMSB: + statement("inline uint spvSubgroupBallotFindMSB(uint4 ballot, uint gl_SubgroupSize)"); + begin_scope(); + if (msl_options.is_ios()) + { + statement("uint4 mask = uint4(extract_bits(0xFFFFFFFF, 0, gl_SubgroupSize), uint3(0));"); + } + else + { + statement("uint4 mask = uint4(extract_bits(0xFFFFFFFF, 0, min(gl_SubgroupSize, 32u)), " + "extract_bits(0xFFFFFFFF, 0, (uint)max((int)gl_SubgroupSize - 32, 0)), uint2(0));"); + } + statement("ballot &= mask;"); + statement("return select(128 - (clz(ballot.w) + 1), select(96 - (clz(ballot.z) + 1), select(64 - " + "(clz(ballot.y) + 1), select(32 - (clz(ballot.x) + 1), uint(-1), ballot.x == 0), ballot.y == 0), " + "ballot.z == 0), ballot.w == 0);"); + end_scope(); + statement(""); + break; + + case SPVFuncImplSubgroupBallotBitCount: + statement("inline uint spvPopCount4(uint4 ballot)"); + begin_scope(); + statement("return popcount(ballot.x) + popcount(ballot.y) + popcount(ballot.z) + popcount(ballot.w);"); + end_scope(); + statement(""); + statement("inline uint spvSubgroupBallotBitCount(uint4 ballot, uint gl_SubgroupSize)"); + begin_scope(); + if (msl_options.is_ios()) + { + statement("uint4 mask = uint4(extract_bits(0xFFFFFFFF, 0, gl_SubgroupSize), uint3(0));"); + } + else + { + statement("uint4 mask = uint4(extract_bits(0xFFFFFFFF, 0, min(gl_SubgroupSize, 32u)), " + "extract_bits(0xFFFFFFFF, 0, (uint)max((int)gl_SubgroupSize - 32, 0)), uint2(0));"); + } + statement("return spvPopCount4(ballot & mask);"); + end_scope(); + statement(""); + statement("inline uint spvSubgroupBallotInclusiveBitCount(uint4 ballot, uint gl_SubgroupInvocationID)"); + begin_scope(); + if (msl_options.is_ios()) + { + statement("uint4 mask = uint4(extract_bits(0xFFFFFFFF, 0, gl_SubgroupInvocationID + 1), uint3(0));"); + } + else + { + statement("uint4 mask = uint4(extract_bits(0xFFFFFFFF, 0, min(gl_SubgroupInvocationID + 1, 32u)), " + "extract_bits(0xFFFFFFFF, 0, (uint)max((int)gl_SubgroupInvocationID + 1 - 32, 0)), " + "uint2(0));"); + } + statement("return spvPopCount4(ballot & mask);"); + end_scope(); + statement(""); + statement("inline uint spvSubgroupBallotExclusiveBitCount(uint4 ballot, uint gl_SubgroupInvocationID)"); + begin_scope(); + if (msl_options.is_ios()) + { + statement("uint4 mask = uint4(extract_bits(0xFFFFFFFF, 0, gl_SubgroupInvocationID), uint2(0));"); + } + else + { + statement("uint4 mask = uint4(extract_bits(0xFFFFFFFF, 0, min(gl_SubgroupInvocationID, 32u)), " + "extract_bits(0xFFFFFFFF, 0, (uint)max((int)gl_SubgroupInvocationID - 32, 0)), uint2(0));"); + } + statement("return spvPopCount4(ballot & mask);"); + end_scope(); + statement(""); + break; + + case SPVFuncImplSubgroupAllEqual: + // Metal doesn't provide a function to evaluate this directly. But, we can + // implement this by comparing every thread's value to one thread's value + // (in this case, the value of the first active thread). Then, by the transitive + // property of equality, if all comparisons return true, then they are all equal. + statement("template<typename T>"); + statement("inline bool spvSubgroupAllEqual(T value)"); + begin_scope(); + if (msl_options.use_quadgroup_operation()) + statement("return quad_all(all(value == quad_broadcast_first(value)));"); + else + statement("return simd_all(all(value == simd_broadcast_first(value)));"); + end_scope(); + statement(""); + statement("template<>"); + statement("inline bool spvSubgroupAllEqual(bool value)"); + begin_scope(); + if (msl_options.use_quadgroup_operation()) + statement("return quad_all(value) || !quad_any(value);"); + else + statement("return simd_all(value) || !simd_any(value);"); + end_scope(); + statement(""); + statement("template<uint N>"); + statement("inline bool spvSubgroupAllEqual(vec<bool, N> value)"); + begin_scope(); + if (msl_options.use_quadgroup_operation()) + statement("return quad_all(all(value == (vec<bool, N>)quad_broadcast_first((vec<ushort, N>)value)));"); + else + statement("return simd_all(all(value == (vec<bool, N>)simd_broadcast_first((vec<ushort, N>)value)));"); + end_scope(); + statement(""); + break; + + case SPVFuncImplSubgroupShuffle: + statement("template<typename T>"); + statement("inline T spvSubgroupShuffle(T value, ushort lane)"); + begin_scope(); + if (msl_options.use_quadgroup_operation()) + statement("return quad_shuffle(value, lane);"); + else + statement("return simd_shuffle(value, lane);"); + end_scope(); + statement(""); + statement("template<>"); + statement("inline bool spvSubgroupShuffle(bool value, ushort lane)"); + begin_scope(); + if (msl_options.use_quadgroup_operation()) + statement("return !!quad_shuffle((ushort)value, lane);"); + else + statement("return !!simd_shuffle((ushort)value, lane);"); + end_scope(); + statement(""); + statement("template<uint N>"); + statement("inline vec<bool, N> spvSubgroupShuffle(vec<bool, N> value, ushort lane)"); + begin_scope(); + if (msl_options.use_quadgroup_operation()) + statement("return (vec<bool, N>)quad_shuffle((vec<ushort, N>)value, lane);"); + else + statement("return (vec<bool, N>)simd_shuffle((vec<ushort, N>)value, lane);"); + end_scope(); + statement(""); + break; + + case SPVFuncImplSubgroupShuffleXor: + statement("template<typename T>"); + statement("inline T spvSubgroupShuffleXor(T value, ushort mask)"); + begin_scope(); + if (msl_options.use_quadgroup_operation()) + statement("return quad_shuffle_xor(value, mask);"); + else + statement("return simd_shuffle_xor(value, mask);"); + end_scope(); + statement(""); + statement("template<>"); + statement("inline bool spvSubgroupShuffleXor(bool value, ushort mask)"); + begin_scope(); + if (msl_options.use_quadgroup_operation()) + statement("return !!quad_shuffle_xor((ushort)value, mask);"); + else + statement("return !!simd_shuffle_xor((ushort)value, mask);"); + end_scope(); + statement(""); + statement("template<uint N>"); + statement("inline vec<bool, N> spvSubgroupShuffleXor(vec<bool, N> value, ushort mask)"); + begin_scope(); + if (msl_options.use_quadgroup_operation()) + statement("return (vec<bool, N>)quad_shuffle_xor((vec<ushort, N>)value, mask);"); + else + statement("return (vec<bool, N>)simd_shuffle_xor((vec<ushort, N>)value, mask);"); + end_scope(); + statement(""); + break; + + case SPVFuncImplSubgroupShuffleUp: + statement("template<typename T>"); + statement("inline T spvSubgroupShuffleUp(T value, ushort delta)"); + begin_scope(); + if (msl_options.use_quadgroup_operation()) + statement("return quad_shuffle_up(value, delta);"); + else + statement("return simd_shuffle_up(value, delta);"); + end_scope(); + statement(""); + statement("template<>"); + statement("inline bool spvSubgroupShuffleUp(bool value, ushort delta)"); + begin_scope(); + if (msl_options.use_quadgroup_operation()) + statement("return !!quad_shuffle_up((ushort)value, delta);"); + else + statement("return !!simd_shuffle_up((ushort)value, delta);"); + end_scope(); + statement(""); + statement("template<uint N>"); + statement("inline vec<bool, N> spvSubgroupShuffleUp(vec<bool, N> value, ushort delta)"); + begin_scope(); + if (msl_options.use_quadgroup_operation()) + statement("return (vec<bool, N>)quad_shuffle_up((vec<ushort, N>)value, delta);"); + else + statement("return (vec<bool, N>)simd_shuffle_up((vec<ushort, N>)value, delta);"); + end_scope(); + statement(""); + break; + + case SPVFuncImplSubgroupShuffleDown: + statement("template<typename T>"); + statement("inline T spvSubgroupShuffleDown(T value, ushort delta)"); + begin_scope(); + if (msl_options.use_quadgroup_operation()) + statement("return quad_shuffle_down(value, delta);"); + else + statement("return simd_shuffle_down(value, delta);"); + end_scope(); + statement(""); + statement("template<>"); + statement("inline bool spvSubgroupShuffleDown(bool value, ushort delta)"); + begin_scope(); + if (msl_options.use_quadgroup_operation()) + statement("return !!quad_shuffle_down((ushort)value, delta);"); + else + statement("return !!simd_shuffle_down((ushort)value, delta);"); + end_scope(); + statement(""); + statement("template<uint N>"); + statement("inline vec<bool, N> spvSubgroupShuffleDown(vec<bool, N> value, ushort delta)"); + begin_scope(); + if (msl_options.use_quadgroup_operation()) + statement("return (vec<bool, N>)quad_shuffle_down((vec<ushort, N>)value, delta);"); + else + statement("return (vec<bool, N>)simd_shuffle_down((vec<ushort, N>)value, delta);"); + end_scope(); + statement(""); + break; + + case SPVFuncImplQuadBroadcast: + statement("template<typename T>"); + statement("inline T spvQuadBroadcast(T value, uint lane)"); + begin_scope(); + statement("return quad_broadcast(value, lane);"); + end_scope(); + statement(""); + statement("template<>"); + statement("inline bool spvQuadBroadcast(bool value, uint lane)"); + begin_scope(); + statement("return !!quad_broadcast((ushort)value, lane);"); + end_scope(); + statement(""); + statement("template<uint N>"); + statement("inline vec<bool, N> spvQuadBroadcast(vec<bool, N> value, uint lane)"); + begin_scope(); + statement("return (vec<bool, N>)quad_broadcast((vec<ushort, N>)value, lane);"); + end_scope(); + statement(""); + break; + + case SPVFuncImplQuadSwap: + // We can implement this easily based on the following table giving + // the target lane ID from the direction and current lane ID: + // Direction + // | 0 | 1 | 2 | + // ---+---+---+---+ + // L 0 | 1 2 3 + // a 1 | 0 3 2 + // n 2 | 3 0 1 + // e 3 | 2 1 0 + // Notice that target = source ^ (direction + 1). + statement("template<typename T>"); + statement("inline T spvQuadSwap(T value, uint dir)"); + begin_scope(); + statement("return quad_shuffle_xor(value, dir + 1);"); + end_scope(); + statement(""); + statement("template<>"); + statement("inline bool spvQuadSwap(bool value, uint dir)"); + begin_scope(); + statement("return !!quad_shuffle_xor((ushort)value, dir + 1);"); + end_scope(); + statement(""); + statement("template<uint N>"); + statement("inline vec<bool, N> spvQuadSwap(vec<bool, N> value, uint dir)"); + begin_scope(); + statement("return (vec<bool, N>)quad_shuffle_xor((vec<ushort, N>)value, dir + 1);"); + end_scope(); + statement(""); + break; + + case SPVFuncImplReflectScalar: + // Metal does not support scalar versions of these functions. + // Ensure fast-math is disabled to match Vulkan results. + statement("template<typename T>"); + statement("[[clang::optnone]] T spvReflect(T i, T n)"); + begin_scope(); + statement("return i - T(2) * i * n * n;"); + end_scope(); + statement(""); + break; + + case SPVFuncImplRefractScalar: + // Metal does not support scalar versions of these functions. + statement("template<typename T>"); + statement("inline T spvRefract(T i, T n, T eta)"); + begin_scope(); + statement("T NoI = n * i;"); + statement("T NoI2 = NoI * NoI;"); + statement("T k = T(1) - eta * eta * (T(1) - NoI2);"); + statement("if (k < T(0))"); + begin_scope(); + statement("return T(0);"); + end_scope(); + statement("else"); + begin_scope(); + statement("return eta * i - (eta * NoI + sqrt(k)) * n;"); + end_scope(); + end_scope(); + statement(""); + break; + + case SPVFuncImplFaceForwardScalar: + // Metal does not support scalar versions of these functions. + statement("template<typename T>"); + statement("inline T spvFaceForward(T n, T i, T nref)"); + begin_scope(); + statement("return i * nref < T(0) ? n : -n;"); + end_scope(); + statement(""); + break; + + case SPVFuncImplChromaReconstructNearest2Plane: + statement("template<typename T, typename... LodOptions>"); + statement("inline vec<T, 4> spvChromaReconstructNearest(texture2d<T> plane0, texture2d<T> plane1, sampler " + "samp, float2 coord, LodOptions... options)"); + begin_scope(); + statement("vec<T, 4> ycbcr = vec<T, 4>(0, 0, 0, 1);"); + statement("ycbcr.g = plane0.sample(samp, coord, spvForward<LodOptions>(options)...).r;"); + statement("ycbcr.br = plane1.sample(samp, coord, spvForward<LodOptions>(options)...).rg;"); + statement("return ycbcr;"); + end_scope(); + statement(""); + break; + + case SPVFuncImplChromaReconstructNearest3Plane: + statement("template<typename T, typename... LodOptions>"); + statement("inline vec<T, 4> spvChromaReconstructNearest(texture2d<T> plane0, texture2d<T> plane1, " + "texture2d<T> plane2, sampler samp, float2 coord, LodOptions... options)"); + begin_scope(); + statement("vec<T, 4> ycbcr = vec<T, 4>(0, 0, 0, 1);"); + statement("ycbcr.g = plane0.sample(samp, coord, spvForward<LodOptions>(options)...).r;"); + statement("ycbcr.b = plane1.sample(samp, coord, spvForward<LodOptions>(options)...).r;"); + statement("ycbcr.r = plane2.sample(samp, coord, spvForward<LodOptions>(options)...).r;"); + statement("return ycbcr;"); + end_scope(); + statement(""); + break; + + case SPVFuncImplChromaReconstructLinear422CositedEven2Plane: + statement("template<typename T, typename... LodOptions>"); + statement("inline vec<T, 4> spvChromaReconstructLinear422CositedEven(texture2d<T> plane0, texture2d<T> " + "plane1, sampler samp, float2 coord, LodOptions... options)"); + begin_scope(); + statement("vec<T, 4> ycbcr = vec<T, 4>(0, 0, 0, 1);"); + statement("ycbcr.g = plane0.sample(samp, coord, spvForward<LodOptions>(options)...).r;"); + statement("if (fract(coord.x * plane1.get_width()) != 0.0)"); + begin_scope(); + statement("ycbcr.br = vec<T, 2>(mix(plane1.sample(samp, coord, spvForward<LodOptions>(options)...), " + "plane1.sample(samp, coord, spvForward<LodOptions>(options)..., int2(1, 0)), 0.5).rg);"); + end_scope(); + statement("else"); + begin_scope(); + statement("ycbcr.br = plane1.sample(samp, coord, spvForward<LodOptions>(options)...).rg;"); + end_scope(); + statement("return ycbcr;"); + end_scope(); + statement(""); + break; + + case SPVFuncImplChromaReconstructLinear422CositedEven3Plane: + statement("template<typename T, typename... LodOptions>"); + statement("inline vec<T, 4> spvChromaReconstructLinear422CositedEven(texture2d<T> plane0, texture2d<T> " + "plane1, texture2d<T> plane2, sampler samp, float2 coord, LodOptions... options)"); + begin_scope(); + statement("vec<T, 4> ycbcr = vec<T, 4>(0, 0, 0, 1);"); + statement("ycbcr.g = plane0.sample(samp, coord, spvForward<LodOptions>(options)...).r;"); + statement("if (fract(coord.x * plane1.get_width()) != 0.0)"); + begin_scope(); + statement("ycbcr.b = T(mix(plane1.sample(samp, coord, spvForward<LodOptions>(options)...), " + "plane1.sample(samp, coord, spvForward<LodOptions>(options)..., int2(1, 0)), 0.5).r);"); + statement("ycbcr.r = T(mix(plane2.sample(samp, coord, spvForward<LodOptions>(options)...), " + "plane2.sample(samp, coord, spvForward<LodOptions>(options)..., int2(1, 0)), 0.5).r);"); + end_scope(); + statement("else"); + begin_scope(); + statement("ycbcr.b = plane1.sample(samp, coord, spvForward<LodOptions>(options)...).r;"); + statement("ycbcr.r = plane2.sample(samp, coord, spvForward<LodOptions>(options)...).r;"); + end_scope(); + statement("return ycbcr;"); + end_scope(); + statement(""); + break; + + case SPVFuncImplChromaReconstructLinear422Midpoint2Plane: + statement("template<typename T, typename... LodOptions>"); + statement("inline vec<T, 4> spvChromaReconstructLinear422Midpoint(texture2d<T> plane0, texture2d<T> " + "plane1, sampler samp, float2 coord, LodOptions... options)"); + begin_scope(); + statement("vec<T, 4> ycbcr = vec<T, 4>(0, 0, 0, 1);"); + statement("ycbcr.g = plane0.sample(samp, coord, spvForward<LodOptions>(options)...).r;"); + statement("int2 offs = int2(fract(coord.x * plane1.get_width()) != 0.0 ? 1 : -1, 0);"); + statement("ycbcr.br = vec<T, 2>(mix(plane1.sample(samp, coord, spvForward<LodOptions>(options)...), " + "plane1.sample(samp, coord, spvForward<LodOptions>(options)..., offs), 0.25).rg);"); + statement("return ycbcr;"); + end_scope(); + statement(""); + break; + + case SPVFuncImplChromaReconstructLinear422Midpoint3Plane: + statement("template<typename T, typename... LodOptions>"); + statement("inline vec<T, 4> spvChromaReconstructLinear422Midpoint(texture2d<T> plane0, texture2d<T> " + "plane1, texture2d<T> plane2, sampler samp, float2 coord, LodOptions... options)"); + begin_scope(); + statement("vec<T, 4> ycbcr = vec<T, 4>(0, 0, 0, 1);"); + statement("ycbcr.g = plane0.sample(samp, coord, spvForward<LodOptions>(options)...).r;"); + statement("int2 offs = int2(fract(coord.x * plane1.get_width()) != 0.0 ? 1 : -1, 0);"); + statement("ycbcr.b = T(mix(plane1.sample(samp, coord, spvForward<LodOptions>(options)...), " + "plane1.sample(samp, coord, spvForward<LodOptions>(options)..., offs), 0.25).r);"); + statement("ycbcr.r = T(mix(plane2.sample(samp, coord, spvForward<LodOptions>(options)...), " + "plane2.sample(samp, coord, spvForward<LodOptions>(options)..., offs), 0.25).r);"); + statement("return ycbcr;"); + end_scope(); + statement(""); + break; + + case SPVFuncImplChromaReconstructLinear420XCositedEvenYCositedEven2Plane: + statement("template<typename T, typename... LodOptions>"); + statement("inline vec<T, 4> spvChromaReconstructLinear420XCositedEvenYCositedEven(texture2d<T> plane0, " + "texture2d<T> plane1, sampler samp, float2 coord, LodOptions... options)"); + begin_scope(); + statement("vec<T, 4> ycbcr = vec<T, 4>(0, 0, 0, 1);"); + statement("ycbcr.g = plane0.sample(samp, coord, spvForward<LodOptions>(options)...).r;"); + statement("float2 ab = fract(round(coord * float2(plane0.get_width(), plane0.get_height())) * 0.5);"); + statement("ycbcr.br = vec<T, 2>(mix(mix(plane1.sample(samp, coord, spvForward<LodOptions>(options)...), " + "plane1.sample(samp, coord, spvForward<LodOptions>(options)..., int2(1, 0)), ab.x), " + "mix(plane1.sample(samp, coord, spvForward<LodOptions>(options)..., int2(0, 1)), " + "plane1.sample(samp, coord, spvForward<LodOptions>(options)..., int2(1, 1)), ab.x), ab.y).rg);"); + statement("return ycbcr;"); + end_scope(); + statement(""); + break; + + case SPVFuncImplChromaReconstructLinear420XCositedEvenYCositedEven3Plane: + statement("template<typename T, typename... LodOptions>"); + statement("inline vec<T, 4> spvChromaReconstructLinear420XCositedEvenYCositedEven(texture2d<T> plane0, " + "texture2d<T> plane1, texture2d<T> plane2, sampler samp, float2 coord, LodOptions... options)"); + begin_scope(); + statement("vec<T, 4> ycbcr = vec<T, 4>(0, 0, 0, 1);"); + statement("ycbcr.g = plane0.sample(samp, coord, spvForward<LodOptions>(options)...).r;"); + statement("float2 ab = fract(round(coord * float2(plane0.get_width(), plane0.get_height())) * 0.5);"); + statement("ycbcr.b = T(mix(mix(plane1.sample(samp, coord, spvForward<LodOptions>(options)...), " + "plane1.sample(samp, coord, spvForward<LodOptions>(options)..., int2(1, 0)), ab.x), " + "mix(plane1.sample(samp, coord, spvForward<LodOptions>(options)..., int2(0, 1)), " + "plane1.sample(samp, coord, spvForward<LodOptions>(options)..., int2(1, 1)), ab.x), ab.y).r);"); + statement("ycbcr.r = T(mix(mix(plane2.sample(samp, coord, spvForward<LodOptions>(options)...), " + "plane2.sample(samp, coord, spvForward<LodOptions>(options)..., int2(1, 0)), ab.x), " + "mix(plane2.sample(samp, coord, spvForward<LodOptions>(options)..., int2(0, 1)), " + "plane2.sample(samp, coord, spvForward<LodOptions>(options)..., int2(1, 1)), ab.x), ab.y).r);"); + statement("return ycbcr;"); + end_scope(); + statement(""); + break; + + case SPVFuncImplChromaReconstructLinear420XMidpointYCositedEven2Plane: + statement("template<typename T, typename... LodOptions>"); + statement("inline vec<T, 4> spvChromaReconstructLinear420XMidpointYCositedEven(texture2d<T> plane0, " + "texture2d<T> plane1, sampler samp, float2 coord, LodOptions... options)"); + begin_scope(); + statement("vec<T, 4> ycbcr = vec<T, 4>(0, 0, 0, 1);"); + statement("ycbcr.g = plane0.sample(samp, coord, spvForward<LodOptions>(options)...).r;"); + statement("float2 ab = fract((round(coord * float2(plane0.get_width(), plane0.get_height())) - float2(0.5, " + "0)) * 0.5);"); + statement("ycbcr.br = vec<T, 2>(mix(mix(plane1.sample(samp, coord, spvForward<LodOptions>(options)...), " + "plane1.sample(samp, coord, spvForward<LodOptions>(options)..., int2(1, 0)), ab.x), " + "mix(plane1.sample(samp, coord, spvForward<LodOptions>(options)..., int2(0, 1)), " + "plane1.sample(samp, coord, spvForward<LodOptions>(options)..., int2(1, 1)), ab.x), ab.y).rg);"); + statement("return ycbcr;"); + end_scope(); + statement(""); + break; + + case SPVFuncImplChromaReconstructLinear420XMidpointYCositedEven3Plane: + statement("template<typename T, typename... LodOptions>"); + statement("inline vec<T, 4> spvChromaReconstructLinear420XMidpointYCositedEven(texture2d<T> plane0, " + "texture2d<T> plane1, texture2d<T> plane2, sampler samp, float2 coord, LodOptions... options)"); + begin_scope(); + statement("vec<T, 4> ycbcr = vec<T, 4>(0, 0, 0, 1);"); + statement("ycbcr.g = plane0.sample(samp, coord, spvForward<LodOptions>(options)...).r;"); + statement("float2 ab = fract((round(coord * float2(plane0.get_width(), plane0.get_height())) - float2(0.5, " + "0)) * 0.5);"); + statement("ycbcr.b = T(mix(mix(plane1.sample(samp, coord, spvForward<LodOptions>(options)...), " + "plane1.sample(samp, coord, spvForward<LodOptions>(options)..., int2(1, 0)), ab.x), " + "mix(plane1.sample(samp, coord, spvForward<LodOptions>(options)..., int2(0, 1)), " + "plane1.sample(samp, coord, spvForward<LodOptions>(options)..., int2(1, 1)), ab.x), ab.y).r);"); + statement("ycbcr.r = T(mix(mix(plane2.sample(samp, coord, spvForward<LodOptions>(options)...), " + "plane2.sample(samp, coord, spvForward<LodOptions>(options)..., int2(1, 0)), ab.x), " + "mix(plane2.sample(samp, coord, spvForward<LodOptions>(options)..., int2(0, 1)), " + "plane2.sample(samp, coord, spvForward<LodOptions>(options)..., int2(1, 1)), ab.x), ab.y).r);"); + statement("return ycbcr;"); + end_scope(); + statement(""); + break; + + case SPVFuncImplChromaReconstructLinear420XCositedEvenYMidpoint2Plane: + statement("template<typename T, typename... LodOptions>"); + statement("inline vec<T, 4> spvChromaReconstructLinear420XCositedEvenYMidpoint(texture2d<T> plane0, " + "texture2d<T> plane1, sampler samp, float2 coord, LodOptions... options)"); + begin_scope(); + statement("vec<T, 4> ycbcr = vec<T, 4>(0, 0, 0, 1);"); + statement("ycbcr.g = plane0.sample(samp, coord, spvForward<LodOptions>(options)...).r;"); + statement("float2 ab = fract((round(coord * float2(plane0.get_width(), plane0.get_height())) - float2(0, " + "0.5)) * 0.5);"); + statement("ycbcr.br = vec<T, 2>(mix(mix(plane1.sample(samp, coord, spvForward<LodOptions>(options)...), " + "plane1.sample(samp, coord, spvForward<LodOptions>(options)..., int2(1, 0)), ab.x), " + "mix(plane1.sample(samp, coord, spvForward<LodOptions>(options)..., int2(0, 1)), " + "plane1.sample(samp, coord, spvForward<LodOptions>(options)..., int2(1, 1)), ab.x), ab.y).rg);"); + statement("return ycbcr;"); + end_scope(); + statement(""); + break; + + case SPVFuncImplChromaReconstructLinear420XCositedEvenYMidpoint3Plane: + statement("template<typename T, typename... LodOptions>"); + statement("inline vec<T, 4> spvChromaReconstructLinear420XCositedEvenYMidpoint(texture2d<T> plane0, " + "texture2d<T> plane1, texture2d<T> plane2, sampler samp, float2 coord, LodOptions... options)"); + begin_scope(); + statement("vec<T, 4> ycbcr = vec<T, 4>(0, 0, 0, 1);"); + statement("ycbcr.g = plane0.sample(samp, coord, spvForward<LodOptions>(options)...).r;"); + statement("float2 ab = fract((round(coord * float2(plane0.get_width(), plane0.get_height())) - float2(0, " + "0.5)) * 0.5);"); + statement("ycbcr.b = T(mix(mix(plane1.sample(samp, coord, spvForward<LodOptions>(options)...), " + "plane1.sample(samp, coord, spvForward<LodOptions>(options)..., int2(1, 0)), ab.x), " + "mix(plane1.sample(samp, coord, spvForward<LodOptions>(options)..., int2(0, 1)), " + "plane1.sample(samp, coord, spvForward<LodOptions>(options)..., int2(1, 1)), ab.x), ab.y).r);"); + statement("ycbcr.r = T(mix(mix(plane2.sample(samp, coord, spvForward<LodOptions>(options)...), " + "plane2.sample(samp, coord, spvForward<LodOptions>(options)..., int2(1, 0)), ab.x), " + "mix(plane2.sample(samp, coord, spvForward<LodOptions>(options)..., int2(0, 1)), " + "plane2.sample(samp, coord, spvForward<LodOptions>(options)..., int2(1, 1)), ab.x), ab.y).r);"); + statement("return ycbcr;"); + end_scope(); + statement(""); + break; + + case SPVFuncImplChromaReconstructLinear420XMidpointYMidpoint2Plane: + statement("template<typename T, typename... LodOptions>"); + statement("inline vec<T, 4> spvChromaReconstructLinear420XMidpointYMidpoint(texture2d<T> plane0, " + "texture2d<T> plane1, sampler samp, float2 coord, LodOptions... options)"); + begin_scope(); + statement("vec<T, 4> ycbcr = vec<T, 4>(0, 0, 0, 1);"); + statement("ycbcr.g = plane0.sample(samp, coord, spvForward<LodOptions>(options)...).r;"); + statement("float2 ab = fract((round(coord * float2(plane0.get_width(), plane0.get_height())) - float2(0.5, " + "0.5)) * 0.5);"); + statement("ycbcr.br = vec<T, 2>(mix(mix(plane1.sample(samp, coord, spvForward<LodOptions>(options)...), " + "plane1.sample(samp, coord, spvForward<LodOptions>(options)..., int2(1, 0)), ab.x), " + "mix(plane1.sample(samp, coord, spvForward<LodOptions>(options)..., int2(0, 1)), " + "plane1.sample(samp, coord, spvForward<LodOptions>(options)..., int2(1, 1)), ab.x), ab.y).rg);"); + statement("return ycbcr;"); + end_scope(); + statement(""); + break; + + case SPVFuncImplChromaReconstructLinear420XMidpointYMidpoint3Plane: + statement("template<typename T, typename... LodOptions>"); + statement("inline vec<T, 4> spvChromaReconstructLinear420XMidpointYMidpoint(texture2d<T> plane0, " + "texture2d<T> plane1, texture2d<T> plane2, sampler samp, float2 coord, LodOptions... options)"); + begin_scope(); + statement("vec<T, 4> ycbcr = vec<T, 4>(0, 0, 0, 1);"); + statement("ycbcr.g = plane0.sample(samp, coord, spvForward<LodOptions>(options)...).r;"); + statement("float2 ab = fract((round(coord * float2(plane0.get_width(), plane0.get_height())) - float2(0.5, " + "0.5)) * 0.5);"); + statement("ycbcr.b = T(mix(mix(plane1.sample(samp, coord, spvForward<LodOptions>(options)...), " + "plane1.sample(samp, coord, spvForward<LodOptions>(options)..., int2(1, 0)), ab.x), " + "mix(plane1.sample(samp, coord, spvForward<LodOptions>(options)..., int2(0, 1)), " + "plane1.sample(samp, coord, spvForward<LodOptions>(options)..., int2(1, 1)), ab.x), ab.y).r);"); + statement("ycbcr.r = T(mix(mix(plane2.sample(samp, coord, spvForward<LodOptions>(options)...), " + "plane2.sample(samp, coord, spvForward<LodOptions>(options)..., int2(1, 0)), ab.x), " + "mix(plane2.sample(samp, coord, spvForward<LodOptions>(options)..., int2(0, 1)), " + "plane2.sample(samp, coord, spvForward<LodOptions>(options)..., int2(1, 1)), ab.x), ab.y).r);"); + statement("return ycbcr;"); + end_scope(); + statement(""); + break; + + case SPVFuncImplExpandITUFullRange: + statement("template<typename T>"); + statement("inline vec<T, 4> spvExpandITUFullRange(vec<T, 4> ycbcr, int n)"); + begin_scope(); + statement("ycbcr.br -= exp2(T(n-1))/(exp2(T(n))-1);"); + statement("return ycbcr;"); + end_scope(); + statement(""); + break; + + case SPVFuncImplExpandITUNarrowRange: + statement("template<typename T>"); + statement("inline vec<T, 4> spvExpandITUNarrowRange(vec<T, 4> ycbcr, int n)"); + begin_scope(); + statement("ycbcr.g = (ycbcr.g * (exp2(T(n)) - 1) - ldexp(T(16), n - 8))/ldexp(T(219), n - 8);"); + statement("ycbcr.br = (ycbcr.br * (exp2(T(n)) - 1) - ldexp(T(128), n - 8))/ldexp(T(224), n - 8);"); + statement("return ycbcr;"); + end_scope(); + statement(""); + break; + + case SPVFuncImplConvertYCbCrBT709: + statement("// cf. Khronos Data Format Specification, section 15.1.1"); + statement("constant float3x3 spvBT709Factors = {{1, 1, 1}, {0, -0.13397432/0.7152, 1.8556}, {1.5748, " + "-0.33480248/0.7152, 0}};"); + statement(""); + statement("template<typename T>"); + statement("inline vec<T, 4> spvConvertYCbCrBT709(vec<T, 4> ycbcr)"); + begin_scope(); + statement("vec<T, 4> rgba;"); + statement("rgba.rgb = vec<T, 3>(spvBT709Factors * ycbcr.gbr);"); + statement("rgba.a = ycbcr.a;"); + statement("return rgba;"); + end_scope(); + statement(""); + break; + + case SPVFuncImplConvertYCbCrBT601: + statement("// cf. Khronos Data Format Specification, section 15.1.2"); + statement("constant float3x3 spvBT601Factors = {{1, 1, 1}, {0, -0.202008/0.587, 1.772}, {1.402, " + "-0.419198/0.587, 0}};"); + statement(""); + statement("template<typename T>"); + statement("inline vec<T, 4> spvConvertYCbCrBT601(vec<T, 4> ycbcr)"); + begin_scope(); + statement("vec<T, 4> rgba;"); + statement("rgba.rgb = vec<T, 3>(spvBT601Factors * ycbcr.gbr);"); + statement("rgba.a = ycbcr.a;"); + statement("return rgba;"); + end_scope(); + statement(""); + break; + + case SPVFuncImplConvertYCbCrBT2020: + statement("// cf. Khronos Data Format Specification, section 15.1.3"); + statement("constant float3x3 spvBT2020Factors = {{1, 1, 1}, {0, -0.11156702/0.6780, 1.8814}, {1.4746, " + "-0.38737742/0.6780, 0}};"); + statement(""); + statement("template<typename T>"); + statement("inline vec<T, 4> spvConvertYCbCrBT2020(vec<T, 4> ycbcr)"); + begin_scope(); + statement("vec<T, 4> rgba;"); + statement("rgba.rgb = vec<T, 3>(spvBT2020Factors * ycbcr.gbr);"); + statement("rgba.a = ycbcr.a;"); + statement("return rgba;"); + end_scope(); + statement(""); + break; + + case SPVFuncImplDynamicImageSampler: + statement("enum class spvFormatResolution"); + begin_scope(); + statement("_444 = 0,"); + statement("_422,"); + statement("_420"); + end_scope_decl(); + statement(""); + statement("enum class spvChromaFilter"); + begin_scope(); + statement("nearest = 0,"); + statement("linear"); + end_scope_decl(); + statement(""); + statement("enum class spvXChromaLocation"); + begin_scope(); + statement("cosited_even = 0,"); + statement("midpoint"); + end_scope_decl(); + statement(""); + statement("enum class spvYChromaLocation"); + begin_scope(); + statement("cosited_even = 0,"); + statement("midpoint"); + end_scope_decl(); + statement(""); + statement("enum class spvYCbCrModelConversion"); + begin_scope(); + statement("rgb_identity = 0,"); + statement("ycbcr_identity,"); + statement("ycbcr_bt_709,"); + statement("ycbcr_bt_601,"); + statement("ycbcr_bt_2020"); + end_scope_decl(); + statement(""); + statement("enum class spvYCbCrRange"); + begin_scope(); + statement("itu_full = 0,"); + statement("itu_narrow"); + end_scope_decl(); + statement(""); + statement("struct spvComponentBits"); + begin_scope(); + statement("constexpr explicit spvComponentBits(int v) thread : value(v) {}"); + statement("uchar value : 6;"); + end_scope_decl(); + statement("// A class corresponding to metal::sampler which holds sampler"); + statement("// Y'CbCr conversion info."); + statement("struct spvYCbCrSampler"); + begin_scope(); + statement("constexpr spvYCbCrSampler() thread : val(build()) {}"); + statement("template<typename... Ts>"); + statement("constexpr spvYCbCrSampler(Ts... t) thread : val(build(t...)) {}"); + statement("constexpr spvYCbCrSampler(const thread spvYCbCrSampler& s) thread = default;"); + statement(""); + statement("spvFormatResolution get_resolution() const thread"); + begin_scope(); + statement("return spvFormatResolution((val & resolution_mask) >> resolution_base);"); + end_scope(); + statement("spvChromaFilter get_chroma_filter() const thread"); + begin_scope(); + statement("return spvChromaFilter((val & chroma_filter_mask) >> chroma_filter_base);"); + end_scope(); + statement("spvXChromaLocation get_x_chroma_offset() const thread"); + begin_scope(); + statement("return spvXChromaLocation((val & x_chroma_off_mask) >> x_chroma_off_base);"); + end_scope(); + statement("spvYChromaLocation get_y_chroma_offset() const thread"); + begin_scope(); + statement("return spvYChromaLocation((val & y_chroma_off_mask) >> y_chroma_off_base);"); + end_scope(); + statement("spvYCbCrModelConversion get_ycbcr_model() const thread"); + begin_scope(); + statement("return spvYCbCrModelConversion((val & ycbcr_model_mask) >> ycbcr_model_base);"); + end_scope(); + statement("spvYCbCrRange get_ycbcr_range() const thread"); + begin_scope(); + statement("return spvYCbCrRange((val & ycbcr_range_mask) >> ycbcr_range_base);"); + end_scope(); + statement("int get_bpc() const thread { return (val & bpc_mask) >> bpc_base; }"); + statement(""); + statement("private:"); + statement("ushort val;"); + statement(""); + statement("constexpr static constant ushort resolution_bits = 2;"); + statement("constexpr static constant ushort chroma_filter_bits = 2;"); + statement("constexpr static constant ushort x_chroma_off_bit = 1;"); + statement("constexpr static constant ushort y_chroma_off_bit = 1;"); + statement("constexpr static constant ushort ycbcr_model_bits = 3;"); + statement("constexpr static constant ushort ycbcr_range_bit = 1;"); + statement("constexpr static constant ushort bpc_bits = 6;"); + statement(""); + statement("constexpr static constant ushort resolution_base = 0;"); + statement("constexpr static constant ushort chroma_filter_base = 2;"); + statement("constexpr static constant ushort x_chroma_off_base = 4;"); + statement("constexpr static constant ushort y_chroma_off_base = 5;"); + statement("constexpr static constant ushort ycbcr_model_base = 6;"); + statement("constexpr static constant ushort ycbcr_range_base = 9;"); + statement("constexpr static constant ushort bpc_base = 10;"); + statement(""); + statement( + "constexpr static constant ushort resolution_mask = ((1 << resolution_bits) - 1) << resolution_base;"); + statement("constexpr static constant ushort chroma_filter_mask = ((1 << chroma_filter_bits) - 1) << " + "chroma_filter_base;"); + statement("constexpr static constant ushort x_chroma_off_mask = ((1 << x_chroma_off_bit) - 1) << " + "x_chroma_off_base;"); + statement("constexpr static constant ushort y_chroma_off_mask = ((1 << y_chroma_off_bit) - 1) << " + "y_chroma_off_base;"); + statement("constexpr static constant ushort ycbcr_model_mask = ((1 << ycbcr_model_bits) - 1) << " + "ycbcr_model_base;"); + statement("constexpr static constant ushort ycbcr_range_mask = ((1 << ycbcr_range_bit) - 1) << " + "ycbcr_range_base;"); + statement("constexpr static constant ushort bpc_mask = ((1 << bpc_bits) - 1) << bpc_base;"); + statement(""); + statement("static constexpr ushort build()"); + begin_scope(); + statement("return 0;"); + end_scope(); + statement(""); + statement("template<typename... Ts>"); + statement("static constexpr ushort build(spvFormatResolution res, Ts... t)"); + begin_scope(); + statement("return (ushort(res) << resolution_base) | (build(t...) & ~resolution_mask);"); + end_scope(); + statement(""); + statement("template<typename... Ts>"); + statement("static constexpr ushort build(spvChromaFilter filt, Ts... t)"); + begin_scope(); + statement("return (ushort(filt) << chroma_filter_base) | (build(t...) & ~chroma_filter_mask);"); + end_scope(); + statement(""); + statement("template<typename... Ts>"); + statement("static constexpr ushort build(spvXChromaLocation loc, Ts... t)"); + begin_scope(); + statement("return (ushort(loc) << x_chroma_off_base) | (build(t...) & ~x_chroma_off_mask);"); + end_scope(); + statement(""); + statement("template<typename... Ts>"); + statement("static constexpr ushort build(spvYChromaLocation loc, Ts... t)"); + begin_scope(); + statement("return (ushort(loc) << y_chroma_off_base) | (build(t...) & ~y_chroma_off_mask);"); + end_scope(); + statement(""); + statement("template<typename... Ts>"); + statement("static constexpr ushort build(spvYCbCrModelConversion model, Ts... t)"); + begin_scope(); + statement("return (ushort(model) << ycbcr_model_base) | (build(t...) & ~ycbcr_model_mask);"); + end_scope(); + statement(""); + statement("template<typename... Ts>"); + statement("static constexpr ushort build(spvYCbCrRange range, Ts... t)"); + begin_scope(); + statement("return (ushort(range) << ycbcr_range_base) | (build(t...) & ~ycbcr_range_mask);"); + end_scope(); + statement(""); + statement("template<typename... Ts>"); + statement("static constexpr ushort build(spvComponentBits bpc, Ts... t)"); + begin_scope(); + statement("return (ushort(bpc.value) << bpc_base) | (build(t...) & ~bpc_mask);"); + end_scope(); + end_scope_decl(); + statement(""); + statement("// A class which can hold up to three textures and a sampler, including"); + statement("// Y'CbCr conversion info, used to pass combined image-samplers"); + statement("// dynamically to functions."); + statement("template<typename T>"); + statement("struct spvDynamicImageSampler"); + begin_scope(); + statement("texture2d<T> plane0;"); + statement("texture2d<T> plane1;"); + statement("texture2d<T> plane2;"); + statement("sampler samp;"); + statement("spvYCbCrSampler ycbcr_samp;"); + statement("uint swizzle = 0;"); + statement(""); + if (msl_options.swizzle_texture_samples) + { + statement("constexpr spvDynamicImageSampler(texture2d<T> tex, sampler samp, uint sw) thread :"); + statement(" plane0(tex), samp(samp), swizzle(sw) {}"); + } + else + { + statement("constexpr spvDynamicImageSampler(texture2d<T> tex, sampler samp) thread :"); + statement(" plane0(tex), samp(samp) {}"); + } + statement("constexpr spvDynamicImageSampler(texture2d<T> tex, sampler samp, spvYCbCrSampler ycbcr_samp, " + "uint sw) thread :"); + statement(" plane0(tex), samp(samp), ycbcr_samp(ycbcr_samp), swizzle(sw) {}"); + statement("constexpr spvDynamicImageSampler(texture2d<T> plane0, texture2d<T> plane1,"); + statement(" sampler samp, spvYCbCrSampler ycbcr_samp, uint sw) thread :"); + statement(" plane0(plane0), plane1(plane1), samp(samp), ycbcr_samp(ycbcr_samp), swizzle(sw) {}"); + statement( + "constexpr spvDynamicImageSampler(texture2d<T> plane0, texture2d<T> plane1, texture2d<T> plane2,"); + statement(" sampler samp, spvYCbCrSampler ycbcr_samp, uint sw) thread :"); + statement(" plane0(plane0), plane1(plane1), plane2(plane2), samp(samp), ycbcr_samp(ycbcr_samp), " + "swizzle(sw) {}"); + statement(""); + // XXX This is really hard to follow... I've left comments to make it a bit easier. + statement("template<typename... LodOptions>"); + statement("vec<T, 4> do_sample(float2 coord, LodOptions... options) const thread"); + begin_scope(); + statement("if (!is_null_texture(plane1))"); + begin_scope(); + statement("if (ycbcr_samp.get_resolution() == spvFormatResolution::_444 ||"); + statement(" ycbcr_samp.get_chroma_filter() == spvChromaFilter::nearest)"); + begin_scope(); + statement("if (!is_null_texture(plane2))"); + statement(" return spvChromaReconstructNearest(plane0, plane1, plane2, samp, coord,"); + statement(" spvForward<LodOptions>(options)...);"); + statement( + "return spvChromaReconstructNearest(plane0, plane1, samp, coord, spvForward<LodOptions>(options)...);"); + end_scope(); // if (resolution == 422 || chroma_filter == nearest) + statement("switch (ycbcr_samp.get_resolution())"); + begin_scope(); + statement("case spvFormatResolution::_444: break;"); + statement("case spvFormatResolution::_422:"); + begin_scope(); + statement("switch (ycbcr_samp.get_x_chroma_offset())"); + begin_scope(); + statement("case spvXChromaLocation::cosited_even:"); + statement(" if (!is_null_texture(plane2))"); + statement(" return spvChromaReconstructLinear422CositedEven("); + statement(" plane0, plane1, plane2, samp,"); + statement(" coord, spvForward<LodOptions>(options)...);"); + statement(" return spvChromaReconstructLinear422CositedEven("); + statement(" plane0, plane1, samp, coord,"); + statement(" spvForward<LodOptions>(options)...);"); + statement("case spvXChromaLocation::midpoint:"); + statement(" if (!is_null_texture(plane2))"); + statement(" return spvChromaReconstructLinear422Midpoint("); + statement(" plane0, plane1, plane2, samp,"); + statement(" coord, spvForward<LodOptions>(options)...);"); + statement(" return spvChromaReconstructLinear422Midpoint("); + statement(" plane0, plane1, samp, coord,"); + statement(" spvForward<LodOptions>(options)...);"); + end_scope(); // switch (x_chroma_offset) + end_scope(); // case 422: + statement("case spvFormatResolution::_420:"); + begin_scope(); + statement("switch (ycbcr_samp.get_x_chroma_offset())"); + begin_scope(); + statement("case spvXChromaLocation::cosited_even:"); + begin_scope(); + statement("switch (ycbcr_samp.get_y_chroma_offset())"); + begin_scope(); + statement("case spvYChromaLocation::cosited_even:"); + statement(" if (!is_null_texture(plane2))"); + statement(" return spvChromaReconstructLinear420XCositedEvenYCositedEven("); + statement(" plane0, plane1, plane2, samp,"); + statement(" coord, spvForward<LodOptions>(options)...);"); + statement(" return spvChromaReconstructLinear420XCositedEvenYCositedEven("); + statement(" plane0, plane1, samp, coord,"); + statement(" spvForward<LodOptions>(options)...);"); + statement("case spvYChromaLocation::midpoint:"); + statement(" if (!is_null_texture(plane2))"); + statement(" return spvChromaReconstructLinear420XCositedEvenYMidpoint("); + statement(" plane0, plane1, plane2, samp,"); + statement(" coord, spvForward<LodOptions>(options)...);"); + statement(" return spvChromaReconstructLinear420XCositedEvenYMidpoint("); + statement(" plane0, plane1, samp, coord,"); + statement(" spvForward<LodOptions>(options)...);"); + end_scope(); // switch (y_chroma_offset) + end_scope(); // case x::cosited_even: + statement("case spvXChromaLocation::midpoint:"); + begin_scope(); + statement("switch (ycbcr_samp.get_y_chroma_offset())"); + begin_scope(); + statement("case spvYChromaLocation::cosited_even:"); + statement(" if (!is_null_texture(plane2))"); + statement(" return spvChromaReconstructLinear420XMidpointYCositedEven("); + statement(" plane0, plane1, plane2, samp,"); + statement(" coord, spvForward<LodOptions>(options)...);"); + statement(" return spvChromaReconstructLinear420XMidpointYCositedEven("); + statement(" plane0, plane1, samp, coord,"); + statement(" spvForward<LodOptions>(options)...);"); + statement("case spvYChromaLocation::midpoint:"); + statement(" if (!is_null_texture(plane2))"); + statement(" return spvChromaReconstructLinear420XMidpointYMidpoint("); + statement(" plane0, plane1, plane2, samp,"); + statement(" coord, spvForward<LodOptions>(options)...);"); + statement(" return spvChromaReconstructLinear420XMidpointYMidpoint("); + statement(" plane0, plane1, samp, coord,"); + statement(" spvForward<LodOptions>(options)...);"); + end_scope(); // switch (y_chroma_offset) + end_scope(); // case x::midpoint + end_scope(); // switch (x_chroma_offset) + end_scope(); // case 420: + end_scope(); // switch (resolution) + end_scope(); // if (multiplanar) + statement("return plane0.sample(samp, coord, spvForward<LodOptions>(options)...);"); + end_scope(); // do_sample() + statement("template <typename... LodOptions>"); + statement("vec<T, 4> sample(float2 coord, LodOptions... options) const thread"); + begin_scope(); + statement( + "vec<T, 4> s = spvTextureSwizzle(do_sample(coord, spvForward<LodOptions>(options)...), swizzle);"); + statement("if (ycbcr_samp.get_ycbcr_model() == spvYCbCrModelConversion::rgb_identity)"); + statement(" return s;"); + statement(""); + statement("switch (ycbcr_samp.get_ycbcr_range())"); + begin_scope(); + statement("case spvYCbCrRange::itu_full:"); + statement(" s = spvExpandITUFullRange(s, ycbcr_samp.get_bpc());"); + statement(" break;"); + statement("case spvYCbCrRange::itu_narrow:"); + statement(" s = spvExpandITUNarrowRange(s, ycbcr_samp.get_bpc());"); + statement(" break;"); + end_scope(); + statement(""); + statement("switch (ycbcr_samp.get_ycbcr_model())"); + begin_scope(); + statement("case spvYCbCrModelConversion::rgb_identity:"); // Silence Clang warning + statement("case spvYCbCrModelConversion::ycbcr_identity:"); + statement(" return s;"); + statement("case spvYCbCrModelConversion::ycbcr_bt_709:"); + statement(" return spvConvertYCbCrBT709(s);"); + statement("case spvYCbCrModelConversion::ycbcr_bt_601:"); + statement(" return spvConvertYCbCrBT601(s);"); + statement("case spvYCbCrModelConversion::ycbcr_bt_2020:"); + statement(" return spvConvertYCbCrBT2020(s);"); + end_scope(); + end_scope(); + statement(""); + // Sampler Y'CbCr conversion forbids offsets. + statement("vec<T, 4> sample(float2 coord, int2 offset) const thread"); + begin_scope(); + if (msl_options.swizzle_texture_samples) + statement("return spvTextureSwizzle(plane0.sample(samp, coord, offset), swizzle);"); + else + statement("return plane0.sample(samp, coord, offset);"); + end_scope(); + statement("template<typename lod_options>"); + statement("vec<T, 4> sample(float2 coord, lod_options options, int2 offset) const thread"); + begin_scope(); + if (msl_options.swizzle_texture_samples) + statement("return spvTextureSwizzle(plane0.sample(samp, coord, options, offset), swizzle);"); + else + statement("return plane0.sample(samp, coord, options, offset);"); + end_scope(); + statement("#if __HAVE_MIN_LOD_CLAMP__"); + statement("vec<T, 4> sample(float2 coord, bias b, min_lod_clamp min_lod, int2 offset) const thread"); + begin_scope(); + statement("return plane0.sample(samp, coord, b, min_lod, offset);"); + end_scope(); + statement( + "vec<T, 4> sample(float2 coord, gradient2d grad, min_lod_clamp min_lod, int2 offset) const thread"); + begin_scope(); + statement("return plane0.sample(samp, coord, grad, min_lod, offset);"); + end_scope(); + statement("#endif"); + statement(""); + // Y'CbCr conversion forbids all operations but sampling. + statement("vec<T, 4> read(uint2 coord, uint lod = 0) const thread"); + begin_scope(); + statement("return plane0.read(coord, lod);"); + end_scope(); + statement(""); + statement("vec<T, 4> gather(float2 coord, int2 offset = int2(0), component c = component::x) const thread"); + begin_scope(); + if (msl_options.swizzle_texture_samples) + statement("return spvGatherSwizzle(plane0, samp, swizzle, c, coord, offset);"); + else + statement("return plane0.gather(samp, coord, offset, c);"); + end_scope(); + end_scope_decl(); + statement(""); + break; + + case SPVFuncImplRayQueryIntersectionParams: + statement("intersection_params spvMakeIntersectionParams(uint flags)"); + begin_scope(); + statement("intersection_params ip;"); + statement("if ((flags & ", RayFlagsOpaqueKHRMask, ") != 0)"); + statement(" ip.force_opacity(forced_opacity::opaque);"); + statement("if ((flags & ", RayFlagsNoOpaqueKHRMask, ") != 0)"); + statement(" ip.force_opacity(forced_opacity::non_opaque);"); + statement("if ((flags & ", RayFlagsTerminateOnFirstHitKHRMask, ") != 0)"); + statement(" ip.accept_any_intersection(true);"); + // RayFlagsSkipClosestHitShaderKHRMask is not available in MSL + statement("if ((flags & ", RayFlagsCullBackFacingTrianglesKHRMask, ") != 0)"); + statement(" ip.set_triangle_cull_mode(triangle_cull_mode::back);"); + statement("if ((flags & ", RayFlagsCullFrontFacingTrianglesKHRMask, ") != 0)"); + statement(" ip.set_triangle_cull_mode(triangle_cull_mode::front);"); + statement("if ((flags & ", RayFlagsCullOpaqueKHRMask, ") != 0)"); + statement(" ip.set_opacity_cull_mode(opacity_cull_mode::opaque);"); + statement("if ((flags & ", RayFlagsCullNoOpaqueKHRMask, ") != 0)"); + statement(" ip.set_opacity_cull_mode(opacity_cull_mode::non_opaque);"); + statement("if ((flags & ", RayFlagsSkipTrianglesKHRMask, ") != 0)"); + statement(" ip.set_geometry_cull_mode(geometry_cull_mode::triangle);"); + statement("if ((flags & ", RayFlagsSkipAABBsKHRMask, ") != 0)"); + statement(" ip.set_geometry_cull_mode(geometry_cull_mode::bounding_box);"); + statement("return ip;"); + end_scope(); + statement(""); + break; + + case SPVFuncImplVariableDescriptor: + statement("template<typename T>"); + statement("struct spvDescriptor"); + begin_scope(); + statement("T value;"); + end_scope_decl(); + statement(""); + break; + + case SPVFuncImplVariableSizedDescriptor: + statement("template<typename T>"); + statement("struct spvBufferDescriptor"); + begin_scope(); + statement("T value;"); + statement("int length;"); + statement("const device T& operator -> () const device"); + begin_scope(); + statement("return value;"); + end_scope(); + statement("const device T& operator * () const device"); + begin_scope(); + statement("return value;"); + end_scope(); + end_scope_decl(); + statement(""); + break; + + case SPVFuncImplVariableDescriptorArray: + if (spv_function_implementations.count(SPVFuncImplVariableDescriptor) != 0) + { + statement("template<typename T>"); + statement("struct spvDescriptorArray"); + begin_scope(); + statement("spvDescriptorArray(const device spvDescriptor<T>* ptr) : ptr(&ptr->value)"); + begin_scope(); + end_scope(); + statement("const device T& operator [] (size_t i) const"); + begin_scope(); + statement("return ptr[i];"); + end_scope(); + statement("const device T* ptr;"); + end_scope_decl(); + statement(""); + } + else + { + statement("template<typename T>"); + statement("struct spvDescriptorArray;"); + statement(""); + } + + if (msl_options.runtime_array_rich_descriptor && + spv_function_implementations.count(SPVFuncImplVariableSizedDescriptor) != 0) + { + statement("template<typename T>"); + statement("struct spvDescriptorArray<device T*>"); + begin_scope(); + statement("spvDescriptorArray(const device spvBufferDescriptor<device T*>* ptr) : ptr(ptr)"); + begin_scope(); + end_scope(); + statement("const device T* operator [] (size_t i) const"); + begin_scope(); + statement("return ptr[i].value;"); + end_scope(); + statement("const int length(int i) const"); + begin_scope(); + statement("return ptr[i].length;"); + end_scope(); + statement("const device spvBufferDescriptor<device T*>* ptr;"); + end_scope_decl(); + statement(""); + } + break; + + case SPVFuncImplPaddedStd140: + // .data is used in access chain. + statement("template <typename T>"); + statement("struct spvPaddedStd140 { alignas(16) T data; };"); + statement("template <typename T, int n>"); + statement("using spvPaddedStd140Matrix = spvPaddedStd140<T>[n];"); + statement(""); + break; + + case SPVFuncImplReduceAdd: + // Metal doesn't support __builtin_reduce_add or simd_reduce_add, so we need this. + // Metal also doesn't support the other vector builtins, which would have been useful to make this a single template. + + statement("template <typename T>"); + statement("T reduce_add(vec<T, 2> v) { return v.x + v.y; }"); + + statement("template <typename T>"); + statement("T reduce_add(vec<T, 3> v) { return v.x + v.y + v.z; }"); + + statement("template <typename T>"); + statement("T reduce_add(vec<T, 4> v) { return v.x + v.y + v.z + v.w; }"); + + statement(""); + break; + + case SPVFuncImplImageFence: + statement("template <typename ImageT>"); + statement("void spvImageFence(ImageT img) { img.fence(); }"); + statement(""); + break; + + case SPVFuncImplTextureCast: + statement("template <typename T, typename U>"); + statement("T spvTextureCast(U img)"); + begin_scope(); + // MSL complains if you try to cast the texture itself, but casting the reference type is ... ok? *shrug* + // Gotta go what you gotta do I suppose. + statement("return reinterpret_cast<thread const T &>(img);"); + end_scope(); + statement(""); + break; + + default: + break; + } + } +} + +static string inject_top_level_storage_qualifier(const string &expr, const string &qualifier) +{ + // Easier to do this through text munging since the qualifier does not exist in the type system at all, + // and plumbing in all that information is not very helpful. + size_t last_reference = expr.find_last_of('&'); + size_t last_pointer = expr.find_last_of('*'); + size_t last_significant = string::npos; + + if (last_reference == string::npos) + last_significant = last_pointer; + else if (last_pointer == string::npos) + last_significant = last_reference; + else + last_significant = max<size_t>(last_reference, last_pointer); + + if (last_significant == string::npos) + return join(qualifier, " ", expr); + else + { + return join(expr.substr(0, last_significant + 1), " ", + qualifier, expr.substr(last_significant + 1, string::npos)); + } +} + +void CompilerMSL::declare_constant_arrays() +{ + bool fully_inlined = ir.ids_for_type[TypeFunction].size() == 1; + + // MSL cannot declare arrays inline (except when declaring a variable), so we must move them out to + // global constants directly, so we are able to use constants as variable expressions. + bool emitted = false; + + ir.for_each_typed_id<SPIRConstant>([&](uint32_t, SPIRConstant &c) { + if (c.specialization) + return; + + auto &type = this->get<SPIRType>(c.constant_type); + // Constant arrays of non-primitive types (i.e. matrices) won't link properly into Metal libraries. + // FIXME: However, hoisting constants to main() means we need to pass down constant arrays to leaf functions if they are used there. + // If there are multiple functions in the module, drop this case to avoid breaking use cases which do not need to + // link into Metal libraries. This is hacky. + if (is_array(type) && (!fully_inlined || is_scalar(type) || is_vector(type))) + { + add_resource_name(c.self); + auto name = to_name(c.self); + statement(inject_top_level_storage_qualifier(variable_decl(type, name), "constant"), + " = ", constant_expression(c), ";"); + emitted = true; + } + }); + + if (emitted) + statement(""); +} + +// Constant arrays of non-primitive types (i.e. matrices) won't link properly into Metal libraries +void CompilerMSL::declare_complex_constant_arrays() +{ + // If we do not have a fully inlined module, we did not opt in to + // declaring constant arrays of complex types. See CompilerMSL::declare_constant_arrays(). + bool fully_inlined = ir.ids_for_type[TypeFunction].size() == 1; + if (!fully_inlined) + return; + + // MSL cannot declare arrays inline (except when declaring a variable), so we must move them out to + // global constants directly, so we are able to use constants as variable expressions. + bool emitted = false; + + ir.for_each_typed_id<SPIRConstant>([&](uint32_t, SPIRConstant &c) { + if (c.specialization) + return; + + auto &type = this->get<SPIRType>(c.constant_type); + if (is_array(type) && !(is_scalar(type) || is_vector(type))) + { + add_resource_name(c.self); + auto name = to_name(c.self); + statement("", variable_decl(type, name), " = ", constant_expression(c), ";"); + emitted = true; + } + }); + + if (emitted) + statement(""); +} + +void CompilerMSL::emit_resources() +{ + declare_constant_arrays(); + + // Emit the special [[stage_in]] and [[stage_out]] interface blocks which we created. + emit_interface_block(stage_out_var_id); + emit_interface_block(patch_stage_out_var_id); + emit_interface_block(stage_in_var_id); + emit_interface_block(patch_stage_in_var_id); +} + +// Emit declarations for the specialization Metal function constants +void CompilerMSL::emit_specialization_constants_and_structs() +{ + SpecializationConstant wg_x, wg_y, wg_z; + ID workgroup_size_id = get_work_group_size_specialization_constants(wg_x, wg_y, wg_z); + bool emitted = false; + + unordered_set<uint32_t> declared_structs; + unordered_set<uint32_t> aligned_structs; + + // First, we need to deal with scalar block layout. + // It is possible that a struct may have to be placed at an alignment which does not match the innate alignment of the struct itself. + // In that case, if such a case exists for a struct, we must force that all elements of the struct become packed_ types. + // This makes the struct alignment as small as physically possible. + // When we actually align the struct later, we can insert padding as necessary to make the packed members behave like normally aligned types. + ir.for_each_typed_id<SPIRType>([&](uint32_t type_id, const SPIRType &type) { + if (type.basetype == SPIRType::Struct && + has_extended_decoration(type_id, SPIRVCrossDecorationBufferBlockRepacked)) + mark_scalar_layout_structs(type); + }); + + bool builtin_block_type_is_required = false; + // Very special case. If gl_PerVertex is initialized as an array (tessellation) + // we have to potentially emit the gl_PerVertex struct type so that we can emit a constant LUT. + ir.for_each_typed_id<SPIRConstant>([&](uint32_t, SPIRConstant &c) { + auto &type = this->get<SPIRType>(c.constant_type); + if (is_array(type) && has_decoration(type.self, DecorationBlock) && is_builtin_type(type)) + builtin_block_type_is_required = true; + }); + + // Very particular use of the soft loop lock. + // align_struct may need to create custom types on the fly, but we don't care about + // these types for purpose of iterating over them in ir.ids_for_type and friends. + auto loop_lock = ir.create_loop_soft_lock(); + + // Physical storage buffer pointers can have cyclical references, + // so emit forward declarations of them before other structs. + // Ignore type_id because we want the underlying struct type from the pointer. + ir.for_each_typed_id<SPIRType>([&](uint32_t /* type_id */, const SPIRType &type) { + if (type.basetype == SPIRType::Struct && + type.pointer && type.storage == StorageClassPhysicalStorageBuffer && + declared_structs.count(type.self) == 0) + { + statement("struct ", to_name(type.self), ";"); + declared_structs.insert(type.self); + emitted = true; + } + }); + if (emitted) + statement(""); + + emitted = false; + declared_structs.clear(); + + // It is possible to have multiple spec constants that use the same spec constant ID. + // The most common cause of this is defining spec constants in GLSL while also declaring + // the workgroup size to use those spec constants. But, Metal forbids declaring more than + // one variable with the same function constant ID. + // In this case, we must only declare one variable with the [[function_constant(id)]] + // attribute, and use its initializer to initialize all the spec constants with + // that ID. + std::unordered_map<uint32_t, ConstantID> unique_func_constants; + + for (auto &id_ : ir.ids_for_constant_undef_or_type) + { + auto &id = ir.ids[id_]; + + if (id.get_type() == TypeConstant) + { + auto &c = id.get<SPIRConstant>(); + + if (c.self == workgroup_size_id) + { + // TODO: This can be expressed as a [[threads_per_threadgroup]] input semantic, but we need to know + // the work group size at compile time in SPIR-V, and [[threads_per_threadgroup]] would need to be passed around as a global. + // The work group size may be a specialization constant. + statement("constant uint3 ", builtin_to_glsl(BuiltInWorkgroupSize, StorageClassWorkgroup), + " [[maybe_unused]] = ", constant_expression(get<SPIRConstant>(workgroup_size_id)), ";"); + emitted = true; + } + else if (c.specialization) + { + auto &type = get<SPIRType>(c.constant_type); + string sc_type_name = type_to_glsl(type); + add_resource_name(c.self); + string sc_name = to_name(c.self); + + // Function constants are only supported in MSL 1.2 and later. + // If we don't support it just declare the "default" directly. + // This "default" value can be overridden to the true specialization constant by the API user. + // Specialization constants which are used as array length expressions cannot be function constants in MSL, + // so just fall back to macros. + if (msl_options.supports_msl_version(1, 2) && has_decoration(c.self, DecorationSpecId) && + !c.is_used_as_array_length) + { + // Only scalar, non-composite values can be function constants. + uint32_t constant_id = get_decoration(c.self, DecorationSpecId); + if (!unique_func_constants.count(constant_id)) + unique_func_constants.insert(make_pair(constant_id, c.self)); + SPIRType::BaseType sc_tmp_type = expression_type(unique_func_constants[constant_id]).basetype; + string sc_tmp_name = to_name(unique_func_constants[constant_id]) + "_tmp"; + if (unique_func_constants[constant_id] == c.self) + statement("constant ", sc_type_name, " ", sc_tmp_name, " [[function_constant(", constant_id, + ")]];"); + statement("constant ", sc_type_name, " ", sc_name, " = is_function_constant_defined(", sc_tmp_name, + ") ? ", bitcast_expression(type, sc_tmp_type, sc_tmp_name), " : ", constant_expression(c), + ";"); + } + else if (has_decoration(c.self, DecorationSpecId)) + { + // Fallback to macro overrides. + c.specialization_constant_macro_name = + constant_value_macro_name(get_decoration(c.self, DecorationSpecId)); + + statement("#ifndef ", c.specialization_constant_macro_name); + statement("#define ", c.specialization_constant_macro_name, " ", constant_expression(c)); + statement("#endif"); + statement("constant ", sc_type_name, " ", sc_name, " = ", c.specialization_constant_macro_name, + ";"); + } + else + { + // Composite specialization constants must be built from other specialization constants. + statement("constant ", sc_type_name, " ", sc_name, " = ", constant_expression(c), ";"); + } + emitted = true; + } + } + else if (id.get_type() == TypeConstantOp) + { + auto &c = id.get<SPIRConstantOp>(); + auto &type = get<SPIRType>(c.basetype); + add_resource_name(c.self); + auto name = to_name(c.self); + statement("constant ", variable_decl(type, name), " = ", constant_op_expression(c), ";"); + emitted = true; + } + else if (id.get_type() == TypeType) + { + // Output non-builtin interface structs. These include local function structs + // and structs nested within uniform and read-write buffers. + auto &type = id.get<SPIRType>(); + TypeID type_id = type.self; + + bool is_struct = (type.basetype == SPIRType::Struct) && type.array.empty() && !type.pointer; + bool is_block = + has_decoration(type.self, DecorationBlock) || has_decoration(type.self, DecorationBufferBlock); + + bool is_builtin_block = is_block && is_builtin_type(type); + bool is_declarable_struct = is_struct && (!is_builtin_block || builtin_block_type_is_required); + + // We'll declare this later. + if (stage_out_var_id && get_stage_out_struct_type().self == type_id) + is_declarable_struct = false; + if (patch_stage_out_var_id && get_patch_stage_out_struct_type().self == type_id) + is_declarable_struct = false; + if (stage_in_var_id && get_stage_in_struct_type().self == type_id) + is_declarable_struct = false; + if (patch_stage_in_var_id && get_patch_stage_in_struct_type().self == type_id) + is_declarable_struct = false; + + // Special case. Declare builtin struct anyways if we need to emit a threadgroup version of it. + if (stage_out_masked_builtin_type_id == type_id) + is_declarable_struct = true; + + // Align and emit declarable structs...but avoid declaring each more than once. + if (is_declarable_struct && declared_structs.count(type_id) == 0) + { + if (emitted) + statement(""); + emitted = false; + + declared_structs.insert(type_id); + + if (has_extended_decoration(type_id, SPIRVCrossDecorationBufferBlockRepacked)) + align_struct(type, aligned_structs); + + // Make sure we declare the underlying struct type, and not the "decorated" type with pointers, etc. + emit_struct(get<SPIRType>(type_id)); + } + } + else if (id.get_type() == TypeUndef) + { + auto &undef = id.get<SPIRUndef>(); + auto &type = get<SPIRType>(undef.basetype); + // OpUndef can be void for some reason ... + if (type.basetype == SPIRType::Void) + return; + + // Undefined global memory is not allowed in MSL. + // Declare constant and init to zeros. Use {}, as global constructors can break Metal. + statement( + inject_top_level_storage_qualifier(variable_decl(type, to_name(undef.self), undef.self), "constant"), + " = {};"); + emitted = true; + } + } + + if (emitted) + statement(""); +} + +void CompilerMSL::emit_binary_ptr_op(uint32_t result_type, uint32_t result_id, uint32_t op0, uint32_t op1, const char *op) +{ + bool forward = should_forward(op0) && should_forward(op1); + emit_op(result_type, result_id, join(to_ptr_expression(op0), " ", op, " ", to_ptr_expression(op1)), forward); + inherit_expression_dependencies(result_id, op0); + inherit_expression_dependencies(result_id, op1); +} + +string CompilerMSL::to_ptr_expression(uint32_t id, bool register_expression_read) +{ + auto *e = maybe_get<SPIRExpression>(id); + auto expr = enclose_expression(e && e->need_transpose ? e->expression : to_expression(id, register_expression_read)); + if (!should_dereference(id)) + expr = address_of_expression(expr); + return expr; +} + +void CompilerMSL::emit_binary_unord_op(uint32_t result_type, uint32_t result_id, uint32_t op0, uint32_t op1, + const char *op) +{ + bool forward = should_forward(op0) && should_forward(op1); + emit_op(result_type, result_id, + join("(isunordered(", to_enclosed_unpacked_expression(op0), ", ", to_enclosed_unpacked_expression(op1), + ") || ", to_enclosed_unpacked_expression(op0), " ", op, " ", to_enclosed_unpacked_expression(op1), + ")"), + forward); + + inherit_expression_dependencies(result_id, op0); + inherit_expression_dependencies(result_id, op1); +} + +bool CompilerMSL::emit_tessellation_io_load(uint32_t result_type_id, uint32_t id, uint32_t ptr) +{ + auto &ptr_type = expression_type(ptr); + auto &result_type = get<SPIRType>(result_type_id); + if (ptr_type.storage != StorageClassInput && ptr_type.storage != StorageClassOutput) + return false; + if (ptr_type.storage == StorageClassOutput && is_tese_shader()) + return false; + + if (has_decoration(ptr, DecorationPatch)) + return false; + bool ptr_is_io_variable = ir.ids[ptr].get_type() == TypeVariable; + + bool flattened_io = variable_storage_requires_stage_io(ptr_type.storage); + + bool flat_data_type = flattened_io && + (is_matrix(result_type) || is_array(result_type) || result_type.basetype == SPIRType::Struct); + + // Edge case, even with multi-patch workgroups, we still need to unroll load + // if we're loading control points directly. + if (ptr_is_io_variable && is_array(result_type)) + flat_data_type = true; + + if (!flat_data_type) + return false; + + // Now, we must unflatten a composite type and take care of interleaving array access with gl_in/gl_out. + // Lots of painful code duplication since we *really* should not unroll these kinds of loads in entry point fixup + // unless we're forced to do this when the code is emitting inoptimal OpLoads. + string expr; + + uint32_t interface_index = get_extended_decoration(ptr, SPIRVCrossDecorationInterfaceMemberIndex); + auto *var = maybe_get_backing_variable(ptr); + auto &expr_type = get_pointee_type(ptr_type.self); + + const auto &iface_type = expression_type(stage_in_ptr_var_id); + + if (!flattened_io) + { + // Simplest case for multi-patch workgroups, just unroll array as-is. + if (interface_index == uint32_t(-1)) + return false; + + expr += type_to_glsl(result_type) + "({ "; + uint32_t num_control_points = to_array_size_literal(result_type, uint32_t(result_type.array.size()) - 1); + + for (uint32_t i = 0; i < num_control_points; i++) + { + const uint32_t indices[2] = { i, interface_index }; + AccessChainMeta meta; + expr += access_chain_internal(stage_in_ptr_var_id, indices, 2, + ACCESS_CHAIN_INDEX_IS_LITERAL_BIT | ACCESS_CHAIN_PTR_CHAIN_BIT, &meta); + if (i + 1 < num_control_points) + expr += ", "; + } + expr += " })"; + } + else if (result_type.array.size() > 2) + { + SPIRV_CROSS_THROW("Cannot load tessellation IO variables with more than 2 dimensions."); + } + else if (result_type.array.size() == 2) + { + if (!ptr_is_io_variable) + SPIRV_CROSS_THROW("Loading an array-of-array must be loaded directly from an IO variable."); + if (interface_index == uint32_t(-1)) + SPIRV_CROSS_THROW("Interface index is unknown. Cannot continue."); + if (result_type.basetype == SPIRType::Struct || is_matrix(result_type)) + SPIRV_CROSS_THROW("Cannot load array-of-array of composite type in tessellation IO."); + + expr += type_to_glsl(result_type) + "({ "; + uint32_t num_control_points = to_array_size_literal(result_type, 1); + uint32_t base_interface_index = interface_index; + + auto &sub_type = get<SPIRType>(result_type.parent_type); + + for (uint32_t i = 0; i < num_control_points; i++) + { + expr += type_to_glsl(sub_type) + "({ "; + interface_index = base_interface_index; + uint32_t array_size = to_array_size_literal(result_type, 0); + for (uint32_t j = 0; j < array_size; j++, interface_index++) + { + const uint32_t indices[2] = { i, interface_index }; + + AccessChainMeta meta; + expr += access_chain_internal(stage_in_ptr_var_id, indices, 2, + ACCESS_CHAIN_INDEX_IS_LITERAL_BIT | ACCESS_CHAIN_PTR_CHAIN_BIT, &meta); + if (!is_matrix(sub_type) && sub_type.basetype != SPIRType::Struct && + expr_type.vecsize > sub_type.vecsize) + expr += vector_swizzle(sub_type.vecsize, 0); + + if (j + 1 < array_size) + expr += ", "; + } + expr += " })"; + if (i + 1 < num_control_points) + expr += ", "; + } + expr += " })"; + } + else if (result_type.basetype == SPIRType::Struct) + { + bool is_array_of_struct = is_array(result_type); + if (is_array_of_struct && !ptr_is_io_variable) + SPIRV_CROSS_THROW("Loading array of struct from IO variable must come directly from IO variable."); + + uint32_t num_control_points = 1; + if (is_array_of_struct) + { + num_control_points = to_array_size_literal(result_type, 0); + expr += type_to_glsl(result_type) + "({ "; + } + + auto &struct_type = is_array_of_struct ? get<SPIRType>(result_type.parent_type) : result_type; + assert(struct_type.array.empty()); + + for (uint32_t i = 0; i < num_control_points; i++) + { + expr += type_to_glsl(struct_type) + "{ "; + for (uint32_t j = 0; j < uint32_t(struct_type.member_types.size()); j++) + { + // The base interface index is stored per variable for structs. + if (var) + { + interface_index = + get_extended_member_decoration(var->self, j, SPIRVCrossDecorationInterfaceMemberIndex); + } + + if (interface_index == uint32_t(-1)) + SPIRV_CROSS_THROW("Interface index is unknown. Cannot continue."); + + const auto &mbr_type = get<SPIRType>(struct_type.member_types[j]); + const auto &expr_mbr_type = get<SPIRType>(expr_type.member_types[j]); + if (is_matrix(mbr_type) && ptr_type.storage == StorageClassInput) + { + expr += type_to_glsl(mbr_type) + "("; + for (uint32_t k = 0; k < mbr_type.columns; k++, interface_index++) + { + if (is_array_of_struct) + { + const uint32_t indices[2] = { i, interface_index }; + AccessChainMeta meta; + expr += access_chain_internal( + stage_in_ptr_var_id, indices, 2, + ACCESS_CHAIN_INDEX_IS_LITERAL_BIT | ACCESS_CHAIN_PTR_CHAIN_BIT, &meta); + } + else + expr += to_expression(ptr) + "." + to_member_name(iface_type, interface_index); + if (expr_mbr_type.vecsize > mbr_type.vecsize) + expr += vector_swizzle(mbr_type.vecsize, 0); + + if (k + 1 < mbr_type.columns) + expr += ", "; + } + expr += ")"; + } + else if (is_array(mbr_type)) + { + expr += type_to_glsl(mbr_type) + "({ "; + uint32_t array_size = to_array_size_literal(mbr_type, 0); + for (uint32_t k = 0; k < array_size; k++, interface_index++) + { + if (is_array_of_struct) + { + const uint32_t indices[2] = { i, interface_index }; + AccessChainMeta meta; + expr += access_chain_internal( + stage_in_ptr_var_id, indices, 2, + ACCESS_CHAIN_INDEX_IS_LITERAL_BIT | ACCESS_CHAIN_PTR_CHAIN_BIT, &meta); + } + else + expr += to_expression(ptr) + "." + to_member_name(iface_type, interface_index); + if (expr_mbr_type.vecsize > mbr_type.vecsize) + expr += vector_swizzle(mbr_type.vecsize, 0); + + if (k + 1 < array_size) + expr += ", "; + } + expr += " })"; + } + else + { + if (is_array_of_struct) + { + const uint32_t indices[2] = { i, interface_index }; + AccessChainMeta meta; + expr += access_chain_internal(stage_in_ptr_var_id, indices, 2, + ACCESS_CHAIN_INDEX_IS_LITERAL_BIT | ACCESS_CHAIN_PTR_CHAIN_BIT, + &meta); + } + else + expr += to_expression(ptr) + "." + to_member_name(iface_type, interface_index); + if (expr_mbr_type.vecsize > mbr_type.vecsize) + expr += vector_swizzle(mbr_type.vecsize, 0); + } + + if (j + 1 < struct_type.member_types.size()) + expr += ", "; + } + expr += " }"; + if (i + 1 < num_control_points) + expr += ", "; + } + if (is_array_of_struct) + expr += " })"; + } + else if (is_matrix(result_type)) + { + bool is_array_of_matrix = is_array(result_type); + if (is_array_of_matrix && !ptr_is_io_variable) + SPIRV_CROSS_THROW("Loading array of matrix from IO variable must come directly from IO variable."); + if (interface_index == uint32_t(-1)) + SPIRV_CROSS_THROW("Interface index is unknown. Cannot continue."); + + if (is_array_of_matrix) + { + // Loading a matrix from each control point. + uint32_t base_interface_index = interface_index; + uint32_t num_control_points = to_array_size_literal(result_type, 0); + expr += type_to_glsl(result_type) + "({ "; + + auto &matrix_type = get_variable_element_type(get<SPIRVariable>(ptr)); + + for (uint32_t i = 0; i < num_control_points; i++) + { + interface_index = base_interface_index; + expr += type_to_glsl(matrix_type) + "("; + for (uint32_t j = 0; j < result_type.columns; j++, interface_index++) + { + const uint32_t indices[2] = { i, interface_index }; + + AccessChainMeta meta; + expr += access_chain_internal(stage_in_ptr_var_id, indices, 2, + ACCESS_CHAIN_INDEX_IS_LITERAL_BIT | ACCESS_CHAIN_PTR_CHAIN_BIT, &meta); + if (expr_type.vecsize > result_type.vecsize) + expr += vector_swizzle(result_type.vecsize, 0); + if (j + 1 < result_type.columns) + expr += ", "; + } + expr += ")"; + if (i + 1 < num_control_points) + expr += ", "; + } + + expr += " })"; + } + else + { + expr += type_to_glsl(result_type) + "("; + for (uint32_t i = 0; i < result_type.columns; i++, interface_index++) + { + expr += to_expression(ptr) + "." + to_member_name(iface_type, interface_index); + if (expr_type.vecsize > result_type.vecsize) + expr += vector_swizzle(result_type.vecsize, 0); + if (i + 1 < result_type.columns) + expr += ", "; + } + expr += ")"; + } + } + else if (ptr_is_io_variable) + { + assert(is_array(result_type)); + assert(result_type.array.size() == 1); + if (interface_index == uint32_t(-1)) + SPIRV_CROSS_THROW("Interface index is unknown. Cannot continue."); + + // We're loading an array directly from a global variable. + // This means we're loading one member from each control point. + expr += type_to_glsl(result_type) + "({ "; + uint32_t num_control_points = to_array_size_literal(result_type, 0); + + for (uint32_t i = 0; i < num_control_points; i++) + { + const uint32_t indices[2] = { i, interface_index }; + + AccessChainMeta meta; + expr += access_chain_internal(stage_in_ptr_var_id, indices, 2, + ACCESS_CHAIN_INDEX_IS_LITERAL_BIT | ACCESS_CHAIN_PTR_CHAIN_BIT, &meta); + if (expr_type.vecsize > result_type.vecsize) + expr += vector_swizzle(result_type.vecsize, 0); + + if (i + 1 < num_control_points) + expr += ", "; + } + expr += " })"; + } + else + { + // We're loading an array from a concrete control point. + assert(is_array(result_type)); + assert(result_type.array.size() == 1); + if (interface_index == uint32_t(-1)) + SPIRV_CROSS_THROW("Interface index is unknown. Cannot continue."); + + expr += type_to_glsl(result_type) + "({ "; + uint32_t array_size = to_array_size_literal(result_type, 0); + for (uint32_t i = 0; i < array_size; i++, interface_index++) + { + expr += to_expression(ptr) + "." + to_member_name(iface_type, interface_index); + if (expr_type.vecsize > result_type.vecsize) + expr += vector_swizzle(result_type.vecsize, 0); + if (i + 1 < array_size) + expr += ", "; + } + expr += " })"; + } + + emit_op(result_type_id, id, expr, false); + register_read(id, ptr, false); + return true; +} + +bool CompilerMSL::emit_tessellation_access_chain(const uint32_t *ops, uint32_t length) +{ + // If this is a per-vertex output, remap it to the I/O array buffer. + + // Any object which did not go through IO flattening shenanigans will go there instead. + // We will unflatten on-demand instead as needed, but not all possible cases can be supported, especially with arrays. + + auto *var = maybe_get_backing_variable(ops[2]); + bool patch = false; + bool flat_data = false; + bool ptr_is_chain = false; + bool flatten_composites = false; + + bool is_block = false; + bool is_arrayed = false; + + if (var) + { + auto &type = get_variable_data_type(*var); + is_block = has_decoration(type.self, DecorationBlock); + is_arrayed = !type.array.empty(); + + flatten_composites = variable_storage_requires_stage_io(var->storage); + patch = has_decoration(ops[2], DecorationPatch) || is_patch_block(type); + + // Should match strip_array in add_interface_block. + flat_data = var->storage == StorageClassInput || (var->storage == StorageClassOutput && is_tesc_shader()); + + // Patch inputs are treated as normal block IO variables, so they don't deal with this path at all. + if (patch && (!is_block || is_arrayed || var->storage == StorageClassInput)) + flat_data = false; + + // We might have a chained access chain, where + // we first take the access chain to the control point, and then we chain into a member or something similar. + // In this case, we need to skip gl_in/gl_out remapping. + // Also, skip ptr chain for patches. + ptr_is_chain = var->self != ID(ops[2]); + } + + bool builtin_variable = false; + bool variable_is_flat = false; + + if (var && flat_data) + { + builtin_variable = is_builtin_variable(*var); + + BuiltIn bi_type = BuiltInMax; + if (builtin_variable && !is_block) + bi_type = BuiltIn(get_decoration(var->self, DecorationBuiltIn)); + + variable_is_flat = !builtin_variable || is_block || + bi_type == BuiltInPosition || bi_type == BuiltInPointSize || + bi_type == BuiltInClipDistance || bi_type == BuiltInCullDistance; + } + + if (variable_is_flat) + { + // If output is masked, it is emitted as a "normal" variable, just go through normal code paths. + // Only check this for the first level of access chain. + // Dealing with this for partial access chains should be possible, but awkward. + if (var->storage == StorageClassOutput && !ptr_is_chain) + { + bool masked = false; + if (is_block) + { + uint32_t relevant_member_index = patch ? 3 : 4; + // FIXME: This won't work properly if the application first access chains into gl_out element, + // then access chains into the member. Super weird, but theoretically possible ... + if (length > relevant_member_index) + { + uint32_t mbr_idx = get<SPIRConstant>(ops[relevant_member_index]).scalar(); + masked = is_stage_output_block_member_masked(*var, mbr_idx, true); + } + } + else if (var) + masked = is_stage_output_variable_masked(*var); + + if (masked) + return false; + } + + AccessChainMeta meta; + SmallVector<uint32_t> indices; + uint32_t next_id = ir.increase_bound_by(1); + + indices.reserve(length - 3 + 1); + + uint32_t first_non_array_index = (ptr_is_chain ? 3 : 4) - (patch ? 1 : 0); + + VariableID stage_var_id; + if (patch) + stage_var_id = var->storage == StorageClassInput ? patch_stage_in_var_id : patch_stage_out_var_id; + else + stage_var_id = var->storage == StorageClassInput ? stage_in_ptr_var_id : stage_out_ptr_var_id; + + VariableID ptr = ptr_is_chain ? VariableID(ops[2]) : stage_var_id; + if (!ptr_is_chain && !patch) + { + // Index into gl_in/gl_out with first array index. + indices.push_back(ops[first_non_array_index - 1]); + } + + auto &result_ptr_type = get<SPIRType>(ops[0]); + + uint32_t const_mbr_id = next_id++; + uint32_t index = get_extended_decoration(ops[2], SPIRVCrossDecorationInterfaceMemberIndex); + + // If we have a pointer chain expression, and we are no longer pointing to a composite + // object, we are in the clear. There is no longer a need to flatten anything. + bool further_access_chain_is_trivial = false; + if (ptr_is_chain && flatten_composites) + { + auto &ptr_type = expression_type(ptr); + if (!is_array(ptr_type) && !is_matrix(ptr_type) && ptr_type.basetype != SPIRType::Struct) + further_access_chain_is_trivial = true; + } + + if (!further_access_chain_is_trivial && (flatten_composites || is_block)) + { + uint32_t i = first_non_array_index; + auto *type = &get_variable_element_type(*var); + if (index == uint32_t(-1) && length >= (first_non_array_index + 1)) + { + // Maybe this is a struct type in the input class, in which case + // we put it as a decoration on the corresponding member. + uint32_t mbr_idx = get_constant(ops[first_non_array_index]).scalar(); + index = get_extended_member_decoration(var->self, mbr_idx, + SPIRVCrossDecorationInterfaceMemberIndex); + assert(index != uint32_t(-1)); + i++; + type = &get<SPIRType>(type->member_types[mbr_idx]); + } + + // In this case, we're poking into flattened structures and arrays, so now we have to + // combine the following indices. If we encounter a non-constant index, + // we're hosed. + for (; flatten_composites && i < length; ++i) + { + if (!is_array(*type) && !is_matrix(*type) && type->basetype != SPIRType::Struct) + break; + + auto *c = maybe_get<SPIRConstant>(ops[i]); + if (!c || c->specialization) + SPIRV_CROSS_THROW("Trying to dynamically index into an array interface variable in tessellation. " + "This is currently unsupported."); + + // We're in flattened space, so just increment the member index into IO block. + // We can only do this once in the current implementation, so either: + // Struct, Matrix or 1-dimensional array for a control point. + if (type->basetype == SPIRType::Struct && var->storage == StorageClassOutput) + { + // Need to consider holes, since individual block members might be masked away. + uint32_t mbr_idx = c->scalar(); + for (uint32_t j = 0; j < mbr_idx; j++) + if (!is_stage_output_block_member_masked(*var, j, true)) + index++; + } + else + index += c->scalar(); + + if (type->parent_type) + type = &get<SPIRType>(type->parent_type); + else if (type->basetype == SPIRType::Struct) + type = &get<SPIRType>(type->member_types[c->scalar()]); + } + + // We're not going to emit the actual member name, we let any further OpLoad take care of that. + // Tag the access chain with the member index we're referencing. + auto &result_pointee_type = get_pointee_type(result_ptr_type); + bool defer_access_chain = flatten_composites && (is_matrix(result_pointee_type) || is_array(result_pointee_type) || + result_pointee_type.basetype == SPIRType::Struct); + + if (!defer_access_chain) + { + // Access the appropriate member of gl_in/gl_out. + set<SPIRConstant>(const_mbr_id, get_uint_type_id(), index, false); + indices.push_back(const_mbr_id); + + // Member index is now irrelevant. + index = uint32_t(-1); + + // Append any straggling access chain indices. + if (i < length) + indices.insert(indices.end(), ops + i, ops + length); + } + else + { + // We must have consumed the entire access chain if we're deferring it. + assert(i == length); + } + + if (index != uint32_t(-1)) + set_extended_decoration(ops[1], SPIRVCrossDecorationInterfaceMemberIndex, index); + else + unset_extended_decoration(ops[1], SPIRVCrossDecorationInterfaceMemberIndex); + } + else + { + if (index != uint32_t(-1)) + { + set<SPIRConstant>(const_mbr_id, get_uint_type_id(), index, false); + indices.push_back(const_mbr_id); + } + + // Member index is now irrelevant. + index = uint32_t(-1); + unset_extended_decoration(ops[1], SPIRVCrossDecorationInterfaceMemberIndex); + + indices.insert(indices.end(), ops + first_non_array_index, ops + length); + } + + // We use the pointer to the base of the input/output array here, + // so this is always a pointer chain. + string e; + + if (!ptr_is_chain) + { + // This is the start of an access chain, use ptr_chain to index into control point array. + e = access_chain(ptr, indices.data(), uint32_t(indices.size()), result_ptr_type, &meta, !patch); + } + else + { + // If we're accessing a struct, we need to use member indices which are based on the IO block, + // not actual struct type, so we have to use a split access chain here where + // first path resolves the control point index, i.e. gl_in[index], and second half deals with + // looking up flattened member name. + + // However, it is possible that we partially accessed a struct, + // by taking pointer to member inside the control-point array. + // For this case, we fall back to a natural access chain since we have already dealt with remapping struct members. + // One way to check this here is if we have 2 implied read expressions. + // First one is the gl_in/gl_out struct itself, then an index into that array. + // If we have traversed further, we use a normal access chain formulation. + auto *ptr_expr = maybe_get<SPIRExpression>(ptr); + bool split_access_chain_formulation = flatten_composites && ptr_expr && + ptr_expr->implied_read_expressions.size() == 2 && + !further_access_chain_is_trivial; + + if (split_access_chain_formulation) + { + e = join(to_expression(ptr), + access_chain_internal(stage_var_id, indices.data(), uint32_t(indices.size()), + ACCESS_CHAIN_CHAIN_ONLY_BIT, &meta)); + } + else + { + e = access_chain_internal(ptr, indices.data(), uint32_t(indices.size()), 0, &meta); + } + } + + // Get the actual type of the object that was accessed. If it's a vector type and we changed it, + // then we'll need to add a swizzle. + // For this, we can't necessarily rely on the type of the base expression, because it might be + // another access chain, and it will therefore already have the "correct" type. + auto *expr_type = &get_variable_data_type(*var); + if (has_extended_decoration(ops[2], SPIRVCrossDecorationTessIOOriginalInputTypeID)) + expr_type = &get<SPIRType>(get_extended_decoration(ops[2], SPIRVCrossDecorationTessIOOriginalInputTypeID)); + for (uint32_t i = 3; i < length; i++) + { + if (!is_array(*expr_type) && expr_type->basetype == SPIRType::Struct) + expr_type = &get<SPIRType>(expr_type->member_types[get<SPIRConstant>(ops[i]).scalar()]); + else + expr_type = &get<SPIRType>(expr_type->parent_type); + } + if (!is_array(*expr_type) && !is_matrix(*expr_type) && expr_type->basetype != SPIRType::Struct && + expr_type->vecsize > result_ptr_type.vecsize) + e += vector_swizzle(result_ptr_type.vecsize, 0); + + auto &expr = set<SPIRExpression>(ops[1], std::move(e), ops[0], should_forward(ops[2])); + expr.loaded_from = var->self; + expr.need_transpose = meta.need_transpose; + expr.access_chain = true; + + // Mark the result as being packed if necessary. + if (meta.storage_is_packed) + set_extended_decoration(ops[1], SPIRVCrossDecorationPhysicalTypePacked); + if (meta.storage_physical_type != 0) + set_extended_decoration(ops[1], SPIRVCrossDecorationPhysicalTypeID, meta.storage_physical_type); + if (meta.storage_is_invariant) + set_decoration(ops[1], DecorationInvariant); + // Save the type we found in case the result is used in another access chain. + set_extended_decoration(ops[1], SPIRVCrossDecorationTessIOOriginalInputTypeID, expr_type->self); + + // If we have some expression dependencies in our access chain, this access chain is technically a forwarded + // temporary which could be subject to invalidation. + // Need to assume we're forwarded while calling inherit_expression_depdendencies. + forwarded_temporaries.insert(ops[1]); + // The access chain itself is never forced to a temporary, but its dependencies might. + suppressed_usage_tracking.insert(ops[1]); + + for (uint32_t i = 2; i < length; i++) + { + inherit_expression_dependencies(ops[1], ops[i]); + add_implied_read_expression(expr, ops[i]); + } + + // If we have no dependencies after all, i.e., all indices in the access chain are immutable temporaries, + // we're not forwarded after all. + if (expr.expression_dependencies.empty()) + forwarded_temporaries.erase(ops[1]); + + return true; + } + + // If this is the inner tessellation level, and we're tessellating triangles, + // drop the last index. It isn't an array in this case, so we can't have an + // array reference here. We need to make this ID a variable instead of an + // expression so we don't try to dereference it as a variable pointer. + // Don't do this if the index is a constant 1, though. We need to drop stores + // to that one. + auto *m = ir.find_meta(var ? var->self : ID(0)); + if (is_tesc_shader() && var && m && m->decoration.builtin_type == BuiltInTessLevelInner && + is_tessellating_triangles()) + { + auto *c = maybe_get<SPIRConstant>(ops[3]); + if (c && c->scalar() == 1) + return false; + auto &dest_var = set<SPIRVariable>(ops[1], *var); + dest_var.basetype = ops[0]; + ir.meta[ops[1]] = ir.meta[ops[2]]; + inherit_expression_dependencies(ops[1], ops[2]); + return true; + } + + return false; +} + +bool CompilerMSL::is_out_of_bounds_tessellation_level(uint32_t id_lhs) +{ + if (!is_tessellating_triangles()) + return false; + + // In SPIR-V, TessLevelInner always has two elements and TessLevelOuter always has + // four. This is true even if we are tessellating triangles. This allows clients + // to use a single tessellation control shader with multiple tessellation evaluation + // shaders. + // In Metal, however, only the first element of TessLevelInner and the first three + // of TessLevelOuter are accessible. This stems from how in Metal, the tessellation + // levels must be stored to a dedicated buffer in a particular format that depends + // on the patch type. Therefore, in Triangles mode, any store to the second + // inner level or the fourth outer level must be dropped. + const auto *e = maybe_get<SPIRExpression>(id_lhs); + if (!e || !e->access_chain) + return false; + BuiltIn builtin = BuiltIn(get_decoration(e->loaded_from, DecorationBuiltIn)); + if (builtin != BuiltInTessLevelInner && builtin != BuiltInTessLevelOuter) + return false; + auto *c = maybe_get<SPIRConstant>(e->implied_read_expressions[1]); + if (!c) + return false; + return (builtin == BuiltInTessLevelInner && c->scalar() == 1) || + (builtin == BuiltInTessLevelOuter && c->scalar() == 3); +} + +bool CompilerMSL::prepare_access_chain_for_scalar_access(std::string &expr, const SPIRType &type, + spv::StorageClass storage, bool &is_packed) +{ + // If there is any risk of writes happening with the access chain in question, + // and there is a risk of concurrent write access to other components, + // we must cast the access chain to a plain pointer to ensure we only access the exact scalars we expect. + // The MSL compiler refuses to allow component-level access for any non-packed vector types. + if (!is_packed && (storage == StorageClassStorageBuffer || storage == StorageClassWorkgroup)) + { + const char *addr_space = storage == StorageClassWorkgroup ? "threadgroup" : "device"; + expr = join("((", addr_space, " ", type_to_glsl(type), "*)&", enclose_expression(expr), ")"); + + // Further indexing should happen with packed rules (array index, not swizzle). + is_packed = true; + return true; + } + else + return false; +} + +bool CompilerMSL::access_chain_needs_stage_io_builtin_translation(uint32_t base) +{ + auto *var = maybe_get_backing_variable(base); + if (!var || !is_tessellation_shader()) + return true; + + // We only need to rewrite builtin access chains when accessing flattened builtins like gl_ClipDistance_N. + // Avoid overriding it back to just gl_ClipDistance. + // This can only happen in scenarios where we cannot flatten/unflatten access chains, so, the only case + // where this triggers is evaluation shader inputs. + bool redirect_builtin = is_tese_shader() ? var->storage == StorageClassOutput : false; + return redirect_builtin; +} + +// Sets the interface member index for an access chain to a pull-model interpolant. +void CompilerMSL::fix_up_interpolant_access_chain(const uint32_t *ops, uint32_t length) +{ + auto *var = maybe_get_backing_variable(ops[2]); + if (!var || !pull_model_inputs.count(var->self)) + return; + // Get the base index. + uint32_t interface_index; + auto &var_type = get_variable_data_type(*var); + auto &result_type = get<SPIRType>(ops[0]); + auto *type = &var_type; + if (has_extended_decoration(ops[2], SPIRVCrossDecorationInterfaceMemberIndex)) + { + interface_index = get_extended_decoration(ops[2], SPIRVCrossDecorationInterfaceMemberIndex); + } + else + { + // Assume an access chain into a struct variable. + assert(var_type.basetype == SPIRType::Struct); + auto &c = get<SPIRConstant>(ops[3 + var_type.array.size()]); + interface_index = + get_extended_member_decoration(var->self, c.scalar(), SPIRVCrossDecorationInterfaceMemberIndex); + } + // Accumulate indices. We'll have to skip over the one for the struct, if present, because we already accounted + // for that getting the base index. + for (uint32_t i = 3; i < length; ++i) + { + if (is_vector(*type) && !is_array(*type) && is_scalar(result_type)) + { + // We don't want to combine the next index. Actually, we need to save it + // so we know to apply a swizzle to the result of the interpolation. + set_extended_decoration(ops[1], SPIRVCrossDecorationInterpolantComponentExpr, ops[i]); + break; + } + + auto *c = maybe_get<SPIRConstant>(ops[i]); + if (!c || c->specialization) + SPIRV_CROSS_THROW("Trying to dynamically index into an array interface variable using pull-model " + "interpolation. This is currently unsupported."); + + if (type->parent_type) + type = &get<SPIRType>(type->parent_type); + else if (type->basetype == SPIRType::Struct) + type = &get<SPIRType>(type->member_types[c->scalar()]); + + if (!has_extended_decoration(ops[2], SPIRVCrossDecorationInterfaceMemberIndex) && + i - 3 == var_type.array.size()) + continue; + + interface_index += c->scalar(); + } + // Save this to the access chain itself so we can recover it later when calling an interpolation function. + set_extended_decoration(ops[1], SPIRVCrossDecorationInterfaceMemberIndex, interface_index); +} + + +// If the physical type of a physical buffer pointer has been changed +// to a ulong or ulongn vector, add a cast back to the pointer type. +void CompilerMSL::check_physical_type_cast(std::string &expr, const SPIRType *type, uint32_t physical_type) +{ + auto *p_physical_type = maybe_get<SPIRType>(physical_type); + if (p_physical_type && + p_physical_type->storage == StorageClassPhysicalStorageBuffer && + p_physical_type->basetype == to_unsigned_basetype(64)) + { + if (p_physical_type->vecsize > 1) + expr += ".x"; + + expr = join("((", type_to_glsl(*type), ")", expr, ")"); + } +} + +// Override for MSL-specific syntax instructions +void CompilerMSL::emit_instruction(const Instruction &instruction) +{ +#define MSL_BOP(op) emit_binary_op(ops[0], ops[1], ops[2], ops[3], #op) +#define MSL_PTR_BOP(op) emit_binary_ptr_op(ops[0], ops[1], ops[2], ops[3], #op) + // MSL does care about implicit integer promotion, but those cases are all handled in common code. +#define MSL_BOP_CAST(op, type) \ + emit_binary_op_cast(ops[0], ops[1], ops[2], ops[3], #op, type, opcode_is_sign_invariant(opcode), false) +#define MSL_UOP(op) emit_unary_op(ops[0], ops[1], ops[2], #op) +#define MSL_QFOP(op) emit_quaternary_func_op(ops[0], ops[1], ops[2], ops[3], ops[4], ops[5], #op) +#define MSL_TFOP(op) emit_trinary_func_op(ops[0], ops[1], ops[2], ops[3], ops[4], #op) +#define MSL_BFOP(op) emit_binary_func_op(ops[0], ops[1], ops[2], ops[3], #op) +#define MSL_BFOP_CAST(op, type) \ + emit_binary_func_op_cast(ops[0], ops[1], ops[2], ops[3], #op, type, opcode_is_sign_invariant(opcode)) +#define MSL_UFOP(op) emit_unary_func_op(ops[0], ops[1], ops[2], #op) +#define MSL_UNORD_BOP(op) emit_binary_unord_op(ops[0], ops[1], ops[2], ops[3], #op) + + auto ops = stream(instruction); + auto opcode = static_cast<Op>(instruction.op); + + opcode = get_remapped_spirv_op(opcode); + + // If we need to do implicit bitcasts, make sure we do it with the correct type. + uint32_t integer_width = get_integer_width_for_instruction(instruction); + auto int_type = to_signed_basetype(integer_width); + auto uint_type = to_unsigned_basetype(integer_width); + + switch (opcode) + { + case OpLoad: + { + uint32_t id = ops[1]; + uint32_t ptr = ops[2]; + if (is_tessellation_shader()) + { + if (!emit_tessellation_io_load(ops[0], id, ptr)) + CompilerGLSL::emit_instruction(instruction); + } + else + { + // Sample mask input for Metal is not an array + if (BuiltIn(get_decoration(ptr, DecorationBuiltIn)) == BuiltInSampleMask) + set_decoration(id, DecorationBuiltIn, BuiltInSampleMask); + CompilerGLSL::emit_instruction(instruction); + } + break; + } + + // Comparisons + case OpIEqual: + MSL_BOP_CAST(==, int_type); + break; + + case OpLogicalEqual: + case OpFOrdEqual: + MSL_BOP(==); + break; + + case OpINotEqual: + MSL_BOP_CAST(!=, int_type); + break; + + case OpLogicalNotEqual: + case OpFOrdNotEqual: + // TODO: Should probably negate the == result here. + // Typically OrdNotEqual comes from GLSL which itself does not really specify what + // happens with NaN. + // Consider fixing this if we run into real issues. + MSL_BOP(!=); + break; + + case OpUGreaterThan: + MSL_BOP_CAST(>, uint_type); + break; + + case OpSGreaterThan: + MSL_BOP_CAST(>, int_type); + break; + + case OpFOrdGreaterThan: + MSL_BOP(>); + break; + + case OpUGreaterThanEqual: + MSL_BOP_CAST(>=, uint_type); + break; + + case OpSGreaterThanEqual: + MSL_BOP_CAST(>=, int_type); + break; + + case OpFOrdGreaterThanEqual: + MSL_BOP(>=); + break; + + case OpULessThan: + MSL_BOP_CAST(<, uint_type); + break; + + case OpSLessThan: + MSL_BOP_CAST(<, int_type); + break; + + case OpFOrdLessThan: + MSL_BOP(<); + break; + + case OpULessThanEqual: + MSL_BOP_CAST(<=, uint_type); + break; + + case OpSLessThanEqual: + MSL_BOP_CAST(<=, int_type); + break; + + case OpFOrdLessThanEqual: + MSL_BOP(<=); + break; + + case OpFUnordEqual: + MSL_UNORD_BOP(==); + break; + + case OpFUnordNotEqual: + // not equal in MSL generates une opcodes to begin with. + // Since unordered not equal is how it works in C, just inherit that behavior. + MSL_BOP(!=); + break; + + case OpFUnordGreaterThan: + MSL_UNORD_BOP(>); + break; + + case OpFUnordGreaterThanEqual: + MSL_UNORD_BOP(>=); + break; + + case OpFUnordLessThan: + MSL_UNORD_BOP(<); + break; + + case OpFUnordLessThanEqual: + MSL_UNORD_BOP(<=); + break; + + // Pointer math + case OpPtrEqual: + MSL_PTR_BOP(==); + break; + + case OpPtrNotEqual: + MSL_PTR_BOP(!=); + break; + + case OpPtrDiff: + MSL_PTR_BOP(-); + break; + + // Derivatives + case OpDPdx: + case OpDPdxFine: + case OpDPdxCoarse: + MSL_UFOP(dfdx); + register_control_dependent_expression(ops[1]); + break; + + case OpDPdy: + case OpDPdyFine: + case OpDPdyCoarse: + MSL_UFOP(dfdy); + register_control_dependent_expression(ops[1]); + break; + + case OpFwidth: + case OpFwidthCoarse: + case OpFwidthFine: + MSL_UFOP(fwidth); + register_control_dependent_expression(ops[1]); + break; + + // Bitfield + case OpBitFieldInsert: + { + emit_bitfield_insert_op(ops[0], ops[1], ops[2], ops[3], ops[4], ops[5], "insert_bits", SPIRType::UInt); + break; + } + + case OpBitFieldSExtract: + { + emit_trinary_func_op_bitextract(ops[0], ops[1], ops[2], ops[3], ops[4], "extract_bits", int_type, int_type, + SPIRType::UInt, SPIRType::UInt); + break; + } + + case OpBitFieldUExtract: + { + emit_trinary_func_op_bitextract(ops[0], ops[1], ops[2], ops[3], ops[4], "extract_bits", uint_type, uint_type, + SPIRType::UInt, SPIRType::UInt); + break; + } + + case OpBitReverse: + // BitReverse does not have issues with sign since result type must match input type. + MSL_UFOP(reverse_bits); + break; + + case OpBitCount: + { + auto basetype = expression_type(ops[2]).basetype; + emit_unary_func_op_cast(ops[0], ops[1], ops[2], "popcount", basetype, basetype); + break; + } + + case OpFRem: + MSL_BFOP(fmod); + break; + + case OpFMul: + if (msl_options.invariant_float_math || has_decoration(ops[1], DecorationNoContraction)) + MSL_BFOP(spvFMul); + else + MSL_BOP(*); + break; + + case OpFAdd: + if (msl_options.invariant_float_math || has_decoration(ops[1], DecorationNoContraction)) + MSL_BFOP(spvFAdd); + else + MSL_BOP(+); + break; + + case OpFSub: + if (msl_options.invariant_float_math || has_decoration(ops[1], DecorationNoContraction)) + MSL_BFOP(spvFSub); + else + MSL_BOP(-); + break; + + // Atomics + case OpAtomicExchange: + { + uint32_t result_type = ops[0]; + uint32_t id = ops[1]; + uint32_t ptr = ops[2]; + uint32_t mem_sem = ops[4]; + uint32_t val = ops[5]; + emit_atomic_func_op(result_type, id, "atomic_exchange", opcode, mem_sem, mem_sem, false, ptr, val); + break; + } + + case OpAtomicCompareExchange: + { + uint32_t result_type = ops[0]; + uint32_t id = ops[1]; + uint32_t ptr = ops[2]; + uint32_t mem_sem_pass = ops[4]; + uint32_t mem_sem_fail = ops[5]; + uint32_t val = ops[6]; + uint32_t comp = ops[7]; + emit_atomic_func_op(result_type, id, "atomic_compare_exchange_weak", opcode, + mem_sem_pass, mem_sem_fail, true, + ptr, comp, true, false, val); + break; + } + + case OpAtomicCompareExchangeWeak: + SPIRV_CROSS_THROW("OpAtomicCompareExchangeWeak is only supported in kernel profile."); + + case OpAtomicLoad: + { + uint32_t result_type = ops[0]; + uint32_t id = ops[1]; + uint32_t ptr = ops[2]; + uint32_t mem_sem = ops[4]; + check_atomic_image(ptr); + emit_atomic_func_op(result_type, id, "atomic_load", opcode, mem_sem, mem_sem, false, ptr, 0); + break; + } + + case OpAtomicStore: + { + uint32_t result_type = expression_type(ops[0]).self; + uint32_t id = ops[0]; + uint32_t ptr = ops[0]; + uint32_t mem_sem = ops[2]; + uint32_t val = ops[3]; + check_atomic_image(ptr); + emit_atomic_func_op(result_type, id, "atomic_store", opcode, mem_sem, mem_sem, false, ptr, val); + break; + } + +#define MSL_AFMO_IMPL(op, valsrc, valconst) \ + do \ + { \ + uint32_t result_type = ops[0]; \ + uint32_t id = ops[1]; \ + uint32_t ptr = ops[2]; \ + uint32_t mem_sem = ops[4]; \ + uint32_t val = valsrc; \ + emit_atomic_func_op(result_type, id, "atomic_fetch_" #op, opcode, \ + mem_sem, mem_sem, false, ptr, val, \ + false, valconst); \ + } while (false) + +#define MSL_AFMO(op) MSL_AFMO_IMPL(op, ops[5], false) +#define MSL_AFMIO(op) MSL_AFMO_IMPL(op, 1, true) + + case OpAtomicIIncrement: + MSL_AFMIO(add); + break; + + case OpAtomicIDecrement: + MSL_AFMIO(sub); + break; + + case OpAtomicIAdd: + case OpAtomicFAddEXT: + MSL_AFMO(add); + break; + + case OpAtomicISub: + MSL_AFMO(sub); + break; + + case OpAtomicSMin: + case OpAtomicUMin: + MSL_AFMO(min); + break; + + case OpAtomicSMax: + case OpAtomicUMax: + MSL_AFMO(max); + break; + + case OpAtomicAnd: + MSL_AFMO(and); + break; + + case OpAtomicOr: + MSL_AFMO(or); + break; + + case OpAtomicXor: + MSL_AFMO(xor); + break; + + // Images + + // Reads == Fetches in Metal + case OpImageRead: + { + // Mark that this shader reads from this image + uint32_t img_id = ops[2]; + auto &type = expression_type(img_id); + auto *p_var = maybe_get_backing_variable(img_id); + if (type.image.dim != DimSubpassData) + { + if (p_var && has_decoration(p_var->self, DecorationNonReadable)) + { + unset_decoration(p_var->self, DecorationNonReadable); + force_recompile(); + } + } + + // Metal requires explicit fences to break up RAW hazards, even within the same shader invocation + if (msl_options.readwrite_texture_fences && p_var && !has_decoration(p_var->self, DecorationNonWritable)) + { + add_spv_func_and_recompile(SPVFuncImplImageFence); + // Need to wrap this with a value type, + // since the Metal headers are broken and do not consider case when the image is a reference. + statement("spvImageFence(", to_expression(img_id), ");"); + } + + emit_texture_op(instruction, false); + break; + } + + // Emulate texture2D atomic operations + case OpImageTexelPointer: + { + // When using the pointer, we need to know which variable it is actually loaded from. + auto *var = maybe_get_backing_variable(ops[2]); + if (var && atomic_image_vars_emulated.count(var->self)) + { + uint32_t result_type = ops[0]; + uint32_t id = ops[1]; + + std::string coord = to_expression(ops[3]); + auto &type = expression_type(ops[2]); + if (type.image.dim == Dim2D) + { + coord = join("spvImage2DAtomicCoord(", coord, ", ", to_expression(ops[2]), ")"); + } + + auto &e = set<SPIRExpression>(id, join(to_expression(ops[2]), "_atomic[", coord, "]"), result_type, true); + e.loaded_from = var ? var->self : ID(0); + inherit_expression_dependencies(id, ops[3]); + } + else + { + uint32_t result_type = ops[0]; + uint32_t id = ops[1]; + + // Virtual expression. Split this up in the actual image atomic. + // In GLSL and HLSL we are able to resolve the dereference inline, but MSL has + // image.op(coord, ...) syntax. + auto &e = + set<SPIRExpression>(id, join(to_expression(ops[2]), "@", + bitcast_expression(SPIRType::UInt, ops[3])), + result_type, true); + + // When using the pointer, we need to know which variable it is actually loaded from. + e.loaded_from = var ? var->self : ID(0); + inherit_expression_dependencies(id, ops[3]); + } + break; + } + + case OpImageWrite: + { + uint32_t img_id = ops[0]; + uint32_t coord_id = ops[1]; + uint32_t texel_id = ops[2]; + const uint32_t *opt = &ops[3]; + uint32_t length = instruction.length - 3; + + // Bypass pointers because we need the real image struct + auto &type = expression_type(img_id); + auto &img_type = get<SPIRType>(type.self); + + // Ensure this image has been marked as being written to and force a + // recommpile so that the image type output will include write access + auto *p_var = maybe_get_backing_variable(img_id); + if (p_var && has_decoration(p_var->self, DecorationNonWritable)) + { + unset_decoration(p_var->self, DecorationNonWritable); + force_recompile(); + } + + bool forward = false; + uint32_t bias = 0; + uint32_t lod = 0; + uint32_t flags = 0; + + if (length) + { + flags = *opt++; + length--; + } + + auto test = [&](uint32_t &v, uint32_t flag) { + if (length && (flags & flag)) + { + v = *opt++; + length--; + } + }; + + test(bias, ImageOperandsBiasMask); + test(lod, ImageOperandsLodMask); + + auto &texel_type = expression_type(texel_id); + auto store_type = texel_type; + store_type.vecsize = 4; + + TextureFunctionArguments args = {}; + args.base.img = img_id; + args.base.imgtype = &img_type; + args.base.is_fetch = true; + args.coord = coord_id; + args.lod = lod; + + string expr; + if (needs_frag_discard_checks()) + expr = join("(", builtin_to_glsl(BuiltInHelperInvocation, StorageClassInput), " ? ((void)0) : "); + expr += join(to_expression(img_id), ".write(", + remap_swizzle(store_type, texel_type.vecsize, to_expression(texel_id)), ", ", + CompilerMSL::to_function_args(args, &forward), ")"); + if (needs_frag_discard_checks()) + expr += ")"; + statement(expr, ";"); + + if (p_var && variable_storage_is_aliased(*p_var)) + flush_all_aliased_variables(); + + break; + } + + case OpImageQuerySize: + case OpImageQuerySizeLod: + { + uint32_t rslt_type_id = ops[0]; + auto &rslt_type = get<SPIRType>(rslt_type_id); + + uint32_t id = ops[1]; + + uint32_t img_id = ops[2]; + string img_exp = to_expression(img_id); + auto &img_type = expression_type(img_id); + Dim img_dim = img_type.image.dim; + bool img_is_array = img_type.image.arrayed; + + if (img_type.basetype != SPIRType::Image) + SPIRV_CROSS_THROW("Invalid type for OpImageQuerySize."); + + string lod; + if (opcode == OpImageQuerySizeLod) + { + // LOD index defaults to zero, so don't bother outputing level zero index + string decl_lod = to_expression(ops[3]); + if (decl_lod != "0") + lod = decl_lod; + } + + string expr = type_to_glsl(rslt_type) + "("; + expr += img_exp + ".get_width(" + lod + ")"; + + if (img_dim == Dim2D || img_dim == DimCube || img_dim == Dim3D) + expr += ", " + img_exp + ".get_height(" + lod + ")"; + + if (img_dim == Dim3D) + expr += ", " + img_exp + ".get_depth(" + lod + ")"; + + if (img_is_array) + { + expr += ", " + img_exp + ".get_array_size()"; + if (img_dim == DimCube && msl_options.emulate_cube_array) + expr += " / 6"; + } + + expr += ")"; + + emit_op(rslt_type_id, id, expr, should_forward(img_id)); + + break; + } + + case OpImageQueryLod: + { + if (!msl_options.supports_msl_version(2, 2)) + SPIRV_CROSS_THROW("ImageQueryLod is only supported on MSL 2.2 and up."); + uint32_t result_type = ops[0]; + uint32_t id = ops[1]; + uint32_t image_id = ops[2]; + uint32_t coord_id = ops[3]; + emit_uninitialized_temporary_expression(result_type, id); + + std::string coord_expr = to_expression(coord_id); + auto sampler_expr = to_sampler_expression(image_id); + auto *combined = maybe_get<SPIRCombinedImageSampler>(image_id); + auto image_expr = combined ? to_expression(combined->image) : to_expression(image_id); + const SPIRType &image_type = expression_type(image_id); + const SPIRType &coord_type = expression_type(coord_id); + + switch (image_type.image.dim) + { + case Dim1D: + if (!msl_options.texture_1D_as_2D) + SPIRV_CROSS_THROW("ImageQueryLod is not supported on 1D textures."); + [[fallthrough]]; + case Dim2D: + if (coord_type.vecsize > 2) + coord_expr = enclose_expression(coord_expr) + ".xy"; + break; + case DimCube: + case Dim3D: + if (coord_type.vecsize > 3) + coord_expr = enclose_expression(coord_expr) + ".xyz"; + break; + default: + SPIRV_CROSS_THROW("Bad image type given to OpImageQueryLod"); + } + + // TODO: It is unclear if calculcate_clamped_lod also conditionally rounds + // the reported LOD based on the sampler. NEAREST miplevel should + // round the LOD, but LINEAR miplevel should not round. + // Let's hope this does not become an issue ... + statement(to_expression(id), ".x = ", image_expr, ".calculate_clamped_lod(", sampler_expr, ", ", + coord_expr, ");"); + statement(to_expression(id), ".y = ", image_expr, ".calculate_unclamped_lod(", sampler_expr, ", ", + coord_expr, ");"); + register_control_dependent_expression(id); + break; + } + +#define MSL_ImgQry(qrytype) \ + do \ + { \ + uint32_t rslt_type_id = ops[0]; \ + auto &rslt_type = get<SPIRType>(rslt_type_id); \ + uint32_t id = ops[1]; \ + uint32_t img_id = ops[2]; \ + string img_exp = to_expression(img_id); \ + string expr = type_to_glsl(rslt_type) + "(" + img_exp + ".get_num_" #qrytype "())"; \ + emit_op(rslt_type_id, id, expr, should_forward(img_id)); \ + } while (false) + + case OpImageQueryLevels: + MSL_ImgQry(mip_levels); + break; + + case OpImageQuerySamples: + MSL_ImgQry(samples); + break; + + case OpImage: + { + uint32_t result_type = ops[0]; + uint32_t id = ops[1]; + auto *combined = maybe_get<SPIRCombinedImageSampler>(ops[2]); + + if (combined) + { + auto &e = emit_op(result_type, id, to_expression(combined->image), true, true); + auto *var = maybe_get_backing_variable(combined->image); + if (var) + e.loaded_from = var->self; + } + else + { + auto *var = maybe_get_backing_variable(ops[2]); + SPIRExpression *e; + if (var && has_extended_decoration(var->self, SPIRVCrossDecorationDynamicImageSampler)) + e = &emit_op(result_type, id, join(to_expression(ops[2]), ".plane0"), true, true); + else + e = &emit_op(result_type, id, to_expression(ops[2]), true, true); + if (var) + e->loaded_from = var->self; + } + break; + } + + // Casting + case OpQuantizeToF16: + { + uint32_t result_type = ops[0]; + uint32_t id = ops[1]; + uint32_t arg = ops[2]; + string exp = join("spvQuantizeToF16(", to_expression(arg), ")"); + emit_op(result_type, id, exp, should_forward(arg)); + break; + } + + case OpInBoundsAccessChain: + case OpAccessChain: + case OpPtrAccessChain: + if (is_tessellation_shader()) + { + if (!emit_tessellation_access_chain(ops, instruction.length)) + CompilerGLSL::emit_instruction(instruction); + } + else + CompilerGLSL::emit_instruction(instruction); + fix_up_interpolant_access_chain(ops, instruction.length); + break; + + case OpStore: + { + const auto &type = expression_type(ops[0]); + + if (is_out_of_bounds_tessellation_level(ops[0])) + break; + + if (needs_frag_discard_checks() && + (type.storage == StorageClassStorageBuffer || type.storage == StorageClassUniform)) + { + // If we're in a continue block, this kludge will make the block too complex + // to emit normally. + assert(current_emitting_block); + auto cont_type = continue_block_type(*current_emitting_block); + if (cont_type != SPIRBlock::ContinueNone && cont_type != SPIRBlock::ComplexLoop) + { + current_emitting_block->complex_continue = true; + force_recompile(); + } + statement("if (!", builtin_to_glsl(BuiltInHelperInvocation, StorageClassInput), ")"); + begin_scope(); + } + if (!maybe_emit_array_assignment(ops[0], ops[1])) + CompilerGLSL::emit_instruction(instruction); + if (needs_frag_discard_checks() && + (type.storage == StorageClassStorageBuffer || type.storage == StorageClassUniform)) + end_scope(); + break; + } + + // Compute barriers + case OpMemoryBarrier: + emit_barrier(0, ops[0], ops[1]); + break; + + case OpControlBarrier: + // In GLSL a memory barrier is often followed by a control barrier. + // But in MSL, memory barriers are also control barriers, so don't + // emit a simple control barrier if a memory barrier has just been emitted. + if (previous_instruction_opcode != OpMemoryBarrier) + emit_barrier(ops[0], ops[1], ops[2]); + break; + + case OpOuterProduct: + { + uint32_t result_type = ops[0]; + uint32_t id = ops[1]; + uint32_t a = ops[2]; + uint32_t b = ops[3]; + + auto &type = get<SPIRType>(result_type); + string expr = type_to_glsl_constructor(type); + expr += "("; + for (uint32_t col = 0; col < type.columns; col++) + { + expr += to_enclosed_unpacked_expression(a); + expr += " * "; + expr += to_extract_component_expression(b, col); + if (col + 1 < type.columns) + expr += ", "; + } + expr += ")"; + emit_op(result_type, id, expr, should_forward(a) && should_forward(b)); + inherit_expression_dependencies(id, a); + inherit_expression_dependencies(id, b); + break; + } + + case OpVectorTimesMatrix: + case OpMatrixTimesVector: + { + if (!msl_options.invariant_float_math && !has_decoration(ops[1], DecorationNoContraction)) + { + CompilerGLSL::emit_instruction(instruction); + break; + } + + // If the matrix needs transpose, just flip the multiply order. + auto *e = maybe_get<SPIRExpression>(ops[opcode == OpMatrixTimesVector ? 2 : 3]); + if (e && e->need_transpose) + { + e->need_transpose = false; + string expr; + + if (opcode == OpMatrixTimesVector) + { + expr = join("spvFMulVectorMatrix(", to_enclosed_unpacked_expression(ops[3]), ", ", + to_unpacked_row_major_matrix_expression(ops[2]), ")"); + } + else + { + expr = join("spvFMulMatrixVector(", to_unpacked_row_major_matrix_expression(ops[3]), ", ", + to_enclosed_unpacked_expression(ops[2]), ")"); + } + + bool forward = should_forward(ops[2]) && should_forward(ops[3]); + emit_op(ops[0], ops[1], expr, forward); + e->need_transpose = true; + inherit_expression_dependencies(ops[1], ops[2]); + inherit_expression_dependencies(ops[1], ops[3]); + } + else + { + if (opcode == OpMatrixTimesVector) + MSL_BFOP(spvFMulMatrixVector); + else + MSL_BFOP(spvFMulVectorMatrix); + } + break; + } + + case OpMatrixTimesMatrix: + { + if (!msl_options.invariant_float_math && !has_decoration(ops[1], DecorationNoContraction)) + { + CompilerGLSL::emit_instruction(instruction); + break; + } + + auto *a = maybe_get<SPIRExpression>(ops[2]); + auto *b = maybe_get<SPIRExpression>(ops[3]); + + // If both matrices need transpose, we can multiply in flipped order and tag the expression as transposed. + // a^T * b^T = (b * a)^T. + if (a && b && a->need_transpose && b->need_transpose) + { + a->need_transpose = false; + b->need_transpose = false; + + auto expr = + join("spvFMulMatrixMatrix(", enclose_expression(to_unpacked_row_major_matrix_expression(ops[3])), ", ", + enclose_expression(to_unpacked_row_major_matrix_expression(ops[2])), ")"); + + bool forward = should_forward(ops[2]) && should_forward(ops[3]); + auto &e = emit_op(ops[0], ops[1], expr, forward); + e.need_transpose = true; + a->need_transpose = true; + b->need_transpose = true; + inherit_expression_dependencies(ops[1], ops[2]); + inherit_expression_dependencies(ops[1], ops[3]); + } + else + MSL_BFOP(spvFMulMatrixMatrix); + + break; + } + + case OpIAddCarry: + case OpISubBorrow: + { + uint32_t result_type = ops[0]; + uint32_t result_id = ops[1]; + uint32_t op0 = ops[2]; + uint32_t op1 = ops[3]; + auto &type = get<SPIRType>(result_type); + emit_uninitialized_temporary_expression(result_type, result_id); + + auto &res_type = get<SPIRType>(type.member_types[1]); + if (opcode == OpIAddCarry) + { + statement(to_expression(result_id), ".", to_member_name(type, 0), " = ", + to_enclosed_unpacked_expression(op0), " + ", to_enclosed_unpacked_expression(op1), ";"); + statement(to_expression(result_id), ".", to_member_name(type, 1), " = select(", type_to_glsl(res_type), + "(1), ", type_to_glsl(res_type), "(0), ", to_unpacked_expression(result_id), ".", to_member_name(type, 0), + " >= max(", to_unpacked_expression(op0), ", ", to_unpacked_expression(op1), "));"); + } + else + { + statement(to_expression(result_id), ".", to_member_name(type, 0), " = ", to_enclosed_unpacked_expression(op0), " - ", + to_enclosed_unpacked_expression(op1), ";"); + statement(to_expression(result_id), ".", to_member_name(type, 1), " = select(", type_to_glsl(res_type), + "(1), ", type_to_glsl(res_type), "(0), ", to_enclosed_unpacked_expression(op0), + " >= ", to_enclosed_unpacked_expression(op1), ");"); + } + break; + } + + case OpUMulExtended: + case OpSMulExtended: + { + uint32_t result_type = ops[0]; + uint32_t result_id = ops[1]; + uint32_t op0 = ops[2]; + uint32_t op1 = ops[3]; + auto &type = get<SPIRType>(result_type); + auto input_type = opcode == OpSMulExtended ? int_type : uint_type; + string cast_op0, cast_op1; + + binary_op_bitcast_helper(cast_op0, cast_op1, input_type, op0, op1, false); + emit_uninitialized_temporary_expression(result_type, result_id); + statement(to_expression(result_id), ".", to_member_name(type, 0), " = ", cast_op0, " * ", cast_op1, ";"); + statement(to_expression(result_id), ".", to_member_name(type, 1), " = mulhi(", cast_op0, ", ", cast_op1, ");"); + break; + } + + case OpArrayLength: + { + auto &type = expression_type(ops[2]); + uint32_t offset = type_struct_member_offset(type, ops[3]); + uint32_t stride = type_struct_member_array_stride(type, ops[3]); + + auto expr = join("(", to_buffer_size_expression(ops[2]), " - ", offset, ") / ", stride); + emit_op(ops[0], ops[1], expr, true); + break; + } + + // Legacy sub-group stuff ... + case OpSubgroupBallotKHR: + case OpSubgroupFirstInvocationKHR: + case OpSubgroupReadInvocationKHR: + case OpSubgroupAllKHR: + case OpSubgroupAnyKHR: + case OpSubgroupAllEqualKHR: + emit_subgroup_op(instruction); + break; + + // SPV_INTEL_shader_integer_functions2 + case OpUCountLeadingZerosINTEL: + MSL_UFOP(clz); + break; + + case OpUCountTrailingZerosINTEL: + MSL_UFOP(ctz); + break; + + case OpAbsISubINTEL: + case OpAbsUSubINTEL: + MSL_BFOP(absdiff); + break; + + case OpIAddSatINTEL: + case OpUAddSatINTEL: + MSL_BFOP(addsat); + break; + + case OpIAverageINTEL: + case OpUAverageINTEL: + MSL_BFOP(hadd); + break; + + case OpIAverageRoundedINTEL: + case OpUAverageRoundedINTEL: + MSL_BFOP(rhadd); + break; + + case OpISubSatINTEL: + case OpUSubSatINTEL: + MSL_BFOP(subsat); + break; + + case OpIMul32x16INTEL: + { + uint32_t result_type = ops[0]; + uint32_t id = ops[1]; + uint32_t a = ops[2], b = ops[3]; + bool forward = should_forward(a) && should_forward(b); + emit_op(result_type, id, join("int(short(", to_unpacked_expression(a), ")) * int(short(", to_unpacked_expression(b), "))"), forward); + inherit_expression_dependencies(id, a); + inherit_expression_dependencies(id, b); + break; + } + + case OpUMul32x16INTEL: + { + uint32_t result_type = ops[0]; + uint32_t id = ops[1]; + uint32_t a = ops[2], b = ops[3]; + bool forward = should_forward(a) && should_forward(b); + emit_op(result_type, id, join("uint(ushort(", to_unpacked_expression(a), ")) * uint(ushort(", to_unpacked_expression(b), "))"), forward); + inherit_expression_dependencies(id, a); + inherit_expression_dependencies(id, b); + break; + } + + // SPV_EXT_demote_to_helper_invocation + case OpDemoteToHelperInvocationEXT: + if (!msl_options.supports_msl_version(2, 3)) + SPIRV_CROSS_THROW("discard_fragment() does not formally have demote semantics until MSL 2.3."); + CompilerGLSL::emit_instruction(instruction); + break; + + case OpIsHelperInvocationEXT: + if (msl_options.is_ios() && !msl_options.supports_msl_version(2, 3)) + SPIRV_CROSS_THROW("simd_is_helper_thread() requires MSL 2.3 on iOS."); + else if (msl_options.is_macos() && !msl_options.supports_msl_version(2, 1)) + SPIRV_CROSS_THROW("simd_is_helper_thread() requires MSL 2.1 on macOS."); + emit_op(ops[0], ops[1], + needs_manual_helper_invocation_updates() ? builtin_to_glsl(BuiltInHelperInvocation, StorageClassInput) : + "simd_is_helper_thread()", + false); + break; + + case OpBeginInvocationInterlockEXT: + case OpEndInvocationInterlockEXT: + if (!msl_options.supports_msl_version(2, 0)) + SPIRV_CROSS_THROW("Raster order groups require MSL 2.0."); + break; // Nothing to do in the body + + case OpConvertUToAccelerationStructureKHR: + SPIRV_CROSS_THROW("ConvertUToAccelerationStructure is not supported in MSL."); + case OpRayQueryGetIntersectionInstanceShaderBindingTableRecordOffsetKHR: + SPIRV_CROSS_THROW("BindingTableRecordOffset is not supported in MSL."); + + case OpRayQueryInitializeKHR: + { + flush_variable_declaration(ops[0]); + register_write(ops[0]); + add_spv_func_and_recompile(SPVFuncImplRayQueryIntersectionParams); + + statement(to_expression(ops[0]), ".reset(", "ray(", to_expression(ops[4]), ", ", to_expression(ops[6]), ", ", + to_expression(ops[5]), ", ", to_expression(ops[7]), "), ", to_expression(ops[1]), ", ", to_expression(ops[3]), + ", spvMakeIntersectionParams(", to_expression(ops[2]), "));"); + break; + } + case OpRayQueryProceedKHR: + { + flush_variable_declaration(ops[0]); + register_write(ops[2]); + emit_op(ops[0], ops[1], join(to_expression(ops[2]), ".next()"), false); + break; + } +#define MSL_RAY_QUERY_IS_CANDIDATE get<SPIRConstant>(ops[3]).scalar_i32() == 0 + +#define MSL_RAY_QUERY_GET_OP(op, msl_op) \ + case OpRayQueryGet##op##KHR: \ + flush_variable_declaration(ops[2]); \ + emit_op(ops[0], ops[1], join(to_expression(ops[2]), ".get_" #msl_op "()"), false); \ + break + +#define MSL_RAY_QUERY_OP_INNER2(op, msl_prefix, msl_op) \ + case OpRayQueryGet##op##KHR: \ + flush_variable_declaration(ops[2]); \ + if (MSL_RAY_QUERY_IS_CANDIDATE) \ + emit_op(ops[0], ops[1], join(to_expression(ops[2]), #msl_prefix "_candidate_" #msl_op "()"), false); \ + else \ + emit_op(ops[0], ops[1], join(to_expression(ops[2]), #msl_prefix "_committed_" #msl_op "()"), false); \ + break + +#define MSL_RAY_QUERY_GET_OP2(op, msl_op) MSL_RAY_QUERY_OP_INNER2(op, .get, msl_op) +#define MSL_RAY_QUERY_IS_OP2(op, msl_op) MSL_RAY_QUERY_OP_INNER2(op, .is, msl_op) + + MSL_RAY_QUERY_GET_OP(RayTMin, ray_min_distance); + MSL_RAY_QUERY_GET_OP(WorldRayOrigin, world_space_ray_origin); + MSL_RAY_QUERY_GET_OP(WorldRayDirection, world_space_ray_direction); + MSL_RAY_QUERY_GET_OP2(IntersectionInstanceId, instance_id); + MSL_RAY_QUERY_GET_OP2(IntersectionInstanceCustomIndex, user_instance_id); + MSL_RAY_QUERY_GET_OP2(IntersectionBarycentrics, triangle_barycentric_coord); + MSL_RAY_QUERY_GET_OP2(IntersectionPrimitiveIndex, primitive_id); + MSL_RAY_QUERY_GET_OP2(IntersectionGeometryIndex, geometry_id); + MSL_RAY_QUERY_GET_OP2(IntersectionObjectRayOrigin, ray_origin); + MSL_RAY_QUERY_GET_OP2(IntersectionObjectRayDirection, ray_direction); + MSL_RAY_QUERY_GET_OP2(IntersectionObjectToWorld, object_to_world_transform); + MSL_RAY_QUERY_GET_OP2(IntersectionWorldToObject, world_to_object_transform); + MSL_RAY_QUERY_IS_OP2(IntersectionFrontFace, triangle_front_facing); + + case OpRayQueryGetIntersectionTypeKHR: + flush_variable_declaration(ops[2]); + if (MSL_RAY_QUERY_IS_CANDIDATE) + emit_op(ops[0], ops[1], join("uint(", to_expression(ops[2]), ".get_candidate_intersection_type()) - 1"), + false); + else + emit_op(ops[0], ops[1], join("uint(", to_expression(ops[2]), ".get_committed_intersection_type())"), false); + break; + case OpRayQueryGetIntersectionTKHR: + flush_variable_declaration(ops[2]); + if (MSL_RAY_QUERY_IS_CANDIDATE) + emit_op(ops[0], ops[1], join(to_expression(ops[2]), ".get_candidate_triangle_distance()"), false); + else + emit_op(ops[0], ops[1], join(to_expression(ops[2]), ".get_committed_distance()"), false); + break; + case OpRayQueryGetIntersectionCandidateAABBOpaqueKHR: + { + flush_variable_declaration(ops[0]); + emit_op(ops[0], ops[1], join(to_expression(ops[2]), ".is_candidate_non_opaque_bounding_box()"), false); + break; + } + case OpRayQueryConfirmIntersectionKHR: + flush_variable_declaration(ops[0]); + register_write(ops[0]); + statement(to_expression(ops[0]), ".commit_triangle_intersection();"); + break; + case OpRayQueryGenerateIntersectionKHR: + flush_variable_declaration(ops[0]); + register_write(ops[0]); + statement(to_expression(ops[0]), ".commit_bounding_box_intersection(", to_expression(ops[1]), ");"); + break; + case OpRayQueryTerminateKHR: + flush_variable_declaration(ops[0]); + register_write(ops[0]); + statement(to_expression(ops[0]), ".abort();"); + break; +#undef MSL_RAY_QUERY_GET_OP +#undef MSL_RAY_QUERY_IS_CANDIDATE +#undef MSL_RAY_QUERY_IS_OP2 +#undef MSL_RAY_QUERY_GET_OP2 +#undef MSL_RAY_QUERY_OP_INNER2 + + case OpConvertPtrToU: + case OpConvertUToPtr: + case OpBitcast: + { + auto &type = get<SPIRType>(ops[0]); + auto &input_type = expression_type(ops[2]); + + if (opcode != OpBitcast || type.pointer || input_type.pointer) + { + string op; + + if (type.vecsize == 1 && input_type.vecsize == 1) + op = join("reinterpret_cast<", type_to_glsl(type), ">(", to_unpacked_expression(ops[2]), ")"); + else if (input_type.vecsize == 2) + op = join("reinterpret_cast<", type_to_glsl(type), ">(as_type<ulong>(", to_unpacked_expression(ops[2]), "))"); + else + op = join("as_type<", type_to_glsl(type), ">(reinterpret_cast<ulong>(", to_unpacked_expression(ops[2]), "))"); + + emit_op(ops[0], ops[1], op, should_forward(ops[2])); + inherit_expression_dependencies(ops[1], ops[2]); + } + else + CompilerGLSL::emit_instruction(instruction); + + break; + } + + case OpSDot: + case OpUDot: + case OpSUDot: + { + uint32_t result_type = ops[0]; + uint32_t id = ops[1]; + uint32_t vec1 = ops[2]; + uint32_t vec2 = ops[3]; + + auto &input_type1 = expression_type(vec1); + auto &input_type2 = expression_type(vec2); + + string vec1input, vec2input; + auto input_size = input_type1.vecsize; + if (instruction.length == 5) + { + if (ops[4] == PackedVectorFormatPackedVectorFormat4x8Bit) + { + string type = opcode == OpSDot || opcode == OpSUDot ? "char4" : "uchar4"; + vec1input = join("as_type<", type, ">(", to_expression(vec1), ")"); + type = opcode == OpSDot ? "char4" : "uchar4"; + vec2input = join("as_type<", type, ">(", to_expression(vec2), ")"); + input_size = 4; + } + else + SPIRV_CROSS_THROW("Packed vector formats other than 4x8Bit for integer dot product is not supported."); + } + else + { + // Inputs are sign or zero-extended to their target width. + SPIRType::BaseType vec1_expected_type = + opcode != OpUDot ? + to_signed_basetype(input_type1.width) : + to_unsigned_basetype(input_type1.width); + + SPIRType::BaseType vec2_expected_type = + opcode != OpSDot ? + to_unsigned_basetype(input_type2.width) : + to_signed_basetype(input_type2.width); + + vec1input = bitcast_expression(vec1_expected_type, vec1); + vec2input = bitcast_expression(vec2_expected_type, vec2); + } + + auto &type = get<SPIRType>(result_type); + + // We'll get the appropriate sign-extend or zero-extend, no matter which type we cast to here. + // The addition in reduce_add is sign-invariant. + auto result_type_cast = join(type_to_glsl(type), input_size); + + string exp = join("reduce_add(", + result_type_cast, "(", vec1input, ") * ", + result_type_cast, "(", vec2input, "))"); + + emit_op(result_type, id, exp, should_forward(vec1) && should_forward(vec2)); + inherit_expression_dependencies(id, vec1); + inherit_expression_dependencies(id, vec2); + break; + } + + case OpSDotAccSat: + case OpUDotAccSat: + case OpSUDotAccSat: + { + uint32_t result_type = ops[0]; + uint32_t id = ops[1]; + uint32_t vec1 = ops[2]; + uint32_t vec2 = ops[3]; + uint32_t acc = ops[4]; + + auto input_type1 = expression_type(vec1); + auto input_type2 = expression_type(vec2); + + string vec1input, vec2input; + if (instruction.length == 6) + { + if (ops[5] == PackedVectorFormatPackedVectorFormat4x8Bit) + { + string type = opcode == OpSDotAccSat || opcode == OpSUDotAccSat ? "char4" : "uchar4"; + vec1input = join("as_type<", type, ">(", to_expression(vec1), ")"); + type = opcode == OpSDotAccSat ? "char4" : "uchar4"; + vec2input = join("as_type<", type, ">(", to_expression(vec2), ")"); + input_type1.vecsize = 4; + input_type2.vecsize = 4; + } + else + SPIRV_CROSS_THROW("Packed vector formats other than 4x8Bit for integer dot product is not supported."); + } + else + { + // Inputs are sign or zero-extended to their target width. + SPIRType::BaseType vec1_expected_type = + opcode != OpUDotAccSat ? + to_signed_basetype(input_type1.width) : + to_unsigned_basetype(input_type1.width); + + SPIRType::BaseType vec2_expected_type = + opcode != OpSDotAccSat ? + to_unsigned_basetype(input_type2.width) : + to_signed_basetype(input_type2.width); + + vec1input = bitcast_expression(vec1_expected_type, vec1); + vec2input = bitcast_expression(vec2_expected_type, vec2); + } + + auto &type = get<SPIRType>(result_type); + + SPIRType::BaseType pre_saturate_type = + opcode != OpUDotAccSat ? + to_signed_basetype(type.width) : + to_unsigned_basetype(type.width); + + input_type1.basetype = pre_saturate_type; + input_type2.basetype = pre_saturate_type; + + string exp = join(type_to_glsl(type), "(addsat(reduce_add(", + type_to_glsl(input_type1), "(", vec1input, ") * ", + type_to_glsl(input_type2), "(", vec2input, ")), ", + bitcast_expression(pre_saturate_type, acc), "))"); + + emit_op(result_type, id, exp, should_forward(vec1) && should_forward(vec2)); + inherit_expression_dependencies(id, vec1); + inherit_expression_dependencies(id, vec2); + break; + } + + default: + CompilerGLSL::emit_instruction(instruction); + break; + } + + previous_instruction_opcode = opcode; +} + +void CompilerMSL::emit_texture_op(const Instruction &i, bool sparse) +{ + if (sparse) + SPIRV_CROSS_THROW("Sparse feedback not yet supported in MSL."); + + if (msl_options.use_framebuffer_fetch_subpasses) + { + auto *ops = stream(i); + + uint32_t result_type_id = ops[0]; + uint32_t id = ops[1]; + uint32_t img = ops[2]; + + auto &type = expression_type(img); + auto &imgtype = get<SPIRType>(type.self); + + // Use Metal's native frame-buffer fetch API for subpass inputs. + if (imgtype.image.dim == DimSubpassData) + { + // Subpass inputs cannot be invalidated, + // so just forward the expression directly. + string expr = to_expression(img); + emit_op(result_type_id, id, expr, true); + return; + } + } + + // Fallback to default implementation + CompilerGLSL::emit_texture_op(i, sparse); +} + +void CompilerMSL::emit_barrier(uint32_t id_exe_scope, uint32_t id_mem_scope, uint32_t id_mem_sem) +{ + if (get_execution_model() != ExecutionModelGLCompute && !is_tesc_shader()) + return; + + uint32_t exe_scope = id_exe_scope ? evaluate_constant_u32(id_exe_scope) : uint32_t(ScopeInvocation); + uint32_t mem_scope = id_mem_scope ? evaluate_constant_u32(id_mem_scope) : uint32_t(ScopeInvocation); + // Use the wider of the two scopes (smaller value) + exe_scope = min(exe_scope, mem_scope); + + if (msl_options.emulate_subgroups && exe_scope >= ScopeSubgroup && !id_mem_sem) + // In this case, we assume a "subgroup" size of 1. The barrier, then, is a noop. + return; + + string bar_stmt; + if ((msl_options.is_ios() && msl_options.supports_msl_version(1, 2)) || msl_options.supports_msl_version(2)) + bar_stmt = exe_scope < ScopeSubgroup ? "threadgroup_barrier" : "simdgroup_barrier"; + else + bar_stmt = "threadgroup_barrier"; + bar_stmt += "("; + + uint32_t mem_sem = id_mem_sem ? evaluate_constant_u32(id_mem_sem) : uint32_t(MemorySemanticsMaskNone); + + // Use the | operator to combine flags if we can. + if (msl_options.supports_msl_version(1, 2)) + { + string mem_flags = ""; + // For tesc shaders, this also affects objects in the Output storage class. + // Since in Metal, these are placed in a device buffer, we have to sync device memory here. + if (is_tesc_shader() || + (mem_sem & (MemorySemanticsUniformMemoryMask | MemorySemanticsCrossWorkgroupMemoryMask))) + mem_flags += "mem_flags::mem_device"; + + // Fix tessellation patch function processing + if (is_tesc_shader() || (mem_sem & (MemorySemanticsSubgroupMemoryMask | MemorySemanticsWorkgroupMemoryMask))) + { + if (!mem_flags.empty()) + mem_flags += " | "; + mem_flags += "mem_flags::mem_threadgroup"; + } + if (mem_sem & MemorySemanticsImageMemoryMask) + { + if (!mem_flags.empty()) + mem_flags += " | "; + mem_flags += "mem_flags::mem_texture"; + } + + if (mem_flags.empty()) + mem_flags = "mem_flags::mem_none"; + + bar_stmt += mem_flags; + } + else + { + if ((mem_sem & (MemorySemanticsUniformMemoryMask | MemorySemanticsCrossWorkgroupMemoryMask)) && + (mem_sem & (MemorySemanticsSubgroupMemoryMask | MemorySemanticsWorkgroupMemoryMask))) + bar_stmt += "mem_flags::mem_device_and_threadgroup"; + else if (mem_sem & (MemorySemanticsUniformMemoryMask | MemorySemanticsCrossWorkgroupMemoryMask)) + bar_stmt += "mem_flags::mem_device"; + else if (mem_sem & (MemorySemanticsSubgroupMemoryMask | MemorySemanticsWorkgroupMemoryMask)) + bar_stmt += "mem_flags::mem_threadgroup"; + else if (mem_sem & MemorySemanticsImageMemoryMask) + bar_stmt += "mem_flags::mem_texture"; + else + bar_stmt += "mem_flags::mem_none"; + } + + bar_stmt += ");"; + + statement(bar_stmt); + + assert(current_emitting_block); + flush_control_dependent_expressions(current_emitting_block->self); + flush_all_active_variables(); +} + +static bool storage_class_array_is_thread(StorageClass storage) +{ + switch (storage) + { + case StorageClassInput: + case StorageClassOutput: + case StorageClassGeneric: + case StorageClassFunction: + case StorageClassPrivate: + return true; + + default: + return false; + } +} + +bool CompilerMSL::emit_array_copy(const char *expr, uint32_t lhs_id, uint32_t rhs_id, + StorageClass lhs_storage, StorageClass rhs_storage) +{ + // Allow Metal to use the array<T> template to make arrays a value type. + // This, however, cannot be used for threadgroup address specifiers, so consider the custom array copy as fallback. + bool lhs_is_thread_storage = storage_class_array_is_thread(lhs_storage); + bool rhs_is_thread_storage = storage_class_array_is_thread(rhs_storage); + + bool lhs_is_array_template = lhs_is_thread_storage || lhs_storage == StorageClassWorkgroup; + bool rhs_is_array_template = rhs_is_thread_storage || rhs_storage == StorageClassWorkgroup; + + // Special considerations for stage IO variables. + // If the variable is actually backed by non-user visible device storage, we use array templates for those. + // + // Another special consideration is given to thread local variables which happen to have Offset decorations + // applied to them. Block-like types do not use array templates, so we need to force POD path if we detect + // these scenarios. This check isn't perfect since it would be technically possible to mix and match these things, + // and for a fully correct solution we might have to track array template state through access chains as well, + // but for all reasonable use cases, this should suffice. + // This special case should also only apply to Function/Private storage classes. + // We should not check backing variable for temporaries. + auto *lhs_var = maybe_get_backing_variable(lhs_id); + if (lhs_var && lhs_storage == StorageClassStorageBuffer && storage_class_array_is_thread(lhs_var->storage)) + lhs_is_array_template = true; + else if (lhs_var && lhs_storage != StorageClassGeneric && type_is_block_like(get<SPIRType>(lhs_var->basetype))) + lhs_is_array_template = false; + + auto *rhs_var = maybe_get_backing_variable(rhs_id); + if (rhs_var && rhs_storage == StorageClassStorageBuffer && storage_class_array_is_thread(rhs_var->storage)) + rhs_is_array_template = true; + else if (rhs_var && rhs_storage != StorageClassGeneric && type_is_block_like(get<SPIRType>(rhs_var->basetype))) + rhs_is_array_template = false; + + // If threadgroup storage qualifiers are *not* used: + // Avoid spvCopy* wrapper functions; Otherwise, spvUnsafeArray<> template cannot be used with that storage qualifier. + if (lhs_is_array_template && rhs_is_array_template && !using_builtin_array()) + { + // Fall back to normal copy path. + return false; + } + else + { + // Ensure the LHS variable has been declared + if (lhs_var) + flush_variable_declaration(lhs_var->self); + + string lhs; + if (expr) + lhs = expr; + else + lhs = to_expression(lhs_id); + + // Assignment from an array initializer is fine. + auto &type = expression_type(rhs_id); + auto *var = maybe_get_backing_variable(rhs_id); + + // Unfortunately, we cannot template on address space in MSL, + // so explicit address space redirection it is ... + bool is_constant = false; + if (ir.ids[rhs_id].get_type() == TypeConstant) + { + is_constant = true; + } + else if (var && var->remapped_variable && var->statically_assigned && + ir.ids[var->static_expression].get_type() == TypeConstant) + { + is_constant = true; + } + else if (rhs_storage == StorageClassUniform || rhs_storage == StorageClassUniformConstant) + { + is_constant = true; + } + + // For the case where we have OpLoad triggering an array copy, + // we cannot easily detect this case ahead of time since it's + // context dependent. We might have to force a recompile here + // if this is the only use of array copies in our shader. + add_spv_func_and_recompile(type.array.size() > 1 ? SPVFuncImplArrayCopyMultidim : SPVFuncImplArrayCopy); + + const char *tag = nullptr; + if (lhs_is_thread_storage && is_constant) + tag = "FromConstantToStack"; + else if (lhs_storage == StorageClassWorkgroup && is_constant) + tag = "FromConstantToThreadGroup"; + else if (lhs_is_thread_storage && rhs_is_thread_storage) + tag = "FromStackToStack"; + else if (lhs_storage == StorageClassWorkgroup && rhs_is_thread_storage) + tag = "FromStackToThreadGroup"; + else if (lhs_is_thread_storage && rhs_storage == StorageClassWorkgroup) + tag = "FromThreadGroupToStack"; + else if (lhs_storage == StorageClassWorkgroup && rhs_storage == StorageClassWorkgroup) + tag = "FromThreadGroupToThreadGroup"; + else if (lhs_storage == StorageClassStorageBuffer && rhs_storage == StorageClassStorageBuffer) + tag = "FromDeviceToDevice"; + else if (lhs_storage == StorageClassStorageBuffer && is_constant) + tag = "FromConstantToDevice"; + else if (lhs_storage == StorageClassStorageBuffer && rhs_storage == StorageClassWorkgroup) + tag = "FromThreadGroupToDevice"; + else if (lhs_storage == StorageClassStorageBuffer && rhs_is_thread_storage) + tag = "FromStackToDevice"; + else if (lhs_storage == StorageClassWorkgroup && rhs_storage == StorageClassStorageBuffer) + tag = "FromDeviceToThreadGroup"; + else if (lhs_is_thread_storage && rhs_storage == StorageClassStorageBuffer) + tag = "FromDeviceToStack"; + else + SPIRV_CROSS_THROW("Unknown storage class used for copying arrays."); + + // Pass internal array of spvUnsafeArray<> into wrapper functions + if (lhs_is_array_template && rhs_is_array_template && !msl_options.force_native_arrays) + statement("spvArrayCopy", tag, "(", lhs, ".elements, ", to_expression(rhs_id), ".elements);"); + if (lhs_is_array_template && !msl_options.force_native_arrays) + statement("spvArrayCopy", tag, "(", lhs, ".elements, ", to_expression(rhs_id), ");"); + else if (rhs_is_array_template && !msl_options.force_native_arrays) + statement("spvArrayCopy", tag, "(", lhs, ", ", to_expression(rhs_id), ".elements);"); + else + statement("spvArrayCopy", tag, "(", lhs, ", ", to_expression(rhs_id), ");"); + } + + return true; +} + +uint32_t CompilerMSL::get_physical_tess_level_array_size(spv::BuiltIn builtin) const +{ + if (is_tessellating_triangles()) + return builtin == BuiltInTessLevelInner ? 1 : 3; + else + return builtin == BuiltInTessLevelInner ? 2 : 4; +} + +// Since MSL does not allow arrays to be copied via simple variable assignment, +// if the LHS and RHS represent an assignment of an entire array, it must be +// implemented by calling an array copy function. +// Returns whether the struct assignment was emitted. +bool CompilerMSL::maybe_emit_array_assignment(uint32_t id_lhs, uint32_t id_rhs) +{ + // We only care about assignments of an entire array + auto &type = expression_type(id_lhs); + if (!is_array(get_pointee_type(type))) + return false; + + auto *var = maybe_get<SPIRVariable>(id_lhs); + + // Is this a remapped, static constant? Don't do anything. + if (var && var->remapped_variable && var->statically_assigned) + return true; + + if (ir.ids[id_rhs].get_type() == TypeConstant && var && var->deferred_declaration) + { + // Special case, if we end up declaring a variable when assigning the constant array, + // we can avoid the copy by directly assigning the constant expression. + // This is likely necessary to be able to use a variable as a true look-up table, as it is unlikely + // the compiler will be able to optimize the spvArrayCopy() into a constant LUT. + // After a variable has been declared, we can no longer assign constant arrays in MSL unfortunately. + statement(to_expression(id_lhs), " = ", constant_expression(get<SPIRConstant>(id_rhs)), ";"); + return true; + } + + if (is_tesc_shader() && has_decoration(id_lhs, DecorationBuiltIn)) + { + auto builtin = BuiltIn(get_decoration(id_lhs, DecorationBuiltIn)); + // Need to manually unroll the array store. + if (builtin == BuiltInTessLevelInner || builtin == BuiltInTessLevelOuter) + { + uint32_t array_size = get_physical_tess_level_array_size(builtin); + if (array_size == 1) + statement(to_expression(id_lhs), " = half(", to_expression(id_rhs), "[0]);"); + else + { + for (uint32_t i = 0; i < array_size; i++) + statement(to_expression(id_lhs), "[", i, "] = half(", to_expression(id_rhs), "[", i, "]);"); + } + return true; + } + } + + auto lhs_storage = get_expression_effective_storage_class(id_lhs); + auto rhs_storage = get_expression_effective_storage_class(id_rhs); + if (!emit_array_copy(nullptr, id_lhs, id_rhs, lhs_storage, rhs_storage)) + return false; + + register_write(id_lhs); + + return true; +} + +// Emits one of the atomic functions. In MSL, the atomic functions operate on pointers +void CompilerMSL::emit_atomic_func_op(uint32_t result_type, uint32_t result_id, const char *op, Op opcode, + uint32_t mem_order_1, uint32_t mem_order_2, bool has_mem_order_2, uint32_t obj, uint32_t op1, + bool op1_is_pointer, bool op1_is_literal, uint32_t op2) +{ + string exp; + + auto &ptr_type = expression_type(obj); + auto &type = get_pointee_type(ptr_type); + auto expected_type = type.basetype; + if (opcode == OpAtomicUMax || opcode == OpAtomicUMin) + expected_type = to_unsigned_basetype(type.width); + else if (opcode == OpAtomicSMax || opcode == OpAtomicSMin) + expected_type = to_signed_basetype(type.width); + + bool use_native_image_atomic; + if (msl_options.supports_msl_version(3, 1)) + use_native_image_atomic = check_atomic_image(obj); + else + use_native_image_atomic = false; + + if (type.width == 64) + SPIRV_CROSS_THROW("MSL currently does not support 64-bit atomics."); + + auto remapped_type = type; + remapped_type.basetype = expected_type; + + auto *var = maybe_get_backing_variable(obj); + const auto *res_type = var ? &get<SPIRType>(var->basetype) : nullptr; + assert(type.storage != StorageClassImage || res_type); + + bool is_atomic_compare_exchange_strong = op1_is_pointer && op1; + + bool check_discard = opcode != OpAtomicLoad && needs_frag_discard_checks() && + ptr_type.storage != StorageClassWorkgroup; + + // Even compare exchange atomics are vec4 on metal for ... reasons :v + uint32_t vec4_temporary_id = 0; + if (use_native_image_atomic && is_atomic_compare_exchange_strong) + { + uint32_t &tmp_id = extra_sub_expressions[result_id]; + if (!tmp_id) + { + tmp_id = ir.increase_bound_by(2); + + auto vec4_type = get<SPIRType>(result_type); + vec4_type.vecsize = 4; + set<SPIRType>(tmp_id + 1, vec4_type); + } + + vec4_temporary_id = tmp_id; + } + + if (check_discard) + { + if (is_atomic_compare_exchange_strong) + { + // We're already emitting a CAS loop here; a conditional won't hurt. + emit_uninitialized_temporary_expression(result_type, result_id); + if (vec4_temporary_id) + emit_uninitialized_temporary_expression(vec4_temporary_id + 1, vec4_temporary_id); + statement("if (!", builtin_to_glsl(BuiltInHelperInvocation, StorageClassInput), ")"); + begin_scope(); + } + else + exp = join("(!", builtin_to_glsl(BuiltInHelperInvocation, StorageClassInput), " ? "); + } + + if (use_native_image_atomic) + { + auto obj_expression = to_expression(obj); + auto split_index = obj_expression.find_first_of('@'); + + // Will only be false if we're in "force recompile later" mode. + if (split_index != string::npos) + { + auto coord = obj_expression.substr(split_index + 1); + auto image_expr = obj_expression.substr(0, split_index); + + // Handle problem cases with sign where we need signed min/max on a uint image for example. + // It seems to work to cast the texture type itself, even if it is probably wildly outside of spec, + // but SPIR-V requires this to work. + if ((opcode == OpAtomicUMax || opcode == OpAtomicUMin || + opcode == OpAtomicSMax || opcode == OpAtomicSMin) && + type.basetype != expected_type) + { + auto *backing_var = maybe_get_backing_variable(obj); + if (backing_var) + { + add_spv_func_and_recompile(SPVFuncImplTextureCast); + + const auto *backing_type = &get<SPIRType>(backing_var->basetype); + while (backing_type->op != OpTypeImage) + backing_type = &get<SPIRType>(backing_type->parent_type); + + auto img_type = *backing_type; + auto tmp_type = type; + tmp_type.basetype = expected_type; + img_type.image.type = ir.increase_bound_by(1); + set<SPIRType>(img_type.image.type, tmp_type); + + image_expr = join("spvTextureCast<", type_to_glsl(img_type, obj), ">(", image_expr, ")"); + } + } + + exp += join(image_expr, ".", op, "("); + if (ptr_type.storage == StorageClassImage && res_type->image.arrayed) + { + switch (res_type->image.dim) + { + case Dim1D: + if (msl_options.texture_1D_as_2D) + exp += join("uint2(", coord, ".x, 0), ", coord, ".y"); + else + exp += join(coord, ".x, ", coord, ".y"); + + break; + case Dim2D: + exp += join(coord, ".xy, ", coord, ".z"); + break; + default: + SPIRV_CROSS_THROW("Cannot do atomics on Cube textures."); + } + } + else if (ptr_type.storage == StorageClassImage && res_type->image.dim == Dim1D && msl_options.texture_1D_as_2D) + exp += join("uint2(", coord, ", 0)"); + else + exp += coord; + } + else + { + exp += obj_expression; + } + } + else + { + exp += string(op) + "_explicit("; + exp += "("; + // Emulate texture2D atomic operations + if (ptr_type.storage == StorageClassImage) + { + auto &flags = ir.get_decoration_bitset(var->self); + if (decoration_flags_signal_volatile(flags)) + exp += "volatile "; + exp += "device"; + } + else if (var && ptr_type.storage != StorageClassPhysicalStorageBuffer) + { + exp += get_argument_address_space(*var); + } + else + { + // Fallback scenario, could happen for raw pointers. + exp += ptr_type.storage == StorageClassWorkgroup ? "threadgroup" : "device"; + } + + exp += " atomic_"; + // For signed and unsigned min/max, we can signal this through the pointer type. + // There is no other way, since C++ does not have explicit signage for atomics. + exp += type_to_glsl(remapped_type); + exp += "*)"; + + exp += "&"; + exp += to_enclosed_expression(obj); + } + + if (is_atomic_compare_exchange_strong) + { + assert(strcmp(op, "atomic_compare_exchange_weak") == 0); + assert(op2); + assert(has_mem_order_2); + exp += ", &"; + exp += to_name(vec4_temporary_id ? vec4_temporary_id : result_id); + exp += ", "; + exp += to_expression(op2); + + if (!use_native_image_atomic) + { + exp += ", "; + exp += get_memory_order(mem_order_1); + exp += ", "; + exp += get_memory_order(mem_order_2); + } + exp += ")"; + + // MSL only supports the weak atomic compare exchange, so emit a CAS loop here. + // The MSL function returns false if the atomic write fails OR the comparison test fails, + // so we must validate that it wasn't the comparison test that failed before continuing + // the CAS loop, otherwise it will loop infinitely, with the comparison test always failing. + // The function updates the comparator value from the memory value, so the additional + // comparison test evaluates the memory value against the expected value. + if (!check_discard) + { + emit_uninitialized_temporary_expression(result_type, result_id); + if (vec4_temporary_id) + emit_uninitialized_temporary_expression(vec4_temporary_id + 1, vec4_temporary_id); + } + + statement("do"); + begin_scope(); + + string scalar_expression; + if (vec4_temporary_id) + scalar_expression = join(to_expression(vec4_temporary_id), ".x"); + else + scalar_expression = to_expression(result_id); + + statement(scalar_expression, " = ", to_expression(op1), ";"); + end_scope_decl(join("while (!", exp, " && ", scalar_expression, " == ", to_enclosed_expression(op1), ")")); + if (vec4_temporary_id) + statement(to_expression(result_id), " = ", scalar_expression, ";"); + + // Vulkan: (section 9.29: ... and values returned by atomic instructions in helper invocations are undefined) + if (check_discard) + { + end_scope(); + statement("else"); + begin_scope(); + statement(to_expression(result_id), " = {};"); + end_scope(); + } + } + else + { + assert(strcmp(op, "atomic_compare_exchange_weak") != 0); + + if (op1) + { + exp += ", "; + if (op1_is_literal) + exp += to_string(op1); + else + exp += bitcast_expression(expected_type, op1); + } + + if (op2) + exp += ", " + to_expression(op2); + + if (!use_native_image_atomic) + { + exp += string(", ") + get_memory_order(mem_order_1); + if (has_mem_order_2) + exp += string(", ") + get_memory_order(mem_order_2); + } + + exp += ")"; + + // For some particular reason, atomics return vec4 in Metal ... + if (use_native_image_atomic) + exp += ".x"; + + // Vulkan: (section 9.29: ... and values returned by atomic instructions in helper invocations are undefined) + if (check_discard) + { + exp += " : "; + if (strcmp(op, "atomic_store") != 0) + exp += join(type_to_glsl(get<SPIRType>(result_type)), "{}"); + else + exp += "((void)0)"; + exp += ")"; + } + + if (expected_type != type.basetype) + exp = bitcast_expression(type, expected_type, exp); + + if (strcmp(op, "atomic_store") != 0) + emit_op(result_type, result_id, exp, false); + else + statement(exp, ";"); + } + + flush_all_atomic_capable_variables(); +} + +// Metal only supports relaxed memory order for now +const char *CompilerMSL::get_memory_order(uint32_t) +{ + return "memory_order_relaxed"; +} + +// Override for MSL-specific extension syntax instructions. +// In some cases, deliberately select either the fast or precise versions of the MSL functions to match Vulkan math precision results. +void CompilerMSL::emit_glsl_op(uint32_t result_type, uint32_t id, uint32_t eop, const uint32_t *args, uint32_t count) +{ + auto op = static_cast<GLSLstd450>(eop); + + // If we need to do implicit bitcasts, make sure we do it with the correct type. + uint32_t integer_width = get_integer_width_for_glsl_instruction(op, args, count); + auto int_type = to_signed_basetype(integer_width); + auto uint_type = to_unsigned_basetype(integer_width); + + op = get_remapped_glsl_op(op); + + auto &restype = get<SPIRType>(result_type); + + switch (op) + { + case GLSLstd450Sinh: + if (restype.basetype == SPIRType::Half) + { + // MSL does not have overload for half. Force-cast back to half. + auto expr = join("half(fast::sinh(", to_unpacked_expression(args[0]), "))"); + emit_op(result_type, id, expr, should_forward(args[0])); + inherit_expression_dependencies(id, args[0]); + } + else + emit_unary_func_op(result_type, id, args[0], "fast::sinh"); + break; + case GLSLstd450Cosh: + if (restype.basetype == SPIRType::Half) + { + // MSL does not have overload for half. Force-cast back to half. + auto expr = join("half(fast::cosh(", to_unpacked_expression(args[0]), "))"); + emit_op(result_type, id, expr, should_forward(args[0])); + inherit_expression_dependencies(id, args[0]); + } + else + emit_unary_func_op(result_type, id, args[0], "fast::cosh"); + break; + case GLSLstd450Tanh: + if (restype.basetype == SPIRType::Half) + { + // MSL does not have overload for half. Force-cast back to half. + auto expr = join("half(fast::tanh(", to_unpacked_expression(args[0]), "))"); + emit_op(result_type, id, expr, should_forward(args[0])); + inherit_expression_dependencies(id, args[0]); + } + else + emit_unary_func_op(result_type, id, args[0], "precise::tanh"); + break; + case GLSLstd450Atan2: + if (restype.basetype == SPIRType::Half) + { + // MSL does not have overload for half. Force-cast back to half. + auto expr = join("half(fast::atan2(", to_unpacked_expression(args[0]), ", ", to_unpacked_expression(args[1]), "))"); + emit_op(result_type, id, expr, should_forward(args[0]) && should_forward(args[1])); + inherit_expression_dependencies(id, args[0]); + inherit_expression_dependencies(id, args[1]); + } + else + emit_binary_func_op(result_type, id, args[0], args[1], "precise::atan2"); + break; + case GLSLstd450InverseSqrt: + emit_unary_func_op(result_type, id, args[0], "rsqrt"); + break; + case GLSLstd450RoundEven: + emit_unary_func_op(result_type, id, args[0], "rint"); + break; + + case GLSLstd450FindILsb: + { + // In this template version of findLSB, we return T. + auto basetype = expression_type(args[0]).basetype; + emit_unary_func_op_cast(result_type, id, args[0], "spvFindLSB", basetype, basetype); + break; + } + + case GLSLstd450FindSMsb: + emit_unary_func_op_cast(result_type, id, args[0], "spvFindSMSB", int_type, int_type); + break; + + case GLSLstd450FindUMsb: + emit_unary_func_op_cast(result_type, id, args[0], "spvFindUMSB", uint_type, uint_type); + break; + + case GLSLstd450PackSnorm4x8: + emit_unary_func_op(result_type, id, args[0], "pack_float_to_snorm4x8"); + break; + case GLSLstd450PackUnorm4x8: + emit_unary_func_op(result_type, id, args[0], "pack_float_to_unorm4x8"); + break; + case GLSLstd450PackSnorm2x16: + emit_unary_func_op(result_type, id, args[0], "pack_float_to_snorm2x16"); + break; + case GLSLstd450PackUnorm2x16: + emit_unary_func_op(result_type, id, args[0], "pack_float_to_unorm2x16"); + break; + + case GLSLstd450PackHalf2x16: + { + auto expr = join("as_type<uint>(half2(", to_expression(args[0]), "))"); + emit_op(result_type, id, expr, should_forward(args[0])); + inherit_expression_dependencies(id, args[0]); + break; + } + + case GLSLstd450UnpackSnorm4x8: + emit_unary_func_op(result_type, id, args[0], "unpack_snorm4x8_to_float"); + break; + case GLSLstd450UnpackUnorm4x8: + emit_unary_func_op(result_type, id, args[0], "unpack_unorm4x8_to_float"); + break; + case GLSLstd450UnpackSnorm2x16: + emit_unary_func_op(result_type, id, args[0], "unpack_snorm2x16_to_float"); + break; + case GLSLstd450UnpackUnorm2x16: + emit_unary_func_op(result_type, id, args[0], "unpack_unorm2x16_to_float"); + break; + + case GLSLstd450UnpackHalf2x16: + { + auto expr = join("float2(as_type<half2>(", to_expression(args[0]), "))"); + emit_op(result_type, id, expr, should_forward(args[0])); + inherit_expression_dependencies(id, args[0]); + break; + } + + case GLSLstd450PackDouble2x32: + emit_unary_func_op(result_type, id, args[0], "unsupported_GLSLstd450PackDouble2x32"); // Currently unsupported + break; + case GLSLstd450UnpackDouble2x32: + emit_unary_func_op(result_type, id, args[0], "unsupported_GLSLstd450UnpackDouble2x32"); // Currently unsupported + break; + + case GLSLstd450MatrixInverse: + { + auto &mat_type = get<SPIRType>(result_type); + switch (mat_type.columns) + { + case 2: + emit_unary_func_op(result_type, id, args[0], "spvInverse2x2"); + break; + case 3: + emit_unary_func_op(result_type, id, args[0], "spvInverse3x3"); + break; + case 4: + emit_unary_func_op(result_type, id, args[0], "spvInverse4x4"); + break; + default: + break; + } + break; + } + + case GLSLstd450FMin: + // If the result type isn't float, don't bother calling the specific + // precise::/fast:: version. Metal doesn't have those for half and + // double types. + if (get<SPIRType>(result_type).basetype != SPIRType::Float) + emit_binary_func_op(result_type, id, args[0], args[1], "min"); + else + emit_binary_func_op(result_type, id, args[0], args[1], "fast::min"); + break; + + case GLSLstd450FMax: + if (get<SPIRType>(result_type).basetype != SPIRType::Float) + emit_binary_func_op(result_type, id, args[0], args[1], "max"); + else + emit_binary_func_op(result_type, id, args[0], args[1], "fast::max"); + break; + + case GLSLstd450FClamp: + // TODO: If args[1] is 0 and args[2] is 1, emit a saturate() call. + if (get<SPIRType>(result_type).basetype != SPIRType::Float) + emit_trinary_func_op(result_type, id, args[0], args[1], args[2], "clamp"); + else + emit_trinary_func_op(result_type, id, args[0], args[1], args[2], "fast::clamp"); + break; + + case GLSLstd450NMin: + if (get<SPIRType>(result_type).basetype != SPIRType::Float) + emit_binary_func_op(result_type, id, args[0], args[1], "min"); + else + emit_binary_func_op(result_type, id, args[0], args[1], "precise::min"); + break; + + case GLSLstd450NMax: + if (get<SPIRType>(result_type).basetype != SPIRType::Float) + emit_binary_func_op(result_type, id, args[0], args[1], "max"); + else + emit_binary_func_op(result_type, id, args[0], args[1], "precise::max"); + break; + + case GLSLstd450NClamp: + // TODO: If args[1] is 0 and args[2] is 1, emit a saturate() call. + if (get<SPIRType>(result_type).basetype != SPIRType::Float) + emit_trinary_func_op(result_type, id, args[0], args[1], args[2], "clamp"); + else + emit_trinary_func_op(result_type, id, args[0], args[1], args[2], "precise::clamp"); + break; + + case GLSLstd450InterpolateAtCentroid: + { + // We can't just emit the expression normally, because the qualified name contains a call to the default + // interpolate method, or refers to a local variable. We saved the interface index we need; use it to construct + // the base for the method call. + uint32_t interface_index = get_extended_decoration(args[0], SPIRVCrossDecorationInterfaceMemberIndex); + string component; + if (has_extended_decoration(args[0], SPIRVCrossDecorationInterpolantComponentExpr)) + { + uint32_t index_expr = get_extended_decoration(args[0], SPIRVCrossDecorationInterpolantComponentExpr); + auto *c = maybe_get<SPIRConstant>(index_expr); + if (!c || c->specialization) + component = join("[", to_expression(index_expr), "]"); + else + component = join(".", index_to_swizzle(c->scalar())); + } + emit_op(result_type, id, + join(to_name(stage_in_var_id), ".", to_member_name(get_stage_in_struct_type(), interface_index), + ".interpolate_at_centroid()", component), + should_forward(args[0])); + break; + } + + case GLSLstd450InterpolateAtSample: + { + uint32_t interface_index = get_extended_decoration(args[0], SPIRVCrossDecorationInterfaceMemberIndex); + string component; + if (has_extended_decoration(args[0], SPIRVCrossDecorationInterpolantComponentExpr)) + { + uint32_t index_expr = get_extended_decoration(args[0], SPIRVCrossDecorationInterpolantComponentExpr); + auto *c = maybe_get<SPIRConstant>(index_expr); + if (!c || c->specialization) + component = join("[", to_expression(index_expr), "]"); + else + component = join(".", index_to_swizzle(c->scalar())); + } + emit_op(result_type, id, + join(to_name(stage_in_var_id), ".", to_member_name(get_stage_in_struct_type(), interface_index), + ".interpolate_at_sample(", to_expression(args[1]), ")", component), + should_forward(args[0]) && should_forward(args[1])); + break; + } + + case GLSLstd450InterpolateAtOffset: + { + uint32_t interface_index = get_extended_decoration(args[0], SPIRVCrossDecorationInterfaceMemberIndex); + string component; + if (has_extended_decoration(args[0], SPIRVCrossDecorationInterpolantComponentExpr)) + { + uint32_t index_expr = get_extended_decoration(args[0], SPIRVCrossDecorationInterpolantComponentExpr); + auto *c = maybe_get<SPIRConstant>(index_expr); + if (!c || c->specialization) + component = join("[", to_expression(index_expr), "]"); + else + component = join(".", index_to_swizzle(c->scalar())); + } + // Like Direct3D, Metal puts the (0, 0) at the upper-left corner, not the center as SPIR-V and GLSL do. + // Offset the offset by (1/2 - 1/16), or 0.4375, to compensate for this. + // It has to be (1/2 - 1/16) and not 1/2, or several CTS tests subtly break on Intel. + emit_op(result_type, id, + join(to_name(stage_in_var_id), ".", to_member_name(get_stage_in_struct_type(), interface_index), + ".interpolate_at_offset(", to_expression(args[1]), " + 0.4375)", component), + should_forward(args[0]) && should_forward(args[1])); + break; + } + + case GLSLstd450Distance: + // MSL does not support scalar versions here. + if (expression_type(args[0]).vecsize == 1) + { + // Equivalent to length(a - b) -> abs(a - b). + emit_op(result_type, id, + join("abs(", to_enclosed_unpacked_expression(args[0]), " - ", + to_enclosed_unpacked_expression(args[1]), ")"), + should_forward(args[0]) && should_forward(args[1])); + inherit_expression_dependencies(id, args[0]); + inherit_expression_dependencies(id, args[1]); + } + else + CompilerGLSL::emit_glsl_op(result_type, id, eop, args, count); + break; + + case GLSLstd450Length: + // MSL does not support scalar versions, so use abs(). + if (expression_type(args[0]).vecsize == 1) + emit_unary_func_op(result_type, id, args[0], "abs"); + else + CompilerGLSL::emit_glsl_op(result_type, id, eop, args, count); + break; + + case GLSLstd450Normalize: + { + auto &exp_type = expression_type(args[0]); + // MSL does not support scalar versions here. + // MSL has no implementation for normalize in the fast:: namespace for half2 and half3 + // Returns -1 or 1 for valid input, sign() does the job. + if (exp_type.vecsize == 1) + emit_unary_func_op(result_type, id, args[0], "sign"); + else if (exp_type.vecsize <= 3 && exp_type.basetype == SPIRType::Half) + emit_unary_func_op(result_type, id, args[0], "normalize"); + else + emit_unary_func_op(result_type, id, args[0], "fast::normalize"); + break; + } + case GLSLstd450Reflect: + if (get<SPIRType>(result_type).vecsize == 1) + emit_binary_func_op(result_type, id, args[0], args[1], "spvReflect"); + else + CompilerGLSL::emit_glsl_op(result_type, id, eop, args, count); + break; + + case GLSLstd450Refract: + if (get<SPIRType>(result_type).vecsize == 1) + emit_trinary_func_op(result_type, id, args[0], args[1], args[2], "spvRefract"); + else + CompilerGLSL::emit_glsl_op(result_type, id, eop, args, count); + break; + + case GLSLstd450FaceForward: + if (get<SPIRType>(result_type).vecsize == 1) + emit_trinary_func_op(result_type, id, args[0], args[1], args[2], "spvFaceForward"); + else + CompilerGLSL::emit_glsl_op(result_type, id, eop, args, count); + break; + + case GLSLstd450Modf: + case GLSLstd450Frexp: + { + // Special case. If the variable is a scalar access chain, we cannot use it directly. We have to emit a temporary. + // Another special case is if the variable is in a storage class which is not thread. + auto *ptr = maybe_get<SPIRExpression>(args[1]); + auto &type = expression_type(args[1]); + + bool is_thread_storage = storage_class_array_is_thread(type.storage); + if (type.storage == StorageClassOutput && capture_output_to_buffer) + is_thread_storage = false; + + if (!is_thread_storage || + (ptr && ptr->access_chain && is_scalar(expression_type(args[1])))) + { + register_call_out_argument(args[1]); + forced_temporaries.insert(id); + + // Need to create temporaries and copy over to access chain after. + // We cannot directly take the reference of a vector swizzle in MSL, even if it's scalar ... + uint32_t &tmp_id = extra_sub_expressions[id]; + if (!tmp_id) + tmp_id = ir.increase_bound_by(1); + + uint32_t tmp_type_id = get_pointee_type_id(expression_type_id(args[1])); + emit_uninitialized_temporary_expression(tmp_type_id, tmp_id); + emit_binary_func_op(result_type, id, args[0], tmp_id, eop == GLSLstd450Modf ? "modf" : "frexp"); + statement(to_expression(args[1]), " = ", to_expression(tmp_id), ";"); + } + else + CompilerGLSL::emit_glsl_op(result_type, id, eop, args, count); + break; + } + + case GLSLstd450Pow: + // powr makes x < 0.0 undefined, just like SPIR-V. + emit_binary_func_op(result_type, id, args[0], args[1], "powr"); + break; + + default: + CompilerGLSL::emit_glsl_op(result_type, id, eop, args, count); + break; + } +} + +void CompilerMSL::emit_spv_amd_shader_trinary_minmax_op(uint32_t result_type, uint32_t id, uint32_t eop, + const uint32_t *args, uint32_t count) +{ + enum AMDShaderTrinaryMinMax + { + FMin3AMD = 1, + UMin3AMD = 2, + SMin3AMD = 3, + FMax3AMD = 4, + UMax3AMD = 5, + SMax3AMD = 6, + FMid3AMD = 7, + UMid3AMD = 8, + SMid3AMD = 9 + }; + + if (!msl_options.supports_msl_version(2, 1)) + SPIRV_CROSS_THROW("Trinary min/max functions require MSL 2.1."); + + auto op = static_cast<AMDShaderTrinaryMinMax>(eop); + + switch (op) + { + case FMid3AMD: + case UMid3AMD: + case SMid3AMD: + emit_trinary_func_op(result_type, id, args[0], args[1], args[2], "median3"); + break; + default: + CompilerGLSL::emit_spv_amd_shader_trinary_minmax_op(result_type, id, eop, args, count); + break; + } +} + +// Emit a structure declaration for the specified interface variable. +void CompilerMSL::emit_interface_block(uint32_t ib_var_id) +{ + if (ib_var_id) + { + auto &ib_var = get<SPIRVariable>(ib_var_id); + auto &ib_type = get_variable_data_type(ib_var); + //assert(ib_type.basetype == SPIRType::Struct && !ib_type.member_types.empty()); + assert(ib_type.basetype == SPIRType::Struct); + emit_struct(ib_type); + } +} + +// Emits the declaration signature of the specified function. +// If this is the entry point function, Metal-specific return value and function arguments are added. +void CompilerMSL::emit_function_prototype(SPIRFunction &func, const Bitset &) +{ + if (func.self != ir.default_entry_point) + add_function_overload(func); + + local_variable_names = resource_names; + string decl; + + processing_entry_point = func.self == ir.default_entry_point; + + // Metal helper functions must be static force-inline otherwise they will cause problems when linked together in a single Metallib. + if (!processing_entry_point) + statement(force_inline); + + auto &type = get<SPIRType>(func.return_type); + + if (!type.array.empty() && msl_options.force_native_arrays) + { + // We cannot return native arrays in MSL, so "return" through an out variable. + decl += "void"; + } + else + { + decl += func_type_decl(type); + } + + decl += " "; + decl += to_name(func.self); + decl += "("; + + if (!type.array.empty() && msl_options.force_native_arrays) + { + // Fake arrays returns by writing to an out array instead. + decl += "thread "; + decl += type_to_glsl(type); + decl += " (&spvReturnValue)"; + decl += type_to_array_glsl(type, 0); + if (!func.arguments.empty()) + decl += ", "; + } + + if (processing_entry_point) + { + if (msl_options.argument_buffers) + decl += entry_point_args_argument_buffer(!func.arguments.empty()); + else + decl += entry_point_args_classic(!func.arguments.empty()); + + // append entry point args to avoid conflicts in local variable names. + local_variable_names.insert(resource_names.begin(), resource_names.end()); + + // If entry point function has variables that require early declaration, + // ensure they each have an empty initializer, creating one if needed. + // This is done at this late stage because the initialization expression + // is cleared after each compilation pass. + for (auto var_id : vars_needing_early_declaration) + { + auto &ed_var = get<SPIRVariable>(var_id); + ID &initializer = ed_var.initializer; + if (!initializer) + initializer = ir.increase_bound_by(1); + + // Do not override proper initializers. + if (ir.ids[initializer].get_type() == TypeNone || ir.ids[initializer].get_type() == TypeExpression) + set<SPIRExpression>(ed_var.initializer, "{}", ed_var.basetype, true); + } + } + + for (auto &arg : func.arguments) + { + uint32_t name_id = arg.id; + + auto *var = maybe_get<SPIRVariable>(arg.id); + if (var) + { + // If we need to modify the name of the variable, make sure we modify the original variable. + // Our alias is just a shadow variable. + if (arg.alias_global_variable && var->basevariable) + name_id = var->basevariable; + + var->parameter = &arg; // Hold a pointer to the parameter so we can invalidate the readonly field if needed. + } + + add_local_variable_name(name_id); + + decl += argument_decl(arg); + + bool is_dynamic_img_sampler = has_extended_decoration(arg.id, SPIRVCrossDecorationDynamicImageSampler); + + auto &arg_type = get<SPIRType>(arg.type); + if (arg_type.basetype == SPIRType::SampledImage && !is_dynamic_img_sampler) + { + // Manufacture automatic plane args for multiplanar texture + uint32_t planes = 1; + if (auto *constexpr_sampler = find_constexpr_sampler(name_id)) + if (constexpr_sampler->ycbcr_conversion_enable) + planes = constexpr_sampler->planes; + for (uint32_t i = 1; i < planes; i++) + decl += join(", ", argument_decl(arg), plane_name_suffix, i); + + // Manufacture automatic sampler arg for SampledImage texture + if (arg_type.image.dim != DimBuffer) + { + if (arg_type.array.empty() || (var ? is_var_runtime_size_array(*var) : is_runtime_size_array(arg_type))) + { + decl += join(", ", sampler_type(arg_type, arg.id, false), " ", to_sampler_expression(name_id)); + } + else + { + const char *sampler_address_space = + descriptor_address_space(name_id, + StorageClassUniformConstant, + "thread const"); + decl += join(", ", sampler_address_space, " ", sampler_type(arg_type, name_id, false), "& ", + to_sampler_expression(name_id)); + } + } + } + + // Manufacture automatic swizzle arg. + if (msl_options.swizzle_texture_samples && has_sampled_images && is_sampled_image_type(arg_type) && + !is_dynamic_img_sampler) + { + bool arg_is_array = !arg_type.array.empty(); + decl += join(", constant uint", arg_is_array ? "* " : "& ", to_swizzle_expression(name_id)); + } + + if (buffer_requires_array_length(name_id)) + { + bool arg_is_array = !arg_type.array.empty(); + decl += join(", constant uint", arg_is_array ? "* " : "& ", to_buffer_size_expression(name_id)); + } + + if (&arg != &func.arguments.back()) + decl += ", "; + } + + decl += ")"; + statement(decl); +} + +static bool needs_chroma_reconstruction(const MSLConstexprSampler *constexpr_sampler) +{ + // For now, only multiplanar images need explicit reconstruction. GBGR and BGRG images + // use implicit reconstruction. + return constexpr_sampler && constexpr_sampler->ycbcr_conversion_enable && constexpr_sampler->planes > 1; +} + +// Returns the texture sampling function string for the specified image and sampling characteristics. +string CompilerMSL::to_function_name(const TextureFunctionNameArguments &args) +{ + VariableID img = args.base.img; + const MSLConstexprSampler *constexpr_sampler = nullptr; + bool is_dynamic_img_sampler = false; + if (auto *var = maybe_get_backing_variable(img)) + { + constexpr_sampler = find_constexpr_sampler(var->basevariable ? var->basevariable : VariableID(var->self)); + is_dynamic_img_sampler = has_extended_decoration(var->self, SPIRVCrossDecorationDynamicImageSampler); + } + + // Special-case gather. We have to alter the component being looked up in the swizzle case. + if (msl_options.swizzle_texture_samples && args.base.is_gather && !is_dynamic_img_sampler && + (!constexpr_sampler || !constexpr_sampler->ycbcr_conversion_enable)) + { + bool is_compare = comparison_ids.count(img); + add_spv_func_and_recompile(is_compare ? SPVFuncImplGatherCompareSwizzle : SPVFuncImplGatherSwizzle); + return is_compare ? "spvGatherCompareSwizzle" : "spvGatherSwizzle"; + } + + // Special-case gather with an array of offsets. We have to lower into 4 separate gathers. + if (args.has_array_offsets && !is_dynamic_img_sampler && + (!constexpr_sampler || !constexpr_sampler->ycbcr_conversion_enable)) + { + bool is_compare = comparison_ids.count(img); + add_spv_func_and_recompile(is_compare ? SPVFuncImplGatherCompareConstOffsets : SPVFuncImplGatherConstOffsets); + add_spv_func_and_recompile(SPVFuncImplForwardArgs); + return is_compare ? "spvGatherCompareConstOffsets" : "spvGatherConstOffsets"; + } + + auto *combined = maybe_get<SPIRCombinedImageSampler>(img); + + // Texture reference + string fname; + if (needs_chroma_reconstruction(constexpr_sampler) && !is_dynamic_img_sampler) + { + if (constexpr_sampler->planes != 2 && constexpr_sampler->planes != 3) + SPIRV_CROSS_THROW("Unhandled number of color image planes!"); + // 444 images aren't downsampled, so we don't need to do linear filtering. + if (constexpr_sampler->resolution == MSL_FORMAT_RESOLUTION_444 || + constexpr_sampler->chroma_filter == MSL_SAMPLER_FILTER_NEAREST) + { + if (constexpr_sampler->planes == 2) + add_spv_func_and_recompile(SPVFuncImplChromaReconstructNearest2Plane); + else + add_spv_func_and_recompile(SPVFuncImplChromaReconstructNearest3Plane); + fname = "spvChromaReconstructNearest"; + } + else // Linear with a downsampled format + { + fname = "spvChromaReconstructLinear"; + switch (constexpr_sampler->resolution) + { + case MSL_FORMAT_RESOLUTION_444: + assert(false); + break; // not reached + case MSL_FORMAT_RESOLUTION_422: + switch (constexpr_sampler->x_chroma_offset) + { + case MSL_CHROMA_LOCATION_COSITED_EVEN: + if (constexpr_sampler->planes == 2) + add_spv_func_and_recompile(SPVFuncImplChromaReconstructLinear422CositedEven2Plane); + else + add_spv_func_and_recompile(SPVFuncImplChromaReconstructLinear422CositedEven3Plane); + fname += "422CositedEven"; + break; + case MSL_CHROMA_LOCATION_MIDPOINT: + if (constexpr_sampler->planes == 2) + add_spv_func_and_recompile(SPVFuncImplChromaReconstructLinear422Midpoint2Plane); + else + add_spv_func_and_recompile(SPVFuncImplChromaReconstructLinear422Midpoint3Plane); + fname += "422Midpoint"; + break; + default: + SPIRV_CROSS_THROW("Invalid chroma location."); + } + break; + case MSL_FORMAT_RESOLUTION_420: + fname += "420"; + switch (constexpr_sampler->x_chroma_offset) + { + case MSL_CHROMA_LOCATION_COSITED_EVEN: + switch (constexpr_sampler->y_chroma_offset) + { + case MSL_CHROMA_LOCATION_COSITED_EVEN: + if (constexpr_sampler->planes == 2) + add_spv_func_and_recompile( + SPVFuncImplChromaReconstructLinear420XCositedEvenYCositedEven2Plane); + else + add_spv_func_and_recompile( + SPVFuncImplChromaReconstructLinear420XCositedEvenYCositedEven3Plane); + fname += "XCositedEvenYCositedEven"; + break; + case MSL_CHROMA_LOCATION_MIDPOINT: + if (constexpr_sampler->planes == 2) + add_spv_func_and_recompile( + SPVFuncImplChromaReconstructLinear420XCositedEvenYMidpoint2Plane); + else + add_spv_func_and_recompile( + SPVFuncImplChromaReconstructLinear420XCositedEvenYMidpoint3Plane); + fname += "XCositedEvenYMidpoint"; + break; + default: + SPIRV_CROSS_THROW("Invalid Y chroma location."); + } + break; + case MSL_CHROMA_LOCATION_MIDPOINT: + switch (constexpr_sampler->y_chroma_offset) + { + case MSL_CHROMA_LOCATION_COSITED_EVEN: + if (constexpr_sampler->planes == 2) + add_spv_func_and_recompile( + SPVFuncImplChromaReconstructLinear420XMidpointYCositedEven2Plane); + else + add_spv_func_and_recompile( + SPVFuncImplChromaReconstructLinear420XMidpointYCositedEven3Plane); + fname += "XMidpointYCositedEven"; + break; + case MSL_CHROMA_LOCATION_MIDPOINT: + if (constexpr_sampler->planes == 2) + add_spv_func_and_recompile(SPVFuncImplChromaReconstructLinear420XMidpointYMidpoint2Plane); + else + add_spv_func_and_recompile(SPVFuncImplChromaReconstructLinear420XMidpointYMidpoint3Plane); + fname += "XMidpointYMidpoint"; + break; + default: + SPIRV_CROSS_THROW("Invalid Y chroma location."); + } + break; + default: + SPIRV_CROSS_THROW("Invalid X chroma location."); + } + break; + default: + SPIRV_CROSS_THROW("Invalid format resolution."); + } + } + } + else + { + fname = to_expression(combined ? combined->image : img) + "."; + + // Texture function and sampler + if (args.base.is_fetch) + fname += "read"; + else if (args.base.is_gather) + fname += "gather"; + else + fname += "sample"; + + if (args.has_dref) + fname += "_compare"; + } + + return fname; +} + +string CompilerMSL::convert_to_f32(const string &expr, uint32_t components) +{ + SPIRType t { components > 1 ? OpTypeVector : OpTypeFloat }; + t.basetype = SPIRType::Float; + t.vecsize = components; + t.columns = 1; + return join(type_to_glsl_constructor(t), "(", expr, ")"); +} + +static inline bool sampling_type_needs_f32_conversion(const SPIRType &type) +{ + // Double is not supported to begin with, but doesn't hurt to check for completion. + return type.basetype == SPIRType::Half || type.basetype == SPIRType::Double; +} + +// Returns the function args for a texture sampling function for the specified image and sampling characteristics. +string CompilerMSL::to_function_args(const TextureFunctionArguments &args, bool *p_forward) +{ + VariableID img = args.base.img; + auto &imgtype = *args.base.imgtype; + uint32_t lod = args.lod; + uint32_t grad_x = args.grad_x; + uint32_t grad_y = args.grad_y; + uint32_t bias = args.bias; + + const MSLConstexprSampler *constexpr_sampler = nullptr; + bool is_dynamic_img_sampler = false; + if (auto *var = maybe_get_backing_variable(img)) + { + constexpr_sampler = find_constexpr_sampler(var->basevariable ? var->basevariable : VariableID(var->self)); + is_dynamic_img_sampler = has_extended_decoration(var->self, SPIRVCrossDecorationDynamicImageSampler); + } + + string farg_str; + bool forward = true; + + if (!is_dynamic_img_sampler) + { + // Texture reference (for some cases) + if (needs_chroma_reconstruction(constexpr_sampler)) + { + // Multiplanar images need two or three textures. + farg_str += to_expression(img); + for (uint32_t i = 1; i < constexpr_sampler->planes; i++) + farg_str += join(", ", to_expression(img), plane_name_suffix, i); + } + else if ((!constexpr_sampler || !constexpr_sampler->ycbcr_conversion_enable) && + msl_options.swizzle_texture_samples && args.base.is_gather) + { + auto *combined = maybe_get<SPIRCombinedImageSampler>(img); + farg_str += to_expression(combined ? combined->image : img); + } + + // Gathers with constant offsets call a special function, so include the texture. + if (args.has_array_offsets) + farg_str += to_expression(img); + + // Sampler reference + if (!args.base.is_fetch) + { + if (!farg_str.empty()) + farg_str += ", "; + farg_str += to_sampler_expression(img); + } + + if ((!constexpr_sampler || !constexpr_sampler->ycbcr_conversion_enable) && + msl_options.swizzle_texture_samples && args.base.is_gather) + { + // Add the swizzle constant from the swizzle buffer. + farg_str += ", " + to_swizzle_expression(img); + used_swizzle_buffer = true; + } + + // Const offsets gather puts the const offsets before the other args. + if (args.has_array_offsets) + { + forward = forward && should_forward(args.offset); + farg_str += ", " + to_expression(args.offset); + } + + // Const offsets gather or swizzled gather puts the component before the other args. + if (args.component && (args.has_array_offsets || msl_options.swizzle_texture_samples)) + { + forward = forward && should_forward(args.component); + farg_str += ", " + to_component_argument(args.component); + } + } + + // Texture coordinates + forward = forward && should_forward(args.coord); + auto coord_expr = to_enclosed_expression(args.coord); + auto &coord_type = expression_type(args.coord); + bool coord_is_fp = type_is_floating_point(coord_type); + bool is_cube_fetch = false; + + string tex_coords = coord_expr; + uint32_t alt_coord_component = 0; + + switch (imgtype.image.dim) + { + + case Dim1D: + if (coord_type.vecsize > 1) + tex_coords = enclose_expression(tex_coords) + ".x"; + + if (args.base.is_fetch) + tex_coords = "uint(" + round_fp_tex_coords(tex_coords, coord_is_fp) + ")"; + else if (sampling_type_needs_f32_conversion(coord_type)) + tex_coords = convert_to_f32(tex_coords, 1); + + if (msl_options.texture_1D_as_2D) + { + if (args.base.is_fetch) + tex_coords = "uint2(" + tex_coords + ", 0)"; + else + tex_coords = "float2(" + tex_coords + ", 0.5)"; + } + + alt_coord_component = 1; + break; + + case DimBuffer: + if (coord_type.vecsize > 1) + tex_coords = enclose_expression(tex_coords) + ".x"; + + if (msl_options.texture_buffer_native) + { + tex_coords = "uint(" + round_fp_tex_coords(tex_coords, coord_is_fp) + ")"; + } + else + { + // Metal texel buffer textures are 2D, so convert 1D coord to 2D. + // Support for Metal 2.1's new texture_buffer type. + if (args.base.is_fetch) + { + if (msl_options.texel_buffer_texture_width > 0) + { + tex_coords = "spvTexelBufferCoord(" + round_fp_tex_coords(tex_coords, coord_is_fp) + ")"; + } + else + { + tex_coords = "spvTexelBufferCoord(" + round_fp_tex_coords(tex_coords, coord_is_fp) + ", " + + to_expression(img) + ")"; + } + } + } + + alt_coord_component = 1; + break; + + case DimSubpassData: + // If we're using Metal's native frame-buffer fetch API for subpass inputs, + // this path will not be hit. + tex_coords = "uint2(gl_FragCoord.xy)"; + alt_coord_component = 2; + break; + + case Dim2D: + if (coord_type.vecsize > 2) + tex_coords = enclose_expression(tex_coords) + ".xy"; + + if (args.base.is_fetch) + tex_coords = "uint2(" + round_fp_tex_coords(tex_coords, coord_is_fp) + ")"; + else if (sampling_type_needs_f32_conversion(coord_type)) + tex_coords = convert_to_f32(tex_coords, 2); + + alt_coord_component = 2; + break; + + case Dim3D: + if (coord_type.vecsize > 3) + tex_coords = enclose_expression(tex_coords) + ".xyz"; + + if (args.base.is_fetch) + tex_coords = "uint3(" + round_fp_tex_coords(tex_coords, coord_is_fp) + ")"; + else if (sampling_type_needs_f32_conversion(coord_type)) + tex_coords = convert_to_f32(tex_coords, 3); + + alt_coord_component = 3; + break; + + case DimCube: + if (args.base.is_fetch) + { + is_cube_fetch = true; + tex_coords += ".xy"; + tex_coords = "uint2(" + round_fp_tex_coords(tex_coords, coord_is_fp) + ")"; + } + else + { + if (coord_type.vecsize > 3) + tex_coords = enclose_expression(tex_coords) + ".xyz"; + } + + if (sampling_type_needs_f32_conversion(coord_type)) + tex_coords = convert_to_f32(tex_coords, 3); + + alt_coord_component = 3; + break; + + default: + break; + } + + if (args.base.is_fetch && args.offset) + { + // Fetch offsets must be applied directly to the coordinate. + forward = forward && should_forward(args.offset); + auto &type = expression_type(args.offset); + if (imgtype.image.dim == Dim1D && msl_options.texture_1D_as_2D) + { + if (type.basetype != SPIRType::UInt) + tex_coords += join(" + uint2(", bitcast_expression(SPIRType::UInt, args.offset), ", 0)"); + else + tex_coords += join(" + uint2(", to_enclosed_expression(args.offset), ", 0)"); + } + else + { + if (type.basetype != SPIRType::UInt) + tex_coords += " + " + bitcast_expression(SPIRType::UInt, args.offset); + else + tex_coords += " + " + to_enclosed_expression(args.offset); + } + } + + // If projection, use alt coord as divisor + if (args.base.is_proj) + { + if (sampling_type_needs_f32_conversion(coord_type)) + tex_coords += " / " + convert_to_f32(to_extract_component_expression(args.coord, alt_coord_component), 1); + else + tex_coords += " / " + to_extract_component_expression(args.coord, alt_coord_component); + } + + if (!farg_str.empty()) + farg_str += ", "; + + if (imgtype.image.dim == DimCube && imgtype.image.arrayed && msl_options.emulate_cube_array) + { + farg_str += "spvCubemapTo2DArrayFace(" + tex_coords + ").xy"; + + if (is_cube_fetch) + farg_str += ", uint(" + to_extract_component_expression(args.coord, 2) + ")"; + else + farg_str += + ", uint(spvCubemapTo2DArrayFace(" + tex_coords + ").z) + (uint(" + + round_fp_tex_coords(to_extract_component_expression(args.coord, alt_coord_component), coord_is_fp) + + ") * 6u)"; + + add_spv_func_and_recompile(SPVFuncImplCubemapTo2DArrayFace); + } + else + { + farg_str += tex_coords; + + // If fetch from cube, add face explicitly + if (is_cube_fetch) + { + // Special case for cube arrays, face and layer are packed in one dimension. + if (imgtype.image.arrayed) + farg_str += ", uint(" + to_extract_component_expression(args.coord, 2) + ") % 6u"; + else + farg_str += + ", uint(" + round_fp_tex_coords(to_extract_component_expression(args.coord, 2), coord_is_fp) + ")"; + } + + // If array, use alt coord + if (imgtype.image.arrayed) + { + // Special case for cube arrays, face and layer are packed in one dimension. + if (imgtype.image.dim == DimCube && args.base.is_fetch) + { + farg_str += ", uint(" + to_extract_component_expression(args.coord, 2) + ") / 6u"; + } + else + { + farg_str += + ", uint(" + + round_fp_tex_coords(to_extract_component_expression(args.coord, alt_coord_component), coord_is_fp) + + ")"; + if (imgtype.image.dim == DimSubpassData) + { + if (msl_options.multiview) + farg_str += " + gl_ViewIndex"; + else if (msl_options.arrayed_subpass_input) + farg_str += " + gl_Layer"; + } + } + } + else if (imgtype.image.dim == DimSubpassData) + { + if (msl_options.multiview) + farg_str += ", gl_ViewIndex"; + else if (msl_options.arrayed_subpass_input) + farg_str += ", gl_Layer"; + } + } + + // Depth compare reference value + if (args.dref) + { + forward = forward && should_forward(args.dref); + farg_str += ", "; + + auto &dref_type = expression_type(args.dref); + + string dref_expr; + if (args.base.is_proj) + dref_expr = join(to_enclosed_expression(args.dref), " / ", + to_extract_component_expression(args.coord, alt_coord_component)); + else + dref_expr = to_expression(args.dref); + + if (sampling_type_needs_f32_conversion(dref_type)) + dref_expr = convert_to_f32(dref_expr, 1); + + farg_str += dref_expr; + + if (msl_options.is_macos() && (grad_x || grad_y)) + { + // For sample compare, MSL does not support gradient2d for all targets (only iOS apparently according to docs). + // However, the most common case here is to have a constant gradient of 0, as that is the only way to express + // LOD == 0 in GLSL with sampler2DArrayShadow (cascaded shadow mapping). + // We will detect a compile-time constant 0 value for gradient and promote that to level(0) on MSL. + bool constant_zero_x = !grad_x || expression_is_constant_null(grad_x); + bool constant_zero_y = !grad_y || expression_is_constant_null(grad_y); + if (constant_zero_x && constant_zero_y && + (!imgtype.image.arrayed || !msl_options.sample_dref_lod_array_as_grad)) + { + lod = 0; + grad_x = 0; + grad_y = 0; + farg_str += ", level(0)"; + } + else if (!msl_options.supports_msl_version(2, 3)) + { + SPIRV_CROSS_THROW("Using non-constant 0.0 gradient() qualifier for sample_compare. This is not " + "supported on macOS prior to MSL 2.3."); + } + } + + if (msl_options.is_macos() && bias) + { + // Bias is not supported either on macOS with sample_compare. + // Verify it is compile-time zero, and drop the argument. + if (expression_is_constant_null(bias)) + { + bias = 0; + } + else if (!msl_options.supports_msl_version(2, 3)) + { + SPIRV_CROSS_THROW("Using non-constant 0.0 bias() qualifier for sample_compare. This is not supported " + "on macOS prior to MSL 2.3."); + } + } + } + + // LOD Options + // Metal does not support LOD for 1D textures. + if (bias && (imgtype.image.dim != Dim1D || msl_options.texture_1D_as_2D)) + { + forward = forward && should_forward(bias); + farg_str += ", bias(" + to_expression(bias) + ")"; + } + + // Metal does not support LOD for 1D textures. + if (lod && (imgtype.image.dim != Dim1D || msl_options.texture_1D_as_2D)) + { + forward = forward && should_forward(lod); + if (args.base.is_fetch) + { + farg_str += ", " + to_expression(lod); + } + else if (msl_options.sample_dref_lod_array_as_grad && args.dref && imgtype.image.arrayed) + { + if (msl_options.is_macos() && !msl_options.supports_msl_version(2, 3)) + SPIRV_CROSS_THROW("Using non-constant 0.0 gradient() qualifier for sample_compare. This is not " + "supported on macOS prior to MSL 2.3."); + // Some Metal devices have a bug where the LoD is erroneously biased upward + // when using a level() argument. Since this doesn't happen as much with gradient2d(), + // if we perform the LoD calculation in reverse, we can pass a gradient + // instead. + // lod = log2(rhoMax/eta) -> exp2(lod) = rhoMax/eta + // If we make all of the scale factors the same, eta will be 1 and + // exp2(lod) = rho. + // rhoX = dP/dx * extent; rhoY = dP/dy * extent + // Therefore, dP/dx = dP/dy = exp2(lod)/extent. + // (Subtracting 0.5 before exponentiation gives better results.) + string grad_opt, extent, grad_coord; + VariableID base_img = img; + if (auto *combined = maybe_get<SPIRCombinedImageSampler>(img)) + base_img = combined->image; + switch (imgtype.image.dim) + { + case Dim1D: + grad_opt = "gradient2d"; + extent = join("float2(", to_expression(base_img), ".get_width(), 1.0)"); + break; + case Dim2D: + grad_opt = "gradient2d"; + extent = join("float2(", to_expression(base_img), ".get_width(), ", to_expression(base_img), ".get_height())"); + break; + case DimCube: + if (imgtype.image.arrayed && msl_options.emulate_cube_array) + { + grad_opt = "gradient2d"; + extent = join("float2(", to_expression(base_img), ".get_width())"); + } + else + { + if (msl_options.agx_manual_cube_grad_fixup) + { + add_spv_func_and_recompile(SPVFuncImplGradientCube); + grad_opt = "spvGradientCube"; + grad_coord = tex_coords + ", "; + } + else + { + grad_opt = "gradientcube"; + } + extent = join("float3(", to_expression(base_img), ".get_width())"); + } + break; + default: + grad_opt = "unsupported_gradient_dimension"; + extent = "float3(1.0)"; + break; + } + farg_str += join(", ", grad_opt, "(", grad_coord, "exp2(", to_expression(lod), " - 0.5) / ", extent, + ", exp2(", to_expression(lod), " - 0.5) / ", extent, ")"); + } + else + { + farg_str += ", level(" + to_expression(lod) + ")"; + } + } + else if (args.base.is_fetch && !lod && (imgtype.image.dim != Dim1D || msl_options.texture_1D_as_2D) && + imgtype.image.dim != DimBuffer && !imgtype.image.ms && imgtype.image.sampled != 2) + { + // Lod argument is optional in OpImageFetch, but we require a LOD value, pick 0 as the default. + // Check for sampled type as well, because is_fetch is also used for OpImageRead in MSL. + farg_str += ", 0"; + } + + // Metal does not support LOD for 1D textures. + if ((grad_x || grad_y) && (imgtype.image.dim != Dim1D || msl_options.texture_1D_as_2D)) + { + forward = forward && should_forward(grad_x); + forward = forward && should_forward(grad_y); + string grad_opt, grad_coord; + switch (imgtype.image.dim) + { + case Dim1D: + case Dim2D: + grad_opt = "gradient2d"; + break; + case Dim3D: + grad_opt = "gradient3d"; + break; + case DimCube: + if (imgtype.image.arrayed && msl_options.emulate_cube_array) + { + grad_opt = "gradient2d"; + } + else if (msl_options.agx_manual_cube_grad_fixup) + { + add_spv_func_and_recompile(SPVFuncImplGradientCube); + grad_opt = "spvGradientCube"; + grad_coord = tex_coords + ", "; + } + else + { + grad_opt = "gradientcube"; + } + break; + default: + grad_opt = "unsupported_gradient_dimension"; + break; + } + farg_str += join(", ", grad_opt, "(", grad_coord, to_expression(grad_x), ", ", to_expression(grad_y), ")"); + } + + if (args.min_lod) + { + if (!msl_options.supports_msl_version(2, 2)) + SPIRV_CROSS_THROW("min_lod_clamp() is only supported in MSL 2.2+ and up."); + + forward = forward && should_forward(args.min_lod); + farg_str += ", min_lod_clamp(" + to_expression(args.min_lod) + ")"; + } + + // Add offsets + string offset_expr; + const SPIRType *offset_type = nullptr; + if (args.offset && !args.base.is_fetch && !args.has_array_offsets) + { + forward = forward && should_forward(args.offset); + offset_expr = to_expression(args.offset); + offset_type = &expression_type(args.offset); + } + + if (!offset_expr.empty()) + { + switch (imgtype.image.dim) + { + case Dim1D: + if (!msl_options.texture_1D_as_2D) + break; + if (offset_type->vecsize > 1) + offset_expr = enclose_expression(offset_expr) + ".x"; + + farg_str += join(", int2(", offset_expr, ", 0)"); + break; + + case Dim2D: + if (offset_type->vecsize > 2) + offset_expr = enclose_expression(offset_expr) + ".xy"; + + farg_str += ", " + offset_expr; + break; + + case Dim3D: + if (offset_type->vecsize > 3) + offset_expr = enclose_expression(offset_expr) + ".xyz"; + + farg_str += ", " + offset_expr; + break; + + default: + break; + } + } + + if (args.component && !args.has_array_offsets) + { + // If 2D has gather component, ensure it also has an offset arg + if (imgtype.image.dim == Dim2D && offset_expr.empty()) + farg_str += ", int2(0)"; + + if (!msl_options.swizzle_texture_samples || is_dynamic_img_sampler) + { + forward = forward && should_forward(args.component); + + uint32_t image_var = 0; + if (const auto *combined = maybe_get<SPIRCombinedImageSampler>(img)) + { + if (const auto *img_var = maybe_get_backing_variable(combined->image)) + image_var = img_var->self; + } + else if (const auto *var = maybe_get_backing_variable(img)) + { + image_var = var->self; + } + + if (image_var == 0 || !is_depth_image(expression_type(image_var), image_var)) + farg_str += ", " + to_component_argument(args.component); + } + } + + if (args.sample) + { + forward = forward && should_forward(args.sample); + farg_str += ", "; + farg_str += to_expression(args.sample); + } + + *p_forward = forward; + + return farg_str; +} + +// If the texture coordinates are floating point, invokes MSL round() function to round them. +string CompilerMSL::round_fp_tex_coords(string tex_coords, bool coord_is_fp) +{ + return coord_is_fp ? ("rint(" + tex_coords + ")") : tex_coords; +} + +// Returns a string to use in an image sampling function argument. +// The ID must be a scalar constant. +string CompilerMSL::to_component_argument(uint32_t id) +{ + uint32_t component_index = evaluate_constant_u32(id); + switch (component_index) + { + case 0: + return "component::x"; + case 1: + return "component::y"; + case 2: + return "component::z"; + case 3: + return "component::w"; + + default: + SPIRV_CROSS_THROW("The value (" + to_string(component_index) + ") of OpConstant ID " + to_string(id) + + " is not a valid Component index, which must be one of 0, 1, 2, or 3."); + } +} + +// Establish sampled image as expression object and assign the sampler to it. +void CompilerMSL::emit_sampled_image_op(uint32_t result_type, uint32_t result_id, uint32_t image_id, uint32_t samp_id) +{ + set<SPIRCombinedImageSampler>(result_id, result_type, image_id, samp_id); +} + +string CompilerMSL::to_texture_op(const Instruction &i, bool sparse, bool *forward, + SmallVector<uint32_t> &inherited_expressions) +{ + auto *ops = stream(i); + uint32_t result_type_id = ops[0]; + uint32_t img = ops[2]; + auto &result_type = get<SPIRType>(result_type_id); + auto op = static_cast<Op>(i.op); + bool is_gather = (op == OpImageGather || op == OpImageDrefGather); + + // Bypass pointers because we need the real image struct + auto &type = expression_type(img); + auto &imgtype = get<SPIRType>(type.self); + + const MSLConstexprSampler *constexpr_sampler = nullptr; + bool is_dynamic_img_sampler = false; + if (auto *var = maybe_get_backing_variable(img)) + { + constexpr_sampler = find_constexpr_sampler(var->basevariable ? var->basevariable : VariableID(var->self)); + is_dynamic_img_sampler = has_extended_decoration(var->self, SPIRVCrossDecorationDynamicImageSampler); + } + + string expr; + if (constexpr_sampler && constexpr_sampler->ycbcr_conversion_enable && !is_dynamic_img_sampler) + { + // If this needs sampler Y'CbCr conversion, we need to do some additional + // processing. + switch (constexpr_sampler->ycbcr_model) + { + case MSL_SAMPLER_YCBCR_MODEL_CONVERSION_RGB_IDENTITY: + case MSL_SAMPLER_YCBCR_MODEL_CONVERSION_YCBCR_IDENTITY: + // Default + break; + case MSL_SAMPLER_YCBCR_MODEL_CONVERSION_YCBCR_BT_709: + add_spv_func_and_recompile(SPVFuncImplConvertYCbCrBT709); + expr += "spvConvertYCbCrBT709("; + break; + case MSL_SAMPLER_YCBCR_MODEL_CONVERSION_YCBCR_BT_601: + add_spv_func_and_recompile(SPVFuncImplConvertYCbCrBT601); + expr += "spvConvertYCbCrBT601("; + break; + case MSL_SAMPLER_YCBCR_MODEL_CONVERSION_YCBCR_BT_2020: + add_spv_func_and_recompile(SPVFuncImplConvertYCbCrBT2020); + expr += "spvConvertYCbCrBT2020("; + break; + default: + SPIRV_CROSS_THROW("Invalid Y'CbCr model conversion."); + } + + if (constexpr_sampler->ycbcr_model != MSL_SAMPLER_YCBCR_MODEL_CONVERSION_RGB_IDENTITY) + { + switch (constexpr_sampler->ycbcr_range) + { + case MSL_SAMPLER_YCBCR_RANGE_ITU_FULL: + add_spv_func_and_recompile(SPVFuncImplExpandITUFullRange); + expr += "spvExpandITUFullRange("; + break; + case MSL_SAMPLER_YCBCR_RANGE_ITU_NARROW: + add_spv_func_and_recompile(SPVFuncImplExpandITUNarrowRange); + expr += "spvExpandITUNarrowRange("; + break; + default: + SPIRV_CROSS_THROW("Invalid Y'CbCr range."); + } + } + } + else if (msl_options.swizzle_texture_samples && !is_gather && is_sampled_image_type(imgtype) && + !is_dynamic_img_sampler) + { + add_spv_func_and_recompile(SPVFuncImplTextureSwizzle); + expr += "spvTextureSwizzle("; + } + + string inner_expr = CompilerGLSL::to_texture_op(i, sparse, forward, inherited_expressions); + + if (constexpr_sampler && constexpr_sampler->ycbcr_conversion_enable && !is_dynamic_img_sampler) + { + if (!constexpr_sampler->swizzle_is_identity()) + { + static const char swizzle_names[] = "rgba"; + if (!constexpr_sampler->swizzle_has_one_or_zero()) + { + // If we can, do it inline. + expr += inner_expr + "."; + for (uint32_t c = 0; c < 4; c++) + { + switch (constexpr_sampler->swizzle[c]) + { + case MSL_COMPONENT_SWIZZLE_IDENTITY: + expr += swizzle_names[c]; + break; + case MSL_COMPONENT_SWIZZLE_R: + case MSL_COMPONENT_SWIZZLE_G: + case MSL_COMPONENT_SWIZZLE_B: + case MSL_COMPONENT_SWIZZLE_A: + expr += swizzle_names[constexpr_sampler->swizzle[c] - MSL_COMPONENT_SWIZZLE_R]; + break; + default: + SPIRV_CROSS_THROW("Invalid component swizzle."); + } + } + } + else + { + // Otherwise, we need to emit a temporary and swizzle that. + uint32_t temp_id = ir.increase_bound_by(1); + emit_op(result_type_id, temp_id, inner_expr, false); + for (auto &inherit : inherited_expressions) + inherit_expression_dependencies(temp_id, inherit); + inherited_expressions.clear(); + inherited_expressions.push_back(temp_id); + + switch (op) + { + case OpImageSampleDrefImplicitLod: + case OpImageSampleImplicitLod: + case OpImageSampleProjImplicitLod: + case OpImageSampleProjDrefImplicitLod: + register_control_dependent_expression(temp_id); + break; + + default: + break; + } + expr += type_to_glsl(result_type) + "("; + for (uint32_t c = 0; c < 4; c++) + { + switch (constexpr_sampler->swizzle[c]) + { + case MSL_COMPONENT_SWIZZLE_IDENTITY: + expr += to_expression(temp_id) + "." + swizzle_names[c]; + break; + case MSL_COMPONENT_SWIZZLE_ZERO: + expr += "0"; + break; + case MSL_COMPONENT_SWIZZLE_ONE: + expr += "1"; + break; + case MSL_COMPONENT_SWIZZLE_R: + case MSL_COMPONENT_SWIZZLE_G: + case MSL_COMPONENT_SWIZZLE_B: + case MSL_COMPONENT_SWIZZLE_A: + expr += to_expression(temp_id) + "." + + swizzle_names[constexpr_sampler->swizzle[c] - MSL_COMPONENT_SWIZZLE_R]; + break; + default: + SPIRV_CROSS_THROW("Invalid component swizzle."); + } + if (c < 3) + expr += ", "; + } + expr += ")"; + } + } + else + expr += inner_expr; + if (constexpr_sampler->ycbcr_model != MSL_SAMPLER_YCBCR_MODEL_CONVERSION_RGB_IDENTITY) + { + expr += join(", ", constexpr_sampler->bpc, ")"); + if (constexpr_sampler->ycbcr_model != MSL_SAMPLER_YCBCR_MODEL_CONVERSION_YCBCR_IDENTITY) + expr += ")"; + } + } + else + { + expr += inner_expr; + if (msl_options.swizzle_texture_samples && !is_gather && is_sampled_image_type(imgtype) && + !is_dynamic_img_sampler) + { + // Add the swizzle constant from the swizzle buffer. + expr += ", " + to_swizzle_expression(img) + ")"; + used_swizzle_buffer = true; + } + } + + return expr; +} + +static string create_swizzle(MSLComponentSwizzle swizzle) +{ + switch (swizzle) + { + case MSL_COMPONENT_SWIZZLE_IDENTITY: + return "spvSwizzle::none"; + case MSL_COMPONENT_SWIZZLE_ZERO: + return "spvSwizzle::zero"; + case MSL_COMPONENT_SWIZZLE_ONE: + return "spvSwizzle::one"; + case MSL_COMPONENT_SWIZZLE_R: + return "spvSwizzle::red"; + case MSL_COMPONENT_SWIZZLE_G: + return "spvSwizzle::green"; + case MSL_COMPONENT_SWIZZLE_B: + return "spvSwizzle::blue"; + case MSL_COMPONENT_SWIZZLE_A: + return "spvSwizzle::alpha"; + default: + SPIRV_CROSS_THROW("Invalid component swizzle."); + } +} + +// Returns a string representation of the ID, usable as a function arg. +// Manufacture automatic sampler arg for SampledImage texture. +string CompilerMSL::to_func_call_arg(const SPIRFunction::Parameter &arg, uint32_t id) +{ + string arg_str; + + auto &type = expression_type(id); + bool is_dynamic_img_sampler = has_extended_decoration(arg.id, SPIRVCrossDecorationDynamicImageSampler); + // If the argument *itself* is a "dynamic" combined-image sampler, then we can just pass that around. + bool arg_is_dynamic_img_sampler = has_extended_decoration(id, SPIRVCrossDecorationDynamicImageSampler); + if (is_dynamic_img_sampler && !arg_is_dynamic_img_sampler) + arg_str = join("spvDynamicImageSampler<", type_to_glsl(get<SPIRType>(type.image.type)), ">("); + + auto *c = maybe_get<SPIRConstant>(id); + if (msl_options.force_native_arrays && c && !get<SPIRType>(c->constant_type).array.empty()) + { + // If we are passing a constant array directly to a function for some reason, + // the callee will expect an argument in thread const address space + // (since we can only bind to arrays with references in MSL). + // To resolve this, we must emit a copy in this address space. + // This kind of code gen should be rare enough that performance is not a real concern. + // Inline the SPIR-V to avoid this kind of suboptimal codegen. + // + // We risk calling this inside a continue block (invalid code), + // so just create a thread local copy in the current function. + arg_str = join("_", id, "_array_copy"); + auto &constants = current_function->constant_arrays_needed_on_stack; + auto itr = find(begin(constants), end(constants), ID(id)); + if (itr == end(constants)) + { + force_recompile(); + constants.push_back(id); + } + } + // Dereference pointer variables where needed. + // FIXME: This dereference is actually backwards. We should really just support passing pointer variables between functions. + else if (should_dereference(id)) + arg_str += dereference_expression(type, CompilerGLSL::to_func_call_arg(arg, id)); + else + arg_str += CompilerGLSL::to_func_call_arg(arg, id); + + // Need to check the base variable in case we need to apply a qualified alias. + uint32_t var_id = 0; + auto *var = maybe_get<SPIRVariable>(id); + if (var) + var_id = var->basevariable; + + if (!arg_is_dynamic_img_sampler) + { + auto *constexpr_sampler = find_constexpr_sampler(var_id ? var_id : id); + if (type.basetype == SPIRType::SampledImage) + { + // Manufacture automatic plane args for multiplanar texture + uint32_t planes = 1; + if (constexpr_sampler && constexpr_sampler->ycbcr_conversion_enable) + { + planes = constexpr_sampler->planes; + // If this parameter isn't aliasing a global, then we need to use + // the special "dynamic image-sampler" class to pass it--and we need + // to use it for *every* non-alias parameter, in case a combined + // image-sampler with a Y'CbCr conversion is passed. Hopefully, this + // pathological case is so rare that it should never be hit in practice. + if (!arg.alias_global_variable) + add_spv_func_and_recompile(SPVFuncImplDynamicImageSampler); + } + for (uint32_t i = 1; i < planes; i++) + arg_str += join(", ", CompilerGLSL::to_func_call_arg(arg, id), plane_name_suffix, i); + // Manufacture automatic sampler arg if the arg is a SampledImage texture. + if (type.image.dim != DimBuffer) + arg_str += ", " + to_sampler_expression(var_id ? var_id : id); + + // Add sampler Y'CbCr conversion info if we have it + if (is_dynamic_img_sampler && constexpr_sampler && constexpr_sampler->ycbcr_conversion_enable) + { + SmallVector<string> samp_args; + + switch (constexpr_sampler->resolution) + { + case MSL_FORMAT_RESOLUTION_444: + // Default + break; + case MSL_FORMAT_RESOLUTION_422: + samp_args.push_back("spvFormatResolution::_422"); + break; + case MSL_FORMAT_RESOLUTION_420: + samp_args.push_back("spvFormatResolution::_420"); + break; + default: + SPIRV_CROSS_THROW("Invalid format resolution."); + } + + if (constexpr_sampler->chroma_filter != MSL_SAMPLER_FILTER_NEAREST) + samp_args.push_back("spvChromaFilter::linear"); + + if (constexpr_sampler->x_chroma_offset != MSL_CHROMA_LOCATION_COSITED_EVEN) + samp_args.push_back("spvXChromaLocation::midpoint"); + if (constexpr_sampler->y_chroma_offset != MSL_CHROMA_LOCATION_COSITED_EVEN) + samp_args.push_back("spvYChromaLocation::midpoint"); + switch (constexpr_sampler->ycbcr_model) + { + case MSL_SAMPLER_YCBCR_MODEL_CONVERSION_RGB_IDENTITY: + // Default + break; + case MSL_SAMPLER_YCBCR_MODEL_CONVERSION_YCBCR_IDENTITY: + samp_args.push_back("spvYCbCrModelConversion::ycbcr_identity"); + break; + case MSL_SAMPLER_YCBCR_MODEL_CONVERSION_YCBCR_BT_709: + samp_args.push_back("spvYCbCrModelConversion::ycbcr_bt_709"); + break; + case MSL_SAMPLER_YCBCR_MODEL_CONVERSION_YCBCR_BT_601: + samp_args.push_back("spvYCbCrModelConversion::ycbcr_bt_601"); + break; + case MSL_SAMPLER_YCBCR_MODEL_CONVERSION_YCBCR_BT_2020: + samp_args.push_back("spvYCbCrModelConversion::ycbcr_bt_2020"); + break; + default: + SPIRV_CROSS_THROW("Invalid Y'CbCr model conversion."); + } + if (constexpr_sampler->ycbcr_range != MSL_SAMPLER_YCBCR_RANGE_ITU_FULL) + samp_args.push_back("spvYCbCrRange::itu_narrow"); + samp_args.push_back(join("spvComponentBits(", constexpr_sampler->bpc, ")")); + arg_str += join(", spvYCbCrSampler(", merge(samp_args), ")"); + } + } + + if (is_dynamic_img_sampler && constexpr_sampler && constexpr_sampler->ycbcr_conversion_enable) + arg_str += join(", (uint(", create_swizzle(constexpr_sampler->swizzle[3]), ") << 24) | (uint(", + create_swizzle(constexpr_sampler->swizzle[2]), ") << 16) | (uint(", + create_swizzle(constexpr_sampler->swizzle[1]), ") << 8) | uint(", + create_swizzle(constexpr_sampler->swizzle[0]), ")"); + else if (msl_options.swizzle_texture_samples && has_sampled_images && is_sampled_image_type(type)) + arg_str += ", " + to_swizzle_expression(var_id ? var_id : id); + + if (buffer_requires_array_length(var_id)) + arg_str += ", " + to_buffer_size_expression(var_id ? var_id : id); + + if (is_dynamic_img_sampler) + arg_str += ")"; + } + + // Emulate texture2D atomic operations + auto *backing_var = maybe_get_backing_variable(var_id); + if (backing_var && atomic_image_vars_emulated.count(backing_var->self)) + { + arg_str += ", " + to_expression(var_id) + "_atomic"; + } + + return arg_str; +} + +// If the ID represents a sampled image that has been assigned a sampler already, +// generate an expression for the sampler, otherwise generate a fake sampler name +// by appending a suffix to the expression constructed from the ID. +string CompilerMSL::to_sampler_expression(uint32_t id) +{ + auto *combined = maybe_get<SPIRCombinedImageSampler>(id); + if (combined && combined->sampler) + return to_expression(combined->sampler); + + uint32_t expr_id = combined ? uint32_t(combined->image) : id; + + // Constexpr samplers are declared as local variables, + // so exclude any qualifier names on the image expression. + if (auto *var = maybe_get_backing_variable(expr_id)) + { + uint32_t img_id = var->basevariable ? var->basevariable : VariableID(var->self); + if (find_constexpr_sampler(img_id)) + return Compiler::to_name(img_id) + sampler_name_suffix; + } + + auto img_expr = to_expression(expr_id); + auto index = img_expr.find_first_of('['); + if (index == string::npos) + return img_expr + sampler_name_suffix; + else + return img_expr.substr(0, index) + sampler_name_suffix + img_expr.substr(index); +} + +string CompilerMSL::to_swizzle_expression(uint32_t id) +{ + auto *combined = maybe_get<SPIRCombinedImageSampler>(id); + + auto expr = to_expression(combined ? combined->image : VariableID(id)); + auto index = expr.find_first_of('['); + + // If an image is part of an argument buffer translate this to a legal identifier. + string::size_type period = 0; + while ((period = expr.find_first_of('.', period)) != string::npos && period < index) + expr[period] = '_'; + + if (index == string::npos) + return expr + swizzle_name_suffix; + else + { + auto image_expr = expr.substr(0, index); + auto array_expr = expr.substr(index); + return image_expr + swizzle_name_suffix + array_expr; + } +} + +string CompilerMSL::to_buffer_size_expression(uint32_t id) +{ + auto expr = to_expression(id); + auto index = expr.find_first_of('['); + + // This is quite crude, but we need to translate the reference name (*spvDescriptorSetN.name) to + // the pointer expression spvDescriptorSetN.name to make a reasonable expression here. + // This only happens if we have argument buffers and we are using OpArrayLength on a lone SSBO in that set. + if (expr.size() >= 3 && expr[0] == '(' && expr[1] == '*') + expr = address_of_expression(expr); + + // If a buffer is part of an argument buffer translate this to a legal identifier. + for (auto &c : expr) + if (c == '.') + c = '_'; + + if (index == string::npos) + return expr + buffer_size_name_suffix; + else + { + auto buffer_expr = expr.substr(0, index); + auto array_expr = expr.substr(index); + if (auto var = maybe_get_backing_variable(id)) + { + if (is_var_runtime_size_array(*var)) + { + if (!msl_options.runtime_array_rich_descriptor) + SPIRV_CROSS_THROW("OpArrayLength requires rich descriptor format"); + + auto last_pos = array_expr.find_last_of(']'); + if (last_pos != std::string::npos) + return buffer_expr + ".length(" + array_expr.substr(1, last_pos - 1) + ")"; + } + } + return buffer_expr + buffer_size_name_suffix + array_expr; + } +} + +// Checks whether the type is a Block all of whose members have DecorationPatch. +bool CompilerMSL::is_patch_block(const SPIRType &type) +{ + if (!has_decoration(type.self, DecorationBlock)) + return false; + + for (uint32_t i = 0; i < type.member_types.size(); i++) + { + if (!has_member_decoration(type.self, i, DecorationPatch)) + return false; + } + + return true; +} + +// Checks whether the ID is a row_major matrix that requires conversion before use +bool CompilerMSL::is_non_native_row_major_matrix(uint32_t id) +{ + auto *e = maybe_get<SPIRExpression>(id); + if (e) + return e->need_transpose; + else + return has_decoration(id, DecorationRowMajor); +} + +// Checks whether the member is a row_major matrix that requires conversion before use +bool CompilerMSL::member_is_non_native_row_major_matrix(const SPIRType &type, uint32_t index) +{ + return has_member_decoration(type.self, index, DecorationRowMajor); +} + +string CompilerMSL::convert_row_major_matrix(string exp_str, const SPIRType &exp_type, uint32_t physical_type_id, + bool is_packed, bool relaxed) +{ + if (!is_matrix(exp_type)) + { + return CompilerGLSL::convert_row_major_matrix(std::move(exp_str), exp_type, physical_type_id, is_packed, relaxed); + } + else + { + strip_enclosed_expression(exp_str); + if (physical_type_id != 0 || is_packed) + exp_str = unpack_expression_type(exp_str, exp_type, physical_type_id, is_packed, true); + return join("transpose(", exp_str, ")"); + } +} + +// Called automatically at the end of the entry point function +void CompilerMSL::emit_fixup() +{ + if (is_vertex_like_shader() && stage_out_var_id && !qual_pos_var_name.empty() && !capture_output_to_buffer) + { + if (options.vertex.fixup_clipspace) + statement(qual_pos_var_name, ".z = (", qual_pos_var_name, ".z + ", qual_pos_var_name, + ".w) * 0.5; // Adjust clip-space for Metal"); + + if (options.vertex.flip_vert_y) + statement(qual_pos_var_name, ".y = -(", qual_pos_var_name, ".y);", " // Invert Y-axis for Metal"); + } +} + +// Return a string defining a structure member, with padding and packing. +string CompilerMSL::to_struct_member(const SPIRType &type, uint32_t member_type_id, uint32_t index, + const string &qualifier) +{ + uint32_t orig_member_type_id = member_type_id; + if (member_is_remapped_physical_type(type, index)) + member_type_id = get_extended_member_decoration(type.self, index, SPIRVCrossDecorationPhysicalTypeID); + auto &physical_type = get<SPIRType>(member_type_id); + + // If this member is packed, mark it as so. + string pack_pfx; + + // Allow Metal to use the array<T> template to make arrays a value type + uint32_t orig_id = 0; + if (has_extended_member_decoration(type.self, index, SPIRVCrossDecorationInterfaceOrigID)) + orig_id = get_extended_member_decoration(type.self, index, SPIRVCrossDecorationInterfaceOrigID); + + bool row_major = false; + if (is_matrix(physical_type)) + row_major = has_member_decoration(type.self, index, DecorationRowMajor); + + SPIRType row_major_physical_type { OpTypeMatrix }; + const SPIRType *declared_type = &physical_type; + + // If a struct is being declared with physical layout, + // do not use array<T> wrappers. + // This avoids a lot of complicated cases with packed vectors and matrices, + // and generally we cannot copy full arrays in and out of buffers into Function + // address space. + // Array of resources should also be declared as builtin arrays. + if (has_member_decoration(type.self, index, DecorationOffset)) + is_using_builtin_array = true; + else if (has_extended_member_decoration(type.self, index, SPIRVCrossDecorationResourceIndexPrimary)) + is_using_builtin_array = true; + + if (member_is_packed_physical_type(type, index)) + { + // If we're packing a matrix, output an appropriate typedef + if (physical_type.basetype == SPIRType::Struct) + { + SPIRV_CROSS_THROW("Cannot emit a packed struct currently."); + } + else if (is_matrix(physical_type)) + { + uint32_t rows = physical_type.vecsize; + uint32_t cols = physical_type.columns; + pack_pfx = "packed_"; + if (row_major) + { + // These are stored transposed. + rows = physical_type.columns; + cols = physical_type.vecsize; + pack_pfx = "packed_rm_"; + } + string base_type = physical_type.width == 16 ? "half" : "float"; + string td_line = "typedef "; + td_line += "packed_" + base_type + to_string(rows); + td_line += " " + pack_pfx; + // Use the actual matrix size here. + td_line += base_type + to_string(physical_type.columns) + "x" + to_string(physical_type.vecsize); + td_line += "[" + to_string(cols) + "]"; + td_line += ";"; + add_typedef_line(td_line); + } + else if (!is_scalar(physical_type)) // scalar type is already packed. + pack_pfx = "packed_"; + } + else if (is_matrix(physical_type)) + { + if (!msl_options.supports_msl_version(3, 0) && + has_extended_decoration(type.self, SPIRVCrossDecorationWorkgroupStruct)) + { + pack_pfx = "spvStorage_"; + add_spv_func_and_recompile(SPVFuncImplStorageMatrix); + // The pack prefix causes problems with array<T> wrappers. + is_using_builtin_array = true; + } + if (row_major) + { + // Need to declare type with flipped vecsize/columns. + row_major_physical_type = physical_type; + swap(row_major_physical_type.vecsize, row_major_physical_type.columns); + declared_type = &row_major_physical_type; + } + } + + // iOS Tier 1 argument buffers do not support writable images. + if (physical_type.basetype == SPIRType::Image && + physical_type.image.sampled == 2 && + msl_options.is_ios() && + msl_options.argument_buffers_tier <= Options::ArgumentBuffersTier::Tier1 && + !has_decoration(orig_id, DecorationNonWritable)) + { + SPIRV_CROSS_THROW("Writable images are not allowed on Tier1 argument buffers on iOS."); + } + + // Array information is baked into these types. + string array_type; + if (physical_type.basetype != SPIRType::Image && physical_type.basetype != SPIRType::Sampler && + physical_type.basetype != SPIRType::SampledImage) + { + BuiltIn builtin = BuiltInMax; + + // Special handling. In [[stage_out]] or [[stage_in]] blocks, + // we need flat arrays, but if we're somehow declaring gl_PerVertex for constant array reasons, we want + // template array types to be declared. + bool is_ib_in_out = + ((stage_out_var_id && get_stage_out_struct_type().self == type.self && + variable_storage_requires_stage_io(StorageClassOutput)) || + (stage_in_var_id && get_stage_in_struct_type().self == type.self && + variable_storage_requires_stage_io(StorageClassInput))); + if (is_ib_in_out && is_member_builtin(type, index, &builtin)) + is_using_builtin_array = true; + array_type = type_to_array_glsl(physical_type, orig_id); + } + + if (orig_id) + { + auto *data_type = declared_type; + if (is_pointer(*data_type)) + data_type = &get_pointee_type(*data_type); + + if (is_array(*data_type) && get_resource_array_size(*data_type, orig_id) == 0) + { + // Hack for declaring unsized array of resources. Need to declare dummy sized array by value inline. + // This can then be wrapped in spvDescriptorArray as usual. + array_type = "[1] /* unsized array hack */"; + } + } + + string decl_type; + if (declared_type->vecsize > 4) + { + auto orig_type = get<SPIRType>(orig_member_type_id); + if (is_matrix(orig_type) && row_major) + swap(orig_type.vecsize, orig_type.columns); + orig_type.columns = 1; + decl_type = type_to_glsl(orig_type, orig_id, true); + + if (declared_type->columns > 1) + decl_type = join("spvPaddedStd140Matrix<", decl_type, ", ", declared_type->columns, ">"); + else + decl_type = join("spvPaddedStd140<", decl_type, ">"); + } + else + decl_type = type_to_glsl(*declared_type, orig_id, true); + + const char *overlapping_binding_tag = + has_extended_member_decoration(type.self, index, SPIRVCrossDecorationOverlappingBinding) ? + "// Overlapping binding: " : ""; + + auto result = join(overlapping_binding_tag, pack_pfx, decl_type, " ", qualifier, + to_member_name(type, index), member_attribute_qualifier(type, index), array_type, ";"); + + is_using_builtin_array = false; + return result; +} + +// Emit a structure member, padding and packing to maintain the correct memeber alignments. +void CompilerMSL::emit_struct_member(const SPIRType &type, uint32_t member_type_id, uint32_t index, + const string &qualifier, uint32_t) +{ + // If this member requires padding to maintain its declared offset, emit a dummy padding member before it. + if (has_extended_member_decoration(type.self, index, SPIRVCrossDecorationPaddingTarget)) + { + uint32_t pad_len = get_extended_member_decoration(type.self, index, SPIRVCrossDecorationPaddingTarget); + statement("char _m", index, "_pad", "[", pad_len, "];"); + } + + // Handle HLSL-style 0-based vertex/instance index. + builtin_declaration = true; + statement(to_struct_member(type, member_type_id, index, qualifier)); + builtin_declaration = false; +} + +void CompilerMSL::emit_struct_padding_target(const SPIRType &type) +{ + uint32_t struct_size = get_declared_struct_size_msl(type, true, true); + uint32_t target_size = get_extended_decoration(type.self, SPIRVCrossDecorationPaddingTarget); + if (target_size < struct_size) + SPIRV_CROSS_THROW("Cannot pad with negative bytes."); + else if (target_size > struct_size) + statement("char _m0_final_padding[", target_size - struct_size, "];"); +} + +// Return a MSL qualifier for the specified function attribute member +string CompilerMSL::member_attribute_qualifier(const SPIRType &type, uint32_t index) +{ + auto &execution = get_entry_point(); + + uint32_t mbr_type_id = type.member_types[index]; + auto &mbr_type = get<SPIRType>(mbr_type_id); + + BuiltIn builtin = BuiltInMax; + bool is_builtin = is_member_builtin(type, index, &builtin); + + if (has_extended_member_decoration(type.self, index, SPIRVCrossDecorationResourceIndexPrimary)) + { + string quals = join( + " [[id(", get_extended_member_decoration(type.self, index, SPIRVCrossDecorationResourceIndexPrimary), ")"); + if (interlocked_resources.count( + get_extended_member_decoration(type.self, index, SPIRVCrossDecorationInterfaceOrigID))) + quals += ", raster_order_group(0)"; + quals += "]]"; + return quals; + } + + // Vertex function inputs + if (execution.model == ExecutionModelVertex && type.storage == StorageClassInput) + { + if (is_builtin) + { + switch (builtin) + { + case BuiltInVertexId: + case BuiltInVertexIndex: + case BuiltInBaseVertex: + case BuiltInInstanceId: + case BuiltInInstanceIndex: + case BuiltInBaseInstance: + if (msl_options.vertex_for_tessellation) + return ""; + return string(" [[") + builtin_qualifier(builtin) + "]]"; + + case BuiltInDrawIndex: + SPIRV_CROSS_THROW("DrawIndex is not supported in MSL."); + + default: + return ""; + } + } + + uint32_t locn; + if (is_builtin) + locn = get_or_allocate_builtin_input_member_location(builtin, type.self, index); + else + locn = get_member_location(type.self, index); + + if (locn != k_unknown_location) + return string(" [[attribute(") + convert_to_string(locn) + ")]]"; + } + + // Vertex and tessellation evaluation function outputs + if (((execution.model == ExecutionModelVertex && !msl_options.vertex_for_tessellation) || is_tese_shader()) && + type.storage == StorageClassOutput) + { + if (is_builtin) + { + switch (builtin) + { + case BuiltInPointSize: + // Only mark the PointSize builtin if really rendering points. + // Some shaders may include a PointSize builtin even when used to render + // non-point topologies, and Metal will reject this builtin when compiling + // the shader into a render pipeline that uses a non-point topology. + return msl_options.enable_point_size_builtin ? (string(" [[") + builtin_qualifier(builtin) + "]]") : ""; + + case BuiltInViewportIndex: + if (!msl_options.supports_msl_version(2, 0)) + SPIRV_CROSS_THROW("ViewportIndex requires Metal 2.0."); + /* fallthrough */ + case BuiltInPosition: + case BuiltInLayer: + return string(" [[") + builtin_qualifier(builtin) + "]]" + (mbr_type.array.empty() ? "" : " "); + + case BuiltInClipDistance: + if (has_member_decoration(type.self, index, DecorationIndex)) + return join(" [[user(clip", get_member_decoration(type.self, index, DecorationIndex), ")]]"); + else + return string(" [[") + builtin_qualifier(builtin) + "]]" + (mbr_type.array.empty() ? "" : " "); + + case BuiltInCullDistance: + if (has_member_decoration(type.self, index, DecorationIndex)) + return join(" [[user(cull", get_member_decoration(type.self, index, DecorationIndex), ")]]"); + else + return string(" [[") + builtin_qualifier(builtin) + "]]" + (mbr_type.array.empty() ? "" : " "); + + default: + return ""; + } + } + string loc_qual = member_location_attribute_qualifier(type, index); + if (!loc_qual.empty()) + return join(" [[", loc_qual, "]]"); + } + + if (execution.model == ExecutionModelVertex && msl_options.vertex_for_tessellation && type.storage == StorageClassOutput) + { + // For this type of shader, we always arrange for it to capture its + // output to a buffer. For this reason, qualifiers are irrelevant here. + if (is_builtin) + // We still have to assign a location so the output struct will sort correctly. + get_or_allocate_builtin_output_member_location(builtin, type.self, index); + return ""; + } + + // Tessellation control function inputs + if (is_tesc_shader() && type.storage == StorageClassInput) + { + if (is_builtin) + { + switch (builtin) + { + case BuiltInInvocationId: + case BuiltInPrimitiveId: + if (msl_options.multi_patch_workgroup) + return ""; + return string(" [[") + builtin_qualifier(builtin) + "]]" + (mbr_type.array.empty() ? "" : " "); + case BuiltInSubgroupLocalInvocationId: // FIXME: Should work in any stage + case BuiltInSubgroupSize: // FIXME: Should work in any stage + if (msl_options.emulate_subgroups) + return ""; + return string(" [[") + builtin_qualifier(builtin) + "]]" + (mbr_type.array.empty() ? "" : " "); + case BuiltInPatchVertices: + return ""; + // Others come from stage input. + default: + break; + } + } + if (msl_options.multi_patch_workgroup) + return ""; + + uint32_t locn; + if (is_builtin) + locn = get_or_allocate_builtin_input_member_location(builtin, type.self, index); + else + locn = get_member_location(type.self, index); + + if (locn != k_unknown_location) + return string(" [[attribute(") + convert_to_string(locn) + ")]]"; + } + + // Tessellation control function outputs + if (is_tesc_shader() && type.storage == StorageClassOutput) + { + // For this type of shader, we always arrange for it to capture its + // output to a buffer. For this reason, qualifiers are irrelevant here. + if (is_builtin) + // We still have to assign a location so the output struct will sort correctly. + get_or_allocate_builtin_output_member_location(builtin, type.self, index); + return ""; + } + + // Tessellation evaluation function inputs + if (is_tese_shader() && type.storage == StorageClassInput) + { + if (is_builtin) + { + switch (builtin) + { + case BuiltInPrimitiveId: + case BuiltInTessCoord: + return string(" [[") + builtin_qualifier(builtin) + "]]"; + case BuiltInPatchVertices: + return ""; + // Others come from stage input. + default: + break; + } + } + + if (msl_options.raw_buffer_tese_input) + return ""; + + // The special control point array must not be marked with an attribute. + if (get_type(type.member_types[index]).basetype == SPIRType::ControlPointArray) + return ""; + + uint32_t locn; + if (is_builtin) + locn = get_or_allocate_builtin_input_member_location(builtin, type.self, index); + else + locn = get_member_location(type.self, index); + + if (locn != k_unknown_location) + return string(" [[attribute(") + convert_to_string(locn) + ")]]"; + } + + // Tessellation evaluation function outputs were handled above. + + // Fragment function inputs + if (execution.model == ExecutionModelFragment && type.storage == StorageClassInput) + { + string quals; + if (is_builtin) + { + switch (builtin) + { + case BuiltInViewIndex: + if (!msl_options.multiview || !msl_options.multiview_layered_rendering) + break; + /* fallthrough */ + case BuiltInFrontFacing: + case BuiltInPointCoord: + case BuiltInFragCoord: + case BuiltInSampleId: + case BuiltInSampleMask: + case BuiltInLayer: + case BuiltInBaryCoordKHR: + case BuiltInBaryCoordNoPerspKHR: + quals = builtin_qualifier(builtin); + break; + + case BuiltInClipDistance: + return join(" [[user(clip", get_member_decoration(type.self, index, DecorationIndex), ")]]"); + case BuiltInCullDistance: + return join(" [[user(cull", get_member_decoration(type.self, index, DecorationIndex), ")]]"); + + default: + break; + } + } + else + quals = member_location_attribute_qualifier(type, index); + + if (builtin == BuiltInBaryCoordKHR || builtin == BuiltInBaryCoordNoPerspKHR) + { + if (has_member_decoration(type.self, index, DecorationFlat) || + has_member_decoration(type.self, index, DecorationCentroid) || + has_member_decoration(type.self, index, DecorationSample) || + has_member_decoration(type.self, index, DecorationNoPerspective)) + { + // NoPerspective is baked into the builtin type. + SPIRV_CROSS_THROW( + "Flat, Centroid, Sample, NoPerspective decorations are not supported for BaryCoord inputs."); + } + } + + // Don't bother decorating integers with the 'flat' attribute; it's + // the default (in fact, the only option). Also don't bother with the + // FragCoord builtin; it's always noperspective on Metal. + if (!type_is_integral(mbr_type) && (!is_builtin || builtin != BuiltInFragCoord)) + { + if (has_member_decoration(type.self, index, DecorationFlat)) + { + if (!quals.empty()) + quals += ", "; + quals += "flat"; + } + else if (has_member_decoration(type.self, index, DecorationCentroid)) + { + if (!quals.empty()) + quals += ", "; + if (has_member_decoration(type.self, index, DecorationNoPerspective)) + quals += "centroid_no_perspective"; + else + quals += "centroid_perspective"; + } + else if (has_member_decoration(type.self, index, DecorationSample)) + { + if (!quals.empty()) + quals += ", "; + if (has_member_decoration(type.self, index, DecorationNoPerspective)) + quals += "sample_no_perspective"; + else + quals += "sample_perspective"; + } + else if (has_member_decoration(type.self, index, DecorationNoPerspective)) + { + if (!quals.empty()) + quals += ", "; + quals += "center_no_perspective"; + } + } + + if (!quals.empty()) + return " [[" + quals + "]]"; + } + + // Fragment function outputs + if (execution.model == ExecutionModelFragment && type.storage == StorageClassOutput) + { + if (is_builtin) + { + switch (builtin) + { + case BuiltInFragStencilRefEXT: + // Similar to PointSize, only mark FragStencilRef if there's a stencil buffer. + // Some shaders may include a FragStencilRef builtin even when used to render + // without a stencil attachment, and Metal will reject this builtin + // when compiling the shader into a render pipeline that does not set + // stencilAttachmentPixelFormat. + if (!msl_options.enable_frag_stencil_ref_builtin) + return ""; + if (!msl_options.supports_msl_version(2, 1)) + SPIRV_CROSS_THROW("Stencil export only supported in MSL 2.1 and up."); + return string(" [[") + builtin_qualifier(builtin) + "]]"; + + case BuiltInFragDepth: + // Ditto FragDepth. + if (!msl_options.enable_frag_depth_builtin) + return ""; + /* fallthrough */ + case BuiltInSampleMask: + return string(" [[") + builtin_qualifier(builtin) + "]]"; + + default: + return ""; + } + } + uint32_t locn = get_member_location(type.self, index); + // Metal will likely complain about missing color attachments, too. + if (locn != k_unknown_location && !(msl_options.enable_frag_output_mask & (1 << locn))) + return ""; + if (locn != k_unknown_location && has_member_decoration(type.self, index, DecorationIndex)) + return join(" [[color(", locn, "), index(", get_member_decoration(type.self, index, DecorationIndex), + ")]]"); + else if (locn != k_unknown_location) + return join(" [[color(", locn, ")]]"); + else if (has_member_decoration(type.self, index, DecorationIndex)) + return join(" [[index(", get_member_decoration(type.self, index, DecorationIndex), ")]]"); + else + return ""; + } + + // Compute function inputs + if (execution.model == ExecutionModelGLCompute && type.storage == StorageClassInput) + { + if (is_builtin) + { + switch (builtin) + { + case BuiltInNumSubgroups: + case BuiltInSubgroupId: + case BuiltInSubgroupLocalInvocationId: // FIXME: Should work in any stage + case BuiltInSubgroupSize: // FIXME: Should work in any stage + if (msl_options.emulate_subgroups) + break; + /* fallthrough */ + case BuiltInGlobalInvocationId: + case BuiltInWorkgroupId: + case BuiltInNumWorkgroups: + case BuiltInLocalInvocationId: + case BuiltInLocalInvocationIndex: + return string(" [[") + builtin_qualifier(builtin) + "]]"; + + default: + return ""; + } + } + } + + return ""; +} + +// A user-defined output variable is considered to match an input variable in the subsequent +// stage if the two variables are declared with the same Location and Component decoration and +// match in type and decoration, except that interpolation decorations are not required to match. +// For the purposes of interface matching, variables declared without a Component decoration are +// considered to have a Component decoration of zero. +string CompilerMSL::member_location_attribute_qualifier(const SPIRType &type, uint32_t index) +{ + string quals; + uint32_t comp; + uint32_t locn = get_member_location(type.self, index, &comp); + if (locn != k_unknown_location) + { + quals += "user(locn"; + quals += convert_to_string(locn); + if (comp != k_unknown_component && comp != 0) + { + quals += "_"; + quals += convert_to_string(comp); + } + quals += ")"; + } + return quals; +} + +// Returns the location decoration of the member with the specified index in the specified type. +// If the location of the member has been explicitly set, that location is used. If not, this +// function assumes the members are ordered in their location order, and simply returns the +// index as the location. +uint32_t CompilerMSL::get_member_location(uint32_t type_id, uint32_t index, uint32_t *comp) const +{ + if (comp) + { + if (has_member_decoration(type_id, index, DecorationComponent)) + *comp = get_member_decoration(type_id, index, DecorationComponent); + else + *comp = k_unknown_component; + } + + if (has_member_decoration(type_id, index, DecorationLocation)) + return get_member_decoration(type_id, index, DecorationLocation); + else + return k_unknown_location; +} + +uint32_t CompilerMSL::get_or_allocate_builtin_input_member_location(spv::BuiltIn builtin, + uint32_t type_id, uint32_t index, + uint32_t *comp) +{ + uint32_t loc = get_member_location(type_id, index, comp); + if (loc != k_unknown_location) + return loc; + + if (comp) + *comp = k_unknown_component; + + // Late allocation. Find a location which is unused by the application. + // This can happen for built-in inputs in tessellation which are mixed and matched with user inputs. + auto &mbr_type = get<SPIRType>(get<SPIRType>(type_id).member_types[index]); + uint32_t count = type_to_location_count(mbr_type); + + loc = 0; + + const auto location_range_in_use = [this](uint32_t location, uint32_t location_count) -> bool { + for (uint32_t i = 0; i < location_count; i++) + if (location_inputs_in_use.count(location + i) != 0) + return true; + return false; + }; + + while (location_range_in_use(loc, count)) + loc++; + + set_member_decoration(type_id, index, DecorationLocation, loc); + + // Triangle tess level inputs are shared in one packed float4, + // mark both builtins as sharing one location. + if (!msl_options.raw_buffer_tese_input && is_tessellating_triangles() && + (builtin == BuiltInTessLevelInner || builtin == BuiltInTessLevelOuter)) + { + builtin_to_automatic_input_location[BuiltInTessLevelInner] = loc; + builtin_to_automatic_input_location[BuiltInTessLevelOuter] = loc; + } + else + builtin_to_automatic_input_location[builtin] = loc; + + mark_location_as_used_by_shader(loc, mbr_type, StorageClassInput, true); + return loc; +} + +uint32_t CompilerMSL::get_or_allocate_builtin_output_member_location(spv::BuiltIn builtin, + uint32_t type_id, uint32_t index, + uint32_t *comp) +{ + uint32_t loc = get_member_location(type_id, index, comp); + if (loc != k_unknown_location) + return loc; + loc = 0; + + if (comp) + *comp = k_unknown_component; + + // Late allocation. Find a location which is unused by the application. + // This can happen for built-in outputs in tessellation which are mixed and matched with user inputs. + auto &mbr_type = get<SPIRType>(get<SPIRType>(type_id).member_types[index]); + uint32_t count = type_to_location_count(mbr_type); + + const auto location_range_in_use = [this](uint32_t location, uint32_t location_count) -> bool { + for (uint32_t i = 0; i < location_count; i++) + if (location_outputs_in_use.count(location + i) != 0) + return true; + return false; + }; + + while (location_range_in_use(loc, count)) + loc++; + + set_member_decoration(type_id, index, DecorationLocation, loc); + + // Triangle tess level inputs are shared in one packed float4; + // mark both builtins as sharing one location. + if (is_tessellating_triangles() && (builtin == BuiltInTessLevelInner || builtin == BuiltInTessLevelOuter)) + { + builtin_to_automatic_output_location[BuiltInTessLevelInner] = loc; + builtin_to_automatic_output_location[BuiltInTessLevelOuter] = loc; + } + else + builtin_to_automatic_output_location[builtin] = loc; + + mark_location_as_used_by_shader(loc, mbr_type, StorageClassOutput, true); + return loc; +} + +// Returns the type declaration for a function, including the +// entry type if the current function is the entry point function +string CompilerMSL::func_type_decl(SPIRType &type) +{ + // The regular function return type. If not processing the entry point function, that's all we need + string return_type = type_to_glsl(type) + type_to_array_glsl(type, 0); + if (!processing_entry_point) + return return_type; + + // If an outgoing interface block has been defined, and it should be returned, override the entry point return type + bool ep_should_return_output = !get_is_rasterization_disabled(); + if (stage_out_var_id && ep_should_return_output) + return_type = type_to_glsl(get_stage_out_struct_type()) + type_to_array_glsl(type, 0); + + // Prepend a entry type, based on the execution model + string entry_type; + auto &execution = get_entry_point(); + switch (execution.model) + { + case ExecutionModelVertex: + if (msl_options.vertex_for_tessellation && !msl_options.supports_msl_version(1, 2)) + SPIRV_CROSS_THROW("Tessellation requires Metal 1.2."); + entry_type = msl_options.vertex_for_tessellation ? "kernel" : "vertex"; + break; + case ExecutionModelTessellationEvaluation: + if (!msl_options.supports_msl_version(1, 2)) + SPIRV_CROSS_THROW("Tessellation requires Metal 1.2."); + if (execution.flags.get(ExecutionModeIsolines)) + SPIRV_CROSS_THROW("Metal does not support isoline tessellation."); + if (msl_options.is_ios()) + entry_type = join("[[ patch(", is_tessellating_triangles() ? "triangle" : "quad", ") ]] vertex"); + else + entry_type = join("[[ patch(", is_tessellating_triangles() ? "triangle" : "quad", ", ", + execution.output_vertices, ") ]] vertex"); + break; + case ExecutionModelFragment: + entry_type = uses_explicit_early_fragment_test() ? "[[ early_fragment_tests ]] fragment" : "fragment"; + break; + case ExecutionModelTessellationControl: + if (!msl_options.supports_msl_version(1, 2)) + SPIRV_CROSS_THROW("Tessellation requires Metal 1.2."); + if (execution.flags.get(ExecutionModeIsolines)) + SPIRV_CROSS_THROW("Metal does not support isoline tessellation."); + /* fallthrough */ + case ExecutionModelGLCompute: + case ExecutionModelKernel: + entry_type = "kernel"; + break; + default: + entry_type = "unknown"; + break; + } + + return entry_type + " " + return_type; +} + +bool CompilerMSL::is_tesc_shader() const +{ + return get_execution_model() == ExecutionModelTessellationControl; +} + +bool CompilerMSL::is_tese_shader() const +{ + return get_execution_model() == ExecutionModelTessellationEvaluation; +} + +bool CompilerMSL::uses_explicit_early_fragment_test() +{ + auto &ep_flags = get_entry_point().flags; + return ep_flags.get(ExecutionModeEarlyFragmentTests) || ep_flags.get(ExecutionModePostDepthCoverage); +} + +// In MSL, address space qualifiers are required for all pointer or reference variables +string CompilerMSL::get_argument_address_space(const SPIRVariable &argument) +{ + const auto &type = get<SPIRType>(argument.basetype); + return get_type_address_space(type, argument.self, true); +} + +bool CompilerMSL::decoration_flags_signal_volatile(const Bitset &flags) +{ + return flags.get(DecorationVolatile) || flags.get(DecorationCoherent); +} + +string CompilerMSL::get_type_address_space(const SPIRType &type, uint32_t id, bool argument) +{ + // This can be called for variable pointer contexts as well, so be very careful about which method we choose. + Bitset flags; + auto *var = maybe_get<SPIRVariable>(id); + if (var && type.basetype == SPIRType::Struct && + (has_decoration(type.self, DecorationBlock) || has_decoration(type.self, DecorationBufferBlock))) + flags = get_buffer_block_flags(id); + else + flags = get_decoration_bitset(id); + + const char *addr_space = nullptr; + switch (type.storage) + { + case StorageClassWorkgroup: + addr_space = "threadgroup"; + break; + + case StorageClassStorageBuffer: + case StorageClassPhysicalStorageBuffer: + { + // For arguments from variable pointers, we use the write count deduction, so + // we should not assume any constness here. Only for global SSBOs. + bool readonly = false; + if (!var || has_decoration(type.self, DecorationBlock)) + readonly = flags.get(DecorationNonWritable); + + addr_space = readonly ? "const device" : "device"; + break; + } + + case StorageClassUniform: + case StorageClassUniformConstant: + case StorageClassPushConstant: + if (type.basetype == SPIRType::Struct) + { + bool ssbo = has_decoration(type.self, DecorationBufferBlock); + if (ssbo) + addr_space = flags.get(DecorationNonWritable) ? "const device" : "device"; + else + addr_space = "constant"; + } + else if (!argument) + { + addr_space = "constant"; + } + else if (type_is_msl_framebuffer_fetch(type)) + { + // Subpass inputs are passed around by value. + addr_space = ""; + } + break; + + case StorageClassFunction: + case StorageClassGeneric: + break; + + case StorageClassInput: + if (is_tesc_shader() && var && var->basevariable == stage_in_ptr_var_id) + addr_space = msl_options.multi_patch_workgroup ? "const device" : "threadgroup"; + // Don't pass tessellation levels in the device AS; we load and convert them + // to float manually. + if (is_tese_shader() && msl_options.raw_buffer_tese_input && var) + { + bool is_stage_in = var->basevariable == stage_in_ptr_var_id; + bool is_patch_stage_in = has_decoration(var->self, DecorationPatch); + bool is_builtin = has_decoration(var->self, DecorationBuiltIn); + BuiltIn builtin = (BuiltIn)get_decoration(var->self, DecorationBuiltIn); + bool is_tess_level = is_builtin && (builtin == BuiltInTessLevelOuter || builtin == BuiltInTessLevelInner); + if (is_stage_in || (is_patch_stage_in && !is_tess_level)) + addr_space = "const device"; + } + if (get_execution_model() == ExecutionModelFragment && var && var->basevariable == stage_in_var_id) + addr_space = "thread"; + break; + + case StorageClassOutput: + if (capture_output_to_buffer) + { + if (var && type.storage == StorageClassOutput) + { + bool is_masked = is_stage_output_variable_masked(*var); + + if (is_masked) + { + if (is_tessellation_shader()) + addr_space = "threadgroup"; + else + addr_space = "thread"; + } + else if (variable_decl_is_remapped_storage(*var, StorageClassWorkgroup)) + addr_space = "threadgroup"; + } + + if (!addr_space) + addr_space = "device"; + } + break; + + default: + break; + } + + if (!addr_space) + { + // No address space for plain values. + addr_space = type.pointer || (argument && type.basetype == SPIRType::ControlPointArray) ? "thread" : ""; + } + + return join(decoration_flags_signal_volatile(flags) ? "volatile " : "", addr_space); +} + +const char *CompilerMSL::to_restrict(uint32_t id, bool space) +{ + // This can be called for variable pointer contexts as well, so be very careful about which method we choose. + Bitset flags; + if (ir.ids[id].get_type() == TypeVariable) + { + uint32_t type_id = expression_type_id(id); + auto &type = expression_type(id); + if (type.basetype == SPIRType::Struct && + (has_decoration(type_id, DecorationBlock) || has_decoration(type_id, DecorationBufferBlock))) + flags = get_buffer_block_flags(id); + else + flags = get_decoration_bitset(id); + } + else + flags = get_decoration_bitset(id); + + return flags.get(DecorationRestrict) || flags.get(DecorationRestrictPointerEXT) ? + (space ? "__restrict " : "__restrict") : ""; +} + +string CompilerMSL::entry_point_arg_stage_in() +{ + string decl; + + if ((is_tesc_shader() && msl_options.multi_patch_workgroup) || + (is_tese_shader() && msl_options.raw_buffer_tese_input)) + return decl; + + // Stage-in structure + uint32_t stage_in_id; + if (is_tese_shader()) + stage_in_id = patch_stage_in_var_id; + else + stage_in_id = stage_in_var_id; + + if (stage_in_id) + { + auto &var = get<SPIRVariable>(stage_in_id); + auto &type = get_variable_data_type(var); + + add_resource_name(var.self); + decl = join(type_to_glsl(type), " ", to_name(var.self), " [[stage_in]]"); + } + + return decl; +} + +// Returns true if this input builtin should be a direct parameter on a shader function parameter list, +// and false for builtins that should be passed or calculated some other way. +bool CompilerMSL::is_direct_input_builtin(BuiltIn bi_type) +{ + switch (bi_type) + { + // Vertex function in + case BuiltInVertexId: + case BuiltInVertexIndex: + case BuiltInBaseVertex: + case BuiltInInstanceId: + case BuiltInInstanceIndex: + case BuiltInBaseInstance: + return get_execution_model() != ExecutionModelVertex || !msl_options.vertex_for_tessellation; + // Tess. control function in + case BuiltInPosition: + case BuiltInPointSize: + case BuiltInClipDistance: + case BuiltInCullDistance: + case BuiltInPatchVertices: + return false; + case BuiltInInvocationId: + case BuiltInPrimitiveId: + return !is_tesc_shader() || !msl_options.multi_patch_workgroup; + // Tess. evaluation function in + case BuiltInTessLevelInner: + case BuiltInTessLevelOuter: + return false; + // Fragment function in + case BuiltInSamplePosition: + case BuiltInHelperInvocation: + case BuiltInBaryCoordKHR: + case BuiltInBaryCoordNoPerspKHR: + return false; + case BuiltInViewIndex: + return get_execution_model() == ExecutionModelFragment && msl_options.multiview && + msl_options.multiview_layered_rendering; + // Compute function in + case BuiltInSubgroupId: + case BuiltInNumSubgroups: + return !msl_options.emulate_subgroups; + // Any stage function in + case BuiltInDeviceIndex: + case BuiltInSubgroupEqMask: + case BuiltInSubgroupGeMask: + case BuiltInSubgroupGtMask: + case BuiltInSubgroupLeMask: + case BuiltInSubgroupLtMask: + return false; + case BuiltInSubgroupSize: + if (msl_options.fixed_subgroup_size != 0) + return false; + /* fallthrough */ + case BuiltInSubgroupLocalInvocationId: + return !msl_options.emulate_subgroups; + default: + return true; + } +} + +// Returns true if this is a fragment shader that runs per sample, and false otherwise. +bool CompilerMSL::is_sample_rate() const +{ + auto &caps = get_declared_capabilities(); + return get_execution_model() == ExecutionModelFragment && + (msl_options.force_sample_rate_shading || + std::find(caps.begin(), caps.end(), CapabilitySampleRateShading) != caps.end() || + (msl_options.use_framebuffer_fetch_subpasses && need_subpass_input_ms)); +} + +bool CompilerMSL::is_intersection_query() const +{ + auto &caps = get_declared_capabilities(); + return std::find(caps.begin(), caps.end(), CapabilityRayQueryKHR) != caps.end(); +} + +void CompilerMSL::entry_point_args_builtin(string &ep_args) +{ + // Builtin variables + SmallVector<pair<SPIRVariable *, BuiltIn>, 8> active_builtins; + ir.for_each_typed_id<SPIRVariable>([&](uint32_t var_id, SPIRVariable &var) { + if (var.storage != StorageClassInput) + return; + + auto bi_type = BuiltIn(get_decoration(var_id, DecorationBuiltIn)); + + // Don't emit SamplePosition as a separate parameter. In the entry + // point, we get that by calling get_sample_position() on the sample ID. + if (is_builtin_variable(var) && + get_variable_data_type(var).basetype != SPIRType::Struct && + get_variable_data_type(var).basetype != SPIRType::ControlPointArray) + { + // If the builtin is not part of the active input builtin set, don't emit it. + // Relevant for multiple entry-point modules which might declare unused builtins. + if (!active_input_builtins.get(bi_type) || !interface_variable_exists_in_entry_point(var_id)) + return; + + // Remember this variable. We may need to correct its type. + active_builtins.push_back(make_pair(&var, bi_type)); + + if (is_direct_input_builtin(bi_type)) + { + if (!ep_args.empty()) + ep_args += ", "; + + // Handle HLSL-style 0-based vertex/instance index. + builtin_declaration = true; + + // Handle different MSL gl_TessCoord types. (float2, float3) + if (bi_type == BuiltInTessCoord && get_entry_point().flags.get(ExecutionModeQuads)) + ep_args += "float2 " + to_expression(var_id) + "In"; + else + ep_args += builtin_type_decl(bi_type, var_id) + " " + to_expression(var_id); + + ep_args += string(" [[") + builtin_qualifier(bi_type); + if (bi_type == BuiltInSampleMask && get_entry_point().flags.get(ExecutionModePostDepthCoverage)) + { + if (!msl_options.supports_msl_version(2)) + SPIRV_CROSS_THROW("Post-depth coverage requires MSL 2.0."); + if (msl_options.is_macos() && !msl_options.supports_msl_version(2, 3)) + SPIRV_CROSS_THROW("Post-depth coverage on Mac requires MSL 2.3."); + ep_args += ", post_depth_coverage"; + } + ep_args += "]]"; + builtin_declaration = false; + } + } + + if (has_extended_decoration(var_id, SPIRVCrossDecorationBuiltInDispatchBase)) + { + // This is a special implicit builtin, not corresponding to any SPIR-V builtin, + // which holds the base that was passed to vkCmdDispatchBase() or vkCmdDrawIndexed(). If it's present, + // assume we emitted it for a good reason. + assert(msl_options.supports_msl_version(1, 2)); + if (!ep_args.empty()) + ep_args += ", "; + + ep_args += type_to_glsl(get_variable_data_type(var)) + " " + to_expression(var_id) + " [[grid_origin]]"; + } + + if (has_extended_decoration(var_id, SPIRVCrossDecorationBuiltInStageInputSize)) + { + // This is another special implicit builtin, not corresponding to any SPIR-V builtin, + // which holds the number of vertices and instances to draw. If it's present, + // assume we emitted it for a good reason. + assert(msl_options.supports_msl_version(1, 2)); + if (!ep_args.empty()) + ep_args += ", "; + + ep_args += type_to_glsl(get_variable_data_type(var)) + " " + to_expression(var_id) + " [[grid_size]]"; + } + }); + + // Correct the types of all encountered active builtins. We couldn't do this before + // because ensure_correct_builtin_type() may increase the bound, which isn't allowed + // while iterating over IDs. + for (auto &var : active_builtins) + var.first->basetype = ensure_correct_builtin_type(var.first->basetype, var.second); + + // Handle HLSL-style 0-based vertex/instance index. + if (needs_base_vertex_arg == TriState::Yes) + ep_args += built_in_func_arg(BuiltInBaseVertex, !ep_args.empty()); + + if (needs_base_instance_arg == TriState::Yes) + ep_args += built_in_func_arg(BuiltInBaseInstance, !ep_args.empty()); + + if (capture_output_to_buffer) + { + // Add parameters to hold the indirect draw parameters and the shader output. This has to be handled + // specially because it needs to be a pointer, not a reference. + if (stage_out_var_id) + { + if (!ep_args.empty()) + ep_args += ", "; + ep_args += join("device ", type_to_glsl(get_stage_out_struct_type()), "* ", output_buffer_var_name, + " [[buffer(", msl_options.shader_output_buffer_index, ")]]"); + } + + if (is_tesc_shader()) + { + if (!ep_args.empty()) + ep_args += ", "; + ep_args += + join("constant uint* spvIndirectParams [[buffer(", msl_options.indirect_params_buffer_index, ")]]"); + } + else if (stage_out_var_id && + !(get_execution_model() == ExecutionModelVertex && msl_options.vertex_for_tessellation)) + { + if (!ep_args.empty()) + ep_args += ", "; + ep_args += + join("device uint* spvIndirectParams [[buffer(", msl_options.indirect_params_buffer_index, ")]]"); + } + + if (get_execution_model() == ExecutionModelVertex && msl_options.vertex_for_tessellation && + (active_input_builtins.get(BuiltInVertexIndex) || active_input_builtins.get(BuiltInVertexId)) && + msl_options.vertex_index_type != Options::IndexType::None) + { + // Add the index buffer so we can set gl_VertexIndex correctly. + if (!ep_args.empty()) + ep_args += ", "; + switch (msl_options.vertex_index_type) + { + case Options::IndexType::None: + break; + case Options::IndexType::UInt16: + ep_args += join("const device ushort* ", index_buffer_var_name, " [[buffer(", + msl_options.shader_index_buffer_index, ")]]"); + break; + case Options::IndexType::UInt32: + ep_args += join("const device uint* ", index_buffer_var_name, " [[buffer(", + msl_options.shader_index_buffer_index, ")]]"); + break; + } + } + + // Tessellation control shaders get three additional parameters: + // a buffer to hold the per-patch data, a buffer to hold the per-patch + // tessellation levels, and a block of workgroup memory to hold the + // input control point data. + if (is_tesc_shader()) + { + if (patch_stage_out_var_id) + { + if (!ep_args.empty()) + ep_args += ", "; + ep_args += + join("device ", type_to_glsl(get_patch_stage_out_struct_type()), "* ", patch_output_buffer_var_name, + " [[buffer(", convert_to_string(msl_options.shader_patch_output_buffer_index), ")]]"); + } + if (!ep_args.empty()) + ep_args += ", "; + ep_args += join("device ", get_tess_factor_struct_name(), "* ", tess_factor_buffer_var_name, " [[buffer(", + convert_to_string(msl_options.shader_tess_factor_buffer_index), ")]]"); + + // Initializer for tess factors must be handled specially since it's never declared as a normal variable. + uint32_t outer_factor_initializer_id = 0; + uint32_t inner_factor_initializer_id = 0; + ir.for_each_typed_id<SPIRVariable>([&](uint32_t, SPIRVariable &var) { + if (!has_decoration(var.self, DecorationBuiltIn) || var.storage != StorageClassOutput || !var.initializer) + return; + + BuiltIn builtin = BuiltIn(get_decoration(var.self, DecorationBuiltIn)); + if (builtin == BuiltInTessLevelInner) + inner_factor_initializer_id = var.initializer; + else if (builtin == BuiltInTessLevelOuter) + outer_factor_initializer_id = var.initializer; + }); + + const SPIRConstant *c = nullptr; + + if (outer_factor_initializer_id && (c = maybe_get<SPIRConstant>(outer_factor_initializer_id))) + { + auto &entry_func = get<SPIRFunction>(ir.default_entry_point); + entry_func.fixup_hooks_in.push_back( + [=]() + { + uint32_t components = is_tessellating_triangles() ? 3 : 4; + for (uint32_t i = 0; i < components; i++) + { + statement(builtin_to_glsl(BuiltInTessLevelOuter, StorageClassOutput), "[", i, + "] = ", "half(", to_expression(c->subconstants[i]), ");"); + } + }); + } + + if (inner_factor_initializer_id && (c = maybe_get<SPIRConstant>(inner_factor_initializer_id))) + { + auto &entry_func = get<SPIRFunction>(ir.default_entry_point); + if (is_tessellating_triangles()) + { + entry_func.fixup_hooks_in.push_back([=]() { + statement(builtin_to_glsl(BuiltInTessLevelInner, StorageClassOutput), " = ", "half(", + to_expression(c->subconstants[0]), ");"); + }); + } + else + { + entry_func.fixup_hooks_in.push_back([=]() { + for (uint32_t i = 0; i < 2; i++) + { + statement(builtin_to_glsl(BuiltInTessLevelInner, StorageClassOutput), "[", i, "] = ", + "half(", to_expression(c->subconstants[i]), ");"); + } + }); + } + } + + if (stage_in_var_id) + { + if (!ep_args.empty()) + ep_args += ", "; + if (msl_options.multi_patch_workgroup) + { + ep_args += join("device ", type_to_glsl(get_stage_in_struct_type()), "* ", input_buffer_var_name, + " [[buffer(", convert_to_string(msl_options.shader_input_buffer_index), ")]]"); + } + else + { + ep_args += join("threadgroup ", type_to_glsl(get_stage_in_struct_type()), "* ", input_wg_var_name, + " [[threadgroup(", convert_to_string(msl_options.shader_input_wg_index), ")]]"); + } + } + } + } + // Tessellation evaluation shaders get three additional parameters: + // a buffer for the per-patch data, a buffer for the per-patch + // tessellation levels, and a buffer for the control point data. + if (is_tese_shader() && msl_options.raw_buffer_tese_input) + { + if (patch_stage_in_var_id) + { + if (!ep_args.empty()) + ep_args += ", "; + ep_args += + join("const device ", type_to_glsl(get_patch_stage_in_struct_type()), "* ", patch_input_buffer_var_name, + " [[buffer(", convert_to_string(msl_options.shader_patch_input_buffer_index), ")]]"); + } + + if (tess_level_inner_var_id || tess_level_outer_var_id) + { + if (!ep_args.empty()) + ep_args += ", "; + ep_args += join("const device ", get_tess_factor_struct_name(), "* ", tess_factor_buffer_var_name, + " [[buffer(", convert_to_string(msl_options.shader_tess_factor_buffer_index), ")]]"); + } + + if (stage_in_var_id) + { + if (!ep_args.empty()) + ep_args += ", "; + ep_args += join("const device ", type_to_glsl(get_stage_in_struct_type()), "* ", input_buffer_var_name, + " [[buffer(", convert_to_string(msl_options.shader_input_buffer_index), ")]]"); + } + } +} + +string CompilerMSL::entry_point_args_argument_buffer(bool append_comma) +{ + string ep_args = entry_point_arg_stage_in(); + Bitset claimed_bindings; + + for (uint32_t i = 0; i < kMaxArgumentBuffers; i++) + { + uint32_t id = argument_buffer_ids[i]; + if (id == 0) + continue; + + add_resource_name(id); + auto &var = get<SPIRVariable>(id); + auto &type = get_variable_data_type(var); + + if (!ep_args.empty()) + ep_args += ", "; + + // Check if the argument buffer binding itself has been remapped. + uint32_t buffer_binding; + auto itr = resource_bindings.find({ get_entry_point().model, i, kArgumentBufferBinding }); + if (itr != end(resource_bindings)) + { + buffer_binding = itr->second.first.msl_buffer; + itr->second.second = true; + } + else + { + // As a fallback, directly map desc set <-> binding. + // If that was taken, take the next buffer binding. + if (claimed_bindings.get(i)) + buffer_binding = next_metal_resource_index_buffer; + else + buffer_binding = i; + } + + claimed_bindings.set(buffer_binding); + + ep_args += get_argument_address_space(var) + " "; + + if (recursive_inputs.count(type.self)) + ep_args += string("void* ") + to_restrict(id, true) + to_name(id) + "_vp"; + else + ep_args += type_to_glsl(type) + "& " + to_restrict(id, true) + to_name(id); + + ep_args += " [[buffer(" + convert_to_string(buffer_binding) + ")]]"; + + next_metal_resource_index_buffer = max(next_metal_resource_index_buffer, buffer_binding + 1); + } + + entry_point_args_discrete_descriptors(ep_args); + entry_point_args_builtin(ep_args); + + if (!ep_args.empty() && append_comma) + ep_args += ", "; + + return ep_args; +} + +const MSLConstexprSampler *CompilerMSL::find_constexpr_sampler(uint32_t id) const +{ + // Try by ID. + { + auto itr = constexpr_samplers_by_id.find(id); + if (itr != end(constexpr_samplers_by_id)) + return &itr->second; + } + + // Try by binding. + { + uint32_t desc_set = get_decoration(id, DecorationDescriptorSet); + uint32_t binding = get_decoration(id, DecorationBinding); + + auto itr = constexpr_samplers_by_binding.find({ desc_set, binding }); + if (itr != end(constexpr_samplers_by_binding)) + return &itr->second; + } + + return nullptr; +} + +void CompilerMSL::entry_point_args_discrete_descriptors(string &ep_args) +{ + // Output resources, sorted by resource index & type + // We need to sort to work around a bug on macOS 10.13 with NVidia drivers where switching between shaders + // with different order of buffers can result in issues with buffer assignments inside the driver. + struct Resource + { + SPIRVariable *var; + SPIRVariable *discrete_descriptor_alias; + string name; + SPIRType::BaseType basetype; + uint32_t index; + uint32_t plane; + uint32_t secondary_index; + }; + + SmallVector<Resource> resources; + + entry_point_bindings.clear(); + ir.for_each_typed_id<SPIRVariable>([&](uint32_t var_id, SPIRVariable &var) { + if ((var.storage == StorageClassUniform || var.storage == StorageClassUniformConstant || + var.storage == StorageClassPushConstant || var.storage == StorageClassStorageBuffer) && + !is_hidden_variable(var)) + { + auto &type = get_variable_data_type(var); + uint32_t desc_set = get_decoration(var_id, DecorationDescriptorSet); + + if (is_supported_argument_buffer_type(type) && var.storage != StorageClassPushConstant) + { + if (descriptor_set_is_argument_buffer(desc_set)) + { + if (is_var_runtime_size_array(var)) + { + // Runtime arrays need to be wrapped in spvDescriptorArray from argument buffer payload. + entry_point_bindings.push_back(&var); + // We'll wrap this, so to_name() will always use non-qualified name. + // We'll need the qualified name to create temporary variable instead. + ir.meta[var_id].decoration.qualified_alias_explicit_override = true; + } + return; + } + } + + // Handle descriptor aliasing of simple discrete cases. + // We can handle aliasing of buffers by casting pointers. + // The amount of aliasing we can perform for discrete descriptors is very limited. + // For fully mutable-style aliasing, we need argument buffers where we can exploit the fact + // that descriptors are all 8 bytes. + SPIRVariable *discrete_descriptor_alias = nullptr; + if (var.storage == StorageClassUniform || var.storage == StorageClassStorageBuffer) + { + for (auto &resource : resources) + { + if (get_decoration(resource.var->self, DecorationDescriptorSet) == + get_decoration(var_id, DecorationDescriptorSet) && + get_decoration(resource.var->self, DecorationBinding) == + get_decoration(var_id, DecorationBinding) && + resource.basetype == SPIRType::Struct && type.basetype == SPIRType::Struct && + (resource.var->storage == StorageClassUniform || + resource.var->storage == StorageClassStorageBuffer)) + { + discrete_descriptor_alias = resource.var; + // Self-reference marks that we should declare the resource, + // and it's being used as an alias (so we can emit void* instead). + resource.discrete_descriptor_alias = resource.var; + // Need to promote interlocked usage so that the primary declaration is correct. + if (interlocked_resources.count(var_id)) + interlocked_resources.insert(resource.var->self); + break; + } + } + } + + const MSLConstexprSampler *constexpr_sampler = nullptr; + if (type.basetype == SPIRType::SampledImage || type.basetype == SPIRType::Sampler) + { + constexpr_sampler = find_constexpr_sampler(var_id); + if (constexpr_sampler) + { + // Mark this ID as a constexpr sampler for later in case it came from set/bindings. + constexpr_samplers_by_id[var_id] = *constexpr_sampler; + } + } + + // Emulate texture2D atomic operations + uint32_t secondary_index = 0; + if (atomic_image_vars_emulated.count(var.self)) + { + secondary_index = get_metal_resource_index(var, SPIRType::AtomicCounter, 0); + } + + if (type.basetype == SPIRType::SampledImage) + { + add_resource_name(var_id); + + uint32_t plane_count = 1; + if (constexpr_sampler && constexpr_sampler->ycbcr_conversion_enable) + plane_count = constexpr_sampler->planes; + + entry_point_bindings.push_back(&var); + for (uint32_t i = 0; i < plane_count; i++) + resources.push_back({&var, discrete_descriptor_alias, to_name(var_id), SPIRType::Image, + get_metal_resource_index(var, SPIRType::Image, i), i, secondary_index }); + + if (type.image.dim != DimBuffer && !constexpr_sampler) + { + resources.push_back({&var, discrete_descriptor_alias, to_sampler_expression(var_id), SPIRType::Sampler, + get_metal_resource_index(var, SPIRType::Sampler), 0, 0 }); + } + } + else if (!constexpr_sampler) + { + // constexpr samplers are not declared as resources. + add_resource_name(var_id); + + // Don't allocate resource indices for aliases. + uint32_t resource_index = ~0u; + if (!discrete_descriptor_alias) + resource_index = get_metal_resource_index(var, type.basetype); + + entry_point_bindings.push_back(&var); + resources.push_back({&var, discrete_descriptor_alias, to_name(var_id), type.basetype, + resource_index, 0, secondary_index }); + } + } + }); + + stable_sort(resources.begin(), resources.end(), + [](const Resource &lhs, const Resource &rhs) + { return tie(lhs.basetype, lhs.index) < tie(rhs.basetype, rhs.index); }); + + for (auto &r : resources) + { + auto &var = *r.var; + auto &type = get_variable_data_type(var); + + uint32_t var_id = var.self; + + switch (r.basetype) + { + case SPIRType::Struct: + { + auto &m = ir.meta[type.self]; + if (m.members.size() == 0) + break; + + if (r.discrete_descriptor_alias) + { + if (r.var == r.discrete_descriptor_alias) + { + auto primary_name = join("spvBufferAliasSet", + get_decoration(var_id, DecorationDescriptorSet), + "Binding", + get_decoration(var_id, DecorationBinding)); + + // Declare the primary alias as void* + if (!ep_args.empty()) + ep_args += ", "; + ep_args += get_argument_address_space(var) + " void* " + primary_name; + ep_args += " [[buffer(" + convert_to_string(r.index) + ")"; + if (interlocked_resources.count(var_id)) + ep_args += ", raster_order_group(0)"; + ep_args += "]]"; + } + + buffer_aliases_discrete.push_back(r.var->self); + } + else if (!type.array.empty()) + { + if (type.array.size() > 1) + SPIRV_CROSS_THROW("Arrays of arrays of buffers are not supported."); + + is_using_builtin_array = true; + if (is_var_runtime_size_array(var)) + { + add_spv_func_and_recompile(SPVFuncImplVariableDescriptorArray); + if (!ep_args.empty()) + ep_args += ", "; + const bool ssbo = has_decoration(type.self, DecorationBufferBlock); + if ((var.storage == spv::StorageClassStorageBuffer || ssbo) && + msl_options.runtime_array_rich_descriptor) + { + add_spv_func_and_recompile(SPVFuncImplVariableSizedDescriptor); + ep_args += "const device spvBufferDescriptor<" + get_argument_address_space(var) + " " + + type_to_glsl(type) + "*>* "; + } + else + { + ep_args += "const device spvDescriptor<" + get_argument_address_space(var) + " " + + type_to_glsl(type) + "*>* "; + } + ep_args += to_restrict(var_id, true) + r.name + "_"; + ep_args += " [[buffer(" + convert_to_string(r.index) + ")"; + if (interlocked_resources.count(var_id)) + ep_args += ", raster_order_group(0)"; + ep_args += "]]"; + } + else + { + uint32_t array_size = get_resource_array_size(type, var_id); + for (uint32_t i = 0; i < array_size; ++i) + { + if (!ep_args.empty()) + ep_args += ", "; + ep_args += get_argument_address_space(var) + " " + type_to_glsl(type) + "* " + + to_restrict(var_id, true) + r.name + "_" + convert_to_string(i); + ep_args += " [[buffer(" + convert_to_string(r.index + i) + ")"; + if (interlocked_resources.count(var_id)) + ep_args += ", raster_order_group(0)"; + ep_args += "]]"; + } + } + is_using_builtin_array = false; + } + else + { + if (!ep_args.empty()) + ep_args += ", "; + ep_args += get_argument_address_space(var) + " "; + + if (recursive_inputs.count(type.self)) + ep_args += string("void* ") + to_restrict(var_id, true) + r.name + "_vp"; + else + ep_args += type_to_glsl(type) + "& " + to_restrict(var_id, true) + r.name; + + ep_args += " [[buffer(" + convert_to_string(r.index) + ")"; + if (interlocked_resources.count(var_id)) + ep_args += ", raster_order_group(0)"; + ep_args += "]]"; + } + break; + } + case SPIRType::Sampler: + if (!ep_args.empty()) + ep_args += ", "; + ep_args += sampler_type(type, var_id, false) + " " + r.name; + if (is_var_runtime_size_array(var)) + ep_args += "_ [[buffer(" + convert_to_string(r.index) + ")]]"; + else + ep_args += " [[sampler(" + convert_to_string(r.index) + ")]]"; + break; + case SPIRType::Image: + { + if (!ep_args.empty()) + ep_args += ", "; + + // Use Metal's native frame-buffer fetch API for subpass inputs. + const auto &basetype = get<SPIRType>(var.basetype); + if (!type_is_msl_framebuffer_fetch(basetype)) + { + ep_args += image_type_glsl(type, var_id, false) + " " + r.name; + if (r.plane > 0) + ep_args += join(plane_name_suffix, r.plane); + + if (is_var_runtime_size_array(var)) + ep_args += "_ [[buffer(" + convert_to_string(r.index) + ")"; + else + ep_args += " [[texture(" + convert_to_string(r.index) + ")"; + + if (interlocked_resources.count(var_id)) + ep_args += ", raster_order_group(0)"; + ep_args += "]]"; + } + else + { + if (msl_options.is_macos() && !msl_options.supports_msl_version(2, 3)) + SPIRV_CROSS_THROW("Framebuffer fetch on Mac is not supported before MSL 2.3."); + ep_args += image_type_glsl(type, var_id, false) + " " + r.name; + ep_args += " [[color(" + convert_to_string(r.index) + ")]]"; + } + + // Emulate texture2D atomic operations + if (atomic_image_vars_emulated.count(var.self)) + { + auto &flags = ir.get_decoration_bitset(var.self); + const char *cv_flags = decoration_flags_signal_volatile(flags) ? "volatile " : ""; + ep_args += join(", ", cv_flags, "device atomic_", type_to_glsl(get<SPIRType>(basetype.image.type), 0)); + ep_args += "* " + r.name + "_atomic"; + ep_args += " [[buffer(" + convert_to_string(r.secondary_index) + ")"; + if (interlocked_resources.count(var_id)) + ep_args += ", raster_order_group(0)"; + ep_args += "]]"; + } + break; + } + case SPIRType::AccelerationStructure: + { + if (is_var_runtime_size_array(var)) + { + add_spv_func_and_recompile(SPVFuncImplVariableDescriptor); + const auto &parent_type = get<SPIRType>(type.parent_type); + if (!ep_args.empty()) + ep_args += ", "; + ep_args += "const device spvDescriptor<" + type_to_glsl(parent_type) + ">* " + + to_restrict(var_id, true) + r.name + "_"; + ep_args += " [[buffer(" + convert_to_string(r.index) + ")]]"; + } + else + { + if (!ep_args.empty()) + ep_args += ", "; + ep_args += type_to_glsl(type, var_id) + " " + r.name; + ep_args += " [[buffer(" + convert_to_string(r.index) + ")]]"; + } + break; + } + default: + if (!ep_args.empty()) + ep_args += ", "; + if (!type.pointer) + ep_args += get_type_address_space(get<SPIRType>(var.basetype), var_id) + " " + + type_to_glsl(type, var_id) + "& " + r.name; + else + ep_args += type_to_glsl(type, var_id) + " " + r.name; + ep_args += " [[buffer(" + convert_to_string(r.index) + ")"; + if (interlocked_resources.count(var_id)) + ep_args += ", raster_order_group(0)"; + ep_args += "]]"; + break; + } + } +} + +// Returns a string containing a comma-delimited list of args for the entry point function +// This is the "classic" method of MSL 1 when we don't have argument buffer support. +string CompilerMSL::entry_point_args_classic(bool append_comma) +{ + string ep_args = entry_point_arg_stage_in(); + entry_point_args_discrete_descriptors(ep_args); + entry_point_args_builtin(ep_args); + + if (!ep_args.empty() && append_comma) + ep_args += ", "; + + return ep_args; +} + +void CompilerMSL::fix_up_shader_inputs_outputs() +{ + auto &entry_func = this->get<SPIRFunction>(ir.default_entry_point); + + // Emit a guard to ensure we don't execute beyond the last vertex. + // Vertex shaders shouldn't have the problems with barriers in non-uniform control flow that + // tessellation control shaders do, so early returns should be OK. We may need to revisit this + // if it ever becomes possible to use barriers from a vertex shader. + if (get_execution_model() == ExecutionModelVertex && msl_options.vertex_for_tessellation) + { + entry_func.fixup_hooks_in.push_back([this]() { + statement("if (any(", to_expression(builtin_invocation_id_id), + " >= ", to_expression(builtin_stage_input_size_id), "))"); + statement(" return;"); + }); + } + + // Look for sampled images and buffer. Add hooks to set up the swizzle constants or array lengths. + ir.for_each_typed_id<SPIRVariable>([&](uint32_t, SPIRVariable &var) { + auto &type = get_variable_data_type(var); + uint32_t var_id = var.self; + bool ssbo = has_decoration(type.self, DecorationBufferBlock); + + if (var.storage == StorageClassUniformConstant && !is_hidden_variable(var)) + { + if (msl_options.swizzle_texture_samples && has_sampled_images && is_sampled_image_type(type)) + { + entry_func.fixup_hooks_in.push_back([this, &type, &var, var_id]() { + bool is_array_type = !type.array.empty(); + + uint32_t desc_set = get_decoration(var_id, DecorationDescriptorSet); + if (descriptor_set_is_argument_buffer(desc_set)) + { + statement("constant uint", is_array_type ? "* " : "& ", to_swizzle_expression(var_id), + is_array_type ? " = &" : " = ", to_name(argument_buffer_ids[desc_set]), + ".spvSwizzleConstants", "[", + convert_to_string(get_metal_resource_index(var, SPIRType::Image)), "];"); + } + else + { + // If we have an array of images, we need to be able to index into it, so take a pointer instead. + statement("constant uint", is_array_type ? "* " : "& ", to_swizzle_expression(var_id), + is_array_type ? " = &" : " = ", to_name(swizzle_buffer_id), "[", + convert_to_string(get_metal_resource_index(var, SPIRType::Image)), "];"); + } + }); + } + } + else if ((var.storage == StorageClassStorageBuffer || (var.storage == StorageClassUniform && ssbo)) && + !is_hidden_variable(var)) + { + if (buffer_requires_array_length(var.self)) + { + entry_func.fixup_hooks_in.push_back( + [this, &type, &var, var_id]() + { + bool is_array_type = !type.array.empty() && !is_var_runtime_size_array(var); + + uint32_t desc_set = get_decoration(var_id, DecorationDescriptorSet); + if (descriptor_set_is_argument_buffer(desc_set)) + { + statement("constant uint", is_array_type ? "* " : "& ", to_buffer_size_expression(var_id), + is_array_type ? " = &" : " = ", to_name(argument_buffer_ids[desc_set]), + ".spvBufferSizeConstants", "[", + convert_to_string(get_metal_resource_index(var, SPIRType::UInt)), "];"); + } + else + { + // If we have an array of images, we need to be able to index into it, so take a pointer instead. + statement("constant uint", is_array_type ? "* " : "& ", to_buffer_size_expression(var_id), + is_array_type ? " = &" : " = ", to_name(buffer_size_buffer_id), "[", + convert_to_string(get_metal_resource_index(var, type.basetype)), "];"); + } + }); + } + } + + if (!msl_options.argument_buffers && + msl_options.replace_recursive_inputs && type_contains_recursion(type) && + (var.storage == StorageClassUniform || var.storage == StorageClassUniformConstant || + var.storage == StorageClassPushConstant || var.storage == StorageClassStorageBuffer)) + { + recursive_inputs.insert(type.self); + entry_func.fixup_hooks_in.push_back([this, &type, &var, var_id]() { + auto addr_space = get_argument_address_space(var); + auto var_name = to_name(var_id); + statement(addr_space, " auto& ", to_restrict(var_id, true), var_name, + " = *(", addr_space, " ", type_to_glsl(type), "*)", var_name, "_vp;"); + }); + } + }); + + // Builtin variables + ir.for_each_typed_id<SPIRVariable>([this, &entry_func](uint32_t, SPIRVariable &var) { + uint32_t var_id = var.self; + BuiltIn bi_type = ir.meta[var_id].decoration.builtin_type; + + if (var.storage != StorageClassInput && var.storage != StorageClassOutput) + return; + if (!interface_variable_exists_in_entry_point(var.self)) + return; + + if (var.storage == StorageClassInput && is_builtin_variable(var) && active_input_builtins.get(bi_type)) + { + switch (bi_type) + { + case BuiltInSamplePosition: + entry_func.fixup_hooks_in.push_back([=]() { + statement(builtin_type_decl(bi_type), " ", to_expression(var_id), " = get_sample_position(", + to_expression(builtin_sample_id_id), ");"); + }); + break; + case BuiltInFragCoord: + if (is_sample_rate()) + { + entry_func.fixup_hooks_in.push_back([=]() { + statement(to_expression(var_id), ".xy += get_sample_position(", + to_expression(builtin_sample_id_id), ") - 0.5;"); + }); + } + break; + case BuiltInInvocationId: + // This is direct-mapped without multi-patch workgroups. + if (!is_tesc_shader() || !msl_options.multi_patch_workgroup) + break; + + entry_func.fixup_hooks_in.push_back([=]() { + statement(builtin_type_decl(bi_type), " ", to_expression(var_id), " = ", + to_expression(builtin_invocation_id_id), ".x % ", this->get_entry_point().output_vertices, + ";"); + }); + break; + case BuiltInPrimitiveId: + // This is natively supported by fragment and tessellation evaluation shaders. + // In tessellation control shaders, this is direct-mapped without multi-patch workgroups. + if (!is_tesc_shader() || !msl_options.multi_patch_workgroup) + break; + + entry_func.fixup_hooks_in.push_back([=]() { + statement(builtin_type_decl(bi_type), " ", to_expression(var_id), " = min(", + to_expression(builtin_invocation_id_id), ".x / ", this->get_entry_point().output_vertices, + ", spvIndirectParams[1] - 1);"); + }); + break; + case BuiltInPatchVertices: + if (is_tese_shader()) + { + if (msl_options.raw_buffer_tese_input) + { + entry_func.fixup_hooks_in.push_back( + [=]() { + statement(builtin_type_decl(bi_type), " ", to_expression(var_id), " = ", + get_entry_point().output_vertices, ";"); + }); + } + else + { + entry_func.fixup_hooks_in.push_back( + [=]() + { + statement(builtin_type_decl(bi_type), " ", to_expression(var_id), " = ", + to_expression(patch_stage_in_var_id), ".gl_in.size();"); + }); + } + } + else + { + entry_func.fixup_hooks_in.push_back([=]() { + statement(builtin_type_decl(bi_type), " ", to_expression(var_id), " = spvIndirectParams[0];"); + }); + } + break; + case BuiltInTessCoord: + if (get_entry_point().flags.get(ExecutionModeQuads)) + { + // The entry point will only have a float2 TessCoord variable. + // Pad to float3. + entry_func.fixup_hooks_in.push_back([=]() { + auto name = builtin_to_glsl(BuiltInTessCoord, StorageClassInput); + statement("float3 " + name + " = float3(" + name + "In.x, " + name + "In.y, 0.0);"); + }); + } + + // Emit a fixup to account for the shifted domain. Don't do this for triangles; + // MoltenVK will just reverse the winding order instead. + if (msl_options.tess_domain_origin_lower_left && !is_tessellating_triangles()) + { + string tc = to_expression(var_id); + entry_func.fixup_hooks_in.push_back([=]() { statement(tc, ".y = 1.0 - ", tc, ".y;"); }); + } + break; + case BuiltInSubgroupId: + if (!msl_options.emulate_subgroups) + break; + // For subgroup emulation, this is the same as the local invocation index. + entry_func.fixup_hooks_in.push_back([=]() { + statement(builtin_type_decl(bi_type), " ", to_expression(var_id), " = ", + to_expression(builtin_local_invocation_index_id), ";"); + }); + break; + case BuiltInNumSubgroups: + if (!msl_options.emulate_subgroups) + break; + // For subgroup emulation, this is the same as the workgroup size. + entry_func.fixup_hooks_in.push_back([=]() { + auto &type = expression_type(builtin_workgroup_size_id); + string size_expr = to_expression(builtin_workgroup_size_id); + if (type.vecsize >= 3) + size_expr = join(size_expr, ".x * ", size_expr, ".y * ", size_expr, ".z"); + else if (type.vecsize == 2) + size_expr = join(size_expr, ".x * ", size_expr, ".y"); + statement(builtin_type_decl(bi_type), " ", to_expression(var_id), " = ", size_expr, ";"); + }); + break; + case BuiltInSubgroupLocalInvocationId: + if (!msl_options.emulate_subgroups) + break; + // For subgroup emulation, assume subgroups of size 1. + entry_func.fixup_hooks_in.push_back( + [=]() { statement(builtin_type_decl(bi_type), " ", to_expression(var_id), " = 0;"); }); + break; + case BuiltInSubgroupSize: + if (msl_options.emulate_subgroups) + { + // For subgroup emulation, assume subgroups of size 1. + entry_func.fixup_hooks_in.push_back( + [=]() { statement(builtin_type_decl(bi_type), " ", to_expression(var_id), " = 1;"); }); + } + else if (msl_options.fixed_subgroup_size != 0) + { + entry_func.fixup_hooks_in.push_back([=]() { + statement(builtin_type_decl(bi_type), " ", to_expression(var_id), " = ", + msl_options.fixed_subgroup_size, ";"); + }); + } + break; + case BuiltInSubgroupEqMask: + if (msl_options.is_ios() && !msl_options.supports_msl_version(2, 2)) + SPIRV_CROSS_THROW("Subgroup ballot functionality requires Metal 2.2 on iOS."); + if (!msl_options.supports_msl_version(2, 1)) + SPIRV_CROSS_THROW("Subgroup ballot functionality requires Metal 2.1."); + entry_func.fixup_hooks_in.push_back([=]() { + if (msl_options.is_ios()) + { + statement(builtin_type_decl(bi_type), " ", to_expression(var_id), " = ", "uint4(1 << ", + to_expression(builtin_subgroup_invocation_id_id), ", uint3(0));"); + } + else + { + statement(builtin_type_decl(bi_type), " ", to_expression(var_id), " = ", + to_expression(builtin_subgroup_invocation_id_id), " >= 32 ? uint4(0, (1 << (", + to_expression(builtin_subgroup_invocation_id_id), " - 32)), uint2(0)) : uint4(1 << ", + to_expression(builtin_subgroup_invocation_id_id), ", uint3(0));"); + } + }); + break; + case BuiltInSubgroupGeMask: + if (msl_options.is_ios() && !msl_options.supports_msl_version(2, 2)) + SPIRV_CROSS_THROW("Subgroup ballot functionality requires Metal 2.2 on iOS."); + if (!msl_options.supports_msl_version(2, 1)) + SPIRV_CROSS_THROW("Subgroup ballot functionality requires Metal 2.1."); + if (msl_options.fixed_subgroup_size != 0) + add_spv_func_and_recompile(SPVFuncImplSubgroupBallot); + entry_func.fixup_hooks_in.push_back([=]() { + // Case where index < 32, size < 32: + // mask0 = bfi(0, 0xFFFFFFFF, index, size - index); + // mask1 = bfi(0, 0xFFFFFFFF, 0, 0); // Gives 0 + // Case where index < 32 but size >= 32: + // mask0 = bfi(0, 0xFFFFFFFF, index, 32 - index); + // mask1 = bfi(0, 0xFFFFFFFF, 0, size - 32); + // Case where index >= 32: + // mask0 = bfi(0, 0xFFFFFFFF, 32, 0); // Gives 0 + // mask1 = bfi(0, 0xFFFFFFFF, index - 32, size - index); + // This is expressed without branches to avoid divergent + // control flow--hence the complicated min/max expressions. + // This is further complicated by the fact that if you attempt + // to bfi/bfe out-of-bounds on Metal, undefined behavior is the + // result. + if (msl_options.fixed_subgroup_size > 32) + { + // Don't use the subgroup size variable with fixed subgroup sizes, + // since the variables could be defined in the wrong order. + statement(builtin_type_decl(bi_type), " ", to_expression(var_id), + " = uint4(insert_bits(0u, 0xFFFFFFFF, min(", + to_expression(builtin_subgroup_invocation_id_id), ", 32u), (uint)max(32 - (int)", + to_expression(builtin_subgroup_invocation_id_id), + ", 0)), insert_bits(0u, 0xFFFFFFFF," + " (uint)max((int)", + to_expression(builtin_subgroup_invocation_id_id), " - 32, 0), ", + msl_options.fixed_subgroup_size, " - max(", + to_expression(builtin_subgroup_invocation_id_id), + ", 32u)), uint2(0));"); + } + else if (msl_options.fixed_subgroup_size != 0) + { + statement(builtin_type_decl(bi_type), " ", to_expression(var_id), + " = uint4(insert_bits(0u, 0xFFFFFFFF, ", + to_expression(builtin_subgroup_invocation_id_id), ", ", + msl_options.fixed_subgroup_size, " - ", + to_expression(builtin_subgroup_invocation_id_id), + "), uint3(0));"); + } + else if (msl_options.is_ios()) + { + // On iOS, the SIMD-group size will currently never exceed 32. + statement(builtin_type_decl(bi_type), " ", to_expression(var_id), + " = uint4(insert_bits(0u, 0xFFFFFFFF, ", + to_expression(builtin_subgroup_invocation_id_id), ", ", + to_expression(builtin_subgroup_size_id), " - ", + to_expression(builtin_subgroup_invocation_id_id), "), uint3(0));"); + } + else + { + statement(builtin_type_decl(bi_type), " ", to_expression(var_id), + " = uint4(insert_bits(0u, 0xFFFFFFFF, min(", + to_expression(builtin_subgroup_invocation_id_id), ", 32u), (uint)max(min((int)", + to_expression(builtin_subgroup_size_id), ", 32) - (int)", + to_expression(builtin_subgroup_invocation_id_id), + ", 0)), insert_bits(0u, 0xFFFFFFFF, (uint)max((int)", + to_expression(builtin_subgroup_invocation_id_id), " - 32, 0), (uint)max((int)", + to_expression(builtin_subgroup_size_id), " - (int)max(", + to_expression(builtin_subgroup_invocation_id_id), ", 32u), 0)), uint2(0));"); + } + }); + break; + case BuiltInSubgroupGtMask: + if (msl_options.is_ios() && !msl_options.supports_msl_version(2, 2)) + SPIRV_CROSS_THROW("Subgroup ballot functionality requires Metal 2.2 on iOS."); + if (!msl_options.supports_msl_version(2, 1)) + SPIRV_CROSS_THROW("Subgroup ballot functionality requires Metal 2.1."); + add_spv_func_and_recompile(SPVFuncImplSubgroupBallot); + entry_func.fixup_hooks_in.push_back([=]() { + // The same logic applies here, except now the index is one + // more than the subgroup invocation ID. + if (msl_options.fixed_subgroup_size > 32) + { + statement(builtin_type_decl(bi_type), " ", to_expression(var_id), + " = uint4(insert_bits(0u, 0xFFFFFFFF, min(", + to_expression(builtin_subgroup_invocation_id_id), " + 1, 32u), (uint)max(32 - (int)", + to_expression(builtin_subgroup_invocation_id_id), + " - 1, 0)), insert_bits(0u, 0xFFFFFFFF, (uint)max((int)", + to_expression(builtin_subgroup_invocation_id_id), " + 1 - 32, 0), ", + msl_options.fixed_subgroup_size, " - max(", + to_expression(builtin_subgroup_invocation_id_id), + " + 1, 32u)), uint2(0));"); + } + else if (msl_options.fixed_subgroup_size != 0) + { + statement(builtin_type_decl(bi_type), " ", to_expression(var_id), + " = uint4(insert_bits(0u, 0xFFFFFFFF, ", + to_expression(builtin_subgroup_invocation_id_id), " + 1, ", + msl_options.fixed_subgroup_size, " - ", + to_expression(builtin_subgroup_invocation_id_id), + " - 1), uint3(0));"); + } + else if (msl_options.is_ios()) + { + statement(builtin_type_decl(bi_type), " ", to_expression(var_id), + " = uint4(insert_bits(0u, 0xFFFFFFFF, ", + to_expression(builtin_subgroup_invocation_id_id), " + 1, ", + to_expression(builtin_subgroup_size_id), " - ", + to_expression(builtin_subgroup_invocation_id_id), " - 1), uint3(0));"); + } + else + { + statement(builtin_type_decl(bi_type), " ", to_expression(var_id), + " = uint4(insert_bits(0u, 0xFFFFFFFF, min(", + to_expression(builtin_subgroup_invocation_id_id), " + 1, 32u), (uint)max(min((int)", + to_expression(builtin_subgroup_size_id), ", 32) - (int)", + to_expression(builtin_subgroup_invocation_id_id), + " - 1, 0)), insert_bits(0u, 0xFFFFFFFF, (uint)max((int)", + to_expression(builtin_subgroup_invocation_id_id), " + 1 - 32, 0), (uint)max((int)", + to_expression(builtin_subgroup_size_id), " - (int)max(", + to_expression(builtin_subgroup_invocation_id_id), " + 1, 32u), 0)), uint2(0));"); + } + }); + break; + case BuiltInSubgroupLeMask: + if (msl_options.is_ios() && !msl_options.supports_msl_version(2, 2)) + SPIRV_CROSS_THROW("Subgroup ballot functionality requires Metal 2.2 on iOS."); + if (!msl_options.supports_msl_version(2, 1)) + SPIRV_CROSS_THROW("Subgroup ballot functionality requires Metal 2.1."); + add_spv_func_and_recompile(SPVFuncImplSubgroupBallot); + entry_func.fixup_hooks_in.push_back([=]() { + if (msl_options.is_ios()) + { + statement(builtin_type_decl(bi_type), " ", to_expression(var_id), + " = uint4(extract_bits(0xFFFFFFFF, 0, ", + to_expression(builtin_subgroup_invocation_id_id), " + 1), uint3(0));"); + } + else + { + statement(builtin_type_decl(bi_type), " ", to_expression(var_id), + " = uint4(extract_bits(0xFFFFFFFF, 0, min(", + to_expression(builtin_subgroup_invocation_id_id), + " + 1, 32u)), extract_bits(0xFFFFFFFF, 0, (uint)max((int)", + to_expression(builtin_subgroup_invocation_id_id), " + 1 - 32, 0)), uint2(0));"); + } + }); + break; + case BuiltInSubgroupLtMask: + if (msl_options.is_ios() && !msl_options.supports_msl_version(2, 2)) + SPIRV_CROSS_THROW("Subgroup ballot functionality requires Metal 2.2 on iOS."); + if (!msl_options.supports_msl_version(2, 1)) + SPIRV_CROSS_THROW("Subgroup ballot functionality requires Metal 2.1."); + add_spv_func_and_recompile(SPVFuncImplSubgroupBallot); + entry_func.fixup_hooks_in.push_back([=]() { + if (msl_options.is_ios()) + { + statement(builtin_type_decl(bi_type), " ", to_expression(var_id), + " = uint4(extract_bits(0xFFFFFFFF, 0, ", + to_expression(builtin_subgroup_invocation_id_id), "), uint3(0));"); + } + else + { + statement(builtin_type_decl(bi_type), " ", to_expression(var_id), + " = uint4(extract_bits(0xFFFFFFFF, 0, min(", + to_expression(builtin_subgroup_invocation_id_id), + ", 32u)), extract_bits(0xFFFFFFFF, 0, (uint)max((int)", + to_expression(builtin_subgroup_invocation_id_id), " - 32, 0)), uint2(0));"); + } + }); + break; + case BuiltInViewIndex: + if (!msl_options.multiview) + { + // According to the Vulkan spec, when not running under a multiview + // render pass, ViewIndex is 0. + entry_func.fixup_hooks_in.push_back([=]() { + statement("const ", builtin_type_decl(bi_type), " ", to_expression(var_id), " = 0;"); + }); + } + else if (msl_options.view_index_from_device_index) + { + // In this case, we take the view index from that of the device we're running on. + entry_func.fixup_hooks_in.push_back([=]() { + statement("const ", builtin_type_decl(bi_type), " ", to_expression(var_id), " = ", + msl_options.device_index, ";"); + }); + // We actually don't want to set the render_target_array_index here. + // Since every physical device is rendering a different view, + // there's no need for layered rendering here. + } + else if (!msl_options.multiview_layered_rendering) + { + // In this case, the views are rendered one at a time. The view index, then, + // is just the first part of the "view mask". + entry_func.fixup_hooks_in.push_back([=]() { + statement("const ", builtin_type_decl(bi_type), " ", to_expression(var_id), " = ", + to_expression(view_mask_buffer_id), "[0];"); + }); + } + else if (get_execution_model() == ExecutionModelFragment) + { + // Because we adjusted the view index in the vertex shader, we have to + // adjust it back here. + entry_func.fixup_hooks_in.push_back([=]() { + statement(to_expression(var_id), " += ", to_expression(view_mask_buffer_id), "[0];"); + }); + } + else if (get_execution_model() == ExecutionModelVertex) + { + // Metal provides no special support for multiview, so we smuggle + // the view index in the instance index. + entry_func.fixup_hooks_in.push_back([=]() { + statement(builtin_type_decl(bi_type), " ", to_expression(var_id), " = ", + to_expression(view_mask_buffer_id), "[0] + (", to_expression(builtin_instance_idx_id), + " - ", to_expression(builtin_base_instance_id), ") % ", + to_expression(view_mask_buffer_id), "[1];"); + statement(to_expression(builtin_instance_idx_id), " = (", + to_expression(builtin_instance_idx_id), " - ", + to_expression(builtin_base_instance_id), ") / ", to_expression(view_mask_buffer_id), + "[1] + ", to_expression(builtin_base_instance_id), ";"); + }); + // In addition to setting the variable itself, we also need to + // set the render_target_array_index with it on output. We have to + // offset this by the base view index, because Metal isn't in on + // our little game here. + entry_func.fixup_hooks_out.push_back([=]() { + statement(to_expression(builtin_layer_id), " = ", to_expression(var_id), " - ", + to_expression(view_mask_buffer_id), "[0];"); + }); + } + break; + case BuiltInDeviceIndex: + // Metal pipelines belong to the devices which create them, so we'll + // need to create a MTLPipelineState for every MTLDevice in a grouped + // VkDevice. We can assume, then, that the device index is constant. + entry_func.fixup_hooks_in.push_back([=]() { + statement("const ", builtin_type_decl(bi_type), " ", to_expression(var_id), " = ", + msl_options.device_index, ";"); + }); + break; + case BuiltInWorkgroupId: + if (!msl_options.dispatch_base || !active_input_builtins.get(BuiltInWorkgroupId)) + break; + + // The vkCmdDispatchBase() command lets the client set the base value + // of WorkgroupId. Metal has no direct equivalent; we must make this + // adjustment ourselves. + entry_func.fixup_hooks_in.push_back([=]() { + statement(to_expression(var_id), " += ", to_dereferenced_expression(builtin_dispatch_base_id), ";"); + }); + break; + case BuiltInGlobalInvocationId: + if (!msl_options.dispatch_base || !active_input_builtins.get(BuiltInGlobalInvocationId)) + break; + + // GlobalInvocationId is defined as LocalInvocationId + WorkgroupId * WorkgroupSize. + // This needs to be adjusted too. + entry_func.fixup_hooks_in.push_back([=]() { + auto &execution = this->get_entry_point(); + uint32_t workgroup_size_id = execution.workgroup_size.constant; + if (workgroup_size_id) + statement(to_expression(var_id), " += ", to_dereferenced_expression(builtin_dispatch_base_id), + " * ", to_expression(workgroup_size_id), ";"); + else + statement(to_expression(var_id), " += ", to_dereferenced_expression(builtin_dispatch_base_id), + " * uint3(", execution.workgroup_size.x, ", ", execution.workgroup_size.y, ", ", + execution.workgroup_size.z, ");"); + }); + break; + case BuiltInVertexId: + case BuiltInVertexIndex: + // This is direct-mapped normally. + if (!msl_options.vertex_for_tessellation) + break; + + entry_func.fixup_hooks_in.push_back([=]() { + builtin_declaration = true; + switch (msl_options.vertex_index_type) + { + case Options::IndexType::None: + statement(builtin_type_decl(bi_type), " ", to_expression(var_id), " = ", + to_expression(builtin_invocation_id_id), ".x + ", + to_expression(builtin_dispatch_base_id), ".x;"); + break; + case Options::IndexType::UInt16: + case Options::IndexType::UInt32: + statement(builtin_type_decl(bi_type), " ", to_expression(var_id), " = ", index_buffer_var_name, + "[", to_expression(builtin_invocation_id_id), ".x] + ", + to_expression(builtin_dispatch_base_id), ".x;"); + break; + } + builtin_declaration = false; + }); + break; + case BuiltInBaseVertex: + // This is direct-mapped normally. + if (!msl_options.vertex_for_tessellation) + break; + + entry_func.fixup_hooks_in.push_back([=]() { + statement(builtin_type_decl(bi_type), " ", to_expression(var_id), " = ", + to_expression(builtin_dispatch_base_id), ".x;"); + }); + break; + case BuiltInInstanceId: + case BuiltInInstanceIndex: + // This is direct-mapped normally. + if (!msl_options.vertex_for_tessellation) + break; + + entry_func.fixup_hooks_in.push_back([=]() { + builtin_declaration = true; + statement(builtin_type_decl(bi_type), " ", to_expression(var_id), " = ", + to_expression(builtin_invocation_id_id), ".y + ", to_expression(builtin_dispatch_base_id), + ".y;"); + builtin_declaration = false; + }); + break; + case BuiltInBaseInstance: + // This is direct-mapped normally. + if (!msl_options.vertex_for_tessellation) + break; + + entry_func.fixup_hooks_in.push_back([=]() { + statement(builtin_type_decl(bi_type), " ", to_expression(var_id), " = ", + to_expression(builtin_dispatch_base_id), ".y;"); + }); + break; + default: + break; + } + } + else if (var.storage == StorageClassOutput && get_execution_model() == ExecutionModelFragment && + is_builtin_variable(var) && active_output_builtins.get(bi_type)) + { + switch (bi_type) + { + case BuiltInSampleMask: + if (has_additional_fixed_sample_mask()) + { + // If the additional fixed sample mask was set, we need to adjust the sample_mask + // output to reflect that. If the shader outputs the sample_mask itself too, we need + // to AND the two masks to get the final one. + string op_str = does_shader_write_sample_mask ? " &= " : " = "; + entry_func.fixup_hooks_out.push_back([=]() { + statement(to_expression(builtin_sample_mask_id), op_str, additional_fixed_sample_mask_str(), ";"); + }); + } + break; + case BuiltInFragDepth: + if (msl_options.input_attachment_is_ds_attachment && !writes_to_depth) + { + entry_func.fixup_hooks_out.push_back([=]() { + statement(to_expression(builtin_frag_depth_id), " = ", to_expression(builtin_frag_coord_id), ".z;"); + }); + } + break; + default: + break; + } + } + }); +} + +// Returns the Metal index of the resource of the specified type as used by the specified variable. +uint32_t CompilerMSL::get_metal_resource_index(SPIRVariable &var, SPIRType::BaseType basetype, uint32_t plane) +{ + auto &execution = get_entry_point(); + auto &var_dec = ir.meta[var.self].decoration; + auto &var_type = get<SPIRType>(var.basetype); + uint32_t var_desc_set = (var.storage == StorageClassPushConstant) ? kPushConstDescSet : var_dec.set; + uint32_t var_binding = (var.storage == StorageClassPushConstant) ? kPushConstBinding : var_dec.binding; + + // If a matching binding has been specified, find and use it. + auto itr = resource_bindings.find({ execution.model, var_desc_set, var_binding }); + + // Atomic helper buffers for image atomics need to use secondary bindings as well. + bool use_secondary_binding = (var_type.basetype == SPIRType::SampledImage && basetype == SPIRType::Sampler) || + basetype == SPIRType::AtomicCounter; + + auto resource_decoration = + use_secondary_binding ? SPIRVCrossDecorationResourceIndexSecondary : SPIRVCrossDecorationResourceIndexPrimary; + + if (plane == 1) + resource_decoration = SPIRVCrossDecorationResourceIndexTertiary; + if (plane == 2) + resource_decoration = SPIRVCrossDecorationResourceIndexQuaternary; + + if (itr != end(resource_bindings)) + { + auto &remap = itr->second; + remap.second = true; + switch (basetype) + { + case SPIRType::Image: + set_extended_decoration(var.self, resource_decoration, remap.first.msl_texture + plane); + return remap.first.msl_texture + plane; + case SPIRType::Sampler: + set_extended_decoration(var.self, resource_decoration, remap.first.msl_sampler); + return remap.first.msl_sampler; + default: + set_extended_decoration(var.self, resource_decoration, remap.first.msl_buffer); + return remap.first.msl_buffer; + } + } + + // If we have already allocated an index, keep using it. + if (has_extended_decoration(var.self, resource_decoration)) + return get_extended_decoration(var.self, resource_decoration); + + auto &type = get<SPIRType>(var.basetype); + + if (type_is_msl_framebuffer_fetch(type)) + { + // Frame-buffer fetch gets its fallback resource index from the input attachment index, + // which is then treated as color index. + return get_decoration(var.self, DecorationInputAttachmentIndex); + } + else if (msl_options.enable_decoration_binding) + { + // Allow user to enable decoration binding. + // If there is no explicit mapping of bindings to MSL, use the declared binding as a fallback. + if (has_decoration(var.self, DecorationBinding)) + { + var_binding = get_decoration(var.self, DecorationBinding); + // Avoid emitting sentinel bindings. + if (var_binding < 0x80000000u) + return var_binding; + } + } + + // If we did not explicitly remap, allocate bindings on demand. + // We cannot reliably use Binding decorations since SPIR-V and MSL's binding models are very different. + + bool allocate_argument_buffer_ids = false; + + if (var.storage != StorageClassPushConstant) + allocate_argument_buffer_ids = descriptor_set_is_argument_buffer(var_desc_set); + + uint32_t binding_stride = 1; + for (uint32_t i = 0; i < uint32_t(type.array.size()); i++) + binding_stride *= to_array_size_literal(type, i); + + // If a binding has not been specified, revert to incrementing resource indices. + uint32_t resource_index; + + if (allocate_argument_buffer_ids) + { + // Allocate from a flat ID binding space. + resource_index = next_metal_resource_ids[var_desc_set]; + next_metal_resource_ids[var_desc_set] += binding_stride; + } + else + { + if (is_var_runtime_size_array(var)) + { + basetype = SPIRType::Struct; + binding_stride = 1; + } + // Allocate from plain bindings which are allocated per resource type. + switch (basetype) + { + case SPIRType::Image: + resource_index = next_metal_resource_index_texture; + next_metal_resource_index_texture += binding_stride; + break; + case SPIRType::Sampler: + resource_index = next_metal_resource_index_sampler; + next_metal_resource_index_sampler += binding_stride; + break; + default: + resource_index = next_metal_resource_index_buffer; + next_metal_resource_index_buffer += binding_stride; + break; + } + } + + set_extended_decoration(var.self, resource_decoration, resource_index); + return resource_index; +} + +bool CompilerMSL::type_is_msl_framebuffer_fetch(const SPIRType &type) const +{ + return type.basetype == SPIRType::Image && type.image.dim == DimSubpassData && + msl_options.use_framebuffer_fetch_subpasses; +} + +const char *CompilerMSL::descriptor_address_space(uint32_t id, StorageClass storage, const char *plain_address_space) const +{ + if (msl_options.argument_buffers) + { + bool storage_class_is_descriptor = storage == StorageClassUniform || + storage == StorageClassStorageBuffer || + storage == StorageClassUniformConstant; + + uint32_t desc_set = get_decoration(id, DecorationDescriptorSet); + if (storage_class_is_descriptor && descriptor_set_is_argument_buffer(desc_set)) + { + // An awkward case where we need to emit *more* address space declarations (yay!). + // An example is where we pass down an array of buffer pointers to leaf functions. + // It's a constant array containing pointers to constants. + // The pointer array is always constant however. E.g. + // device SSBO * constant (&array)[N]. + // const device SSBO * constant (&array)[N]. + // constant SSBO * constant (&array)[N]. + // However, this only matters for argument buffers, since for MSL 1.0 style codegen, + // we emit the buffer array on stack instead, and that seems to work just fine apparently. + + // If the argument was marked as being in device address space, any pointer to member would + // be const device, not constant. + if (argument_buffer_device_storage_mask & (1u << desc_set)) + return "const device"; + else + return "constant"; + } + } + + return plain_address_space; +} + +string CompilerMSL::argument_decl(const SPIRFunction::Parameter &arg) +{ + auto &var = get<SPIRVariable>(arg.id); + auto &type = get_variable_data_type(var); + auto &var_type = get<SPIRType>(arg.type); + StorageClass type_storage = var_type.storage; + + // If we need to modify the name of the variable, make sure we use the original variable. + // Our alias is just a shadow variable. + uint32_t name_id = var.self; + if (arg.alias_global_variable && var.basevariable) + name_id = var.basevariable; + + bool constref = !arg.alias_global_variable && is_pointer(var_type) && arg.write_count == 0; + // Framebuffer fetch is plain value, const looks out of place, but it is not wrong. + if (type_is_msl_framebuffer_fetch(type)) + constref = false; + else if (type_storage == StorageClassUniformConstant) + constref = true; + + bool type_is_image = type.basetype == SPIRType::Image || type.basetype == SPIRType::SampledImage || + type.basetype == SPIRType::Sampler; + bool type_is_tlas = type.basetype == SPIRType::AccelerationStructure; + + // For opaque types we handle const later due to descriptor address spaces. + const char *cv_qualifier = (constref && !type_is_image) ? "const " : ""; + string decl; + + // If this is a combined image-sampler for a 2D image with floating-point type, + // we emitted the 'spvDynamicImageSampler' type, and this is *not* an alias parameter + // for a global, then we need to emit a "dynamic" combined image-sampler. + // Unfortunately, this is necessary to properly support passing around + // combined image-samplers with Y'CbCr conversions on them. + bool is_dynamic_img_sampler = !arg.alias_global_variable && type.basetype == SPIRType::SampledImage && + type.image.dim == Dim2D && type_is_floating_point(get<SPIRType>(type.image.type)) && + spv_function_implementations.count(SPVFuncImplDynamicImageSampler); + + // Allow Metal to use the array<T> template to make arrays a value type + string address_space = get_argument_address_space(var); + bool builtin = has_decoration(var.self, DecorationBuiltIn); + auto builtin_type = BuiltIn(get_decoration(arg.id, DecorationBuiltIn)); + + if (var.basevariable && (var.basevariable == stage_in_ptr_var_id || var.basevariable == stage_out_ptr_var_id)) + decl = join(cv_qualifier, type_to_glsl(type, arg.id)); + else if (builtin) + { + // Only use templated array for Clip/Cull distance when feasible. + // In other scenarios, we need need to override array length for tess levels (if used as outputs), + // or we need to emit the expected type for builtins (uint vs int). + auto storage = get<SPIRType>(var.basetype).storage; + + if (storage == StorageClassInput && + (builtin_type == BuiltInTessLevelInner || builtin_type == BuiltInTessLevelOuter)) + { + is_using_builtin_array = false; + } + else if (builtin_type != BuiltInClipDistance && builtin_type != BuiltInCullDistance) + { + is_using_builtin_array = true; + } + + if (storage == StorageClassOutput && variable_storage_requires_stage_io(storage) && + !is_stage_output_builtin_masked(builtin_type)) + is_using_builtin_array = true; + + if (is_using_builtin_array) + decl = join(cv_qualifier, builtin_type_decl(builtin_type, arg.id)); + else + decl = join(cv_qualifier, type_to_glsl(type, arg.id)); + } + else if (is_var_runtime_size_array(var)) + { + const auto *parent_type = &get<SPIRType>(type.parent_type); + auto type_name = type_to_glsl(*parent_type, arg.id); + if (type.basetype == SPIRType::AccelerationStructure) + decl = join("spvDescriptorArray<", type_name, ">"); + else if (type_is_image) + decl = join("spvDescriptorArray<", cv_qualifier, type_name, ">"); + else + decl = join("spvDescriptorArray<", address_space, " ", type_name, "*>"); + address_space = "const"; + } + else if ((type_storage == StorageClassUniform || type_storage == StorageClassStorageBuffer) && is_array(type)) + { + is_using_builtin_array = true; + decl += join(cv_qualifier, type_to_glsl(type, arg.id), "*"); + } + else if (is_dynamic_img_sampler) + { + decl = join(cv_qualifier, "spvDynamicImageSampler<", type_to_glsl(get<SPIRType>(type.image.type)), ">"); + // Mark the variable so that we can handle passing it to another function. + set_extended_decoration(arg.id, SPIRVCrossDecorationDynamicImageSampler); + } + else + { + // The type is a pointer type we need to emit cv_qualifier late. + if (is_pointer(type)) + { + decl = type_to_glsl(type, arg.id); + if (*cv_qualifier != '\0') + decl += join(" ", cv_qualifier); + } + else + { + decl = join(cv_qualifier, type_to_glsl(type, arg.id)); + } + } + + if (!builtin && !is_pointer(var_type) && + (type_storage == StorageClassFunction || type_storage == StorageClassGeneric)) + { + // If the argument is a pure value and not an opaque type, we will pass by value. + if (msl_options.force_native_arrays && is_array(type)) + { + // We are receiving an array by value. This is problematic. + // We cannot be sure of the target address space since we are supposed to receive a copy, + // but this is not possible with MSL without some extra work. + // We will have to assume we're getting a reference in thread address space. + // If we happen to get a reference in constant address space, the caller must emit a copy and pass that. + // Thread const therefore becomes the only logical choice, since we cannot "create" a constant array from + // non-constant arrays, but we can create thread const from constant. + decl = string("thread const ") + decl; + decl += " (&"; + const char *restrict_kw = to_restrict(name_id, true); + if (*restrict_kw) + { + decl += " "; + decl += restrict_kw; + } + decl += to_expression(name_id); + decl += ")"; + decl += type_to_array_glsl(type, name_id); + } + else + { + if (!address_space.empty()) + decl = join(address_space, " ", decl); + decl += " "; + decl += to_expression(name_id); + } + } + else if (is_array(type) && !type_is_image) + { + // Arrays of opaque types are special cased. + if (!address_space.empty()) + decl = join(address_space, " ", decl); + + // spvDescriptorArray absorbs the address space inside the template. + if (!is_var_runtime_size_array(var)) + { + const char *argument_buffer_space = descriptor_address_space(name_id, type_storage, nullptr); + if (argument_buffer_space) + { + decl += " "; + decl += argument_buffer_space; + } + } + + // Special case, need to override the array size here if we're using tess level as an argument. + if (is_tesc_shader() && builtin && + (builtin_type == BuiltInTessLevelInner || builtin_type == BuiltInTessLevelOuter)) + { + uint32_t array_size = get_physical_tess_level_array_size(builtin_type); + if (array_size == 1) + { + decl += " &"; + decl += to_expression(name_id); + } + else + { + decl += " (&"; + decl += to_expression(name_id); + decl += ")"; + decl += join("[", array_size, "]"); + } + } + else if (is_var_runtime_size_array(var)) + { + decl += " " + to_expression(name_id); + } + else + { + auto array_size_decl = type_to_array_glsl(type, name_id); + if (array_size_decl.empty()) + decl += "& "; + else + decl += " (&"; + + const char *restrict_kw = to_restrict(name_id, true); + if (*restrict_kw) + { + decl += " "; + decl += restrict_kw; + } + decl += to_expression(name_id); + + if (!array_size_decl.empty()) + { + decl += ")"; + decl += array_size_decl; + } + } + } + else if (!type_is_image && !type_is_tlas && + (!pull_model_inputs.count(var.basevariable) || type.basetype == SPIRType::Struct)) + { + // If this is going to be a reference to a variable pointer, the address space + // for the reference has to go before the '&', but after the '*'. + if (!address_space.empty()) + { + if (is_pointer(type)) + { + if (*cv_qualifier == '\0') + decl += ' '; + decl += join(address_space, " "); + } + else + decl = join(address_space, " ", decl); + } + decl += "&"; + decl += " "; + decl += to_restrict(name_id, true); + decl += to_expression(name_id); + } + else if (type_is_image || type_is_tlas) + { + if (is_var_runtime_size_array(var)) + { + decl = address_space + " " + decl + " " + to_expression(name_id); + } + else if (type.array.empty()) + { + // For non-arrayed types we can just pass opaque descriptors by value. + // This fixes problems if descriptors are passed by value from argument buffers and plain descriptors + // in same shader. + // There is no address space we can actually use, but value will work. + // This will break if applications attempt to pass down descriptor arrays as arguments, but + // fortunately that is extremely unlikely ... + decl += " "; + decl += to_expression(name_id); + } + else + { + const char *img_address_space = descriptor_address_space(name_id, type_storage, "thread const"); + decl = join(img_address_space, " ", decl); + decl += "& "; + decl += to_expression(name_id); + } + } + else + { + if (!address_space.empty()) + decl = join(address_space, " ", decl); + decl += " "; + decl += to_expression(name_id); + } + + // Emulate texture2D atomic operations + auto *backing_var = maybe_get_backing_variable(name_id); + if (backing_var && atomic_image_vars_emulated.count(backing_var->self)) + { + auto &flags = ir.get_decoration_bitset(backing_var->self); + const char *cv_flags = decoration_flags_signal_volatile(flags) ? "volatile " : ""; + decl += join(", ", cv_flags, "device atomic_", type_to_glsl(get<SPIRType>(var_type.image.type), 0)); + decl += "* " + to_expression(name_id) + "_atomic"; + } + + is_using_builtin_array = false; + + return decl; +} + +// If we're currently in the entry point function, and the object +// has a qualified name, use it, otherwise use the standard name. +string CompilerMSL::to_name(uint32_t id, bool allow_alias) const +{ + if (current_function && (current_function->self == ir.default_entry_point)) + { + auto *m = ir.find_meta(id); + if (m && !m->decoration.qualified_alias_explicit_override && !m->decoration.qualified_alias.empty()) + return m->decoration.qualified_alias; + } + return Compiler::to_name(id, allow_alias); +} + +// Appends the name of the member to the variable qualifier string, except for Builtins. +string CompilerMSL::append_member_name(const string &qualifier, const SPIRType &type, uint32_t index) +{ + // Don't qualify Builtin names because they are unique and are treated as such when building expressions + BuiltIn builtin = BuiltInMax; + if (is_member_builtin(type, index, &builtin)) + return builtin_to_glsl(builtin, type.storage); + + // Strip any underscore prefix from member name + string mbr_name = to_member_name(type, index); + size_t startPos = mbr_name.find_first_not_of("_"); + mbr_name = (startPos != string::npos) ? mbr_name.substr(startPos) : ""; + return join(qualifier, "_", mbr_name); +} + +// Ensures that the specified name is permanently usable by prepending a prefix +// if the first chars are _ and a digit, which indicate a transient name. +string CompilerMSL::ensure_valid_name(string name, string pfx) +{ + return (name.size() >= 2 && name[0] == '_' && isdigit(name[1])) ? (pfx + name) : name; +} + +const std::unordered_set<std::string> &CompilerMSL::get_reserved_keyword_set() +{ + static const unordered_set<string> keywords = { + "kernel", + "vertex", + "fragment", + "compute", + "constant", + "device", + "bias", + "level", + "gradient2d", + "gradientcube", + "gradient3d", + "min_lod_clamp", + "assert", + "VARIABLE_TRACEPOINT", + "STATIC_DATA_TRACEPOINT", + "STATIC_DATA_TRACEPOINT_V", + "METAL_ALIGN", + "METAL_ASM", + "METAL_CONST", + "METAL_DEPRECATED", + "METAL_ENABLE_IF", + "METAL_FUNC", + "METAL_INTERNAL", + "METAL_NON_NULL_RETURN", + "METAL_NORETURN", + "METAL_NOTHROW", + "METAL_PURE", + "METAL_UNAVAILABLE", + "METAL_IMPLICIT", + "METAL_EXPLICIT", + "METAL_CONST_ARG", + "METAL_ARG_UNIFORM", + "METAL_ZERO_ARG", + "METAL_VALID_LOD_ARG", + "METAL_VALID_LEVEL_ARG", + "METAL_VALID_STORE_ORDER", + "METAL_VALID_LOAD_ORDER", + "METAL_VALID_COMPARE_EXCHANGE_FAILURE_ORDER", + "METAL_COMPATIBLE_COMPARE_EXCHANGE_ORDERS", + "METAL_VALID_RENDER_TARGET", + "is_function_constant_defined", + "CHAR_BIT", + "SCHAR_MAX", + "SCHAR_MIN", + "UCHAR_MAX", + "CHAR_MAX", + "CHAR_MIN", + "USHRT_MAX", + "SHRT_MAX", + "SHRT_MIN", + "UINT_MAX", + "INT_MAX", + "INT_MIN", + "FLT_DIG", + "FLT_MANT_DIG", + "FLT_MAX_10_EXP", + "FLT_MAX_EXP", + "FLT_MIN_10_EXP", + "FLT_MIN_EXP", + "FLT_RADIX", + "FLT_MAX", + "FLT_MIN", + "FLT_EPSILON", + "FP_ILOGB0", + "FP_ILOGBNAN", + "MAXFLOAT", + "HUGE_VALF", + "INFINITY", + "NAN", + "M_E_F", + "M_LOG2E_F", + "M_LOG10E_F", + "M_LN2_F", + "M_LN10_F", + "M_PI_F", + "M_PI_2_F", + "M_PI_4_F", + "M_1_PI_F", + "M_2_PI_F", + "M_2_SQRTPI_F", + "M_SQRT2_F", + "M_SQRT1_2_F", + "HALF_DIG", + "HALF_MANT_DIG", + "HALF_MAX_10_EXP", + "HALF_MAX_EXP", + "HALF_MIN_10_EXP", + "HALF_MIN_EXP", + "HALF_RADIX", + "HALF_MAX", + "HALF_MIN", + "HALF_EPSILON", + "MAXHALF", + "HUGE_VALH", + "M_E_H", + "M_LOG2E_H", + "M_LOG10E_H", + "M_LN2_H", + "M_LN10_H", + "M_PI_H", + "M_PI_2_H", + "M_PI_4_H", + "M_1_PI_H", + "M_2_PI_H", + "M_2_SQRTPI_H", + "M_SQRT2_H", + "M_SQRT1_2_H", + "DBL_DIG", + "DBL_MANT_DIG", + "DBL_MAX_10_EXP", + "DBL_MAX_EXP", + "DBL_MIN_10_EXP", + "DBL_MIN_EXP", + "DBL_RADIX", + "DBL_MAX", + "DBL_MIN", + "DBL_EPSILON", + "HUGE_VAL", + "M_E", + "M_LOG2E", + "M_LOG10E", + "M_LN2", + "M_LN10", + "M_PI", + "M_PI_2", + "M_PI_4", + "M_1_PI", + "M_2_PI", + "M_2_SQRTPI", + "M_SQRT2", + "M_SQRT1_2", + "quad_broadcast", + "thread", + "threadgroup", + }; + + return keywords; +} + +const std::unordered_set<std::string> &CompilerMSL::get_illegal_func_names() +{ + static const unordered_set<string> illegal_func_names = { + "main", + "saturate", + "assert", + "fmin3", + "fmax3", + "divide", + "median3", + "VARIABLE_TRACEPOINT", + "STATIC_DATA_TRACEPOINT", + "STATIC_DATA_TRACEPOINT_V", + "METAL_ALIGN", + "METAL_ASM", + "METAL_CONST", + "METAL_DEPRECATED", + "METAL_ENABLE_IF", + "METAL_FUNC", + "METAL_INTERNAL", + "METAL_NON_NULL_RETURN", + "METAL_NORETURN", + "METAL_NOTHROW", + "METAL_PURE", + "METAL_UNAVAILABLE", + "METAL_IMPLICIT", + "METAL_EXPLICIT", + "METAL_CONST_ARG", + "METAL_ARG_UNIFORM", + "METAL_ZERO_ARG", + "METAL_VALID_LOD_ARG", + "METAL_VALID_LEVEL_ARG", + "METAL_VALID_STORE_ORDER", + "METAL_VALID_LOAD_ORDER", + "METAL_VALID_COMPARE_EXCHANGE_FAILURE_ORDER", + "METAL_COMPATIBLE_COMPARE_EXCHANGE_ORDERS", + "METAL_VALID_RENDER_TARGET", + "is_function_constant_defined", + "CHAR_BIT", + "SCHAR_MAX", + "SCHAR_MIN", + "UCHAR_MAX", + "CHAR_MAX", + "CHAR_MIN", + "USHRT_MAX", + "SHRT_MAX", + "SHRT_MIN", + "UINT_MAX", + "INT_MAX", + "INT_MIN", + "FLT_DIG", + "FLT_MANT_DIG", + "FLT_MAX_10_EXP", + "FLT_MAX_EXP", + "FLT_MIN_10_EXP", + "FLT_MIN_EXP", + "FLT_RADIX", + "FLT_MAX", + "FLT_MIN", + "FLT_EPSILON", + "FP_ILOGB0", + "FP_ILOGBNAN", + "MAXFLOAT", + "HUGE_VALF", + "INFINITY", + "NAN", + "M_E_F", + "M_LOG2E_F", + "M_LOG10E_F", + "M_LN2_F", + "M_LN10_F", + "M_PI_F", + "M_PI_2_F", + "M_PI_4_F", + "M_1_PI_F", + "M_2_PI_F", + "M_2_SQRTPI_F", + "M_SQRT2_F", + "M_SQRT1_2_F", + "HALF_DIG", + "HALF_MANT_DIG", + "HALF_MAX_10_EXP", + "HALF_MAX_EXP", + "HALF_MIN_10_EXP", + "HALF_MIN_EXP", + "HALF_RADIX", + "HALF_MAX", + "HALF_MIN", + "HALF_EPSILON", + "MAXHALF", + "HUGE_VALH", + "M_E_H", + "M_LOG2E_H", + "M_LOG10E_H", + "M_LN2_H", + "M_LN10_H", + "M_PI_H", + "M_PI_2_H", + "M_PI_4_H", + "M_1_PI_H", + "M_2_PI_H", + "M_2_SQRTPI_H", + "M_SQRT2_H", + "M_SQRT1_2_H", + "DBL_DIG", + "DBL_MANT_DIG", + "DBL_MAX_10_EXP", + "DBL_MAX_EXP", + "DBL_MIN_10_EXP", + "DBL_MIN_EXP", + "DBL_RADIX", + "DBL_MAX", + "DBL_MIN", + "DBL_EPSILON", + "HUGE_VAL", + "M_E", + "M_LOG2E", + "M_LOG10E", + "M_LN2", + "M_LN10", + "M_PI", + "M_PI_2", + "M_PI_4", + "M_1_PI", + "M_2_PI", + "M_2_SQRTPI", + "M_SQRT2", + "M_SQRT1_2", + }; + + return illegal_func_names; +} + +// Replace all names that match MSL keywords or Metal Standard Library functions. +void CompilerMSL::replace_illegal_names() +{ + // FIXME: MSL and GLSL are doing two different things here. + // Agree on convention and remove this override. + auto &keywords = get_reserved_keyword_set(); + auto &illegal_func_names = get_illegal_func_names(); + + ir.for_each_typed_id<SPIRVariable>([&](uint32_t self, SPIRVariable &) { + auto *meta = ir.find_meta(self); + if (!meta) + return; + + auto &dec = meta->decoration; + if (keywords.find(dec.alias) != end(keywords)) + dec.alias += "0"; + }); + + ir.for_each_typed_id<SPIRFunction>([&](uint32_t self, SPIRFunction &) { + auto *meta = ir.find_meta(self); + if (!meta) + return; + + auto &dec = meta->decoration; + if (illegal_func_names.find(dec.alias) != end(illegal_func_names)) + dec.alias += "0"; + }); + + ir.for_each_typed_id<SPIRType>([&](uint32_t self, SPIRType &) { + auto *meta = ir.find_meta(self); + if (!meta) + return; + + for (auto &mbr_dec : meta->members) + if (keywords.find(mbr_dec.alias) != end(keywords)) + mbr_dec.alias += "0"; + }); + + CompilerGLSL::replace_illegal_names(); +} + +void CompilerMSL::replace_illegal_entry_point_names() +{ + auto &illegal_func_names = get_illegal_func_names(); + + // It is important to this before we fixup identifiers, + // since if ep_name is reserved, we will need to fix that up, + // and then copy alias back into entry.name after the fixup. + for (auto &entry : ir.entry_points) + { + // Change both the entry point name and the alias, to keep them synced. + string &ep_name = entry.second.name; + if (illegal_func_names.find(ep_name) != end(illegal_func_names)) + ep_name += "0"; + + ir.meta[entry.first].decoration.alias = ep_name; + } +} + +void CompilerMSL::sync_entry_point_aliases_and_names() +{ + for (auto &entry : ir.entry_points) + entry.second.name = ir.meta[entry.first].decoration.alias; +} + +string CompilerMSL::to_member_reference(uint32_t base, const SPIRType &type, uint32_t index, bool ptr_chain_is_resolved) +{ + auto *var = maybe_get_backing_variable(base); + // If this is a buffer array, we have to dereference the buffer pointers. + // Otherwise, if this is a pointer expression, dereference it. + + bool declared_as_pointer = false; + + if (var) + { + // Only allow -> dereference for block types. This is so we get expressions like + // buffer[i]->first_member.second_member, rather than buffer[i]->first->second. + const bool is_block = + has_decoration(type.self, DecorationBlock) || has_decoration(type.self, DecorationBufferBlock); + + bool is_buffer_variable = + is_block && (var->storage == StorageClassUniform || var->storage == StorageClassStorageBuffer); + declared_as_pointer = is_buffer_variable && is_array(get_pointee_type(var->basetype)); + } + + if (declared_as_pointer || (!ptr_chain_is_resolved && should_dereference(base))) + return join("->", to_member_name(type, index)); + else + return join(".", to_member_name(type, index)); +} + +string CompilerMSL::to_qualifiers_glsl(uint32_t id) +{ + string quals; + + auto *var = maybe_get<SPIRVariable>(id); + auto &type = expression_type(id); + + if (type.storage == StorageClassWorkgroup || (var && variable_decl_is_remapped_storage(*var, StorageClassWorkgroup))) + quals += "threadgroup "; + + return quals; +} + +// The optional id parameter indicates the object whose type we are trying +// to find the description for. It is optional. Most type descriptions do not +// depend on a specific object's use of that type. +string CompilerMSL::type_to_glsl(const SPIRType &type, uint32_t id, bool member) +{ + string type_name; + + // Pointer? + if (is_pointer(type) || type_is_array_of_pointers(type)) + { + assert(type.pointer_depth > 0); + + const char *restrict_kw; + + auto type_address_space = get_type_address_space(type, id); + const auto *p_parent_type = &get<SPIRType>(type.parent_type); + + // If we're wrapping buffer descriptors in a spvDescriptorArray, we'll have to handle it as a special case. + if (member && id) + { + auto &var = get<SPIRVariable>(id); + if (is_var_runtime_size_array(var) && is_runtime_size_array(*p_parent_type)) + { + const bool ssbo = has_decoration(p_parent_type->self, DecorationBufferBlock); + bool buffer_desc = + (var.storage == StorageClassStorageBuffer || ssbo) && + msl_options.runtime_array_rich_descriptor; + + const char *wrapper_type = buffer_desc ? "spvBufferDescriptor" : "spvDescriptor"; + add_spv_func_and_recompile(SPVFuncImplVariableDescriptorArray); + add_spv_func_and_recompile(buffer_desc ? SPVFuncImplVariableSizedDescriptor : SPVFuncImplVariableDescriptor); + + type_name = join(wrapper_type, "<", type_address_space, " ", type_to_glsl(*p_parent_type, id), " *>"); + return type_name; + } + } + + // Work around C pointer qualifier rules. If glsl_type is a pointer type as well + // we'll need to emit the address space to the right. + // We could always go this route, but it makes the code unnatural. + // Prefer emitting thread T *foo over T thread* foo since it's more readable, + // but we'll have to emit thread T * thread * T constant bar; for example. + if (is_pointer(type) && is_pointer(*p_parent_type)) + type_name = join(type_to_glsl(*p_parent_type, id), " ", type_address_space, " "); + else + { + // Since this is not a pointer-to-pointer, ensure we've dug down to the base type. + // Some situations chain pointers even though they are not formally pointers-of-pointers. + while (is_pointer(*p_parent_type)) + p_parent_type = &get<SPIRType>(p_parent_type->parent_type); + + // If we're emitting BDA, just use the templated type. + // Emitting builtin arrays need a lot of cooperation with other code to ensure + // the C-style nesting works right. + // FIXME: This is somewhat of a hack. + bool old_is_using_builtin_array = is_using_builtin_array; + if (is_physical_pointer(type)) + is_using_builtin_array = false; + + type_name = join(type_address_space, " ", type_to_glsl(*p_parent_type, id)); + + is_using_builtin_array = old_is_using_builtin_array; + } + + switch (type.basetype) + { + case SPIRType::Image: + case SPIRType::SampledImage: + case SPIRType::Sampler: + // These are handles. + break; + default: + // Anything else can be a raw pointer. + type_name += "*"; + restrict_kw = to_restrict(id, false); + if (*restrict_kw) + { + type_name += " "; + type_name += restrict_kw; + } + break; + } + return type_name; + } + + switch (type.basetype) + { + case SPIRType::Struct: + // Need OpName lookup here to get a "sensible" name for a struct. + // Allow Metal to use the array<T> template to make arrays a value type + type_name = to_name(type.self); + break; + + case SPIRType::Image: + case SPIRType::SampledImage: + return image_type_glsl(type, id, member); + + case SPIRType::Sampler: + return sampler_type(type, id, member); + + case SPIRType::Void: + return "void"; + + case SPIRType::AtomicCounter: + return "atomic_uint"; + + case SPIRType::ControlPointArray: + return join("patch_control_point<", type_to_glsl(get<SPIRType>(type.parent_type), id), ">"); + + case SPIRType::Interpolant: + return join("interpolant<", type_to_glsl(get<SPIRType>(type.parent_type), id), ", interpolation::", + has_decoration(type.self, DecorationNoPerspective) ? "no_perspective" : "perspective", ">"); + + // Scalars + case SPIRType::Boolean: + { + auto *var = maybe_get_backing_variable(id); + if (var && var->basevariable) + var = &get<SPIRVariable>(var->basevariable); + + // Need to special-case threadgroup booleans. They are supposed to be logical + // storage, but MSL compilers will sometimes crash if you use threadgroup bool. + // Workaround this by using 16-bit types instead and fixup on load-store to this data. + if ((var && var->storage == StorageClassWorkgroup) || type.storage == StorageClassWorkgroup || member) + type_name = "short"; + else + type_name = "bool"; + break; + } + + case SPIRType::Char: + case SPIRType::SByte: + type_name = "char"; + break; + case SPIRType::UByte: + type_name = "uchar"; + break; + case SPIRType::Short: + type_name = "short"; + break; + case SPIRType::UShort: + type_name = "ushort"; + break; + case SPIRType::Int: + type_name = "int"; + break; + case SPIRType::UInt: + type_name = "uint"; + break; + case SPIRType::Int64: + if (!msl_options.supports_msl_version(2, 2)) + SPIRV_CROSS_THROW("64-bit integers are only supported in MSL 2.2 and above."); + type_name = "long"; + break; + case SPIRType::UInt64: + if (!msl_options.supports_msl_version(2, 2)) + SPIRV_CROSS_THROW("64-bit integers are only supported in MSL 2.2 and above."); + type_name = "ulong"; + break; + case SPIRType::Half: + type_name = "half"; + break; + case SPIRType::Float: + type_name = "float"; + break; + case SPIRType::Double: + type_name = "double"; // Currently unsupported + break; + case SPIRType::AccelerationStructure: + if (msl_options.supports_msl_version(2, 4)) + type_name = "raytracing::acceleration_structure<raytracing::instancing>"; + else if (msl_options.supports_msl_version(2, 3)) + type_name = "raytracing::instance_acceleration_structure"; + else + SPIRV_CROSS_THROW("Acceleration Structure Type is supported in MSL 2.3 and above."); + break; + case SPIRType::RayQuery: + return "raytracing::intersection_query<raytracing::instancing, raytracing::triangle_data>"; + + default: + return "unknown_type"; + } + + // Matrix? + if (type.columns > 1) + { + auto *var = maybe_get_backing_variable(id); + if (var && var->basevariable) + var = &get<SPIRVariable>(var->basevariable); + + // Need to special-case threadgroup matrices. Due to an oversight, Metal's + // matrix struct prior to Metal 3 lacks constructors in the threadgroup AS, + // preventing us from default-constructing or initializing matrices in threadgroup storage. + // Work around this by using our own type as storage. + if (((var && var->storage == StorageClassWorkgroup) || type.storage == StorageClassWorkgroup) && + !msl_options.supports_msl_version(3, 0)) + { + add_spv_func_and_recompile(SPVFuncImplStorageMatrix); + type_name = "spvStorage_" + type_name; + } + + type_name += to_string(type.columns) + "x"; + } + + // Vector or Matrix? + if (type.vecsize > 1) + type_name += to_string(type.vecsize); + + if (type.array.empty() || using_builtin_array()) + { + return type_name; + } + else + { + // Allow Metal to use the array<T> template to make arrays a value type + add_spv_func_and_recompile(SPVFuncImplUnsafeArray); + string res; + string sizes; + + for (uint32_t i = 0; i < uint32_t(type.array.size()); i++) + { + res += "spvUnsafeArray<"; + sizes += ", "; + sizes += to_array_size(type, i); + sizes += ">"; + } + + res += type_name + sizes; + return res; + } +} + +string CompilerMSL::type_to_glsl(const SPIRType &type, uint32_t id) +{ + return type_to_glsl(type, id, false); +} + +string CompilerMSL::type_to_array_glsl(const SPIRType &type, uint32_t variable_id) +{ + // Allow Metal to use the array<T> template to make arrays a value type + switch (type.basetype) + { + case SPIRType::AtomicCounter: + case SPIRType::ControlPointArray: + case SPIRType::RayQuery: + return CompilerGLSL::type_to_array_glsl(type, variable_id); + + default: + if (type_is_array_of_pointers(type) || using_builtin_array()) + { + const SPIRVariable *var = variable_id ? &get<SPIRVariable>(variable_id) : nullptr; + if (var && (var->storage == StorageClassUniform || var->storage == StorageClassStorageBuffer) && + is_array(get_variable_data_type(*var))) + { + return join("[", get_resource_array_size(type, variable_id), "]"); + } + else + return CompilerGLSL::type_to_array_glsl(type, variable_id); + } + else + return ""; + } +} + +string CompilerMSL::constant_op_expression(const SPIRConstantOp &cop) +{ + switch (cop.opcode) + { + case OpQuantizeToF16: + add_spv_func_and_recompile(SPVFuncImplQuantizeToF16); + return join("spvQuantizeToF16(", to_expression(cop.arguments[0]), ")"); + default: + return CompilerGLSL::constant_op_expression(cop); + } +} + +bool CompilerMSL::variable_decl_is_remapped_storage(const SPIRVariable &variable, spv::StorageClass storage) const +{ + if (variable.storage == storage) + return true; + + if (storage == StorageClassWorkgroup) + { + // Specially masked IO block variable. + // Normally, we will never access IO blocks directly here. + // The only scenario which that should occur is with a masked IO block. + if (is_tesc_shader() && variable.storage == StorageClassOutput && + has_decoration(get<SPIRType>(variable.basetype).self, DecorationBlock)) + { + return true; + } + + return variable.storage == StorageClassOutput && is_tesc_shader() && is_stage_output_variable_masked(variable); + } + else if (storage == StorageClassStorageBuffer) + { + // These builtins are passed directly; we don't want to use remapping + // for them. + auto builtin = (BuiltIn)get_decoration(variable.self, DecorationBuiltIn); + if (is_tese_shader() && is_builtin_variable(variable) && (builtin == BuiltInTessCoord || builtin == BuiltInPrimitiveId)) + return false; + + // We won't be able to catch writes to control point outputs here since variable + // refers to a function local pointer. + // This is fine, as there cannot be concurrent writers to that memory anyways, + // so we just ignore that case. + + return (variable.storage == StorageClassOutput || variable.storage == StorageClassInput) && + !variable_storage_requires_stage_io(variable.storage) && + (variable.storage != StorageClassOutput || !is_stage_output_variable_masked(variable)); + } + else + { + return false; + } +} + +// GCC workaround of lambdas calling protected funcs +std::string CompilerMSL::variable_decl(const SPIRType &type, const std::string &name, uint32_t id) +{ + return CompilerGLSL::variable_decl(type, name, id); +} + +std::string CompilerMSL::sampler_type(const SPIRType &type, uint32_t id, bool member) +{ + auto *var = maybe_get<SPIRVariable>(id); + if (var && var->basevariable) + { + // Check against the base variable, and not a fake ID which might have been generated for this variable. + id = var->basevariable; + } + + if (!type.array.empty()) + { + if (!msl_options.supports_msl_version(2)) + SPIRV_CROSS_THROW("MSL 2.0 or greater is required for arrays of samplers."); + + if (type.array.size() > 1) + SPIRV_CROSS_THROW("Arrays of arrays of samplers are not supported in MSL."); + + // Arrays of samplers in MSL must be declared with a special array<T, N> syntax ala C++11 std::array. + // If we have a runtime array, it could be a variable-count descriptor set binding. + auto &parent = get<SPIRType>(get_pointee_type(type).parent_type); + uint32_t array_size = get_resource_array_size(type, id); + + if (array_size == 0) + { + add_spv_func_and_recompile(SPVFuncImplVariableDescriptor); + add_spv_func_and_recompile(SPVFuncImplVariableDescriptorArray); + + const char *descriptor_wrapper = processing_entry_point ? "const device spvDescriptor" : "const spvDescriptorArray"; + if (member) + descriptor_wrapper = "spvDescriptor"; + return join(descriptor_wrapper, "<", sampler_type(parent, id, false), ">", + processing_entry_point ? "*" : ""); + } + else + { + return join("array<", sampler_type(parent, id, false), ", ", array_size, ">"); + } + } + else + return "sampler"; +} + +// Returns an MSL string describing the SPIR-V image type +string CompilerMSL::image_type_glsl(const SPIRType &type, uint32_t id, bool member) +{ + auto *var = maybe_get<SPIRVariable>(id); + if (var && var->basevariable) + { + // For comparison images, check against the base variable, + // and not the fake ID which might have been generated for this variable. + id = var->basevariable; + } + + if (!type.array.empty()) + { + uint32_t major = 2, minor = 0; + if (msl_options.is_ios()) + { + major = 1; + minor = 2; + } + if (!msl_options.supports_msl_version(major, minor)) + { + if (msl_options.is_ios()) + SPIRV_CROSS_THROW("MSL 1.2 or greater is required for arrays of textures."); + else + SPIRV_CROSS_THROW("MSL 2.0 or greater is required for arrays of textures."); + } + + if (type.array.size() > 1) + SPIRV_CROSS_THROW("Arrays of arrays of textures are not supported in MSL."); + + // Arrays of images in MSL must be declared with a special array<T, N> syntax ala C++11 std::array. + // If we have a runtime array, it could be a variable-count descriptor set binding. + auto &parent = get<SPIRType>(get_pointee_type(type).parent_type); + uint32_t array_size = get_resource_array_size(type, id); + + if (array_size == 0) + { + add_spv_func_and_recompile(SPVFuncImplVariableDescriptor); + add_spv_func_and_recompile(SPVFuncImplVariableDescriptorArray); + const char *descriptor_wrapper = processing_entry_point ? "const device spvDescriptor" : "const spvDescriptorArray"; + if (member) + { + descriptor_wrapper = "spvDescriptor"; + // This requires a specialized wrapper type that packs image and sampler side by side. + // It is possible in theory. + if (type.basetype == SPIRType::SampledImage) + SPIRV_CROSS_THROW("Argument buffer runtime array currently not supported for combined image sampler."); + } + return join(descriptor_wrapper, "<", image_type_glsl(parent, id, false), ">", + processing_entry_point ? "*" : ""); + } + else + { + return join("array<", image_type_glsl(parent, id, false), ", ", array_size, ">"); + } + } + + string img_type_name; + + auto &img_type = type.image; + + if (is_depth_image(type, id)) + { + switch (img_type.dim) + { + case Dim1D: + case Dim2D: + if (img_type.dim == Dim1D && !msl_options.texture_1D_as_2D) + { + // Use a native Metal 1D texture + img_type_name += "depth1d_unsupported_by_metal"; + break; + } + + if (img_type.ms && img_type.arrayed) + { + if (!msl_options.supports_msl_version(2, 1)) + SPIRV_CROSS_THROW("Multisampled array textures are supported from 2.1."); + img_type_name += "depth2d_ms_array"; + } + else if (img_type.ms) + img_type_name += "depth2d_ms"; + else if (img_type.arrayed) + img_type_name += "depth2d_array"; + else + img_type_name += "depth2d"; + break; + case Dim3D: + img_type_name += "depth3d_unsupported_by_metal"; + break; + case DimCube: + if (!msl_options.emulate_cube_array) + img_type_name += (img_type.arrayed ? "depthcube_array" : "depthcube"); + else + img_type_name += (img_type.arrayed ? "depth2d_array" : "depthcube"); + break; + default: + img_type_name += "unknown_depth_texture_type"; + break; + } + } + else + { + switch (img_type.dim) + { + case DimBuffer: + if (img_type.ms || img_type.arrayed) + SPIRV_CROSS_THROW("Cannot use texel buffers with multisampling or array layers."); + + if (msl_options.texture_buffer_native) + { + if (!msl_options.supports_msl_version(2, 1)) + SPIRV_CROSS_THROW("Native texture_buffer type is only supported in MSL 2.1."); + img_type_name = "texture_buffer"; + } + else + img_type_name += "texture2d"; + break; + case Dim1D: + case Dim2D: + case DimSubpassData: + { + bool subpass_array = + img_type.dim == DimSubpassData && (msl_options.multiview || msl_options.arrayed_subpass_input); + if (img_type.dim == Dim1D && !msl_options.texture_1D_as_2D) + { + // Use a native Metal 1D texture + img_type_name += (img_type.arrayed ? "texture1d_array" : "texture1d"); + break; + } + + // Use Metal's native frame-buffer fetch API for subpass inputs. + if (type_is_msl_framebuffer_fetch(type)) + { + auto img_type_4 = get<SPIRType>(img_type.type); + img_type_4.vecsize = 4; + return type_to_glsl(img_type_4); + } + if (img_type.ms && (img_type.arrayed || subpass_array)) + { + if (!msl_options.supports_msl_version(2, 1)) + SPIRV_CROSS_THROW("Multisampled array textures are supported from 2.1."); + img_type_name += "texture2d_ms_array"; + } + else if (img_type.ms) + img_type_name += "texture2d_ms"; + else if (img_type.arrayed || subpass_array) + img_type_name += "texture2d_array"; + else + img_type_name += "texture2d"; + break; + } + case Dim3D: + img_type_name += "texture3d"; + break; + case DimCube: + if (!msl_options.emulate_cube_array) + img_type_name += (img_type.arrayed ? "texturecube_array" : "texturecube"); + else + img_type_name += (img_type.arrayed ? "texture2d_array" : "texturecube"); + break; + default: + img_type_name += "unknown_texture_type"; + break; + } + } + + // Append the pixel type + img_type_name += "<"; + img_type_name += type_to_glsl(get<SPIRType>(img_type.type)); + + // For unsampled images, append the sample/read/write access qualifier. + // For kernel images, the access qualifier my be supplied directly by SPIR-V. + // Otherwise it may be set based on whether the image is read from or written to within the shader. + if (type.basetype == SPIRType::Image && type.image.sampled == 2 && type.image.dim != DimSubpassData) + { + switch (img_type.access) + { + case AccessQualifierReadOnly: + img_type_name += ", access::read"; + break; + + case AccessQualifierWriteOnly: + img_type_name += ", access::write"; + break; + + case AccessQualifierReadWrite: + img_type_name += ", access::read_write"; + break; + + default: + { + auto *p_var = maybe_get_backing_variable(id); + if (p_var && p_var->basevariable) + p_var = maybe_get<SPIRVariable>(p_var->basevariable); + if (p_var && !has_decoration(p_var->self, DecorationNonWritable)) + { + img_type_name += ", access::"; + + if (!has_decoration(p_var->self, DecorationNonReadable)) + img_type_name += "read_"; + + img_type_name += "write"; + } + break; + } + } + } + + img_type_name += ">"; + + return img_type_name; +} + +void CompilerMSL::emit_subgroup_op(const Instruction &i) +{ + const uint32_t *ops = stream(i); + auto op = static_cast<Op>(i.op); + + if (msl_options.emulate_subgroups) + { + // In this mode, only the GroupNonUniform cap is supported. The only op + // we need to handle, then, is OpGroupNonUniformElect. + if (op != OpGroupNonUniformElect) + SPIRV_CROSS_THROW("Subgroup emulation does not support operations other than Elect."); + // In this mode, the subgroup size is assumed to be one, so every invocation + // is elected. + emit_op(ops[0], ops[1], "true", true); + return; + } + + // Metal 2.0 is required. iOS only supports quad ops on 11.0 (2.0), with + // full support in 13.0 (2.2). macOS only supports broadcast and shuffle on + // 10.13 (2.0), with full support in 10.14 (2.1). + // Note that Apple GPUs before A13 make no distinction between a quad-group + // and a SIMD-group; all SIMD-groups are quad-groups on those. + if (!msl_options.supports_msl_version(2)) + SPIRV_CROSS_THROW("Subgroups are only supported in Metal 2.0 and up."); + + // If we need to do implicit bitcasts, make sure we do it with the correct type. + uint32_t integer_width = get_integer_width_for_instruction(i); + auto int_type = to_signed_basetype(integer_width); + auto uint_type = to_unsigned_basetype(integer_width); + + if (msl_options.is_ios() && (!msl_options.supports_msl_version(2, 3) || !msl_options.ios_use_simdgroup_functions)) + { + switch (op) + { + default: + SPIRV_CROSS_THROW("Subgroup ops beyond broadcast, ballot, and shuffle on iOS require Metal 2.3 and up."); + case OpGroupNonUniformBroadcastFirst: + if (!msl_options.supports_msl_version(2, 2)) + SPIRV_CROSS_THROW("BroadcastFirst on iOS requires Metal 2.2 and up."); + break; + case OpGroupNonUniformElect: + if (!msl_options.supports_msl_version(2, 2)) + SPIRV_CROSS_THROW("Elect on iOS requires Metal 2.2 and up."); + break; + case OpGroupNonUniformAny: + case OpGroupNonUniformAll: + case OpGroupNonUniformAllEqual: + case OpGroupNonUniformBallot: + case OpGroupNonUniformInverseBallot: + case OpGroupNonUniformBallotBitExtract: + case OpGroupNonUniformBallotFindLSB: + case OpGroupNonUniformBallotFindMSB: + case OpGroupNonUniformBallotBitCount: + case OpSubgroupBallotKHR: + case OpSubgroupAllKHR: + case OpSubgroupAnyKHR: + case OpSubgroupAllEqualKHR: + if (!msl_options.supports_msl_version(2, 2)) + SPIRV_CROSS_THROW("Ballot ops on iOS requires Metal 2.2 and up."); + break; + case OpGroupNonUniformBroadcast: + case OpGroupNonUniformShuffle: + case OpGroupNonUniformShuffleXor: + case OpGroupNonUniformShuffleUp: + case OpGroupNonUniformShuffleDown: + case OpGroupNonUniformQuadSwap: + case OpGroupNonUniformQuadBroadcast: + case OpSubgroupReadInvocationKHR: + break; + } + } + + if (msl_options.is_macos() && !msl_options.supports_msl_version(2, 1)) + { + switch (op) + { + default: + SPIRV_CROSS_THROW("Subgroup ops beyond broadcast and shuffle on macOS require Metal 2.1 and up."); + case OpGroupNonUniformBroadcast: + case OpGroupNonUniformShuffle: + case OpGroupNonUniformShuffleXor: + case OpGroupNonUniformShuffleUp: + case OpGroupNonUniformShuffleDown: + case OpSubgroupReadInvocationKHR: + break; + } + } + + uint32_t op_idx = 0; + uint32_t result_type = ops[op_idx++]; + uint32_t id = ops[op_idx++]; + + Scope scope; + switch (op) + { + case OpSubgroupBallotKHR: + case OpSubgroupFirstInvocationKHR: + case OpSubgroupReadInvocationKHR: + case OpSubgroupAllKHR: + case OpSubgroupAnyKHR: + case OpSubgroupAllEqualKHR: + // These earlier instructions don't have the scope operand. + scope = ScopeSubgroup; + break; + default: + scope = static_cast<Scope>(evaluate_constant_u32(ops[op_idx++])); + break; + } + if (scope != ScopeSubgroup) + SPIRV_CROSS_THROW("Only subgroup scope is supported."); + + switch (op) + { + case OpGroupNonUniformElect: + if (msl_options.use_quadgroup_operation()) + emit_op(result_type, id, "quad_is_first()", false); + else + emit_op(result_type, id, "simd_is_first()", false); + break; + + case OpGroupNonUniformBroadcast: + case OpSubgroupReadInvocationKHR: + emit_binary_func_op(result_type, id, ops[op_idx], ops[op_idx + 1], "spvSubgroupBroadcast"); + break; + + case OpGroupNonUniformBroadcastFirst: + case OpSubgroupFirstInvocationKHR: + emit_unary_func_op(result_type, id, ops[op_idx], "spvSubgroupBroadcastFirst"); + break; + + case OpGroupNonUniformBallot: + case OpSubgroupBallotKHR: + emit_unary_func_op(result_type, id, ops[op_idx], "spvSubgroupBallot"); + break; + + case OpGroupNonUniformInverseBallot: + emit_binary_func_op(result_type, id, ops[op_idx], builtin_subgroup_invocation_id_id, "spvSubgroupBallotBitExtract"); + break; + + case OpGroupNonUniformBallotBitExtract: + emit_binary_func_op(result_type, id, ops[op_idx], ops[op_idx + 1], "spvSubgroupBallotBitExtract"); + break; + + case OpGroupNonUniformBallotFindLSB: + emit_binary_func_op(result_type, id, ops[op_idx], builtin_subgroup_size_id, "spvSubgroupBallotFindLSB"); + break; + + case OpGroupNonUniformBallotFindMSB: + emit_binary_func_op(result_type, id, ops[op_idx], builtin_subgroup_size_id, "spvSubgroupBallotFindMSB"); + break; + + case OpGroupNonUniformBallotBitCount: + { + auto operation = static_cast<GroupOperation>(ops[op_idx++]); + switch (operation) + { + case GroupOperationReduce: + emit_binary_func_op(result_type, id, ops[op_idx], builtin_subgroup_size_id, "spvSubgroupBallotBitCount"); + break; + case GroupOperationInclusiveScan: + emit_binary_func_op(result_type, id, ops[op_idx], builtin_subgroup_invocation_id_id, + "spvSubgroupBallotInclusiveBitCount"); + break; + case GroupOperationExclusiveScan: + emit_binary_func_op(result_type, id, ops[op_idx], builtin_subgroup_invocation_id_id, + "spvSubgroupBallotExclusiveBitCount"); + break; + default: + SPIRV_CROSS_THROW("Invalid BitCount operation."); + } + break; + } + + case OpGroupNonUniformShuffle: + emit_binary_func_op(result_type, id, ops[op_idx], ops[op_idx + 1], "spvSubgroupShuffle"); + break; + + case OpGroupNonUniformShuffleXor: + emit_binary_func_op(result_type, id, ops[op_idx], ops[op_idx + 1], "spvSubgroupShuffleXor"); + break; + + case OpGroupNonUniformShuffleUp: + emit_binary_func_op(result_type, id, ops[op_idx], ops[op_idx + 1], "spvSubgroupShuffleUp"); + break; + + case OpGroupNonUniformShuffleDown: + emit_binary_func_op(result_type, id, ops[op_idx], ops[op_idx + 1], "spvSubgroupShuffleDown"); + break; + + case OpGroupNonUniformAll: + case OpSubgroupAllKHR: + if (msl_options.use_quadgroup_operation()) + emit_unary_func_op(result_type, id, ops[op_idx], "quad_all"); + else + emit_unary_func_op(result_type, id, ops[op_idx], "simd_all"); + break; + + case OpGroupNonUniformAny: + case OpSubgroupAnyKHR: + if (msl_options.use_quadgroup_operation()) + emit_unary_func_op(result_type, id, ops[op_idx], "quad_any"); + else + emit_unary_func_op(result_type, id, ops[op_idx], "simd_any"); + break; + + case OpGroupNonUniformAllEqual: + case OpSubgroupAllEqualKHR: + emit_unary_func_op(result_type, id, ops[op_idx], "spvSubgroupAllEqual"); + break; + + // clang-format off +#define MSL_GROUP_OP(op, msl_op) \ +case OpGroupNonUniform##op: \ + { \ + auto operation = static_cast<GroupOperation>(ops[op_idx++]); \ + if (operation == GroupOperationReduce) \ + emit_unary_func_op(result_type, id, ops[op_idx], "simd_" #msl_op); \ + else if (operation == GroupOperationInclusiveScan) \ + emit_unary_func_op(result_type, id, ops[op_idx], "simd_prefix_inclusive_" #msl_op); \ + else if (operation == GroupOperationExclusiveScan) \ + emit_unary_func_op(result_type, id, ops[op_idx], "simd_prefix_exclusive_" #msl_op); \ + else if (operation == GroupOperationClusteredReduce) \ + { \ + /* Only cluster sizes of 4 are supported. */ \ + uint32_t cluster_size = evaluate_constant_u32(ops[op_idx + 1]); \ + if (cluster_size != 4) \ + SPIRV_CROSS_THROW("Metal only supports quad ClusteredReduce."); \ + emit_unary_func_op(result_type, id, ops[op_idx], "quad_" #msl_op); \ + } \ + else \ + SPIRV_CROSS_THROW("Invalid group operation."); \ + break; \ + } + MSL_GROUP_OP(FAdd, sum) + MSL_GROUP_OP(FMul, product) + MSL_GROUP_OP(IAdd, sum) + MSL_GROUP_OP(IMul, product) +#undef MSL_GROUP_OP + // The others, unfortunately, don't support InclusiveScan or ExclusiveScan. + +#define MSL_GROUP_OP(op, msl_op) \ +case OpGroupNonUniform##op: \ + { \ + auto operation = static_cast<GroupOperation>(ops[op_idx++]); \ + if (operation == GroupOperationReduce) \ + emit_unary_func_op(result_type, id, ops[op_idx], "simd_" #msl_op); \ + else if (operation == GroupOperationInclusiveScan) \ + SPIRV_CROSS_THROW("Metal doesn't support InclusiveScan for OpGroupNonUniform" #op "."); \ + else if (operation == GroupOperationExclusiveScan) \ + SPIRV_CROSS_THROW("Metal doesn't support ExclusiveScan for OpGroupNonUniform" #op "."); \ + else if (operation == GroupOperationClusteredReduce) \ + { \ + /* Only cluster sizes of 4 are supported. */ \ + uint32_t cluster_size = evaluate_constant_u32(ops[op_idx + 1]); \ + if (cluster_size != 4) \ + SPIRV_CROSS_THROW("Metal only supports quad ClusteredReduce."); \ + emit_unary_func_op(result_type, id, ops[op_idx], "quad_" #msl_op); \ + } \ + else \ + SPIRV_CROSS_THROW("Invalid group operation."); \ + break; \ + } + +#define MSL_GROUP_OP_CAST(op, msl_op, type) \ +case OpGroupNonUniform##op: \ + { \ + auto operation = static_cast<GroupOperation>(ops[op_idx++]); \ + if (operation == GroupOperationReduce) \ + emit_unary_func_op_cast(result_type, id, ops[op_idx], "simd_" #msl_op, type, type); \ + else if (operation == GroupOperationInclusiveScan) \ + SPIRV_CROSS_THROW("Metal doesn't support InclusiveScan for OpGroupNonUniform" #op "."); \ + else if (operation == GroupOperationExclusiveScan) \ + SPIRV_CROSS_THROW("Metal doesn't support ExclusiveScan for OpGroupNonUniform" #op "."); \ + else if (operation == GroupOperationClusteredReduce) \ + { \ + /* Only cluster sizes of 4 are supported. */ \ + uint32_t cluster_size = evaluate_constant_u32(ops[op_idx + 1]); \ + if (cluster_size != 4) \ + SPIRV_CROSS_THROW("Metal only supports quad ClusteredReduce."); \ + emit_unary_func_op_cast(result_type, id, ops[op_idx], "quad_" #msl_op, type, type); \ + } \ + else \ + SPIRV_CROSS_THROW("Invalid group operation."); \ + break; \ + } + + MSL_GROUP_OP(FMin, min) + MSL_GROUP_OP(FMax, max) + MSL_GROUP_OP_CAST(SMin, min, int_type) + MSL_GROUP_OP_CAST(SMax, max, int_type) + MSL_GROUP_OP_CAST(UMin, min, uint_type) + MSL_GROUP_OP_CAST(UMax, max, uint_type) + MSL_GROUP_OP(BitwiseAnd, and) + MSL_GROUP_OP(BitwiseOr, or) + MSL_GROUP_OP(BitwiseXor, xor) + MSL_GROUP_OP(LogicalAnd, and) + MSL_GROUP_OP(LogicalOr, or) + MSL_GROUP_OP(LogicalXor, xor) + // clang-format on +#undef MSL_GROUP_OP +#undef MSL_GROUP_OP_CAST + + case OpGroupNonUniformQuadSwap: + emit_binary_func_op(result_type, id, ops[op_idx], ops[op_idx + 1], "spvQuadSwap"); + break; + + case OpGroupNonUniformQuadBroadcast: + emit_binary_func_op(result_type, id, ops[op_idx], ops[op_idx + 1], "spvQuadBroadcast"); + break; + + default: + SPIRV_CROSS_THROW("Invalid opcode for subgroup."); + } + + register_control_dependent_expression(id); +} + +string CompilerMSL::bitcast_glsl_op(const SPIRType &out_type, const SPIRType &in_type) +{ + if (out_type.basetype == in_type.basetype) + return ""; + + assert(out_type.basetype != SPIRType::Boolean); + assert(in_type.basetype != SPIRType::Boolean); + + bool integral_cast = type_is_integral(out_type) && type_is_integral(in_type) && (out_type.vecsize == in_type.vecsize); + bool same_size_cast = (out_type.width * out_type.vecsize) == (in_type.width * in_type.vecsize); + + // Bitcasting can only be used between types of the same overall size. + // And always formally cast between integers, because it's trivial, and also + // because Metal can internally cast the results of some integer ops to a larger + // size (eg. short shift right becomes int), which means chaining integer ops + // together may introduce size variations that SPIR-V doesn't know about. + if (same_size_cast && !integral_cast) + return "as_type<" + type_to_glsl(out_type) + ">"; + else + return type_to_glsl(out_type); +} + +bool CompilerMSL::emit_complex_bitcast(uint32_t, uint32_t, uint32_t) +{ + // This is handled from the outside where we deal with PtrToU/UToPtr and friends. + return false; +} + +// Returns an MSL string identifying the name of a SPIR-V builtin. +// Output builtins are qualified with the name of the stage out structure. +string CompilerMSL::builtin_to_glsl(BuiltIn builtin, StorageClass storage) +{ + switch (builtin) + { + // Handle HLSL-style 0-based vertex/instance index. + // Override GLSL compiler strictness + case BuiltInVertexId: + ensure_builtin(StorageClassInput, BuiltInVertexId); + if (msl_options.enable_base_index_zero && msl_options.supports_msl_version(1, 1) && + (msl_options.ios_support_base_vertex_instance || msl_options.is_macos())) + { + if (builtin_declaration) + { + if (needs_base_vertex_arg != TriState::No) + needs_base_vertex_arg = TriState::Yes; + return "gl_VertexID"; + } + else + { + ensure_builtin(StorageClassInput, BuiltInBaseVertex); + return "(gl_VertexID - gl_BaseVertex)"; + } + } + else + { + return "gl_VertexID"; + } + case BuiltInInstanceId: + ensure_builtin(StorageClassInput, BuiltInInstanceId); + if (msl_options.enable_base_index_zero && msl_options.supports_msl_version(1, 1) && + (msl_options.ios_support_base_vertex_instance || msl_options.is_macos())) + { + if (builtin_declaration) + { + if (needs_base_instance_arg != TriState::No) + needs_base_instance_arg = TriState::Yes; + return "gl_InstanceID"; + } + else + { + ensure_builtin(StorageClassInput, BuiltInBaseInstance); + return "(gl_InstanceID - gl_BaseInstance)"; + } + } + else + { + return "gl_InstanceID"; + } + case BuiltInVertexIndex: + ensure_builtin(StorageClassInput, BuiltInVertexIndex); + if (msl_options.enable_base_index_zero && msl_options.supports_msl_version(1, 1) && + (msl_options.ios_support_base_vertex_instance || msl_options.is_macos())) + { + if (builtin_declaration) + { + if (needs_base_vertex_arg != TriState::No) + needs_base_vertex_arg = TriState::Yes; + return "gl_VertexIndex"; + } + else + { + ensure_builtin(StorageClassInput, BuiltInBaseVertex); + return "(gl_VertexIndex - gl_BaseVertex)"; + } + } + else + { + return "gl_VertexIndex"; + } + case BuiltInInstanceIndex: + ensure_builtin(StorageClassInput, BuiltInInstanceIndex); + if (msl_options.enable_base_index_zero && msl_options.supports_msl_version(1, 1) && + (msl_options.ios_support_base_vertex_instance || msl_options.is_macos())) + { + if (builtin_declaration) + { + if (needs_base_instance_arg != TriState::No) + needs_base_instance_arg = TriState::Yes; + return "gl_InstanceIndex"; + } + else + { + ensure_builtin(StorageClassInput, BuiltInBaseInstance); + return "(gl_InstanceIndex - gl_BaseInstance)"; + } + } + else + { + return "gl_InstanceIndex"; + } + case BuiltInBaseVertex: + if (msl_options.supports_msl_version(1, 1) && + (msl_options.ios_support_base_vertex_instance || msl_options.is_macos())) + { + needs_base_vertex_arg = TriState::No; + return "gl_BaseVertex"; + } + else + { + SPIRV_CROSS_THROW("BaseVertex requires Metal 1.1 and Mac or Apple A9+ hardware."); + } + case BuiltInBaseInstance: + if (msl_options.supports_msl_version(1, 1) && + (msl_options.ios_support_base_vertex_instance || msl_options.is_macos())) + { + needs_base_instance_arg = TriState::No; + return "gl_BaseInstance"; + } + else + { + SPIRV_CROSS_THROW("BaseInstance requires Metal 1.1 and Mac or Apple A9+ hardware."); + } + case BuiltInDrawIndex: + SPIRV_CROSS_THROW("DrawIndex is not supported in MSL."); + + // When used in the entry function, output builtins are qualified with output struct name. + // Test storage class as NOT Input, as output builtins might be part of generic type. + // Also don't do this for tessellation control shaders. + case BuiltInViewportIndex: + if (!msl_options.supports_msl_version(2, 0)) + SPIRV_CROSS_THROW("ViewportIndex requires Metal 2.0."); + /* fallthrough */ + case BuiltInFragDepth: + case BuiltInFragStencilRefEXT: + if ((builtin == BuiltInFragDepth && !msl_options.enable_frag_depth_builtin) || + (builtin == BuiltInFragStencilRefEXT && !msl_options.enable_frag_stencil_ref_builtin)) + break; + /* fallthrough */ + case BuiltInPosition: + case BuiltInPointSize: + case BuiltInClipDistance: + case BuiltInCullDistance: + case BuiltInLayer: + if (is_tesc_shader()) + break; + if (storage != StorageClassInput && current_function && (current_function->self == ir.default_entry_point) && + !is_stage_output_builtin_masked(builtin)) + return stage_out_var_name + "." + CompilerGLSL::builtin_to_glsl(builtin, storage); + break; + + case BuiltInSampleMask: + if (storage == StorageClassInput && current_function && (current_function->self == ir.default_entry_point) && + (has_additional_fixed_sample_mask() || needs_sample_id)) + { + string samp_mask_in; + samp_mask_in += "(" + CompilerGLSL::builtin_to_glsl(builtin, storage); + if (has_additional_fixed_sample_mask()) + samp_mask_in += " & " + additional_fixed_sample_mask_str(); + if (needs_sample_id) + samp_mask_in += " & (1 << gl_SampleID)"; + samp_mask_in += ")"; + return samp_mask_in; + } + if (storage != StorageClassInput && current_function && (current_function->self == ir.default_entry_point) && + !is_stage_output_builtin_masked(builtin)) + return stage_out_var_name + "." + CompilerGLSL::builtin_to_glsl(builtin, storage); + break; + + case BuiltInBaryCoordKHR: + case BuiltInBaryCoordNoPerspKHR: + if (storage == StorageClassInput && current_function && (current_function->self == ir.default_entry_point)) + return stage_in_var_name + "." + CompilerGLSL::builtin_to_glsl(builtin, storage); + break; + + case BuiltInTessLevelOuter: + if (is_tesc_shader() && storage != StorageClassInput && current_function && + (current_function->self == ir.default_entry_point)) + { + return join(tess_factor_buffer_var_name, "[", to_expression(builtin_primitive_id_id), + "].edgeTessellationFactor"); + } + break; + + case BuiltInTessLevelInner: + if (is_tesc_shader() && storage != StorageClassInput && current_function && + (current_function->self == ir.default_entry_point)) + { + return join(tess_factor_buffer_var_name, "[", to_expression(builtin_primitive_id_id), + "].insideTessellationFactor"); + } + break; + + case BuiltInHelperInvocation: + if (needs_manual_helper_invocation_updates()) + break; + if (msl_options.is_ios() && !msl_options.supports_msl_version(2, 3)) + SPIRV_CROSS_THROW("simd_is_helper_thread() requires version 2.3 on iOS."); + else if (msl_options.is_macos() && !msl_options.supports_msl_version(2, 1)) + SPIRV_CROSS_THROW("simd_is_helper_thread() requires version 2.1 on macOS."); + // In SPIR-V 1.6 with Volatile HelperInvocation, we cannot emit a fixup early. + return "simd_is_helper_thread()"; + + default: + break; + } + + return CompilerGLSL::builtin_to_glsl(builtin, storage); +} + +// Returns an MSL string attribute qualifer for a SPIR-V builtin +string CompilerMSL::builtin_qualifier(BuiltIn builtin) +{ + auto &execution = get_entry_point(); + + switch (builtin) + { + // Vertex function in + case BuiltInVertexId: + return "vertex_id"; + case BuiltInVertexIndex: + return "vertex_id"; + case BuiltInBaseVertex: + return "base_vertex"; + case BuiltInInstanceId: + return "instance_id"; + case BuiltInInstanceIndex: + return "instance_id"; + case BuiltInBaseInstance: + return "base_instance"; + case BuiltInDrawIndex: + SPIRV_CROSS_THROW("DrawIndex is not supported in MSL."); + + // Vertex function out + case BuiltInClipDistance: + return "clip_distance"; + case BuiltInPointSize: + return "point_size"; + case BuiltInPosition: + if (position_invariant) + { + if (!msl_options.supports_msl_version(2, 1)) + SPIRV_CROSS_THROW("Invariant position is only supported on MSL 2.1 and up."); + return "position, invariant"; + } + else + return "position"; + case BuiltInLayer: + return "render_target_array_index"; + case BuiltInViewportIndex: + if (!msl_options.supports_msl_version(2, 0)) + SPIRV_CROSS_THROW("ViewportIndex requires Metal 2.0."); + return "viewport_array_index"; + + // Tess. control function in + case BuiltInInvocationId: + if (msl_options.multi_patch_workgroup) + { + // Shouldn't be reached. + SPIRV_CROSS_THROW("InvocationId is computed manually with multi-patch workgroups in MSL."); + } + return "thread_index_in_threadgroup"; + case BuiltInPatchVertices: + // Shouldn't be reached. + SPIRV_CROSS_THROW("PatchVertices is derived from the auxiliary buffer in MSL."); + case BuiltInPrimitiveId: + switch (execution.model) + { + case ExecutionModelTessellationControl: + if (msl_options.multi_patch_workgroup) + { + // Shouldn't be reached. + SPIRV_CROSS_THROW("PrimitiveId is computed manually with multi-patch workgroups in MSL."); + } + return "threadgroup_position_in_grid"; + case ExecutionModelTessellationEvaluation: + return "patch_id"; + case ExecutionModelFragment: + if (msl_options.is_ios() && !msl_options.supports_msl_version(2, 3)) + SPIRV_CROSS_THROW("PrimitiveId on iOS requires MSL 2.3."); + else if (msl_options.is_macos() && !msl_options.supports_msl_version(2, 2)) + SPIRV_CROSS_THROW("PrimitiveId on macOS requires MSL 2.2."); + return "primitive_id"; + default: + SPIRV_CROSS_THROW("PrimitiveId is not supported in this execution model."); + } + + // Tess. control function out + case BuiltInTessLevelOuter: + case BuiltInTessLevelInner: + // Shouldn't be reached. + SPIRV_CROSS_THROW("Tessellation levels are handled specially in MSL."); + + // Tess. evaluation function in + case BuiltInTessCoord: + return "position_in_patch"; + + // Fragment function in + case BuiltInFrontFacing: + return "front_facing"; + case BuiltInPointCoord: + return "point_coord"; + case BuiltInFragCoord: + return "position"; + case BuiltInSampleId: + return "sample_id"; + case BuiltInSampleMask: + return "sample_mask"; + case BuiltInSamplePosition: + // Shouldn't be reached. + SPIRV_CROSS_THROW("Sample position is retrieved by a function in MSL."); + case BuiltInViewIndex: + if (execution.model != ExecutionModelFragment) + SPIRV_CROSS_THROW("ViewIndex is handled specially outside fragment shaders."); + // The ViewIndex was implicitly used in the prior stages to set the render_target_array_index, + // so we can get it from there. + return "render_target_array_index"; + + // Fragment function out + case BuiltInFragDepth: + if (execution.flags.get(ExecutionModeDepthGreater)) + return "depth(greater)"; + else if (execution.flags.get(ExecutionModeDepthLess)) + return "depth(less)"; + else + return "depth(any)"; + + case BuiltInFragStencilRefEXT: + return "stencil"; + + // Compute function in + case BuiltInGlobalInvocationId: + return "thread_position_in_grid"; + + case BuiltInWorkgroupId: + return "threadgroup_position_in_grid"; + + case BuiltInNumWorkgroups: + return "threadgroups_per_grid"; + + case BuiltInLocalInvocationId: + return "thread_position_in_threadgroup"; + + case BuiltInLocalInvocationIndex: + return "thread_index_in_threadgroup"; + + case BuiltInSubgroupSize: + if (msl_options.emulate_subgroups || msl_options.fixed_subgroup_size != 0) + // Shouldn't be reached. + SPIRV_CROSS_THROW("Emitting threads_per_simdgroup attribute with fixed subgroup size??"); + if (execution.model == ExecutionModelFragment) + { + if (!msl_options.supports_msl_version(2, 2)) + SPIRV_CROSS_THROW("threads_per_simdgroup requires Metal 2.2 in fragment shaders."); + return "threads_per_simdgroup"; + } + else + { + // thread_execution_width is an alias for threads_per_simdgroup, and it's only available since 1.0, + // but not in fragment. + return "thread_execution_width"; + } + + case BuiltInNumSubgroups: + if (msl_options.emulate_subgroups) + // Shouldn't be reached. + SPIRV_CROSS_THROW("NumSubgroups is handled specially with emulation."); + if (!msl_options.supports_msl_version(2)) + SPIRV_CROSS_THROW("Subgroup builtins require Metal 2.0."); + return msl_options.use_quadgroup_operation() ? "quadgroups_per_threadgroup" : "simdgroups_per_threadgroup"; + + case BuiltInSubgroupId: + if (msl_options.emulate_subgroups) + // Shouldn't be reached. + SPIRV_CROSS_THROW("SubgroupId is handled specially with emulation."); + if (!msl_options.supports_msl_version(2)) + SPIRV_CROSS_THROW("Subgroup builtins require Metal 2.0."); + return msl_options.use_quadgroup_operation() ? "quadgroup_index_in_threadgroup" : "simdgroup_index_in_threadgroup"; + + case BuiltInSubgroupLocalInvocationId: + if (msl_options.emulate_subgroups) + // Shouldn't be reached. + SPIRV_CROSS_THROW("SubgroupLocalInvocationId is handled specially with emulation."); + if (execution.model == ExecutionModelFragment) + { + if (!msl_options.supports_msl_version(2, 2)) + SPIRV_CROSS_THROW("thread_index_in_simdgroup requires Metal 2.2 in fragment shaders."); + return "thread_index_in_simdgroup"; + } + else if (execution.model == ExecutionModelKernel || execution.model == ExecutionModelGLCompute || + execution.model == ExecutionModelTessellationControl || + (execution.model == ExecutionModelVertex && msl_options.vertex_for_tessellation)) + { + // We are generating a Metal kernel function. + if (!msl_options.supports_msl_version(2)) + SPIRV_CROSS_THROW("Subgroup builtins in kernel functions require Metal 2.0."); + return msl_options.use_quadgroup_operation() ? "thread_index_in_quadgroup" : "thread_index_in_simdgroup"; + } + else + SPIRV_CROSS_THROW("Subgroup builtins are not available in this type of function."); + + case BuiltInSubgroupEqMask: + case BuiltInSubgroupGeMask: + case BuiltInSubgroupGtMask: + case BuiltInSubgroupLeMask: + case BuiltInSubgroupLtMask: + // Shouldn't be reached. + SPIRV_CROSS_THROW("Subgroup ballot masks are handled specially in MSL."); + + case BuiltInBaryCoordKHR: + if (msl_options.is_ios() && !msl_options.supports_msl_version(2, 3)) + SPIRV_CROSS_THROW("Barycentrics are only supported in MSL 2.3 and above on iOS."); + else if (!msl_options.supports_msl_version(2, 2)) + SPIRV_CROSS_THROW("Barycentrics are only supported in MSL 2.2 and above on macOS."); + return "barycentric_coord, center_perspective"; + + case BuiltInBaryCoordNoPerspKHR: + if (msl_options.is_ios() && !msl_options.supports_msl_version(2, 3)) + SPIRV_CROSS_THROW("Barycentrics are only supported in MSL 2.3 and above on iOS."); + else if (!msl_options.supports_msl_version(2, 2)) + SPIRV_CROSS_THROW("Barycentrics are only supported in MSL 2.2 and above on macOS."); + return "barycentric_coord, center_no_perspective"; + + default: + return "unsupported-built-in"; + } +} + +// Returns an MSL string type declaration for a SPIR-V builtin +string CompilerMSL::builtin_type_decl(BuiltIn builtin, uint32_t id) +{ + switch (builtin) + { + // Vertex function in + case BuiltInVertexId: + return "uint"; + case BuiltInVertexIndex: + return "uint"; + case BuiltInBaseVertex: + return "uint"; + case BuiltInInstanceId: + return "uint"; + case BuiltInInstanceIndex: + return "uint"; + case BuiltInBaseInstance: + return "uint"; + case BuiltInDrawIndex: + SPIRV_CROSS_THROW("DrawIndex is not supported in MSL."); + + // Vertex function out + case BuiltInClipDistance: + case BuiltInCullDistance: + return "float"; + case BuiltInPointSize: + return "float"; + case BuiltInPosition: + return "float4"; + case BuiltInLayer: + return "uint"; + case BuiltInViewportIndex: + if (!msl_options.supports_msl_version(2, 0)) + SPIRV_CROSS_THROW("ViewportIndex requires Metal 2.0."); + return "uint"; + + // Tess. control function in + case BuiltInInvocationId: + return "uint"; + case BuiltInPatchVertices: + return "uint"; + case BuiltInPrimitiveId: + return "uint"; + + // Tess. control function out + case BuiltInTessLevelInner: + if (is_tese_shader()) + return (msl_options.raw_buffer_tese_input || is_tessellating_triangles()) ? "float" : "float2"; + return "half"; + case BuiltInTessLevelOuter: + if (is_tese_shader()) + return (msl_options.raw_buffer_tese_input || is_tessellating_triangles()) ? "float" : "float4"; + return "half"; + + // Tess. evaluation function in + case BuiltInTessCoord: + return "float3"; + + // Fragment function in + case BuiltInFrontFacing: + return "bool"; + case BuiltInPointCoord: + return "float2"; + case BuiltInFragCoord: + return "float4"; + case BuiltInSampleId: + return "uint"; + case BuiltInSampleMask: + return "uint"; + case BuiltInSamplePosition: + return "float2"; + case BuiltInViewIndex: + return "uint"; + + case BuiltInHelperInvocation: + return "bool"; + + case BuiltInBaryCoordKHR: + case BuiltInBaryCoordNoPerspKHR: + // Use the type as declared, can be 1, 2 or 3 components. + return type_to_glsl(get_variable_data_type(get<SPIRVariable>(id))); + + // Fragment function out + case BuiltInFragDepth: + return "float"; + + case BuiltInFragStencilRefEXT: + return "uint"; + + // Compute function in + case BuiltInGlobalInvocationId: + case BuiltInLocalInvocationId: + case BuiltInNumWorkgroups: + case BuiltInWorkgroupId: + return "uint3"; + case BuiltInLocalInvocationIndex: + case BuiltInNumSubgroups: + case BuiltInSubgroupId: + case BuiltInSubgroupSize: + case BuiltInSubgroupLocalInvocationId: + return "uint"; + case BuiltInSubgroupEqMask: + case BuiltInSubgroupGeMask: + case BuiltInSubgroupGtMask: + case BuiltInSubgroupLeMask: + case BuiltInSubgroupLtMask: + return "uint4"; + + case BuiltInDeviceIndex: + return "int"; + + default: + return "unsupported-built-in-type"; + } +} + +// Returns the declaration of a built-in argument to a function +string CompilerMSL::built_in_func_arg(BuiltIn builtin, bool prefix_comma) +{ + string bi_arg; + if (prefix_comma) + bi_arg += ", "; + + // Handle HLSL-style 0-based vertex/instance index. + builtin_declaration = true; + bi_arg += builtin_type_decl(builtin); + bi_arg += string(" ") + builtin_to_glsl(builtin, StorageClassInput); + bi_arg += string(" [[") + builtin_qualifier(builtin) + string("]]"); + builtin_declaration = false; + + return bi_arg; +} + +const SPIRType &CompilerMSL::get_physical_member_type(const SPIRType &type, uint32_t index) const +{ + if (member_is_remapped_physical_type(type, index)) + return get<SPIRType>(get_extended_member_decoration(type.self, index, SPIRVCrossDecorationPhysicalTypeID)); + else + return get<SPIRType>(type.member_types[index]); +} + +SPIRType CompilerMSL::get_presumed_input_type(const SPIRType &ib_type, uint32_t index) const +{ + SPIRType type = get_physical_member_type(ib_type, index); + uint32_t loc = get_member_decoration(ib_type.self, index, DecorationLocation); + uint32_t cmp = get_member_decoration(ib_type.self, index, DecorationComponent); + auto p_va = inputs_by_location.find({loc, cmp}); + if (p_va != end(inputs_by_location) && p_va->second.vecsize > type.vecsize) + type.vecsize = p_va->second.vecsize; + + return type; +} + +uint32_t CompilerMSL::get_declared_type_array_stride_msl(const SPIRType &type, bool is_packed, bool row_major) const +{ + // Array stride in MSL is always size * array_size. sizeof(float3) == 16, + // unlike GLSL and HLSL where array stride would be 16 and size 12. + + // We could use parent type here and recurse, but that makes creating physical type remappings + // far more complicated. We'd rather just create the final type, and ignore having to create the entire type + // hierarchy in order to compute this value, so make a temporary type on the stack. + + auto basic_type = type; + basic_type.array.clear(); + basic_type.array_size_literal.clear(); + uint32_t value_size = get_declared_type_size_msl(basic_type, is_packed, row_major); + + uint32_t dimensions = uint32_t(type.array.size()); + assert(dimensions > 0); + dimensions--; + + // Multiply together every dimension, except the last one. + for (uint32_t dim = 0; dim < dimensions; dim++) + { + uint32_t array_size = to_array_size_literal(type, dim); + value_size *= max<uint32_t>(array_size, 1u); + } + + return value_size; +} + +uint32_t CompilerMSL::get_declared_struct_member_array_stride_msl(const SPIRType &type, uint32_t index) const +{ + return get_declared_type_array_stride_msl(get_physical_member_type(type, index), + member_is_packed_physical_type(type, index), + has_member_decoration(type.self, index, DecorationRowMajor)); +} + +uint32_t CompilerMSL::get_declared_input_array_stride_msl(const SPIRType &type, uint32_t index) const +{ + return get_declared_type_array_stride_msl(get_presumed_input_type(type, index), false, + has_member_decoration(type.self, index, DecorationRowMajor)); +} + +uint32_t CompilerMSL::get_declared_type_matrix_stride_msl(const SPIRType &type, bool packed, bool row_major) const +{ + // For packed matrices, we just use the size of the vector type. + // Otherwise, MatrixStride == alignment, which is the size of the underlying vector type. + if (packed) + return (type.width / 8) * ((row_major && type.columns > 1) ? type.columns : type.vecsize); + else + return get_declared_type_alignment_msl(type, false, row_major); +} + +uint32_t CompilerMSL::get_declared_struct_member_matrix_stride_msl(const SPIRType &type, uint32_t index) const +{ + return get_declared_type_matrix_stride_msl(get_physical_member_type(type, index), + member_is_packed_physical_type(type, index), + has_member_decoration(type.self, index, DecorationRowMajor)); +} + +uint32_t CompilerMSL::get_declared_input_matrix_stride_msl(const SPIRType &type, uint32_t index) const +{ + return get_declared_type_matrix_stride_msl(get_presumed_input_type(type, index), false, + has_member_decoration(type.self, index, DecorationRowMajor)); +} + +uint32_t CompilerMSL::get_declared_struct_size_msl(const SPIRType &struct_type, bool ignore_alignment, + bool ignore_padding) const +{ + // If we have a target size, that is the declared size as well. + if (!ignore_padding && has_extended_decoration(struct_type.self, SPIRVCrossDecorationPaddingTarget)) + return get_extended_decoration(struct_type.self, SPIRVCrossDecorationPaddingTarget); + + if (struct_type.member_types.empty()) + return 0; + + uint32_t mbr_cnt = uint32_t(struct_type.member_types.size()); + + // In MSL, a struct's alignment is equal to the maximum alignment of any of its members. + uint32_t alignment = 1; + + if (!ignore_alignment) + { + for (uint32_t i = 0; i < mbr_cnt; i++) + { + uint32_t mbr_alignment = get_declared_struct_member_alignment_msl(struct_type, i); + alignment = max(alignment, mbr_alignment); + } + } + + // Last member will always be matched to the final Offset decoration, but size of struct in MSL now depends + // on physical size in MSL, and the size of the struct itself is then aligned to struct alignment. + uint32_t spirv_offset = type_struct_member_offset(struct_type, mbr_cnt - 1); + uint32_t msl_size = spirv_offset + get_declared_struct_member_size_msl(struct_type, mbr_cnt - 1); + msl_size = (msl_size + alignment - 1) & ~(alignment - 1); + return msl_size; +} + +uint32_t CompilerMSL::get_physical_type_stride(const SPIRType &type) const +{ + // This should only be relevant for plain types such as scalars and vectors? + // If we're pointing to a struct, it will recursively pick up packed/row-major state. + return get_declared_type_size_msl(type, false, false); +} + +// Returns the byte size of a struct member. +uint32_t CompilerMSL::get_declared_type_size_msl(const SPIRType &type, bool is_packed, bool row_major) const +{ + // Pointers take 8 bytes each + // Match both pointer and array-of-pointer here. + if (type.pointer && type.storage == StorageClassPhysicalStorageBuffer) + { + uint32_t type_size = 8; + + // Work our way through potentially layered arrays, + // stopping when we hit a pointer that is not also an array. + int32_t dim_idx = (int32_t)type.array.size() - 1; + auto *p_type = &type; + while (!is_pointer(*p_type) && dim_idx >= 0) + { + type_size *= to_array_size_literal(*p_type, dim_idx); + p_type = &get<SPIRType>(p_type->parent_type); + dim_idx--; + } + + return type_size; + } + + switch (type.basetype) + { + case SPIRType::Unknown: + case SPIRType::Void: + case SPIRType::AtomicCounter: + case SPIRType::Image: + case SPIRType::SampledImage: + case SPIRType::Sampler: + SPIRV_CROSS_THROW("Querying size of opaque object."); + + default: + { + if (!type.array.empty()) + { + uint32_t array_size = to_array_size_literal(type); + return get_declared_type_array_stride_msl(type, is_packed, row_major) * max<uint32_t>(array_size, 1u); + } + + if (type.basetype == SPIRType::Struct) + return get_declared_struct_size_msl(type); + + if (is_packed) + { + return type.vecsize * type.columns * (type.width / 8); + } + else + { + // An unpacked 3-element vector or matrix column is the same memory size as a 4-element. + uint32_t vecsize = type.vecsize; + uint32_t columns = type.columns; + + if (row_major && columns > 1) + swap(vecsize, columns); + + if (vecsize == 3) + vecsize = 4; + + return vecsize * columns * (type.width / 8); + } + } + } +} + +uint32_t CompilerMSL::get_declared_struct_member_size_msl(const SPIRType &type, uint32_t index) const +{ + return get_declared_type_size_msl(get_physical_member_type(type, index), + member_is_packed_physical_type(type, index), + has_member_decoration(type.self, index, DecorationRowMajor)); +} + +uint32_t CompilerMSL::get_declared_input_size_msl(const SPIRType &type, uint32_t index) const +{ + return get_declared_type_size_msl(get_presumed_input_type(type, index), false, + has_member_decoration(type.self, index, DecorationRowMajor)); +} + +// Returns the byte alignment of a type. +uint32_t CompilerMSL::get_declared_type_alignment_msl(const SPIRType &type, bool is_packed, bool row_major) const +{ + // Pointers align on multiples of 8 bytes. + // Deliberately ignore array-ness here. It's not relevant for alignment. + if (type.pointer && type.storage == StorageClassPhysicalStorageBuffer) + return 8; + + switch (type.basetype) + { + case SPIRType::Unknown: + case SPIRType::Void: + case SPIRType::AtomicCounter: + case SPIRType::Image: + case SPIRType::SampledImage: + case SPIRType::Sampler: + SPIRV_CROSS_THROW("Querying alignment of opaque object."); + + case SPIRType::Double: + SPIRV_CROSS_THROW("double types are not supported in buffers in MSL."); + + case SPIRType::Struct: + { + // In MSL, a struct's alignment is equal to the maximum alignment of any of its members. + uint32_t alignment = 1; + for (uint32_t i = 0; i < type.member_types.size(); i++) + alignment = max(alignment, uint32_t(get_declared_struct_member_alignment_msl(type, i))); + return alignment; + } + + default: + { + if (type.basetype == SPIRType::Int64 && !msl_options.supports_msl_version(2, 3)) + SPIRV_CROSS_THROW("long types in buffers are only supported in MSL 2.3 and above."); + if (type.basetype == SPIRType::UInt64 && !msl_options.supports_msl_version(2, 3)) + SPIRV_CROSS_THROW("ulong types in buffers are only supported in MSL 2.3 and above."); + // Alignment of packed type is the same as the underlying component or column size. + // Alignment of unpacked type is the same as the vector size. + // Alignment of 3-elements vector is the same as 4-elements (including packed using column). + if (is_packed) + { + // If we have packed_T and friends, the alignment is always scalar. + return type.width / 8; + } + else + { + // This is the general rule for MSL. Size == alignment. + uint32_t vecsize = (row_major && type.columns > 1) ? type.columns : type.vecsize; + return (type.width / 8) * (vecsize == 3 ? 4 : vecsize); + } + } + } +} + +uint32_t CompilerMSL::get_declared_struct_member_alignment_msl(const SPIRType &type, uint32_t index) const +{ + return get_declared_type_alignment_msl(get_physical_member_type(type, index), + member_is_packed_physical_type(type, index), + has_member_decoration(type.self, index, DecorationRowMajor)); +} + +uint32_t CompilerMSL::get_declared_input_alignment_msl(const SPIRType &type, uint32_t index) const +{ + return get_declared_type_alignment_msl(get_presumed_input_type(type, index), false, + has_member_decoration(type.self, index, DecorationRowMajor)); +} + +bool CompilerMSL::skip_argument(uint32_t) const +{ + return false; +} + +void CompilerMSL::analyze_sampled_image_usage() +{ + if (msl_options.swizzle_texture_samples) + { + SampledImageScanner scanner(*this); + traverse_all_reachable_opcodes(get<SPIRFunction>(ir.default_entry_point), scanner); + } +} + +bool CompilerMSL::SampledImageScanner::handle(spv::Op opcode, const uint32_t *args, uint32_t length) +{ + switch (opcode) + { + case OpLoad: + case OpImage: + case OpSampledImage: + { + if (length < 3) + return false; + + uint32_t result_type = args[0]; + auto &type = compiler.get<SPIRType>(result_type); + if ((type.basetype != SPIRType::Image && type.basetype != SPIRType::SampledImage) || type.image.sampled != 1) + return true; + + uint32_t id = args[1]; + compiler.set<SPIRExpression>(id, "", result_type, true); + break; + } + case OpImageSampleExplicitLod: + case OpImageSampleProjExplicitLod: + case OpImageSampleDrefExplicitLod: + case OpImageSampleProjDrefExplicitLod: + case OpImageSampleImplicitLod: + case OpImageSampleProjImplicitLod: + case OpImageSampleDrefImplicitLod: + case OpImageSampleProjDrefImplicitLod: + case OpImageFetch: + case OpImageGather: + case OpImageDrefGather: + compiler.has_sampled_images = + compiler.has_sampled_images || compiler.is_sampled_image_type(compiler.expression_type(args[2])); + compiler.needs_swizzle_buffer_def = compiler.needs_swizzle_buffer_def || compiler.has_sampled_images; + break; + default: + break; + } + return true; +} + +// If a needed custom function wasn't added before, add it and force a recompile. +void CompilerMSL::add_spv_func_and_recompile(SPVFuncImpl spv_func) +{ + if (spv_function_implementations.count(spv_func) == 0) + { + spv_function_implementations.insert(spv_func); + suppress_missing_prototypes = true; + force_recompile(); + } +} + +bool CompilerMSL::OpCodePreprocessor::handle(Op opcode, const uint32_t *args, uint32_t length) +{ + // Since MSL exists in a single execution scope, function prototype declarations are not + // needed, and clutter the output. If secondary functions are output (either as a SPIR-V + // function implementation or as indicated by the presence of OpFunctionCall), then set + // suppress_missing_prototypes to suppress compiler warnings of missing function prototypes. + + // Mark if the input requires the implementation of an SPIR-V function that does not exist in Metal. + SPVFuncImpl spv_func = get_spv_func_impl(opcode, args); + if (spv_func != SPVFuncImplNone) + { + compiler.spv_function_implementations.insert(spv_func); + suppress_missing_prototypes = true; + } + + switch (opcode) + { + + case OpFunctionCall: + suppress_missing_prototypes = true; + break; + + case OpDemoteToHelperInvocationEXT: + uses_discard = true; + break; + + // Emulate texture2D atomic operations + case OpImageTexelPointer: + { + if (!compiler.msl_options.supports_msl_version(3, 1)) + { + auto *var = compiler.maybe_get_backing_variable(args[2]); + image_pointers_emulated[args[1]] = var ? var->self : ID(0); + } + break; + } + + case OpImageWrite: + uses_image_write = true; + break; + + case OpStore: + check_resource_write(args[0]); + break; + + // Emulate texture2D atomic operations + case OpAtomicExchange: + case OpAtomicCompareExchange: + case OpAtomicCompareExchangeWeak: + case OpAtomicIIncrement: + case OpAtomicIDecrement: + case OpAtomicIAdd: + case OpAtomicFAddEXT: + case OpAtomicISub: + case OpAtomicSMin: + case OpAtomicUMin: + case OpAtomicSMax: + case OpAtomicUMax: + case OpAtomicAnd: + case OpAtomicOr: + case OpAtomicXor: + { + uses_atomics = true; + auto it = image_pointers_emulated.find(args[2]); + if (it != image_pointers_emulated.end()) + { + uses_image_write = true; + compiler.atomic_image_vars_emulated.insert(it->second); + } + else + check_resource_write(args[2]); + break; + } + + case OpAtomicStore: + { + uses_atomics = true; + auto it = image_pointers_emulated.find(args[0]); + if (it != image_pointers_emulated.end()) + { + compiler.atomic_image_vars_emulated.insert(it->second); + uses_image_write = true; + } + else + check_resource_write(args[0]); + break; + } + + case OpAtomicLoad: + { + uses_atomics = true; + auto it = image_pointers_emulated.find(args[2]); + if (it != image_pointers_emulated.end()) + { + compiler.atomic_image_vars_emulated.insert(it->second); + } + break; + } + + case OpGroupNonUniformInverseBallot: + needs_subgroup_invocation_id = true; + break; + + case OpGroupNonUniformBallotFindLSB: + case OpGroupNonUniformBallotFindMSB: + needs_subgroup_size = true; + break; + + case OpGroupNonUniformBallotBitCount: + if (args[3] == GroupOperationReduce) + needs_subgroup_size = true; + else + needs_subgroup_invocation_id = true; + break; + + case OpArrayLength: + { + auto *var = compiler.maybe_get_backing_variable(args[2]); + if (var != nullptr) + { + if (!compiler.is_var_runtime_size_array(*var)) + compiler.buffers_requiring_array_length.insert(var->self); + } + break; + } + + case OpInBoundsAccessChain: + case OpAccessChain: + case OpPtrAccessChain: + { + // OpArrayLength might want to know if taking ArrayLength of an array of SSBOs. + uint32_t result_type = args[0]; + uint32_t id = args[1]; + uint32_t ptr = args[2]; + + compiler.set<SPIRExpression>(id, "", result_type, true); + compiler.register_read(id, ptr, true); + compiler.ir.ids[id].set_allow_type_rewrite(); + break; + } + + case OpExtInst: + { + uint32_t extension_set = args[2]; + if (compiler.get<SPIRExtension>(extension_set).ext == SPIRExtension::GLSL) + { + auto op_450 = static_cast<GLSLstd450>(args[3]); + switch (op_450) + { + case GLSLstd450InterpolateAtCentroid: + case GLSLstd450InterpolateAtSample: + case GLSLstd450InterpolateAtOffset: + { + if (!compiler.msl_options.supports_msl_version(2, 3)) + SPIRV_CROSS_THROW("Pull-model interpolation requires MSL 2.3."); + // Fragment varyings used with pull-model interpolation need special handling, + // due to the way pull-model interpolation works in Metal. + auto *var = compiler.maybe_get_backing_variable(args[4]); + if (var) + { + compiler.pull_model_inputs.insert(var->self); + auto &var_type = compiler.get_variable_element_type(*var); + // In addition, if this variable has a 'Sample' decoration, we need the sample ID + // in order to do default interpolation. + if (compiler.has_decoration(var->self, DecorationSample)) + { + needs_sample_id = true; + } + else if (var_type.basetype == SPIRType::Struct) + { + // Now we need to check each member and see if it has this decoration. + for (uint32_t i = 0; i < var_type.member_types.size(); ++i) + { + if (compiler.has_member_decoration(var_type.self, i, DecorationSample)) + { + needs_sample_id = true; + break; + } + } + } + } + break; + } + default: + break; + } + } + break; + } + + case OpIsHelperInvocationEXT: + if (compiler.needs_manual_helper_invocation_updates()) + needs_helper_invocation = true; + break; + + default: + break; + } + + // If it has one, keep track of the instruction's result type, mapped by ID + uint32_t result_type, result_id; + if (compiler.instruction_to_result_type(result_type, result_id, opcode, args, length)) + result_types[result_id] = result_type; + + return true; +} + +// If the variable is a Uniform or StorageBuffer, mark that a resource has been written to. +void CompilerMSL::OpCodePreprocessor::check_resource_write(uint32_t var_id) +{ + auto *p_var = compiler.maybe_get_backing_variable(var_id); + StorageClass sc = p_var ? p_var->storage : StorageClassMax; + if (sc == StorageClassUniform || sc == StorageClassStorageBuffer) + uses_buffer_write = true; +} + +// Returns an enumeration of a SPIR-V function that needs to be output for certain Op codes. +CompilerMSL::SPVFuncImpl CompilerMSL::OpCodePreprocessor::get_spv_func_impl(Op opcode, const uint32_t *args) +{ + switch (opcode) + { + case OpFMod: + return SPVFuncImplMod; + + case OpFAdd: + case OpFSub: + if (compiler.msl_options.invariant_float_math || + compiler.has_decoration(args[1], DecorationNoContraction)) + { + return opcode == OpFAdd ? SPVFuncImplFAdd : SPVFuncImplFSub; + } + break; + + case OpFMul: + case OpOuterProduct: + case OpMatrixTimesVector: + case OpVectorTimesMatrix: + case OpMatrixTimesMatrix: + if (compiler.msl_options.invariant_float_math || + compiler.has_decoration(args[1], DecorationNoContraction)) + { + return SPVFuncImplFMul; + } + break; + + case OpQuantizeToF16: + return SPVFuncImplQuantizeToF16; + + case OpTypeArray: + { + // Allow Metal to use the array<T> template to make arrays a value type + return SPVFuncImplUnsafeArray; + } + + // Emulate texture2D atomic operations + case OpAtomicExchange: + case OpAtomicCompareExchange: + case OpAtomicCompareExchangeWeak: + case OpAtomicIIncrement: + case OpAtomicIDecrement: + case OpAtomicIAdd: + case OpAtomicFAddEXT: + case OpAtomicISub: + case OpAtomicSMin: + case OpAtomicUMin: + case OpAtomicSMax: + case OpAtomicUMax: + case OpAtomicAnd: + case OpAtomicOr: + case OpAtomicXor: + case OpAtomicLoad: + case OpAtomicStore: + { + auto it = image_pointers_emulated.find(args[opcode == OpAtomicStore ? 0 : 2]); + if (it != image_pointers_emulated.end()) + { + uint32_t tid = compiler.get<SPIRVariable>(it->second).basetype; + if (tid && compiler.get<SPIRType>(tid).image.dim == Dim2D) + return SPVFuncImplImage2DAtomicCoords; + } + break; + } + + case OpImageFetch: + case OpImageRead: + case OpImageWrite: + { + // Retrieve the image type, and if it's a Buffer, emit a texel coordinate function + uint32_t tid = result_types[args[opcode == OpImageWrite ? 0 : 2]]; + if (tid && compiler.get<SPIRType>(tid).image.dim == DimBuffer && !compiler.msl_options.texture_buffer_native) + return SPVFuncImplTexelBufferCoords; + break; + } + + case OpExtInst: + { + uint32_t extension_set = args[2]; + if (compiler.get<SPIRExtension>(extension_set).ext == SPIRExtension::GLSL) + { + auto op_450 = static_cast<GLSLstd450>(args[3]); + switch (op_450) + { + case GLSLstd450Radians: + return SPVFuncImplRadians; + case GLSLstd450Degrees: + return SPVFuncImplDegrees; + case GLSLstd450FindILsb: + return SPVFuncImplFindILsb; + case GLSLstd450FindSMsb: + return SPVFuncImplFindSMsb; + case GLSLstd450FindUMsb: + return SPVFuncImplFindUMsb; + case GLSLstd450SSign: + return SPVFuncImplSSign; + case GLSLstd450Reflect: + { + auto &type = compiler.get<SPIRType>(args[0]); + if (type.vecsize == 1) + return SPVFuncImplReflectScalar; + break; + } + case GLSLstd450Refract: + { + auto &type = compiler.get<SPIRType>(args[0]); + if (type.vecsize == 1) + return SPVFuncImplRefractScalar; + break; + } + case GLSLstd450FaceForward: + { + auto &type = compiler.get<SPIRType>(args[0]); + if (type.vecsize == 1) + return SPVFuncImplFaceForwardScalar; + break; + } + case GLSLstd450MatrixInverse: + { + auto &mat_type = compiler.get<SPIRType>(args[0]); + switch (mat_type.columns) + { + case 2: + return SPVFuncImplInverse2x2; + case 3: + return SPVFuncImplInverse3x3; + case 4: + return SPVFuncImplInverse4x4; + default: + break; + } + break; + } + default: + break; + } + } + break; + } + + case OpGroupNonUniformBroadcast: + case OpSubgroupReadInvocationKHR: + return SPVFuncImplSubgroupBroadcast; + + case OpGroupNonUniformBroadcastFirst: + case OpSubgroupFirstInvocationKHR: + return SPVFuncImplSubgroupBroadcastFirst; + + case OpGroupNonUniformBallot: + case OpSubgroupBallotKHR: + return SPVFuncImplSubgroupBallot; + + case OpGroupNonUniformInverseBallot: + case OpGroupNonUniformBallotBitExtract: + return SPVFuncImplSubgroupBallotBitExtract; + + case OpGroupNonUniformBallotFindLSB: + return SPVFuncImplSubgroupBallotFindLSB; + + case OpGroupNonUniformBallotFindMSB: + return SPVFuncImplSubgroupBallotFindMSB; + + case OpGroupNonUniformBallotBitCount: + return SPVFuncImplSubgroupBallotBitCount; + + case OpGroupNonUniformAllEqual: + case OpSubgroupAllEqualKHR: + return SPVFuncImplSubgroupAllEqual; + + case OpGroupNonUniformShuffle: + return SPVFuncImplSubgroupShuffle; + + case OpGroupNonUniformShuffleXor: + return SPVFuncImplSubgroupShuffleXor; + + case OpGroupNonUniformShuffleUp: + return SPVFuncImplSubgroupShuffleUp; + + case OpGroupNonUniformShuffleDown: + return SPVFuncImplSubgroupShuffleDown; + + case OpGroupNonUniformQuadBroadcast: + return SPVFuncImplQuadBroadcast; + + case OpGroupNonUniformQuadSwap: + return SPVFuncImplQuadSwap; + + case OpSDot: + case OpUDot: + case OpSUDot: + case OpSDotAccSat: + case OpUDotAccSat: + case OpSUDotAccSat: + return SPVFuncImplReduceAdd; + + default: + break; + } + return SPVFuncImplNone; +} + +// Sort both type and meta member content based on builtin status (put builtins at end), +// then by the required sorting aspect. +void CompilerMSL::MemberSorter::sort() +{ + // Create a temporary array of consecutive member indices and sort it based on how + // the members should be reordered, based on builtin and sorting aspect meta info. + size_t mbr_cnt = type.member_types.size(); + SmallVector<uint32_t> mbr_idxs(mbr_cnt); + std::iota(mbr_idxs.begin(), mbr_idxs.end(), 0); // Fill with consecutive indices + std::stable_sort(mbr_idxs.begin(), mbr_idxs.end(), *this); // Sort member indices based on sorting aspect + + bool sort_is_identity = true; + for (uint32_t mbr_idx = 0; mbr_idx < mbr_cnt; mbr_idx++) + { + if (mbr_idx != mbr_idxs[mbr_idx]) + { + sort_is_identity = false; + break; + } + } + + if (sort_is_identity) + return; + + if (meta.members.size() < type.member_types.size()) + { + // This should never trigger in normal circumstances, but to be safe. + meta.members.resize(type.member_types.size()); + } + + // Move type and meta member info to the order defined by the sorted member indices. + // This is done by creating temporary copies of both member types and meta, and then + // copying back to the original content at the sorted indices. + auto mbr_types_cpy = type.member_types; + auto mbr_meta_cpy = meta.members; + for (uint32_t mbr_idx = 0; mbr_idx < mbr_cnt; mbr_idx++) + { + type.member_types[mbr_idx] = mbr_types_cpy[mbr_idxs[mbr_idx]]; + meta.members[mbr_idx] = mbr_meta_cpy[mbr_idxs[mbr_idx]]; + } + + // If we're sorting by Offset, this might affect user code which accesses a buffer block. + // We will need to redirect member indices from defined index to sorted index using reverse lookup. + if (sort_aspect == SortAspect::Offset) + { + type.member_type_index_redirection.resize(mbr_cnt); + for (uint32_t map_idx = 0; map_idx < mbr_cnt; map_idx++) + type.member_type_index_redirection[mbr_idxs[map_idx]] = map_idx; + } +} + +bool CompilerMSL::MemberSorter::operator()(uint32_t mbr_idx1, uint32_t mbr_idx2) +{ + auto &mbr_meta1 = meta.members[mbr_idx1]; + auto &mbr_meta2 = meta.members[mbr_idx2]; + + if (sort_aspect == LocationThenBuiltInType) + { + // Sort first by builtin status (put builtins at end), then by the sorting aspect. + if (mbr_meta1.builtin != mbr_meta2.builtin) + return mbr_meta2.builtin; + else if (mbr_meta1.builtin) + return mbr_meta1.builtin_type < mbr_meta2.builtin_type; + else if (mbr_meta1.location == mbr_meta2.location) + return mbr_meta1.component < mbr_meta2.component; + else + return mbr_meta1.location < mbr_meta2.location; + } + else + return mbr_meta1.offset < mbr_meta2.offset; +} + +CompilerMSL::MemberSorter::MemberSorter(SPIRType &t, Meta &m, SortAspect sa) + : type(t) + , meta(m) + , sort_aspect(sa) +{ + // Ensure enough meta info is available + meta.members.resize(max(type.member_types.size(), meta.members.size())); +} + +void CompilerMSL::remap_constexpr_sampler(VariableID id, const MSLConstexprSampler &sampler) +{ + auto &type = get<SPIRType>(get<SPIRVariable>(id).basetype); + if (type.basetype != SPIRType::SampledImage && type.basetype != SPIRType::Sampler) + SPIRV_CROSS_THROW("Can only remap SampledImage and Sampler type."); + if (!type.array.empty()) + SPIRV_CROSS_THROW("Can not remap array of samplers."); + constexpr_samplers_by_id[id] = sampler; +} + +void CompilerMSL::remap_constexpr_sampler_by_binding(uint32_t desc_set, uint32_t binding, + const MSLConstexprSampler &sampler) +{ + constexpr_samplers_by_binding[{ desc_set, binding }] = sampler; +} + +void CompilerMSL::cast_from_variable_load(uint32_t source_id, std::string &expr, const SPIRType &expr_type) +{ + bool is_packed = has_extended_decoration(source_id, SPIRVCrossDecorationPhysicalTypePacked); + auto *source_expr = maybe_get<SPIRExpression>(source_id); + auto *var = maybe_get_backing_variable(source_id); + const SPIRType *var_type = nullptr, *phys_type = nullptr; + + if (uint32_t phys_id = get_extended_decoration(source_id, SPIRVCrossDecorationPhysicalTypeID)) + phys_type = &get<SPIRType>(phys_id); + else + phys_type = &expr_type; + + if (var) + { + source_id = var->self; + var_type = &get_variable_data_type(*var); + } + + bool rewrite_boolean_load = + expr_type.basetype == SPIRType::Boolean && + (var && (var->storage == StorageClassWorkgroup || var_type->basetype == SPIRType::Struct)); + + // Type fixups for workgroup variables if they are booleans. + if (rewrite_boolean_load) + { + if (is_array(expr_type)) + expr = to_rerolled_array_expression(expr_type, expr, expr_type); + else + expr = join(type_to_glsl(expr_type), "(", expr, ")"); + } + + // Type fixups for workgroup variables if they are matrices. + // Don't do fixup for packed types; those are handled specially. + // FIXME: Maybe use a type like spvStorageMatrix for packed matrices? + if (!msl_options.supports_msl_version(3, 0) && var && + (var->storage == StorageClassWorkgroup || + (var_type->basetype == SPIRType::Struct && + has_extended_decoration(var_type->self, SPIRVCrossDecorationWorkgroupStruct) && !is_packed)) && + expr_type.columns > 1) + { + SPIRType matrix_type = *phys_type; + if (source_expr && source_expr->need_transpose) + swap(matrix_type.vecsize, matrix_type.columns); + matrix_type.array.clear(); + matrix_type.array_size_literal.clear(); + expr = join(type_to_glsl(matrix_type), "(", expr, ")"); + } + + // Only interested in standalone builtin variables in the switch below. + if (!has_decoration(source_id, DecorationBuiltIn)) + { + // If the backing variable does not match our expected sign, we can fix it up here. + // See ensure_correct_input_type(). + if (var && var->storage == StorageClassInput) + { + auto &base_type = get<SPIRType>(var->basetype); + if (base_type.basetype != SPIRType::Struct && expr_type.basetype != base_type.basetype) + expr = join(type_to_glsl(expr_type), "(", expr, ")"); + } + return; + } + + auto builtin = static_cast<BuiltIn>(get_decoration(source_id, DecorationBuiltIn)); + auto expected_type = expr_type.basetype; + auto expected_width = expr_type.width; + switch (builtin) + { + case BuiltInGlobalInvocationId: + case BuiltInLocalInvocationId: + case BuiltInWorkgroupId: + case BuiltInLocalInvocationIndex: + case BuiltInWorkgroupSize: + case BuiltInNumWorkgroups: + case BuiltInLayer: + case BuiltInViewportIndex: + case BuiltInFragStencilRefEXT: + case BuiltInPrimitiveId: + case BuiltInSubgroupSize: + case BuiltInSubgroupLocalInvocationId: + case BuiltInViewIndex: + case BuiltInVertexIndex: + case BuiltInInstanceIndex: + case BuiltInBaseInstance: + case BuiltInBaseVertex: + case BuiltInSampleMask: + expected_type = SPIRType::UInt; + expected_width = 32; + break; + + case BuiltInTessLevelInner: + case BuiltInTessLevelOuter: + if (is_tesc_shader()) + { + expected_type = SPIRType::Half; + expected_width = 16; + } + break; + + default: + break; + } + + if (is_array(expr_type) && builtin == BuiltInSampleMask) + { + // Needs special handling. + auto wrap_expr = join(type_to_glsl(expr_type), "({ "); + wrap_expr += join(type_to_glsl(get<SPIRType>(expr_type.parent_type)), "(", expr, ")"); + wrap_expr += " })"; + expr = std::move(wrap_expr); + } + else if (expected_type != expr_type.basetype) + { + if (is_array(expr_type) && (builtin == BuiltInTessLevelInner || builtin == BuiltInTessLevelOuter)) + { + // Triggers when loading TessLevel directly as an array. + // Need explicit padding + cast. + auto wrap_expr = join(type_to_glsl(expr_type), "({ "); + + uint32_t array_size = get_physical_tess_level_array_size(builtin); + for (uint32_t i = 0; i < array_size; i++) + { + if (array_size > 1) + wrap_expr += join("float(", expr, "[", i, "])"); + else + wrap_expr += join("float(", expr, ")"); + if (i + 1 < array_size) + wrap_expr += ", "; + } + + if (is_tessellating_triangles()) + wrap_expr += ", 0.0"; + + wrap_expr += " })"; + expr = std::move(wrap_expr); + } + else + { + // These are of different widths, so we cannot do a straight bitcast. + if (expected_width != expr_type.width) + expr = join(type_to_glsl(expr_type), "(", expr, ")"); + else + expr = bitcast_expression(expr_type, expected_type, expr); + } + } +} + +void CompilerMSL::cast_to_variable_store(uint32_t target_id, std::string &expr, const SPIRType &expr_type) +{ + bool is_packed = has_extended_decoration(target_id, SPIRVCrossDecorationPhysicalTypePacked); + auto *target_expr = maybe_get<SPIRExpression>(target_id); + auto *var = maybe_get_backing_variable(target_id); + const SPIRType *var_type = nullptr, *phys_type = nullptr; + + if (uint32_t phys_id = get_extended_decoration(target_id, SPIRVCrossDecorationPhysicalTypeID)) + phys_type = &get<SPIRType>(phys_id); + else + phys_type = &expr_type; + + if (var) + { + target_id = var->self; + var_type = &get_variable_data_type(*var); + } + + bool rewrite_boolean_store = + expr_type.basetype == SPIRType::Boolean && + (var && (var->storage == StorageClassWorkgroup || var_type->basetype == SPIRType::Struct)); + + // Type fixups for workgroup variables or struct members if they are booleans. + if (rewrite_boolean_store) + { + if (is_array(expr_type)) + { + expr = to_rerolled_array_expression(*var_type, expr, expr_type); + } + else + { + auto short_type = expr_type; + short_type.basetype = SPIRType::Short; + expr = join(type_to_glsl(short_type), "(", expr, ")"); + } + } + + // Type fixups for workgroup variables if they are matrices. + // Don't do fixup for packed types; those are handled specially. + // FIXME: Maybe use a type like spvStorageMatrix for packed matrices? + if (!msl_options.supports_msl_version(3, 0) && var && + (var->storage == StorageClassWorkgroup || + (var_type->basetype == SPIRType::Struct && + has_extended_decoration(var_type->self, SPIRVCrossDecorationWorkgroupStruct) && !is_packed)) && + expr_type.columns > 1) + { + SPIRType matrix_type = *phys_type; + if (target_expr && target_expr->need_transpose) + swap(matrix_type.vecsize, matrix_type.columns); + expr = join("spvStorage_", type_to_glsl(matrix_type), "(", expr, ")"); + } + + // Only interested in standalone builtin variables. + if (!has_decoration(target_id, DecorationBuiltIn)) + return; + + auto builtin = static_cast<BuiltIn>(get_decoration(target_id, DecorationBuiltIn)); + auto expected_type = expr_type.basetype; + auto expected_width = expr_type.width; + switch (builtin) + { + case BuiltInLayer: + case BuiltInViewportIndex: + case BuiltInFragStencilRefEXT: + case BuiltInPrimitiveId: + case BuiltInViewIndex: + expected_type = SPIRType::UInt; + expected_width = 32; + break; + + case BuiltInTessLevelInner: + case BuiltInTessLevelOuter: + expected_type = SPIRType::Half; + expected_width = 16; + break; + + default: + break; + } + + if (expected_type != expr_type.basetype) + { + if (expected_width != expr_type.width) + { + // These are of different widths, so we cannot do a straight bitcast. + auto type = expr_type; + type.basetype = expected_type; + type.width = expected_width; + expr = join(type_to_glsl(type), "(", expr, ")"); + } + else + { + auto type = expr_type; + type.basetype = expected_type; + expr = bitcast_expression(type, expr_type.basetype, expr); + } + } +} + +string CompilerMSL::to_initializer_expression(const SPIRVariable &var) +{ + // We risk getting an array initializer here with MSL. If we have an array. + // FIXME: We cannot handle non-constant arrays being initialized. + // We will need to inject spvArrayCopy here somehow ... + auto &type = get<SPIRType>(var.basetype); + string expr; + if (ir.ids[var.initializer].get_type() == TypeConstant && + (!type.array.empty() || type.basetype == SPIRType::Struct)) + expr = constant_expression(get<SPIRConstant>(var.initializer)); + else + expr = CompilerGLSL::to_initializer_expression(var); + // If the initializer has more vector components than the variable, add a swizzle. + // FIXME: This can't handle arrays or structs. + auto &init_type = expression_type(var.initializer); + if (type.array.empty() && type.basetype != SPIRType::Struct && init_type.vecsize > type.vecsize) + expr = enclose_expression(expr + vector_swizzle(type.vecsize, 0)); + return expr; +} + +string CompilerMSL::to_zero_initialized_expression(uint32_t) +{ + return "{}"; +} + +bool CompilerMSL::descriptor_set_is_argument_buffer(uint32_t desc_set) const +{ + if (!msl_options.argument_buffers) + return false; + if (desc_set >= kMaxArgumentBuffers) + return false; + + return (argument_buffer_discrete_mask & (1u << desc_set)) == 0; +} + +bool CompilerMSL::is_supported_argument_buffer_type(const SPIRType &type) const +{ + // iOS Tier 1 argument buffers do not support writable images. + // When the argument buffer is encoded, we don't know whether this image will have a + // NonWritable decoration, so just use discrete arguments for all storage images on iOS. + bool is_supported_type = !(type.basetype == SPIRType::Image && + type.image.sampled == 2 && + msl_options.is_ios() && + msl_options.argument_buffers_tier <= Options::ArgumentBuffersTier::Tier1); + return is_supported_type && !type_is_msl_framebuffer_fetch(type); +} + +void CompilerMSL::emit_argument_buffer_aliased_descriptor(const SPIRVariable &aliased_var, + const SPIRVariable &base_var) +{ + // To deal with buffer <-> image aliasing, we need to perform an unholy UB ritual. + // A texture type in Metal 3.0 is a pointer. However, we cannot simply cast a pointer to texture. + // What we *can* do is to cast pointer-to-pointer to pointer-to-texture. + + // We need to explicitly reach into the descriptor buffer lvalue, not any spvDescriptorArray wrapper. + auto *var_meta = ir.find_meta(base_var.self); + bool old_explicit_qualifier = var_meta && var_meta->decoration.qualified_alias_explicit_override; + if (var_meta) + var_meta->decoration.qualified_alias_explicit_override = false; + auto unqualified_name = to_name(base_var.self, false); + if (var_meta) + var_meta->decoration.qualified_alias_explicit_override = old_explicit_qualifier; + + // For non-arrayed buffers, we have already performed a de-reference. + // We need a proper lvalue to cast, so strip away the de-reference. + if (unqualified_name.size() > 2 && unqualified_name[0] == '(' && unqualified_name[1] == '*') + { + unqualified_name.erase(unqualified_name.begin(), unqualified_name.begin() + 2); + unqualified_name.pop_back(); + } + + string name; + + auto &var_type = get<SPIRType>(aliased_var.basetype); + auto &data_type = get_variable_data_type(aliased_var); + string descriptor_storage = descriptor_address_space(aliased_var.self, aliased_var.storage, ""); + + if (aliased_var.storage == StorageClassUniformConstant) + { + if (is_var_runtime_size_array(aliased_var)) + { + // This becomes a plain pointer to spvDescriptor. + name = join("reinterpret_cast<", descriptor_storage, " ", + type_to_glsl(get_variable_data_type(aliased_var), aliased_var.self, true), ">(&", + unqualified_name, ")"); + } + else + { + name = join("reinterpret_cast<", descriptor_storage, " ", + type_to_glsl(get_variable_data_type(aliased_var), aliased_var.self, true), " &>(", + unqualified_name, ");"); + } + } + else + { + // Buffer types. + bool old_is_using_builtin_array = is_using_builtin_array; + is_using_builtin_array = true; + + bool needs_post_cast_deref = !is_array(data_type); + string ref_type = needs_post_cast_deref ? "&" : join("(&)", type_to_array_glsl(var_type, aliased_var.self)); + + if (is_var_runtime_size_array(aliased_var)) + { + name = join("reinterpret_cast<", + type_to_glsl(var_type, aliased_var.self, true), " ", descriptor_storage, " *>(&", + unqualified_name, ")"); + } + else + { + name = join(needs_post_cast_deref ? "*" : "", "reinterpret_cast<", + type_to_glsl(var_type, aliased_var.self, true), " ", descriptor_storage, " ", + ref_type, + ">(", unqualified_name, ");"); + } + + if (needs_post_cast_deref) + descriptor_storage = get_type_address_space(var_type, aliased_var.self, false); + + // These kinds of ridiculous casts trigger warnings in compiler. Just ignore them. + if (!suppress_incompatible_pointer_types_discard_qualifiers) + { + suppress_incompatible_pointer_types_discard_qualifiers = true; + force_recompile_guarantee_forward_progress(); + } + + is_using_builtin_array = old_is_using_builtin_array; + } + + if (!is_var_runtime_size_array(aliased_var)) + { + // Lower to temporary, so drop the qualification. + set_qualified_name(aliased_var.self, ""); + statement(descriptor_storage, " auto &", to_name(aliased_var.self), " = ", name); + } + else + { + // This alias may have already been used to emit an entry point declaration. If there is a mismatch, we need a recompile. + // Moving this code to be run earlier will also conflict, + // because we need the qualified alias for the base resource, + // so forcing recompile until things sync up is the least invasive method for now. + if (ir.meta[aliased_var.self].decoration.qualified_alias != name) + force_recompile(); + + // This will get wrapped in a separate temporary when a spvDescriptorArray wrapper is emitted. + set_qualified_name(aliased_var.self, name); + } +} + +void CompilerMSL::analyze_argument_buffers() +{ + // Gather all used resources and sort them out into argument buffers. + // Each argument buffer corresponds to a descriptor set in SPIR-V. + // The [[id(N)]] values used correspond to the resource mapping we have for MSL. + // Otherwise, the binding number is used, but this is generally not safe some types like + // combined image samplers and arrays of resources. Metal needs different indices here, + // while SPIR-V can have one descriptor set binding. To use argument buffers in practice, + // you will need to use the remapping from the API. + for (auto &id : argument_buffer_ids) + id = 0; + + // Output resources, sorted by resource index & type. + struct Resource + { + SPIRVariable *var; + string name; + SPIRType::BaseType basetype; + uint32_t index; + uint32_t plane_count; + uint32_t plane; + uint32_t overlapping_var_id; + }; + SmallVector<Resource> resources_in_set[kMaxArgumentBuffers]; + SmallVector<uint32_t> inline_block_vars; + + bool set_needs_swizzle_buffer[kMaxArgumentBuffers] = {}; + bool set_needs_buffer_sizes[kMaxArgumentBuffers] = {}; + bool needs_buffer_sizes = false; + + ir.for_each_typed_id<SPIRVariable>([&](uint32_t self, SPIRVariable &var) { + if ((var.storage == StorageClassUniform || var.storage == StorageClassUniformConstant || + var.storage == StorageClassStorageBuffer) && + !is_hidden_variable(var)) + { + uint32_t desc_set = get_decoration(self, DecorationDescriptorSet); + // Ignore if it's part of a push descriptor set. + if (!descriptor_set_is_argument_buffer(desc_set)) + return; + + uint32_t var_id = var.self; + auto &type = get_variable_data_type(var); + + if (desc_set >= kMaxArgumentBuffers) + SPIRV_CROSS_THROW("Descriptor set index is out of range."); + + const MSLConstexprSampler *constexpr_sampler = nullptr; + if (type.basetype == SPIRType::SampledImage || type.basetype == SPIRType::Sampler) + { + constexpr_sampler = find_constexpr_sampler(var_id); + if (constexpr_sampler) + { + // Mark this ID as a constexpr sampler for later in case it came from set/bindings. + constexpr_samplers_by_id[var_id] = *constexpr_sampler; + } + } + + uint32_t binding = get_decoration(var_id, DecorationBinding); + if (type.basetype == SPIRType::SampledImage) + { + add_resource_name(var_id); + + uint32_t plane_count = 1; + if (constexpr_sampler && constexpr_sampler->ycbcr_conversion_enable) + plane_count = constexpr_sampler->planes; + + for (uint32_t i = 0; i < plane_count; i++) + { + uint32_t image_resource_index = get_metal_resource_index(var, SPIRType::Image, i); + resources_in_set[desc_set].push_back( + { &var, to_name(var_id), SPIRType::Image, image_resource_index, plane_count, i, 0 }); + } + + if (type.image.dim != DimBuffer && !constexpr_sampler) + { + uint32_t sampler_resource_index = get_metal_resource_index(var, SPIRType::Sampler); + resources_in_set[desc_set].push_back( + { &var, to_sampler_expression(var_id), SPIRType::Sampler, sampler_resource_index, 1, 0, 0 }); + } + } + else if (inline_uniform_blocks.count(SetBindingPair{ desc_set, binding })) + { + inline_block_vars.push_back(var_id); + } + else if (!constexpr_sampler && is_supported_argument_buffer_type(type)) + { + // constexpr samplers are not declared as resources. + // Inline uniform blocks are always emitted at the end. + add_resource_name(var_id); + + uint32_t resource_index = get_metal_resource_index(var, type.basetype); + + resources_in_set[desc_set].push_back( + { &var, to_name(var_id), type.basetype, resource_index, 1, 0, 0 }); + + // Emulate texture2D atomic operations + if (atomic_image_vars_emulated.count(var.self)) + { + uint32_t buffer_resource_index = get_metal_resource_index(var, SPIRType::AtomicCounter, 0); + resources_in_set[desc_set].push_back( + { &var, to_name(var_id) + "_atomic", SPIRType::Struct, buffer_resource_index, 1, 0, 0 }); + } + } + + // Check if this descriptor set needs a swizzle buffer. + if (needs_swizzle_buffer_def && is_sampled_image_type(type)) + set_needs_swizzle_buffer[desc_set] = true; + else if (buffer_requires_array_length(var_id)) + { + set_needs_buffer_sizes[desc_set] = true; + needs_buffer_sizes = true; + } + } + }); + + if (needs_swizzle_buffer_def || needs_buffer_sizes) + { + uint32_t uint_ptr_type_id = 0; + + // We might have to add a swizzle buffer resource to the set. + for (uint32_t desc_set = 0; desc_set < kMaxArgumentBuffers; desc_set++) + { + if (!set_needs_swizzle_buffer[desc_set] && !set_needs_buffer_sizes[desc_set]) + continue; + + if (uint_ptr_type_id == 0) + { + uint_ptr_type_id = ir.increase_bound_by(1); + + // Create a buffer to hold extra data, including the swizzle constants. + SPIRType uint_type_pointer = get_uint_type(); + uint_type_pointer.op = OpTypePointer; + uint_type_pointer.pointer = true; + uint_type_pointer.pointer_depth++; + uint_type_pointer.parent_type = get_uint_type_id(); + uint_type_pointer.storage = StorageClassUniform; + set<SPIRType>(uint_ptr_type_id, uint_type_pointer); + set_decoration(uint_ptr_type_id, DecorationArrayStride, 4); + } + + if (set_needs_swizzle_buffer[desc_set]) + { + uint32_t var_id = ir.increase_bound_by(1); + auto &var = set<SPIRVariable>(var_id, uint_ptr_type_id, StorageClassUniformConstant); + set_name(var_id, "spvSwizzleConstants"); + set_decoration(var_id, DecorationDescriptorSet, desc_set); + set_decoration(var_id, DecorationBinding, kSwizzleBufferBinding); + resources_in_set[desc_set].push_back( + { &var, to_name(var_id), SPIRType::UInt, get_metal_resource_index(var, SPIRType::UInt), 1, 0, 0 }); + } + + if (set_needs_buffer_sizes[desc_set]) + { + uint32_t var_id = ir.increase_bound_by(1); + auto &var = set<SPIRVariable>(var_id, uint_ptr_type_id, StorageClassUniformConstant); + set_name(var_id, "spvBufferSizeConstants"); + set_decoration(var_id, DecorationDescriptorSet, desc_set); + set_decoration(var_id, DecorationBinding, kBufferSizeBufferBinding); + resources_in_set[desc_set].push_back( + { &var, to_name(var_id), SPIRType::UInt, get_metal_resource_index(var, SPIRType::UInt), 1, 0, 0 }); + } + } + } + + // Now add inline uniform blocks. + for (uint32_t var_id : inline_block_vars) + { + auto &var = get<SPIRVariable>(var_id); + uint32_t desc_set = get_decoration(var_id, DecorationDescriptorSet); + add_resource_name(var_id); + resources_in_set[desc_set].push_back( + { &var, to_name(var_id), SPIRType::Struct, get_metal_resource_index(var, SPIRType::Struct), 1, 0, 0 }); + } + + for (uint32_t desc_set = 0; desc_set < kMaxArgumentBuffers; desc_set++) + { + auto &resources = resources_in_set[desc_set]; + if (resources.empty()) + continue; + + assert(descriptor_set_is_argument_buffer(desc_set)); + + uint32_t next_id = ir.increase_bound_by(3); + uint32_t type_id = next_id + 1; + uint32_t ptr_type_id = next_id + 2; + argument_buffer_ids[desc_set] = next_id; + + auto &buffer_type = set<SPIRType>(type_id, OpTypeStruct); + + buffer_type.basetype = SPIRType::Struct; + + if ((argument_buffer_device_storage_mask & (1u << desc_set)) != 0) + { + buffer_type.storage = StorageClassStorageBuffer; + // Make sure the argument buffer gets marked as const device. + set_decoration(next_id, DecorationNonWritable); + // Need to mark the type as a Block to enable this. + set_decoration(type_id, DecorationBlock); + } + else + buffer_type.storage = StorageClassUniform; + + auto buffer_type_name = join("spvDescriptorSetBuffer", desc_set); + set_name(type_id, buffer_type_name); + + auto &ptr_type = set<SPIRType>(ptr_type_id, OpTypePointer); + ptr_type = buffer_type; + ptr_type.op = spv::OpTypePointer; + ptr_type.pointer = true; + ptr_type.pointer_depth++; + ptr_type.parent_type = type_id; + + uint32_t buffer_variable_id = next_id; + auto &buffer_var = set<SPIRVariable>(buffer_variable_id, ptr_type_id, StorageClassUniform); + auto buffer_name = join("spvDescriptorSet", desc_set); + set_name(buffer_variable_id, buffer_name); + + // Ids must be emitted in ID order. + stable_sort(begin(resources), end(resources), [&](const Resource &lhs, const Resource &rhs) -> bool { + return tie(lhs.index, lhs.basetype) < tie(rhs.index, rhs.basetype); + }); + + for (size_t i = 0; i < resources.size() - 1; i++) + { + auto &r1 = resources[i]; + auto &r2 = resources[i + 1]; + + if (r1.index == r2.index) + { + if (r1.overlapping_var_id) + r2.overlapping_var_id = r1.overlapping_var_id; + else + r2.overlapping_var_id = r1.var->self; + + set_extended_decoration(r2.var->self, SPIRVCrossDecorationOverlappingBinding, r2.overlapping_var_id); + } + } + + uint32_t member_index = 0; + uint32_t next_arg_buff_index = 0; + for (auto &resource : resources) + { + auto &var = *resource.var; + auto &type = get_variable_data_type(var); + + if (is_var_runtime_size_array(var) && (argument_buffer_device_storage_mask & (1u << desc_set)) == 0) + SPIRV_CROSS_THROW("Runtime sized variables must be in device storage argument buffers."); + + // If needed, synthesize and add padding members. + // member_index and next_arg_buff_index are incremented when padding members are added. + if (msl_options.pad_argument_buffer_resources && resource.plane == 0 && resource.overlapping_var_id == 0) + { + auto rez_bind = get_argument_buffer_resource(desc_set, next_arg_buff_index); + while (resource.index > next_arg_buff_index) + { + switch (rez_bind.basetype) + { + case SPIRType::Void: + case SPIRType::Boolean: + case SPIRType::SByte: + case SPIRType::UByte: + case SPIRType::Short: + case SPIRType::UShort: + case SPIRType::Int: + case SPIRType::UInt: + case SPIRType::Int64: + case SPIRType::UInt64: + case SPIRType::AtomicCounter: + case SPIRType::Half: + case SPIRType::Float: + case SPIRType::Double: + add_argument_buffer_padding_buffer_type(buffer_type, member_index, next_arg_buff_index, rez_bind); + break; + case SPIRType::Image: + add_argument_buffer_padding_image_type(buffer_type, member_index, next_arg_buff_index, rez_bind); + break; + case SPIRType::Sampler: + add_argument_buffer_padding_sampler_type(buffer_type, member_index, next_arg_buff_index, rez_bind); + break; + case SPIRType::SampledImage: + if (next_arg_buff_index == rez_bind.msl_sampler) + add_argument_buffer_padding_sampler_type(buffer_type, member_index, next_arg_buff_index, rez_bind); + else + add_argument_buffer_padding_image_type(buffer_type, member_index, next_arg_buff_index, rez_bind); + break; + default: + break; + } + + // After padding, retrieve the resource again. It will either be more padding, or the actual resource. + rez_bind = get_argument_buffer_resource(desc_set, next_arg_buff_index); + } + + // Adjust the number of slots consumed by current member itself. + // Use the count value from the app, instead of the shader, in case the + // shader is only accessing part, or even one element, of the array. + next_arg_buff_index += resource.plane_count * rez_bind.count; + } + + string mbr_name = ensure_valid_name(resource.name, "m"); + if (resource.plane > 0) + mbr_name += join(plane_name_suffix, resource.plane); + set_member_name(buffer_type.self, member_index, mbr_name); + + if (resource.basetype == SPIRType::Sampler && type.basetype != SPIRType::Sampler) + { + // Have to synthesize a sampler type here. + + bool type_is_array = !type.array.empty(); + uint32_t sampler_type_id = ir.increase_bound_by(type_is_array ? 2 : 1); + auto &new_sampler_type = set<SPIRType>(sampler_type_id, OpTypeSampler); + new_sampler_type.basetype = SPIRType::Sampler; + new_sampler_type.storage = StorageClassUniformConstant; + + if (type_is_array) + { + uint32_t sampler_type_array_id = sampler_type_id + 1; + auto &sampler_type_array = set<SPIRType>(sampler_type_array_id, OpTypeArray); + sampler_type_array = new_sampler_type; + sampler_type_array.array = type.array; + sampler_type_array.array_size_literal = type.array_size_literal; + sampler_type_array.parent_type = sampler_type_id; + buffer_type.member_types.push_back(sampler_type_array_id); + } + else + buffer_type.member_types.push_back(sampler_type_id); + } + else + { + uint32_t binding = get_decoration(var.self, DecorationBinding); + SetBindingPair pair = { desc_set, binding }; + + if (resource.basetype == SPIRType::Image || resource.basetype == SPIRType::Sampler || + resource.basetype == SPIRType::SampledImage) + { + // Drop pointer information when we emit the resources into a struct. + buffer_type.member_types.push_back(get_variable_data_type_id(var)); + if (has_extended_decoration(var.self, SPIRVCrossDecorationOverlappingBinding)) + { + if (!msl_options.supports_msl_version(3, 0)) + SPIRV_CROSS_THROW("Full mutable aliasing of argument buffer descriptors only works on Metal 3+."); + + auto &entry_func = get<SPIRFunction>(ir.default_entry_point); + entry_func.fixup_hooks_in.push_back([this, resource]() { + emit_argument_buffer_aliased_descriptor(*resource.var, this->get<SPIRVariable>(resource.overlapping_var_id)); + }); + } + else if (resource.plane == 0) + { + set_qualified_name(var.self, join(to_name(buffer_variable_id), ".", mbr_name)); + } + } + else if (buffers_requiring_dynamic_offset.count(pair)) + { + // Don't set the qualified name here; we'll define a variable holding the corrected buffer address later. + buffer_type.member_types.push_back(var.basetype); + buffers_requiring_dynamic_offset[pair].second = var.self; + } + else if (inline_uniform_blocks.count(pair)) + { + // Put the buffer block itself into the argument buffer. + buffer_type.member_types.push_back(get_variable_data_type_id(var)); + set_qualified_name(var.self, join(to_name(buffer_variable_id), ".", mbr_name)); + } + else if (atomic_image_vars_emulated.count(var.self)) + { + // Emulate texture2D atomic operations. + // Don't set the qualified name: it's already set for this variable, + // and the code that references the buffer manually appends "_atomic" + // to the name. + uint32_t offset = ir.increase_bound_by(2); + uint32_t atomic_type_id = offset; + uint32_t type_ptr_id = offset + 1; + + SPIRType atomic_type { OpTypeInt }; + atomic_type.basetype = SPIRType::AtomicCounter; + atomic_type.width = 32; + atomic_type.vecsize = 1; + set<SPIRType>(atomic_type_id, atomic_type); + + atomic_type.op = OpTypePointer; + atomic_type.pointer = true; + atomic_type.pointer_depth++; + atomic_type.parent_type = atomic_type_id; + atomic_type.storage = StorageClassStorageBuffer; + auto &atomic_ptr_type = set<SPIRType>(type_ptr_id, atomic_type); + atomic_ptr_type.self = atomic_type_id; + + buffer_type.member_types.push_back(type_ptr_id); + } + else + { + buffer_type.member_types.push_back(var.basetype); + if (has_extended_decoration(var.self, SPIRVCrossDecorationOverlappingBinding)) + { + // Casting raw pointers is fine since their ABI is fixed, but anything opaque is deeply questionable on Metal 2. + if (get<SPIRVariable>(resource.overlapping_var_id).storage == StorageClassUniformConstant && + !msl_options.supports_msl_version(3, 0)) + { + SPIRV_CROSS_THROW("Full mutable aliasing of argument buffer descriptors only works on Metal 3+."); + } + + auto &entry_func = get<SPIRFunction>(ir.default_entry_point); + + entry_func.fixup_hooks_in.push_back([this, resource]() { + emit_argument_buffer_aliased_descriptor(*resource.var, this->get<SPIRVariable>(resource.overlapping_var_id)); + }); + } + else if (type.array.empty()) + set_qualified_name(var.self, join("(*", to_name(buffer_variable_id), ".", mbr_name, ")")); + else + set_qualified_name(var.self, join(to_name(buffer_variable_id), ".", mbr_name)); + } + } + + set_extended_member_decoration(buffer_type.self, member_index, SPIRVCrossDecorationResourceIndexPrimary, + resource.index); + set_extended_member_decoration(buffer_type.self, member_index, SPIRVCrossDecorationInterfaceOrigID, + var.self); + if (has_extended_decoration(var.self, SPIRVCrossDecorationOverlappingBinding)) + set_extended_member_decoration(buffer_type.self, member_index, SPIRVCrossDecorationOverlappingBinding); + member_index++; + } + + if (msl_options.replace_recursive_inputs && type_contains_recursion(buffer_type)) + { + recursive_inputs.insert(type_id); + auto &entry_func = this->get<SPIRFunction>(ir.default_entry_point); + auto addr_space = get_argument_address_space(buffer_var); + entry_func.fixup_hooks_in.push_back([this, addr_space, buffer_name, buffer_type_name]() { + statement(addr_space, " auto& ", buffer_name, " = *(", addr_space, " ", buffer_type_name, "*)", buffer_name, "_vp;"); + }); + } + } +} + +// Return the resource type of the app-provided resources for the descriptor set, +// that matches the resource index of the argument buffer index. +// This is a two-step lookup, first lookup the resource binding number from the argument buffer index, +// then lookup the resource binding using the binding number. +const MSLResourceBinding &CompilerMSL::get_argument_buffer_resource(uint32_t desc_set, uint32_t arg_idx) const +{ + auto stage = get_entry_point().model; + StageSetBinding arg_idx_tuple = { stage, desc_set, arg_idx }; + auto arg_itr = resource_arg_buff_idx_to_binding_number.find(arg_idx_tuple); + if (arg_itr != end(resource_arg_buff_idx_to_binding_number)) + { + StageSetBinding bind_tuple = { stage, desc_set, arg_itr->second }; + auto bind_itr = resource_bindings.find(bind_tuple); + if (bind_itr != end(resource_bindings)) + return bind_itr->second.first; + } + SPIRV_CROSS_THROW("Argument buffer resource base type could not be determined. When padding argument buffer " + "elements, all descriptor set resources must be supplied with a base type by the app."); +} + +// Adds an argument buffer padding argument buffer type as one or more members of the struct type at the member index. +// Metal does not support arrays of buffers, so these are emitted as multiple struct members. +void CompilerMSL::add_argument_buffer_padding_buffer_type(SPIRType &struct_type, uint32_t &mbr_idx, + uint32_t &arg_buff_index, MSLResourceBinding &rez_bind) +{ + if (!argument_buffer_padding_buffer_type_id) + { + uint32_t buff_type_id = ir.increase_bound_by(2); + auto &buff_type = set<SPIRType>(buff_type_id, OpNop); + buff_type.basetype = rez_bind.basetype; + buff_type.storage = StorageClassUniformConstant; + + uint32_t ptr_type_id = buff_type_id + 1; + auto &ptr_type = set<SPIRType>(ptr_type_id, OpTypePointer); + ptr_type = buff_type; + ptr_type.op = spv::OpTypePointer; + ptr_type.pointer = true; + ptr_type.pointer_depth++; + ptr_type.parent_type = buff_type_id; + + argument_buffer_padding_buffer_type_id = ptr_type_id; + } + + add_argument_buffer_padding_type(argument_buffer_padding_buffer_type_id, struct_type, mbr_idx, arg_buff_index, rez_bind.count); +} + +// Adds an argument buffer padding argument image type as a member of the struct type at the member index. +void CompilerMSL::add_argument_buffer_padding_image_type(SPIRType &struct_type, uint32_t &mbr_idx, + uint32_t &arg_buff_index, MSLResourceBinding &rez_bind) +{ + if (!argument_buffer_padding_image_type_id) + { + uint32_t base_type_id = ir.increase_bound_by(2); + auto &base_type = set<SPIRType>(base_type_id, OpTypeFloat); + base_type.basetype = SPIRType::Float; + base_type.width = 32; + + uint32_t img_type_id = base_type_id + 1; + auto &img_type = set<SPIRType>(img_type_id, OpTypeImage); + img_type.basetype = SPIRType::Image; + img_type.storage = StorageClassUniformConstant; + + img_type.image.type = base_type_id; + img_type.image.dim = Dim2D; + img_type.image.depth = false; + img_type.image.arrayed = false; + img_type.image.ms = false; + img_type.image.sampled = 1; + img_type.image.format = ImageFormatUnknown; + img_type.image.access = AccessQualifierMax; + + argument_buffer_padding_image_type_id = img_type_id; + } + + add_argument_buffer_padding_type(argument_buffer_padding_image_type_id, struct_type, mbr_idx, arg_buff_index, rez_bind.count); +} + +// Adds an argument buffer padding argument sampler type as a member of the struct type at the member index. +void CompilerMSL::add_argument_buffer_padding_sampler_type(SPIRType &struct_type, uint32_t &mbr_idx, + uint32_t &arg_buff_index, MSLResourceBinding &rez_bind) +{ + if (!argument_buffer_padding_sampler_type_id) + { + uint32_t samp_type_id = ir.increase_bound_by(1); + auto &samp_type = set<SPIRType>(samp_type_id, OpTypeSampler); + samp_type.basetype = SPIRType::Sampler; + samp_type.storage = StorageClassUniformConstant; + + argument_buffer_padding_sampler_type_id = samp_type_id; + } + + add_argument_buffer_padding_type(argument_buffer_padding_sampler_type_id, struct_type, mbr_idx, arg_buff_index, rez_bind.count); +} + +// Adds the argument buffer padding argument type as a member of the struct type at the member index. +// Advances both arg_buff_index and mbr_idx to next argument slots. +void CompilerMSL::add_argument_buffer_padding_type(uint32_t mbr_type_id, SPIRType &struct_type, uint32_t &mbr_idx, + uint32_t &arg_buff_index, uint32_t count) +{ + uint32_t type_id = mbr_type_id; + if (count > 1) + { + uint32_t ary_type_id = ir.increase_bound_by(1); + auto &ary_type = set<SPIRType>(ary_type_id, get<SPIRType>(type_id)); + ary_type.op = OpTypeArray; + ary_type.array.push_back(count); + ary_type.array_size_literal.push_back(true); + ary_type.parent_type = type_id; + type_id = ary_type_id; + } + + set_member_name(struct_type.self, mbr_idx, join("_m", arg_buff_index, "_pad")); + set_extended_member_decoration(struct_type.self, mbr_idx, SPIRVCrossDecorationResourceIndexPrimary, arg_buff_index); + struct_type.member_types.push_back(type_id); + + arg_buff_index += count; + mbr_idx++; +} + +void CompilerMSL::activate_argument_buffer_resources() +{ + // For ABI compatibility, force-enable all resources which are part of argument buffers. + ir.for_each_typed_id<SPIRVariable>([&](uint32_t self, const SPIRVariable &) { + if (!has_decoration(self, DecorationDescriptorSet)) + return; + + uint32_t desc_set = get_decoration(self, DecorationDescriptorSet); + if (descriptor_set_is_argument_buffer(desc_set)) + add_active_interface_variable(self); + }); +} + +bool CompilerMSL::using_builtin_array() const +{ + return msl_options.force_native_arrays || is_using_builtin_array; +} + +void CompilerMSL::set_combined_sampler_suffix(const char *suffix) +{ + sampler_name_suffix = suffix; +} + +const char *CompilerMSL::get_combined_sampler_suffix() const +{ + return sampler_name_suffix.c_str(); +} + +void CompilerMSL::emit_block_hints(const SPIRBlock &) +{ +} + +string CompilerMSL::additional_fixed_sample_mask_str() const +{ + char print_buffer[32]; +#ifdef _MSC_VER + // snprintf does not exist or is buggy on older MSVC versions, some of + // them being used by MinGW. Use sprintf instead and disable + // corresponding warning. +#pragma warning(push) +#pragma warning(disable : 4996) +#endif +#if _WIN32 + sprintf(print_buffer, "0x%x", msl_options.additional_fixed_sample_mask); +#else + snprintf(print_buffer, sizeof(print_buffer), "0x%x", msl_options.additional_fixed_sample_mask); +#endif +#ifdef _MSC_VER +#pragma warning(pop) +#endif + return print_buffer; +} |