summaryrefslogtreecommitdiffstats
path: root/thirdparty/spirv-cross/spirv_msl.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'thirdparty/spirv-cross/spirv_msl.cpp')
-rw-r--r--thirdparty/spirv-cross/spirv_msl.cpp18810
1 files changed, 18810 insertions, 0 deletions
diff --git a/thirdparty/spirv-cross/spirv_msl.cpp b/thirdparty/spirv-cross/spirv_msl.cpp
new file mode 100644
index 0000000000..383ce688e9
--- /dev/null
+++ b/thirdparty/spirv-cross/spirv_msl.cpp
@@ -0,0 +1,18810 @@
+/*
+ * Copyright 2016-2021 The Brenwill Workshop Ltd.
+ * SPDX-License-Identifier: Apache-2.0 OR MIT
+ *
+ * Licensed under the Apache License, Version 2.0 (the "License");
+ * you may not use this file except in compliance with the License.
+ * You may obtain a copy of the License at
+ *
+ * http://www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an "AS IS" BASIS,
+ * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+
+/*
+ * At your option, you may choose to accept this material under either:
+ * 1. The Apache License, Version 2.0, found at <http://www.apache.org/licenses/LICENSE-2.0>, or
+ * 2. The MIT License, found at <http://opensource.org/licenses/MIT>.
+ */
+
+#include "spirv_msl.hpp"
+#include "GLSL.std.450.h"
+
+#include <algorithm>
+#include <assert.h>
+#include <numeric>
+
+using namespace spv;
+using namespace SPIRV_CROSS_NAMESPACE;
+using namespace std;
+
+static const uint32_t k_unknown_location = ~0u;
+static const uint32_t k_unknown_component = ~0u;
+static const char *force_inline = "static inline __attribute__((always_inline))";
+
+CompilerMSL::CompilerMSL(std::vector<uint32_t> spirv_)
+ : CompilerGLSL(std::move(spirv_))
+{
+}
+
+CompilerMSL::CompilerMSL(const uint32_t *ir_, size_t word_count)
+ : CompilerGLSL(ir_, word_count)
+{
+}
+
+CompilerMSL::CompilerMSL(const ParsedIR &ir_)
+ : CompilerGLSL(ir_)
+{
+}
+
+CompilerMSL::CompilerMSL(ParsedIR &&ir_)
+ : CompilerGLSL(std::move(ir_))
+{
+}
+
+void CompilerMSL::add_msl_shader_input(const MSLShaderInterfaceVariable &si)
+{
+ inputs_by_location[{si.location, si.component}] = si;
+ if (si.builtin != BuiltInMax && !inputs_by_builtin.count(si.builtin))
+ inputs_by_builtin[si.builtin] = si;
+}
+
+void CompilerMSL::add_msl_shader_output(const MSLShaderInterfaceVariable &so)
+{
+ outputs_by_location[{so.location, so.component}] = so;
+ if (so.builtin != BuiltInMax && !outputs_by_builtin.count(so.builtin))
+ outputs_by_builtin[so.builtin] = so;
+}
+
+void CompilerMSL::add_msl_resource_binding(const MSLResourceBinding &binding)
+{
+ StageSetBinding tuple = { binding.stage, binding.desc_set, binding.binding };
+ resource_bindings[tuple] = { binding, false };
+
+ // If we might need to pad argument buffer members to positionally align
+ // arg buffer indexes, also maintain a lookup by argument buffer index.
+ if (msl_options.pad_argument_buffer_resources)
+ {
+ StageSetBinding arg_idx_tuple = { binding.stage, binding.desc_set, k_unknown_component };
+
+#define ADD_ARG_IDX_TO_BINDING_NUM_LOOKUP(rez) \
+ arg_idx_tuple.binding = binding.msl_##rez; \
+ resource_arg_buff_idx_to_binding_number[arg_idx_tuple] = binding.binding
+
+ switch (binding.basetype)
+ {
+ case SPIRType::Void:
+ case SPIRType::Boolean:
+ case SPIRType::SByte:
+ case SPIRType::UByte:
+ case SPIRType::Short:
+ case SPIRType::UShort:
+ case SPIRType::Int:
+ case SPIRType::UInt:
+ case SPIRType::Int64:
+ case SPIRType::UInt64:
+ case SPIRType::AtomicCounter:
+ case SPIRType::Half:
+ case SPIRType::Float:
+ case SPIRType::Double:
+ ADD_ARG_IDX_TO_BINDING_NUM_LOOKUP(buffer);
+ break;
+ case SPIRType::Image:
+ ADD_ARG_IDX_TO_BINDING_NUM_LOOKUP(texture);
+ break;
+ case SPIRType::Sampler:
+ ADD_ARG_IDX_TO_BINDING_NUM_LOOKUP(sampler);
+ break;
+ case SPIRType::SampledImage:
+ ADD_ARG_IDX_TO_BINDING_NUM_LOOKUP(texture);
+ ADD_ARG_IDX_TO_BINDING_NUM_LOOKUP(sampler);
+ break;
+ default:
+ SPIRV_CROSS_THROW("Unexpected argument buffer resource base type. When padding argument buffer elements, "
+ "all descriptor set resources must be supplied with a base type by the app.");
+ }
+#undef ADD_ARG_IDX_TO_BINDING_NUM_LOOKUP
+ }
+}
+
+void CompilerMSL::add_dynamic_buffer(uint32_t desc_set, uint32_t binding, uint32_t index)
+{
+ SetBindingPair pair = { desc_set, binding };
+ buffers_requiring_dynamic_offset[pair] = { index, 0 };
+}
+
+void CompilerMSL::add_inline_uniform_block(uint32_t desc_set, uint32_t binding)
+{
+ SetBindingPair pair = { desc_set, binding };
+ inline_uniform_blocks.insert(pair);
+}
+
+void CompilerMSL::add_discrete_descriptor_set(uint32_t desc_set)
+{
+ if (desc_set < kMaxArgumentBuffers)
+ argument_buffer_discrete_mask |= 1u << desc_set;
+}
+
+void CompilerMSL::set_argument_buffer_device_address_space(uint32_t desc_set, bool device_storage)
+{
+ if (desc_set < kMaxArgumentBuffers)
+ {
+ if (device_storage)
+ argument_buffer_device_storage_mask |= 1u << desc_set;
+ else
+ argument_buffer_device_storage_mask &= ~(1u << desc_set);
+ }
+}
+
+bool CompilerMSL::is_msl_shader_input_used(uint32_t location)
+{
+ // Don't report internal location allocations to app.
+ return location_inputs_in_use.count(location) != 0 &&
+ location_inputs_in_use_fallback.count(location) == 0;
+}
+
+bool CompilerMSL::is_msl_shader_output_used(uint32_t location)
+{
+ // Don't report internal location allocations to app.
+ return location_outputs_in_use.count(location) != 0 &&
+ location_outputs_in_use_fallback.count(location) == 0;
+}
+
+uint32_t CompilerMSL::get_automatic_builtin_input_location(spv::BuiltIn builtin) const
+{
+ auto itr = builtin_to_automatic_input_location.find(builtin);
+ if (itr == builtin_to_automatic_input_location.end())
+ return k_unknown_location;
+ else
+ return itr->second;
+}
+
+uint32_t CompilerMSL::get_automatic_builtin_output_location(spv::BuiltIn builtin) const
+{
+ auto itr = builtin_to_automatic_output_location.find(builtin);
+ if (itr == builtin_to_automatic_output_location.end())
+ return k_unknown_location;
+ else
+ return itr->second;
+}
+
+bool CompilerMSL::is_msl_resource_binding_used(ExecutionModel model, uint32_t desc_set, uint32_t binding) const
+{
+ StageSetBinding tuple = { model, desc_set, binding };
+ auto itr = resource_bindings.find(tuple);
+ return itr != end(resource_bindings) && itr->second.second;
+}
+
+bool CompilerMSL::is_var_runtime_size_array(const SPIRVariable &var) const
+{
+ auto& type = get_variable_data_type(var);
+ return is_runtime_size_array(type) && get_resource_array_size(type, var.self) == 0;
+}
+
+// Returns the size of the array of resources used by the variable with the specified type and id.
+// The size is first retrieved from the type, but in the case of runtime array sizing,
+// the size is retrieved from the resource binding added using add_msl_resource_binding().
+uint32_t CompilerMSL::get_resource_array_size(const SPIRType &type, uint32_t id) const
+{
+ uint32_t array_size = to_array_size_literal(type);
+
+ // If we have argument buffers, we need to honor the ABI by using the correct array size
+ // from the layout. Only use shader declared size if we're not using argument buffers.
+ uint32_t desc_set = get_decoration(id, DecorationDescriptorSet);
+ if (!descriptor_set_is_argument_buffer(desc_set) && array_size)
+ return array_size;
+
+ StageSetBinding tuple = { get_entry_point().model, desc_set,
+ get_decoration(id, DecorationBinding) };
+ auto itr = resource_bindings.find(tuple);
+ return itr != end(resource_bindings) ? itr->second.first.count : array_size;
+}
+
+uint32_t CompilerMSL::get_automatic_msl_resource_binding(uint32_t id) const
+{
+ return get_extended_decoration(id, SPIRVCrossDecorationResourceIndexPrimary);
+}
+
+uint32_t CompilerMSL::get_automatic_msl_resource_binding_secondary(uint32_t id) const
+{
+ return get_extended_decoration(id, SPIRVCrossDecorationResourceIndexSecondary);
+}
+
+uint32_t CompilerMSL::get_automatic_msl_resource_binding_tertiary(uint32_t id) const
+{
+ return get_extended_decoration(id, SPIRVCrossDecorationResourceIndexTertiary);
+}
+
+uint32_t CompilerMSL::get_automatic_msl_resource_binding_quaternary(uint32_t id) const
+{
+ return get_extended_decoration(id, SPIRVCrossDecorationResourceIndexQuaternary);
+}
+
+void CompilerMSL::set_fragment_output_components(uint32_t location, uint32_t components)
+{
+ fragment_output_components[location] = components;
+}
+
+bool CompilerMSL::builtin_translates_to_nonarray(spv::BuiltIn builtin) const
+{
+ return (builtin == BuiltInSampleMask);
+}
+
+void CompilerMSL::build_implicit_builtins()
+{
+ bool need_sample_pos = active_input_builtins.get(BuiltInSamplePosition);
+ bool need_vertex_params = capture_output_to_buffer && get_execution_model() == ExecutionModelVertex &&
+ !msl_options.vertex_for_tessellation;
+ bool need_tesc_params = is_tesc_shader();
+ bool need_tese_params = is_tese_shader() && msl_options.raw_buffer_tese_input;
+ bool need_subgroup_mask =
+ active_input_builtins.get(BuiltInSubgroupEqMask) || active_input_builtins.get(BuiltInSubgroupGeMask) ||
+ active_input_builtins.get(BuiltInSubgroupGtMask) || active_input_builtins.get(BuiltInSubgroupLeMask) ||
+ active_input_builtins.get(BuiltInSubgroupLtMask);
+ bool need_subgroup_ge_mask = !msl_options.is_ios() && (active_input_builtins.get(BuiltInSubgroupGeMask) ||
+ active_input_builtins.get(BuiltInSubgroupGtMask));
+ bool need_multiview = get_execution_model() == ExecutionModelVertex && !msl_options.view_index_from_device_index &&
+ msl_options.multiview_layered_rendering &&
+ (msl_options.multiview || active_input_builtins.get(BuiltInViewIndex));
+ bool need_dispatch_base =
+ msl_options.dispatch_base && get_execution_model() == ExecutionModelGLCompute &&
+ (active_input_builtins.get(BuiltInWorkgroupId) || active_input_builtins.get(BuiltInGlobalInvocationId));
+ bool need_grid_params = get_execution_model() == ExecutionModelVertex && msl_options.vertex_for_tessellation;
+ bool need_vertex_base_params =
+ need_grid_params &&
+ (active_input_builtins.get(BuiltInVertexId) || active_input_builtins.get(BuiltInVertexIndex) ||
+ active_input_builtins.get(BuiltInBaseVertex) || active_input_builtins.get(BuiltInInstanceId) ||
+ active_input_builtins.get(BuiltInInstanceIndex) || active_input_builtins.get(BuiltInBaseInstance));
+ bool need_local_invocation_index = msl_options.emulate_subgroups && active_input_builtins.get(BuiltInSubgroupId);
+ bool need_workgroup_size = msl_options.emulate_subgroups && active_input_builtins.get(BuiltInNumSubgroups);
+ bool force_frag_depth_passthrough =
+ get_execution_model() == ExecutionModelFragment && !uses_explicit_early_fragment_test() && need_subpass_input &&
+ msl_options.enable_frag_depth_builtin && msl_options.input_attachment_is_ds_attachment;
+
+ if (need_subpass_input || need_sample_pos || need_subgroup_mask || need_vertex_params || need_tesc_params ||
+ need_tese_params || need_multiview || need_dispatch_base || need_vertex_base_params || need_grid_params ||
+ needs_sample_id || needs_subgroup_invocation_id || needs_subgroup_size || needs_helper_invocation ||
+ has_additional_fixed_sample_mask() || need_local_invocation_index || need_workgroup_size || force_frag_depth_passthrough)
+ {
+ bool has_frag_coord = false;
+ bool has_sample_id = false;
+ bool has_vertex_idx = false;
+ bool has_base_vertex = false;
+ bool has_instance_idx = false;
+ bool has_base_instance = false;
+ bool has_invocation_id = false;
+ bool has_primitive_id = false;
+ bool has_subgroup_invocation_id = false;
+ bool has_subgroup_size = false;
+ bool has_view_idx = false;
+ bool has_layer = false;
+ bool has_helper_invocation = false;
+ bool has_local_invocation_index = false;
+ bool has_workgroup_size = false;
+ bool has_frag_depth = false;
+ uint32_t workgroup_id_type = 0;
+
+ ir.for_each_typed_id<SPIRVariable>([&](uint32_t, SPIRVariable &var) {
+ if (var.storage != StorageClassInput && var.storage != StorageClassOutput)
+ return;
+ if (!interface_variable_exists_in_entry_point(var.self))
+ return;
+ if (!has_decoration(var.self, DecorationBuiltIn))
+ return;
+
+ BuiltIn builtin = ir.meta[var.self].decoration.builtin_type;
+
+ if (var.storage == StorageClassOutput)
+ {
+ if (has_additional_fixed_sample_mask() && builtin == BuiltInSampleMask)
+ {
+ builtin_sample_mask_id = var.self;
+ mark_implicit_builtin(StorageClassOutput, BuiltInSampleMask, var.self);
+ does_shader_write_sample_mask = true;
+ }
+
+ if (force_frag_depth_passthrough && builtin == BuiltInFragDepth)
+ {
+ builtin_frag_depth_id = var.self;
+ mark_implicit_builtin(StorageClassOutput, BuiltInFragDepth, var.self);
+ has_frag_depth = true;
+ }
+ }
+
+ if (var.storage != StorageClassInput)
+ return;
+
+ // Use Metal's native frame-buffer fetch API for subpass inputs.
+ if (need_subpass_input && (!msl_options.use_framebuffer_fetch_subpasses))
+ {
+ switch (builtin)
+ {
+ case BuiltInFragCoord:
+ mark_implicit_builtin(StorageClassInput, BuiltInFragCoord, var.self);
+ builtin_frag_coord_id = var.self;
+ has_frag_coord = true;
+ break;
+ case BuiltInLayer:
+ if (!msl_options.arrayed_subpass_input || msl_options.multiview)
+ break;
+ mark_implicit_builtin(StorageClassInput, BuiltInLayer, var.self);
+ builtin_layer_id = var.self;
+ has_layer = true;
+ break;
+ case BuiltInViewIndex:
+ if (!msl_options.multiview)
+ break;
+ mark_implicit_builtin(StorageClassInput, BuiltInViewIndex, var.self);
+ builtin_view_idx_id = var.self;
+ has_view_idx = true;
+ break;
+ default:
+ break;
+ }
+ }
+
+ if ((need_sample_pos || needs_sample_id) && builtin == BuiltInSampleId)
+ {
+ builtin_sample_id_id = var.self;
+ mark_implicit_builtin(StorageClassInput, BuiltInSampleId, var.self);
+ has_sample_id = true;
+ }
+
+ if (need_vertex_params)
+ {
+ switch (builtin)
+ {
+ case BuiltInVertexIndex:
+ builtin_vertex_idx_id = var.self;
+ mark_implicit_builtin(StorageClassInput, BuiltInVertexIndex, var.self);
+ has_vertex_idx = true;
+ break;
+ case BuiltInBaseVertex:
+ builtin_base_vertex_id = var.self;
+ mark_implicit_builtin(StorageClassInput, BuiltInBaseVertex, var.self);
+ has_base_vertex = true;
+ break;
+ case BuiltInInstanceIndex:
+ builtin_instance_idx_id = var.self;
+ mark_implicit_builtin(StorageClassInput, BuiltInInstanceIndex, var.self);
+ has_instance_idx = true;
+ break;
+ case BuiltInBaseInstance:
+ builtin_base_instance_id = var.self;
+ mark_implicit_builtin(StorageClassInput, BuiltInBaseInstance, var.self);
+ has_base_instance = true;
+ break;
+ default:
+ break;
+ }
+ }
+
+ if (need_tesc_params && builtin == BuiltInInvocationId)
+ {
+ builtin_invocation_id_id = var.self;
+ mark_implicit_builtin(StorageClassInput, BuiltInInvocationId, var.self);
+ has_invocation_id = true;
+ }
+
+ if ((need_tesc_params || need_tese_params) && builtin == BuiltInPrimitiveId)
+ {
+ builtin_primitive_id_id = var.self;
+ mark_implicit_builtin(StorageClassInput, BuiltInPrimitiveId, var.self);
+ has_primitive_id = true;
+ }
+
+ if (need_tese_params && builtin == BuiltInTessLevelOuter)
+ {
+ tess_level_outer_var_id = var.self;
+ }
+
+ if (need_tese_params && builtin == BuiltInTessLevelInner)
+ {
+ tess_level_inner_var_id = var.self;
+ }
+
+ if ((need_subgroup_mask || needs_subgroup_invocation_id) && builtin == BuiltInSubgroupLocalInvocationId)
+ {
+ builtin_subgroup_invocation_id_id = var.self;
+ mark_implicit_builtin(StorageClassInput, BuiltInSubgroupLocalInvocationId, var.self);
+ has_subgroup_invocation_id = true;
+ }
+
+ if ((need_subgroup_ge_mask || needs_subgroup_size) && builtin == BuiltInSubgroupSize)
+ {
+ builtin_subgroup_size_id = var.self;
+ mark_implicit_builtin(StorageClassInput, BuiltInSubgroupSize, var.self);
+ has_subgroup_size = true;
+ }
+
+ if (need_multiview)
+ {
+ switch (builtin)
+ {
+ case BuiltInInstanceIndex:
+ // The view index here is derived from the instance index.
+ builtin_instance_idx_id = var.self;
+ mark_implicit_builtin(StorageClassInput, BuiltInInstanceIndex, var.self);
+ has_instance_idx = true;
+ break;
+ case BuiltInBaseInstance:
+ // If a non-zero base instance is used, we need to adjust for it when calculating the view index.
+ builtin_base_instance_id = var.self;
+ mark_implicit_builtin(StorageClassInput, BuiltInBaseInstance, var.self);
+ has_base_instance = true;
+ break;
+ case BuiltInViewIndex:
+ builtin_view_idx_id = var.self;
+ mark_implicit_builtin(StorageClassInput, BuiltInViewIndex, var.self);
+ has_view_idx = true;
+ break;
+ default:
+ break;
+ }
+ }
+
+ if (needs_helper_invocation && builtin == BuiltInHelperInvocation)
+ {
+ builtin_helper_invocation_id = var.self;
+ mark_implicit_builtin(StorageClassInput, BuiltInHelperInvocation, var.self);
+ has_helper_invocation = true;
+ }
+
+ if (need_local_invocation_index && builtin == BuiltInLocalInvocationIndex)
+ {
+ builtin_local_invocation_index_id = var.self;
+ mark_implicit_builtin(StorageClassInput, BuiltInLocalInvocationIndex, var.self);
+ has_local_invocation_index = true;
+ }
+
+ if (need_workgroup_size && builtin == BuiltInLocalInvocationId)
+ {
+ builtin_workgroup_size_id = var.self;
+ mark_implicit_builtin(StorageClassInput, BuiltInWorkgroupSize, var.self);
+ has_workgroup_size = true;
+ }
+
+ // The base workgroup needs to have the same type and vector size
+ // as the workgroup or invocation ID, so keep track of the type that
+ // was used.
+ if (need_dispatch_base && workgroup_id_type == 0 &&
+ (builtin == BuiltInWorkgroupId || builtin == BuiltInGlobalInvocationId))
+ workgroup_id_type = var.basetype;
+ });
+
+ // Use Metal's native frame-buffer fetch API for subpass inputs.
+ if ((!has_frag_coord || (msl_options.multiview && !has_view_idx) ||
+ (msl_options.arrayed_subpass_input && !msl_options.multiview && !has_layer)) &&
+ (!msl_options.use_framebuffer_fetch_subpasses) && need_subpass_input)
+ {
+ if (!has_frag_coord)
+ {
+ uint32_t offset = ir.increase_bound_by(3);
+ uint32_t type_id = offset;
+ uint32_t type_ptr_id = offset + 1;
+ uint32_t var_id = offset + 2;
+
+ // Create gl_FragCoord.
+ SPIRType vec4_type { OpTypeVector };
+ vec4_type.basetype = SPIRType::Float;
+ vec4_type.width = 32;
+ vec4_type.vecsize = 4;
+ set<SPIRType>(type_id, vec4_type);
+
+ SPIRType vec4_type_ptr = vec4_type;
+ vec4_type_ptr.op = OpTypePointer;
+ vec4_type_ptr.pointer = true;
+ vec4_type_ptr.pointer_depth++;
+ vec4_type_ptr.parent_type = type_id;
+ vec4_type_ptr.storage = StorageClassInput;
+ auto &ptr_type = set<SPIRType>(type_ptr_id, vec4_type_ptr);
+ ptr_type.self = type_id;
+
+ set<SPIRVariable>(var_id, type_ptr_id, StorageClassInput);
+ set_decoration(var_id, DecorationBuiltIn, BuiltInFragCoord);
+ builtin_frag_coord_id = var_id;
+ mark_implicit_builtin(StorageClassInput, BuiltInFragCoord, var_id);
+ }
+
+ if (!has_layer && msl_options.arrayed_subpass_input && !msl_options.multiview)
+ {
+ uint32_t offset = ir.increase_bound_by(2);
+ uint32_t type_ptr_id = offset;
+ uint32_t var_id = offset + 1;
+
+ // Create gl_Layer.
+ SPIRType uint_type_ptr = get_uint_type();
+ uint_type_ptr.op = OpTypePointer;
+ uint_type_ptr.pointer = true;
+ uint_type_ptr.pointer_depth++;
+ uint_type_ptr.parent_type = get_uint_type_id();
+ uint_type_ptr.storage = StorageClassInput;
+ auto &ptr_type = set<SPIRType>(type_ptr_id, uint_type_ptr);
+ ptr_type.self = get_uint_type_id();
+
+ set<SPIRVariable>(var_id, type_ptr_id, StorageClassInput);
+ set_decoration(var_id, DecorationBuiltIn, BuiltInLayer);
+ builtin_layer_id = var_id;
+ mark_implicit_builtin(StorageClassInput, BuiltInLayer, var_id);
+ }
+
+ if (!has_view_idx && msl_options.multiview)
+ {
+ uint32_t offset = ir.increase_bound_by(2);
+ uint32_t type_ptr_id = offset;
+ uint32_t var_id = offset + 1;
+
+ // Create gl_ViewIndex.
+ SPIRType uint_type_ptr = get_uint_type();
+ uint_type_ptr.op = OpTypePointer;
+ uint_type_ptr.pointer = true;
+ uint_type_ptr.pointer_depth++;
+ uint_type_ptr.parent_type = get_uint_type_id();
+ uint_type_ptr.storage = StorageClassInput;
+ auto &ptr_type = set<SPIRType>(type_ptr_id, uint_type_ptr);
+ ptr_type.self = get_uint_type_id();
+
+ set<SPIRVariable>(var_id, type_ptr_id, StorageClassInput);
+ set_decoration(var_id, DecorationBuiltIn, BuiltInViewIndex);
+ builtin_view_idx_id = var_id;
+ mark_implicit_builtin(StorageClassInput, BuiltInViewIndex, var_id);
+ }
+ }
+
+ if (!has_sample_id && (need_sample_pos || needs_sample_id))
+ {
+ uint32_t offset = ir.increase_bound_by(2);
+ uint32_t type_ptr_id = offset;
+ uint32_t var_id = offset + 1;
+
+ // Create gl_SampleID.
+ SPIRType uint_type_ptr = get_uint_type();
+ uint_type_ptr.op = OpTypePointer;
+ uint_type_ptr.pointer = true;
+ uint_type_ptr.pointer_depth++;
+ uint_type_ptr.parent_type = get_uint_type_id();
+ uint_type_ptr.storage = StorageClassInput;
+ auto &ptr_type = set<SPIRType>(type_ptr_id, uint_type_ptr);
+ ptr_type.self = get_uint_type_id();
+
+ set<SPIRVariable>(var_id, type_ptr_id, StorageClassInput);
+ set_decoration(var_id, DecorationBuiltIn, BuiltInSampleId);
+ builtin_sample_id_id = var_id;
+ mark_implicit_builtin(StorageClassInput, BuiltInSampleId, var_id);
+ }
+
+ if ((need_vertex_params && (!has_vertex_idx || !has_base_vertex || !has_instance_idx || !has_base_instance)) ||
+ (need_multiview && (!has_instance_idx || !has_base_instance || !has_view_idx)))
+ {
+ uint32_t type_ptr_id = ir.increase_bound_by(1);
+
+ SPIRType uint_type_ptr = get_uint_type();
+ uint_type_ptr.op = OpTypePointer;
+ uint_type_ptr.pointer = true;
+ uint_type_ptr.pointer_depth++;
+ uint_type_ptr.parent_type = get_uint_type_id();
+ uint_type_ptr.storage = StorageClassInput;
+ auto &ptr_type = set<SPIRType>(type_ptr_id, uint_type_ptr);
+ ptr_type.self = get_uint_type_id();
+
+ if (need_vertex_params && !has_vertex_idx)
+ {
+ uint32_t var_id = ir.increase_bound_by(1);
+
+ // Create gl_VertexIndex.
+ set<SPIRVariable>(var_id, type_ptr_id, StorageClassInput);
+ set_decoration(var_id, DecorationBuiltIn, BuiltInVertexIndex);
+ builtin_vertex_idx_id = var_id;
+ mark_implicit_builtin(StorageClassInput, BuiltInVertexIndex, var_id);
+ }
+
+ if (need_vertex_params && !has_base_vertex)
+ {
+ uint32_t var_id = ir.increase_bound_by(1);
+
+ // Create gl_BaseVertex.
+ set<SPIRVariable>(var_id, type_ptr_id, StorageClassInput);
+ set_decoration(var_id, DecorationBuiltIn, BuiltInBaseVertex);
+ builtin_base_vertex_id = var_id;
+ mark_implicit_builtin(StorageClassInput, BuiltInBaseVertex, var_id);
+ }
+
+ if (!has_instance_idx) // Needed by both multiview and tessellation
+ {
+ uint32_t var_id = ir.increase_bound_by(1);
+
+ // Create gl_InstanceIndex.
+ set<SPIRVariable>(var_id, type_ptr_id, StorageClassInput);
+ set_decoration(var_id, DecorationBuiltIn, BuiltInInstanceIndex);
+ builtin_instance_idx_id = var_id;
+ mark_implicit_builtin(StorageClassInput, BuiltInInstanceIndex, var_id);
+ }
+
+ if (!has_base_instance) // Needed by both multiview and tessellation
+ {
+ uint32_t var_id = ir.increase_bound_by(1);
+
+ // Create gl_BaseInstance.
+ set<SPIRVariable>(var_id, type_ptr_id, StorageClassInput);
+ set_decoration(var_id, DecorationBuiltIn, BuiltInBaseInstance);
+ builtin_base_instance_id = var_id;
+ mark_implicit_builtin(StorageClassInput, BuiltInBaseInstance, var_id);
+ }
+
+ if (need_multiview)
+ {
+ // Multiview shaders are not allowed to write to gl_Layer, ostensibly because
+ // it is implicitly written from gl_ViewIndex, but we have to do that explicitly.
+ // Note that we can't just abuse gl_ViewIndex for this purpose: it's an input, but
+ // gl_Layer is an output in vertex-pipeline shaders.
+ uint32_t type_ptr_out_id = ir.increase_bound_by(2);
+ SPIRType uint_type_ptr_out = get_uint_type();
+ uint_type_ptr.op = OpTypePointer;
+ uint_type_ptr_out.pointer = true;
+ uint_type_ptr_out.pointer_depth++;
+ uint_type_ptr_out.parent_type = get_uint_type_id();
+ uint_type_ptr_out.storage = StorageClassOutput;
+ auto &ptr_out_type = set<SPIRType>(type_ptr_out_id, uint_type_ptr_out);
+ ptr_out_type.self = get_uint_type_id();
+ uint32_t var_id = type_ptr_out_id + 1;
+ set<SPIRVariable>(var_id, type_ptr_out_id, StorageClassOutput);
+ set_decoration(var_id, DecorationBuiltIn, BuiltInLayer);
+ builtin_layer_id = var_id;
+ mark_implicit_builtin(StorageClassOutput, BuiltInLayer, var_id);
+ }
+
+ if (need_multiview && !has_view_idx)
+ {
+ uint32_t var_id = ir.increase_bound_by(1);
+
+ // Create gl_ViewIndex.
+ set<SPIRVariable>(var_id, type_ptr_id, StorageClassInput);
+ set_decoration(var_id, DecorationBuiltIn, BuiltInViewIndex);
+ builtin_view_idx_id = var_id;
+ mark_implicit_builtin(StorageClassInput, BuiltInViewIndex, var_id);
+ }
+ }
+
+ if ((need_tesc_params && (msl_options.multi_patch_workgroup || !has_invocation_id || !has_primitive_id)) ||
+ (need_tese_params && !has_primitive_id) || need_grid_params)
+ {
+ uint32_t type_ptr_id = ir.increase_bound_by(1);
+
+ SPIRType uint_type_ptr = get_uint_type();
+ uint_type_ptr.op = OpTypePointer;
+ uint_type_ptr.pointer = true;
+ uint_type_ptr.pointer_depth++;
+ uint_type_ptr.parent_type = get_uint_type_id();
+ uint_type_ptr.storage = StorageClassInput;
+ auto &ptr_type = set<SPIRType>(type_ptr_id, uint_type_ptr);
+ ptr_type.self = get_uint_type_id();
+
+ if ((need_tesc_params && msl_options.multi_patch_workgroup) || need_grid_params)
+ {
+ uint32_t var_id = ir.increase_bound_by(1);
+
+ // Create gl_GlobalInvocationID.
+ set<SPIRVariable>(var_id, type_ptr_id, StorageClassInput);
+ set_decoration(var_id, DecorationBuiltIn, BuiltInGlobalInvocationId);
+ builtin_invocation_id_id = var_id;
+ mark_implicit_builtin(StorageClassInput, BuiltInGlobalInvocationId, var_id);
+ }
+ else if (need_tesc_params && !has_invocation_id)
+ {
+ uint32_t var_id = ir.increase_bound_by(1);
+
+ // Create gl_InvocationID.
+ set<SPIRVariable>(var_id, type_ptr_id, StorageClassInput);
+ set_decoration(var_id, DecorationBuiltIn, BuiltInInvocationId);
+ builtin_invocation_id_id = var_id;
+ mark_implicit_builtin(StorageClassInput, BuiltInInvocationId, var_id);
+ }
+
+ if ((need_tesc_params || need_tese_params) && !has_primitive_id)
+ {
+ uint32_t var_id = ir.increase_bound_by(1);
+
+ // Create gl_PrimitiveID.
+ set<SPIRVariable>(var_id, type_ptr_id, StorageClassInput);
+ set_decoration(var_id, DecorationBuiltIn, BuiltInPrimitiveId);
+ builtin_primitive_id_id = var_id;
+ mark_implicit_builtin(StorageClassInput, BuiltInPrimitiveId, var_id);
+ }
+
+ if (need_grid_params)
+ {
+ uint32_t var_id = ir.increase_bound_by(1);
+
+ set<SPIRVariable>(var_id, build_extended_vector_type(get_uint_type_id(), 3), StorageClassInput);
+ set_extended_decoration(var_id, SPIRVCrossDecorationBuiltInStageInputSize);
+ get_entry_point().interface_variables.push_back(var_id);
+ set_name(var_id, "spvStageInputSize");
+ builtin_stage_input_size_id = var_id;
+ }
+ }
+
+ if (!has_subgroup_invocation_id && (need_subgroup_mask || needs_subgroup_invocation_id))
+ {
+ uint32_t offset = ir.increase_bound_by(2);
+ uint32_t type_ptr_id = offset;
+ uint32_t var_id = offset + 1;
+
+ // Create gl_SubgroupInvocationID.
+ SPIRType uint_type_ptr = get_uint_type();
+ uint_type_ptr.op = OpTypePointer;
+ uint_type_ptr.pointer = true;
+ uint_type_ptr.pointer_depth++;
+ uint_type_ptr.parent_type = get_uint_type_id();
+ uint_type_ptr.storage = StorageClassInput;
+ auto &ptr_type = set<SPIRType>(type_ptr_id, uint_type_ptr);
+ ptr_type.self = get_uint_type_id();
+
+ set<SPIRVariable>(var_id, type_ptr_id, StorageClassInput);
+ set_decoration(var_id, DecorationBuiltIn, BuiltInSubgroupLocalInvocationId);
+ builtin_subgroup_invocation_id_id = var_id;
+ mark_implicit_builtin(StorageClassInput, BuiltInSubgroupLocalInvocationId, var_id);
+ }
+
+ if (!has_subgroup_size && (need_subgroup_ge_mask || needs_subgroup_size))
+ {
+ uint32_t offset = ir.increase_bound_by(2);
+ uint32_t type_ptr_id = offset;
+ uint32_t var_id = offset + 1;
+
+ // Create gl_SubgroupSize.
+ SPIRType uint_type_ptr = get_uint_type();
+ uint_type_ptr.op = OpTypePointer;
+ uint_type_ptr.pointer = true;
+ uint_type_ptr.pointer_depth++;
+ uint_type_ptr.parent_type = get_uint_type_id();
+ uint_type_ptr.storage = StorageClassInput;
+ auto &ptr_type = set<SPIRType>(type_ptr_id, uint_type_ptr);
+ ptr_type.self = get_uint_type_id();
+
+ set<SPIRVariable>(var_id, type_ptr_id, StorageClassInput);
+ set_decoration(var_id, DecorationBuiltIn, BuiltInSubgroupSize);
+ builtin_subgroup_size_id = var_id;
+ mark_implicit_builtin(StorageClassInput, BuiltInSubgroupSize, var_id);
+ }
+
+ if (need_dispatch_base || need_vertex_base_params)
+ {
+ if (workgroup_id_type == 0)
+ workgroup_id_type = build_extended_vector_type(get_uint_type_id(), 3);
+ uint32_t var_id;
+ if (msl_options.supports_msl_version(1, 2))
+ {
+ // If we have MSL 1.2, we can (ab)use the [[grid_origin]] builtin
+ // to convey this information and save a buffer slot.
+ uint32_t offset = ir.increase_bound_by(1);
+ var_id = offset;
+
+ set<SPIRVariable>(var_id, workgroup_id_type, StorageClassInput);
+ set_extended_decoration(var_id, SPIRVCrossDecorationBuiltInDispatchBase);
+ get_entry_point().interface_variables.push_back(var_id);
+ }
+ else
+ {
+ // Otherwise, we need to fall back to a good ol' fashioned buffer.
+ uint32_t offset = ir.increase_bound_by(2);
+ var_id = offset;
+ uint32_t type_id = offset + 1;
+
+ SPIRType var_type = get<SPIRType>(workgroup_id_type);
+ var_type.storage = StorageClassUniform;
+ set<SPIRType>(type_id, var_type);
+
+ set<SPIRVariable>(var_id, type_id, StorageClassUniform);
+ // This should never match anything.
+ set_decoration(var_id, DecorationDescriptorSet, ~(5u));
+ set_decoration(var_id, DecorationBinding, msl_options.indirect_params_buffer_index);
+ set_extended_decoration(var_id, SPIRVCrossDecorationResourceIndexPrimary,
+ msl_options.indirect_params_buffer_index);
+ }
+ set_name(var_id, "spvDispatchBase");
+ builtin_dispatch_base_id = var_id;
+ }
+
+ if (has_additional_fixed_sample_mask() && !does_shader_write_sample_mask)
+ {
+ uint32_t offset = ir.increase_bound_by(2);
+ uint32_t var_id = offset + 1;
+
+ // Create gl_SampleMask.
+ SPIRType uint_type_ptr_out = get_uint_type();
+ uint_type_ptr_out.op = OpTypePointer;
+ uint_type_ptr_out.pointer = true;
+ uint_type_ptr_out.pointer_depth++;
+ uint_type_ptr_out.parent_type = get_uint_type_id();
+ uint_type_ptr_out.storage = StorageClassOutput;
+
+ auto &ptr_out_type = set<SPIRType>(offset, uint_type_ptr_out);
+ ptr_out_type.self = get_uint_type_id();
+ set<SPIRVariable>(var_id, offset, StorageClassOutput);
+ set_decoration(var_id, DecorationBuiltIn, BuiltInSampleMask);
+ builtin_sample_mask_id = var_id;
+ mark_implicit_builtin(StorageClassOutput, BuiltInSampleMask, var_id);
+ }
+
+ if (!has_helper_invocation && needs_helper_invocation)
+ {
+ uint32_t offset = ir.increase_bound_by(3);
+ uint32_t type_id = offset;
+ uint32_t type_ptr_id = offset + 1;
+ uint32_t var_id = offset + 2;
+
+ // Create gl_HelperInvocation.
+ SPIRType bool_type { OpTypeBool };
+ bool_type.basetype = SPIRType::Boolean;
+ bool_type.width = 8;
+ bool_type.vecsize = 1;
+ set<SPIRType>(type_id, bool_type);
+
+ SPIRType bool_type_ptr_in = bool_type;
+ bool_type_ptr_in.op = spv::OpTypePointer;
+ bool_type_ptr_in.pointer = true;
+ bool_type_ptr_in.pointer_depth++;
+ bool_type_ptr_in.parent_type = type_id;
+ bool_type_ptr_in.storage = StorageClassInput;
+
+ auto &ptr_in_type = set<SPIRType>(type_ptr_id, bool_type_ptr_in);
+ ptr_in_type.self = type_id;
+ set<SPIRVariable>(var_id, type_ptr_id, StorageClassInput);
+ set_decoration(var_id, DecorationBuiltIn, BuiltInHelperInvocation);
+ builtin_helper_invocation_id = var_id;
+ mark_implicit_builtin(StorageClassInput, BuiltInHelperInvocation, var_id);
+ }
+
+ if (need_local_invocation_index && !has_local_invocation_index)
+ {
+ uint32_t offset = ir.increase_bound_by(2);
+ uint32_t type_ptr_id = offset;
+ uint32_t var_id = offset + 1;
+
+ // Create gl_LocalInvocationIndex.
+ SPIRType uint_type_ptr = get_uint_type();
+ uint_type_ptr.op = OpTypePointer;
+ uint_type_ptr.pointer = true;
+ uint_type_ptr.pointer_depth++;
+ uint_type_ptr.parent_type = get_uint_type_id();
+ uint_type_ptr.storage = StorageClassInput;
+
+ auto &ptr_type = set<SPIRType>(type_ptr_id, uint_type_ptr);
+ ptr_type.self = get_uint_type_id();
+ set<SPIRVariable>(var_id, type_ptr_id, StorageClassInput);
+ set_decoration(var_id, DecorationBuiltIn, BuiltInLocalInvocationIndex);
+ builtin_local_invocation_index_id = var_id;
+ mark_implicit_builtin(StorageClassInput, BuiltInLocalInvocationIndex, var_id);
+ }
+
+ if (need_workgroup_size && !has_workgroup_size)
+ {
+ uint32_t offset = ir.increase_bound_by(2);
+ uint32_t type_ptr_id = offset;
+ uint32_t var_id = offset + 1;
+
+ // Create gl_WorkgroupSize.
+ uint32_t type_id = build_extended_vector_type(get_uint_type_id(), 3);
+ SPIRType uint_type_ptr = get<SPIRType>(type_id);
+ uint_type_ptr.op = OpTypePointer;
+ uint_type_ptr.pointer = true;
+ uint_type_ptr.pointer_depth++;
+ uint_type_ptr.parent_type = type_id;
+ uint_type_ptr.storage = StorageClassInput;
+
+ auto &ptr_type = set<SPIRType>(type_ptr_id, uint_type_ptr);
+ ptr_type.self = type_id;
+ set<SPIRVariable>(var_id, type_ptr_id, StorageClassInput);
+ set_decoration(var_id, DecorationBuiltIn, BuiltInWorkgroupSize);
+ builtin_workgroup_size_id = var_id;
+ mark_implicit_builtin(StorageClassInput, BuiltInWorkgroupSize, var_id);
+ }
+
+ if (!has_frag_depth && force_frag_depth_passthrough)
+ {
+ uint32_t offset = ir.increase_bound_by(3);
+ uint32_t type_id = offset;
+ uint32_t type_ptr_id = offset + 1;
+ uint32_t var_id = offset + 2;
+
+ // Create gl_FragDepth
+ SPIRType float_type { OpTypeFloat };
+ float_type.basetype = SPIRType::Float;
+ float_type.width = 32;
+ float_type.vecsize = 1;
+ set<SPIRType>(type_id, float_type);
+
+ SPIRType float_type_ptr_in = float_type;
+ float_type_ptr_in.op = spv::OpTypePointer;
+ float_type_ptr_in.pointer = true;
+ float_type_ptr_in.pointer_depth++;
+ float_type_ptr_in.parent_type = type_id;
+ float_type_ptr_in.storage = StorageClassOutput;
+
+ auto &ptr_in_type = set<SPIRType>(type_ptr_id, float_type_ptr_in);
+ ptr_in_type.self = type_id;
+ set<SPIRVariable>(var_id, type_ptr_id, StorageClassOutput);
+ set_decoration(var_id, DecorationBuiltIn, BuiltInFragDepth);
+ builtin_frag_depth_id = var_id;
+ mark_implicit_builtin(StorageClassOutput, BuiltInFragDepth, var_id);
+ active_output_builtins.set(BuiltInFragDepth);
+ }
+ }
+
+ if (needs_swizzle_buffer_def)
+ {
+ uint32_t var_id = build_constant_uint_array_pointer();
+ set_name(var_id, "spvSwizzleConstants");
+ // This should never match anything.
+ set_decoration(var_id, DecorationDescriptorSet, kSwizzleBufferBinding);
+ set_decoration(var_id, DecorationBinding, msl_options.swizzle_buffer_index);
+ set_extended_decoration(var_id, SPIRVCrossDecorationResourceIndexPrimary, msl_options.swizzle_buffer_index);
+ swizzle_buffer_id = var_id;
+ }
+
+ if (needs_buffer_size_buffer())
+ {
+ uint32_t var_id = build_constant_uint_array_pointer();
+ set_name(var_id, "spvBufferSizeConstants");
+ // This should never match anything.
+ set_decoration(var_id, DecorationDescriptorSet, kBufferSizeBufferBinding);
+ set_decoration(var_id, DecorationBinding, msl_options.buffer_size_buffer_index);
+ set_extended_decoration(var_id, SPIRVCrossDecorationResourceIndexPrimary, msl_options.buffer_size_buffer_index);
+ buffer_size_buffer_id = var_id;
+ }
+
+ if (needs_view_mask_buffer())
+ {
+ uint32_t var_id = build_constant_uint_array_pointer();
+ set_name(var_id, "spvViewMask");
+ // This should never match anything.
+ set_decoration(var_id, DecorationDescriptorSet, ~(4u));
+ set_decoration(var_id, DecorationBinding, msl_options.view_mask_buffer_index);
+ set_extended_decoration(var_id, SPIRVCrossDecorationResourceIndexPrimary, msl_options.view_mask_buffer_index);
+ view_mask_buffer_id = var_id;
+ }
+
+ if (!buffers_requiring_dynamic_offset.empty())
+ {
+ uint32_t var_id = build_constant_uint_array_pointer();
+ set_name(var_id, "spvDynamicOffsets");
+ // This should never match anything.
+ set_decoration(var_id, DecorationDescriptorSet, ~(5u));
+ set_decoration(var_id, DecorationBinding, msl_options.dynamic_offsets_buffer_index);
+ set_extended_decoration(var_id, SPIRVCrossDecorationResourceIndexPrimary,
+ msl_options.dynamic_offsets_buffer_index);
+ dynamic_offsets_buffer_id = var_id;
+ }
+
+ // If we're returning a struct from a vertex-like entry point, we must return a position attribute.
+ bool need_position = (get_execution_model() == ExecutionModelVertex || is_tese_shader()) &&
+ !capture_output_to_buffer && !get_is_rasterization_disabled() &&
+ !active_output_builtins.get(BuiltInPosition);
+
+ if (need_position)
+ {
+ // If we can get away with returning void from entry point, we don't need to care.
+ // If there is at least one other stage output, we need to return [[position]],
+ // so we need to create one if it doesn't appear in the SPIR-V. Before adding the
+ // implicit variable, check if it actually exists already, but just has not been used
+ // or initialized, and if so, mark it as active, and do not create the implicit variable.
+ bool has_output = false;
+ ir.for_each_typed_id<SPIRVariable>([&](uint32_t, SPIRVariable &var) {
+ if (var.storage == StorageClassOutput && interface_variable_exists_in_entry_point(var.self))
+ {
+ has_output = true;
+
+ // Check if the var is the Position builtin
+ if (has_decoration(var.self, DecorationBuiltIn) && get_decoration(var.self, DecorationBuiltIn) == BuiltInPosition)
+ active_output_builtins.set(BuiltInPosition);
+
+ // If the var is a struct, check if any members is the Position builtin
+ auto &var_type = get_variable_element_type(var);
+ if (var_type.basetype == SPIRType::Struct)
+ {
+ auto mbr_cnt = var_type.member_types.size();
+ for (uint32_t mbr_idx = 0; mbr_idx < mbr_cnt; mbr_idx++)
+ {
+ auto builtin = BuiltInMax;
+ bool is_builtin = is_member_builtin(var_type, mbr_idx, &builtin);
+ if (is_builtin && builtin == BuiltInPosition)
+ active_output_builtins.set(BuiltInPosition);
+ }
+ }
+ }
+ });
+ need_position = has_output && !active_output_builtins.get(BuiltInPosition);
+ }
+
+ if (need_position)
+ {
+ uint32_t offset = ir.increase_bound_by(3);
+ uint32_t type_id = offset;
+ uint32_t type_ptr_id = offset + 1;
+ uint32_t var_id = offset + 2;
+
+ // Create gl_Position.
+ SPIRType vec4_type { OpTypeVector };
+ vec4_type.basetype = SPIRType::Float;
+ vec4_type.width = 32;
+ vec4_type.vecsize = 4;
+ set<SPIRType>(type_id, vec4_type);
+
+ SPIRType vec4_type_ptr = vec4_type;
+ vec4_type_ptr.op = OpTypePointer;
+ vec4_type_ptr.pointer = true;
+ vec4_type_ptr.pointer_depth++;
+ vec4_type_ptr.parent_type = type_id;
+ vec4_type_ptr.storage = StorageClassOutput;
+ auto &ptr_type = set<SPIRType>(type_ptr_id, vec4_type_ptr);
+ ptr_type.self = type_id;
+
+ set<SPIRVariable>(var_id, type_ptr_id, StorageClassOutput);
+ set_decoration(var_id, DecorationBuiltIn, BuiltInPosition);
+ mark_implicit_builtin(StorageClassOutput, BuiltInPosition, var_id);
+ }
+}
+
+// Checks if the specified builtin variable (e.g. gl_InstanceIndex) is marked as active.
+// If not, it marks it as active and forces a recompilation.
+// This might be used when the optimization of inactive builtins was too optimistic (e.g. when "spvOut" is emitted).
+void CompilerMSL::ensure_builtin(spv::StorageClass storage, spv::BuiltIn builtin)
+{
+ Bitset *active_builtins = nullptr;
+ switch (storage)
+ {
+ case StorageClassInput:
+ active_builtins = &active_input_builtins;
+ break;
+
+ case StorageClassOutput:
+ active_builtins = &active_output_builtins;
+ break;
+
+ default:
+ break;
+ }
+
+ // At this point, the specified builtin variable must have already been declared in the entry point.
+ // If not, mark as active and force recompile.
+ if (active_builtins != nullptr && !active_builtins->get(builtin))
+ {
+ active_builtins->set(builtin);
+ force_recompile();
+ }
+}
+
+void CompilerMSL::mark_implicit_builtin(StorageClass storage, BuiltIn builtin, uint32_t id)
+{
+ Bitset *active_builtins = nullptr;
+ switch (storage)
+ {
+ case StorageClassInput:
+ active_builtins = &active_input_builtins;
+ break;
+
+ case StorageClassOutput:
+ active_builtins = &active_output_builtins;
+ break;
+
+ default:
+ break;
+ }
+
+ assert(active_builtins != nullptr);
+ active_builtins->set(builtin);
+
+ auto &var = get_entry_point().interface_variables;
+ if (find(begin(var), end(var), VariableID(id)) == end(var))
+ var.push_back(id);
+}
+
+uint32_t CompilerMSL::build_constant_uint_array_pointer()
+{
+ uint32_t offset = ir.increase_bound_by(3);
+ uint32_t type_ptr_id = offset;
+ uint32_t type_ptr_ptr_id = offset + 1;
+ uint32_t var_id = offset + 2;
+
+ // Create a buffer to hold extra data, including the swizzle constants.
+ SPIRType uint_type_pointer = get_uint_type();
+ uint_type_pointer.op = OpTypePointer;
+ uint_type_pointer.pointer = true;
+ uint_type_pointer.pointer_depth++;
+ uint_type_pointer.parent_type = get_uint_type_id();
+ uint_type_pointer.storage = StorageClassUniform;
+ set<SPIRType>(type_ptr_id, uint_type_pointer);
+ set_decoration(type_ptr_id, DecorationArrayStride, 4);
+
+ SPIRType uint_type_pointer2 = uint_type_pointer;
+ uint_type_pointer2.pointer_depth++;
+ uint_type_pointer2.parent_type = type_ptr_id;
+ set<SPIRType>(type_ptr_ptr_id, uint_type_pointer2);
+
+ set<SPIRVariable>(var_id, type_ptr_ptr_id, StorageClassUniformConstant);
+ return var_id;
+}
+
+static string create_sampler_address(const char *prefix, MSLSamplerAddress addr)
+{
+ switch (addr)
+ {
+ case MSL_SAMPLER_ADDRESS_CLAMP_TO_EDGE:
+ return join(prefix, "address::clamp_to_edge");
+ case MSL_SAMPLER_ADDRESS_CLAMP_TO_ZERO:
+ return join(prefix, "address::clamp_to_zero");
+ case MSL_SAMPLER_ADDRESS_CLAMP_TO_BORDER:
+ return join(prefix, "address::clamp_to_border");
+ case MSL_SAMPLER_ADDRESS_REPEAT:
+ return join(prefix, "address::repeat");
+ case MSL_SAMPLER_ADDRESS_MIRRORED_REPEAT:
+ return join(prefix, "address::mirrored_repeat");
+ default:
+ SPIRV_CROSS_THROW("Invalid sampler addressing mode.");
+ }
+}
+
+SPIRType &CompilerMSL::get_stage_in_struct_type()
+{
+ auto &si_var = get<SPIRVariable>(stage_in_var_id);
+ return get_variable_data_type(si_var);
+}
+
+SPIRType &CompilerMSL::get_stage_out_struct_type()
+{
+ auto &so_var = get<SPIRVariable>(stage_out_var_id);
+ return get_variable_data_type(so_var);
+}
+
+SPIRType &CompilerMSL::get_patch_stage_in_struct_type()
+{
+ auto &si_var = get<SPIRVariable>(patch_stage_in_var_id);
+ return get_variable_data_type(si_var);
+}
+
+SPIRType &CompilerMSL::get_patch_stage_out_struct_type()
+{
+ auto &so_var = get<SPIRVariable>(patch_stage_out_var_id);
+ return get_variable_data_type(so_var);
+}
+
+std::string CompilerMSL::get_tess_factor_struct_name()
+{
+ if (is_tessellating_triangles())
+ return "MTLTriangleTessellationFactorsHalf";
+ return "MTLQuadTessellationFactorsHalf";
+}
+
+SPIRType &CompilerMSL::get_uint_type()
+{
+ return get<SPIRType>(get_uint_type_id());
+}
+
+uint32_t CompilerMSL::get_uint_type_id()
+{
+ if (uint_type_id != 0)
+ return uint_type_id;
+
+ uint_type_id = ir.increase_bound_by(1);
+
+ SPIRType type { OpTypeInt };
+ type.basetype = SPIRType::UInt;
+ type.width = 32;
+ set<SPIRType>(uint_type_id, type);
+ return uint_type_id;
+}
+
+void CompilerMSL::emit_entry_point_declarations()
+{
+ // FIXME: Get test coverage here ...
+ // Constant arrays of non-primitive types (i.e. matrices) won't link properly into Metal libraries
+ declare_complex_constant_arrays();
+
+ // Emit constexpr samplers here.
+ for (auto &samp : constexpr_samplers_by_id)
+ {
+ auto &var = get<SPIRVariable>(samp.first);
+ auto &type = get<SPIRType>(var.basetype);
+ if (type.basetype == SPIRType::Sampler)
+ add_resource_name(samp.first);
+
+ SmallVector<string> args;
+ auto &s = samp.second;
+
+ if (s.coord != MSL_SAMPLER_COORD_NORMALIZED)
+ args.push_back("coord::pixel");
+
+ if (s.min_filter == s.mag_filter)
+ {
+ if (s.min_filter != MSL_SAMPLER_FILTER_NEAREST)
+ args.push_back("filter::linear");
+ }
+ else
+ {
+ if (s.min_filter != MSL_SAMPLER_FILTER_NEAREST)
+ args.push_back("min_filter::linear");
+ if (s.mag_filter != MSL_SAMPLER_FILTER_NEAREST)
+ args.push_back("mag_filter::linear");
+ }
+
+ switch (s.mip_filter)
+ {
+ case MSL_SAMPLER_MIP_FILTER_NONE:
+ // Default
+ break;
+ case MSL_SAMPLER_MIP_FILTER_NEAREST:
+ args.push_back("mip_filter::nearest");
+ break;
+ case MSL_SAMPLER_MIP_FILTER_LINEAR:
+ args.push_back("mip_filter::linear");
+ break;
+ default:
+ SPIRV_CROSS_THROW("Invalid mip filter.");
+ }
+
+ if (s.s_address == s.t_address && s.s_address == s.r_address)
+ {
+ if (s.s_address != MSL_SAMPLER_ADDRESS_CLAMP_TO_EDGE)
+ args.push_back(create_sampler_address("", s.s_address));
+ }
+ else
+ {
+ if (s.s_address != MSL_SAMPLER_ADDRESS_CLAMP_TO_EDGE)
+ args.push_back(create_sampler_address("s_", s.s_address));
+ if (s.t_address != MSL_SAMPLER_ADDRESS_CLAMP_TO_EDGE)
+ args.push_back(create_sampler_address("t_", s.t_address));
+ if (s.r_address != MSL_SAMPLER_ADDRESS_CLAMP_TO_EDGE)
+ args.push_back(create_sampler_address("r_", s.r_address));
+ }
+
+ if (s.compare_enable)
+ {
+ switch (s.compare_func)
+ {
+ case MSL_SAMPLER_COMPARE_FUNC_ALWAYS:
+ args.push_back("compare_func::always");
+ break;
+ case MSL_SAMPLER_COMPARE_FUNC_NEVER:
+ args.push_back("compare_func::never");
+ break;
+ case MSL_SAMPLER_COMPARE_FUNC_EQUAL:
+ args.push_back("compare_func::equal");
+ break;
+ case MSL_SAMPLER_COMPARE_FUNC_NOT_EQUAL:
+ args.push_back("compare_func::not_equal");
+ break;
+ case MSL_SAMPLER_COMPARE_FUNC_LESS:
+ args.push_back("compare_func::less");
+ break;
+ case MSL_SAMPLER_COMPARE_FUNC_LESS_EQUAL:
+ args.push_back("compare_func::less_equal");
+ break;
+ case MSL_SAMPLER_COMPARE_FUNC_GREATER:
+ args.push_back("compare_func::greater");
+ break;
+ case MSL_SAMPLER_COMPARE_FUNC_GREATER_EQUAL:
+ args.push_back("compare_func::greater_equal");
+ break;
+ default:
+ SPIRV_CROSS_THROW("Invalid sampler compare function.");
+ }
+ }
+
+ if (s.s_address == MSL_SAMPLER_ADDRESS_CLAMP_TO_BORDER || s.t_address == MSL_SAMPLER_ADDRESS_CLAMP_TO_BORDER ||
+ s.r_address == MSL_SAMPLER_ADDRESS_CLAMP_TO_BORDER)
+ {
+ switch (s.border_color)
+ {
+ case MSL_SAMPLER_BORDER_COLOR_OPAQUE_BLACK:
+ args.push_back("border_color::opaque_black");
+ break;
+ case MSL_SAMPLER_BORDER_COLOR_OPAQUE_WHITE:
+ args.push_back("border_color::opaque_white");
+ break;
+ case MSL_SAMPLER_BORDER_COLOR_TRANSPARENT_BLACK:
+ args.push_back("border_color::transparent_black");
+ break;
+ default:
+ SPIRV_CROSS_THROW("Invalid sampler border color.");
+ }
+ }
+
+ if (s.anisotropy_enable)
+ args.push_back(join("max_anisotropy(", s.max_anisotropy, ")"));
+ if (s.lod_clamp_enable)
+ {
+ args.push_back(join("lod_clamp(", format_float(s.lod_clamp_min), ", ", format_float(s.lod_clamp_max), ")"));
+ }
+
+ // If we would emit no arguments, then omit the parentheses entirely. Otherwise,
+ // we'll wind up with a "most vexing parse" situation.
+ if (args.empty())
+ statement("constexpr sampler ",
+ type.basetype == SPIRType::SampledImage ? to_sampler_expression(samp.first) : to_name(samp.first),
+ ";");
+ else
+ statement("constexpr sampler ",
+ type.basetype == SPIRType::SampledImage ? to_sampler_expression(samp.first) : to_name(samp.first),
+ "(", merge(args), ");");
+ }
+
+ // Emit dynamic buffers here.
+ for (auto &dynamic_buffer : buffers_requiring_dynamic_offset)
+ {
+ if (!dynamic_buffer.second.second)
+ {
+ // Could happen if no buffer was used at requested binding point.
+ continue;
+ }
+
+ const auto &var = get<SPIRVariable>(dynamic_buffer.second.second);
+ uint32_t var_id = var.self;
+ const auto &type = get_variable_data_type(var);
+ string name = to_name(var.self);
+ uint32_t desc_set = get_decoration(var.self, DecorationDescriptorSet);
+ uint32_t arg_id = argument_buffer_ids[desc_set];
+ uint32_t base_index = dynamic_buffer.second.first;
+
+ if (is_array(type))
+ {
+ is_using_builtin_array = true;
+ statement(get_argument_address_space(var), " ", type_to_glsl(type), "* ", to_restrict(var_id, true), name,
+ type_to_array_glsl(type, var_id), " =");
+
+ uint32_t array_size = get_resource_array_size(type, var_id);
+ if (array_size == 0)
+ SPIRV_CROSS_THROW("Size of runtime array with dynamic offset could not be determined from resource bindings.");
+
+ begin_scope();
+
+ for (uint32_t i = 0; i < array_size; i++)
+ {
+ statement("(", get_argument_address_space(var), " ", type_to_glsl(type), "* ",
+ to_restrict(var_id, false), ")((", get_argument_address_space(var), " char* ",
+ to_restrict(var_id, false), ")", to_name(arg_id), ".", ensure_valid_name(name, "m"),
+ "[", i, "]", " + ", to_name(dynamic_offsets_buffer_id), "[", base_index + i, "]),");
+ }
+
+ end_scope_decl();
+ statement_no_indent("");
+ is_using_builtin_array = false;
+ }
+ else
+ {
+ statement(get_argument_address_space(var), " auto& ", to_restrict(var_id, true), name, " = *(",
+ get_argument_address_space(var), " ", type_to_glsl(type), "* ", to_restrict(var_id, false), ")((",
+ get_argument_address_space(var), " char* ", to_restrict(var_id, false), ")", to_name(arg_id), ".",
+ ensure_valid_name(name, "m"), " + ", to_name(dynamic_offsets_buffer_id), "[", base_index, "]);");
+ }
+ }
+
+ bool has_runtime_array_declaration = false;
+ for (SPIRVariable *arg : entry_point_bindings)
+ {
+ const auto &var = *arg;
+ const auto &type = get_variable_data_type(var);
+ const auto &buffer_type = get_variable_element_type(var);
+ const string name = to_name(var.self);
+
+ if (is_var_runtime_size_array(var))
+ {
+ if (msl_options.argument_buffers_tier < Options::ArgumentBuffersTier::Tier2)
+ {
+ SPIRV_CROSS_THROW("Unsized array of descriptors requires argument buffer tier 2");
+ }
+
+ string resource_name;
+ if (descriptor_set_is_argument_buffer(get_decoration(var.self, DecorationDescriptorSet)))
+ resource_name = ir.meta[var.self].decoration.qualified_alias;
+ else
+ resource_name = name + "_";
+
+ switch (type.basetype)
+ {
+ case SPIRType::Image:
+ case SPIRType::Sampler:
+ case SPIRType::AccelerationStructure:
+ statement("spvDescriptorArray<", type_to_glsl(buffer_type, var.self), "> ", name, " {", resource_name, "};");
+ break;
+ case SPIRType::SampledImage:
+ statement("spvDescriptorArray<", type_to_glsl(buffer_type, var.self), "> ", name, " {", resource_name, "};");
+ // Unsupported with argument buffer for now.
+ statement("spvDescriptorArray<sampler> ", name, "Smplr {", name, "Smplr_};");
+ break;
+ case SPIRType::Struct:
+ statement("spvDescriptorArray<", get_argument_address_space(var), " ", type_to_glsl(buffer_type), "*> ",
+ name, " {", resource_name, "};");
+ break;
+ default:
+ break;
+ }
+ has_runtime_array_declaration = true;
+ }
+ else if (!type.array.empty() && type.basetype == SPIRType::Struct)
+ {
+ // Emit only buffer arrays here.
+ statement(get_argument_address_space(var), " ", type_to_glsl(buffer_type), "* ",
+ to_restrict(var.self, true), name, "[] =");
+ begin_scope();
+ uint32_t array_size = get_resource_array_size(type, var.self);
+ for (uint32_t i = 0; i < array_size; ++i)
+ statement(name, "_", i, ",");
+ end_scope_decl();
+ statement_no_indent("");
+ }
+ }
+
+ if (has_runtime_array_declaration)
+ statement_no_indent("");
+
+ // Emit buffer aliases here.
+ for (auto &var_id : buffer_aliases_discrete)
+ {
+ const auto &var = get<SPIRVariable>(var_id);
+ const auto &type = get_variable_data_type(var);
+ auto addr_space = get_argument_address_space(var);
+ auto name = to_name(var_id);
+
+ uint32_t desc_set = get_decoration(var_id, DecorationDescriptorSet);
+ uint32_t desc_binding = get_decoration(var_id, DecorationBinding);
+ auto alias_name = join("spvBufferAliasSet", desc_set, "Binding", desc_binding);
+
+ statement(addr_space, " auto& ", to_restrict(var_id, true),
+ name,
+ " = *(", addr_space, " ", type_to_glsl(type), "*)", alias_name, ";");
+ }
+ // Discrete descriptors are processed in entry point emission every compiler iteration.
+ buffer_aliases_discrete.clear();
+
+ for (auto &var_pair : buffer_aliases_argument)
+ {
+ uint32_t var_id = var_pair.first;
+ uint32_t alias_id = var_pair.second;
+
+ const auto &var = get<SPIRVariable>(var_id);
+ const auto &type = get_variable_data_type(var);
+ auto addr_space = get_argument_address_space(var);
+
+ if (type.array.empty())
+ {
+ statement(addr_space, " auto& ", to_restrict(var_id, true), to_name(var_id), " = (", addr_space, " ",
+ type_to_glsl(type), "&)", ir.meta[alias_id].decoration.qualified_alias, ";");
+ }
+ else
+ {
+ const char *desc_addr_space = descriptor_address_space(var_id, var.storage, "thread");
+
+ // Esoteric type cast. Reference to array of pointers.
+ // Auto here defers to UBO or SSBO. The address space of the reference needs to refer to the
+ // address space of the argument buffer itself, which is usually constant, but can be const device for
+ // large argument buffers.
+ is_using_builtin_array = true;
+ statement(desc_addr_space, " auto& ", to_restrict(var_id, true), to_name(var_id), " = (", addr_space, " ",
+ type_to_glsl(type), "* ", desc_addr_space, " (&)",
+ type_to_array_glsl(type, var_id), ")", ir.meta[alias_id].decoration.qualified_alias, ";");
+ is_using_builtin_array = false;
+ }
+ }
+
+ // Emit disabled fragment outputs.
+ std::sort(disabled_frag_outputs.begin(), disabled_frag_outputs.end());
+ for (uint32_t var_id : disabled_frag_outputs)
+ {
+ auto &var = get<SPIRVariable>(var_id);
+ add_local_variable_name(var_id);
+ statement(CompilerGLSL::variable_decl(var), ";");
+ var.deferred_declaration = false;
+ }
+}
+
+string CompilerMSL::compile()
+{
+ replace_illegal_entry_point_names();
+ ir.fixup_reserved_names();
+
+ // Do not deal with GLES-isms like precision, older extensions and such.
+ options.vulkan_semantics = true;
+ options.es = false;
+ options.version = 450;
+ backend.null_pointer_literal = "nullptr";
+ backend.float_literal_suffix = false;
+ backend.uint32_t_literal_suffix = true;
+ backend.int16_t_literal_suffix = "";
+ backend.uint16_t_literal_suffix = "";
+ backend.basic_int_type = "int";
+ backend.basic_uint_type = "uint";
+ backend.basic_int8_type = "char";
+ backend.basic_uint8_type = "uchar";
+ backend.basic_int16_type = "short";
+ backend.basic_uint16_type = "ushort";
+ backend.boolean_mix_function = "select";
+ backend.swizzle_is_function = false;
+ backend.shared_is_implied = false;
+ backend.use_initializer_list = true;
+ backend.use_typed_initializer_list = true;
+ backend.native_row_major_matrix = false;
+ backend.unsized_array_supported = false;
+ backend.can_declare_arrays_inline = false;
+ backend.allow_truncated_access_chain = true;
+ backend.comparison_image_samples_scalar = true;
+ backend.native_pointers = true;
+ backend.nonuniform_qualifier = "";
+ backend.support_small_type_sampling_result = true;
+ backend.supports_empty_struct = true;
+ backend.support_64bit_switch = true;
+ backend.boolean_in_struct_remapped_type = SPIRType::Short;
+
+ // Allow Metal to use the array<T> template unless we force it off.
+ backend.can_return_array = !msl_options.force_native_arrays;
+ backend.array_is_value_type = !msl_options.force_native_arrays;
+ // Arrays which are part of buffer objects are never considered to be value types (just plain C-style).
+ backend.array_is_value_type_in_buffer_blocks = false;
+ backend.support_pointer_to_pointer = true;
+ backend.implicit_c_integer_promotion_rules = true;
+
+ capture_output_to_buffer = msl_options.capture_output_to_buffer;
+ is_rasterization_disabled = msl_options.disable_rasterization || capture_output_to_buffer;
+
+ // Initialize array here rather than constructor, MSVC 2013 workaround.
+ for (auto &id : next_metal_resource_ids)
+ id = 0;
+
+ fixup_anonymous_struct_names();
+ fixup_type_alias();
+ replace_illegal_names();
+ sync_entry_point_aliases_and_names();
+
+ build_function_control_flow_graphs_and_analyze();
+ update_active_builtins();
+ analyze_image_and_sampler_usage();
+ analyze_sampled_image_usage();
+ analyze_interlocked_resource_usage();
+ preprocess_op_codes();
+ build_implicit_builtins();
+
+ if (needs_manual_helper_invocation_updates() &&
+ (active_input_builtins.get(BuiltInHelperInvocation) || needs_helper_invocation))
+ {
+ string builtin_helper_invocation = builtin_to_glsl(BuiltInHelperInvocation, StorageClassInput);
+ string discard_expr = join(builtin_helper_invocation, " = true, discard_fragment()");
+ if (msl_options.force_fragment_with_side_effects_execution)
+ discard_expr = join("!", builtin_helper_invocation, " ? (", discard_expr, ") : (void)0");
+ backend.discard_literal = discard_expr;
+ backend.demote_literal = discard_expr;
+ }
+ else
+ {
+ backend.discard_literal = "discard_fragment()";
+ backend.demote_literal = "discard_fragment()";
+ }
+
+ fixup_image_load_store_access();
+
+ set_enabled_interface_variables(get_active_interface_variables());
+ if (msl_options.force_active_argument_buffer_resources)
+ activate_argument_buffer_resources();
+
+ if (swizzle_buffer_id)
+ add_active_interface_variable(swizzle_buffer_id);
+ if (buffer_size_buffer_id)
+ add_active_interface_variable(buffer_size_buffer_id);
+ if (view_mask_buffer_id)
+ add_active_interface_variable(view_mask_buffer_id);
+ if (dynamic_offsets_buffer_id)
+ add_active_interface_variable(dynamic_offsets_buffer_id);
+ if (builtin_layer_id)
+ add_active_interface_variable(builtin_layer_id);
+ if (builtin_dispatch_base_id && !msl_options.supports_msl_version(1, 2))
+ add_active_interface_variable(builtin_dispatch_base_id);
+ if (builtin_sample_mask_id)
+ add_active_interface_variable(builtin_sample_mask_id);
+ if (builtin_frag_depth_id)
+ add_active_interface_variable(builtin_frag_depth_id);
+
+ // Create structs to hold input, output and uniform variables.
+ // Do output first to ensure out. is declared at top of entry function.
+ qual_pos_var_name = "";
+ stage_out_var_id = add_interface_block(StorageClassOutput);
+ patch_stage_out_var_id = add_interface_block(StorageClassOutput, true);
+ stage_in_var_id = add_interface_block(StorageClassInput);
+ if (is_tese_shader())
+ patch_stage_in_var_id = add_interface_block(StorageClassInput, true);
+
+ if (is_tesc_shader())
+ stage_out_ptr_var_id = add_interface_block_pointer(stage_out_var_id, StorageClassOutput);
+ if (is_tessellation_shader())
+ stage_in_ptr_var_id = add_interface_block_pointer(stage_in_var_id, StorageClassInput);
+
+ // Metal vertex functions that define no output must disable rasterization and return void.
+ if (!stage_out_var_id)
+ is_rasterization_disabled = true;
+
+ // Convert the use of global variables to recursively-passed function parameters
+ localize_global_variables();
+ extract_global_variables_from_functions();
+
+ // Mark any non-stage-in structs to be tightly packed.
+ mark_packable_structs();
+ reorder_type_alias();
+
+ // Add fixup hooks required by shader inputs and outputs. This needs to happen before
+ // the loop, so the hooks aren't added multiple times.
+ fix_up_shader_inputs_outputs();
+
+ // If we are using argument buffers, we create argument buffer structures for them here.
+ // These buffers will be used in the entry point, not the individual resources.
+ if (msl_options.argument_buffers)
+ {
+ if (!msl_options.supports_msl_version(2, 0))
+ SPIRV_CROSS_THROW("Argument buffers can only be used with MSL 2.0 and up.");
+ analyze_argument_buffers();
+ }
+
+ uint32_t pass_count = 0;
+ do
+ {
+ reset(pass_count);
+
+ // Start bindings at zero.
+ next_metal_resource_index_buffer = 0;
+ next_metal_resource_index_texture = 0;
+ next_metal_resource_index_sampler = 0;
+ for (auto &id : next_metal_resource_ids)
+ id = 0;
+
+ // Move constructor for this type is broken on GCC 4.9 ...
+ buffer.reset();
+
+ emit_header();
+ emit_custom_templates();
+ emit_custom_functions();
+ emit_specialization_constants_and_structs();
+ emit_resources();
+ emit_function(get<SPIRFunction>(ir.default_entry_point), Bitset());
+
+ pass_count++;
+ } while (is_forcing_recompilation());
+
+ return buffer.str();
+}
+
+// Register the need to output any custom functions.
+void CompilerMSL::preprocess_op_codes()
+{
+ OpCodePreprocessor preproc(*this);
+ traverse_all_reachable_opcodes(get<SPIRFunction>(ir.default_entry_point), preproc);
+
+ suppress_missing_prototypes = preproc.suppress_missing_prototypes;
+
+ if (preproc.uses_atomics)
+ {
+ add_header_line("#include <metal_atomic>");
+ add_pragma_line("#pragma clang diagnostic ignored \"-Wunused-variable\"");
+ }
+
+ // Before MSL 2.1 (2.2 for textures), Metal vertex functions that write to
+ // resources must disable rasterization and return void.
+ if ((preproc.uses_buffer_write && !msl_options.supports_msl_version(2, 1)) ||
+ (preproc.uses_image_write && !msl_options.supports_msl_version(2, 2)))
+ is_rasterization_disabled = true;
+
+ // Tessellation control shaders are run as compute functions in Metal, and so
+ // must capture their output to a buffer.
+ if (is_tesc_shader() || (get_execution_model() == ExecutionModelVertex && msl_options.vertex_for_tessellation))
+ {
+ is_rasterization_disabled = true;
+ capture_output_to_buffer = true;
+ }
+
+ if (preproc.needs_subgroup_invocation_id)
+ needs_subgroup_invocation_id = true;
+ if (preproc.needs_subgroup_size)
+ needs_subgroup_size = true;
+ // build_implicit_builtins() hasn't run yet, and in fact, this needs to execute
+ // before then so that gl_SampleID will get added; so we also need to check if
+ // that function would add gl_FragCoord.
+ if (preproc.needs_sample_id || msl_options.force_sample_rate_shading ||
+ (is_sample_rate() && (active_input_builtins.get(BuiltInFragCoord) ||
+ (need_subpass_input_ms && !msl_options.use_framebuffer_fetch_subpasses))))
+ needs_sample_id = true;
+ if (preproc.needs_helper_invocation)
+ needs_helper_invocation = true;
+
+ // OpKill is removed by the parser, so we need to identify those by inspecting
+ // blocks.
+ ir.for_each_typed_id<SPIRBlock>([&preproc](uint32_t, SPIRBlock &block) {
+ if (block.terminator == SPIRBlock::Kill)
+ preproc.uses_discard = true;
+ });
+
+ // Fragment shaders that both write to storage resources and discard fragments
+ // need checks on the writes, to work around Metal allowing these writes despite
+ // the fragment being dead. We also require to force Metal to execute fragment
+ // shaders instead of being prematurely discarded.
+ if (preproc.uses_discard && (preproc.uses_buffer_write || preproc.uses_image_write))
+ {
+ bool should_enable = (msl_options.check_discarded_frag_stores || msl_options.force_fragment_with_side_effects_execution);
+ frag_shader_needs_discard_checks |= msl_options.check_discarded_frag_stores;
+ needs_helper_invocation |= should_enable;
+ // Fragment discard store checks imply manual HelperInvocation updates.
+ msl_options.manual_helper_invocation_updates |= should_enable;
+ }
+
+ if (is_intersection_query())
+ {
+ add_header_line("#if __METAL_VERSION__ >= 230");
+ add_header_line("#include <metal_raytracing>");
+ add_header_line("using namespace metal::raytracing;");
+ add_header_line("#endif");
+ }
+}
+
+// Move the Private and Workgroup global variables to the entry function.
+// Non-constant variables cannot have global scope in Metal.
+void CompilerMSL::localize_global_variables()
+{
+ auto &entry_func = get<SPIRFunction>(ir.default_entry_point);
+ auto iter = global_variables.begin();
+ while (iter != global_variables.end())
+ {
+ uint32_t v_id = *iter;
+ auto &var = get<SPIRVariable>(v_id);
+ if (var.storage == StorageClassPrivate || var.storage == StorageClassWorkgroup)
+ {
+ if (!variable_is_lut(var))
+ entry_func.add_local_variable(v_id);
+ iter = global_variables.erase(iter);
+ }
+ else
+ iter++;
+ }
+}
+
+// For any global variable accessed directly by a function,
+// extract that variable and add it as an argument to that function.
+void CompilerMSL::extract_global_variables_from_functions()
+{
+ // Uniforms
+ unordered_set<uint32_t> global_var_ids;
+ ir.for_each_typed_id<SPIRVariable>([&](uint32_t, SPIRVariable &var) {
+ // Some builtins resolve directly to a function call which does not need any declared variables.
+ // Skip these.
+ if (var.storage == StorageClassInput && has_decoration(var.self, DecorationBuiltIn))
+ {
+ auto bi_type = BuiltIn(get_decoration(var.self, DecorationBuiltIn));
+ if (bi_type == BuiltInHelperInvocation && !needs_manual_helper_invocation_updates())
+ return;
+ if (bi_type == BuiltInHelperInvocation && needs_manual_helper_invocation_updates())
+ {
+ if (msl_options.is_ios() && !msl_options.supports_msl_version(2, 3))
+ SPIRV_CROSS_THROW("simd_is_helper_thread() requires version 2.3 on iOS.");
+ else if (msl_options.is_macos() && !msl_options.supports_msl_version(2, 1))
+ SPIRV_CROSS_THROW("simd_is_helper_thread() requires version 2.1 on macOS.");
+ // Make sure this is declared and initialized.
+ // Force this to have the proper name.
+ set_name(var.self, builtin_to_glsl(BuiltInHelperInvocation, StorageClassInput));
+ auto &entry_func = this->get<SPIRFunction>(ir.default_entry_point);
+ entry_func.add_local_variable(var.self);
+ vars_needing_early_declaration.push_back(var.self);
+ entry_func.fixup_hooks_in.push_back([this, &var]()
+ { statement(to_name(var.self), " = simd_is_helper_thread();"); });
+ }
+ }
+
+ if (var.storage == StorageClassInput || var.storage == StorageClassOutput ||
+ var.storage == StorageClassUniform || var.storage == StorageClassUniformConstant ||
+ var.storage == StorageClassPushConstant || var.storage == StorageClassStorageBuffer)
+ {
+ global_var_ids.insert(var.self);
+ }
+ });
+
+ // Local vars that are declared in the main function and accessed directly by a function
+ auto &entry_func = get<SPIRFunction>(ir.default_entry_point);
+ for (auto &var : entry_func.local_variables)
+ if (get<SPIRVariable>(var).storage != StorageClassFunction)
+ global_var_ids.insert(var);
+
+ std::set<uint32_t> added_arg_ids;
+ unordered_set<uint32_t> processed_func_ids;
+ extract_global_variables_from_function(ir.default_entry_point, added_arg_ids, global_var_ids, processed_func_ids);
+}
+
+// MSL does not support the use of global variables for shader input content.
+// For any global variable accessed directly by the specified function, extract that variable,
+// add it as an argument to that function, and the arg to the added_arg_ids collection.
+void CompilerMSL::extract_global_variables_from_function(uint32_t func_id, std::set<uint32_t> &added_arg_ids,
+ unordered_set<uint32_t> &global_var_ids,
+ unordered_set<uint32_t> &processed_func_ids)
+{
+ // Avoid processing a function more than once
+ if (processed_func_ids.find(func_id) != processed_func_ids.end())
+ {
+ // Return function global variables
+ added_arg_ids = function_global_vars[func_id];
+ return;
+ }
+
+ processed_func_ids.insert(func_id);
+
+ auto &func = get<SPIRFunction>(func_id);
+
+ // Recursively establish global args added to functions on which we depend.
+ for (auto block : func.blocks)
+ {
+ auto &b = get<SPIRBlock>(block);
+ for (auto &i : b.ops)
+ {
+ auto ops = stream(i);
+ auto op = static_cast<Op>(i.op);
+
+ switch (op)
+ {
+ case OpLoad:
+ case OpInBoundsAccessChain:
+ case OpAccessChain:
+ case OpPtrAccessChain:
+ case OpArrayLength:
+ {
+ uint32_t base_id = ops[2];
+ if (global_var_ids.find(base_id) != global_var_ids.end())
+ added_arg_ids.insert(base_id);
+
+ // Use Metal's native frame-buffer fetch API for subpass inputs.
+ auto &type = get<SPIRType>(ops[0]);
+ if (type.basetype == SPIRType::Image && type.image.dim == DimSubpassData &&
+ (!msl_options.use_framebuffer_fetch_subpasses))
+ {
+ // Implicitly reads gl_FragCoord.
+ assert(builtin_frag_coord_id != 0);
+ added_arg_ids.insert(builtin_frag_coord_id);
+ if (msl_options.multiview)
+ {
+ // Implicitly reads gl_ViewIndex.
+ assert(builtin_view_idx_id != 0);
+ added_arg_ids.insert(builtin_view_idx_id);
+ }
+ else if (msl_options.arrayed_subpass_input)
+ {
+ // Implicitly reads gl_Layer.
+ assert(builtin_layer_id != 0);
+ added_arg_ids.insert(builtin_layer_id);
+ }
+ }
+
+ break;
+ }
+
+ case OpFunctionCall:
+ {
+ // First see if any of the function call args are globals
+ for (uint32_t arg_idx = 3; arg_idx < i.length; arg_idx++)
+ {
+ uint32_t arg_id = ops[arg_idx];
+ if (global_var_ids.find(arg_id) != global_var_ids.end())
+ added_arg_ids.insert(arg_id);
+ }
+
+ // Then recurse into the function itself to extract globals used internally in the function
+ uint32_t inner_func_id = ops[2];
+ std::set<uint32_t> inner_func_args;
+ extract_global_variables_from_function(inner_func_id, inner_func_args, global_var_ids,
+ processed_func_ids);
+ added_arg_ids.insert(inner_func_args.begin(), inner_func_args.end());
+ break;
+ }
+
+ case OpStore:
+ {
+ uint32_t base_id = ops[0];
+ if (global_var_ids.find(base_id) != global_var_ids.end())
+ {
+ added_arg_ids.insert(base_id);
+
+ if (msl_options.input_attachment_is_ds_attachment && base_id == builtin_frag_depth_id)
+ writes_to_depth = true;
+ }
+
+ uint32_t rvalue_id = ops[1];
+ if (global_var_ids.find(rvalue_id) != global_var_ids.end())
+ added_arg_ids.insert(rvalue_id);
+
+ if (needs_frag_discard_checks())
+ added_arg_ids.insert(builtin_helper_invocation_id);
+
+ break;
+ }
+
+ case OpSelect:
+ {
+ uint32_t base_id = ops[3];
+ if (global_var_ids.find(base_id) != global_var_ids.end())
+ added_arg_ids.insert(base_id);
+ base_id = ops[4];
+ if (global_var_ids.find(base_id) != global_var_ids.end())
+ added_arg_ids.insert(base_id);
+ break;
+ }
+
+ case OpAtomicExchange:
+ case OpAtomicCompareExchange:
+ case OpAtomicStore:
+ case OpAtomicIIncrement:
+ case OpAtomicIDecrement:
+ case OpAtomicIAdd:
+ case OpAtomicFAddEXT:
+ case OpAtomicISub:
+ case OpAtomicSMin:
+ case OpAtomicUMin:
+ case OpAtomicSMax:
+ case OpAtomicUMax:
+ case OpAtomicAnd:
+ case OpAtomicOr:
+ case OpAtomicXor:
+ case OpImageWrite:
+ {
+ if (needs_frag_discard_checks())
+ added_arg_ids.insert(builtin_helper_invocation_id);
+ uint32_t ptr = 0;
+ if (op == OpAtomicStore || op == OpImageWrite)
+ ptr = ops[0];
+ else
+ ptr = ops[2];
+ if (global_var_ids.find(ptr) != global_var_ids.end())
+ added_arg_ids.insert(ptr);
+ break;
+ }
+
+ // Emulate texture2D atomic operations
+ case OpImageTexelPointer:
+ {
+ // When using the pointer, we need to know which variable it is actually loaded from.
+ uint32_t base_id = ops[2];
+ auto *var = maybe_get_backing_variable(base_id);
+ if (var)
+ {
+ if (atomic_image_vars_emulated.count(var->self) &&
+ !get<SPIRType>(var->basetype).array.empty())
+ {
+ SPIRV_CROSS_THROW(
+ "Cannot emulate array of storage images with atomics. Use MSL 3.1 for native support.");
+ }
+
+ if (global_var_ids.find(base_id) != global_var_ids.end())
+ added_arg_ids.insert(base_id);
+ }
+ break;
+ }
+
+ case OpExtInst:
+ {
+ uint32_t extension_set = ops[2];
+ if (get<SPIRExtension>(extension_set).ext == SPIRExtension::GLSL)
+ {
+ auto op_450 = static_cast<GLSLstd450>(ops[3]);
+ switch (op_450)
+ {
+ case GLSLstd450InterpolateAtCentroid:
+ case GLSLstd450InterpolateAtSample:
+ case GLSLstd450InterpolateAtOffset:
+ {
+ // For these, we really need the stage-in block. It is theoretically possible to pass the
+ // interpolant object, but a) doing so would require us to create an entirely new variable
+ // with Interpolant type, and b) if we have a struct or array, handling all the members and
+ // elements could get unwieldy fast.
+ added_arg_ids.insert(stage_in_var_id);
+ break;
+ }
+
+ case GLSLstd450Modf:
+ case GLSLstd450Frexp:
+ {
+ uint32_t base_id = ops[5];
+ if (global_var_ids.find(base_id) != global_var_ids.end())
+ added_arg_ids.insert(base_id);
+ break;
+ }
+
+ default:
+ break;
+ }
+ }
+ break;
+ }
+
+ case OpGroupNonUniformInverseBallot:
+ {
+ added_arg_ids.insert(builtin_subgroup_invocation_id_id);
+ break;
+ }
+
+ case OpGroupNonUniformBallotFindLSB:
+ case OpGroupNonUniformBallotFindMSB:
+ {
+ added_arg_ids.insert(builtin_subgroup_size_id);
+ break;
+ }
+
+ case OpGroupNonUniformBallotBitCount:
+ {
+ auto operation = static_cast<GroupOperation>(ops[3]);
+ switch (operation)
+ {
+ case GroupOperationReduce:
+ added_arg_ids.insert(builtin_subgroup_size_id);
+ break;
+ case GroupOperationInclusiveScan:
+ case GroupOperationExclusiveScan:
+ added_arg_ids.insert(builtin_subgroup_invocation_id_id);
+ break;
+ default:
+ break;
+ }
+ break;
+ }
+
+ case OpDemoteToHelperInvocation:
+ if (needs_manual_helper_invocation_updates() &&
+ (active_input_builtins.get(BuiltInHelperInvocation) || needs_helper_invocation))
+ added_arg_ids.insert(builtin_helper_invocation_id);
+ break;
+
+ case OpIsHelperInvocationEXT:
+ if (needs_manual_helper_invocation_updates())
+ added_arg_ids.insert(builtin_helper_invocation_id);
+ break;
+
+ case OpRayQueryInitializeKHR:
+ case OpRayQueryProceedKHR:
+ case OpRayQueryTerminateKHR:
+ case OpRayQueryGenerateIntersectionKHR:
+ case OpRayQueryConfirmIntersectionKHR:
+ {
+ // Ray query accesses memory directly, need check pass down object if using Private storage class.
+ uint32_t base_id = ops[0];
+ if (global_var_ids.find(base_id) != global_var_ids.end())
+ added_arg_ids.insert(base_id);
+ break;
+ }
+
+ case OpRayQueryGetRayTMinKHR:
+ case OpRayQueryGetRayFlagsKHR:
+ case OpRayQueryGetWorldRayOriginKHR:
+ case OpRayQueryGetWorldRayDirectionKHR:
+ case OpRayQueryGetIntersectionCandidateAABBOpaqueKHR:
+ case OpRayQueryGetIntersectionTypeKHR:
+ case OpRayQueryGetIntersectionTKHR:
+ case OpRayQueryGetIntersectionInstanceCustomIndexKHR:
+ case OpRayQueryGetIntersectionInstanceIdKHR:
+ case OpRayQueryGetIntersectionInstanceShaderBindingTableRecordOffsetKHR:
+ case OpRayQueryGetIntersectionGeometryIndexKHR:
+ case OpRayQueryGetIntersectionPrimitiveIndexKHR:
+ case OpRayQueryGetIntersectionBarycentricsKHR:
+ case OpRayQueryGetIntersectionFrontFaceKHR:
+ case OpRayQueryGetIntersectionObjectRayDirectionKHR:
+ case OpRayQueryGetIntersectionObjectRayOriginKHR:
+ case OpRayQueryGetIntersectionObjectToWorldKHR:
+ case OpRayQueryGetIntersectionWorldToObjectKHR:
+ {
+ // Ray query accesses memory directly, need check pass down object if using Private storage class.
+ uint32_t base_id = ops[2];
+ if (global_var_ids.find(base_id) != global_var_ids.end())
+ added_arg_ids.insert(base_id);
+ break;
+ }
+
+ default:
+ break;
+ }
+
+ if (needs_manual_helper_invocation_updates() && b.terminator == SPIRBlock::Kill &&
+ (active_input_builtins.get(BuiltInHelperInvocation) || needs_helper_invocation))
+ added_arg_ids.insert(builtin_helper_invocation_id);
+
+ // TODO: Add all other operations which can affect memory.
+ // We should consider a more unified system here to reduce boiler-plate.
+ // This kind of analysis is done in several places ...
+ }
+ }
+
+ function_global_vars[func_id] = added_arg_ids;
+
+ // Add the global variables as arguments to the function
+ if (func_id != ir.default_entry_point)
+ {
+ bool control_point_added_in = false;
+ bool control_point_added_out = false;
+ bool patch_added_in = false;
+ bool patch_added_out = false;
+
+ for (uint32_t arg_id : added_arg_ids)
+ {
+ auto &var = get<SPIRVariable>(arg_id);
+ uint32_t type_id = var.basetype;
+ auto *p_type = &get<SPIRType>(type_id);
+ BuiltIn bi_type = BuiltIn(get_decoration(arg_id, DecorationBuiltIn));
+
+ bool is_patch = has_decoration(arg_id, DecorationPatch) || is_patch_block(*p_type);
+ bool is_block = has_decoration(p_type->self, DecorationBlock);
+ bool is_control_point_storage =
+ !is_patch && ((is_tessellation_shader() && var.storage == StorageClassInput) ||
+ (is_tesc_shader() && var.storage == StorageClassOutput));
+ bool is_patch_block_storage = is_patch && is_block && var.storage == StorageClassOutput;
+ bool is_builtin = is_builtin_variable(var);
+ bool variable_is_stage_io =
+ !is_builtin || bi_type == BuiltInPosition || bi_type == BuiltInPointSize ||
+ bi_type == BuiltInClipDistance || bi_type == BuiltInCullDistance ||
+ p_type->basetype == SPIRType::Struct;
+ bool is_redirected_to_global_stage_io = (is_control_point_storage || is_patch_block_storage) &&
+ variable_is_stage_io;
+
+ // If output is masked it is not considered part of the global stage IO interface.
+ if (is_redirected_to_global_stage_io && var.storage == StorageClassOutput)
+ is_redirected_to_global_stage_io = !is_stage_output_variable_masked(var);
+
+ if (is_redirected_to_global_stage_io)
+ {
+ // Tessellation control shaders see inputs and per-point outputs as arrays.
+ // Similarly, tessellation evaluation shaders see per-point inputs as arrays.
+ // We collected them into a structure; we must pass the array of this
+ // structure to the function.
+ std::string name;
+ if (is_patch)
+ name = var.storage == StorageClassInput ? patch_stage_in_var_name : patch_stage_out_var_name;
+ else
+ name = var.storage == StorageClassInput ? "gl_in" : "gl_out";
+
+ if (var.storage == StorageClassOutput && has_decoration(p_type->self, DecorationBlock))
+ {
+ // If we're redirecting a block, we might still need to access the original block
+ // variable if we're masking some members.
+ for (uint32_t mbr_idx = 0; mbr_idx < uint32_t(p_type->member_types.size()); mbr_idx++)
+ {
+ if (is_stage_output_block_member_masked(var, mbr_idx, true))
+ {
+ func.add_parameter(var.basetype, var.self, true);
+ break;
+ }
+ }
+ }
+
+ if (var.storage == StorageClassInput)
+ {
+ auto &added_in = is_patch ? patch_added_in : control_point_added_in;
+ if (added_in)
+ continue;
+ arg_id = is_patch ? patch_stage_in_var_id : stage_in_ptr_var_id;
+ added_in = true;
+ }
+ else if (var.storage == StorageClassOutput)
+ {
+ auto &added_out = is_patch ? patch_added_out : control_point_added_out;
+ if (added_out)
+ continue;
+ arg_id = is_patch ? patch_stage_out_var_id : stage_out_ptr_var_id;
+ added_out = true;
+ }
+
+ type_id = get<SPIRVariable>(arg_id).basetype;
+ uint32_t next_id = ir.increase_bound_by(1);
+ func.add_parameter(type_id, next_id, true);
+ set<SPIRVariable>(next_id, type_id, StorageClassFunction, 0, arg_id);
+
+ set_name(next_id, name);
+ if (is_tese_shader() && msl_options.raw_buffer_tese_input && var.storage == StorageClassInput)
+ set_decoration(next_id, DecorationNonWritable);
+ }
+ else if (is_builtin && has_decoration(p_type->self, DecorationBlock))
+ {
+ // Get the pointee type
+ type_id = get_pointee_type_id(type_id);
+ p_type = &get<SPIRType>(type_id);
+
+ uint32_t mbr_idx = 0;
+ for (auto &mbr_type_id : p_type->member_types)
+ {
+ BuiltIn builtin = BuiltInMax;
+ is_builtin = is_member_builtin(*p_type, mbr_idx, &builtin);
+ if (is_builtin && has_active_builtin(builtin, var.storage))
+ {
+ // Add a arg variable with the same type and decorations as the member
+ uint32_t next_ids = ir.increase_bound_by(2);
+ uint32_t ptr_type_id = next_ids + 0;
+ uint32_t var_id = next_ids + 1;
+
+ // Make sure we have an actual pointer type,
+ // so that we will get the appropriate address space when declaring these builtins.
+ auto &ptr = set<SPIRType>(ptr_type_id, get<SPIRType>(mbr_type_id));
+ ptr.self = mbr_type_id;
+ ptr.storage = var.storage;
+ ptr.pointer = true;
+ ptr.pointer_depth++;
+ ptr.parent_type = mbr_type_id;
+
+ func.add_parameter(mbr_type_id, var_id, true);
+ set<SPIRVariable>(var_id, ptr_type_id, StorageClassFunction);
+ ir.meta[var_id].decoration = ir.meta[type_id].members[mbr_idx];
+ }
+ mbr_idx++;
+ }
+ }
+ else
+ {
+ uint32_t next_id = ir.increase_bound_by(1);
+ func.add_parameter(type_id, next_id, true);
+ set<SPIRVariable>(next_id, type_id, StorageClassFunction, 0, arg_id);
+
+ // Ensure the new variable has all the same meta info
+ ir.meta[next_id] = ir.meta[arg_id];
+ }
+ }
+ }
+}
+
+// For all variables that are some form of non-input-output interface block, mark that all the structs
+// that are recursively contained within the type referenced by that variable should be packed tightly.
+void CompilerMSL::mark_packable_structs()
+{
+ ir.for_each_typed_id<SPIRVariable>([&](uint32_t, SPIRVariable &var) {
+ if (var.storage != StorageClassFunction && !is_hidden_variable(var))
+ {
+ auto &type = this->get<SPIRType>(var.basetype);
+ if (type.pointer &&
+ (type.storage == StorageClassUniform || type.storage == StorageClassUniformConstant ||
+ type.storage == StorageClassPushConstant || type.storage == StorageClassStorageBuffer) &&
+ (has_decoration(type.self, DecorationBlock) || has_decoration(type.self, DecorationBufferBlock)))
+ mark_as_packable(type);
+ }
+
+ if (var.storage == StorageClassWorkgroup)
+ {
+ auto *type = &this->get<SPIRType>(var.basetype);
+ if (type->basetype == SPIRType::Struct)
+ mark_as_workgroup_struct(*type);
+ }
+ });
+
+ // Physical storage buffer pointers can appear outside of the context of a variable, if the address
+ // is calculated from a ulong or uvec2 and cast to a pointer, so check if they need to be packed too.
+ ir.for_each_typed_id<SPIRType>([&](uint32_t, SPIRType &type) {
+ if (type.basetype == SPIRType::Struct && type.pointer && type.storage == StorageClassPhysicalStorageBuffer)
+ mark_as_packable(type);
+ });
+}
+
+// If the specified type is a struct, it and any nested structs
+// are marked as packable with the SPIRVCrossDecorationBufferBlockRepacked decoration,
+void CompilerMSL::mark_as_packable(SPIRType &type)
+{
+ // If this is not the base type (eg. it's a pointer or array), tunnel down
+ if (type.parent_type)
+ {
+ mark_as_packable(get<SPIRType>(type.parent_type));
+ return;
+ }
+
+ // Handle possible recursion when a struct contains a pointer to its own type nested somewhere.
+ if (type.basetype == SPIRType::Struct && !has_extended_decoration(type.self, SPIRVCrossDecorationBufferBlockRepacked))
+ {
+ set_extended_decoration(type.self, SPIRVCrossDecorationBufferBlockRepacked);
+
+ // Recurse
+ uint32_t mbr_cnt = uint32_t(type.member_types.size());
+ for (uint32_t mbr_idx = 0; mbr_idx < mbr_cnt; mbr_idx++)
+ {
+ uint32_t mbr_type_id = type.member_types[mbr_idx];
+ auto &mbr_type = get<SPIRType>(mbr_type_id);
+ mark_as_packable(mbr_type);
+ if (mbr_type.type_alias)
+ {
+ auto &mbr_type_alias = get<SPIRType>(mbr_type.type_alias);
+ mark_as_packable(mbr_type_alias);
+ }
+ }
+ }
+}
+
+// If the specified type is a struct, it and any nested structs
+// are marked as used with workgroup storage using the SPIRVCrossDecorationWorkgroupStruct decoration.
+void CompilerMSL::mark_as_workgroup_struct(SPIRType &type)
+{
+ // If this is not the base type (eg. it's a pointer or array), tunnel down
+ if (type.parent_type)
+ {
+ mark_as_workgroup_struct(get<SPIRType>(type.parent_type));
+ return;
+ }
+
+ // Handle possible recursion when a struct contains a pointer to its own type nested somewhere.
+ if (type.basetype == SPIRType::Struct && !has_extended_decoration(type.self, SPIRVCrossDecorationWorkgroupStruct))
+ {
+ set_extended_decoration(type.self, SPIRVCrossDecorationWorkgroupStruct);
+
+ // Recurse
+ uint32_t mbr_cnt = uint32_t(type.member_types.size());
+ for (uint32_t mbr_idx = 0; mbr_idx < mbr_cnt; mbr_idx++)
+ {
+ uint32_t mbr_type_id = type.member_types[mbr_idx];
+ auto &mbr_type = get<SPIRType>(mbr_type_id);
+ mark_as_workgroup_struct(mbr_type);
+ if (mbr_type.type_alias)
+ {
+ auto &mbr_type_alias = get<SPIRType>(mbr_type.type_alias);
+ mark_as_workgroup_struct(mbr_type_alias);
+ }
+ }
+ }
+}
+
+// If a shader input exists at the location, it is marked as being used by this shader
+void CompilerMSL::mark_location_as_used_by_shader(uint32_t location, const SPIRType &type,
+ StorageClass storage, bool fallback)
+{
+ uint32_t count = type_to_location_count(type);
+ switch (storage)
+ {
+ case StorageClassInput:
+ for (uint32_t i = 0; i < count; i++)
+ {
+ location_inputs_in_use.insert(location + i);
+ if (fallback)
+ location_inputs_in_use_fallback.insert(location + i);
+ }
+ break;
+ case StorageClassOutput:
+ for (uint32_t i = 0; i < count; i++)
+ {
+ location_outputs_in_use.insert(location + i);
+ if (fallback)
+ location_outputs_in_use_fallback.insert(location + i);
+ }
+ break;
+ default:
+ return;
+ }
+}
+
+uint32_t CompilerMSL::get_target_components_for_fragment_location(uint32_t location) const
+{
+ auto itr = fragment_output_components.find(location);
+ if (itr == end(fragment_output_components))
+ return 4;
+ else
+ return itr->second;
+}
+
+uint32_t CompilerMSL::build_extended_vector_type(uint32_t type_id, uint32_t components, SPIRType::BaseType basetype)
+{
+ assert(components > 1);
+ uint32_t new_type_id = ir.increase_bound_by(1);
+ const auto *p_old_type = &get<SPIRType>(type_id);
+ const SPIRType *old_ptr_t = nullptr;
+ const SPIRType *old_array_t = nullptr;
+
+ if (is_pointer(*p_old_type))
+ {
+ old_ptr_t = p_old_type;
+ p_old_type = &get_pointee_type(*old_ptr_t);
+ }
+
+ if (is_array(*p_old_type))
+ {
+ old_array_t = p_old_type;
+ p_old_type = &get_type(old_array_t->parent_type);
+ }
+
+ auto *type = &set<SPIRType>(new_type_id, *p_old_type);
+ assert(is_scalar(*type) || is_vector(*type));
+ type->op = OpTypeVector;
+ type->vecsize = components;
+ if (basetype != SPIRType::Unknown)
+ type->basetype = basetype;
+ type->self = new_type_id;
+ // We want parent type to point to the scalar type.
+ type->parent_type = is_scalar(*p_old_type) ? TypeID(p_old_type->self) : p_old_type->parent_type;
+ assert(is_scalar(get<SPIRType>(type->parent_type)));
+ type->array.clear();
+ type->array_size_literal.clear();
+ type->pointer = false;
+
+ if (old_array_t)
+ {
+ uint32_t array_type_id = ir.increase_bound_by(1);
+ type = &set<SPIRType>(array_type_id, *type);
+ type->op = OpTypeArray;
+ type->parent_type = new_type_id;
+ type->array = old_array_t->array;
+ type->array_size_literal = old_array_t->array_size_literal;
+ new_type_id = array_type_id;
+ }
+
+ if (old_ptr_t)
+ {
+ uint32_t ptr_type_id = ir.increase_bound_by(1);
+ type = &set<SPIRType>(ptr_type_id, *type);
+ type->op = OpTypePointer;
+ type->parent_type = new_type_id;
+ type->storage = old_ptr_t->storage;
+ type->pointer = true;
+ type->pointer_depth++;
+ new_type_id = ptr_type_id;
+ }
+
+ return new_type_id;
+}
+
+uint32_t CompilerMSL::build_msl_interpolant_type(uint32_t type_id, bool is_noperspective)
+{
+ uint32_t new_type_id = ir.increase_bound_by(1);
+ SPIRType &type = set<SPIRType>(new_type_id, get<SPIRType>(type_id));
+ type.basetype = SPIRType::Interpolant;
+ type.parent_type = type_id;
+ // In Metal, the pull-model interpolant type encodes perspective-vs-no-perspective in the type itself.
+ // Add this decoration so we know which argument to pass to the template.
+ if (is_noperspective)
+ set_decoration(new_type_id, DecorationNoPerspective);
+ return new_type_id;
+}
+
+bool CompilerMSL::add_component_variable_to_interface_block(spv::StorageClass storage, const std::string &ib_var_ref,
+ SPIRVariable &var,
+ const SPIRType &type,
+ InterfaceBlockMeta &meta)
+{
+ // Deal with Component decorations.
+ const InterfaceBlockMeta::LocationMeta *location_meta = nullptr;
+ uint32_t location = ~0u;
+ if (has_decoration(var.self, DecorationLocation))
+ {
+ location = get_decoration(var.self, DecorationLocation);
+ auto location_meta_itr = meta.location_meta.find(location);
+ if (location_meta_itr != end(meta.location_meta))
+ location_meta = &location_meta_itr->second;
+ }
+
+ // Check if we need to pad fragment output to match a certain number of components.
+ if (location_meta)
+ {
+ bool pad_fragment_output = has_decoration(var.self, DecorationLocation) &&
+ msl_options.pad_fragment_output_components &&
+ get_entry_point().model == ExecutionModelFragment && storage == StorageClassOutput;
+
+ auto &entry_func = get<SPIRFunction>(ir.default_entry_point);
+ uint32_t start_component = get_decoration(var.self, DecorationComponent);
+ uint32_t type_components = type.vecsize;
+ uint32_t num_components = location_meta->num_components;
+
+ if (pad_fragment_output)
+ {
+ uint32_t locn = get_decoration(var.self, DecorationLocation);
+ num_components = max<uint32_t>(num_components, get_target_components_for_fragment_location(locn));
+ }
+
+ // We have already declared an IO block member as m_location_N.
+ // Just emit an early-declared variable and fixup as needed.
+ // Arrays need to be unrolled here since each location might need a different number of components.
+ entry_func.add_local_variable(var.self);
+ vars_needing_early_declaration.push_back(var.self);
+
+ if (var.storage == StorageClassInput)
+ {
+ entry_func.fixup_hooks_in.push_back([=, &type, &var]() {
+ if (!type.array.empty())
+ {
+ uint32_t array_size = to_array_size_literal(type);
+ for (uint32_t loc_off = 0; loc_off < array_size; loc_off++)
+ {
+ statement(to_name(var.self), "[", loc_off, "]", " = ", ib_var_ref,
+ ".m_location_", location + loc_off,
+ vector_swizzle(type_components, start_component), ";");
+ }
+ }
+ else
+ {
+ statement(to_name(var.self), " = ", ib_var_ref, ".m_location_", location,
+ vector_swizzle(type_components, start_component), ";");
+ }
+ });
+ }
+ else
+ {
+ entry_func.fixup_hooks_out.push_back([=, &type, &var]() {
+ if (!type.array.empty())
+ {
+ uint32_t array_size = to_array_size_literal(type);
+ for (uint32_t loc_off = 0; loc_off < array_size; loc_off++)
+ {
+ statement(ib_var_ref, ".m_location_", location + loc_off,
+ vector_swizzle(type_components, start_component), " = ",
+ to_name(var.self), "[", loc_off, "];");
+ }
+ }
+ else
+ {
+ statement(ib_var_ref, ".m_location_", location,
+ vector_swizzle(type_components, start_component), " = ", to_name(var.self), ";");
+ }
+ });
+ }
+ return true;
+ }
+ else
+ return false;
+}
+
+void CompilerMSL::add_plain_variable_to_interface_block(StorageClass storage, const string &ib_var_ref,
+ SPIRType &ib_type, SPIRVariable &var, InterfaceBlockMeta &meta)
+{
+ bool is_builtin = is_builtin_variable(var);
+ BuiltIn builtin = BuiltIn(get_decoration(var.self, DecorationBuiltIn));
+ bool is_flat = has_decoration(var.self, DecorationFlat);
+ bool is_noperspective = has_decoration(var.self, DecorationNoPerspective);
+ bool is_centroid = has_decoration(var.self, DecorationCentroid);
+ bool is_sample = has_decoration(var.self, DecorationSample);
+
+ // Add a reference to the variable type to the interface struct.
+ uint32_t ib_mbr_idx = uint32_t(ib_type.member_types.size());
+ uint32_t type_id = ensure_correct_builtin_type(var.basetype, builtin);
+ var.basetype = type_id;
+
+ type_id = get_pointee_type_id(var.basetype);
+ if (meta.strip_array && is_array(get<SPIRType>(type_id)))
+ type_id = get<SPIRType>(type_id).parent_type;
+ auto &type = get<SPIRType>(type_id);
+ uint32_t target_components = 0;
+ uint32_t type_components = type.vecsize;
+
+ bool padded_output = false;
+ bool padded_input = false;
+ uint32_t start_component = 0;
+
+ auto &entry_func = get<SPIRFunction>(ir.default_entry_point);
+
+ if (add_component_variable_to_interface_block(storage, ib_var_ref, var, type, meta))
+ return;
+
+ bool pad_fragment_output = has_decoration(var.self, DecorationLocation) &&
+ msl_options.pad_fragment_output_components &&
+ get_entry_point().model == ExecutionModelFragment && storage == StorageClassOutput;
+
+ if (pad_fragment_output)
+ {
+ uint32_t locn = get_decoration(var.self, DecorationLocation);
+ target_components = get_target_components_for_fragment_location(locn);
+ if (type_components < target_components)
+ {
+ // Make a new type here.
+ type_id = build_extended_vector_type(type_id, target_components);
+ padded_output = true;
+ }
+ }
+
+ if (storage == StorageClassInput && pull_model_inputs.count(var.self))
+ ib_type.member_types.push_back(build_msl_interpolant_type(type_id, is_noperspective));
+ else
+ ib_type.member_types.push_back(type_id);
+
+ // Give the member a name
+ string mbr_name = ensure_valid_name(to_expression(var.self), "m");
+ set_member_name(ib_type.self, ib_mbr_idx, mbr_name);
+
+ // Update the original variable reference to include the structure reference
+ string qual_var_name = ib_var_ref + "." + mbr_name;
+ // If using pull-model interpolation, need to add a call to the correct interpolation method.
+ if (storage == StorageClassInput && pull_model_inputs.count(var.self))
+ {
+ if (is_centroid)
+ qual_var_name += ".interpolate_at_centroid()";
+ else if (is_sample)
+ qual_var_name += join(".interpolate_at_sample(", to_expression(builtin_sample_id_id), ")");
+ else
+ qual_var_name += ".interpolate_at_center()";
+ }
+
+ if (padded_output || padded_input)
+ {
+ entry_func.add_local_variable(var.self);
+ vars_needing_early_declaration.push_back(var.self);
+
+ if (padded_output)
+ {
+ entry_func.fixup_hooks_out.push_back([=, &var]() {
+ statement(qual_var_name, vector_swizzle(type_components, start_component), " = ", to_name(var.self),
+ ";");
+ });
+ }
+ else
+ {
+ entry_func.fixup_hooks_in.push_back([=, &var]() {
+ statement(to_name(var.self), " = ", qual_var_name, vector_swizzle(type_components, start_component),
+ ";");
+ });
+ }
+ }
+ else if (!meta.strip_array)
+ ir.meta[var.self].decoration.qualified_alias = qual_var_name;
+
+ if (var.storage == StorageClassOutput && var.initializer != ID(0))
+ {
+ if (padded_output || padded_input)
+ {
+ entry_func.fixup_hooks_in.push_back(
+ [=, &var]() { statement(to_name(var.self), " = ", to_expression(var.initializer), ";"); });
+ }
+ else
+ {
+ if (meta.strip_array)
+ {
+ entry_func.fixup_hooks_in.push_back([=, &var]() {
+ uint32_t index = get_extended_decoration(var.self, SPIRVCrossDecorationInterfaceMemberIndex);
+ auto invocation = to_tesc_invocation_id();
+ statement(to_expression(stage_out_ptr_var_id), "[",
+ invocation, "].",
+ to_member_name(ib_type, index), " = ", to_expression(var.initializer), "[",
+ invocation, "];");
+ });
+ }
+ else
+ {
+ entry_func.fixup_hooks_in.push_back([=, &var]() {
+ statement(qual_var_name, " = ", to_expression(var.initializer), ";");
+ });
+ }
+ }
+ }
+
+ // Copy the variable location from the original variable to the member
+ if (get_decoration_bitset(var.self).get(DecorationLocation))
+ {
+ uint32_t locn = get_decoration(var.self, DecorationLocation);
+ uint32_t comp = get_decoration(var.self, DecorationComponent);
+ if (storage == StorageClassInput)
+ {
+ type_id = ensure_correct_input_type(var.basetype, locn, comp, 0, meta.strip_array);
+ var.basetype = type_id;
+
+ type_id = get_pointee_type_id(type_id);
+ if (meta.strip_array && is_array(get<SPIRType>(type_id)))
+ type_id = get<SPIRType>(type_id).parent_type;
+ if (pull_model_inputs.count(var.self))
+ ib_type.member_types[ib_mbr_idx] = build_msl_interpolant_type(type_id, is_noperspective);
+ else
+ ib_type.member_types[ib_mbr_idx] = type_id;
+ }
+ set_member_decoration(ib_type.self, ib_mbr_idx, DecorationLocation, locn);
+ if (comp)
+ set_member_decoration(ib_type.self, ib_mbr_idx, DecorationComponent, comp);
+ mark_location_as_used_by_shader(locn, get<SPIRType>(type_id), storage);
+ }
+ else if (is_builtin && is_tessellation_shader() && storage == StorageClassInput && inputs_by_builtin.count(builtin))
+ {
+ uint32_t locn = inputs_by_builtin[builtin].location;
+ set_member_decoration(ib_type.self, ib_mbr_idx, DecorationLocation, locn);
+ mark_location_as_used_by_shader(locn, type, storage);
+ }
+ else if (is_builtin && capture_output_to_buffer && storage == StorageClassOutput && outputs_by_builtin.count(builtin))
+ {
+ uint32_t locn = outputs_by_builtin[builtin].location;
+ set_member_decoration(ib_type.self, ib_mbr_idx, DecorationLocation, locn);
+ mark_location_as_used_by_shader(locn, type, storage);
+ }
+
+ if (get_decoration_bitset(var.self).get(DecorationComponent))
+ {
+ uint32_t component = get_decoration(var.self, DecorationComponent);
+ set_member_decoration(ib_type.self, ib_mbr_idx, DecorationComponent, component);
+ }
+
+ if (get_decoration_bitset(var.self).get(DecorationIndex))
+ {
+ uint32_t index = get_decoration(var.self, DecorationIndex);
+ set_member_decoration(ib_type.self, ib_mbr_idx, DecorationIndex, index);
+ }
+
+ // Mark the member as builtin if needed
+ if (is_builtin)
+ {
+ set_member_decoration(ib_type.self, ib_mbr_idx, DecorationBuiltIn, builtin);
+ if (builtin == BuiltInPosition && storage == StorageClassOutput)
+ qual_pos_var_name = qual_var_name;
+ }
+
+ // Copy interpolation decorations if needed
+ if (storage != StorageClassInput || !pull_model_inputs.count(var.self))
+ {
+ if (is_flat)
+ set_member_decoration(ib_type.self, ib_mbr_idx, DecorationFlat);
+ if (is_noperspective)
+ set_member_decoration(ib_type.self, ib_mbr_idx, DecorationNoPerspective);
+ if (is_centroid)
+ set_member_decoration(ib_type.self, ib_mbr_idx, DecorationCentroid);
+ if (is_sample)
+ set_member_decoration(ib_type.self, ib_mbr_idx, DecorationSample);
+ }
+
+ set_extended_member_decoration(ib_type.self, ib_mbr_idx, SPIRVCrossDecorationInterfaceOrigID, var.self);
+}
+
+void CompilerMSL::add_composite_variable_to_interface_block(StorageClass storage, const string &ib_var_ref,
+ SPIRType &ib_type, SPIRVariable &var,
+ InterfaceBlockMeta &meta)
+{
+ auto &entry_func = get<SPIRFunction>(ir.default_entry_point);
+ auto &var_type = meta.strip_array ? get_variable_element_type(var) : get_variable_data_type(var);
+ uint32_t elem_cnt = 0;
+
+ if (add_component_variable_to_interface_block(storage, ib_var_ref, var, var_type, meta))
+ return;
+
+ if (is_matrix(var_type))
+ {
+ if (is_array(var_type))
+ SPIRV_CROSS_THROW("MSL cannot emit arrays-of-matrices in input and output variables.");
+
+ elem_cnt = var_type.columns;
+ }
+ else if (is_array(var_type))
+ {
+ if (var_type.array.size() != 1)
+ SPIRV_CROSS_THROW("MSL cannot emit arrays-of-arrays in input and output variables.");
+
+ elem_cnt = to_array_size_literal(var_type);
+ }
+
+ bool is_builtin = is_builtin_variable(var);
+ BuiltIn builtin = BuiltIn(get_decoration(var.self, DecorationBuiltIn));
+ bool is_flat = has_decoration(var.self, DecorationFlat);
+ bool is_noperspective = has_decoration(var.self, DecorationNoPerspective);
+ bool is_centroid = has_decoration(var.self, DecorationCentroid);
+ bool is_sample = has_decoration(var.self, DecorationSample);
+
+ auto *usable_type = &var_type;
+ if (usable_type->pointer)
+ usable_type = &get<SPIRType>(usable_type->parent_type);
+ while (is_array(*usable_type) || is_matrix(*usable_type))
+ usable_type = &get<SPIRType>(usable_type->parent_type);
+
+ // If a builtin, force it to have the proper name.
+ if (is_builtin)
+ set_name(var.self, builtin_to_glsl(builtin, StorageClassFunction));
+
+ bool flatten_from_ib_var = false;
+ string flatten_from_ib_mbr_name;
+
+ if (storage == StorageClassOutput && is_builtin && builtin == BuiltInClipDistance)
+ {
+ // Also declare [[clip_distance]] attribute here.
+ uint32_t clip_array_mbr_idx = uint32_t(ib_type.member_types.size());
+ ib_type.member_types.push_back(get_variable_data_type_id(var));
+ set_member_decoration(ib_type.self, clip_array_mbr_idx, DecorationBuiltIn, BuiltInClipDistance);
+
+ flatten_from_ib_mbr_name = builtin_to_glsl(BuiltInClipDistance, StorageClassOutput);
+ set_member_name(ib_type.self, clip_array_mbr_idx, flatten_from_ib_mbr_name);
+
+ // When we flatten, we flatten directly from the "out" struct,
+ // not from a function variable.
+ flatten_from_ib_var = true;
+
+ if (!msl_options.enable_clip_distance_user_varying)
+ return;
+ }
+ else if (!meta.strip_array)
+ {
+ // Only flatten/unflatten IO composites for non-tessellation cases where arrays are not stripped.
+ entry_func.add_local_variable(var.self);
+ // We need to declare the variable early and at entry-point scope.
+ vars_needing_early_declaration.push_back(var.self);
+ }
+
+ for (uint32_t i = 0; i < elem_cnt; i++)
+ {
+ // Add a reference to the variable type to the interface struct.
+ uint32_t ib_mbr_idx = uint32_t(ib_type.member_types.size());
+
+ uint32_t target_components = 0;
+ bool padded_output = false;
+ uint32_t type_id = usable_type->self;
+
+ // Check if we need to pad fragment output to match a certain number of components.
+ if (get_decoration_bitset(var.self).get(DecorationLocation) && msl_options.pad_fragment_output_components &&
+ get_entry_point().model == ExecutionModelFragment && storage == StorageClassOutput)
+ {
+ uint32_t locn = get_decoration(var.self, DecorationLocation) + i;
+ target_components = get_target_components_for_fragment_location(locn);
+ if (usable_type->vecsize < target_components)
+ {
+ // Make a new type here.
+ type_id = build_extended_vector_type(usable_type->self, target_components);
+ padded_output = true;
+ }
+ }
+
+ if (storage == StorageClassInput && pull_model_inputs.count(var.self))
+ ib_type.member_types.push_back(build_msl_interpolant_type(get_pointee_type_id(type_id), is_noperspective));
+ else
+ ib_type.member_types.push_back(get_pointee_type_id(type_id));
+
+ // Give the member a name
+ string mbr_name = ensure_valid_name(join(to_expression(var.self), "_", i), "m");
+ set_member_name(ib_type.self, ib_mbr_idx, mbr_name);
+
+ // There is no qualified alias since we need to flatten the internal array on return.
+ if (get_decoration_bitset(var.self).get(DecorationLocation))
+ {
+ uint32_t locn = get_decoration(var.self, DecorationLocation) + i;
+ uint32_t comp = get_decoration(var.self, DecorationComponent);
+ if (storage == StorageClassInput)
+ {
+ var.basetype = ensure_correct_input_type(var.basetype, locn, comp, 0, meta.strip_array);
+ uint32_t mbr_type_id = ensure_correct_input_type(usable_type->self, locn, comp, 0, meta.strip_array);
+ if (storage == StorageClassInput && pull_model_inputs.count(var.self))
+ ib_type.member_types[ib_mbr_idx] = build_msl_interpolant_type(mbr_type_id, is_noperspective);
+ else
+ ib_type.member_types[ib_mbr_idx] = mbr_type_id;
+ }
+ set_member_decoration(ib_type.self, ib_mbr_idx, DecorationLocation, locn);
+ if (comp)
+ set_member_decoration(ib_type.self, ib_mbr_idx, DecorationComponent, comp);
+ mark_location_as_used_by_shader(locn, *usable_type, storage);
+ }
+ else if (is_builtin && is_tessellation_shader() && storage == StorageClassInput && inputs_by_builtin.count(builtin))
+ {
+ uint32_t locn = inputs_by_builtin[builtin].location + i;
+ set_member_decoration(ib_type.self, ib_mbr_idx, DecorationLocation, locn);
+ mark_location_as_used_by_shader(locn, *usable_type, storage);
+ }
+ else if (is_builtin && capture_output_to_buffer && storage == StorageClassOutput && outputs_by_builtin.count(builtin))
+ {
+ uint32_t locn = outputs_by_builtin[builtin].location + i;
+ set_member_decoration(ib_type.self, ib_mbr_idx, DecorationLocation, locn);
+ mark_location_as_used_by_shader(locn, *usable_type, storage);
+ }
+ else if (is_builtin && (builtin == BuiltInClipDistance || builtin == BuiltInCullDistance))
+ {
+ // Declare the Clip/CullDistance as [[user(clip/cullN)]].
+ set_member_decoration(ib_type.self, ib_mbr_idx, DecorationBuiltIn, builtin);
+ set_member_decoration(ib_type.self, ib_mbr_idx, DecorationIndex, i);
+ }
+
+ if (get_decoration_bitset(var.self).get(DecorationIndex))
+ {
+ uint32_t index = get_decoration(var.self, DecorationIndex);
+ set_member_decoration(ib_type.self, ib_mbr_idx, DecorationIndex, index);
+ }
+
+ if (storage != StorageClassInput || !pull_model_inputs.count(var.self))
+ {
+ // Copy interpolation decorations if needed
+ if (is_flat)
+ set_member_decoration(ib_type.self, ib_mbr_idx, DecorationFlat);
+ if (is_noperspective)
+ set_member_decoration(ib_type.self, ib_mbr_idx, DecorationNoPerspective);
+ if (is_centroid)
+ set_member_decoration(ib_type.self, ib_mbr_idx, DecorationCentroid);
+ if (is_sample)
+ set_member_decoration(ib_type.self, ib_mbr_idx, DecorationSample);
+ }
+
+ set_extended_member_decoration(ib_type.self, ib_mbr_idx, SPIRVCrossDecorationInterfaceOrigID, var.self);
+
+ // Only flatten/unflatten IO composites for non-tessellation cases where arrays are not stripped.
+ if (!meta.strip_array)
+ {
+ switch (storage)
+ {
+ case StorageClassInput:
+ entry_func.fixup_hooks_in.push_back([=, &var]() {
+ if (pull_model_inputs.count(var.self))
+ {
+ string lerp_call;
+ if (is_centroid)
+ lerp_call = ".interpolate_at_centroid()";
+ else if (is_sample)
+ lerp_call = join(".interpolate_at_sample(", to_expression(builtin_sample_id_id), ")");
+ else
+ lerp_call = ".interpolate_at_center()";
+ statement(to_name(var.self), "[", i, "] = ", ib_var_ref, ".", mbr_name, lerp_call, ";");
+ }
+ else
+ {
+ statement(to_name(var.self), "[", i, "] = ", ib_var_ref, ".", mbr_name, ";");
+ }
+ });
+ break;
+
+ case StorageClassOutput:
+ entry_func.fixup_hooks_out.push_back([=, &var]() {
+ if (padded_output)
+ {
+ auto &padded_type = this->get<SPIRType>(type_id);
+ statement(
+ ib_var_ref, ".", mbr_name, " = ",
+ remap_swizzle(padded_type, usable_type->vecsize, join(to_name(var.self), "[", i, "]")),
+ ";");
+ }
+ else if (flatten_from_ib_var)
+ statement(ib_var_ref, ".", mbr_name, " = ", ib_var_ref, ".", flatten_from_ib_mbr_name, "[", i,
+ "];");
+ else
+ statement(ib_var_ref, ".", mbr_name, " = ", to_name(var.self), "[", i, "];");
+ });
+ break;
+
+ default:
+ break;
+ }
+ }
+ }
+}
+
+void CompilerMSL::add_composite_member_variable_to_interface_block(StorageClass storage,
+ const string &ib_var_ref, SPIRType &ib_type,
+ SPIRVariable &var, SPIRType &var_type,
+ uint32_t mbr_idx, InterfaceBlockMeta &meta,
+ const string &mbr_name_qual,
+ const string &var_chain_qual,
+ uint32_t &location, uint32_t &var_mbr_idx,
+ const Bitset &interpolation_qual)
+{
+ auto &entry_func = get<SPIRFunction>(ir.default_entry_point);
+
+ BuiltIn builtin = BuiltInMax;
+ bool is_builtin = is_member_builtin(var_type, mbr_idx, &builtin);
+ bool is_flat = interpolation_qual.get(DecorationFlat) ||
+ has_member_decoration(var_type.self, mbr_idx, DecorationFlat) ||
+ has_decoration(var.self, DecorationFlat);
+ bool is_noperspective = interpolation_qual.get(DecorationNoPerspective) ||
+ has_member_decoration(var_type.self, mbr_idx, DecorationNoPerspective) ||
+ has_decoration(var.self, DecorationNoPerspective);
+ bool is_centroid = interpolation_qual.get(DecorationCentroid) ||
+ has_member_decoration(var_type.self, mbr_idx, DecorationCentroid) ||
+ has_decoration(var.self, DecorationCentroid);
+ bool is_sample = interpolation_qual.get(DecorationSample) ||
+ has_member_decoration(var_type.self, mbr_idx, DecorationSample) ||
+ has_decoration(var.self, DecorationSample);
+
+ Bitset inherited_qual;
+ if (is_flat)
+ inherited_qual.set(DecorationFlat);
+ if (is_noperspective)
+ inherited_qual.set(DecorationNoPerspective);
+ if (is_centroid)
+ inherited_qual.set(DecorationCentroid);
+ if (is_sample)
+ inherited_qual.set(DecorationSample);
+
+ uint32_t mbr_type_id = var_type.member_types[mbr_idx];
+ auto &mbr_type = get<SPIRType>(mbr_type_id);
+
+ bool mbr_is_indexable = false;
+ uint32_t elem_cnt = 1;
+ if (is_matrix(mbr_type))
+ {
+ if (is_array(mbr_type))
+ SPIRV_CROSS_THROW("MSL cannot emit arrays-of-matrices in input and output variables.");
+
+ mbr_is_indexable = true;
+ elem_cnt = mbr_type.columns;
+ }
+ else if (is_array(mbr_type))
+ {
+ if (mbr_type.array.size() != 1)
+ SPIRV_CROSS_THROW("MSL cannot emit arrays-of-arrays in input and output variables.");
+
+ mbr_is_indexable = true;
+ elem_cnt = to_array_size_literal(mbr_type);
+ }
+
+ auto *usable_type = &mbr_type;
+ if (usable_type->pointer)
+ usable_type = &get<SPIRType>(usable_type->parent_type);
+ while (is_array(*usable_type) || is_matrix(*usable_type))
+ usable_type = &get<SPIRType>(usable_type->parent_type);
+
+ bool flatten_from_ib_var = false;
+ string flatten_from_ib_mbr_name;
+
+ if (storage == StorageClassOutput && is_builtin && builtin == BuiltInClipDistance)
+ {
+ // Also declare [[clip_distance]] attribute here.
+ uint32_t clip_array_mbr_idx = uint32_t(ib_type.member_types.size());
+ ib_type.member_types.push_back(mbr_type_id);
+ set_member_decoration(ib_type.self, clip_array_mbr_idx, DecorationBuiltIn, BuiltInClipDistance);
+
+ flatten_from_ib_mbr_name = builtin_to_glsl(BuiltInClipDistance, StorageClassOutput);
+ set_member_name(ib_type.self, clip_array_mbr_idx, flatten_from_ib_mbr_name);
+
+ // When we flatten, we flatten directly from the "out" struct,
+ // not from a function variable.
+ flatten_from_ib_var = true;
+
+ if (!msl_options.enable_clip_distance_user_varying)
+ return;
+ }
+
+ // Recursively handle nested structures.
+ if (mbr_type.basetype == SPIRType::Struct)
+ {
+ for (uint32_t i = 0; i < elem_cnt; i++)
+ {
+ string mbr_name = append_member_name(mbr_name_qual, var_type, mbr_idx) + (mbr_is_indexable ? join("_", i) : "");
+ string var_chain = join(var_chain_qual, ".", to_member_name(var_type, mbr_idx), (mbr_is_indexable ? join("[", i, "]") : ""));
+ uint32_t sub_mbr_cnt = uint32_t(mbr_type.member_types.size());
+ for (uint32_t sub_mbr_idx = 0; sub_mbr_idx < sub_mbr_cnt; sub_mbr_idx++)
+ {
+ add_composite_member_variable_to_interface_block(storage, ib_var_ref, ib_type,
+ var, mbr_type, sub_mbr_idx,
+ meta, mbr_name, var_chain,
+ location, var_mbr_idx, inherited_qual);
+ // FIXME: Recursive structs and tessellation breaks here.
+ var_mbr_idx++;
+ }
+ }
+ return;
+ }
+
+ for (uint32_t i = 0; i < elem_cnt; i++)
+ {
+ // Add a reference to the variable type to the interface struct.
+ uint32_t ib_mbr_idx = uint32_t(ib_type.member_types.size());
+ if (storage == StorageClassInput && pull_model_inputs.count(var.self))
+ ib_type.member_types.push_back(build_msl_interpolant_type(usable_type->self, is_noperspective));
+ else
+ ib_type.member_types.push_back(usable_type->self);
+
+ // Give the member a name
+ string mbr_name = ensure_valid_name(append_member_name(mbr_name_qual, var_type, mbr_idx) + (mbr_is_indexable ? join("_", i) : ""), "m");
+ set_member_name(ib_type.self, ib_mbr_idx, mbr_name);
+
+ // Once we determine the location of the first member within nested structures,
+ // from a var of the topmost structure, the remaining flattened members of
+ // the nested structures will have consecutive location values. At this point,
+ // we've recursively tunnelled into structs, arrays, and matrices, and are
+ // down to a single location for each member now.
+ if (!is_builtin && location != UINT32_MAX)
+ {
+ set_member_decoration(ib_type.self, ib_mbr_idx, DecorationLocation, location);
+ mark_location_as_used_by_shader(location, *usable_type, storage);
+ location++;
+ }
+ else if (has_member_decoration(var_type.self, mbr_idx, DecorationLocation))
+ {
+ location = get_member_decoration(var_type.self, mbr_idx, DecorationLocation) + i;
+ set_member_decoration(ib_type.self, ib_mbr_idx, DecorationLocation, location);
+ mark_location_as_used_by_shader(location, *usable_type, storage);
+ location++;
+ }
+ else if (has_decoration(var.self, DecorationLocation))
+ {
+ location = get_accumulated_member_location(var, mbr_idx, meta.strip_array) + i;
+ set_member_decoration(ib_type.self, ib_mbr_idx, DecorationLocation, location);
+ mark_location_as_used_by_shader(location, *usable_type, storage);
+ location++;
+ }
+ else if (is_builtin && is_tessellation_shader() && storage == StorageClassInput && inputs_by_builtin.count(builtin))
+ {
+ location = inputs_by_builtin[builtin].location + i;
+ set_member_decoration(ib_type.self, ib_mbr_idx, DecorationLocation, location);
+ mark_location_as_used_by_shader(location, *usable_type, storage);
+ location++;
+ }
+ else if (is_builtin && capture_output_to_buffer && storage == StorageClassOutput && outputs_by_builtin.count(builtin))
+ {
+ location = outputs_by_builtin[builtin].location + i;
+ set_member_decoration(ib_type.self, ib_mbr_idx, DecorationLocation, location);
+ mark_location_as_used_by_shader(location, *usable_type, storage);
+ location++;
+ }
+ else if (is_builtin && (builtin == BuiltInClipDistance || builtin == BuiltInCullDistance))
+ {
+ // Declare the Clip/CullDistance as [[user(clip/cullN)]].
+ set_member_decoration(ib_type.self, ib_mbr_idx, DecorationBuiltIn, builtin);
+ set_member_decoration(ib_type.self, ib_mbr_idx, DecorationIndex, i);
+ }
+
+ if (has_member_decoration(var_type.self, mbr_idx, DecorationComponent))
+ SPIRV_CROSS_THROW("DecorationComponent on matrices and arrays is not supported.");
+
+ if (storage != StorageClassInput || !pull_model_inputs.count(var.self))
+ {
+ // Copy interpolation decorations if needed
+ if (is_flat)
+ set_member_decoration(ib_type.self, ib_mbr_idx, DecorationFlat);
+ if (is_noperspective)
+ set_member_decoration(ib_type.self, ib_mbr_idx, DecorationNoPerspective);
+ if (is_centroid)
+ set_member_decoration(ib_type.self, ib_mbr_idx, DecorationCentroid);
+ if (is_sample)
+ set_member_decoration(ib_type.self, ib_mbr_idx, DecorationSample);
+ }
+
+ set_extended_member_decoration(ib_type.self, ib_mbr_idx, SPIRVCrossDecorationInterfaceOrigID, var.self);
+ set_extended_member_decoration(ib_type.self, ib_mbr_idx, SPIRVCrossDecorationInterfaceMemberIndex, var_mbr_idx);
+
+ // Unflatten or flatten from [[stage_in]] or [[stage_out]] as appropriate.
+ if (!meta.strip_array && meta.allow_local_declaration)
+ {
+ string var_chain = join(var_chain_qual, ".", to_member_name(var_type, mbr_idx), (mbr_is_indexable ? join("[", i, "]") : ""));
+ switch (storage)
+ {
+ case StorageClassInput:
+ entry_func.fixup_hooks_in.push_back([=, &var]() {
+ string lerp_call;
+ if (pull_model_inputs.count(var.self))
+ {
+ if (is_centroid)
+ lerp_call = ".interpolate_at_centroid()";
+ else if (is_sample)
+ lerp_call = join(".interpolate_at_sample(", to_expression(builtin_sample_id_id), ")");
+ else
+ lerp_call = ".interpolate_at_center()";
+ }
+ statement(var_chain, " = ", ib_var_ref, ".", mbr_name, lerp_call, ";");
+ });
+ break;
+
+ case StorageClassOutput:
+ entry_func.fixup_hooks_out.push_back([=]() {
+ if (flatten_from_ib_var)
+ statement(ib_var_ref, ".", mbr_name, " = ", ib_var_ref, ".", flatten_from_ib_mbr_name, "[", i, "];");
+ else
+ statement(ib_var_ref, ".", mbr_name, " = ", var_chain, ";");
+ });
+ break;
+
+ default:
+ break;
+ }
+ }
+ }
+}
+
+void CompilerMSL::add_plain_member_variable_to_interface_block(StorageClass storage,
+ const string &ib_var_ref, SPIRType &ib_type,
+ SPIRVariable &var, SPIRType &var_type,
+ uint32_t mbr_idx, InterfaceBlockMeta &meta,
+ const string &mbr_name_qual,
+ const string &var_chain_qual,
+ uint32_t &location, uint32_t &var_mbr_idx)
+{
+ auto &entry_func = get<SPIRFunction>(ir.default_entry_point);
+
+ BuiltIn builtin = BuiltInMax;
+ bool is_builtin = is_member_builtin(var_type, mbr_idx, &builtin);
+ bool is_flat =
+ has_member_decoration(var_type.self, mbr_idx, DecorationFlat) || has_decoration(var.self, DecorationFlat);
+ bool is_noperspective = has_member_decoration(var_type.self, mbr_idx, DecorationNoPerspective) ||
+ has_decoration(var.self, DecorationNoPerspective);
+ bool is_centroid = has_member_decoration(var_type.self, mbr_idx, DecorationCentroid) ||
+ has_decoration(var.self, DecorationCentroid);
+ bool is_sample =
+ has_member_decoration(var_type.self, mbr_idx, DecorationSample) || has_decoration(var.self, DecorationSample);
+
+ // Add a reference to the member to the interface struct.
+ uint32_t mbr_type_id = var_type.member_types[mbr_idx];
+ uint32_t ib_mbr_idx = uint32_t(ib_type.member_types.size());
+ mbr_type_id = ensure_correct_builtin_type(mbr_type_id, builtin);
+ var_type.member_types[mbr_idx] = mbr_type_id;
+ if (storage == StorageClassInput && pull_model_inputs.count(var.self))
+ ib_type.member_types.push_back(build_msl_interpolant_type(mbr_type_id, is_noperspective));
+ else
+ ib_type.member_types.push_back(mbr_type_id);
+
+ // Give the member a name
+ string mbr_name = ensure_valid_name(append_member_name(mbr_name_qual, var_type, mbr_idx), "m");
+ set_member_name(ib_type.self, ib_mbr_idx, mbr_name);
+
+ // Update the original variable reference to include the structure reference
+ string qual_var_name = ib_var_ref + "." + mbr_name;
+ // If using pull-model interpolation, need to add a call to the correct interpolation method.
+ if (storage == StorageClassInput && pull_model_inputs.count(var.self))
+ {
+ if (is_centroid)
+ qual_var_name += ".interpolate_at_centroid()";
+ else if (is_sample)
+ qual_var_name += join(".interpolate_at_sample(", to_expression(builtin_sample_id_id), ")");
+ else
+ qual_var_name += ".interpolate_at_center()";
+ }
+
+ bool flatten_stage_out = false;
+ string var_chain = var_chain_qual + "." + to_member_name(var_type, mbr_idx);
+ if (is_builtin && !meta.strip_array)
+ {
+ // For the builtin gl_PerVertex, we cannot treat it as a block anyways,
+ // so redirect to qualified name.
+ set_member_qualified_name(var_type.self, mbr_idx, qual_var_name);
+ }
+ else if (!meta.strip_array && meta.allow_local_declaration)
+ {
+ // Unflatten or flatten from [[stage_in]] or [[stage_out]] as appropriate.
+ switch (storage)
+ {
+ case StorageClassInput:
+ entry_func.fixup_hooks_in.push_back([=]() {
+ statement(var_chain, " = ", qual_var_name, ";");
+ });
+ break;
+
+ case StorageClassOutput:
+ flatten_stage_out = true;
+ entry_func.fixup_hooks_out.push_back([=]() {
+ statement(qual_var_name, " = ", var_chain, ";");
+ });
+ break;
+
+ default:
+ break;
+ }
+ }
+
+ // Once we determine the location of the first member within nested structures,
+ // from a var of the topmost structure, the remaining flattened members of
+ // the nested structures will have consecutive location values. At this point,
+ // we've recursively tunnelled into structs, arrays, and matrices, and are
+ // down to a single location for each member now.
+ if (!is_builtin && location != UINT32_MAX)
+ {
+ set_member_decoration(ib_type.self, ib_mbr_idx, DecorationLocation, location);
+ mark_location_as_used_by_shader(location, get<SPIRType>(mbr_type_id), storage);
+ location += type_to_location_count(get<SPIRType>(mbr_type_id));
+ }
+ else if (has_member_decoration(var_type.self, mbr_idx, DecorationLocation))
+ {
+ location = get_member_decoration(var_type.self, mbr_idx, DecorationLocation);
+ uint32_t comp = get_member_decoration(var_type.self, mbr_idx, DecorationComponent);
+ if (storage == StorageClassInput)
+ {
+ mbr_type_id = ensure_correct_input_type(mbr_type_id, location, comp, 0, meta.strip_array);
+ var_type.member_types[mbr_idx] = mbr_type_id;
+ if (storage == StorageClassInput && pull_model_inputs.count(var.self))
+ ib_type.member_types[ib_mbr_idx] = build_msl_interpolant_type(mbr_type_id, is_noperspective);
+ else
+ ib_type.member_types[ib_mbr_idx] = mbr_type_id;
+ }
+ set_member_decoration(ib_type.self, ib_mbr_idx, DecorationLocation, location);
+ mark_location_as_used_by_shader(location, get<SPIRType>(mbr_type_id), storage);
+ location += type_to_location_count(get<SPIRType>(mbr_type_id));
+ }
+ else if (has_decoration(var.self, DecorationLocation))
+ {
+ location = get_accumulated_member_location(var, mbr_idx, meta.strip_array);
+ if (storage == StorageClassInput)
+ {
+ mbr_type_id = ensure_correct_input_type(mbr_type_id, location, 0, 0, meta.strip_array);
+ var_type.member_types[mbr_idx] = mbr_type_id;
+ if (storage == StorageClassInput && pull_model_inputs.count(var.self))
+ ib_type.member_types[ib_mbr_idx] = build_msl_interpolant_type(mbr_type_id, is_noperspective);
+ else
+ ib_type.member_types[ib_mbr_idx] = mbr_type_id;
+ }
+ set_member_decoration(ib_type.self, ib_mbr_idx, DecorationLocation, location);
+ mark_location_as_used_by_shader(location, get<SPIRType>(mbr_type_id), storage);
+ location += type_to_location_count(get<SPIRType>(mbr_type_id));
+ }
+ else if (is_builtin && is_tessellation_shader() && storage == StorageClassInput && inputs_by_builtin.count(builtin))
+ {
+ location = inputs_by_builtin[builtin].location;
+ set_member_decoration(ib_type.self, ib_mbr_idx, DecorationLocation, location);
+ mark_location_as_used_by_shader(location, get<SPIRType>(mbr_type_id), storage);
+ location += type_to_location_count(get<SPIRType>(mbr_type_id));
+ }
+ else if (is_builtin && capture_output_to_buffer && storage == StorageClassOutput && outputs_by_builtin.count(builtin))
+ {
+ location = outputs_by_builtin[builtin].location;
+ set_member_decoration(ib_type.self, ib_mbr_idx, DecorationLocation, location);
+ mark_location_as_used_by_shader(location, get<SPIRType>(mbr_type_id), storage);
+ location += type_to_location_count(get<SPIRType>(mbr_type_id));
+ }
+
+ // Copy the component location, if present.
+ if (has_member_decoration(var_type.self, mbr_idx, DecorationComponent))
+ {
+ uint32_t comp = get_member_decoration(var_type.self, mbr_idx, DecorationComponent);
+ set_member_decoration(ib_type.self, ib_mbr_idx, DecorationComponent, comp);
+ }
+
+ // Mark the member as builtin if needed
+ if (is_builtin)
+ {
+ set_member_decoration(ib_type.self, ib_mbr_idx, DecorationBuiltIn, builtin);
+ if (builtin == BuiltInPosition && storage == StorageClassOutput)
+ qual_pos_var_name = qual_var_name;
+ }
+
+ const SPIRConstant *c = nullptr;
+ if (!flatten_stage_out && var.storage == StorageClassOutput &&
+ var.initializer != ID(0) && (c = maybe_get<SPIRConstant>(var.initializer)))
+ {
+ if (meta.strip_array)
+ {
+ entry_func.fixup_hooks_in.push_back([=, &var]() {
+ auto &type = this->get<SPIRType>(var.basetype);
+ uint32_t index = get_extended_member_decoration(var.self, mbr_idx, SPIRVCrossDecorationInterfaceMemberIndex);
+
+ auto invocation = to_tesc_invocation_id();
+ auto constant_chain = join(to_expression(var.initializer), "[", invocation, "]");
+ statement(to_expression(stage_out_ptr_var_id), "[",
+ invocation, "].",
+ to_member_name(ib_type, index), " = ",
+ constant_chain, ".", to_member_name(type, mbr_idx), ";");
+ });
+ }
+ else
+ {
+ entry_func.fixup_hooks_in.push_back([=]() {
+ statement(qual_var_name, " = ", constant_expression(
+ this->get<SPIRConstant>(c->subconstants[mbr_idx])), ";");
+ });
+ }
+ }
+
+ if (storage != StorageClassInput || !pull_model_inputs.count(var.self))
+ {
+ // Copy interpolation decorations if needed
+ if (is_flat)
+ set_member_decoration(ib_type.self, ib_mbr_idx, DecorationFlat);
+ if (is_noperspective)
+ set_member_decoration(ib_type.self, ib_mbr_idx, DecorationNoPerspective);
+ if (is_centroid)
+ set_member_decoration(ib_type.self, ib_mbr_idx, DecorationCentroid);
+ if (is_sample)
+ set_member_decoration(ib_type.self, ib_mbr_idx, DecorationSample);
+ }
+
+ set_extended_member_decoration(ib_type.self, ib_mbr_idx, SPIRVCrossDecorationInterfaceOrigID, var.self);
+ set_extended_member_decoration(ib_type.self, ib_mbr_idx, SPIRVCrossDecorationInterfaceMemberIndex, var_mbr_idx);
+}
+
+// In Metal, the tessellation levels are stored as tightly packed half-precision floating point values.
+// But, stage-in attribute offsets and strides must be multiples of four, so we can't pass the levels
+// individually. Therefore, we must pass them as vectors. Triangles get a single float4, with the outer
+// levels in 'xyz' and the inner level in 'w'. Quads get a float4 containing the outer levels and a
+// float2 containing the inner levels.
+void CompilerMSL::add_tess_level_input_to_interface_block(const std::string &ib_var_ref, SPIRType &ib_type,
+ SPIRVariable &var)
+{
+ auto &var_type = get_variable_element_type(var);
+
+ BuiltIn builtin = BuiltIn(get_decoration(var.self, DecorationBuiltIn));
+ bool triangles = is_tessellating_triangles();
+ string mbr_name;
+
+ // Add a reference to the variable type to the interface struct.
+ uint32_t ib_mbr_idx = uint32_t(ib_type.member_types.size());
+
+ const auto mark_locations = [&](const SPIRType &new_var_type) {
+ if (get_decoration_bitset(var.self).get(DecorationLocation))
+ {
+ uint32_t locn = get_decoration(var.self, DecorationLocation);
+ set_member_decoration(ib_type.self, ib_mbr_idx, DecorationLocation, locn);
+ mark_location_as_used_by_shader(locn, new_var_type, StorageClassInput);
+ }
+ else if (inputs_by_builtin.count(builtin))
+ {
+ uint32_t locn = inputs_by_builtin[builtin].location;
+ set_member_decoration(ib_type.self, ib_mbr_idx, DecorationLocation, locn);
+ mark_location_as_used_by_shader(locn, new_var_type, StorageClassInput);
+ }
+ };
+
+ if (triangles)
+ {
+ // Triangles are tricky, because we want only one member in the struct.
+ mbr_name = "gl_TessLevel";
+
+ // If we already added the other one, we can skip this step.
+ if (!added_builtin_tess_level)
+ {
+ uint32_t type_id = build_extended_vector_type(var_type.self, 4);
+
+ ib_type.member_types.push_back(type_id);
+
+ // Give the member a name
+ set_member_name(ib_type.self, ib_mbr_idx, mbr_name);
+
+ // We cannot decorate both, but the important part is that
+ // it's marked as builtin so we can get automatic attribute assignment if needed.
+ set_member_decoration(ib_type.self, ib_mbr_idx, DecorationBuiltIn, builtin);
+
+ mark_locations(var_type);
+ added_builtin_tess_level = true;
+ }
+ }
+ else
+ {
+ mbr_name = builtin_to_glsl(builtin, StorageClassFunction);
+
+ uint32_t type_id = build_extended_vector_type(var_type.self, builtin == BuiltInTessLevelOuter ? 4 : 2);
+
+ uint32_t ptr_type_id = ir.increase_bound_by(1);
+ auto &new_var_type = set<SPIRType>(ptr_type_id, get<SPIRType>(type_id));
+ new_var_type.pointer = true;
+ new_var_type.pointer_depth++;
+ new_var_type.storage = StorageClassInput;
+ new_var_type.parent_type = type_id;
+
+ ib_type.member_types.push_back(type_id);
+
+ // Give the member a name
+ set_member_name(ib_type.self, ib_mbr_idx, mbr_name);
+ set_member_decoration(ib_type.self, ib_mbr_idx, DecorationBuiltIn, builtin);
+
+ mark_locations(new_var_type);
+ }
+
+ add_tess_level_input(ib_var_ref, mbr_name, var);
+}
+
+void CompilerMSL::add_tess_level_input(const std::string &base_ref, const std::string &mbr_name, SPIRVariable &var)
+{
+ auto &entry_func = get<SPIRFunction>(ir.default_entry_point);
+ BuiltIn builtin = BuiltIn(get_decoration(var.self, DecorationBuiltIn));
+
+ // Force the variable to have the proper name.
+ string var_name = builtin_to_glsl(builtin, StorageClassFunction);
+ set_name(var.self, var_name);
+
+ // We need to declare the variable early and at entry-point scope.
+ entry_func.add_local_variable(var.self);
+ vars_needing_early_declaration.push_back(var.self);
+ bool triangles = is_tessellating_triangles();
+
+ if (builtin == BuiltInTessLevelOuter)
+ {
+ entry_func.fixup_hooks_in.push_back(
+ [=]()
+ {
+ statement(var_name, "[0] = ", base_ref, ".", mbr_name, "[0];");
+ statement(var_name, "[1] = ", base_ref, ".", mbr_name, "[1];");
+ statement(var_name, "[2] = ", base_ref, ".", mbr_name, "[2];");
+ if (!triangles)
+ statement(var_name, "[3] = ", base_ref, ".", mbr_name, "[3];");
+ });
+ }
+ else
+ {
+ entry_func.fixup_hooks_in.push_back([=]() {
+ if (triangles)
+ {
+ if (msl_options.raw_buffer_tese_input)
+ statement(var_name, "[0] = ", base_ref, ".", mbr_name, ";");
+ else
+ statement(var_name, "[0] = ", base_ref, ".", mbr_name, "[3];");
+ }
+ else
+ {
+ statement(var_name, "[0] = ", base_ref, ".", mbr_name, "[0];");
+ statement(var_name, "[1] = ", base_ref, ".", mbr_name, "[1];");
+ }
+ });
+ }
+}
+
+bool CompilerMSL::variable_storage_requires_stage_io(spv::StorageClass storage) const
+{
+ if (storage == StorageClassOutput)
+ return !capture_output_to_buffer;
+ else if (storage == StorageClassInput)
+ return !(is_tesc_shader() && msl_options.multi_patch_workgroup) &&
+ !(is_tese_shader() && msl_options.raw_buffer_tese_input);
+ else
+ return false;
+}
+
+string CompilerMSL::to_tesc_invocation_id()
+{
+ if (msl_options.multi_patch_workgroup)
+ {
+ // n.b. builtin_invocation_id_id here is the dispatch global invocation ID,
+ // not the TC invocation ID.
+ return join(to_expression(builtin_invocation_id_id), ".x % ", get_entry_point().output_vertices);
+ }
+ else
+ return builtin_to_glsl(BuiltInInvocationId, StorageClassInput);
+}
+
+void CompilerMSL::emit_local_masked_variable(const SPIRVariable &masked_var, bool strip_array)
+{
+ auto &entry_func = get<SPIRFunction>(ir.default_entry_point);
+ bool threadgroup_storage = variable_decl_is_remapped_storage(masked_var, StorageClassWorkgroup);
+
+ if (threadgroup_storage && msl_options.multi_patch_workgroup)
+ {
+ // We need one threadgroup block per patch, so fake this.
+ entry_func.fixup_hooks_in.push_back([this, &masked_var]() {
+ auto &type = get_variable_data_type(masked_var);
+ add_local_variable_name(masked_var.self);
+
+ const uint32_t max_control_points_per_patch = 32u;
+ uint32_t max_num_instances =
+ (max_control_points_per_patch + get_entry_point().output_vertices - 1u) /
+ get_entry_point().output_vertices;
+ statement("threadgroup ", type_to_glsl(type), " ",
+ "spvStorage", to_name(masked_var.self), "[", max_num_instances, "]",
+ type_to_array_glsl(type, 0), ";");
+
+ // Assign a threadgroup slice to each PrimitiveID.
+ // We assume here that workgroup size is rounded to 32,
+ // since that's the maximum number of control points per patch.
+ // We cannot size the array based on fixed dispatch parameters,
+ // since Metal does not allow that. :(
+ // FIXME: We will likely need an option to support passing down target workgroup size,
+ // so we can emit appropriate size here.
+ statement("threadgroup auto ",
+ "&", to_name(masked_var.self),
+ " = spvStorage", to_name(masked_var.self), "[",
+ "(", to_expression(builtin_invocation_id_id), ".x / ",
+ get_entry_point().output_vertices, ") % ",
+ max_num_instances, "];");
+ });
+ }
+ else
+ {
+ entry_func.add_local_variable(masked_var.self);
+ }
+
+ if (!threadgroup_storage)
+ {
+ vars_needing_early_declaration.push_back(masked_var.self);
+ }
+ else if (masked_var.initializer)
+ {
+ // Cannot directly initialize threadgroup variables. Need fixup hooks.
+ ID initializer = masked_var.initializer;
+ if (strip_array)
+ {
+ entry_func.fixup_hooks_in.push_back([this, &masked_var, initializer]() {
+ auto invocation = to_tesc_invocation_id();
+ statement(to_expression(masked_var.self), "[",
+ invocation, "] = ",
+ to_expression(initializer), "[",
+ invocation, "];");
+ });
+ }
+ else
+ {
+ entry_func.fixup_hooks_in.push_back([this, &masked_var, initializer]() {
+ statement(to_expression(masked_var.self), " = ", to_expression(initializer), ";");
+ });
+ }
+ }
+}
+
+void CompilerMSL::add_variable_to_interface_block(StorageClass storage, const string &ib_var_ref, SPIRType &ib_type,
+ SPIRVariable &var, InterfaceBlockMeta &meta)
+{
+ auto &entry_func = get<SPIRFunction>(ir.default_entry_point);
+ // Tessellation control I/O variables and tessellation evaluation per-point inputs are
+ // usually declared as arrays. In these cases, we want to add the element type to the
+ // interface block, since in Metal it's the interface block itself which is arrayed.
+ auto &var_type = meta.strip_array ? get_variable_element_type(var) : get_variable_data_type(var);
+ bool is_builtin = is_builtin_variable(var);
+ auto builtin = BuiltIn(get_decoration(var.self, DecorationBuiltIn));
+ bool is_block = has_decoration(var_type.self, DecorationBlock);
+
+ // If stage variables are masked out, emit them as plain variables instead.
+ // For builtins, we query them one by one later.
+ // IO blocks are not masked here, we need to mask them per-member instead.
+ if (storage == StorageClassOutput && is_stage_output_variable_masked(var))
+ {
+ // If we ignore an output, we must still emit it, since it might be used by app.
+ // Instead, just emit it as early declaration.
+ emit_local_masked_variable(var, meta.strip_array);
+ return;
+ }
+
+ if (storage == StorageClassInput && has_decoration(var.self, DecorationPerVertexKHR))
+ SPIRV_CROSS_THROW("PerVertexKHR decoration is not supported in MSL.");
+
+ // If variable names alias, they will end up with wrong names in the interface struct, because
+ // there might be aliases in the member name cache and there would be a mismatch in fixup_in code.
+ // Make sure to register the variables as unique resource names ahead of time.
+ // This would normally conflict with the name cache when emitting local variables,
+ // but this happens in the setup stage, before we hit compilation loops.
+ // The name cache is cleared before we actually emit code, so this is safe.
+ add_resource_name(var.self);
+
+ if (var_type.basetype == SPIRType::Struct)
+ {
+ bool block_requires_flattening =
+ variable_storage_requires_stage_io(storage) || (is_block && var_type.array.empty());
+ bool needs_local_declaration = !is_builtin && block_requires_flattening && meta.allow_local_declaration;
+
+ if (needs_local_declaration)
+ {
+ // For I/O blocks or structs, we will need to pass the block itself around
+ // to functions if they are used globally in leaf functions.
+ // Rather than passing down member by member,
+ // we unflatten I/O blocks while running the shader,
+ // and pass the actual struct type down to leaf functions.
+ // We then unflatten inputs, and flatten outputs in the "fixup" stages.
+ emit_local_masked_variable(var, meta.strip_array);
+ }
+
+ if (!block_requires_flattening)
+ {
+ // In Metal tessellation shaders, the interface block itself is arrayed. This makes things
+ // very complicated, since stage-in structures in MSL don't support nested structures.
+ // Luckily, for stage-out when capturing output, we can avoid this and just add
+ // composite members directly, because the stage-out structure is stored to a buffer,
+ // not returned.
+ add_plain_variable_to_interface_block(storage, ib_var_ref, ib_type, var, meta);
+ }
+ else
+ {
+ bool masked_block = false;
+ uint32_t location = UINT32_MAX;
+ uint32_t var_mbr_idx = 0;
+ uint32_t elem_cnt = 1;
+ if (is_matrix(var_type))
+ {
+ if (is_array(var_type))
+ SPIRV_CROSS_THROW("MSL cannot emit arrays-of-matrices in input and output variables.");
+
+ elem_cnt = var_type.columns;
+ }
+ else if (is_array(var_type))
+ {
+ if (var_type.array.size() != 1)
+ SPIRV_CROSS_THROW("MSL cannot emit arrays-of-arrays in input and output variables.");
+
+ elem_cnt = to_array_size_literal(var_type);
+ }
+
+ for (uint32_t elem_idx = 0; elem_idx < elem_cnt; elem_idx++)
+ {
+ // Flatten the struct members into the interface struct
+ for (uint32_t mbr_idx = 0; mbr_idx < uint32_t(var_type.member_types.size()); mbr_idx++)
+ {
+ builtin = BuiltInMax;
+ is_builtin = is_member_builtin(var_type, mbr_idx, &builtin);
+ auto &mbr_type = get<SPIRType>(var_type.member_types[mbr_idx]);
+
+ if (storage == StorageClassOutput && is_stage_output_block_member_masked(var, mbr_idx, meta.strip_array))
+ {
+ location = UINT32_MAX; // Skip this member and resolve location again on next var member
+
+ if (is_block)
+ masked_block = true;
+
+ // Non-builtin block output variables are just ignored, since they will still access
+ // the block variable as-is. They're just not flattened.
+ if (is_builtin && !meta.strip_array)
+ {
+ // Emit a fake variable instead.
+ uint32_t ids = ir.increase_bound_by(2);
+ uint32_t ptr_type_id = ids + 0;
+ uint32_t var_id = ids + 1;
+
+ auto ptr_type = mbr_type;
+ ptr_type.pointer = true;
+ ptr_type.pointer_depth++;
+ ptr_type.parent_type = var_type.member_types[mbr_idx];
+ ptr_type.storage = StorageClassOutput;
+
+ uint32_t initializer = 0;
+ if (var.initializer)
+ if (auto *c = maybe_get<SPIRConstant>(var.initializer))
+ initializer = c->subconstants[mbr_idx];
+
+ set<SPIRType>(ptr_type_id, ptr_type);
+ set<SPIRVariable>(var_id, ptr_type_id, StorageClassOutput, initializer);
+ entry_func.add_local_variable(var_id);
+ vars_needing_early_declaration.push_back(var_id);
+ set_name(var_id, builtin_to_glsl(builtin, StorageClassOutput));
+ set_decoration(var_id, DecorationBuiltIn, builtin);
+ }
+ }
+ else if (!is_builtin || has_active_builtin(builtin, storage))
+ {
+ bool is_composite_type = is_matrix(mbr_type) || is_array(mbr_type) || mbr_type.basetype == SPIRType::Struct;
+ bool attribute_load_store =
+ storage == StorageClassInput && get_execution_model() != ExecutionModelFragment;
+ bool storage_is_stage_io = variable_storage_requires_stage_io(storage);
+
+ // Clip/CullDistance always need to be declared as user attributes.
+ if (builtin == BuiltInClipDistance || builtin == BuiltInCullDistance)
+ is_builtin = false;
+
+ const string var_name = to_name(var.self);
+ string mbr_name_qual = var_name;
+ string var_chain_qual = var_name;
+ if (elem_cnt > 1)
+ {
+ mbr_name_qual += join("_", elem_idx);
+ var_chain_qual += join("[", elem_idx, "]");
+ }
+
+ if ((!is_builtin || attribute_load_store) && storage_is_stage_io && is_composite_type)
+ {
+ add_composite_member_variable_to_interface_block(storage, ib_var_ref, ib_type,
+ var, var_type, mbr_idx, meta,
+ mbr_name_qual, var_chain_qual,
+ location, var_mbr_idx, {});
+ }
+ else
+ {
+ add_plain_member_variable_to_interface_block(storage, ib_var_ref, ib_type,
+ var, var_type, mbr_idx, meta,
+ mbr_name_qual, var_chain_qual,
+ location, var_mbr_idx);
+ }
+ }
+ var_mbr_idx++;
+ }
+ }
+
+ // If we're redirecting a block, we might still need to access the original block
+ // variable if we're masking some members.
+ if (masked_block && !needs_local_declaration && (!is_builtin_variable(var) || is_tesc_shader()))
+ {
+ if (is_builtin_variable(var))
+ {
+ // Ensure correct names for the block members if we're actually going to
+ // declare gl_PerVertex.
+ for (uint32_t mbr_idx = 0; mbr_idx < uint32_t(var_type.member_types.size()); mbr_idx++)
+ {
+ set_member_name(var_type.self, mbr_idx, builtin_to_glsl(
+ BuiltIn(get_member_decoration(var_type.self, mbr_idx, DecorationBuiltIn)),
+ StorageClassOutput));
+ }
+
+ set_name(var_type.self, "gl_PerVertex");
+ set_name(var.self, "gl_out_masked");
+ stage_out_masked_builtin_type_id = var_type.self;
+ }
+ emit_local_masked_variable(var, meta.strip_array);
+ }
+ }
+ }
+ else if (is_tese_shader() && storage == StorageClassInput && !meta.strip_array && is_builtin &&
+ (builtin == BuiltInTessLevelOuter || builtin == BuiltInTessLevelInner))
+ {
+ add_tess_level_input_to_interface_block(ib_var_ref, ib_type, var);
+ }
+ else if (var_type.basetype == SPIRType::Boolean || var_type.basetype == SPIRType::Char ||
+ type_is_integral(var_type) || type_is_floating_point(var_type))
+ {
+ if (!is_builtin || has_active_builtin(builtin, storage))
+ {
+ bool is_composite_type = is_matrix(var_type) || is_array(var_type);
+ bool storage_is_stage_io = variable_storage_requires_stage_io(storage);
+ bool attribute_load_store = storage == StorageClassInput && get_execution_model() != ExecutionModelFragment;
+
+ // Clip/CullDistance always needs to be declared as user attributes.
+ if (builtin == BuiltInClipDistance || builtin == BuiltInCullDistance)
+ is_builtin = false;
+
+ // MSL does not allow matrices or arrays in input or output variables, so need to handle it specially.
+ if ((!is_builtin || attribute_load_store) && storage_is_stage_io && is_composite_type)
+ {
+ add_composite_variable_to_interface_block(storage, ib_var_ref, ib_type, var, meta);
+ }
+ else
+ {
+ add_plain_variable_to_interface_block(storage, ib_var_ref, ib_type, var, meta);
+ }
+ }
+ }
+}
+
+// Fix up the mapping of variables to interface member indices, which is used to compile access chains
+// for per-vertex variables in a tessellation control shader.
+void CompilerMSL::fix_up_interface_member_indices(StorageClass storage, uint32_t ib_type_id)
+{
+ // Only needed for tessellation shaders and pull-model interpolants.
+ // Need to redirect interface indices back to variables themselves.
+ // For structs, each member of the struct need a separate instance.
+ if (!is_tesc_shader() && !(is_tese_shader() && storage == StorageClassInput) &&
+ !(get_execution_model() == ExecutionModelFragment && storage == StorageClassInput &&
+ !pull_model_inputs.empty()))
+ return;
+
+ auto mbr_cnt = uint32_t(ir.meta[ib_type_id].members.size());
+ for (uint32_t i = 0; i < mbr_cnt; i++)
+ {
+ uint32_t var_id = get_extended_member_decoration(ib_type_id, i, SPIRVCrossDecorationInterfaceOrigID);
+ if (!var_id)
+ continue;
+ auto &var = get<SPIRVariable>(var_id);
+
+ auto &type = get_variable_element_type(var);
+
+ bool flatten_composites = variable_storage_requires_stage_io(var.storage);
+ bool is_block = has_decoration(type.self, DecorationBlock);
+
+ uint32_t mbr_idx = uint32_t(-1);
+ if (type.basetype == SPIRType::Struct && (flatten_composites || is_block))
+ mbr_idx = get_extended_member_decoration(ib_type_id, i, SPIRVCrossDecorationInterfaceMemberIndex);
+
+ if (mbr_idx != uint32_t(-1))
+ {
+ // Only set the lowest InterfaceMemberIndex for each variable member.
+ // IB struct members will be emitted in-order w.r.t. interface member index.
+ if (!has_extended_member_decoration(var_id, mbr_idx, SPIRVCrossDecorationInterfaceMemberIndex))
+ set_extended_member_decoration(var_id, mbr_idx, SPIRVCrossDecorationInterfaceMemberIndex, i);
+ }
+ else
+ {
+ // Only set the lowest InterfaceMemberIndex for each variable.
+ // IB struct members will be emitted in-order w.r.t. interface member index.
+ if (!has_extended_decoration(var_id, SPIRVCrossDecorationInterfaceMemberIndex))
+ set_extended_decoration(var_id, SPIRVCrossDecorationInterfaceMemberIndex, i);
+ }
+ }
+}
+
+// Add an interface structure for the type of storage, which is either StorageClassInput or StorageClassOutput.
+// Returns the ID of the newly added variable, or zero if no variable was added.
+uint32_t CompilerMSL::add_interface_block(StorageClass storage, bool patch)
+{
+ // Accumulate the variables that should appear in the interface struct.
+ SmallVector<SPIRVariable *> vars;
+ bool incl_builtins = storage == StorageClassOutput || is_tessellation_shader();
+ bool has_seen_barycentric = false;
+
+ InterfaceBlockMeta meta;
+
+ // Varying interfaces between stages which use "user()" attribute can be dealt with
+ // without explicit packing and unpacking of components. For any variables which link against the runtime
+ // in some way (vertex attributes, fragment output, etc), we'll need to deal with it somehow.
+ bool pack_components =
+ (storage == StorageClassInput && get_execution_model() == ExecutionModelVertex) ||
+ (storage == StorageClassOutput && get_execution_model() == ExecutionModelFragment) ||
+ (storage == StorageClassOutput && get_execution_model() == ExecutionModelVertex && capture_output_to_buffer);
+
+ ir.for_each_typed_id<SPIRVariable>([&](uint32_t var_id, SPIRVariable &var) {
+ if (var.storage != storage)
+ return;
+
+ auto &type = this->get<SPIRType>(var.basetype);
+
+ bool is_builtin = is_builtin_variable(var);
+ bool is_block = has_decoration(type.self, DecorationBlock);
+
+ auto bi_type = BuiltInMax;
+ bool builtin_is_gl_in_out = false;
+ if (is_builtin && !is_block)
+ {
+ bi_type = BuiltIn(get_decoration(var_id, DecorationBuiltIn));
+ builtin_is_gl_in_out = bi_type == BuiltInPosition || bi_type == BuiltInPointSize ||
+ bi_type == BuiltInClipDistance || bi_type == BuiltInCullDistance;
+ }
+
+ if (is_builtin && is_block)
+ builtin_is_gl_in_out = true;
+
+ uint32_t location = get_decoration(var_id, DecorationLocation);
+
+ bool builtin_is_stage_in_out = builtin_is_gl_in_out ||
+ bi_type == BuiltInLayer || bi_type == BuiltInViewportIndex ||
+ bi_type == BuiltInBaryCoordKHR || bi_type == BuiltInBaryCoordNoPerspKHR ||
+ bi_type == BuiltInFragDepth ||
+ bi_type == BuiltInFragStencilRefEXT || bi_type == BuiltInSampleMask;
+
+ // These builtins are part of the stage in/out structs.
+ bool is_interface_block_builtin =
+ builtin_is_stage_in_out || (is_tese_shader() && !msl_options.raw_buffer_tese_input &&
+ (bi_type == BuiltInTessLevelOuter || bi_type == BuiltInTessLevelInner));
+
+ bool is_active = interface_variable_exists_in_entry_point(var.self);
+ if (is_builtin && is_active)
+ {
+ // Only emit the builtin if it's active in this entry point. Interface variable list might lie.
+ if (is_block)
+ {
+ // If any builtin is active, the block is active.
+ uint32_t mbr_cnt = uint32_t(type.member_types.size());
+ for (uint32_t i = 0; !is_active && i < mbr_cnt; i++)
+ is_active = has_active_builtin(BuiltIn(get_member_decoration(type.self, i, DecorationBuiltIn)), storage);
+ }
+ else
+ {
+ is_active = has_active_builtin(bi_type, storage);
+ }
+ }
+
+ bool filter_patch_decoration = (has_decoration(var_id, DecorationPatch) || is_patch_block(type)) == patch;
+
+ bool hidden = is_hidden_variable(var, incl_builtins);
+
+ // ClipDistance is never hidden, we need to emulate it when used as an input.
+ if (bi_type == BuiltInClipDistance || bi_type == BuiltInCullDistance)
+ hidden = false;
+
+ // It's not enough to simply avoid marking fragment outputs if the pipeline won't
+ // accept them. We can't put them in the struct at all, or otherwise the compiler
+ // complains that the outputs weren't explicitly marked.
+ // Frag depth and stencil outputs are incompatible with explicit early fragment tests.
+ // In GLSL, depth and stencil outputs are just ignored when explicit early fragment tests are required.
+ // In Metal, it's a compilation error, so we need to exclude them from the output struct.
+ if (get_execution_model() == ExecutionModelFragment && storage == StorageClassOutput && !patch &&
+ ((is_builtin && ((bi_type == BuiltInFragDepth && (!msl_options.enable_frag_depth_builtin || uses_explicit_early_fragment_test())) ||
+ (bi_type == BuiltInFragStencilRefEXT && (!msl_options.enable_frag_stencil_ref_builtin || uses_explicit_early_fragment_test())))) ||
+ (!is_builtin && !(msl_options.enable_frag_output_mask & (1 << location)))))
+ {
+ hidden = true;
+ disabled_frag_outputs.push_back(var_id);
+ // If a builtin, force it to have the proper name, and mark it as not part of the output struct.
+ if (is_builtin)
+ {
+ set_name(var_id, builtin_to_glsl(bi_type, StorageClassFunction));
+ mask_stage_output_by_builtin(bi_type);
+ }
+ }
+
+ // Barycentric inputs must be emitted in stage-in, because they can have interpolation arguments.
+ if (is_active && (bi_type == BuiltInBaryCoordKHR || bi_type == BuiltInBaryCoordNoPerspKHR))
+ {
+ if (has_seen_barycentric)
+ SPIRV_CROSS_THROW("Cannot declare both BaryCoordNV and BaryCoordNoPerspNV in same shader in MSL.");
+ has_seen_barycentric = true;
+ hidden = false;
+ }
+
+ if (is_active && !hidden && type.pointer && filter_patch_decoration &&
+ (!is_builtin || is_interface_block_builtin))
+ {
+ vars.push_back(&var);
+
+ if (!is_builtin)
+ {
+ // Need to deal specially with DecorationComponent.
+ // Multiple variables can alias the same Location, and try to make sure each location is declared only once.
+ // We will swizzle data in and out to make this work.
+ // This is only relevant for vertex inputs and fragment outputs.
+ // Technically tessellation as well, but it is too complicated to support.
+ uint32_t component = get_decoration(var_id, DecorationComponent);
+ if (component != 0)
+ {
+ if (is_tessellation_shader())
+ SPIRV_CROSS_THROW("Component decoration is not supported in tessellation shaders.");
+ else if (pack_components)
+ {
+ uint32_t array_size = 1;
+ if (!type.array.empty())
+ array_size = to_array_size_literal(type);
+
+ for (uint32_t location_offset = 0; location_offset < array_size; location_offset++)
+ {
+ auto &location_meta = meta.location_meta[location + location_offset];
+ location_meta.num_components = max<uint32_t>(location_meta.num_components, component + type.vecsize);
+
+ // For variables sharing location, decorations and base type must match.
+ location_meta.base_type_id = type.self;
+ location_meta.flat = has_decoration(var.self, DecorationFlat);
+ location_meta.noperspective = has_decoration(var.self, DecorationNoPerspective);
+ location_meta.centroid = has_decoration(var.self, DecorationCentroid);
+ location_meta.sample = has_decoration(var.self, DecorationSample);
+ }
+ }
+ }
+ }
+ }
+
+ if (is_tese_shader() && msl_options.raw_buffer_tese_input && patch && storage == StorageClassInput &&
+ (bi_type == BuiltInTessLevelOuter || bi_type == BuiltInTessLevelInner))
+ {
+ // In this case, we won't add the builtin to the interface struct,
+ // but we still need the hook to run to populate the arrays.
+ string base_ref = join(tess_factor_buffer_var_name, "[", to_expression(builtin_primitive_id_id), "]");
+ const char *mbr_name =
+ bi_type == BuiltInTessLevelOuter ? "edgeTessellationFactor" : "insideTessellationFactor";
+ add_tess_level_input(base_ref, mbr_name, var);
+ if (inputs_by_builtin.count(bi_type))
+ {
+ uint32_t locn = inputs_by_builtin[bi_type].location;
+ mark_location_as_used_by_shader(locn, type, StorageClassInput);
+ }
+ }
+ });
+
+ // If no variables qualify, leave.
+ // For patch input in a tessellation evaluation shader, the per-vertex stage inputs
+ // are included in a special patch control point array.
+ if (vars.empty() &&
+ !(!msl_options.raw_buffer_tese_input && storage == StorageClassInput && patch && stage_in_var_id))
+ return 0;
+
+ // Add a new typed variable for this interface structure.
+ // The initializer expression is allocated here, but populated when the function
+ // declaraion is emitted, because it is cleared after each compilation pass.
+ uint32_t next_id = ir.increase_bound_by(3);
+ uint32_t ib_type_id = next_id++;
+ auto &ib_type = set<SPIRType>(ib_type_id, OpTypeStruct);
+ ib_type.basetype = SPIRType::Struct;
+ ib_type.storage = storage;
+ set_decoration(ib_type_id, DecorationBlock);
+
+ uint32_t ib_var_id = next_id++;
+ auto &var = set<SPIRVariable>(ib_var_id, ib_type_id, storage, 0);
+ var.initializer = next_id++;
+
+ string ib_var_ref;
+ auto &entry_func = get<SPIRFunction>(ir.default_entry_point);
+ switch (storage)
+ {
+ case StorageClassInput:
+ ib_var_ref = patch ? patch_stage_in_var_name : stage_in_var_name;
+ switch (get_execution_model())
+ {
+ case ExecutionModelTessellationControl:
+ // Add a hook to populate the shared workgroup memory containing the gl_in array.
+ entry_func.fixup_hooks_in.push_back([=]() {
+ // Can't use PatchVertices, PrimitiveId, or InvocationId yet; the hooks for those may not have run yet.
+ if (msl_options.multi_patch_workgroup)
+ {
+ // n.b. builtin_invocation_id_id here is the dispatch global invocation ID,
+ // not the TC invocation ID.
+ statement("device ", to_name(ir.default_entry_point), "_", ib_var_ref, "* gl_in = &",
+ input_buffer_var_name, "[min(", to_expression(builtin_invocation_id_id), ".x / ",
+ get_entry_point().output_vertices,
+ ", spvIndirectParams[1] - 1) * spvIndirectParams[0]];");
+ }
+ else
+ {
+ // It's safe to use InvocationId here because it's directly mapped to a
+ // Metal builtin, and therefore doesn't need a hook.
+ statement("if (", to_expression(builtin_invocation_id_id), " < spvIndirectParams[0])");
+ statement(" ", input_wg_var_name, "[", to_expression(builtin_invocation_id_id),
+ "] = ", ib_var_ref, ";");
+ statement("threadgroup_barrier(mem_flags::mem_threadgroup);");
+ statement("if (", to_expression(builtin_invocation_id_id),
+ " >= ", get_entry_point().output_vertices, ")");
+ statement(" return;");
+ }
+ });
+ break;
+ case ExecutionModelTessellationEvaluation:
+ if (!msl_options.raw_buffer_tese_input)
+ break;
+ if (patch)
+ {
+ entry_func.fixup_hooks_in.push_back(
+ [=]()
+ {
+ statement("const device ", to_name(ir.default_entry_point), "_", ib_var_ref, "& ", ib_var_ref,
+ " = ", patch_input_buffer_var_name, "[", to_expression(builtin_primitive_id_id),
+ "];");
+ });
+ }
+ else
+ {
+ entry_func.fixup_hooks_in.push_back(
+ [=]()
+ {
+ statement("const device ", to_name(ir.default_entry_point), "_", ib_var_ref, "* gl_in = &",
+ input_buffer_var_name, "[", to_expression(builtin_primitive_id_id), " * ",
+ get_entry_point().output_vertices, "];");
+ });
+ }
+ break;
+ default:
+ break;
+ }
+ break;
+
+ case StorageClassOutput:
+ {
+ ib_var_ref = patch ? patch_stage_out_var_name : stage_out_var_name;
+
+ // Add the output interface struct as a local variable to the entry function.
+ // If the entry point should return the output struct, set the entry function
+ // to return the output interface struct, otherwise to return nothing.
+ // Watch out for the rare case where the terminator of the last entry point block is a
+ // Kill, instead of a Return. Based on SPIR-V's block-domination rules, we assume that
+ // any block that has a Kill will also have a terminating Return, except the last block.
+ // Indicate the output var requires early initialization.
+ bool ep_should_return_output = !get_is_rasterization_disabled();
+ uint32_t rtn_id = ep_should_return_output ? ib_var_id : 0;
+ if (!capture_output_to_buffer)
+ {
+ entry_func.add_local_variable(ib_var_id);
+ for (auto &blk_id : entry_func.blocks)
+ {
+ auto &blk = get<SPIRBlock>(blk_id);
+ if (blk.terminator == SPIRBlock::Return || (blk.terminator == SPIRBlock::Kill && blk_id == entry_func.blocks.back()))
+ blk.return_value = rtn_id;
+ }
+ vars_needing_early_declaration.push_back(ib_var_id);
+ }
+ else
+ {
+ switch (get_execution_model())
+ {
+ case ExecutionModelVertex:
+ case ExecutionModelTessellationEvaluation:
+ // Instead of declaring a struct variable to hold the output and then
+ // copying that to the output buffer, we'll declare the output variable
+ // as a reference to the final output element in the buffer. Then we can
+ // avoid the extra copy.
+ entry_func.fixup_hooks_in.push_back([=]() {
+ if (stage_out_var_id)
+ {
+ // The first member of the indirect buffer is always the number of vertices
+ // to draw.
+ // We zero-base the InstanceID & VertexID variables for HLSL emulation elsewhere, so don't do it twice
+ if (get_execution_model() == ExecutionModelVertex && msl_options.vertex_for_tessellation)
+ {
+ statement("device ", to_name(ir.default_entry_point), "_", ib_var_ref, "& ", ib_var_ref,
+ " = ", output_buffer_var_name, "[", to_expression(builtin_invocation_id_id),
+ ".y * ", to_expression(builtin_stage_input_size_id), ".x + ",
+ to_expression(builtin_invocation_id_id), ".x];");
+ }
+ else if (msl_options.enable_base_index_zero)
+ {
+ statement("device ", to_name(ir.default_entry_point), "_", ib_var_ref, "& ", ib_var_ref,
+ " = ", output_buffer_var_name, "[", to_expression(builtin_instance_idx_id),
+ " * spvIndirectParams[0] + ", to_expression(builtin_vertex_idx_id), "];");
+ }
+ else
+ {
+ statement("device ", to_name(ir.default_entry_point), "_", ib_var_ref, "& ", ib_var_ref,
+ " = ", output_buffer_var_name, "[(", to_expression(builtin_instance_idx_id),
+ " - ", to_expression(builtin_base_instance_id), ") * spvIndirectParams[0] + ",
+ to_expression(builtin_vertex_idx_id), " - ",
+ to_expression(builtin_base_vertex_id), "];");
+ }
+ }
+ });
+ break;
+ case ExecutionModelTessellationControl:
+ if (msl_options.multi_patch_workgroup)
+ {
+ // We cannot use PrimitiveId here, because the hook may not have run yet.
+ if (patch)
+ {
+ entry_func.fixup_hooks_in.push_back([=]() {
+ statement("device ", to_name(ir.default_entry_point), "_", ib_var_ref, "& ", ib_var_ref,
+ " = ", patch_output_buffer_var_name, "[", to_expression(builtin_invocation_id_id),
+ ".x / ", get_entry_point().output_vertices, "];");
+ });
+ }
+ else
+ {
+ entry_func.fixup_hooks_in.push_back([=]() {
+ statement("device ", to_name(ir.default_entry_point), "_", ib_var_ref, "* gl_out = &",
+ output_buffer_var_name, "[", to_expression(builtin_invocation_id_id), ".x - ",
+ to_expression(builtin_invocation_id_id), ".x % ",
+ get_entry_point().output_vertices, "];");
+ });
+ }
+ }
+ else
+ {
+ if (patch)
+ {
+ entry_func.fixup_hooks_in.push_back([=]() {
+ statement("device ", to_name(ir.default_entry_point), "_", ib_var_ref, "& ", ib_var_ref,
+ " = ", patch_output_buffer_var_name, "[", to_expression(builtin_primitive_id_id),
+ "];");
+ });
+ }
+ else
+ {
+ entry_func.fixup_hooks_in.push_back([=]() {
+ statement("device ", to_name(ir.default_entry_point), "_", ib_var_ref, "* gl_out = &",
+ output_buffer_var_name, "[", to_expression(builtin_primitive_id_id), " * ",
+ get_entry_point().output_vertices, "];");
+ });
+ }
+ }
+ break;
+ default:
+ break;
+ }
+ }
+ break;
+ }
+
+ default:
+ break;
+ }
+
+ set_name(ib_type_id, to_name(ir.default_entry_point) + "_" + ib_var_ref);
+ set_name(ib_var_id, ib_var_ref);
+
+ for (auto *p_var : vars)
+ {
+ bool strip_array = (is_tesc_shader() || (is_tese_shader() && storage == StorageClassInput)) && !patch;
+
+ // Fixing up flattened stores in TESC is impossible since the memory is group shared either via
+ // device (not masked) or threadgroup (masked) storage classes and it's race condition city.
+ meta.strip_array = strip_array;
+ meta.allow_local_declaration = !strip_array && !(is_tesc_shader() && storage == StorageClassOutput);
+ add_variable_to_interface_block(storage, ib_var_ref, ib_type, *p_var, meta);
+ }
+
+ if (((is_tesc_shader() && msl_options.multi_patch_workgroup) ||
+ (is_tese_shader() && msl_options.raw_buffer_tese_input)) &&
+ storage == StorageClassInput)
+ {
+ // For tessellation inputs, add all outputs from the previous stage to ensure
+ // the struct containing them is the correct size and layout.
+ for (auto &input : inputs_by_location)
+ {
+ if (location_inputs_in_use.count(input.first.location) != 0)
+ continue;
+
+ if (patch != (input.second.rate == MSL_SHADER_VARIABLE_RATE_PER_PATCH))
+ continue;
+
+ // Tessellation levels have their own struct, so there's no need to add them here.
+ if (input.second.builtin == BuiltInTessLevelOuter || input.second.builtin == BuiltInTessLevelInner)
+ continue;
+
+ // Create a fake variable to put at the location.
+ uint32_t offset = ir.increase_bound_by(5);
+ uint32_t type_id = offset;
+ uint32_t vec_type_id = offset + 1;
+ uint32_t array_type_id = offset + 2;
+ uint32_t ptr_type_id = offset + 3;
+ uint32_t var_id = offset + 4;
+
+ SPIRType type { OpTypeInt };
+ switch (input.second.format)
+ {
+ case MSL_SHADER_VARIABLE_FORMAT_UINT16:
+ case MSL_SHADER_VARIABLE_FORMAT_ANY16:
+ type.basetype = SPIRType::UShort;
+ type.width = 16;
+ break;
+ case MSL_SHADER_VARIABLE_FORMAT_ANY32:
+ default:
+ type.basetype = SPIRType::UInt;
+ type.width = 32;
+ break;
+ }
+ set<SPIRType>(type_id, type);
+ if (input.second.vecsize > 1)
+ {
+ type.op = OpTypeVector;
+ type.vecsize = input.second.vecsize;
+ set<SPIRType>(vec_type_id, type);
+ type_id = vec_type_id;
+ }
+
+ type.op = OpTypeArray;
+ type.array.push_back(0);
+ type.array_size_literal.push_back(true);
+ type.parent_type = type_id;
+ set<SPIRType>(array_type_id, type);
+ type.self = type_id;
+
+ type.op = OpTypePointer;
+ type.pointer = true;
+ type.pointer_depth++;
+ type.parent_type = array_type_id;
+ type.storage = storage;
+ auto &ptr_type = set<SPIRType>(ptr_type_id, type);
+ ptr_type.self = array_type_id;
+
+ auto &fake_var = set<SPIRVariable>(var_id, ptr_type_id, storage);
+ set_decoration(var_id, DecorationLocation, input.first.location);
+ if (input.first.component)
+ set_decoration(var_id, DecorationComponent, input.first.component);
+
+ meta.strip_array = true;
+ meta.allow_local_declaration = false;
+ add_variable_to_interface_block(storage, ib_var_ref, ib_type, fake_var, meta);
+ }
+ }
+
+ if (capture_output_to_buffer && storage == StorageClassOutput)
+ {
+ // For captured output, add all inputs from the next stage to ensure
+ // the struct containing them is the correct size and layout. This is
+ // necessary for certain implicit builtins that may nonetheless be read,
+ // even when they aren't written.
+ for (auto &output : outputs_by_location)
+ {
+ if (location_outputs_in_use.count(output.first.location) != 0)
+ continue;
+
+ // Create a fake variable to put at the location.
+ uint32_t offset = ir.increase_bound_by(5);
+ uint32_t type_id = offset;
+ uint32_t vec_type_id = offset + 1;
+ uint32_t array_type_id = offset + 2;
+ uint32_t ptr_type_id = offset + 3;
+ uint32_t var_id = offset + 4;
+
+ SPIRType type { OpTypeInt };
+ switch (output.second.format)
+ {
+ case MSL_SHADER_VARIABLE_FORMAT_UINT16:
+ case MSL_SHADER_VARIABLE_FORMAT_ANY16:
+ type.basetype = SPIRType::UShort;
+ type.width = 16;
+ break;
+ case MSL_SHADER_VARIABLE_FORMAT_ANY32:
+ default:
+ type.basetype = SPIRType::UInt;
+ type.width = 32;
+ break;
+ }
+ set<SPIRType>(type_id, type);
+ if (output.second.vecsize > 1)
+ {
+ type.op = OpTypeVector;
+ type.vecsize = output.second.vecsize;
+ set<SPIRType>(vec_type_id, type);
+ type_id = vec_type_id;
+ }
+
+ if (is_tesc_shader())
+ {
+ type.op = OpTypeArray;
+ type.array.push_back(0);
+ type.array_size_literal.push_back(true);
+ type.parent_type = type_id;
+ set<SPIRType>(array_type_id, type);
+ }
+
+ type.op = OpTypePointer;
+ type.pointer = true;
+ type.pointer_depth++;
+ type.parent_type = is_tesc_shader() ? array_type_id : type_id;
+ type.storage = storage;
+ auto &ptr_type = set<SPIRType>(ptr_type_id, type);
+ ptr_type.self = type.parent_type;
+
+ auto &fake_var = set<SPIRVariable>(var_id, ptr_type_id, storage);
+ set_decoration(var_id, DecorationLocation, output.first.location);
+ if (output.first.component)
+ set_decoration(var_id, DecorationComponent, output.first.component);
+
+ meta.strip_array = true;
+ meta.allow_local_declaration = false;
+ add_variable_to_interface_block(storage, ib_var_ref, ib_type, fake_var, meta);
+ }
+ }
+
+ // When multiple variables need to access same location,
+ // unroll locations one by one and we will flatten output or input as necessary.
+ for (auto &loc : meta.location_meta)
+ {
+ uint32_t location = loc.first;
+ auto &location_meta = loc.second;
+
+ uint32_t ib_mbr_idx = uint32_t(ib_type.member_types.size());
+ uint32_t type_id = build_extended_vector_type(location_meta.base_type_id, location_meta.num_components);
+ ib_type.member_types.push_back(type_id);
+
+ set_member_name(ib_type.self, ib_mbr_idx, join("m_location_", location));
+ set_member_decoration(ib_type.self, ib_mbr_idx, DecorationLocation, location);
+ mark_location_as_used_by_shader(location, get<SPIRType>(type_id), storage);
+
+ if (location_meta.flat)
+ set_member_decoration(ib_type.self, ib_mbr_idx, DecorationFlat);
+ if (location_meta.noperspective)
+ set_member_decoration(ib_type.self, ib_mbr_idx, DecorationNoPerspective);
+ if (location_meta.centroid)
+ set_member_decoration(ib_type.self, ib_mbr_idx, DecorationCentroid);
+ if (location_meta.sample)
+ set_member_decoration(ib_type.self, ib_mbr_idx, DecorationSample);
+ }
+
+ // Sort the members of the structure by their locations.
+ MemberSorter member_sorter(ib_type, ir.meta[ib_type_id], MemberSorter::LocationThenBuiltInType);
+ member_sorter.sort();
+
+ // The member indices were saved to the original variables, but after the members
+ // were sorted, those indices are now likely incorrect. Fix those up now.
+ fix_up_interface_member_indices(storage, ib_type_id);
+
+ // For patch inputs, add one more member, holding the array of control point data.
+ if (is_tese_shader() && !msl_options.raw_buffer_tese_input && storage == StorageClassInput && patch &&
+ stage_in_var_id)
+ {
+ uint32_t pcp_type_id = ir.increase_bound_by(1);
+ auto &pcp_type = set<SPIRType>(pcp_type_id, ib_type);
+ pcp_type.basetype = SPIRType::ControlPointArray;
+ pcp_type.parent_type = pcp_type.type_alias = get_stage_in_struct_type().self;
+ pcp_type.storage = storage;
+ ir.meta[pcp_type_id] = ir.meta[ib_type.self];
+ uint32_t mbr_idx = uint32_t(ib_type.member_types.size());
+ ib_type.member_types.push_back(pcp_type_id);
+ set_member_name(ib_type.self, mbr_idx, "gl_in");
+ }
+
+ if (storage == StorageClassInput)
+ set_decoration(ib_var_id, DecorationNonWritable);
+
+ return ib_var_id;
+}
+
+uint32_t CompilerMSL::add_interface_block_pointer(uint32_t ib_var_id, StorageClass storage)
+{
+ if (!ib_var_id)
+ return 0;
+
+ uint32_t ib_ptr_var_id;
+ uint32_t next_id = ir.increase_bound_by(3);
+ auto &ib_type = expression_type(ib_var_id);
+ if (is_tesc_shader() || (is_tese_shader() && msl_options.raw_buffer_tese_input))
+ {
+ // Tessellation control per-vertex I/O is presented as an array, so we must
+ // do the same with our struct here.
+ uint32_t ib_ptr_type_id = next_id++;
+ auto &ib_ptr_type = set<SPIRType>(ib_ptr_type_id, ib_type);
+ ib_ptr_type.op = OpTypePointer;
+ ib_ptr_type.parent_type = ib_ptr_type.type_alias = ib_type.self;
+ ib_ptr_type.pointer = true;
+ ib_ptr_type.pointer_depth++;
+ ib_ptr_type.storage = storage == StorageClassInput ?
+ ((is_tesc_shader() && msl_options.multi_patch_workgroup) ||
+ (is_tese_shader() && msl_options.raw_buffer_tese_input) ?
+ StorageClassStorageBuffer :
+ StorageClassWorkgroup) :
+ StorageClassStorageBuffer;
+ ir.meta[ib_ptr_type_id] = ir.meta[ib_type.self];
+ // To ensure that get_variable_data_type() doesn't strip off the pointer,
+ // which we need, use another pointer.
+ uint32_t ib_ptr_ptr_type_id = next_id++;
+ auto &ib_ptr_ptr_type = set<SPIRType>(ib_ptr_ptr_type_id, ib_ptr_type);
+ ib_ptr_ptr_type.parent_type = ib_ptr_type_id;
+ ib_ptr_ptr_type.type_alias = ib_type.self;
+ ib_ptr_ptr_type.storage = StorageClassFunction;
+ ir.meta[ib_ptr_ptr_type_id] = ir.meta[ib_type.self];
+
+ ib_ptr_var_id = next_id;
+ set<SPIRVariable>(ib_ptr_var_id, ib_ptr_ptr_type_id, StorageClassFunction, 0);
+ set_name(ib_ptr_var_id, storage == StorageClassInput ? "gl_in" : "gl_out");
+ if (storage == StorageClassInput)
+ set_decoration(ib_ptr_var_id, DecorationNonWritable);
+ }
+ else
+ {
+ // Tessellation evaluation per-vertex inputs are also presented as arrays.
+ // But, in Metal, this array uses a very special type, 'patch_control_point<T>',
+ // which is a container that can be used to access the control point data.
+ // To represent this, a special 'ControlPointArray' type has been added to the
+ // SPIRV-Cross type system. It should only be generated by and seen in the MSL
+ // backend (i.e. this one).
+ uint32_t pcp_type_id = next_id++;
+ auto &pcp_type = set<SPIRType>(pcp_type_id, ib_type);
+ pcp_type.basetype = SPIRType::ControlPointArray;
+ pcp_type.parent_type = pcp_type.type_alias = ib_type.self;
+ pcp_type.storage = storage;
+ ir.meta[pcp_type_id] = ir.meta[ib_type.self];
+
+ ib_ptr_var_id = next_id;
+ set<SPIRVariable>(ib_ptr_var_id, pcp_type_id, storage, 0);
+ set_name(ib_ptr_var_id, "gl_in");
+ ir.meta[ib_ptr_var_id].decoration.qualified_alias = join(patch_stage_in_var_name, ".gl_in");
+ }
+ return ib_ptr_var_id;
+}
+
+// Ensure that the type is compatible with the builtin.
+// If it is, simply return the given type ID.
+// Otherwise, create a new type, and return it's ID.
+uint32_t CompilerMSL::ensure_correct_builtin_type(uint32_t type_id, BuiltIn builtin)
+{
+ auto &type = get<SPIRType>(type_id);
+ auto &pointee_type = get_pointee_type(type);
+
+ if ((builtin == BuiltInSampleMask && is_array(pointee_type)) ||
+ ((builtin == BuiltInLayer || builtin == BuiltInViewportIndex || builtin == BuiltInFragStencilRefEXT) &&
+ pointee_type.basetype != SPIRType::UInt))
+ {
+ uint32_t next_id = ir.increase_bound_by(is_pointer(type) ? 2 : 1);
+ uint32_t base_type_id = next_id++;
+ auto &base_type = set<SPIRType>(base_type_id, OpTypeInt);
+ base_type.basetype = SPIRType::UInt;
+ base_type.width = 32;
+
+ if (!is_pointer(type))
+ return base_type_id;
+
+ uint32_t ptr_type_id = next_id++;
+ auto &ptr_type = set<SPIRType>(ptr_type_id, base_type);
+ ptr_type.op = spv::OpTypePointer;
+ ptr_type.pointer = true;
+ ptr_type.pointer_depth++;
+ ptr_type.storage = type.storage;
+ ptr_type.parent_type = base_type_id;
+ return ptr_type_id;
+ }
+
+ return type_id;
+}
+
+// Ensure that the type is compatible with the shader input.
+// If it is, simply return the given type ID.
+// Otherwise, create a new type, and return its ID.
+uint32_t CompilerMSL::ensure_correct_input_type(uint32_t type_id, uint32_t location, uint32_t component, uint32_t num_components, bool strip_array)
+{
+ auto &type = get<SPIRType>(type_id);
+
+ uint32_t max_array_dimensions = strip_array ? 1 : 0;
+
+ // Struct and array types must match exactly.
+ if (type.basetype == SPIRType::Struct || type.array.size() > max_array_dimensions)
+ return type_id;
+
+ auto p_va = inputs_by_location.find({location, component});
+ if (p_va == end(inputs_by_location))
+ {
+ if (num_components > type.vecsize)
+ return build_extended_vector_type(type_id, num_components);
+ else
+ return type_id;
+ }
+
+ if (num_components == 0)
+ num_components = p_va->second.vecsize;
+
+ switch (p_va->second.format)
+ {
+ case MSL_SHADER_VARIABLE_FORMAT_UINT8:
+ {
+ switch (type.basetype)
+ {
+ case SPIRType::UByte:
+ case SPIRType::UShort:
+ case SPIRType::UInt:
+ if (num_components > type.vecsize)
+ return build_extended_vector_type(type_id, num_components);
+ else
+ return type_id;
+
+ case SPIRType::Short:
+ return build_extended_vector_type(type_id, num_components > type.vecsize ? num_components : type.vecsize,
+ SPIRType::UShort);
+ case SPIRType::Int:
+ return build_extended_vector_type(type_id, num_components > type.vecsize ? num_components : type.vecsize,
+ SPIRType::UInt);
+
+ default:
+ SPIRV_CROSS_THROW("Vertex attribute type mismatch between host and shader");
+ }
+ }
+
+ case MSL_SHADER_VARIABLE_FORMAT_UINT16:
+ {
+ switch (type.basetype)
+ {
+ case SPIRType::UShort:
+ case SPIRType::UInt:
+ if (num_components > type.vecsize)
+ return build_extended_vector_type(type_id, num_components);
+ else
+ return type_id;
+
+ case SPIRType::Int:
+ return build_extended_vector_type(type_id, num_components > type.vecsize ? num_components : type.vecsize,
+ SPIRType::UInt);
+
+ default:
+ SPIRV_CROSS_THROW("Vertex attribute type mismatch between host and shader");
+ }
+ }
+
+ default:
+ if (num_components > type.vecsize)
+ type_id = build_extended_vector_type(type_id, num_components);
+ break;
+ }
+
+ return type_id;
+}
+
+void CompilerMSL::mark_struct_members_packed(const SPIRType &type)
+{
+ // Handle possible recursion when a struct contains a pointer to its own type nested somewhere.
+ if (has_extended_decoration(type.self, SPIRVCrossDecorationPhysicalTypePacked))
+ return;
+
+ set_extended_decoration(type.self, SPIRVCrossDecorationPhysicalTypePacked);
+
+ // Problem case! Struct needs to be placed at an awkward alignment.
+ // Mark every member of the child struct as packed.
+ uint32_t mbr_cnt = uint32_t(type.member_types.size());
+ for (uint32_t i = 0; i < mbr_cnt; i++)
+ {
+ auto &mbr_type = get<SPIRType>(type.member_types[i]);
+ if (mbr_type.basetype == SPIRType::Struct)
+ {
+ // Recursively mark structs as packed.
+ auto *struct_type = &mbr_type;
+ while (!struct_type->array.empty())
+ struct_type = &get<SPIRType>(struct_type->parent_type);
+ mark_struct_members_packed(*struct_type);
+ }
+ else if (!is_scalar(mbr_type))
+ set_extended_member_decoration(type.self, i, SPIRVCrossDecorationPhysicalTypePacked);
+ }
+}
+
+void CompilerMSL::mark_scalar_layout_structs(const SPIRType &type)
+{
+ uint32_t mbr_cnt = uint32_t(type.member_types.size());
+ for (uint32_t i = 0; i < mbr_cnt; i++)
+ {
+ // Handle possible recursion when a struct contains a pointer to its own type nested somewhere.
+ auto &mbr_type = get<SPIRType>(type.member_types[i]);
+ if (mbr_type.basetype == SPIRType::Struct && !(mbr_type.pointer && mbr_type.storage == StorageClassPhysicalStorageBuffer))
+ {
+ auto *struct_type = &mbr_type;
+ while (!struct_type->array.empty())
+ struct_type = &get<SPIRType>(struct_type->parent_type);
+
+ if (has_extended_decoration(struct_type->self, SPIRVCrossDecorationPhysicalTypePacked))
+ continue;
+
+ uint32_t msl_alignment = get_declared_struct_member_alignment_msl(type, i);
+ uint32_t msl_size = get_declared_struct_member_size_msl(type, i);
+ uint32_t spirv_offset = type_struct_member_offset(type, i);
+ uint32_t spirv_offset_next;
+ if (i + 1 < mbr_cnt)
+ spirv_offset_next = type_struct_member_offset(type, i + 1);
+ else
+ spirv_offset_next = spirv_offset + msl_size;
+
+ // Both are complicated cases. In scalar layout, a struct of float3 might just consume 12 bytes,
+ // and the next member will be placed at offset 12.
+ bool struct_is_misaligned = (spirv_offset % msl_alignment) != 0;
+ bool struct_is_too_large = spirv_offset + msl_size > spirv_offset_next;
+ uint32_t array_stride = 0;
+ bool struct_needs_explicit_padding = false;
+
+ // Verify that if a struct is used as an array that ArrayStride matches the effective size of the struct.
+ if (!mbr_type.array.empty())
+ {
+ array_stride = type_struct_member_array_stride(type, i);
+ uint32_t dimensions = uint32_t(mbr_type.array.size() - 1);
+ for (uint32_t dim = 0; dim < dimensions; dim++)
+ {
+ uint32_t array_size = to_array_size_literal(mbr_type, dim);
+ array_stride /= max<uint32_t>(array_size, 1u);
+ }
+
+ // Set expected struct size based on ArrayStride.
+ struct_needs_explicit_padding = true;
+
+ // If struct size is larger than array stride, we might be able to fit, if we tightly pack.
+ if (get_declared_struct_size_msl(*struct_type) > array_stride)
+ struct_is_too_large = true;
+ }
+
+ if (struct_is_misaligned || struct_is_too_large)
+ mark_struct_members_packed(*struct_type);
+ mark_scalar_layout_structs(*struct_type);
+
+ if (struct_needs_explicit_padding)
+ {
+ msl_size = get_declared_struct_size_msl(*struct_type, true, true);
+ if (array_stride < msl_size)
+ {
+ SPIRV_CROSS_THROW("Cannot express an array stride smaller than size of struct type.");
+ }
+ else
+ {
+ if (has_extended_decoration(struct_type->self, SPIRVCrossDecorationPaddingTarget))
+ {
+ if (array_stride !=
+ get_extended_decoration(struct_type->self, SPIRVCrossDecorationPaddingTarget))
+ SPIRV_CROSS_THROW(
+ "A struct is used with different array strides. Cannot express this in MSL.");
+ }
+ else
+ set_extended_decoration(struct_type->self, SPIRVCrossDecorationPaddingTarget, array_stride);
+ }
+ }
+ }
+ }
+}
+
+// Sort the members of the struct type by offset, and pack and then pad members where needed
+// to align MSL members with SPIR-V offsets. The struct members are iterated twice. Packing
+// occurs first, followed by padding, because packing a member reduces both its size and its
+// natural alignment, possibly requiring a padding member to be added ahead of it.
+void CompilerMSL::align_struct(SPIRType &ib_type, unordered_set<uint32_t> &aligned_structs)
+{
+ // We align structs recursively, so stop any redundant work.
+ ID &ib_type_id = ib_type.self;
+ if (aligned_structs.count(ib_type_id))
+ return;
+ aligned_structs.insert(ib_type_id);
+
+ // Sort the members of the interface structure by their offset.
+ // They should already be sorted per SPIR-V spec anyway.
+ MemberSorter member_sorter(ib_type, ir.meta[ib_type_id], MemberSorter::Offset);
+ member_sorter.sort();
+
+ auto mbr_cnt = uint32_t(ib_type.member_types.size());
+
+ for (uint32_t mbr_idx = 0; mbr_idx < mbr_cnt; mbr_idx++)
+ {
+ // Pack any dependent struct types before we pack a parent struct.
+ auto &mbr_type = get<SPIRType>(ib_type.member_types[mbr_idx]);
+ if (mbr_type.basetype == SPIRType::Struct)
+ align_struct(mbr_type, aligned_structs);
+ }
+
+ // Test the alignment of each member, and if a member should be closer to the previous
+ // member than the default spacing expects, it is likely that the previous member is in
+ // a packed format. If so, and the previous member is packable, pack it.
+ // For example ... this applies to any 3-element vector that is followed by a scalar.
+ uint32_t msl_offset = 0;
+ for (uint32_t mbr_idx = 0; mbr_idx < mbr_cnt; mbr_idx++)
+ {
+ // This checks the member in isolation, if the member needs some kind of type remapping to conform to SPIR-V
+ // offsets, array strides and matrix strides.
+ ensure_member_packing_rules_msl(ib_type, mbr_idx);
+
+ // Align current offset to the current member's default alignment. If the member was packed, it will observe
+ // the updated alignment here.
+ uint32_t msl_align_mask = get_declared_struct_member_alignment_msl(ib_type, mbr_idx) - 1;
+ uint32_t aligned_msl_offset = (msl_offset + msl_align_mask) & ~msl_align_mask;
+
+ // Fetch the member offset as declared in the SPIRV.
+ uint32_t spirv_mbr_offset = get_member_decoration(ib_type_id, mbr_idx, DecorationOffset);
+ if (spirv_mbr_offset > aligned_msl_offset)
+ {
+ // Since MSL and SPIR-V have slightly different struct member alignment and
+ // size rules, we'll pad to standard C-packing rules with a char[] array. If the member is farther
+ // away than C-packing, expects, add an inert padding member before the the member.
+ uint32_t padding_bytes = spirv_mbr_offset - aligned_msl_offset;
+ set_extended_member_decoration(ib_type_id, mbr_idx, SPIRVCrossDecorationPaddingTarget, padding_bytes);
+
+ // Re-align as a sanity check that aligning post-padding matches up.
+ msl_offset += padding_bytes;
+ aligned_msl_offset = (msl_offset + msl_align_mask) & ~msl_align_mask;
+ }
+ else if (spirv_mbr_offset < aligned_msl_offset)
+ {
+ // This should not happen, but deal with unexpected scenarios.
+ // It *might* happen if a sub-struct has a larger alignment requirement in MSL than SPIR-V.
+ SPIRV_CROSS_THROW("Cannot represent buffer block correctly in MSL.");
+ }
+
+ assert(aligned_msl_offset == spirv_mbr_offset);
+
+ // Increment the current offset to be positioned immediately after the current member.
+ // Don't do this for the last member since it can be unsized, and it is not relevant for padding purposes here.
+ if (mbr_idx + 1 < mbr_cnt)
+ msl_offset = aligned_msl_offset + get_declared_struct_member_size_msl(ib_type, mbr_idx);
+ }
+}
+
+bool CompilerMSL::validate_member_packing_rules_msl(const SPIRType &type, uint32_t index) const
+{
+ auto &mbr_type = get<SPIRType>(type.member_types[index]);
+ uint32_t spirv_offset = get_member_decoration(type.self, index, DecorationOffset);
+
+ if (index + 1 < type.member_types.size())
+ {
+ // First, we will check offsets. If SPIR-V offset + MSL size > SPIR-V offset of next member,
+ // we *must* perform some kind of remapping, no way getting around it.
+ // We can always pad after this member if necessary, so that case is fine.
+ uint32_t spirv_offset_next = get_member_decoration(type.self, index + 1, DecorationOffset);
+ assert(spirv_offset_next >= spirv_offset);
+ uint32_t maximum_size = spirv_offset_next - spirv_offset;
+ uint32_t msl_mbr_size = get_declared_struct_member_size_msl(type, index);
+ if (msl_mbr_size > maximum_size)
+ return false;
+ }
+
+ if (is_array(mbr_type))
+ {
+ // If we have an array type, array stride must match exactly with SPIR-V.
+
+ // An exception to this requirement is if we have one array element.
+ // This comes from DX scalar layout workaround.
+ // If app tries to be cheeky and access the member out of bounds, this will not work, but this is the best we can do.
+ // In OpAccessChain with logical memory models, access chains must be in-bounds in SPIR-V specification.
+ bool relax_array_stride = mbr_type.array.back() == 1 && mbr_type.array_size_literal.back();
+
+ if (!relax_array_stride)
+ {
+ uint32_t spirv_array_stride = type_struct_member_array_stride(type, index);
+ uint32_t msl_array_stride = get_declared_struct_member_array_stride_msl(type, index);
+ if (spirv_array_stride != msl_array_stride)
+ return false;
+ }
+ }
+
+ if (is_matrix(mbr_type))
+ {
+ // Need to check MatrixStride as well.
+ uint32_t spirv_matrix_stride = type_struct_member_matrix_stride(type, index);
+ uint32_t msl_matrix_stride = get_declared_struct_member_matrix_stride_msl(type, index);
+ if (spirv_matrix_stride != msl_matrix_stride)
+ return false;
+ }
+
+ // Now, we check alignment.
+ uint32_t msl_alignment = get_declared_struct_member_alignment_msl(type, index);
+ if ((spirv_offset % msl_alignment) != 0)
+ return false;
+
+ // We're in the clear.
+ return true;
+}
+
+// Here we need to verify that the member type we declare conforms to Offset, ArrayStride or MatrixStride restrictions.
+// If there is a mismatch, we need to emit remapped types, either normal types, or "packed_X" types.
+// In odd cases we need to emit packed and remapped types, for e.g. weird matrices or arrays with weird array strides.
+void CompilerMSL::ensure_member_packing_rules_msl(SPIRType &ib_type, uint32_t index)
+{
+ if (validate_member_packing_rules_msl(ib_type, index))
+ return;
+
+ // We failed validation.
+ // This case will be nightmare-ish to deal with. This could possibly happen if struct alignment does not quite
+ // match up with what we want. Scalar block layout comes to mind here where we might have to work around the rule
+ // that struct alignment == max alignment of all members and struct size depends on this alignment.
+ // Can't repack structs, but can repack pointers to structs.
+ auto &mbr_type = get<SPIRType>(ib_type.member_types[index]);
+ bool is_buff_ptr = mbr_type.pointer && mbr_type.storage == StorageClassPhysicalStorageBuffer;
+ if (mbr_type.basetype == SPIRType::Struct && !is_buff_ptr)
+ SPIRV_CROSS_THROW("Cannot perform any repacking for structs when it is used as a member of another struct.");
+
+ // Perform remapping here.
+ // There is nothing to be gained by using packed scalars, so don't attempt it.
+ if (!is_scalar(ib_type))
+ set_extended_member_decoration(ib_type.self, index, SPIRVCrossDecorationPhysicalTypePacked);
+
+ // Try validating again, now with packed.
+ if (validate_member_packing_rules_msl(ib_type, index))
+ return;
+
+ // We're in deep trouble, and we need to create a new PhysicalType which matches up with what we expect.
+ // A lot of work goes here ...
+ // We will need remapping on Load and Store to translate the types between Logical and Physical.
+
+ // First, we check if we have small vector std140 array.
+ // We detect this if we have an array of vectors, and array stride is greater than number of elements.
+ if (!mbr_type.array.empty() && !is_matrix(mbr_type))
+ {
+ uint32_t array_stride = type_struct_member_array_stride(ib_type, index);
+
+ // Hack off array-of-arrays until we find the array stride per element we must have to make it work.
+ uint32_t dimensions = uint32_t(mbr_type.array.size() - 1);
+ for (uint32_t dim = 0; dim < dimensions; dim++)
+ array_stride /= max<uint32_t>(to_array_size_literal(mbr_type, dim), 1u);
+
+ // Pointers are 8 bytes
+ uint32_t mbr_width_in_bytes = is_buff_ptr ? 8 : (mbr_type.width / 8);
+ uint32_t elems_per_stride = array_stride / mbr_width_in_bytes;
+
+ if (elems_per_stride == 3)
+ SPIRV_CROSS_THROW("Cannot use ArrayStride of 3 elements in remapping scenarios.");
+ else if (elems_per_stride > 4 && elems_per_stride != 8)
+ SPIRV_CROSS_THROW("Cannot represent vectors with more than 4 elements in MSL.");
+
+ if (elems_per_stride == 8)
+ {
+ if (mbr_type.width == 16)
+ add_spv_func_and_recompile(SPVFuncImplPaddedStd140);
+ else
+ SPIRV_CROSS_THROW("Unexpected type in std140 wide array resolve.");
+ }
+
+ auto physical_type = mbr_type;
+ physical_type.vecsize = elems_per_stride;
+ physical_type.parent_type = 0;
+
+ // If this is a physical buffer pointer, replace type with a ulongn vector.
+ if (is_buff_ptr)
+ {
+ physical_type.width = 64;
+ physical_type.basetype = to_unsigned_basetype(physical_type.width);
+ physical_type.pointer = false;
+ physical_type.pointer_depth = false;
+ physical_type.forward_pointer = false;
+ }
+
+ uint32_t type_id = ir.increase_bound_by(1);
+ set<SPIRType>(type_id, physical_type);
+ set_extended_member_decoration(ib_type.self, index, SPIRVCrossDecorationPhysicalTypeID, type_id);
+ set_decoration(type_id, DecorationArrayStride, array_stride);
+
+ // Remove packed_ for vectors of size 1, 2 and 4.
+ unset_extended_member_decoration(ib_type.self, index, SPIRVCrossDecorationPhysicalTypePacked);
+ }
+ else if (is_matrix(mbr_type))
+ {
+ // MatrixStride might be std140-esque.
+ uint32_t matrix_stride = type_struct_member_matrix_stride(ib_type, index);
+
+ uint32_t elems_per_stride = matrix_stride / (mbr_type.width / 8);
+
+ if (elems_per_stride == 3)
+ SPIRV_CROSS_THROW("Cannot use ArrayStride of 3 elements in remapping scenarios.");
+ else if (elems_per_stride > 4 && elems_per_stride != 8)
+ SPIRV_CROSS_THROW("Cannot represent vectors with more than 4 elements in MSL.");
+
+ if (elems_per_stride == 8)
+ {
+ if (mbr_type.basetype != SPIRType::Half)
+ SPIRV_CROSS_THROW("Unexpected type in std140 wide matrix stride resolve.");
+ add_spv_func_and_recompile(SPVFuncImplPaddedStd140);
+ }
+
+ bool row_major = has_member_decoration(ib_type.self, index, DecorationRowMajor);
+ auto physical_type = mbr_type;
+ physical_type.parent_type = 0;
+
+ if (row_major)
+ physical_type.columns = elems_per_stride;
+ else
+ physical_type.vecsize = elems_per_stride;
+ uint32_t type_id = ir.increase_bound_by(1);
+ set<SPIRType>(type_id, physical_type);
+ set_extended_member_decoration(ib_type.self, index, SPIRVCrossDecorationPhysicalTypeID, type_id);
+
+ // Remove packed_ for vectors of size 1, 2 and 4.
+ unset_extended_member_decoration(ib_type.self, index, SPIRVCrossDecorationPhysicalTypePacked);
+ }
+ else
+ SPIRV_CROSS_THROW("Found a buffer packing case which we cannot represent in MSL.");
+
+ // Try validating again, now with physical type remapping.
+ if (validate_member_packing_rules_msl(ib_type, index))
+ return;
+
+ // We might have a particular odd scalar layout case where the last element of an array
+ // does not take up as much space as the ArrayStride or MatrixStride. This can happen with DX cbuffers.
+ // The "proper" workaround for this is extremely painful and essentially impossible in the edge case of float3[],
+ // so we hack around it by declaring the offending array or matrix with one less array size/col/row,
+ // and rely on padding to get the correct value. We will technically access arrays out of bounds into the padding region,
+ // but it should spill over gracefully without too much trouble. We rely on behavior like this for unsized arrays anyways.
+
+ // E.g. we might observe a physical layout of:
+ // { float2 a[2]; float b; } in cbuffer layout where ArrayStride of a is 16, but offset of b is 24, packed right after a[1] ...
+ uint32_t type_id = get_extended_member_decoration(ib_type.self, index, SPIRVCrossDecorationPhysicalTypeID);
+ auto &type = get<SPIRType>(type_id);
+
+ // Modify the physical type in-place. This is safe since each physical type workaround is a copy.
+ if (is_array(type))
+ {
+ if (type.array.back() > 1)
+ {
+ if (!type.array_size_literal.back())
+ SPIRV_CROSS_THROW("Cannot apply scalar layout workaround with spec constant array size.");
+ type.array.back() -= 1;
+ }
+ else
+ {
+ // We have an array of size 1, so we cannot decrement that. Our only option now is to
+ // force a packed layout instead, and drop the physical type remap since ArrayStride is meaningless now.
+ unset_extended_member_decoration(ib_type.self, index, SPIRVCrossDecorationPhysicalTypeID);
+ set_extended_member_decoration(ib_type.self, index, SPIRVCrossDecorationPhysicalTypePacked);
+ }
+ }
+ else if (is_matrix(type))
+ {
+ bool row_major = has_member_decoration(ib_type.self, index, DecorationRowMajor);
+ if (!row_major)
+ {
+ // Slice off one column. If we only have 2 columns, this might turn the matrix into a vector with one array element instead.
+ if (type.columns > 2)
+ {
+ type.columns--;
+ }
+ else if (type.columns == 2)
+ {
+ type.columns = 1;
+ assert(type.array.empty());
+ type.op = OpTypeArray;
+ type.array.push_back(1);
+ type.array_size_literal.push_back(true);
+ }
+ }
+ else
+ {
+ // Slice off one row. If we only have 2 rows, this might turn the matrix into a vector with one array element instead.
+ if (type.vecsize > 2)
+ {
+ type.vecsize--;
+ }
+ else if (type.vecsize == 2)
+ {
+ type.vecsize = type.columns;
+ type.columns = 1;
+ assert(type.array.empty());
+ type.op = OpTypeArray;
+ type.array.push_back(1);
+ type.array_size_literal.push_back(true);
+ }
+ }
+ }
+
+ // This better validate now, or we must fail gracefully.
+ if (!validate_member_packing_rules_msl(ib_type, index))
+ SPIRV_CROSS_THROW("Found a buffer packing case which we cannot represent in MSL.");
+}
+
+void CompilerMSL::emit_store_statement(uint32_t lhs_expression, uint32_t rhs_expression)
+{
+ auto &type = expression_type(rhs_expression);
+
+ bool lhs_remapped_type = has_extended_decoration(lhs_expression, SPIRVCrossDecorationPhysicalTypeID);
+ bool lhs_packed_type = has_extended_decoration(lhs_expression, SPIRVCrossDecorationPhysicalTypePacked);
+ auto *lhs_e = maybe_get<SPIRExpression>(lhs_expression);
+ auto *rhs_e = maybe_get<SPIRExpression>(rhs_expression);
+
+ bool transpose = lhs_e && lhs_e->need_transpose;
+
+ if (has_decoration(lhs_expression, DecorationBuiltIn) &&
+ BuiltIn(get_decoration(lhs_expression, DecorationBuiltIn)) == BuiltInSampleMask &&
+ is_array(type))
+ {
+ // Storing an array to SampleMask, have to remove the array-ness before storing.
+ statement(to_expression(lhs_expression), " = ", to_enclosed_unpacked_expression(rhs_expression), "[0];");
+ register_write(lhs_expression);
+ }
+ else if (!lhs_remapped_type && !lhs_packed_type)
+ {
+ // No physical type remapping, and no packed type, so can just emit a store directly.
+
+ // We might not be dealing with remapped physical types or packed types,
+ // but we might be doing a clean store to a row-major matrix.
+ // In this case, we just flip transpose states, and emit the store, a transpose must be in the RHS expression, if any.
+ if (is_matrix(type) && lhs_e && lhs_e->need_transpose)
+ {
+ lhs_e->need_transpose = false;
+
+ if (rhs_e && rhs_e->need_transpose)
+ {
+ // Direct copy, but might need to unpack RHS.
+ // Skip the transpose, as we will transpose when writing to LHS and transpose(transpose(T)) == T.
+ rhs_e->need_transpose = false;
+ statement(to_expression(lhs_expression), " = ", to_unpacked_row_major_matrix_expression(rhs_expression),
+ ";");
+ rhs_e->need_transpose = true;
+ }
+ else
+ statement(to_expression(lhs_expression), " = transpose(", to_unpacked_expression(rhs_expression), ");");
+
+ lhs_e->need_transpose = true;
+ register_write(lhs_expression);
+ }
+ else if (lhs_e && lhs_e->need_transpose)
+ {
+ lhs_e->need_transpose = false;
+
+ // Storing a column to a row-major matrix. Unroll the write.
+ for (uint32_t c = 0; c < type.vecsize; c++)
+ {
+ auto lhs_expr = to_dereferenced_expression(lhs_expression);
+ auto column_index = lhs_expr.find_last_of('[');
+ if (column_index != string::npos)
+ {
+ statement(lhs_expr.insert(column_index, join('[', c, ']')), " = ",
+ to_extract_component_expression(rhs_expression, c), ";");
+ }
+ }
+ lhs_e->need_transpose = true;
+ register_write(lhs_expression);
+ }
+ else
+ CompilerGLSL::emit_store_statement(lhs_expression, rhs_expression);
+ }
+ else if (!lhs_remapped_type && !is_matrix(type) && !transpose)
+ {
+ // Even if the target type is packed, we can directly store to it. We cannot store to packed matrices directly,
+ // since they are declared as array of vectors instead, and we need the fallback path below.
+ CompilerGLSL::emit_store_statement(lhs_expression, rhs_expression);
+ }
+ else
+ {
+ // Special handling when storing to a remapped physical type.
+ // This is mostly to deal with std140 padded matrices or vectors.
+
+ TypeID physical_type_id = lhs_remapped_type ?
+ ID(get_extended_decoration(lhs_expression, SPIRVCrossDecorationPhysicalTypeID)) :
+ type.self;
+
+ auto &physical_type = get<SPIRType>(physical_type_id);
+
+ string cast_addr_space = "thread";
+ auto *p_var_lhs = maybe_get_backing_variable(lhs_expression);
+ if (p_var_lhs)
+ cast_addr_space = get_type_address_space(get<SPIRType>(p_var_lhs->basetype), lhs_expression);
+
+ if (is_matrix(type))
+ {
+ const char *packed_pfx = lhs_packed_type ? "packed_" : "";
+
+ // Packed matrices are stored as arrays of packed vectors, so we need
+ // to assign the vectors one at a time.
+ // For row-major matrices, we need to transpose the *right-hand* side,
+ // not the left-hand side.
+
+ // Lots of cases to cover here ...
+
+ bool rhs_transpose = rhs_e && rhs_e->need_transpose;
+ SPIRType write_type = type;
+ string cast_expr;
+
+ // We're dealing with transpose manually.
+ if (rhs_transpose)
+ rhs_e->need_transpose = false;
+
+ if (transpose)
+ {
+ // We're dealing with transpose manually.
+ lhs_e->need_transpose = false;
+ write_type.vecsize = type.columns;
+ write_type.columns = 1;
+
+ if (physical_type.columns != type.columns)
+ cast_expr = join("(", cast_addr_space, " ", packed_pfx, type_to_glsl(write_type), "&)");
+
+ if (rhs_transpose)
+ {
+ // If RHS is also transposed, we can just copy row by row.
+ for (uint32_t i = 0; i < type.vecsize; i++)
+ {
+ statement(cast_expr, to_enclosed_expression(lhs_expression), "[", i, "]", " = ",
+ to_unpacked_row_major_matrix_expression(rhs_expression), "[", i, "];");
+ }
+ }
+ else
+ {
+ auto vector_type = expression_type(rhs_expression);
+ vector_type.vecsize = vector_type.columns;
+ vector_type.columns = 1;
+
+ // Transpose on the fly. Emitting a lot of full transpose() ops and extracting lanes seems very bad,
+ // so pick out individual components instead.
+ for (uint32_t i = 0; i < type.vecsize; i++)
+ {
+ string rhs_row = type_to_glsl_constructor(vector_type) + "(";
+ for (uint32_t j = 0; j < vector_type.vecsize; j++)
+ {
+ rhs_row += join(to_enclosed_unpacked_expression(rhs_expression), "[", j, "][", i, "]");
+ if (j + 1 < vector_type.vecsize)
+ rhs_row += ", ";
+ }
+ rhs_row += ")";
+
+ statement(cast_expr, to_enclosed_expression(lhs_expression), "[", i, "]", " = ", rhs_row, ";");
+ }
+ }
+
+ // We're dealing with transpose manually.
+ lhs_e->need_transpose = true;
+ }
+ else
+ {
+ write_type.columns = 1;
+
+ if (physical_type.vecsize != type.vecsize)
+ cast_expr = join("(", cast_addr_space, " ", packed_pfx, type_to_glsl(write_type), "&)");
+
+ if (rhs_transpose)
+ {
+ auto vector_type = expression_type(rhs_expression);
+ vector_type.columns = 1;
+
+ // Transpose on the fly. Emitting a lot of full transpose() ops and extracting lanes seems very bad,
+ // so pick out individual components instead.
+ for (uint32_t i = 0; i < type.columns; i++)
+ {
+ string rhs_row = type_to_glsl_constructor(vector_type) + "(";
+ for (uint32_t j = 0; j < vector_type.vecsize; j++)
+ {
+ // Need to explicitly unpack expression since we've mucked with transpose state.
+ auto unpacked_expr = to_unpacked_row_major_matrix_expression(rhs_expression);
+ rhs_row += join(unpacked_expr, "[", j, "][", i, "]");
+ if (j + 1 < vector_type.vecsize)
+ rhs_row += ", ";
+ }
+ rhs_row += ")";
+
+ statement(cast_expr, to_enclosed_expression(lhs_expression), "[", i, "]", " = ", rhs_row, ";");
+ }
+ }
+ else
+ {
+ // Copy column-by-column.
+ for (uint32_t i = 0; i < type.columns; i++)
+ {
+ statement(cast_expr, to_enclosed_expression(lhs_expression), "[", i, "]", " = ",
+ to_enclosed_unpacked_expression(rhs_expression), "[", i, "];");
+ }
+ }
+ }
+
+ // We're dealing with transpose manually.
+ if (rhs_transpose)
+ rhs_e->need_transpose = true;
+ }
+ else if (transpose)
+ {
+ lhs_e->need_transpose = false;
+
+ SPIRType write_type = type;
+ write_type.vecsize = 1;
+ write_type.columns = 1;
+
+ // Storing a column to a row-major matrix. Unroll the write.
+ for (uint32_t c = 0; c < type.vecsize; c++)
+ {
+ auto lhs_expr = to_enclosed_expression(lhs_expression);
+ auto column_index = lhs_expr.find_last_of('[');
+
+ // Get rid of any ".data" half8 handling here, we're casting to scalar anyway.
+ auto end_column_index = lhs_expr.find_last_of(']');
+ auto end_dot_index = lhs_expr.find_last_of('.');
+ if (end_dot_index != string::npos && end_dot_index > end_column_index)
+ lhs_expr.resize(end_dot_index);
+
+ if (column_index != string::npos)
+ {
+ statement("((", cast_addr_space, " ", type_to_glsl(write_type), "*)&",
+ lhs_expr.insert(column_index, join('[', c, ']', ")")), " = ",
+ to_extract_component_expression(rhs_expression, c), ";");
+ }
+ }
+
+ lhs_e->need_transpose = true;
+ }
+ else if ((is_matrix(physical_type) || is_array(physical_type)) &&
+ physical_type.vecsize <= 4 &&
+ physical_type.vecsize > type.vecsize)
+ {
+ assert(type.vecsize >= 1 && type.vecsize <= 3);
+
+ // If we have packed types, we cannot use swizzled stores.
+ // We could technically unroll the store for each element if needed.
+ // When remapping to a std140 physical type, we always get float4,
+ // and the packed decoration should always be removed.
+ assert(!lhs_packed_type);
+
+ string lhs = to_dereferenced_expression(lhs_expression);
+ string rhs = to_pointer_expression(rhs_expression);
+
+ // Unpack the expression so we can store to it with a float or float2.
+ // It's still an l-value, so it's fine. Most other unpacking of expressions turn them into r-values instead.
+ lhs = join("(", cast_addr_space, " ", type_to_glsl(type), "&)", enclose_expression(lhs));
+ if (!optimize_read_modify_write(expression_type(rhs_expression), lhs, rhs))
+ statement(lhs, " = ", rhs, ";");
+ }
+ else if (!is_matrix(type))
+ {
+ string lhs = to_dereferenced_expression(lhs_expression);
+ string rhs = to_pointer_expression(rhs_expression);
+ if (!optimize_read_modify_write(expression_type(rhs_expression), lhs, rhs))
+ statement(lhs, " = ", rhs, ";");
+ }
+
+ register_write(lhs_expression);
+ }
+}
+
+static bool expression_ends_with(const string &expr_str, const std::string &ending)
+{
+ if (expr_str.length() >= ending.length())
+ return (expr_str.compare(expr_str.length() - ending.length(), ending.length(), ending) == 0);
+ else
+ return false;
+}
+
+// Converts the format of the current expression from packed to unpacked,
+// by wrapping the expression in a constructor of the appropriate type.
+// Also, handle special physical ID remapping scenarios, similar to emit_store_statement().
+string CompilerMSL::unpack_expression_type(string expr_str, const SPIRType &type, uint32_t physical_type_id,
+ bool packed, bool row_major)
+{
+ // Trivial case, nothing to do.
+ if (physical_type_id == 0 && !packed)
+ return expr_str;
+
+ const SPIRType *physical_type = nullptr;
+ if (physical_type_id)
+ physical_type = &get<SPIRType>(physical_type_id);
+
+ static const char *swizzle_lut[] = {
+ ".x",
+ ".xy",
+ ".xyz",
+ "",
+ };
+
+ // TODO: Move everything to the template wrapper?
+ bool uses_std140_wrapper = physical_type && physical_type->vecsize > 4;
+
+ if (physical_type && is_vector(*physical_type) && is_array(*physical_type) &&
+ !uses_std140_wrapper &&
+ physical_type->vecsize > type.vecsize && !expression_ends_with(expr_str, swizzle_lut[type.vecsize - 1]))
+ {
+ // std140 array cases for vectors.
+ assert(type.vecsize >= 1 && type.vecsize <= 3);
+ return enclose_expression(expr_str) + swizzle_lut[type.vecsize - 1];
+ }
+ else if (physical_type && is_matrix(*physical_type) && is_vector(type) &&
+ !uses_std140_wrapper &&
+ physical_type->vecsize > type.vecsize)
+ {
+ // Extract column from padded matrix.
+ assert(type.vecsize >= 1 && type.vecsize <= 4);
+ return enclose_expression(expr_str) + swizzle_lut[type.vecsize - 1];
+ }
+ else if (is_matrix(type))
+ {
+ // Packed matrices are stored as arrays of packed vectors. Unfortunately,
+ // we can't just pass the array straight to the matrix constructor. We have to
+ // pass each vector individually, so that they can be unpacked to normal vectors.
+ if (!physical_type)
+ physical_type = &type;
+
+ uint32_t vecsize = type.vecsize;
+ uint32_t columns = type.columns;
+ if (row_major)
+ swap(vecsize, columns);
+
+ uint32_t physical_vecsize = row_major ? physical_type->columns : physical_type->vecsize;
+
+ const char *base_type = type.width == 16 ? "half" : "float";
+ string unpack_expr = join(base_type, columns, "x", vecsize, "(");
+
+ const char *load_swiz = "";
+ const char *data_swiz = physical_vecsize > 4 ? ".data" : "";
+
+ if (physical_vecsize != vecsize)
+ load_swiz = swizzle_lut[vecsize - 1];
+
+ for (uint32_t i = 0; i < columns; i++)
+ {
+ if (i > 0)
+ unpack_expr += ", ";
+
+ if (packed)
+ unpack_expr += join(base_type, physical_vecsize, "(", expr_str, "[", i, "]", ")", load_swiz);
+ else
+ unpack_expr += join(expr_str, "[", i, "]", data_swiz, load_swiz);
+ }
+
+ unpack_expr += ")";
+ return unpack_expr;
+ }
+ else
+ {
+ return join(type_to_glsl(type), "(", expr_str, ")");
+ }
+}
+
+// Emits the file header info
+void CompilerMSL::emit_header()
+{
+ // This particular line can be overridden during compilation, so make it a flag and not a pragma line.
+ if (suppress_missing_prototypes)
+ statement("#pragma clang diagnostic ignored \"-Wmissing-prototypes\"");
+ if (suppress_incompatible_pointer_types_discard_qualifiers)
+ statement("#pragma clang diagnostic ignored \"-Wincompatible-pointer-types-discards-qualifiers\"");
+
+ // Disable warning about missing braces for array<T> template to make arrays a value type
+ if (spv_function_implementations.count(SPVFuncImplUnsafeArray) != 0)
+ statement("#pragma clang diagnostic ignored \"-Wmissing-braces\"");
+
+ for (auto &pragma : pragma_lines)
+ statement(pragma);
+
+ if (!pragma_lines.empty() || suppress_missing_prototypes)
+ statement("");
+
+ statement("#include <metal_stdlib>");
+ statement("#include <simd/simd.h>");
+
+ for (auto &header : header_lines)
+ statement(header);
+
+ statement("");
+ statement("using namespace metal;");
+ statement("");
+
+ for (auto &td : typedef_lines)
+ statement(td);
+
+ if (!typedef_lines.empty())
+ statement("");
+}
+
+void CompilerMSL::add_pragma_line(const string &line)
+{
+ auto rslt = pragma_lines.insert(line);
+ if (rslt.second)
+ force_recompile();
+}
+
+void CompilerMSL::add_typedef_line(const string &line)
+{
+ auto rslt = typedef_lines.insert(line);
+ if (rslt.second)
+ force_recompile();
+}
+
+// Template struct like spvUnsafeArray<> need to be declared *before* any resources are declared
+void CompilerMSL::emit_custom_templates()
+{
+ static const char * const address_spaces[] = {
+ "thread", "constant", "device", "threadgroup", "threadgroup_imageblock", "ray_data", "object_data"
+ };
+
+ for (const auto &spv_func : spv_function_implementations)
+ {
+ switch (spv_func)
+ {
+ case SPVFuncImplUnsafeArray:
+ statement("template<typename T, size_t Num>");
+ statement("struct spvUnsafeArray");
+ begin_scope();
+ statement("T elements[Num ? Num : 1];");
+ statement("");
+ statement("thread T& operator [] (size_t pos) thread");
+ begin_scope();
+ statement("return elements[pos];");
+ end_scope();
+ statement("constexpr const thread T& operator [] (size_t pos) const thread");
+ begin_scope();
+ statement("return elements[pos];");
+ end_scope();
+ statement("");
+ statement("device T& operator [] (size_t pos) device");
+ begin_scope();
+ statement("return elements[pos];");
+ end_scope();
+ statement("constexpr const device T& operator [] (size_t pos) const device");
+ begin_scope();
+ statement("return elements[pos];");
+ end_scope();
+ statement("");
+ statement("constexpr const constant T& operator [] (size_t pos) const constant");
+ begin_scope();
+ statement("return elements[pos];");
+ end_scope();
+ statement("");
+ statement("threadgroup T& operator [] (size_t pos) threadgroup");
+ begin_scope();
+ statement("return elements[pos];");
+ end_scope();
+ statement("constexpr const threadgroup T& operator [] (size_t pos) const threadgroup");
+ begin_scope();
+ statement("return elements[pos];");
+ end_scope();
+ end_scope_decl();
+ statement("");
+ break;
+
+ case SPVFuncImplStorageMatrix:
+ statement("template<typename T, int Cols, int Rows=Cols>");
+ statement("struct spvStorageMatrix");
+ begin_scope();
+ statement("vec<T, Rows> columns[Cols];");
+ statement("");
+ for (size_t method_idx = 0; method_idx < sizeof(address_spaces) / sizeof(address_spaces[0]); ++method_idx)
+ {
+ // Some address spaces require particular features.
+ if (method_idx == 4) // threadgroup_imageblock
+ statement("#ifdef __HAVE_IMAGEBLOCKS__");
+ else if (method_idx == 5) // ray_data
+ statement("#ifdef __HAVE_RAYTRACING__");
+ else if (method_idx == 6) // object_data
+ statement("#ifdef __HAVE_MESH__");
+ const string &method_as = address_spaces[method_idx];
+ statement("spvStorageMatrix() ", method_as, " = default;");
+ if (method_idx != 1) // constant
+ {
+ statement(method_as, " spvStorageMatrix& operator=(initializer_list<vec<T, Rows>> cols) ",
+ method_as);
+ begin_scope();
+ statement("size_t i;");
+ statement("thread vec<T, Rows>* col;");
+ statement("for (i = 0, col = cols.begin(); i < Cols; ++i, ++col)");
+ statement(" columns[i] = *col;");
+ statement("return *this;");
+ end_scope();
+ }
+ statement("");
+ for (size_t param_idx = 0; param_idx < sizeof(address_spaces) / sizeof(address_spaces[0]); ++param_idx)
+ {
+ if (param_idx != method_idx)
+ {
+ if (param_idx == 4) // threadgroup_imageblock
+ statement("#ifdef __HAVE_IMAGEBLOCKS__");
+ else if (param_idx == 5) // ray_data
+ statement("#ifdef __HAVE_RAYTRACING__");
+ else if (param_idx == 6) // object_data
+ statement("#ifdef __HAVE_MESH__");
+ }
+ const string &param_as = address_spaces[param_idx];
+ statement("spvStorageMatrix(const ", param_as, " matrix<T, Cols, Rows>& m) ", method_as);
+ begin_scope();
+ statement("for (size_t i = 0; i < Cols; ++i)");
+ statement(" columns[i] = m.columns[i];");
+ end_scope();
+ statement("spvStorageMatrix(const ", param_as, " spvStorageMatrix& m) ", method_as, " = default;");
+ if (method_idx != 1) // constant
+ {
+ statement(method_as, " spvStorageMatrix& operator=(const ", param_as,
+ " matrix<T, Cols, Rows>& m) ", method_as);
+ begin_scope();
+ statement("for (size_t i = 0; i < Cols; ++i)");
+ statement(" columns[i] = m.columns[i];");
+ statement("return *this;");
+ end_scope();
+ statement(method_as, " spvStorageMatrix& operator=(const ", param_as, " spvStorageMatrix& m) ",
+ method_as, " = default;");
+ }
+ if (param_idx != method_idx && param_idx >= 4)
+ statement("#endif");
+ statement("");
+ }
+ statement("operator matrix<T, Cols, Rows>() const ", method_as);
+ begin_scope();
+ statement("matrix<T, Cols, Rows> m;");
+ statement("for (int i = 0; i < Cols; ++i)");
+ statement(" m.columns[i] = columns[i];");
+ statement("return m;");
+ end_scope();
+ statement("");
+ statement("vec<T, Rows> operator[](size_t idx) const ", method_as);
+ begin_scope();
+ statement("return columns[idx];");
+ end_scope();
+ if (method_idx != 1) // constant
+ {
+ statement(method_as, " vec<T, Rows>& operator[](size_t idx) ", method_as);
+ begin_scope();
+ statement("return columns[idx];");
+ end_scope();
+ }
+ if (method_idx >= 4)
+ statement("#endif");
+ statement("");
+ }
+ end_scope_decl();
+ statement("");
+ statement("template<typename T, int Cols, int Rows>");
+ statement("matrix<T, Rows, Cols> transpose(spvStorageMatrix<T, Cols, Rows> m)");
+ begin_scope();
+ statement("return transpose(matrix<T, Cols, Rows>(m));");
+ end_scope();
+ statement("");
+ statement("typedef spvStorageMatrix<half, 2, 2> spvStorage_half2x2;");
+ statement("typedef spvStorageMatrix<half, 2, 3> spvStorage_half2x3;");
+ statement("typedef spvStorageMatrix<half, 2, 4> spvStorage_half2x4;");
+ statement("typedef spvStorageMatrix<half, 3, 2> spvStorage_half3x2;");
+ statement("typedef spvStorageMatrix<half, 3, 3> spvStorage_half3x3;");
+ statement("typedef spvStorageMatrix<half, 3, 4> spvStorage_half3x4;");
+ statement("typedef spvStorageMatrix<half, 4, 2> spvStorage_half4x2;");
+ statement("typedef spvStorageMatrix<half, 4, 3> spvStorage_half4x3;");
+ statement("typedef spvStorageMatrix<half, 4, 4> spvStorage_half4x4;");
+ statement("typedef spvStorageMatrix<float, 2, 2> spvStorage_float2x2;");
+ statement("typedef spvStorageMatrix<float, 2, 3> spvStorage_float2x3;");
+ statement("typedef spvStorageMatrix<float, 2, 4> spvStorage_float2x4;");
+ statement("typedef spvStorageMatrix<float, 3, 2> spvStorage_float3x2;");
+ statement("typedef spvStorageMatrix<float, 3, 3> spvStorage_float3x3;");
+ statement("typedef spvStorageMatrix<float, 3, 4> spvStorage_float3x4;");
+ statement("typedef spvStorageMatrix<float, 4, 2> spvStorage_float4x2;");
+ statement("typedef spvStorageMatrix<float, 4, 3> spvStorage_float4x3;");
+ statement("typedef spvStorageMatrix<float, 4, 4> spvStorage_float4x4;");
+ statement("");
+ break;
+
+ default:
+ break;
+ }
+ }
+}
+
+// Emits any needed custom function bodies.
+// Metal helper functions must be static force-inline, i.e. static inline __attribute__((always_inline))
+// otherwise they will cause problems when linked together in a single Metallib.
+void CompilerMSL::emit_custom_functions()
+{
+ // Use when outputting overloaded functions to cover different address spaces.
+ static const char *texture_addr_spaces[] = { "device", "constant", "thread" };
+ static uint32_t texture_addr_space_count = sizeof(texture_addr_spaces) / sizeof(char*);
+
+ if (spv_function_implementations.count(SPVFuncImplArrayCopyMultidim))
+ spv_function_implementations.insert(SPVFuncImplArrayCopy);
+
+ if (spv_function_implementations.count(SPVFuncImplDynamicImageSampler))
+ {
+ // Unfortunately, this one needs a lot of the other functions to compile OK.
+ if (!msl_options.supports_msl_version(2))
+ SPIRV_CROSS_THROW(
+ "spvDynamicImageSampler requires default-constructible texture objects, which require MSL 2.0.");
+ spv_function_implementations.insert(SPVFuncImplForwardArgs);
+ spv_function_implementations.insert(SPVFuncImplTextureSwizzle);
+ if (msl_options.swizzle_texture_samples)
+ spv_function_implementations.insert(SPVFuncImplGatherSwizzle);
+ for (uint32_t i = SPVFuncImplChromaReconstructNearest2Plane;
+ i <= SPVFuncImplChromaReconstructLinear420XMidpointYMidpoint3Plane; i++)
+ spv_function_implementations.insert(static_cast<SPVFuncImpl>(i));
+ spv_function_implementations.insert(SPVFuncImplExpandITUFullRange);
+ spv_function_implementations.insert(SPVFuncImplExpandITUNarrowRange);
+ spv_function_implementations.insert(SPVFuncImplConvertYCbCrBT709);
+ spv_function_implementations.insert(SPVFuncImplConvertYCbCrBT601);
+ spv_function_implementations.insert(SPVFuncImplConvertYCbCrBT2020);
+ }
+
+ for (uint32_t i = SPVFuncImplChromaReconstructNearest2Plane;
+ i <= SPVFuncImplChromaReconstructLinear420XMidpointYMidpoint3Plane; i++)
+ if (spv_function_implementations.count(static_cast<SPVFuncImpl>(i)))
+ spv_function_implementations.insert(SPVFuncImplForwardArgs);
+
+ if (spv_function_implementations.count(SPVFuncImplTextureSwizzle) ||
+ spv_function_implementations.count(SPVFuncImplGatherSwizzle) ||
+ spv_function_implementations.count(SPVFuncImplGatherCompareSwizzle))
+ {
+ spv_function_implementations.insert(SPVFuncImplForwardArgs);
+ spv_function_implementations.insert(SPVFuncImplGetSwizzle);
+ }
+
+ for (const auto &spv_func : spv_function_implementations)
+ {
+ switch (spv_func)
+ {
+ case SPVFuncImplMod:
+ statement("// Implementation of the GLSL mod() function, which is slightly different than Metal fmod()");
+ statement("template<typename Tx, typename Ty>");
+ statement("inline Tx mod(Tx x, Ty y)");
+ begin_scope();
+ statement("return x - y * floor(x / y);");
+ end_scope();
+ statement("");
+ break;
+
+ case SPVFuncImplRadians:
+ statement("// Implementation of the GLSL radians() function");
+ statement("template<typename T>");
+ statement("inline T radians(T d)");
+ begin_scope();
+ statement("return d * T(0.01745329251);");
+ end_scope();
+ statement("");
+ break;
+
+ case SPVFuncImplDegrees:
+ statement("// Implementation of the GLSL degrees() function");
+ statement("template<typename T>");
+ statement("inline T degrees(T r)");
+ begin_scope();
+ statement("return r * T(57.2957795131);");
+ end_scope();
+ statement("");
+ break;
+
+ case SPVFuncImplFindILsb:
+ statement("// Implementation of the GLSL findLSB() function");
+ statement("template<typename T>");
+ statement("inline T spvFindLSB(T x)");
+ begin_scope();
+ statement("return select(ctz(x), T(-1), x == T(0));");
+ end_scope();
+ statement("");
+ break;
+
+ case SPVFuncImplFindUMsb:
+ statement("// Implementation of the unsigned GLSL findMSB() function");
+ statement("template<typename T>");
+ statement("inline T spvFindUMSB(T x)");
+ begin_scope();
+ statement("return select(clz(T(0)) - (clz(x) + T(1)), T(-1), x == T(0));");
+ end_scope();
+ statement("");
+ break;
+
+ case SPVFuncImplFindSMsb:
+ statement("// Implementation of the signed GLSL findMSB() function");
+ statement("template<typename T>");
+ statement("inline T spvFindSMSB(T x)");
+ begin_scope();
+ statement("T v = select(x, T(-1) - x, x < T(0));");
+ statement("return select(clz(T(0)) - (clz(v) + T(1)), T(-1), v == T(0));");
+ end_scope();
+ statement("");
+ break;
+
+ case SPVFuncImplSSign:
+ statement("// Implementation of the GLSL sign() function for integer types");
+ statement("template<typename T, typename E = typename enable_if<is_integral<T>::value>::type>");
+ statement("inline T sign(T x)");
+ begin_scope();
+ statement("return select(select(select(x, T(0), x == T(0)), T(1), x > T(0)), T(-1), x < T(0));");
+ end_scope();
+ statement("");
+ break;
+
+ case SPVFuncImplArrayCopy:
+ case SPVFuncImplArrayCopyMultidim:
+ {
+ // Unfortunately we cannot template on the address space, so combinatorial explosion it is.
+ static const char *function_name_tags[] = {
+ "FromConstantToStack", "FromConstantToThreadGroup", "FromStackToStack",
+ "FromStackToThreadGroup", "FromThreadGroupToStack", "FromThreadGroupToThreadGroup",
+ "FromDeviceToDevice", "FromConstantToDevice", "FromStackToDevice",
+ "FromThreadGroupToDevice", "FromDeviceToStack", "FromDeviceToThreadGroup",
+ };
+
+ static const char *src_address_space[] = {
+ "constant", "constant", "thread const", "thread const",
+ "threadgroup const", "threadgroup const", "device const", "constant",
+ "thread const", "threadgroup const", "device const", "device const",
+ };
+
+ static const char *dst_address_space[] = {
+ "thread", "threadgroup", "thread", "threadgroup", "thread", "threadgroup",
+ "device", "device", "device", "device", "thread", "threadgroup",
+ };
+
+ for (uint32_t variant = 0; variant < 12; variant++)
+ {
+ bool is_multidim = spv_func == SPVFuncImplArrayCopyMultidim;
+ const char* dim = is_multidim ? "[N][M]" : "[N]";
+ statement("template<typename T, uint N", is_multidim ? ", uint M>" : ">");
+ statement("inline void spvArrayCopy", function_name_tags[variant], "(",
+ dst_address_space[variant], " T (&dst)", dim, ", ",
+ src_address_space[variant], " T (&src)", dim, ")");
+ begin_scope();
+ statement("for (uint i = 0; i < N; i++)");
+ begin_scope();
+ if (is_multidim)
+ statement("spvArrayCopy", function_name_tags[variant], "(dst[i], src[i]);");
+ else
+ statement("dst[i] = src[i];");
+ end_scope();
+ end_scope();
+ statement("");
+ }
+ break;
+ }
+
+ // Support for Metal 2.1's new texture_buffer type.
+ case SPVFuncImplTexelBufferCoords:
+ {
+ if (msl_options.texel_buffer_texture_width > 0)
+ {
+ string tex_width_str = convert_to_string(msl_options.texel_buffer_texture_width);
+ statement("// Returns 2D texture coords corresponding to 1D texel buffer coords");
+ statement(force_inline);
+ statement("uint2 spvTexelBufferCoord(uint tc)");
+ begin_scope();
+ statement(join("return uint2(tc % ", tex_width_str, ", tc / ", tex_width_str, ");"));
+ end_scope();
+ statement("");
+ }
+ else
+ {
+ statement("// Returns 2D texture coords corresponding to 1D texel buffer coords");
+ statement(
+ "#define spvTexelBufferCoord(tc, tex) uint2((tc) % (tex).get_width(), (tc) / (tex).get_width())");
+ statement("");
+ }
+ break;
+ }
+
+ // Emulate texture2D atomic operations
+ case SPVFuncImplImage2DAtomicCoords:
+ {
+ if (msl_options.supports_msl_version(1, 2))
+ {
+ statement("// The required alignment of a linear texture of R32Uint format.");
+ statement("constant uint spvLinearTextureAlignmentOverride [[function_constant(",
+ msl_options.r32ui_alignment_constant_id, ")]];");
+ statement("constant uint spvLinearTextureAlignment = ",
+ "is_function_constant_defined(spvLinearTextureAlignmentOverride) ? ",
+ "spvLinearTextureAlignmentOverride : ", msl_options.r32ui_linear_texture_alignment, ";");
+ }
+ else
+ {
+ statement("// The required alignment of a linear texture of R32Uint format.");
+ statement("constant uint spvLinearTextureAlignment = ", msl_options.r32ui_linear_texture_alignment,
+ ";");
+ }
+ statement("// Returns buffer coords corresponding to 2D texture coords for emulating 2D texture atomics");
+ statement("#define spvImage2DAtomicCoord(tc, tex) (((((tex).get_width() + ",
+ " spvLinearTextureAlignment / 4 - 1) & ~(",
+ " spvLinearTextureAlignment / 4 - 1)) * (tc).y) + (tc).x)");
+ statement("");
+ break;
+ }
+
+ // Fix up gradient vectors when sampling a cube texture for Apple Silicon.
+ // h/t Alexey Knyazev (https://github.com/KhronosGroup/MoltenVK/issues/2068#issuecomment-1817799067) for the code.
+ case SPVFuncImplGradientCube:
+ statement("static inline gradientcube spvGradientCube(float3 P, float3 dPdx, float3 dPdy)");
+ begin_scope();
+ statement("// Major axis selection");
+ statement("float3 absP = abs(P);");
+ statement("bool xMajor = absP.x >= max(absP.y, absP.z);");
+ statement("bool yMajor = absP.y >= absP.z;");
+ statement("float3 Q = xMajor ? P.yzx : (yMajor ? P.xzy : P);");
+ statement("float3 dQdx = xMajor ? dPdx.yzx : (yMajor ? dPdx.xzy : dPdx);");
+ statement("float3 dQdy = xMajor ? dPdy.yzx : (yMajor ? dPdy.xzy : dPdy);");
+ statement_no_indent("");
+ statement("// Skip a couple of operations compared to usual projection");
+ statement("float4 d = float4(dQdx.xy, dQdy.xy) - (Q.xy / Q.z).xyxy * float4(dQdx.zz, dQdy.zz);");
+ statement_no_indent("");
+ statement("// Final swizzle to put the intermediate values into non-ignored components");
+ statement("// X major: X and Z");
+ statement("// Y major: X and Y");
+ statement("// Z major: Y and Z");
+ statement("return gradientcube(xMajor ? d.xxy : d.xyx, xMajor ? d.zzw : d.zwz);");
+ end_scope();
+ statement("");
+ break;
+
+ // "fadd" intrinsic support
+ case SPVFuncImplFAdd:
+ statement("template<typename T>");
+ statement("[[clang::optnone]] T spvFAdd(T l, T r)");
+ begin_scope();
+ statement("return fma(T(1), l, r);");
+ end_scope();
+ statement("");
+ break;
+
+ // "fsub" intrinsic support
+ case SPVFuncImplFSub:
+ statement("template<typename T>");
+ statement("[[clang::optnone]] T spvFSub(T l, T r)");
+ begin_scope();
+ statement("return fma(T(-1), r, l);");
+ end_scope();
+ statement("");
+ break;
+
+ // "fmul' intrinsic support
+ case SPVFuncImplFMul:
+ statement("template<typename T>");
+ statement("[[clang::optnone]] T spvFMul(T l, T r)");
+ begin_scope();
+ statement("return fma(l, r, T(0));");
+ end_scope();
+ statement("");
+
+ statement("template<typename T, int Cols, int Rows>");
+ statement("[[clang::optnone]] vec<T, Cols> spvFMulVectorMatrix(vec<T, Rows> v, matrix<T, Cols, Rows> m)");
+ begin_scope();
+ statement("vec<T, Cols> res = vec<T, Cols>(0);");
+ statement("for (uint i = Rows; i > 0; --i)");
+ begin_scope();
+ statement("vec<T, Cols> tmp(0);");
+ statement("for (uint j = 0; j < Cols; ++j)");
+ begin_scope();
+ statement("tmp[j] = m[j][i - 1];");
+ end_scope();
+ statement("res = fma(tmp, vec<T, Cols>(v[i - 1]), res);");
+ end_scope();
+ statement("return res;");
+ end_scope();
+ statement("");
+
+ statement("template<typename T, int Cols, int Rows>");
+ statement("[[clang::optnone]] vec<T, Rows> spvFMulMatrixVector(matrix<T, Cols, Rows> m, vec<T, Cols> v)");
+ begin_scope();
+ statement("vec<T, Rows> res = vec<T, Rows>(0);");
+ statement("for (uint i = Cols; i > 0; --i)");
+ begin_scope();
+ statement("res = fma(m[i - 1], vec<T, Rows>(v[i - 1]), res);");
+ end_scope();
+ statement("return res;");
+ end_scope();
+ statement("");
+
+ statement("template<typename T, int LCols, int LRows, int RCols, int RRows>");
+ statement("[[clang::optnone]] matrix<T, RCols, LRows> spvFMulMatrixMatrix(matrix<T, LCols, LRows> l, matrix<T, RCols, RRows> r)");
+ begin_scope();
+ statement("matrix<T, RCols, LRows> res;");
+ statement("for (uint i = 0; i < RCols; i++)");
+ begin_scope();
+ statement("vec<T, RCols> tmp(0);");
+ statement("for (uint j = 0; j < LCols; j++)");
+ begin_scope();
+ statement("tmp = fma(vec<T, RCols>(r[i][j]), l[j], tmp);");
+ end_scope();
+ statement("res[i] = tmp;");
+ end_scope();
+ statement("return res;");
+ end_scope();
+ statement("");
+ break;
+
+ case SPVFuncImplQuantizeToF16:
+ // Ensure fast-math is disabled to match Vulkan results.
+ // SpvHalfTypeSelector is used to match the half* template type to the float* template type.
+ // Depending on GPU, MSL does not always flush converted subnormal halfs to zero,
+ // as required by OpQuantizeToF16, so check for subnormals and flush them to zero.
+ statement("template <typename F> struct SpvHalfTypeSelector;");
+ statement("template <> struct SpvHalfTypeSelector<float> { public: using H = half; };");
+ statement("template<uint N> struct SpvHalfTypeSelector<vec<float, N>> { using H = vec<half, N>; };");
+ statement("template<typename F, typename H = typename SpvHalfTypeSelector<F>::H>");
+ statement("[[clang::optnone]] F spvQuantizeToF16(F fval)");
+ begin_scope();
+ statement("H hval = H(fval);");
+ statement("hval = select(copysign(H(0), hval), hval, isnormal(hval) || isinf(hval) || isnan(hval));");
+ statement("return F(hval);");
+ end_scope();
+ statement("");
+ break;
+
+ // Emulate texturecube_array with texture2d_array for iOS where this type is not available
+ case SPVFuncImplCubemapTo2DArrayFace:
+ statement(force_inline);
+ statement("float3 spvCubemapTo2DArrayFace(float3 P)");
+ begin_scope();
+ statement("float3 Coords = abs(P.xyz);");
+ statement("float CubeFace = 0;");
+ statement("float ProjectionAxis = 0;");
+ statement("float u = 0;");
+ statement("float v = 0;");
+ statement("if (Coords.x >= Coords.y && Coords.x >= Coords.z)");
+ begin_scope();
+ statement("CubeFace = P.x >= 0 ? 0 : 1;");
+ statement("ProjectionAxis = Coords.x;");
+ statement("u = P.x >= 0 ? -P.z : P.z;");
+ statement("v = -P.y;");
+ end_scope();
+ statement("else if (Coords.y >= Coords.x && Coords.y >= Coords.z)");
+ begin_scope();
+ statement("CubeFace = P.y >= 0 ? 2 : 3;");
+ statement("ProjectionAxis = Coords.y;");
+ statement("u = P.x;");
+ statement("v = P.y >= 0 ? P.z : -P.z;");
+ end_scope();
+ statement("else");
+ begin_scope();
+ statement("CubeFace = P.z >= 0 ? 4 : 5;");
+ statement("ProjectionAxis = Coords.z;");
+ statement("u = P.z >= 0 ? P.x : -P.x;");
+ statement("v = -P.y;");
+ end_scope();
+ statement("u = 0.5 * (u/ProjectionAxis + 1);");
+ statement("v = 0.5 * (v/ProjectionAxis + 1);");
+ statement("return float3(u, v, CubeFace);");
+ end_scope();
+ statement("");
+ break;
+
+ case SPVFuncImplInverse4x4:
+ statement("// Returns the determinant of a 2x2 matrix.");
+ statement(force_inline);
+ statement("float spvDet2x2(float a1, float a2, float b1, float b2)");
+ begin_scope();
+ statement("return a1 * b2 - b1 * a2;");
+ end_scope();
+ statement("");
+
+ statement("// Returns the determinant of a 3x3 matrix.");
+ statement(force_inline);
+ statement("float spvDet3x3(float a1, float a2, float a3, float b1, float b2, float b3, float c1, "
+ "float c2, float c3)");
+ begin_scope();
+ statement("return a1 * spvDet2x2(b2, b3, c2, c3) - b1 * spvDet2x2(a2, a3, c2, c3) + c1 * spvDet2x2(a2, a3, "
+ "b2, b3);");
+ end_scope();
+ statement("");
+ statement("// Returns the inverse of a matrix, by using the algorithm of calculating the classical");
+ statement("// adjoint and dividing by the determinant. The contents of the matrix are changed.");
+ statement(force_inline);
+ statement("float4x4 spvInverse4x4(float4x4 m)");
+ begin_scope();
+ statement("float4x4 adj; // The adjoint matrix (inverse after dividing by determinant)");
+ statement_no_indent("");
+ statement("// Create the transpose of the cofactors, as the classical adjoint of the matrix.");
+ statement("adj[0][0] = spvDet3x3(m[1][1], m[1][2], m[1][3], m[2][1], m[2][2], m[2][3], m[3][1], m[3][2], "
+ "m[3][3]);");
+ statement("adj[0][1] = -spvDet3x3(m[0][1], m[0][2], m[0][3], m[2][1], m[2][2], m[2][3], m[3][1], m[3][2], "
+ "m[3][3]);");
+ statement("adj[0][2] = spvDet3x3(m[0][1], m[0][2], m[0][3], m[1][1], m[1][2], m[1][3], m[3][1], m[3][2], "
+ "m[3][3]);");
+ statement("adj[0][3] = -spvDet3x3(m[0][1], m[0][2], m[0][3], m[1][1], m[1][2], m[1][3], m[2][1], m[2][2], "
+ "m[2][3]);");
+ statement_no_indent("");
+ statement("adj[1][0] = -spvDet3x3(m[1][0], m[1][2], m[1][3], m[2][0], m[2][2], m[2][3], m[3][0], m[3][2], "
+ "m[3][3]);");
+ statement("adj[1][1] = spvDet3x3(m[0][0], m[0][2], m[0][3], m[2][0], m[2][2], m[2][3], m[3][0], m[3][2], "
+ "m[3][3]);");
+ statement("adj[1][2] = -spvDet3x3(m[0][0], m[0][2], m[0][3], m[1][0], m[1][2], m[1][3], m[3][0], m[3][2], "
+ "m[3][3]);");
+ statement("adj[1][3] = spvDet3x3(m[0][0], m[0][2], m[0][3], m[1][0], m[1][2], m[1][3], m[2][0], m[2][2], "
+ "m[2][3]);");
+ statement_no_indent("");
+ statement("adj[2][0] = spvDet3x3(m[1][0], m[1][1], m[1][3], m[2][0], m[2][1], m[2][3], m[3][0], m[3][1], "
+ "m[3][3]);");
+ statement("adj[2][1] = -spvDet3x3(m[0][0], m[0][1], m[0][3], m[2][0], m[2][1], m[2][3], m[3][0], m[3][1], "
+ "m[3][3]);");
+ statement("adj[2][2] = spvDet3x3(m[0][0], m[0][1], m[0][3], m[1][0], m[1][1], m[1][3], m[3][0], m[3][1], "
+ "m[3][3]);");
+ statement("adj[2][3] = -spvDet3x3(m[0][0], m[0][1], m[0][3], m[1][0], m[1][1], m[1][3], m[2][0], m[2][1], "
+ "m[2][3]);");
+ statement_no_indent("");
+ statement("adj[3][0] = -spvDet3x3(m[1][0], m[1][1], m[1][2], m[2][0], m[2][1], m[2][2], m[3][0], m[3][1], "
+ "m[3][2]);");
+ statement("adj[3][1] = spvDet3x3(m[0][0], m[0][1], m[0][2], m[2][0], m[2][1], m[2][2], m[3][0], m[3][1], "
+ "m[3][2]);");
+ statement("adj[3][2] = -spvDet3x3(m[0][0], m[0][1], m[0][2], m[1][0], m[1][1], m[1][2], m[3][0], m[3][1], "
+ "m[3][2]);");
+ statement("adj[3][3] = spvDet3x3(m[0][0], m[0][1], m[0][2], m[1][0], m[1][1], m[1][2], m[2][0], m[2][1], "
+ "m[2][2]);");
+ statement_no_indent("");
+ statement("// Calculate the determinant as a combination of the cofactors of the first row.");
+ statement("float det = (adj[0][0] * m[0][0]) + (adj[0][1] * m[1][0]) + (adj[0][2] * m[2][0]) + (adj[0][3] "
+ "* m[3][0]);");
+ statement_no_indent("");
+ statement("// Divide the classical adjoint matrix by the determinant.");
+ statement("// If determinant is zero, matrix is not invertable, so leave it unchanged.");
+ statement("return (det != 0.0f) ? (adj * (1.0f / det)) : m;");
+ end_scope();
+ statement("");
+ break;
+
+ case SPVFuncImplInverse3x3:
+ if (spv_function_implementations.count(SPVFuncImplInverse4x4) == 0)
+ {
+ statement("// Returns the determinant of a 2x2 matrix.");
+ statement(force_inline);
+ statement("float spvDet2x2(float a1, float a2, float b1, float b2)");
+ begin_scope();
+ statement("return a1 * b2 - b1 * a2;");
+ end_scope();
+ statement("");
+ }
+
+ statement("// Returns the inverse of a matrix, by using the algorithm of calculating the classical");
+ statement("// adjoint and dividing by the determinant. The contents of the matrix are changed.");
+ statement(force_inline);
+ statement("float3x3 spvInverse3x3(float3x3 m)");
+ begin_scope();
+ statement("float3x3 adj; // The adjoint matrix (inverse after dividing by determinant)");
+ statement_no_indent("");
+ statement("// Create the transpose of the cofactors, as the classical adjoint of the matrix.");
+ statement("adj[0][0] = spvDet2x2(m[1][1], m[1][2], m[2][1], m[2][2]);");
+ statement("adj[0][1] = -spvDet2x2(m[0][1], m[0][2], m[2][1], m[2][2]);");
+ statement("adj[0][2] = spvDet2x2(m[0][1], m[0][2], m[1][1], m[1][2]);");
+ statement_no_indent("");
+ statement("adj[1][0] = -spvDet2x2(m[1][0], m[1][2], m[2][0], m[2][2]);");
+ statement("adj[1][1] = spvDet2x2(m[0][0], m[0][2], m[2][0], m[2][2]);");
+ statement("adj[1][2] = -spvDet2x2(m[0][0], m[0][2], m[1][0], m[1][2]);");
+ statement_no_indent("");
+ statement("adj[2][0] = spvDet2x2(m[1][0], m[1][1], m[2][0], m[2][1]);");
+ statement("adj[2][1] = -spvDet2x2(m[0][0], m[0][1], m[2][0], m[2][1]);");
+ statement("adj[2][2] = spvDet2x2(m[0][0], m[0][1], m[1][0], m[1][1]);");
+ statement_no_indent("");
+ statement("// Calculate the determinant as a combination of the cofactors of the first row.");
+ statement("float det = (adj[0][0] * m[0][0]) + (adj[0][1] * m[1][0]) + (adj[0][2] * m[2][0]);");
+ statement_no_indent("");
+ statement("// Divide the classical adjoint matrix by the determinant.");
+ statement("// If determinant is zero, matrix is not invertable, so leave it unchanged.");
+ statement("return (det != 0.0f) ? (adj * (1.0f / det)) : m;");
+ end_scope();
+ statement("");
+ break;
+
+ case SPVFuncImplInverse2x2:
+ statement("// Returns the inverse of a matrix, by using the algorithm of calculating the classical");
+ statement("// adjoint and dividing by the determinant. The contents of the matrix are changed.");
+ statement(force_inline);
+ statement("float2x2 spvInverse2x2(float2x2 m)");
+ begin_scope();
+ statement("float2x2 adj; // The adjoint matrix (inverse after dividing by determinant)");
+ statement_no_indent("");
+ statement("// Create the transpose of the cofactors, as the classical adjoint of the matrix.");
+ statement("adj[0][0] = m[1][1];");
+ statement("adj[0][1] = -m[0][1];");
+ statement_no_indent("");
+ statement("adj[1][0] = -m[1][0];");
+ statement("adj[1][1] = m[0][0];");
+ statement_no_indent("");
+ statement("// Calculate the determinant as a combination of the cofactors of the first row.");
+ statement("float det = (adj[0][0] * m[0][0]) + (adj[0][1] * m[1][0]);");
+ statement_no_indent("");
+ statement("// Divide the classical adjoint matrix by the determinant.");
+ statement("// If determinant is zero, matrix is not invertable, so leave it unchanged.");
+ statement("return (det != 0.0f) ? (adj * (1.0f / det)) : m;");
+ end_scope();
+ statement("");
+ break;
+
+ case SPVFuncImplForwardArgs:
+ statement("template<typename T> struct spvRemoveReference { typedef T type; };");
+ statement("template<typename T> struct spvRemoveReference<thread T&> { typedef T type; };");
+ statement("template<typename T> struct spvRemoveReference<thread T&&> { typedef T type; };");
+ statement("template<typename T> inline constexpr thread T&& spvForward(thread typename "
+ "spvRemoveReference<T>::type& x)");
+ begin_scope();
+ statement("return static_cast<thread T&&>(x);");
+ end_scope();
+ statement("template<typename T> inline constexpr thread T&& spvForward(thread typename "
+ "spvRemoveReference<T>::type&& x)");
+ begin_scope();
+ statement("return static_cast<thread T&&>(x);");
+ end_scope();
+ statement("");
+ break;
+
+ case SPVFuncImplGetSwizzle:
+ statement("enum class spvSwizzle : uint");
+ begin_scope();
+ statement("none = 0,");
+ statement("zero,");
+ statement("one,");
+ statement("red,");
+ statement("green,");
+ statement("blue,");
+ statement("alpha");
+ end_scope_decl();
+ statement("");
+ statement("template<typename T>");
+ statement("inline T spvGetSwizzle(vec<T, 4> x, T c, spvSwizzle s)");
+ begin_scope();
+ statement("switch (s)");
+ begin_scope();
+ statement("case spvSwizzle::none:");
+ statement(" return c;");
+ statement("case spvSwizzle::zero:");
+ statement(" return 0;");
+ statement("case spvSwizzle::one:");
+ statement(" return 1;");
+ statement("case spvSwizzle::red:");
+ statement(" return x.r;");
+ statement("case spvSwizzle::green:");
+ statement(" return x.g;");
+ statement("case spvSwizzle::blue:");
+ statement(" return x.b;");
+ statement("case spvSwizzle::alpha:");
+ statement(" return x.a;");
+ end_scope();
+ end_scope();
+ statement("");
+ break;
+
+ case SPVFuncImplTextureSwizzle:
+ statement("// Wrapper function that swizzles texture samples and fetches.");
+ statement("template<typename T>");
+ statement("inline vec<T, 4> spvTextureSwizzle(vec<T, 4> x, uint s)");
+ begin_scope();
+ statement("if (!s)");
+ statement(" return x;");
+ statement("return vec<T, 4>(spvGetSwizzle(x, x.r, spvSwizzle((s >> 0) & 0xFF)), "
+ "spvGetSwizzle(x, x.g, spvSwizzle((s >> 8) & 0xFF)), spvGetSwizzle(x, x.b, spvSwizzle((s >> 16) "
+ "& 0xFF)), "
+ "spvGetSwizzle(x, x.a, spvSwizzle((s >> 24) & 0xFF)));");
+ end_scope();
+ statement("");
+ statement("template<typename T>");
+ statement("inline T spvTextureSwizzle(T x, uint s)");
+ begin_scope();
+ statement("return spvTextureSwizzle(vec<T, 4>(x, 0, 0, 1), s).x;");
+ end_scope();
+ statement("");
+ break;
+
+ case SPVFuncImplGatherSwizzle:
+ statement("// Wrapper function that swizzles texture gathers.");
+ statement("template<typename T, template<typename, access = access::sample, typename = void> class Tex, "
+ "typename... Ts>");
+ statement("inline vec<T, 4> spvGatherSwizzle(const thread Tex<T>& t, sampler s, "
+ "uint sw, component c, Ts... params) METAL_CONST_ARG(c)");
+ begin_scope();
+ statement("if (sw)");
+ begin_scope();
+ statement("switch (spvSwizzle((sw >> (uint(c) * 8)) & 0xFF))");
+ begin_scope();
+ statement("case spvSwizzle::none:");
+ statement(" break;");
+ statement("case spvSwizzle::zero:");
+ statement(" return vec<T, 4>(0, 0, 0, 0);");
+ statement("case spvSwizzle::one:");
+ statement(" return vec<T, 4>(1, 1, 1, 1);");
+ statement("case spvSwizzle::red:");
+ statement(" return t.gather(s, spvForward<Ts>(params)..., component::x);");
+ statement("case spvSwizzle::green:");
+ statement(" return t.gather(s, spvForward<Ts>(params)..., component::y);");
+ statement("case spvSwizzle::blue:");
+ statement(" return t.gather(s, spvForward<Ts>(params)..., component::z);");
+ statement("case spvSwizzle::alpha:");
+ statement(" return t.gather(s, spvForward<Ts>(params)..., component::w);");
+ end_scope();
+ end_scope();
+ // texture::gather insists on its component parameter being a constant
+ // expression, so we need this silly workaround just to compile the shader.
+ statement("switch (c)");
+ begin_scope();
+ statement("case component::x:");
+ statement(" return t.gather(s, spvForward<Ts>(params)..., component::x);");
+ statement("case component::y:");
+ statement(" return t.gather(s, spvForward<Ts>(params)..., component::y);");
+ statement("case component::z:");
+ statement(" return t.gather(s, spvForward<Ts>(params)..., component::z);");
+ statement("case component::w:");
+ statement(" return t.gather(s, spvForward<Ts>(params)..., component::w);");
+ end_scope();
+ end_scope();
+ statement("");
+ break;
+
+ case SPVFuncImplGatherCompareSwizzle:
+ statement("// Wrapper function that swizzles depth texture gathers.");
+ statement("template<typename T, template<typename, access = access::sample, typename = void> class Tex, "
+ "typename... Ts>");
+ statement("inline vec<T, 4> spvGatherCompareSwizzle(const thread Tex<T>& t, sampler "
+ "s, uint sw, Ts... params) ");
+ begin_scope();
+ statement("if (sw)");
+ begin_scope();
+ statement("switch (spvSwizzle(sw & 0xFF))");
+ begin_scope();
+ statement("case spvSwizzle::none:");
+ statement("case spvSwizzle::red:");
+ statement(" break;");
+ statement("case spvSwizzle::zero:");
+ statement("case spvSwizzle::green:");
+ statement("case spvSwizzle::blue:");
+ statement("case spvSwizzle::alpha:");
+ statement(" return vec<T, 4>(0, 0, 0, 0);");
+ statement("case spvSwizzle::one:");
+ statement(" return vec<T, 4>(1, 1, 1, 1);");
+ end_scope();
+ end_scope();
+ statement("return t.gather_compare(s, spvForward<Ts>(params)...);");
+ end_scope();
+ statement("");
+ break;
+
+ case SPVFuncImplGatherConstOffsets:
+ // Because we are passing a texture reference, we have to output an overloaded version of this function for each address space.
+ for (uint32_t i = 0; i < texture_addr_space_count; i++)
+ {
+ statement("// Wrapper function that processes a ", texture_addr_spaces[i], " texture gather with a constant offset array.");
+ statement("template<typename T, template<typename, access = access::sample, typename = void> class Tex, "
+ "typename Toff, typename... Tp>");
+ statement("inline vec<T, 4> spvGatherConstOffsets(const ", texture_addr_spaces[i], " Tex<T>& t, sampler s, "
+ "Toff coffsets, component c, Tp... params) METAL_CONST_ARG(c)");
+ begin_scope();
+ statement("vec<T, 4> rslts[4];");
+ statement("for (uint i = 0; i < 4; i++)");
+ begin_scope();
+ statement("switch (c)");
+ begin_scope();
+ // Work around texture::gather() requiring its component parameter to be a constant expression
+ statement("case component::x:");
+ statement(" rslts[i] = t.gather(s, spvForward<Tp>(params)..., coffsets[i], component::x);");
+ statement(" break;");
+ statement("case component::y:");
+ statement(" rslts[i] = t.gather(s, spvForward<Tp>(params)..., coffsets[i], component::y);");
+ statement(" break;");
+ statement("case component::z:");
+ statement(" rslts[i] = t.gather(s, spvForward<Tp>(params)..., coffsets[i], component::z);");
+ statement(" break;");
+ statement("case component::w:");
+ statement(" rslts[i] = t.gather(s, spvForward<Tp>(params)..., coffsets[i], component::w);");
+ statement(" break;");
+ end_scope();
+ end_scope();
+ // Pull all values from the i0j0 component of each gather footprint
+ statement("return vec<T, 4>(rslts[0].w, rslts[1].w, rslts[2].w, rslts[3].w);");
+ end_scope();
+ statement("");
+ }
+ break;
+
+ case SPVFuncImplGatherCompareConstOffsets:
+ // Because we are passing a texture reference, we have to output an overloaded version of this function for each address space.
+ for (uint32_t i = 0; i < texture_addr_space_count; i++)
+ {
+ statement("// Wrapper function that processes a ", texture_addr_spaces[i], " texture gather with a constant offset array.");
+ statement("template<typename T, template<typename, access = access::sample, typename = void> class Tex, "
+ "typename Toff, typename... Tp>");
+ statement("inline vec<T, 4> spvGatherCompareConstOffsets(const ", texture_addr_spaces[i], " Tex<T>& t, sampler s, "
+ "Toff coffsets, Tp... params)");
+ begin_scope();
+ statement("vec<T, 4> rslts[4];");
+ statement("for (uint i = 0; i < 4; i++)");
+ begin_scope();
+ statement(" rslts[i] = t.gather_compare(s, spvForward<Tp>(params)..., coffsets[i]);");
+ end_scope();
+ // Pull all values from the i0j0 component of each gather footprint
+ statement("return vec<T, 4>(rslts[0].w, rslts[1].w, rslts[2].w, rslts[3].w);");
+ end_scope();
+ statement("");
+ }
+ break;
+
+ case SPVFuncImplSubgroupBroadcast:
+ // Metal doesn't allow broadcasting boolean values directly, but we can work around that by broadcasting
+ // them as integers.
+ statement("template<typename T>");
+ statement("inline T spvSubgroupBroadcast(T value, ushort lane)");
+ begin_scope();
+ if (msl_options.use_quadgroup_operation())
+ statement("return quad_broadcast(value, lane);");
+ else
+ statement("return simd_broadcast(value, lane);");
+ end_scope();
+ statement("");
+ statement("template<>");
+ statement("inline bool spvSubgroupBroadcast(bool value, ushort lane)");
+ begin_scope();
+ if (msl_options.use_quadgroup_operation())
+ statement("return !!quad_broadcast((ushort)value, lane);");
+ else
+ statement("return !!simd_broadcast((ushort)value, lane);");
+ end_scope();
+ statement("");
+ statement("template<uint N>");
+ statement("inline vec<bool, N> spvSubgroupBroadcast(vec<bool, N> value, ushort lane)");
+ begin_scope();
+ if (msl_options.use_quadgroup_operation())
+ statement("return (vec<bool, N>)quad_broadcast((vec<ushort, N>)value, lane);");
+ else
+ statement("return (vec<bool, N>)simd_broadcast((vec<ushort, N>)value, lane);");
+ end_scope();
+ statement("");
+ break;
+
+ case SPVFuncImplSubgroupBroadcastFirst:
+ statement("template<typename T>");
+ statement("inline T spvSubgroupBroadcastFirst(T value)");
+ begin_scope();
+ if (msl_options.use_quadgroup_operation())
+ statement("return quad_broadcast_first(value);");
+ else
+ statement("return simd_broadcast_first(value);");
+ end_scope();
+ statement("");
+ statement("template<>");
+ statement("inline bool spvSubgroupBroadcastFirst(bool value)");
+ begin_scope();
+ if (msl_options.use_quadgroup_operation())
+ statement("return !!quad_broadcast_first((ushort)value);");
+ else
+ statement("return !!simd_broadcast_first((ushort)value);");
+ end_scope();
+ statement("");
+ statement("template<uint N>");
+ statement("inline vec<bool, N> spvSubgroupBroadcastFirst(vec<bool, N> value)");
+ begin_scope();
+ if (msl_options.use_quadgroup_operation())
+ statement("return (vec<bool, N>)quad_broadcast_first((vec<ushort, N>)value);");
+ else
+ statement("return (vec<bool, N>)simd_broadcast_first((vec<ushort, N>)value);");
+ end_scope();
+ statement("");
+ break;
+
+ case SPVFuncImplSubgroupBallot:
+ statement("inline uint4 spvSubgroupBallot(bool value)");
+ begin_scope();
+ if (msl_options.use_quadgroup_operation())
+ {
+ statement("return uint4((quad_vote::vote_t)quad_ballot(value), 0, 0, 0);");
+ }
+ else if (msl_options.is_ios())
+ {
+ // The current simd_vote on iOS uses a 32-bit integer-like object.
+ statement("return uint4((simd_vote::vote_t)simd_ballot(value), 0, 0, 0);");
+ }
+ else
+ {
+ statement("simd_vote vote = simd_ballot(value);");
+ statement("// simd_ballot() returns a 64-bit integer-like object, but");
+ statement("// SPIR-V callers expect a uint4. We must convert.");
+ statement("// FIXME: This won't include higher bits if Apple ever supports");
+ statement("// 128 lanes in an SIMD-group.");
+ statement("return uint4(as_type<uint2>((simd_vote::vote_t)vote), 0, 0);");
+ }
+ end_scope();
+ statement("");
+ break;
+
+ case SPVFuncImplSubgroupBallotBitExtract:
+ statement("inline bool spvSubgroupBallotBitExtract(uint4 ballot, uint bit)");
+ begin_scope();
+ statement("return !!extract_bits(ballot[bit / 32], bit % 32, 1);");
+ end_scope();
+ statement("");
+ break;
+
+ case SPVFuncImplSubgroupBallotFindLSB:
+ statement("inline uint spvSubgroupBallotFindLSB(uint4 ballot, uint gl_SubgroupSize)");
+ begin_scope();
+ if (msl_options.is_ios())
+ {
+ statement("uint4 mask = uint4(extract_bits(0xFFFFFFFF, 0, gl_SubgroupSize), uint3(0));");
+ }
+ else
+ {
+ statement("uint4 mask = uint4(extract_bits(0xFFFFFFFF, 0, min(gl_SubgroupSize, 32u)), "
+ "extract_bits(0xFFFFFFFF, 0, (uint)max((int)gl_SubgroupSize - 32, 0)), uint2(0));");
+ }
+ statement("ballot &= mask;");
+ statement("return select(ctz(ballot.x), select(32 + ctz(ballot.y), select(64 + ctz(ballot.z), select(96 + "
+ "ctz(ballot.w), uint(-1), ballot.w == 0), ballot.z == 0), ballot.y == 0), ballot.x == 0);");
+ end_scope();
+ statement("");
+ break;
+
+ case SPVFuncImplSubgroupBallotFindMSB:
+ statement("inline uint spvSubgroupBallotFindMSB(uint4 ballot, uint gl_SubgroupSize)");
+ begin_scope();
+ if (msl_options.is_ios())
+ {
+ statement("uint4 mask = uint4(extract_bits(0xFFFFFFFF, 0, gl_SubgroupSize), uint3(0));");
+ }
+ else
+ {
+ statement("uint4 mask = uint4(extract_bits(0xFFFFFFFF, 0, min(gl_SubgroupSize, 32u)), "
+ "extract_bits(0xFFFFFFFF, 0, (uint)max((int)gl_SubgroupSize - 32, 0)), uint2(0));");
+ }
+ statement("ballot &= mask;");
+ statement("return select(128 - (clz(ballot.w) + 1), select(96 - (clz(ballot.z) + 1), select(64 - "
+ "(clz(ballot.y) + 1), select(32 - (clz(ballot.x) + 1), uint(-1), ballot.x == 0), ballot.y == 0), "
+ "ballot.z == 0), ballot.w == 0);");
+ end_scope();
+ statement("");
+ break;
+
+ case SPVFuncImplSubgroupBallotBitCount:
+ statement("inline uint spvPopCount4(uint4 ballot)");
+ begin_scope();
+ statement("return popcount(ballot.x) + popcount(ballot.y) + popcount(ballot.z) + popcount(ballot.w);");
+ end_scope();
+ statement("");
+ statement("inline uint spvSubgroupBallotBitCount(uint4 ballot, uint gl_SubgroupSize)");
+ begin_scope();
+ if (msl_options.is_ios())
+ {
+ statement("uint4 mask = uint4(extract_bits(0xFFFFFFFF, 0, gl_SubgroupSize), uint3(0));");
+ }
+ else
+ {
+ statement("uint4 mask = uint4(extract_bits(0xFFFFFFFF, 0, min(gl_SubgroupSize, 32u)), "
+ "extract_bits(0xFFFFFFFF, 0, (uint)max((int)gl_SubgroupSize - 32, 0)), uint2(0));");
+ }
+ statement("return spvPopCount4(ballot & mask);");
+ end_scope();
+ statement("");
+ statement("inline uint spvSubgroupBallotInclusiveBitCount(uint4 ballot, uint gl_SubgroupInvocationID)");
+ begin_scope();
+ if (msl_options.is_ios())
+ {
+ statement("uint4 mask = uint4(extract_bits(0xFFFFFFFF, 0, gl_SubgroupInvocationID + 1), uint3(0));");
+ }
+ else
+ {
+ statement("uint4 mask = uint4(extract_bits(0xFFFFFFFF, 0, min(gl_SubgroupInvocationID + 1, 32u)), "
+ "extract_bits(0xFFFFFFFF, 0, (uint)max((int)gl_SubgroupInvocationID + 1 - 32, 0)), "
+ "uint2(0));");
+ }
+ statement("return spvPopCount4(ballot & mask);");
+ end_scope();
+ statement("");
+ statement("inline uint spvSubgroupBallotExclusiveBitCount(uint4 ballot, uint gl_SubgroupInvocationID)");
+ begin_scope();
+ if (msl_options.is_ios())
+ {
+ statement("uint4 mask = uint4(extract_bits(0xFFFFFFFF, 0, gl_SubgroupInvocationID), uint2(0));");
+ }
+ else
+ {
+ statement("uint4 mask = uint4(extract_bits(0xFFFFFFFF, 0, min(gl_SubgroupInvocationID, 32u)), "
+ "extract_bits(0xFFFFFFFF, 0, (uint)max((int)gl_SubgroupInvocationID - 32, 0)), uint2(0));");
+ }
+ statement("return spvPopCount4(ballot & mask);");
+ end_scope();
+ statement("");
+ break;
+
+ case SPVFuncImplSubgroupAllEqual:
+ // Metal doesn't provide a function to evaluate this directly. But, we can
+ // implement this by comparing every thread's value to one thread's value
+ // (in this case, the value of the first active thread). Then, by the transitive
+ // property of equality, if all comparisons return true, then they are all equal.
+ statement("template<typename T>");
+ statement("inline bool spvSubgroupAllEqual(T value)");
+ begin_scope();
+ if (msl_options.use_quadgroup_operation())
+ statement("return quad_all(all(value == quad_broadcast_first(value)));");
+ else
+ statement("return simd_all(all(value == simd_broadcast_first(value)));");
+ end_scope();
+ statement("");
+ statement("template<>");
+ statement("inline bool spvSubgroupAllEqual(bool value)");
+ begin_scope();
+ if (msl_options.use_quadgroup_operation())
+ statement("return quad_all(value) || !quad_any(value);");
+ else
+ statement("return simd_all(value) || !simd_any(value);");
+ end_scope();
+ statement("");
+ statement("template<uint N>");
+ statement("inline bool spvSubgroupAllEqual(vec<bool, N> value)");
+ begin_scope();
+ if (msl_options.use_quadgroup_operation())
+ statement("return quad_all(all(value == (vec<bool, N>)quad_broadcast_first((vec<ushort, N>)value)));");
+ else
+ statement("return simd_all(all(value == (vec<bool, N>)simd_broadcast_first((vec<ushort, N>)value)));");
+ end_scope();
+ statement("");
+ break;
+
+ case SPVFuncImplSubgroupShuffle:
+ statement("template<typename T>");
+ statement("inline T spvSubgroupShuffle(T value, ushort lane)");
+ begin_scope();
+ if (msl_options.use_quadgroup_operation())
+ statement("return quad_shuffle(value, lane);");
+ else
+ statement("return simd_shuffle(value, lane);");
+ end_scope();
+ statement("");
+ statement("template<>");
+ statement("inline bool spvSubgroupShuffle(bool value, ushort lane)");
+ begin_scope();
+ if (msl_options.use_quadgroup_operation())
+ statement("return !!quad_shuffle((ushort)value, lane);");
+ else
+ statement("return !!simd_shuffle((ushort)value, lane);");
+ end_scope();
+ statement("");
+ statement("template<uint N>");
+ statement("inline vec<bool, N> spvSubgroupShuffle(vec<bool, N> value, ushort lane)");
+ begin_scope();
+ if (msl_options.use_quadgroup_operation())
+ statement("return (vec<bool, N>)quad_shuffle((vec<ushort, N>)value, lane);");
+ else
+ statement("return (vec<bool, N>)simd_shuffle((vec<ushort, N>)value, lane);");
+ end_scope();
+ statement("");
+ break;
+
+ case SPVFuncImplSubgroupShuffleXor:
+ statement("template<typename T>");
+ statement("inline T spvSubgroupShuffleXor(T value, ushort mask)");
+ begin_scope();
+ if (msl_options.use_quadgroup_operation())
+ statement("return quad_shuffle_xor(value, mask);");
+ else
+ statement("return simd_shuffle_xor(value, mask);");
+ end_scope();
+ statement("");
+ statement("template<>");
+ statement("inline bool spvSubgroupShuffleXor(bool value, ushort mask)");
+ begin_scope();
+ if (msl_options.use_quadgroup_operation())
+ statement("return !!quad_shuffle_xor((ushort)value, mask);");
+ else
+ statement("return !!simd_shuffle_xor((ushort)value, mask);");
+ end_scope();
+ statement("");
+ statement("template<uint N>");
+ statement("inline vec<bool, N> spvSubgroupShuffleXor(vec<bool, N> value, ushort mask)");
+ begin_scope();
+ if (msl_options.use_quadgroup_operation())
+ statement("return (vec<bool, N>)quad_shuffle_xor((vec<ushort, N>)value, mask);");
+ else
+ statement("return (vec<bool, N>)simd_shuffle_xor((vec<ushort, N>)value, mask);");
+ end_scope();
+ statement("");
+ break;
+
+ case SPVFuncImplSubgroupShuffleUp:
+ statement("template<typename T>");
+ statement("inline T spvSubgroupShuffleUp(T value, ushort delta)");
+ begin_scope();
+ if (msl_options.use_quadgroup_operation())
+ statement("return quad_shuffle_up(value, delta);");
+ else
+ statement("return simd_shuffle_up(value, delta);");
+ end_scope();
+ statement("");
+ statement("template<>");
+ statement("inline bool spvSubgroupShuffleUp(bool value, ushort delta)");
+ begin_scope();
+ if (msl_options.use_quadgroup_operation())
+ statement("return !!quad_shuffle_up((ushort)value, delta);");
+ else
+ statement("return !!simd_shuffle_up((ushort)value, delta);");
+ end_scope();
+ statement("");
+ statement("template<uint N>");
+ statement("inline vec<bool, N> spvSubgroupShuffleUp(vec<bool, N> value, ushort delta)");
+ begin_scope();
+ if (msl_options.use_quadgroup_operation())
+ statement("return (vec<bool, N>)quad_shuffle_up((vec<ushort, N>)value, delta);");
+ else
+ statement("return (vec<bool, N>)simd_shuffle_up((vec<ushort, N>)value, delta);");
+ end_scope();
+ statement("");
+ break;
+
+ case SPVFuncImplSubgroupShuffleDown:
+ statement("template<typename T>");
+ statement("inline T spvSubgroupShuffleDown(T value, ushort delta)");
+ begin_scope();
+ if (msl_options.use_quadgroup_operation())
+ statement("return quad_shuffle_down(value, delta);");
+ else
+ statement("return simd_shuffle_down(value, delta);");
+ end_scope();
+ statement("");
+ statement("template<>");
+ statement("inline bool spvSubgroupShuffleDown(bool value, ushort delta)");
+ begin_scope();
+ if (msl_options.use_quadgroup_operation())
+ statement("return !!quad_shuffle_down((ushort)value, delta);");
+ else
+ statement("return !!simd_shuffle_down((ushort)value, delta);");
+ end_scope();
+ statement("");
+ statement("template<uint N>");
+ statement("inline vec<bool, N> spvSubgroupShuffleDown(vec<bool, N> value, ushort delta)");
+ begin_scope();
+ if (msl_options.use_quadgroup_operation())
+ statement("return (vec<bool, N>)quad_shuffle_down((vec<ushort, N>)value, delta);");
+ else
+ statement("return (vec<bool, N>)simd_shuffle_down((vec<ushort, N>)value, delta);");
+ end_scope();
+ statement("");
+ break;
+
+ case SPVFuncImplQuadBroadcast:
+ statement("template<typename T>");
+ statement("inline T spvQuadBroadcast(T value, uint lane)");
+ begin_scope();
+ statement("return quad_broadcast(value, lane);");
+ end_scope();
+ statement("");
+ statement("template<>");
+ statement("inline bool spvQuadBroadcast(bool value, uint lane)");
+ begin_scope();
+ statement("return !!quad_broadcast((ushort)value, lane);");
+ end_scope();
+ statement("");
+ statement("template<uint N>");
+ statement("inline vec<bool, N> spvQuadBroadcast(vec<bool, N> value, uint lane)");
+ begin_scope();
+ statement("return (vec<bool, N>)quad_broadcast((vec<ushort, N>)value, lane);");
+ end_scope();
+ statement("");
+ break;
+
+ case SPVFuncImplQuadSwap:
+ // We can implement this easily based on the following table giving
+ // the target lane ID from the direction and current lane ID:
+ // Direction
+ // | 0 | 1 | 2 |
+ // ---+---+---+---+
+ // L 0 | 1 2 3
+ // a 1 | 0 3 2
+ // n 2 | 3 0 1
+ // e 3 | 2 1 0
+ // Notice that target = source ^ (direction + 1).
+ statement("template<typename T>");
+ statement("inline T spvQuadSwap(T value, uint dir)");
+ begin_scope();
+ statement("return quad_shuffle_xor(value, dir + 1);");
+ end_scope();
+ statement("");
+ statement("template<>");
+ statement("inline bool spvQuadSwap(bool value, uint dir)");
+ begin_scope();
+ statement("return !!quad_shuffle_xor((ushort)value, dir + 1);");
+ end_scope();
+ statement("");
+ statement("template<uint N>");
+ statement("inline vec<bool, N> spvQuadSwap(vec<bool, N> value, uint dir)");
+ begin_scope();
+ statement("return (vec<bool, N>)quad_shuffle_xor((vec<ushort, N>)value, dir + 1);");
+ end_scope();
+ statement("");
+ break;
+
+ case SPVFuncImplReflectScalar:
+ // Metal does not support scalar versions of these functions.
+ // Ensure fast-math is disabled to match Vulkan results.
+ statement("template<typename T>");
+ statement("[[clang::optnone]] T spvReflect(T i, T n)");
+ begin_scope();
+ statement("return i - T(2) * i * n * n;");
+ end_scope();
+ statement("");
+ break;
+
+ case SPVFuncImplRefractScalar:
+ // Metal does not support scalar versions of these functions.
+ statement("template<typename T>");
+ statement("inline T spvRefract(T i, T n, T eta)");
+ begin_scope();
+ statement("T NoI = n * i;");
+ statement("T NoI2 = NoI * NoI;");
+ statement("T k = T(1) - eta * eta * (T(1) - NoI2);");
+ statement("if (k < T(0))");
+ begin_scope();
+ statement("return T(0);");
+ end_scope();
+ statement("else");
+ begin_scope();
+ statement("return eta * i - (eta * NoI + sqrt(k)) * n;");
+ end_scope();
+ end_scope();
+ statement("");
+ break;
+
+ case SPVFuncImplFaceForwardScalar:
+ // Metal does not support scalar versions of these functions.
+ statement("template<typename T>");
+ statement("inline T spvFaceForward(T n, T i, T nref)");
+ begin_scope();
+ statement("return i * nref < T(0) ? n : -n;");
+ end_scope();
+ statement("");
+ break;
+
+ case SPVFuncImplChromaReconstructNearest2Plane:
+ statement("template<typename T, typename... LodOptions>");
+ statement("inline vec<T, 4> spvChromaReconstructNearest(texture2d<T> plane0, texture2d<T> plane1, sampler "
+ "samp, float2 coord, LodOptions... options)");
+ begin_scope();
+ statement("vec<T, 4> ycbcr = vec<T, 4>(0, 0, 0, 1);");
+ statement("ycbcr.g = plane0.sample(samp, coord, spvForward<LodOptions>(options)...).r;");
+ statement("ycbcr.br = plane1.sample(samp, coord, spvForward<LodOptions>(options)...).rg;");
+ statement("return ycbcr;");
+ end_scope();
+ statement("");
+ break;
+
+ case SPVFuncImplChromaReconstructNearest3Plane:
+ statement("template<typename T, typename... LodOptions>");
+ statement("inline vec<T, 4> spvChromaReconstructNearest(texture2d<T> plane0, texture2d<T> plane1, "
+ "texture2d<T> plane2, sampler samp, float2 coord, LodOptions... options)");
+ begin_scope();
+ statement("vec<T, 4> ycbcr = vec<T, 4>(0, 0, 0, 1);");
+ statement("ycbcr.g = plane0.sample(samp, coord, spvForward<LodOptions>(options)...).r;");
+ statement("ycbcr.b = plane1.sample(samp, coord, spvForward<LodOptions>(options)...).r;");
+ statement("ycbcr.r = plane2.sample(samp, coord, spvForward<LodOptions>(options)...).r;");
+ statement("return ycbcr;");
+ end_scope();
+ statement("");
+ break;
+
+ case SPVFuncImplChromaReconstructLinear422CositedEven2Plane:
+ statement("template<typename T, typename... LodOptions>");
+ statement("inline vec<T, 4> spvChromaReconstructLinear422CositedEven(texture2d<T> plane0, texture2d<T> "
+ "plane1, sampler samp, float2 coord, LodOptions... options)");
+ begin_scope();
+ statement("vec<T, 4> ycbcr = vec<T, 4>(0, 0, 0, 1);");
+ statement("ycbcr.g = plane0.sample(samp, coord, spvForward<LodOptions>(options)...).r;");
+ statement("if (fract(coord.x * plane1.get_width()) != 0.0)");
+ begin_scope();
+ statement("ycbcr.br = vec<T, 2>(mix(plane1.sample(samp, coord, spvForward<LodOptions>(options)...), "
+ "plane1.sample(samp, coord, spvForward<LodOptions>(options)..., int2(1, 0)), 0.5).rg);");
+ end_scope();
+ statement("else");
+ begin_scope();
+ statement("ycbcr.br = plane1.sample(samp, coord, spvForward<LodOptions>(options)...).rg;");
+ end_scope();
+ statement("return ycbcr;");
+ end_scope();
+ statement("");
+ break;
+
+ case SPVFuncImplChromaReconstructLinear422CositedEven3Plane:
+ statement("template<typename T, typename... LodOptions>");
+ statement("inline vec<T, 4> spvChromaReconstructLinear422CositedEven(texture2d<T> plane0, texture2d<T> "
+ "plane1, texture2d<T> plane2, sampler samp, float2 coord, LodOptions... options)");
+ begin_scope();
+ statement("vec<T, 4> ycbcr = vec<T, 4>(0, 0, 0, 1);");
+ statement("ycbcr.g = plane0.sample(samp, coord, spvForward<LodOptions>(options)...).r;");
+ statement("if (fract(coord.x * plane1.get_width()) != 0.0)");
+ begin_scope();
+ statement("ycbcr.b = T(mix(plane1.sample(samp, coord, spvForward<LodOptions>(options)...), "
+ "plane1.sample(samp, coord, spvForward<LodOptions>(options)..., int2(1, 0)), 0.5).r);");
+ statement("ycbcr.r = T(mix(plane2.sample(samp, coord, spvForward<LodOptions>(options)...), "
+ "plane2.sample(samp, coord, spvForward<LodOptions>(options)..., int2(1, 0)), 0.5).r);");
+ end_scope();
+ statement("else");
+ begin_scope();
+ statement("ycbcr.b = plane1.sample(samp, coord, spvForward<LodOptions>(options)...).r;");
+ statement("ycbcr.r = plane2.sample(samp, coord, spvForward<LodOptions>(options)...).r;");
+ end_scope();
+ statement("return ycbcr;");
+ end_scope();
+ statement("");
+ break;
+
+ case SPVFuncImplChromaReconstructLinear422Midpoint2Plane:
+ statement("template<typename T, typename... LodOptions>");
+ statement("inline vec<T, 4> spvChromaReconstructLinear422Midpoint(texture2d<T> plane0, texture2d<T> "
+ "plane1, sampler samp, float2 coord, LodOptions... options)");
+ begin_scope();
+ statement("vec<T, 4> ycbcr = vec<T, 4>(0, 0, 0, 1);");
+ statement("ycbcr.g = plane0.sample(samp, coord, spvForward<LodOptions>(options)...).r;");
+ statement("int2 offs = int2(fract(coord.x * plane1.get_width()) != 0.0 ? 1 : -1, 0);");
+ statement("ycbcr.br = vec<T, 2>(mix(plane1.sample(samp, coord, spvForward<LodOptions>(options)...), "
+ "plane1.sample(samp, coord, spvForward<LodOptions>(options)..., offs), 0.25).rg);");
+ statement("return ycbcr;");
+ end_scope();
+ statement("");
+ break;
+
+ case SPVFuncImplChromaReconstructLinear422Midpoint3Plane:
+ statement("template<typename T, typename... LodOptions>");
+ statement("inline vec<T, 4> spvChromaReconstructLinear422Midpoint(texture2d<T> plane0, texture2d<T> "
+ "plane1, texture2d<T> plane2, sampler samp, float2 coord, LodOptions... options)");
+ begin_scope();
+ statement("vec<T, 4> ycbcr = vec<T, 4>(0, 0, 0, 1);");
+ statement("ycbcr.g = plane0.sample(samp, coord, spvForward<LodOptions>(options)...).r;");
+ statement("int2 offs = int2(fract(coord.x * plane1.get_width()) != 0.0 ? 1 : -1, 0);");
+ statement("ycbcr.b = T(mix(plane1.sample(samp, coord, spvForward<LodOptions>(options)...), "
+ "plane1.sample(samp, coord, spvForward<LodOptions>(options)..., offs), 0.25).r);");
+ statement("ycbcr.r = T(mix(plane2.sample(samp, coord, spvForward<LodOptions>(options)...), "
+ "plane2.sample(samp, coord, spvForward<LodOptions>(options)..., offs), 0.25).r);");
+ statement("return ycbcr;");
+ end_scope();
+ statement("");
+ break;
+
+ case SPVFuncImplChromaReconstructLinear420XCositedEvenYCositedEven2Plane:
+ statement("template<typename T, typename... LodOptions>");
+ statement("inline vec<T, 4> spvChromaReconstructLinear420XCositedEvenYCositedEven(texture2d<T> plane0, "
+ "texture2d<T> plane1, sampler samp, float2 coord, LodOptions... options)");
+ begin_scope();
+ statement("vec<T, 4> ycbcr = vec<T, 4>(0, 0, 0, 1);");
+ statement("ycbcr.g = plane0.sample(samp, coord, spvForward<LodOptions>(options)...).r;");
+ statement("float2 ab = fract(round(coord * float2(plane0.get_width(), plane0.get_height())) * 0.5);");
+ statement("ycbcr.br = vec<T, 2>(mix(mix(plane1.sample(samp, coord, spvForward<LodOptions>(options)...), "
+ "plane1.sample(samp, coord, spvForward<LodOptions>(options)..., int2(1, 0)), ab.x), "
+ "mix(plane1.sample(samp, coord, spvForward<LodOptions>(options)..., int2(0, 1)), "
+ "plane1.sample(samp, coord, spvForward<LodOptions>(options)..., int2(1, 1)), ab.x), ab.y).rg);");
+ statement("return ycbcr;");
+ end_scope();
+ statement("");
+ break;
+
+ case SPVFuncImplChromaReconstructLinear420XCositedEvenYCositedEven3Plane:
+ statement("template<typename T, typename... LodOptions>");
+ statement("inline vec<T, 4> spvChromaReconstructLinear420XCositedEvenYCositedEven(texture2d<T> plane0, "
+ "texture2d<T> plane1, texture2d<T> plane2, sampler samp, float2 coord, LodOptions... options)");
+ begin_scope();
+ statement("vec<T, 4> ycbcr = vec<T, 4>(0, 0, 0, 1);");
+ statement("ycbcr.g = plane0.sample(samp, coord, spvForward<LodOptions>(options)...).r;");
+ statement("float2 ab = fract(round(coord * float2(plane0.get_width(), plane0.get_height())) * 0.5);");
+ statement("ycbcr.b = T(mix(mix(plane1.sample(samp, coord, spvForward<LodOptions>(options)...), "
+ "plane1.sample(samp, coord, spvForward<LodOptions>(options)..., int2(1, 0)), ab.x), "
+ "mix(plane1.sample(samp, coord, spvForward<LodOptions>(options)..., int2(0, 1)), "
+ "plane1.sample(samp, coord, spvForward<LodOptions>(options)..., int2(1, 1)), ab.x), ab.y).r);");
+ statement("ycbcr.r = T(mix(mix(plane2.sample(samp, coord, spvForward<LodOptions>(options)...), "
+ "plane2.sample(samp, coord, spvForward<LodOptions>(options)..., int2(1, 0)), ab.x), "
+ "mix(plane2.sample(samp, coord, spvForward<LodOptions>(options)..., int2(0, 1)), "
+ "plane2.sample(samp, coord, spvForward<LodOptions>(options)..., int2(1, 1)), ab.x), ab.y).r);");
+ statement("return ycbcr;");
+ end_scope();
+ statement("");
+ break;
+
+ case SPVFuncImplChromaReconstructLinear420XMidpointYCositedEven2Plane:
+ statement("template<typename T, typename... LodOptions>");
+ statement("inline vec<T, 4> spvChromaReconstructLinear420XMidpointYCositedEven(texture2d<T> plane0, "
+ "texture2d<T> plane1, sampler samp, float2 coord, LodOptions... options)");
+ begin_scope();
+ statement("vec<T, 4> ycbcr = vec<T, 4>(0, 0, 0, 1);");
+ statement("ycbcr.g = plane0.sample(samp, coord, spvForward<LodOptions>(options)...).r;");
+ statement("float2 ab = fract((round(coord * float2(plane0.get_width(), plane0.get_height())) - float2(0.5, "
+ "0)) * 0.5);");
+ statement("ycbcr.br = vec<T, 2>(mix(mix(plane1.sample(samp, coord, spvForward<LodOptions>(options)...), "
+ "plane1.sample(samp, coord, spvForward<LodOptions>(options)..., int2(1, 0)), ab.x), "
+ "mix(plane1.sample(samp, coord, spvForward<LodOptions>(options)..., int2(0, 1)), "
+ "plane1.sample(samp, coord, spvForward<LodOptions>(options)..., int2(1, 1)), ab.x), ab.y).rg);");
+ statement("return ycbcr;");
+ end_scope();
+ statement("");
+ break;
+
+ case SPVFuncImplChromaReconstructLinear420XMidpointYCositedEven3Plane:
+ statement("template<typename T, typename... LodOptions>");
+ statement("inline vec<T, 4> spvChromaReconstructLinear420XMidpointYCositedEven(texture2d<T> plane0, "
+ "texture2d<T> plane1, texture2d<T> plane2, sampler samp, float2 coord, LodOptions... options)");
+ begin_scope();
+ statement("vec<T, 4> ycbcr = vec<T, 4>(0, 0, 0, 1);");
+ statement("ycbcr.g = plane0.sample(samp, coord, spvForward<LodOptions>(options)...).r;");
+ statement("float2 ab = fract((round(coord * float2(plane0.get_width(), plane0.get_height())) - float2(0.5, "
+ "0)) * 0.5);");
+ statement("ycbcr.b = T(mix(mix(plane1.sample(samp, coord, spvForward<LodOptions>(options)...), "
+ "plane1.sample(samp, coord, spvForward<LodOptions>(options)..., int2(1, 0)), ab.x), "
+ "mix(plane1.sample(samp, coord, spvForward<LodOptions>(options)..., int2(0, 1)), "
+ "plane1.sample(samp, coord, spvForward<LodOptions>(options)..., int2(1, 1)), ab.x), ab.y).r);");
+ statement("ycbcr.r = T(mix(mix(plane2.sample(samp, coord, spvForward<LodOptions>(options)...), "
+ "plane2.sample(samp, coord, spvForward<LodOptions>(options)..., int2(1, 0)), ab.x), "
+ "mix(plane2.sample(samp, coord, spvForward<LodOptions>(options)..., int2(0, 1)), "
+ "plane2.sample(samp, coord, spvForward<LodOptions>(options)..., int2(1, 1)), ab.x), ab.y).r);");
+ statement("return ycbcr;");
+ end_scope();
+ statement("");
+ break;
+
+ case SPVFuncImplChromaReconstructLinear420XCositedEvenYMidpoint2Plane:
+ statement("template<typename T, typename... LodOptions>");
+ statement("inline vec<T, 4> spvChromaReconstructLinear420XCositedEvenYMidpoint(texture2d<T> plane0, "
+ "texture2d<T> plane1, sampler samp, float2 coord, LodOptions... options)");
+ begin_scope();
+ statement("vec<T, 4> ycbcr = vec<T, 4>(0, 0, 0, 1);");
+ statement("ycbcr.g = plane0.sample(samp, coord, spvForward<LodOptions>(options)...).r;");
+ statement("float2 ab = fract((round(coord * float2(plane0.get_width(), plane0.get_height())) - float2(0, "
+ "0.5)) * 0.5);");
+ statement("ycbcr.br = vec<T, 2>(mix(mix(plane1.sample(samp, coord, spvForward<LodOptions>(options)...), "
+ "plane1.sample(samp, coord, spvForward<LodOptions>(options)..., int2(1, 0)), ab.x), "
+ "mix(plane1.sample(samp, coord, spvForward<LodOptions>(options)..., int2(0, 1)), "
+ "plane1.sample(samp, coord, spvForward<LodOptions>(options)..., int2(1, 1)), ab.x), ab.y).rg);");
+ statement("return ycbcr;");
+ end_scope();
+ statement("");
+ break;
+
+ case SPVFuncImplChromaReconstructLinear420XCositedEvenYMidpoint3Plane:
+ statement("template<typename T, typename... LodOptions>");
+ statement("inline vec<T, 4> spvChromaReconstructLinear420XCositedEvenYMidpoint(texture2d<T> plane0, "
+ "texture2d<T> plane1, texture2d<T> plane2, sampler samp, float2 coord, LodOptions... options)");
+ begin_scope();
+ statement("vec<T, 4> ycbcr = vec<T, 4>(0, 0, 0, 1);");
+ statement("ycbcr.g = plane0.sample(samp, coord, spvForward<LodOptions>(options)...).r;");
+ statement("float2 ab = fract((round(coord * float2(plane0.get_width(), plane0.get_height())) - float2(0, "
+ "0.5)) * 0.5);");
+ statement("ycbcr.b = T(mix(mix(plane1.sample(samp, coord, spvForward<LodOptions>(options)...), "
+ "plane1.sample(samp, coord, spvForward<LodOptions>(options)..., int2(1, 0)), ab.x), "
+ "mix(plane1.sample(samp, coord, spvForward<LodOptions>(options)..., int2(0, 1)), "
+ "plane1.sample(samp, coord, spvForward<LodOptions>(options)..., int2(1, 1)), ab.x), ab.y).r);");
+ statement("ycbcr.r = T(mix(mix(plane2.sample(samp, coord, spvForward<LodOptions>(options)...), "
+ "plane2.sample(samp, coord, spvForward<LodOptions>(options)..., int2(1, 0)), ab.x), "
+ "mix(plane2.sample(samp, coord, spvForward<LodOptions>(options)..., int2(0, 1)), "
+ "plane2.sample(samp, coord, spvForward<LodOptions>(options)..., int2(1, 1)), ab.x), ab.y).r);");
+ statement("return ycbcr;");
+ end_scope();
+ statement("");
+ break;
+
+ case SPVFuncImplChromaReconstructLinear420XMidpointYMidpoint2Plane:
+ statement("template<typename T, typename... LodOptions>");
+ statement("inline vec<T, 4> spvChromaReconstructLinear420XMidpointYMidpoint(texture2d<T> plane0, "
+ "texture2d<T> plane1, sampler samp, float2 coord, LodOptions... options)");
+ begin_scope();
+ statement("vec<T, 4> ycbcr = vec<T, 4>(0, 0, 0, 1);");
+ statement("ycbcr.g = plane0.sample(samp, coord, spvForward<LodOptions>(options)...).r;");
+ statement("float2 ab = fract((round(coord * float2(plane0.get_width(), plane0.get_height())) - float2(0.5, "
+ "0.5)) * 0.5);");
+ statement("ycbcr.br = vec<T, 2>(mix(mix(plane1.sample(samp, coord, spvForward<LodOptions>(options)...), "
+ "plane1.sample(samp, coord, spvForward<LodOptions>(options)..., int2(1, 0)), ab.x), "
+ "mix(plane1.sample(samp, coord, spvForward<LodOptions>(options)..., int2(0, 1)), "
+ "plane1.sample(samp, coord, spvForward<LodOptions>(options)..., int2(1, 1)), ab.x), ab.y).rg);");
+ statement("return ycbcr;");
+ end_scope();
+ statement("");
+ break;
+
+ case SPVFuncImplChromaReconstructLinear420XMidpointYMidpoint3Plane:
+ statement("template<typename T, typename... LodOptions>");
+ statement("inline vec<T, 4> spvChromaReconstructLinear420XMidpointYMidpoint(texture2d<T> plane0, "
+ "texture2d<T> plane1, texture2d<T> plane2, sampler samp, float2 coord, LodOptions... options)");
+ begin_scope();
+ statement("vec<T, 4> ycbcr = vec<T, 4>(0, 0, 0, 1);");
+ statement("ycbcr.g = plane0.sample(samp, coord, spvForward<LodOptions>(options)...).r;");
+ statement("float2 ab = fract((round(coord * float2(plane0.get_width(), plane0.get_height())) - float2(0.5, "
+ "0.5)) * 0.5);");
+ statement("ycbcr.b = T(mix(mix(plane1.sample(samp, coord, spvForward<LodOptions>(options)...), "
+ "plane1.sample(samp, coord, spvForward<LodOptions>(options)..., int2(1, 0)), ab.x), "
+ "mix(plane1.sample(samp, coord, spvForward<LodOptions>(options)..., int2(0, 1)), "
+ "plane1.sample(samp, coord, spvForward<LodOptions>(options)..., int2(1, 1)), ab.x), ab.y).r);");
+ statement("ycbcr.r = T(mix(mix(plane2.sample(samp, coord, spvForward<LodOptions>(options)...), "
+ "plane2.sample(samp, coord, spvForward<LodOptions>(options)..., int2(1, 0)), ab.x), "
+ "mix(plane2.sample(samp, coord, spvForward<LodOptions>(options)..., int2(0, 1)), "
+ "plane2.sample(samp, coord, spvForward<LodOptions>(options)..., int2(1, 1)), ab.x), ab.y).r);");
+ statement("return ycbcr;");
+ end_scope();
+ statement("");
+ break;
+
+ case SPVFuncImplExpandITUFullRange:
+ statement("template<typename T>");
+ statement("inline vec<T, 4> spvExpandITUFullRange(vec<T, 4> ycbcr, int n)");
+ begin_scope();
+ statement("ycbcr.br -= exp2(T(n-1))/(exp2(T(n))-1);");
+ statement("return ycbcr;");
+ end_scope();
+ statement("");
+ break;
+
+ case SPVFuncImplExpandITUNarrowRange:
+ statement("template<typename T>");
+ statement("inline vec<T, 4> spvExpandITUNarrowRange(vec<T, 4> ycbcr, int n)");
+ begin_scope();
+ statement("ycbcr.g = (ycbcr.g * (exp2(T(n)) - 1) - ldexp(T(16), n - 8))/ldexp(T(219), n - 8);");
+ statement("ycbcr.br = (ycbcr.br * (exp2(T(n)) - 1) - ldexp(T(128), n - 8))/ldexp(T(224), n - 8);");
+ statement("return ycbcr;");
+ end_scope();
+ statement("");
+ break;
+
+ case SPVFuncImplConvertYCbCrBT709:
+ statement("// cf. Khronos Data Format Specification, section 15.1.1");
+ statement("constant float3x3 spvBT709Factors = {{1, 1, 1}, {0, -0.13397432/0.7152, 1.8556}, {1.5748, "
+ "-0.33480248/0.7152, 0}};");
+ statement("");
+ statement("template<typename T>");
+ statement("inline vec<T, 4> spvConvertYCbCrBT709(vec<T, 4> ycbcr)");
+ begin_scope();
+ statement("vec<T, 4> rgba;");
+ statement("rgba.rgb = vec<T, 3>(spvBT709Factors * ycbcr.gbr);");
+ statement("rgba.a = ycbcr.a;");
+ statement("return rgba;");
+ end_scope();
+ statement("");
+ break;
+
+ case SPVFuncImplConvertYCbCrBT601:
+ statement("// cf. Khronos Data Format Specification, section 15.1.2");
+ statement("constant float3x3 spvBT601Factors = {{1, 1, 1}, {0, -0.202008/0.587, 1.772}, {1.402, "
+ "-0.419198/0.587, 0}};");
+ statement("");
+ statement("template<typename T>");
+ statement("inline vec<T, 4> spvConvertYCbCrBT601(vec<T, 4> ycbcr)");
+ begin_scope();
+ statement("vec<T, 4> rgba;");
+ statement("rgba.rgb = vec<T, 3>(spvBT601Factors * ycbcr.gbr);");
+ statement("rgba.a = ycbcr.a;");
+ statement("return rgba;");
+ end_scope();
+ statement("");
+ break;
+
+ case SPVFuncImplConvertYCbCrBT2020:
+ statement("// cf. Khronos Data Format Specification, section 15.1.3");
+ statement("constant float3x3 spvBT2020Factors = {{1, 1, 1}, {0, -0.11156702/0.6780, 1.8814}, {1.4746, "
+ "-0.38737742/0.6780, 0}};");
+ statement("");
+ statement("template<typename T>");
+ statement("inline vec<T, 4> spvConvertYCbCrBT2020(vec<T, 4> ycbcr)");
+ begin_scope();
+ statement("vec<T, 4> rgba;");
+ statement("rgba.rgb = vec<T, 3>(spvBT2020Factors * ycbcr.gbr);");
+ statement("rgba.a = ycbcr.a;");
+ statement("return rgba;");
+ end_scope();
+ statement("");
+ break;
+
+ case SPVFuncImplDynamicImageSampler:
+ statement("enum class spvFormatResolution");
+ begin_scope();
+ statement("_444 = 0,");
+ statement("_422,");
+ statement("_420");
+ end_scope_decl();
+ statement("");
+ statement("enum class spvChromaFilter");
+ begin_scope();
+ statement("nearest = 0,");
+ statement("linear");
+ end_scope_decl();
+ statement("");
+ statement("enum class spvXChromaLocation");
+ begin_scope();
+ statement("cosited_even = 0,");
+ statement("midpoint");
+ end_scope_decl();
+ statement("");
+ statement("enum class spvYChromaLocation");
+ begin_scope();
+ statement("cosited_even = 0,");
+ statement("midpoint");
+ end_scope_decl();
+ statement("");
+ statement("enum class spvYCbCrModelConversion");
+ begin_scope();
+ statement("rgb_identity = 0,");
+ statement("ycbcr_identity,");
+ statement("ycbcr_bt_709,");
+ statement("ycbcr_bt_601,");
+ statement("ycbcr_bt_2020");
+ end_scope_decl();
+ statement("");
+ statement("enum class spvYCbCrRange");
+ begin_scope();
+ statement("itu_full = 0,");
+ statement("itu_narrow");
+ end_scope_decl();
+ statement("");
+ statement("struct spvComponentBits");
+ begin_scope();
+ statement("constexpr explicit spvComponentBits(int v) thread : value(v) {}");
+ statement("uchar value : 6;");
+ end_scope_decl();
+ statement("// A class corresponding to metal::sampler which holds sampler");
+ statement("// Y'CbCr conversion info.");
+ statement("struct spvYCbCrSampler");
+ begin_scope();
+ statement("constexpr spvYCbCrSampler() thread : val(build()) {}");
+ statement("template<typename... Ts>");
+ statement("constexpr spvYCbCrSampler(Ts... t) thread : val(build(t...)) {}");
+ statement("constexpr spvYCbCrSampler(const thread spvYCbCrSampler& s) thread = default;");
+ statement("");
+ statement("spvFormatResolution get_resolution() const thread");
+ begin_scope();
+ statement("return spvFormatResolution((val & resolution_mask) >> resolution_base);");
+ end_scope();
+ statement("spvChromaFilter get_chroma_filter() const thread");
+ begin_scope();
+ statement("return spvChromaFilter((val & chroma_filter_mask) >> chroma_filter_base);");
+ end_scope();
+ statement("spvXChromaLocation get_x_chroma_offset() const thread");
+ begin_scope();
+ statement("return spvXChromaLocation((val & x_chroma_off_mask) >> x_chroma_off_base);");
+ end_scope();
+ statement("spvYChromaLocation get_y_chroma_offset() const thread");
+ begin_scope();
+ statement("return spvYChromaLocation((val & y_chroma_off_mask) >> y_chroma_off_base);");
+ end_scope();
+ statement("spvYCbCrModelConversion get_ycbcr_model() const thread");
+ begin_scope();
+ statement("return spvYCbCrModelConversion((val & ycbcr_model_mask) >> ycbcr_model_base);");
+ end_scope();
+ statement("spvYCbCrRange get_ycbcr_range() const thread");
+ begin_scope();
+ statement("return spvYCbCrRange((val & ycbcr_range_mask) >> ycbcr_range_base);");
+ end_scope();
+ statement("int get_bpc() const thread { return (val & bpc_mask) >> bpc_base; }");
+ statement("");
+ statement("private:");
+ statement("ushort val;");
+ statement("");
+ statement("constexpr static constant ushort resolution_bits = 2;");
+ statement("constexpr static constant ushort chroma_filter_bits = 2;");
+ statement("constexpr static constant ushort x_chroma_off_bit = 1;");
+ statement("constexpr static constant ushort y_chroma_off_bit = 1;");
+ statement("constexpr static constant ushort ycbcr_model_bits = 3;");
+ statement("constexpr static constant ushort ycbcr_range_bit = 1;");
+ statement("constexpr static constant ushort bpc_bits = 6;");
+ statement("");
+ statement("constexpr static constant ushort resolution_base = 0;");
+ statement("constexpr static constant ushort chroma_filter_base = 2;");
+ statement("constexpr static constant ushort x_chroma_off_base = 4;");
+ statement("constexpr static constant ushort y_chroma_off_base = 5;");
+ statement("constexpr static constant ushort ycbcr_model_base = 6;");
+ statement("constexpr static constant ushort ycbcr_range_base = 9;");
+ statement("constexpr static constant ushort bpc_base = 10;");
+ statement("");
+ statement(
+ "constexpr static constant ushort resolution_mask = ((1 << resolution_bits) - 1) << resolution_base;");
+ statement("constexpr static constant ushort chroma_filter_mask = ((1 << chroma_filter_bits) - 1) << "
+ "chroma_filter_base;");
+ statement("constexpr static constant ushort x_chroma_off_mask = ((1 << x_chroma_off_bit) - 1) << "
+ "x_chroma_off_base;");
+ statement("constexpr static constant ushort y_chroma_off_mask = ((1 << y_chroma_off_bit) - 1) << "
+ "y_chroma_off_base;");
+ statement("constexpr static constant ushort ycbcr_model_mask = ((1 << ycbcr_model_bits) - 1) << "
+ "ycbcr_model_base;");
+ statement("constexpr static constant ushort ycbcr_range_mask = ((1 << ycbcr_range_bit) - 1) << "
+ "ycbcr_range_base;");
+ statement("constexpr static constant ushort bpc_mask = ((1 << bpc_bits) - 1) << bpc_base;");
+ statement("");
+ statement("static constexpr ushort build()");
+ begin_scope();
+ statement("return 0;");
+ end_scope();
+ statement("");
+ statement("template<typename... Ts>");
+ statement("static constexpr ushort build(spvFormatResolution res, Ts... t)");
+ begin_scope();
+ statement("return (ushort(res) << resolution_base) | (build(t...) & ~resolution_mask);");
+ end_scope();
+ statement("");
+ statement("template<typename... Ts>");
+ statement("static constexpr ushort build(spvChromaFilter filt, Ts... t)");
+ begin_scope();
+ statement("return (ushort(filt) << chroma_filter_base) | (build(t...) & ~chroma_filter_mask);");
+ end_scope();
+ statement("");
+ statement("template<typename... Ts>");
+ statement("static constexpr ushort build(spvXChromaLocation loc, Ts... t)");
+ begin_scope();
+ statement("return (ushort(loc) << x_chroma_off_base) | (build(t...) & ~x_chroma_off_mask);");
+ end_scope();
+ statement("");
+ statement("template<typename... Ts>");
+ statement("static constexpr ushort build(spvYChromaLocation loc, Ts... t)");
+ begin_scope();
+ statement("return (ushort(loc) << y_chroma_off_base) | (build(t...) & ~y_chroma_off_mask);");
+ end_scope();
+ statement("");
+ statement("template<typename... Ts>");
+ statement("static constexpr ushort build(spvYCbCrModelConversion model, Ts... t)");
+ begin_scope();
+ statement("return (ushort(model) << ycbcr_model_base) | (build(t...) & ~ycbcr_model_mask);");
+ end_scope();
+ statement("");
+ statement("template<typename... Ts>");
+ statement("static constexpr ushort build(spvYCbCrRange range, Ts... t)");
+ begin_scope();
+ statement("return (ushort(range) << ycbcr_range_base) | (build(t...) & ~ycbcr_range_mask);");
+ end_scope();
+ statement("");
+ statement("template<typename... Ts>");
+ statement("static constexpr ushort build(spvComponentBits bpc, Ts... t)");
+ begin_scope();
+ statement("return (ushort(bpc.value) << bpc_base) | (build(t...) & ~bpc_mask);");
+ end_scope();
+ end_scope_decl();
+ statement("");
+ statement("// A class which can hold up to three textures and a sampler, including");
+ statement("// Y'CbCr conversion info, used to pass combined image-samplers");
+ statement("// dynamically to functions.");
+ statement("template<typename T>");
+ statement("struct spvDynamicImageSampler");
+ begin_scope();
+ statement("texture2d<T> plane0;");
+ statement("texture2d<T> plane1;");
+ statement("texture2d<T> plane2;");
+ statement("sampler samp;");
+ statement("spvYCbCrSampler ycbcr_samp;");
+ statement("uint swizzle = 0;");
+ statement("");
+ if (msl_options.swizzle_texture_samples)
+ {
+ statement("constexpr spvDynamicImageSampler(texture2d<T> tex, sampler samp, uint sw) thread :");
+ statement(" plane0(tex), samp(samp), swizzle(sw) {}");
+ }
+ else
+ {
+ statement("constexpr spvDynamicImageSampler(texture2d<T> tex, sampler samp) thread :");
+ statement(" plane0(tex), samp(samp) {}");
+ }
+ statement("constexpr spvDynamicImageSampler(texture2d<T> tex, sampler samp, spvYCbCrSampler ycbcr_samp, "
+ "uint sw) thread :");
+ statement(" plane0(tex), samp(samp), ycbcr_samp(ycbcr_samp), swizzle(sw) {}");
+ statement("constexpr spvDynamicImageSampler(texture2d<T> plane0, texture2d<T> plane1,");
+ statement(" sampler samp, spvYCbCrSampler ycbcr_samp, uint sw) thread :");
+ statement(" plane0(plane0), plane1(plane1), samp(samp), ycbcr_samp(ycbcr_samp), swizzle(sw) {}");
+ statement(
+ "constexpr spvDynamicImageSampler(texture2d<T> plane0, texture2d<T> plane1, texture2d<T> plane2,");
+ statement(" sampler samp, spvYCbCrSampler ycbcr_samp, uint sw) thread :");
+ statement(" plane0(plane0), plane1(plane1), plane2(plane2), samp(samp), ycbcr_samp(ycbcr_samp), "
+ "swizzle(sw) {}");
+ statement("");
+ // XXX This is really hard to follow... I've left comments to make it a bit easier.
+ statement("template<typename... LodOptions>");
+ statement("vec<T, 4> do_sample(float2 coord, LodOptions... options) const thread");
+ begin_scope();
+ statement("if (!is_null_texture(plane1))");
+ begin_scope();
+ statement("if (ycbcr_samp.get_resolution() == spvFormatResolution::_444 ||");
+ statement(" ycbcr_samp.get_chroma_filter() == spvChromaFilter::nearest)");
+ begin_scope();
+ statement("if (!is_null_texture(plane2))");
+ statement(" return spvChromaReconstructNearest(plane0, plane1, plane2, samp, coord,");
+ statement(" spvForward<LodOptions>(options)...);");
+ statement(
+ "return spvChromaReconstructNearest(plane0, plane1, samp, coord, spvForward<LodOptions>(options)...);");
+ end_scope(); // if (resolution == 422 || chroma_filter == nearest)
+ statement("switch (ycbcr_samp.get_resolution())");
+ begin_scope();
+ statement("case spvFormatResolution::_444: break;");
+ statement("case spvFormatResolution::_422:");
+ begin_scope();
+ statement("switch (ycbcr_samp.get_x_chroma_offset())");
+ begin_scope();
+ statement("case spvXChromaLocation::cosited_even:");
+ statement(" if (!is_null_texture(plane2))");
+ statement(" return spvChromaReconstructLinear422CositedEven(");
+ statement(" plane0, plane1, plane2, samp,");
+ statement(" coord, spvForward<LodOptions>(options)...);");
+ statement(" return spvChromaReconstructLinear422CositedEven(");
+ statement(" plane0, plane1, samp, coord,");
+ statement(" spvForward<LodOptions>(options)...);");
+ statement("case spvXChromaLocation::midpoint:");
+ statement(" if (!is_null_texture(plane2))");
+ statement(" return spvChromaReconstructLinear422Midpoint(");
+ statement(" plane0, plane1, plane2, samp,");
+ statement(" coord, spvForward<LodOptions>(options)...);");
+ statement(" return spvChromaReconstructLinear422Midpoint(");
+ statement(" plane0, plane1, samp, coord,");
+ statement(" spvForward<LodOptions>(options)...);");
+ end_scope(); // switch (x_chroma_offset)
+ end_scope(); // case 422:
+ statement("case spvFormatResolution::_420:");
+ begin_scope();
+ statement("switch (ycbcr_samp.get_x_chroma_offset())");
+ begin_scope();
+ statement("case spvXChromaLocation::cosited_even:");
+ begin_scope();
+ statement("switch (ycbcr_samp.get_y_chroma_offset())");
+ begin_scope();
+ statement("case spvYChromaLocation::cosited_even:");
+ statement(" if (!is_null_texture(plane2))");
+ statement(" return spvChromaReconstructLinear420XCositedEvenYCositedEven(");
+ statement(" plane0, plane1, plane2, samp,");
+ statement(" coord, spvForward<LodOptions>(options)...);");
+ statement(" return spvChromaReconstructLinear420XCositedEvenYCositedEven(");
+ statement(" plane0, plane1, samp, coord,");
+ statement(" spvForward<LodOptions>(options)...);");
+ statement("case spvYChromaLocation::midpoint:");
+ statement(" if (!is_null_texture(plane2))");
+ statement(" return spvChromaReconstructLinear420XCositedEvenYMidpoint(");
+ statement(" plane0, plane1, plane2, samp,");
+ statement(" coord, spvForward<LodOptions>(options)...);");
+ statement(" return spvChromaReconstructLinear420XCositedEvenYMidpoint(");
+ statement(" plane0, plane1, samp, coord,");
+ statement(" spvForward<LodOptions>(options)...);");
+ end_scope(); // switch (y_chroma_offset)
+ end_scope(); // case x::cosited_even:
+ statement("case spvXChromaLocation::midpoint:");
+ begin_scope();
+ statement("switch (ycbcr_samp.get_y_chroma_offset())");
+ begin_scope();
+ statement("case spvYChromaLocation::cosited_even:");
+ statement(" if (!is_null_texture(plane2))");
+ statement(" return spvChromaReconstructLinear420XMidpointYCositedEven(");
+ statement(" plane0, plane1, plane2, samp,");
+ statement(" coord, spvForward<LodOptions>(options)...);");
+ statement(" return spvChromaReconstructLinear420XMidpointYCositedEven(");
+ statement(" plane0, plane1, samp, coord,");
+ statement(" spvForward<LodOptions>(options)...);");
+ statement("case spvYChromaLocation::midpoint:");
+ statement(" if (!is_null_texture(plane2))");
+ statement(" return spvChromaReconstructLinear420XMidpointYMidpoint(");
+ statement(" plane0, plane1, plane2, samp,");
+ statement(" coord, spvForward<LodOptions>(options)...);");
+ statement(" return spvChromaReconstructLinear420XMidpointYMidpoint(");
+ statement(" plane0, plane1, samp, coord,");
+ statement(" spvForward<LodOptions>(options)...);");
+ end_scope(); // switch (y_chroma_offset)
+ end_scope(); // case x::midpoint
+ end_scope(); // switch (x_chroma_offset)
+ end_scope(); // case 420:
+ end_scope(); // switch (resolution)
+ end_scope(); // if (multiplanar)
+ statement("return plane0.sample(samp, coord, spvForward<LodOptions>(options)...);");
+ end_scope(); // do_sample()
+ statement("template <typename... LodOptions>");
+ statement("vec<T, 4> sample(float2 coord, LodOptions... options) const thread");
+ begin_scope();
+ statement(
+ "vec<T, 4> s = spvTextureSwizzle(do_sample(coord, spvForward<LodOptions>(options)...), swizzle);");
+ statement("if (ycbcr_samp.get_ycbcr_model() == spvYCbCrModelConversion::rgb_identity)");
+ statement(" return s;");
+ statement("");
+ statement("switch (ycbcr_samp.get_ycbcr_range())");
+ begin_scope();
+ statement("case spvYCbCrRange::itu_full:");
+ statement(" s = spvExpandITUFullRange(s, ycbcr_samp.get_bpc());");
+ statement(" break;");
+ statement("case spvYCbCrRange::itu_narrow:");
+ statement(" s = spvExpandITUNarrowRange(s, ycbcr_samp.get_bpc());");
+ statement(" break;");
+ end_scope();
+ statement("");
+ statement("switch (ycbcr_samp.get_ycbcr_model())");
+ begin_scope();
+ statement("case spvYCbCrModelConversion::rgb_identity:"); // Silence Clang warning
+ statement("case spvYCbCrModelConversion::ycbcr_identity:");
+ statement(" return s;");
+ statement("case spvYCbCrModelConversion::ycbcr_bt_709:");
+ statement(" return spvConvertYCbCrBT709(s);");
+ statement("case spvYCbCrModelConversion::ycbcr_bt_601:");
+ statement(" return spvConvertYCbCrBT601(s);");
+ statement("case spvYCbCrModelConversion::ycbcr_bt_2020:");
+ statement(" return spvConvertYCbCrBT2020(s);");
+ end_scope();
+ end_scope();
+ statement("");
+ // Sampler Y'CbCr conversion forbids offsets.
+ statement("vec<T, 4> sample(float2 coord, int2 offset) const thread");
+ begin_scope();
+ if (msl_options.swizzle_texture_samples)
+ statement("return spvTextureSwizzle(plane0.sample(samp, coord, offset), swizzle);");
+ else
+ statement("return plane0.sample(samp, coord, offset);");
+ end_scope();
+ statement("template<typename lod_options>");
+ statement("vec<T, 4> sample(float2 coord, lod_options options, int2 offset) const thread");
+ begin_scope();
+ if (msl_options.swizzle_texture_samples)
+ statement("return spvTextureSwizzle(plane0.sample(samp, coord, options, offset), swizzle);");
+ else
+ statement("return plane0.sample(samp, coord, options, offset);");
+ end_scope();
+ statement("#if __HAVE_MIN_LOD_CLAMP__");
+ statement("vec<T, 4> sample(float2 coord, bias b, min_lod_clamp min_lod, int2 offset) const thread");
+ begin_scope();
+ statement("return plane0.sample(samp, coord, b, min_lod, offset);");
+ end_scope();
+ statement(
+ "vec<T, 4> sample(float2 coord, gradient2d grad, min_lod_clamp min_lod, int2 offset) const thread");
+ begin_scope();
+ statement("return plane0.sample(samp, coord, grad, min_lod, offset);");
+ end_scope();
+ statement("#endif");
+ statement("");
+ // Y'CbCr conversion forbids all operations but sampling.
+ statement("vec<T, 4> read(uint2 coord, uint lod = 0) const thread");
+ begin_scope();
+ statement("return plane0.read(coord, lod);");
+ end_scope();
+ statement("");
+ statement("vec<T, 4> gather(float2 coord, int2 offset = int2(0), component c = component::x) const thread");
+ begin_scope();
+ if (msl_options.swizzle_texture_samples)
+ statement("return spvGatherSwizzle(plane0, samp, swizzle, c, coord, offset);");
+ else
+ statement("return plane0.gather(samp, coord, offset, c);");
+ end_scope();
+ end_scope_decl();
+ statement("");
+ break;
+
+ case SPVFuncImplRayQueryIntersectionParams:
+ statement("intersection_params spvMakeIntersectionParams(uint flags)");
+ begin_scope();
+ statement("intersection_params ip;");
+ statement("if ((flags & ", RayFlagsOpaqueKHRMask, ") != 0)");
+ statement(" ip.force_opacity(forced_opacity::opaque);");
+ statement("if ((flags & ", RayFlagsNoOpaqueKHRMask, ") != 0)");
+ statement(" ip.force_opacity(forced_opacity::non_opaque);");
+ statement("if ((flags & ", RayFlagsTerminateOnFirstHitKHRMask, ") != 0)");
+ statement(" ip.accept_any_intersection(true);");
+ // RayFlagsSkipClosestHitShaderKHRMask is not available in MSL
+ statement("if ((flags & ", RayFlagsCullBackFacingTrianglesKHRMask, ") != 0)");
+ statement(" ip.set_triangle_cull_mode(triangle_cull_mode::back);");
+ statement("if ((flags & ", RayFlagsCullFrontFacingTrianglesKHRMask, ") != 0)");
+ statement(" ip.set_triangle_cull_mode(triangle_cull_mode::front);");
+ statement("if ((flags & ", RayFlagsCullOpaqueKHRMask, ") != 0)");
+ statement(" ip.set_opacity_cull_mode(opacity_cull_mode::opaque);");
+ statement("if ((flags & ", RayFlagsCullNoOpaqueKHRMask, ") != 0)");
+ statement(" ip.set_opacity_cull_mode(opacity_cull_mode::non_opaque);");
+ statement("if ((flags & ", RayFlagsSkipTrianglesKHRMask, ") != 0)");
+ statement(" ip.set_geometry_cull_mode(geometry_cull_mode::triangle);");
+ statement("if ((flags & ", RayFlagsSkipAABBsKHRMask, ") != 0)");
+ statement(" ip.set_geometry_cull_mode(geometry_cull_mode::bounding_box);");
+ statement("return ip;");
+ end_scope();
+ statement("");
+ break;
+
+ case SPVFuncImplVariableDescriptor:
+ statement("template<typename T>");
+ statement("struct spvDescriptor");
+ begin_scope();
+ statement("T value;");
+ end_scope_decl();
+ statement("");
+ break;
+
+ case SPVFuncImplVariableSizedDescriptor:
+ statement("template<typename T>");
+ statement("struct spvBufferDescriptor");
+ begin_scope();
+ statement("T value;");
+ statement("int length;");
+ statement("const device T& operator -> () const device");
+ begin_scope();
+ statement("return value;");
+ end_scope();
+ statement("const device T& operator * () const device");
+ begin_scope();
+ statement("return value;");
+ end_scope();
+ end_scope_decl();
+ statement("");
+ break;
+
+ case SPVFuncImplVariableDescriptorArray:
+ if (spv_function_implementations.count(SPVFuncImplVariableDescriptor) != 0)
+ {
+ statement("template<typename T>");
+ statement("struct spvDescriptorArray");
+ begin_scope();
+ statement("spvDescriptorArray(const device spvDescriptor<T>* ptr) : ptr(&ptr->value)");
+ begin_scope();
+ end_scope();
+ statement("const device T& operator [] (size_t i) const");
+ begin_scope();
+ statement("return ptr[i];");
+ end_scope();
+ statement("const device T* ptr;");
+ end_scope_decl();
+ statement("");
+ }
+ else
+ {
+ statement("template<typename T>");
+ statement("struct spvDescriptorArray;");
+ statement("");
+ }
+
+ if (msl_options.runtime_array_rich_descriptor &&
+ spv_function_implementations.count(SPVFuncImplVariableSizedDescriptor) != 0)
+ {
+ statement("template<typename T>");
+ statement("struct spvDescriptorArray<device T*>");
+ begin_scope();
+ statement("spvDescriptorArray(const device spvBufferDescriptor<device T*>* ptr) : ptr(ptr)");
+ begin_scope();
+ end_scope();
+ statement("const device T* operator [] (size_t i) const");
+ begin_scope();
+ statement("return ptr[i].value;");
+ end_scope();
+ statement("const int length(int i) const");
+ begin_scope();
+ statement("return ptr[i].length;");
+ end_scope();
+ statement("const device spvBufferDescriptor<device T*>* ptr;");
+ end_scope_decl();
+ statement("");
+ }
+ break;
+
+ case SPVFuncImplPaddedStd140:
+ // .data is used in access chain.
+ statement("template <typename T>");
+ statement("struct spvPaddedStd140 { alignas(16) T data; };");
+ statement("template <typename T, int n>");
+ statement("using spvPaddedStd140Matrix = spvPaddedStd140<T>[n];");
+ statement("");
+ break;
+
+ case SPVFuncImplReduceAdd:
+ // Metal doesn't support __builtin_reduce_add or simd_reduce_add, so we need this.
+ // Metal also doesn't support the other vector builtins, which would have been useful to make this a single template.
+
+ statement("template <typename T>");
+ statement("T reduce_add(vec<T, 2> v) { return v.x + v.y; }");
+
+ statement("template <typename T>");
+ statement("T reduce_add(vec<T, 3> v) { return v.x + v.y + v.z; }");
+
+ statement("template <typename T>");
+ statement("T reduce_add(vec<T, 4> v) { return v.x + v.y + v.z + v.w; }");
+
+ statement("");
+ break;
+
+ case SPVFuncImplImageFence:
+ statement("template <typename ImageT>");
+ statement("void spvImageFence(ImageT img) { img.fence(); }");
+ statement("");
+ break;
+
+ case SPVFuncImplTextureCast:
+ statement("template <typename T, typename U>");
+ statement("T spvTextureCast(U img)");
+ begin_scope();
+ // MSL complains if you try to cast the texture itself, but casting the reference type is ... ok? *shrug*
+ // Gotta go what you gotta do I suppose.
+ statement("return reinterpret_cast<thread const T &>(img);");
+ end_scope();
+ statement("");
+ break;
+
+ default:
+ break;
+ }
+ }
+}
+
+static string inject_top_level_storage_qualifier(const string &expr, const string &qualifier)
+{
+ // Easier to do this through text munging since the qualifier does not exist in the type system at all,
+ // and plumbing in all that information is not very helpful.
+ size_t last_reference = expr.find_last_of('&');
+ size_t last_pointer = expr.find_last_of('*');
+ size_t last_significant = string::npos;
+
+ if (last_reference == string::npos)
+ last_significant = last_pointer;
+ else if (last_pointer == string::npos)
+ last_significant = last_reference;
+ else
+ last_significant = max<size_t>(last_reference, last_pointer);
+
+ if (last_significant == string::npos)
+ return join(qualifier, " ", expr);
+ else
+ {
+ return join(expr.substr(0, last_significant + 1), " ",
+ qualifier, expr.substr(last_significant + 1, string::npos));
+ }
+}
+
+void CompilerMSL::declare_constant_arrays()
+{
+ bool fully_inlined = ir.ids_for_type[TypeFunction].size() == 1;
+
+ // MSL cannot declare arrays inline (except when declaring a variable), so we must move them out to
+ // global constants directly, so we are able to use constants as variable expressions.
+ bool emitted = false;
+
+ ir.for_each_typed_id<SPIRConstant>([&](uint32_t, SPIRConstant &c) {
+ if (c.specialization)
+ return;
+
+ auto &type = this->get<SPIRType>(c.constant_type);
+ // Constant arrays of non-primitive types (i.e. matrices) won't link properly into Metal libraries.
+ // FIXME: However, hoisting constants to main() means we need to pass down constant arrays to leaf functions if they are used there.
+ // If there are multiple functions in the module, drop this case to avoid breaking use cases which do not need to
+ // link into Metal libraries. This is hacky.
+ if (is_array(type) && (!fully_inlined || is_scalar(type) || is_vector(type)))
+ {
+ add_resource_name(c.self);
+ auto name = to_name(c.self);
+ statement(inject_top_level_storage_qualifier(variable_decl(type, name), "constant"),
+ " = ", constant_expression(c), ";");
+ emitted = true;
+ }
+ });
+
+ if (emitted)
+ statement("");
+}
+
+// Constant arrays of non-primitive types (i.e. matrices) won't link properly into Metal libraries
+void CompilerMSL::declare_complex_constant_arrays()
+{
+ // If we do not have a fully inlined module, we did not opt in to
+ // declaring constant arrays of complex types. See CompilerMSL::declare_constant_arrays().
+ bool fully_inlined = ir.ids_for_type[TypeFunction].size() == 1;
+ if (!fully_inlined)
+ return;
+
+ // MSL cannot declare arrays inline (except when declaring a variable), so we must move them out to
+ // global constants directly, so we are able to use constants as variable expressions.
+ bool emitted = false;
+
+ ir.for_each_typed_id<SPIRConstant>([&](uint32_t, SPIRConstant &c) {
+ if (c.specialization)
+ return;
+
+ auto &type = this->get<SPIRType>(c.constant_type);
+ if (is_array(type) && !(is_scalar(type) || is_vector(type)))
+ {
+ add_resource_name(c.self);
+ auto name = to_name(c.self);
+ statement("", variable_decl(type, name), " = ", constant_expression(c), ";");
+ emitted = true;
+ }
+ });
+
+ if (emitted)
+ statement("");
+}
+
+void CompilerMSL::emit_resources()
+{
+ declare_constant_arrays();
+
+ // Emit the special [[stage_in]] and [[stage_out]] interface blocks which we created.
+ emit_interface_block(stage_out_var_id);
+ emit_interface_block(patch_stage_out_var_id);
+ emit_interface_block(stage_in_var_id);
+ emit_interface_block(patch_stage_in_var_id);
+}
+
+// Emit declarations for the specialization Metal function constants
+void CompilerMSL::emit_specialization_constants_and_structs()
+{
+ SpecializationConstant wg_x, wg_y, wg_z;
+ ID workgroup_size_id = get_work_group_size_specialization_constants(wg_x, wg_y, wg_z);
+ bool emitted = false;
+
+ unordered_set<uint32_t> declared_structs;
+ unordered_set<uint32_t> aligned_structs;
+
+ // First, we need to deal with scalar block layout.
+ // It is possible that a struct may have to be placed at an alignment which does not match the innate alignment of the struct itself.
+ // In that case, if such a case exists for a struct, we must force that all elements of the struct become packed_ types.
+ // This makes the struct alignment as small as physically possible.
+ // When we actually align the struct later, we can insert padding as necessary to make the packed members behave like normally aligned types.
+ ir.for_each_typed_id<SPIRType>([&](uint32_t type_id, const SPIRType &type) {
+ if (type.basetype == SPIRType::Struct &&
+ has_extended_decoration(type_id, SPIRVCrossDecorationBufferBlockRepacked))
+ mark_scalar_layout_structs(type);
+ });
+
+ bool builtin_block_type_is_required = false;
+ // Very special case. If gl_PerVertex is initialized as an array (tessellation)
+ // we have to potentially emit the gl_PerVertex struct type so that we can emit a constant LUT.
+ ir.for_each_typed_id<SPIRConstant>([&](uint32_t, SPIRConstant &c) {
+ auto &type = this->get<SPIRType>(c.constant_type);
+ if (is_array(type) && has_decoration(type.self, DecorationBlock) && is_builtin_type(type))
+ builtin_block_type_is_required = true;
+ });
+
+ // Very particular use of the soft loop lock.
+ // align_struct may need to create custom types on the fly, but we don't care about
+ // these types for purpose of iterating over them in ir.ids_for_type and friends.
+ auto loop_lock = ir.create_loop_soft_lock();
+
+ // Physical storage buffer pointers can have cyclical references,
+ // so emit forward declarations of them before other structs.
+ // Ignore type_id because we want the underlying struct type from the pointer.
+ ir.for_each_typed_id<SPIRType>([&](uint32_t /* type_id */, const SPIRType &type) {
+ if (type.basetype == SPIRType::Struct &&
+ type.pointer && type.storage == StorageClassPhysicalStorageBuffer &&
+ declared_structs.count(type.self) == 0)
+ {
+ statement("struct ", to_name(type.self), ";");
+ declared_structs.insert(type.self);
+ emitted = true;
+ }
+ });
+ if (emitted)
+ statement("");
+
+ emitted = false;
+ declared_structs.clear();
+
+ // It is possible to have multiple spec constants that use the same spec constant ID.
+ // The most common cause of this is defining spec constants in GLSL while also declaring
+ // the workgroup size to use those spec constants. But, Metal forbids declaring more than
+ // one variable with the same function constant ID.
+ // In this case, we must only declare one variable with the [[function_constant(id)]]
+ // attribute, and use its initializer to initialize all the spec constants with
+ // that ID.
+ std::unordered_map<uint32_t, ConstantID> unique_func_constants;
+
+ for (auto &id_ : ir.ids_for_constant_undef_or_type)
+ {
+ auto &id = ir.ids[id_];
+
+ if (id.get_type() == TypeConstant)
+ {
+ auto &c = id.get<SPIRConstant>();
+
+ if (c.self == workgroup_size_id)
+ {
+ // TODO: This can be expressed as a [[threads_per_threadgroup]] input semantic, but we need to know
+ // the work group size at compile time in SPIR-V, and [[threads_per_threadgroup]] would need to be passed around as a global.
+ // The work group size may be a specialization constant.
+ statement("constant uint3 ", builtin_to_glsl(BuiltInWorkgroupSize, StorageClassWorkgroup),
+ " [[maybe_unused]] = ", constant_expression(get<SPIRConstant>(workgroup_size_id)), ";");
+ emitted = true;
+ }
+ else if (c.specialization)
+ {
+ auto &type = get<SPIRType>(c.constant_type);
+ string sc_type_name = type_to_glsl(type);
+ add_resource_name(c.self);
+ string sc_name = to_name(c.self);
+
+ // Function constants are only supported in MSL 1.2 and later.
+ // If we don't support it just declare the "default" directly.
+ // This "default" value can be overridden to the true specialization constant by the API user.
+ // Specialization constants which are used as array length expressions cannot be function constants in MSL,
+ // so just fall back to macros.
+ if (msl_options.supports_msl_version(1, 2) && has_decoration(c.self, DecorationSpecId) &&
+ !c.is_used_as_array_length)
+ {
+ // Only scalar, non-composite values can be function constants.
+ uint32_t constant_id = get_decoration(c.self, DecorationSpecId);
+ if (!unique_func_constants.count(constant_id))
+ unique_func_constants.insert(make_pair(constant_id, c.self));
+ SPIRType::BaseType sc_tmp_type = expression_type(unique_func_constants[constant_id]).basetype;
+ string sc_tmp_name = to_name(unique_func_constants[constant_id]) + "_tmp";
+ if (unique_func_constants[constant_id] == c.self)
+ statement("constant ", sc_type_name, " ", sc_tmp_name, " [[function_constant(", constant_id,
+ ")]];");
+ statement("constant ", sc_type_name, " ", sc_name, " = is_function_constant_defined(", sc_tmp_name,
+ ") ? ", bitcast_expression(type, sc_tmp_type, sc_tmp_name), " : ", constant_expression(c),
+ ";");
+ }
+ else if (has_decoration(c.self, DecorationSpecId))
+ {
+ // Fallback to macro overrides.
+ c.specialization_constant_macro_name =
+ constant_value_macro_name(get_decoration(c.self, DecorationSpecId));
+
+ statement("#ifndef ", c.specialization_constant_macro_name);
+ statement("#define ", c.specialization_constant_macro_name, " ", constant_expression(c));
+ statement("#endif");
+ statement("constant ", sc_type_name, " ", sc_name, " = ", c.specialization_constant_macro_name,
+ ";");
+ }
+ else
+ {
+ // Composite specialization constants must be built from other specialization constants.
+ statement("constant ", sc_type_name, " ", sc_name, " = ", constant_expression(c), ";");
+ }
+ emitted = true;
+ }
+ }
+ else if (id.get_type() == TypeConstantOp)
+ {
+ auto &c = id.get<SPIRConstantOp>();
+ auto &type = get<SPIRType>(c.basetype);
+ add_resource_name(c.self);
+ auto name = to_name(c.self);
+ statement("constant ", variable_decl(type, name), " = ", constant_op_expression(c), ";");
+ emitted = true;
+ }
+ else if (id.get_type() == TypeType)
+ {
+ // Output non-builtin interface structs. These include local function structs
+ // and structs nested within uniform and read-write buffers.
+ auto &type = id.get<SPIRType>();
+ TypeID type_id = type.self;
+
+ bool is_struct = (type.basetype == SPIRType::Struct) && type.array.empty() && !type.pointer;
+ bool is_block =
+ has_decoration(type.self, DecorationBlock) || has_decoration(type.self, DecorationBufferBlock);
+
+ bool is_builtin_block = is_block && is_builtin_type(type);
+ bool is_declarable_struct = is_struct && (!is_builtin_block || builtin_block_type_is_required);
+
+ // We'll declare this later.
+ if (stage_out_var_id && get_stage_out_struct_type().self == type_id)
+ is_declarable_struct = false;
+ if (patch_stage_out_var_id && get_patch_stage_out_struct_type().self == type_id)
+ is_declarable_struct = false;
+ if (stage_in_var_id && get_stage_in_struct_type().self == type_id)
+ is_declarable_struct = false;
+ if (patch_stage_in_var_id && get_patch_stage_in_struct_type().self == type_id)
+ is_declarable_struct = false;
+
+ // Special case. Declare builtin struct anyways if we need to emit a threadgroup version of it.
+ if (stage_out_masked_builtin_type_id == type_id)
+ is_declarable_struct = true;
+
+ // Align and emit declarable structs...but avoid declaring each more than once.
+ if (is_declarable_struct && declared_structs.count(type_id) == 0)
+ {
+ if (emitted)
+ statement("");
+ emitted = false;
+
+ declared_structs.insert(type_id);
+
+ if (has_extended_decoration(type_id, SPIRVCrossDecorationBufferBlockRepacked))
+ align_struct(type, aligned_structs);
+
+ // Make sure we declare the underlying struct type, and not the "decorated" type with pointers, etc.
+ emit_struct(get<SPIRType>(type_id));
+ }
+ }
+ else if (id.get_type() == TypeUndef)
+ {
+ auto &undef = id.get<SPIRUndef>();
+ auto &type = get<SPIRType>(undef.basetype);
+ // OpUndef can be void for some reason ...
+ if (type.basetype == SPIRType::Void)
+ return;
+
+ // Undefined global memory is not allowed in MSL.
+ // Declare constant and init to zeros. Use {}, as global constructors can break Metal.
+ statement(
+ inject_top_level_storage_qualifier(variable_decl(type, to_name(undef.self), undef.self), "constant"),
+ " = {};");
+ emitted = true;
+ }
+ }
+
+ if (emitted)
+ statement("");
+}
+
+void CompilerMSL::emit_binary_ptr_op(uint32_t result_type, uint32_t result_id, uint32_t op0, uint32_t op1, const char *op)
+{
+ bool forward = should_forward(op0) && should_forward(op1);
+ emit_op(result_type, result_id, join(to_ptr_expression(op0), " ", op, " ", to_ptr_expression(op1)), forward);
+ inherit_expression_dependencies(result_id, op0);
+ inherit_expression_dependencies(result_id, op1);
+}
+
+string CompilerMSL::to_ptr_expression(uint32_t id, bool register_expression_read)
+{
+ auto *e = maybe_get<SPIRExpression>(id);
+ auto expr = enclose_expression(e && e->need_transpose ? e->expression : to_expression(id, register_expression_read));
+ if (!should_dereference(id))
+ expr = address_of_expression(expr);
+ return expr;
+}
+
+void CompilerMSL::emit_binary_unord_op(uint32_t result_type, uint32_t result_id, uint32_t op0, uint32_t op1,
+ const char *op)
+{
+ bool forward = should_forward(op0) && should_forward(op1);
+ emit_op(result_type, result_id,
+ join("(isunordered(", to_enclosed_unpacked_expression(op0), ", ", to_enclosed_unpacked_expression(op1),
+ ") || ", to_enclosed_unpacked_expression(op0), " ", op, " ", to_enclosed_unpacked_expression(op1),
+ ")"),
+ forward);
+
+ inherit_expression_dependencies(result_id, op0);
+ inherit_expression_dependencies(result_id, op1);
+}
+
+bool CompilerMSL::emit_tessellation_io_load(uint32_t result_type_id, uint32_t id, uint32_t ptr)
+{
+ auto &ptr_type = expression_type(ptr);
+ auto &result_type = get<SPIRType>(result_type_id);
+ if (ptr_type.storage != StorageClassInput && ptr_type.storage != StorageClassOutput)
+ return false;
+ if (ptr_type.storage == StorageClassOutput && is_tese_shader())
+ return false;
+
+ if (has_decoration(ptr, DecorationPatch))
+ return false;
+ bool ptr_is_io_variable = ir.ids[ptr].get_type() == TypeVariable;
+
+ bool flattened_io = variable_storage_requires_stage_io(ptr_type.storage);
+
+ bool flat_data_type = flattened_io &&
+ (is_matrix(result_type) || is_array(result_type) || result_type.basetype == SPIRType::Struct);
+
+ // Edge case, even with multi-patch workgroups, we still need to unroll load
+ // if we're loading control points directly.
+ if (ptr_is_io_variable && is_array(result_type))
+ flat_data_type = true;
+
+ if (!flat_data_type)
+ return false;
+
+ // Now, we must unflatten a composite type and take care of interleaving array access with gl_in/gl_out.
+ // Lots of painful code duplication since we *really* should not unroll these kinds of loads in entry point fixup
+ // unless we're forced to do this when the code is emitting inoptimal OpLoads.
+ string expr;
+
+ uint32_t interface_index = get_extended_decoration(ptr, SPIRVCrossDecorationInterfaceMemberIndex);
+ auto *var = maybe_get_backing_variable(ptr);
+ auto &expr_type = get_pointee_type(ptr_type.self);
+
+ const auto &iface_type = expression_type(stage_in_ptr_var_id);
+
+ if (!flattened_io)
+ {
+ // Simplest case for multi-patch workgroups, just unroll array as-is.
+ if (interface_index == uint32_t(-1))
+ return false;
+
+ expr += type_to_glsl(result_type) + "({ ";
+ uint32_t num_control_points = to_array_size_literal(result_type, uint32_t(result_type.array.size()) - 1);
+
+ for (uint32_t i = 0; i < num_control_points; i++)
+ {
+ const uint32_t indices[2] = { i, interface_index };
+ AccessChainMeta meta;
+ expr += access_chain_internal(stage_in_ptr_var_id, indices, 2,
+ ACCESS_CHAIN_INDEX_IS_LITERAL_BIT | ACCESS_CHAIN_PTR_CHAIN_BIT, &meta);
+ if (i + 1 < num_control_points)
+ expr += ", ";
+ }
+ expr += " })";
+ }
+ else if (result_type.array.size() > 2)
+ {
+ SPIRV_CROSS_THROW("Cannot load tessellation IO variables with more than 2 dimensions.");
+ }
+ else if (result_type.array.size() == 2)
+ {
+ if (!ptr_is_io_variable)
+ SPIRV_CROSS_THROW("Loading an array-of-array must be loaded directly from an IO variable.");
+ if (interface_index == uint32_t(-1))
+ SPIRV_CROSS_THROW("Interface index is unknown. Cannot continue.");
+ if (result_type.basetype == SPIRType::Struct || is_matrix(result_type))
+ SPIRV_CROSS_THROW("Cannot load array-of-array of composite type in tessellation IO.");
+
+ expr += type_to_glsl(result_type) + "({ ";
+ uint32_t num_control_points = to_array_size_literal(result_type, 1);
+ uint32_t base_interface_index = interface_index;
+
+ auto &sub_type = get<SPIRType>(result_type.parent_type);
+
+ for (uint32_t i = 0; i < num_control_points; i++)
+ {
+ expr += type_to_glsl(sub_type) + "({ ";
+ interface_index = base_interface_index;
+ uint32_t array_size = to_array_size_literal(result_type, 0);
+ for (uint32_t j = 0; j < array_size; j++, interface_index++)
+ {
+ const uint32_t indices[2] = { i, interface_index };
+
+ AccessChainMeta meta;
+ expr += access_chain_internal(stage_in_ptr_var_id, indices, 2,
+ ACCESS_CHAIN_INDEX_IS_LITERAL_BIT | ACCESS_CHAIN_PTR_CHAIN_BIT, &meta);
+ if (!is_matrix(sub_type) && sub_type.basetype != SPIRType::Struct &&
+ expr_type.vecsize > sub_type.vecsize)
+ expr += vector_swizzle(sub_type.vecsize, 0);
+
+ if (j + 1 < array_size)
+ expr += ", ";
+ }
+ expr += " })";
+ if (i + 1 < num_control_points)
+ expr += ", ";
+ }
+ expr += " })";
+ }
+ else if (result_type.basetype == SPIRType::Struct)
+ {
+ bool is_array_of_struct = is_array(result_type);
+ if (is_array_of_struct && !ptr_is_io_variable)
+ SPIRV_CROSS_THROW("Loading array of struct from IO variable must come directly from IO variable.");
+
+ uint32_t num_control_points = 1;
+ if (is_array_of_struct)
+ {
+ num_control_points = to_array_size_literal(result_type, 0);
+ expr += type_to_glsl(result_type) + "({ ";
+ }
+
+ auto &struct_type = is_array_of_struct ? get<SPIRType>(result_type.parent_type) : result_type;
+ assert(struct_type.array.empty());
+
+ for (uint32_t i = 0; i < num_control_points; i++)
+ {
+ expr += type_to_glsl(struct_type) + "{ ";
+ for (uint32_t j = 0; j < uint32_t(struct_type.member_types.size()); j++)
+ {
+ // The base interface index is stored per variable for structs.
+ if (var)
+ {
+ interface_index =
+ get_extended_member_decoration(var->self, j, SPIRVCrossDecorationInterfaceMemberIndex);
+ }
+
+ if (interface_index == uint32_t(-1))
+ SPIRV_CROSS_THROW("Interface index is unknown. Cannot continue.");
+
+ const auto &mbr_type = get<SPIRType>(struct_type.member_types[j]);
+ const auto &expr_mbr_type = get<SPIRType>(expr_type.member_types[j]);
+ if (is_matrix(mbr_type) && ptr_type.storage == StorageClassInput)
+ {
+ expr += type_to_glsl(mbr_type) + "(";
+ for (uint32_t k = 0; k < mbr_type.columns; k++, interface_index++)
+ {
+ if (is_array_of_struct)
+ {
+ const uint32_t indices[2] = { i, interface_index };
+ AccessChainMeta meta;
+ expr += access_chain_internal(
+ stage_in_ptr_var_id, indices, 2,
+ ACCESS_CHAIN_INDEX_IS_LITERAL_BIT | ACCESS_CHAIN_PTR_CHAIN_BIT, &meta);
+ }
+ else
+ expr += to_expression(ptr) + "." + to_member_name(iface_type, interface_index);
+ if (expr_mbr_type.vecsize > mbr_type.vecsize)
+ expr += vector_swizzle(mbr_type.vecsize, 0);
+
+ if (k + 1 < mbr_type.columns)
+ expr += ", ";
+ }
+ expr += ")";
+ }
+ else if (is_array(mbr_type))
+ {
+ expr += type_to_glsl(mbr_type) + "({ ";
+ uint32_t array_size = to_array_size_literal(mbr_type, 0);
+ for (uint32_t k = 0; k < array_size; k++, interface_index++)
+ {
+ if (is_array_of_struct)
+ {
+ const uint32_t indices[2] = { i, interface_index };
+ AccessChainMeta meta;
+ expr += access_chain_internal(
+ stage_in_ptr_var_id, indices, 2,
+ ACCESS_CHAIN_INDEX_IS_LITERAL_BIT | ACCESS_CHAIN_PTR_CHAIN_BIT, &meta);
+ }
+ else
+ expr += to_expression(ptr) + "." + to_member_name(iface_type, interface_index);
+ if (expr_mbr_type.vecsize > mbr_type.vecsize)
+ expr += vector_swizzle(mbr_type.vecsize, 0);
+
+ if (k + 1 < array_size)
+ expr += ", ";
+ }
+ expr += " })";
+ }
+ else
+ {
+ if (is_array_of_struct)
+ {
+ const uint32_t indices[2] = { i, interface_index };
+ AccessChainMeta meta;
+ expr += access_chain_internal(stage_in_ptr_var_id, indices, 2,
+ ACCESS_CHAIN_INDEX_IS_LITERAL_BIT | ACCESS_CHAIN_PTR_CHAIN_BIT,
+ &meta);
+ }
+ else
+ expr += to_expression(ptr) + "." + to_member_name(iface_type, interface_index);
+ if (expr_mbr_type.vecsize > mbr_type.vecsize)
+ expr += vector_swizzle(mbr_type.vecsize, 0);
+ }
+
+ if (j + 1 < struct_type.member_types.size())
+ expr += ", ";
+ }
+ expr += " }";
+ if (i + 1 < num_control_points)
+ expr += ", ";
+ }
+ if (is_array_of_struct)
+ expr += " })";
+ }
+ else if (is_matrix(result_type))
+ {
+ bool is_array_of_matrix = is_array(result_type);
+ if (is_array_of_matrix && !ptr_is_io_variable)
+ SPIRV_CROSS_THROW("Loading array of matrix from IO variable must come directly from IO variable.");
+ if (interface_index == uint32_t(-1))
+ SPIRV_CROSS_THROW("Interface index is unknown. Cannot continue.");
+
+ if (is_array_of_matrix)
+ {
+ // Loading a matrix from each control point.
+ uint32_t base_interface_index = interface_index;
+ uint32_t num_control_points = to_array_size_literal(result_type, 0);
+ expr += type_to_glsl(result_type) + "({ ";
+
+ auto &matrix_type = get_variable_element_type(get<SPIRVariable>(ptr));
+
+ for (uint32_t i = 0; i < num_control_points; i++)
+ {
+ interface_index = base_interface_index;
+ expr += type_to_glsl(matrix_type) + "(";
+ for (uint32_t j = 0; j < result_type.columns; j++, interface_index++)
+ {
+ const uint32_t indices[2] = { i, interface_index };
+
+ AccessChainMeta meta;
+ expr += access_chain_internal(stage_in_ptr_var_id, indices, 2,
+ ACCESS_CHAIN_INDEX_IS_LITERAL_BIT | ACCESS_CHAIN_PTR_CHAIN_BIT, &meta);
+ if (expr_type.vecsize > result_type.vecsize)
+ expr += vector_swizzle(result_type.vecsize, 0);
+ if (j + 1 < result_type.columns)
+ expr += ", ";
+ }
+ expr += ")";
+ if (i + 1 < num_control_points)
+ expr += ", ";
+ }
+
+ expr += " })";
+ }
+ else
+ {
+ expr += type_to_glsl(result_type) + "(";
+ for (uint32_t i = 0; i < result_type.columns; i++, interface_index++)
+ {
+ expr += to_expression(ptr) + "." + to_member_name(iface_type, interface_index);
+ if (expr_type.vecsize > result_type.vecsize)
+ expr += vector_swizzle(result_type.vecsize, 0);
+ if (i + 1 < result_type.columns)
+ expr += ", ";
+ }
+ expr += ")";
+ }
+ }
+ else if (ptr_is_io_variable)
+ {
+ assert(is_array(result_type));
+ assert(result_type.array.size() == 1);
+ if (interface_index == uint32_t(-1))
+ SPIRV_CROSS_THROW("Interface index is unknown. Cannot continue.");
+
+ // We're loading an array directly from a global variable.
+ // This means we're loading one member from each control point.
+ expr += type_to_glsl(result_type) + "({ ";
+ uint32_t num_control_points = to_array_size_literal(result_type, 0);
+
+ for (uint32_t i = 0; i < num_control_points; i++)
+ {
+ const uint32_t indices[2] = { i, interface_index };
+
+ AccessChainMeta meta;
+ expr += access_chain_internal(stage_in_ptr_var_id, indices, 2,
+ ACCESS_CHAIN_INDEX_IS_LITERAL_BIT | ACCESS_CHAIN_PTR_CHAIN_BIT, &meta);
+ if (expr_type.vecsize > result_type.vecsize)
+ expr += vector_swizzle(result_type.vecsize, 0);
+
+ if (i + 1 < num_control_points)
+ expr += ", ";
+ }
+ expr += " })";
+ }
+ else
+ {
+ // We're loading an array from a concrete control point.
+ assert(is_array(result_type));
+ assert(result_type.array.size() == 1);
+ if (interface_index == uint32_t(-1))
+ SPIRV_CROSS_THROW("Interface index is unknown. Cannot continue.");
+
+ expr += type_to_glsl(result_type) + "({ ";
+ uint32_t array_size = to_array_size_literal(result_type, 0);
+ for (uint32_t i = 0; i < array_size; i++, interface_index++)
+ {
+ expr += to_expression(ptr) + "." + to_member_name(iface_type, interface_index);
+ if (expr_type.vecsize > result_type.vecsize)
+ expr += vector_swizzle(result_type.vecsize, 0);
+ if (i + 1 < array_size)
+ expr += ", ";
+ }
+ expr += " })";
+ }
+
+ emit_op(result_type_id, id, expr, false);
+ register_read(id, ptr, false);
+ return true;
+}
+
+bool CompilerMSL::emit_tessellation_access_chain(const uint32_t *ops, uint32_t length)
+{
+ // If this is a per-vertex output, remap it to the I/O array buffer.
+
+ // Any object which did not go through IO flattening shenanigans will go there instead.
+ // We will unflatten on-demand instead as needed, but not all possible cases can be supported, especially with arrays.
+
+ auto *var = maybe_get_backing_variable(ops[2]);
+ bool patch = false;
+ bool flat_data = false;
+ bool ptr_is_chain = false;
+ bool flatten_composites = false;
+
+ bool is_block = false;
+ bool is_arrayed = false;
+
+ if (var)
+ {
+ auto &type = get_variable_data_type(*var);
+ is_block = has_decoration(type.self, DecorationBlock);
+ is_arrayed = !type.array.empty();
+
+ flatten_composites = variable_storage_requires_stage_io(var->storage);
+ patch = has_decoration(ops[2], DecorationPatch) || is_patch_block(type);
+
+ // Should match strip_array in add_interface_block.
+ flat_data = var->storage == StorageClassInput || (var->storage == StorageClassOutput && is_tesc_shader());
+
+ // Patch inputs are treated as normal block IO variables, so they don't deal with this path at all.
+ if (patch && (!is_block || is_arrayed || var->storage == StorageClassInput))
+ flat_data = false;
+
+ // We might have a chained access chain, where
+ // we first take the access chain to the control point, and then we chain into a member or something similar.
+ // In this case, we need to skip gl_in/gl_out remapping.
+ // Also, skip ptr chain for patches.
+ ptr_is_chain = var->self != ID(ops[2]);
+ }
+
+ bool builtin_variable = false;
+ bool variable_is_flat = false;
+
+ if (var && flat_data)
+ {
+ builtin_variable = is_builtin_variable(*var);
+
+ BuiltIn bi_type = BuiltInMax;
+ if (builtin_variable && !is_block)
+ bi_type = BuiltIn(get_decoration(var->self, DecorationBuiltIn));
+
+ variable_is_flat = !builtin_variable || is_block ||
+ bi_type == BuiltInPosition || bi_type == BuiltInPointSize ||
+ bi_type == BuiltInClipDistance || bi_type == BuiltInCullDistance;
+ }
+
+ if (variable_is_flat)
+ {
+ // If output is masked, it is emitted as a "normal" variable, just go through normal code paths.
+ // Only check this for the first level of access chain.
+ // Dealing with this for partial access chains should be possible, but awkward.
+ if (var->storage == StorageClassOutput && !ptr_is_chain)
+ {
+ bool masked = false;
+ if (is_block)
+ {
+ uint32_t relevant_member_index = patch ? 3 : 4;
+ // FIXME: This won't work properly if the application first access chains into gl_out element,
+ // then access chains into the member. Super weird, but theoretically possible ...
+ if (length > relevant_member_index)
+ {
+ uint32_t mbr_idx = get<SPIRConstant>(ops[relevant_member_index]).scalar();
+ masked = is_stage_output_block_member_masked(*var, mbr_idx, true);
+ }
+ }
+ else if (var)
+ masked = is_stage_output_variable_masked(*var);
+
+ if (masked)
+ return false;
+ }
+
+ AccessChainMeta meta;
+ SmallVector<uint32_t> indices;
+ uint32_t next_id = ir.increase_bound_by(1);
+
+ indices.reserve(length - 3 + 1);
+
+ uint32_t first_non_array_index = (ptr_is_chain ? 3 : 4) - (patch ? 1 : 0);
+
+ VariableID stage_var_id;
+ if (patch)
+ stage_var_id = var->storage == StorageClassInput ? patch_stage_in_var_id : patch_stage_out_var_id;
+ else
+ stage_var_id = var->storage == StorageClassInput ? stage_in_ptr_var_id : stage_out_ptr_var_id;
+
+ VariableID ptr = ptr_is_chain ? VariableID(ops[2]) : stage_var_id;
+ if (!ptr_is_chain && !patch)
+ {
+ // Index into gl_in/gl_out with first array index.
+ indices.push_back(ops[first_non_array_index - 1]);
+ }
+
+ auto &result_ptr_type = get<SPIRType>(ops[0]);
+
+ uint32_t const_mbr_id = next_id++;
+ uint32_t index = get_extended_decoration(ops[2], SPIRVCrossDecorationInterfaceMemberIndex);
+
+ // If we have a pointer chain expression, and we are no longer pointing to a composite
+ // object, we are in the clear. There is no longer a need to flatten anything.
+ bool further_access_chain_is_trivial = false;
+ if (ptr_is_chain && flatten_composites)
+ {
+ auto &ptr_type = expression_type(ptr);
+ if (!is_array(ptr_type) && !is_matrix(ptr_type) && ptr_type.basetype != SPIRType::Struct)
+ further_access_chain_is_trivial = true;
+ }
+
+ if (!further_access_chain_is_trivial && (flatten_composites || is_block))
+ {
+ uint32_t i = first_non_array_index;
+ auto *type = &get_variable_element_type(*var);
+ if (index == uint32_t(-1) && length >= (first_non_array_index + 1))
+ {
+ // Maybe this is a struct type in the input class, in which case
+ // we put it as a decoration on the corresponding member.
+ uint32_t mbr_idx = get_constant(ops[first_non_array_index]).scalar();
+ index = get_extended_member_decoration(var->self, mbr_idx,
+ SPIRVCrossDecorationInterfaceMemberIndex);
+ assert(index != uint32_t(-1));
+ i++;
+ type = &get<SPIRType>(type->member_types[mbr_idx]);
+ }
+
+ // In this case, we're poking into flattened structures and arrays, so now we have to
+ // combine the following indices. If we encounter a non-constant index,
+ // we're hosed.
+ for (; flatten_composites && i < length; ++i)
+ {
+ if (!is_array(*type) && !is_matrix(*type) && type->basetype != SPIRType::Struct)
+ break;
+
+ auto *c = maybe_get<SPIRConstant>(ops[i]);
+ if (!c || c->specialization)
+ SPIRV_CROSS_THROW("Trying to dynamically index into an array interface variable in tessellation. "
+ "This is currently unsupported.");
+
+ // We're in flattened space, so just increment the member index into IO block.
+ // We can only do this once in the current implementation, so either:
+ // Struct, Matrix or 1-dimensional array for a control point.
+ if (type->basetype == SPIRType::Struct && var->storage == StorageClassOutput)
+ {
+ // Need to consider holes, since individual block members might be masked away.
+ uint32_t mbr_idx = c->scalar();
+ for (uint32_t j = 0; j < mbr_idx; j++)
+ if (!is_stage_output_block_member_masked(*var, j, true))
+ index++;
+ }
+ else
+ index += c->scalar();
+
+ if (type->parent_type)
+ type = &get<SPIRType>(type->parent_type);
+ else if (type->basetype == SPIRType::Struct)
+ type = &get<SPIRType>(type->member_types[c->scalar()]);
+ }
+
+ // We're not going to emit the actual member name, we let any further OpLoad take care of that.
+ // Tag the access chain with the member index we're referencing.
+ auto &result_pointee_type = get_pointee_type(result_ptr_type);
+ bool defer_access_chain = flatten_composites && (is_matrix(result_pointee_type) || is_array(result_pointee_type) ||
+ result_pointee_type.basetype == SPIRType::Struct);
+
+ if (!defer_access_chain)
+ {
+ // Access the appropriate member of gl_in/gl_out.
+ set<SPIRConstant>(const_mbr_id, get_uint_type_id(), index, false);
+ indices.push_back(const_mbr_id);
+
+ // Member index is now irrelevant.
+ index = uint32_t(-1);
+
+ // Append any straggling access chain indices.
+ if (i < length)
+ indices.insert(indices.end(), ops + i, ops + length);
+ }
+ else
+ {
+ // We must have consumed the entire access chain if we're deferring it.
+ assert(i == length);
+ }
+
+ if (index != uint32_t(-1))
+ set_extended_decoration(ops[1], SPIRVCrossDecorationInterfaceMemberIndex, index);
+ else
+ unset_extended_decoration(ops[1], SPIRVCrossDecorationInterfaceMemberIndex);
+ }
+ else
+ {
+ if (index != uint32_t(-1))
+ {
+ set<SPIRConstant>(const_mbr_id, get_uint_type_id(), index, false);
+ indices.push_back(const_mbr_id);
+ }
+
+ // Member index is now irrelevant.
+ index = uint32_t(-1);
+ unset_extended_decoration(ops[1], SPIRVCrossDecorationInterfaceMemberIndex);
+
+ indices.insert(indices.end(), ops + first_non_array_index, ops + length);
+ }
+
+ // We use the pointer to the base of the input/output array here,
+ // so this is always a pointer chain.
+ string e;
+
+ if (!ptr_is_chain)
+ {
+ // This is the start of an access chain, use ptr_chain to index into control point array.
+ e = access_chain(ptr, indices.data(), uint32_t(indices.size()), result_ptr_type, &meta, !patch);
+ }
+ else
+ {
+ // If we're accessing a struct, we need to use member indices which are based on the IO block,
+ // not actual struct type, so we have to use a split access chain here where
+ // first path resolves the control point index, i.e. gl_in[index], and second half deals with
+ // looking up flattened member name.
+
+ // However, it is possible that we partially accessed a struct,
+ // by taking pointer to member inside the control-point array.
+ // For this case, we fall back to a natural access chain since we have already dealt with remapping struct members.
+ // One way to check this here is if we have 2 implied read expressions.
+ // First one is the gl_in/gl_out struct itself, then an index into that array.
+ // If we have traversed further, we use a normal access chain formulation.
+ auto *ptr_expr = maybe_get<SPIRExpression>(ptr);
+ bool split_access_chain_formulation = flatten_composites && ptr_expr &&
+ ptr_expr->implied_read_expressions.size() == 2 &&
+ !further_access_chain_is_trivial;
+
+ if (split_access_chain_formulation)
+ {
+ e = join(to_expression(ptr),
+ access_chain_internal(stage_var_id, indices.data(), uint32_t(indices.size()),
+ ACCESS_CHAIN_CHAIN_ONLY_BIT, &meta));
+ }
+ else
+ {
+ e = access_chain_internal(ptr, indices.data(), uint32_t(indices.size()), 0, &meta);
+ }
+ }
+
+ // Get the actual type of the object that was accessed. If it's a vector type and we changed it,
+ // then we'll need to add a swizzle.
+ // For this, we can't necessarily rely on the type of the base expression, because it might be
+ // another access chain, and it will therefore already have the "correct" type.
+ auto *expr_type = &get_variable_data_type(*var);
+ if (has_extended_decoration(ops[2], SPIRVCrossDecorationTessIOOriginalInputTypeID))
+ expr_type = &get<SPIRType>(get_extended_decoration(ops[2], SPIRVCrossDecorationTessIOOriginalInputTypeID));
+ for (uint32_t i = 3; i < length; i++)
+ {
+ if (!is_array(*expr_type) && expr_type->basetype == SPIRType::Struct)
+ expr_type = &get<SPIRType>(expr_type->member_types[get<SPIRConstant>(ops[i]).scalar()]);
+ else
+ expr_type = &get<SPIRType>(expr_type->parent_type);
+ }
+ if (!is_array(*expr_type) && !is_matrix(*expr_type) && expr_type->basetype != SPIRType::Struct &&
+ expr_type->vecsize > result_ptr_type.vecsize)
+ e += vector_swizzle(result_ptr_type.vecsize, 0);
+
+ auto &expr = set<SPIRExpression>(ops[1], std::move(e), ops[0], should_forward(ops[2]));
+ expr.loaded_from = var->self;
+ expr.need_transpose = meta.need_transpose;
+ expr.access_chain = true;
+
+ // Mark the result as being packed if necessary.
+ if (meta.storage_is_packed)
+ set_extended_decoration(ops[1], SPIRVCrossDecorationPhysicalTypePacked);
+ if (meta.storage_physical_type != 0)
+ set_extended_decoration(ops[1], SPIRVCrossDecorationPhysicalTypeID, meta.storage_physical_type);
+ if (meta.storage_is_invariant)
+ set_decoration(ops[1], DecorationInvariant);
+ // Save the type we found in case the result is used in another access chain.
+ set_extended_decoration(ops[1], SPIRVCrossDecorationTessIOOriginalInputTypeID, expr_type->self);
+
+ // If we have some expression dependencies in our access chain, this access chain is technically a forwarded
+ // temporary which could be subject to invalidation.
+ // Need to assume we're forwarded while calling inherit_expression_depdendencies.
+ forwarded_temporaries.insert(ops[1]);
+ // The access chain itself is never forced to a temporary, but its dependencies might.
+ suppressed_usage_tracking.insert(ops[1]);
+
+ for (uint32_t i = 2; i < length; i++)
+ {
+ inherit_expression_dependencies(ops[1], ops[i]);
+ add_implied_read_expression(expr, ops[i]);
+ }
+
+ // If we have no dependencies after all, i.e., all indices in the access chain are immutable temporaries,
+ // we're not forwarded after all.
+ if (expr.expression_dependencies.empty())
+ forwarded_temporaries.erase(ops[1]);
+
+ return true;
+ }
+
+ // If this is the inner tessellation level, and we're tessellating triangles,
+ // drop the last index. It isn't an array in this case, so we can't have an
+ // array reference here. We need to make this ID a variable instead of an
+ // expression so we don't try to dereference it as a variable pointer.
+ // Don't do this if the index is a constant 1, though. We need to drop stores
+ // to that one.
+ auto *m = ir.find_meta(var ? var->self : ID(0));
+ if (is_tesc_shader() && var && m && m->decoration.builtin_type == BuiltInTessLevelInner &&
+ is_tessellating_triangles())
+ {
+ auto *c = maybe_get<SPIRConstant>(ops[3]);
+ if (c && c->scalar() == 1)
+ return false;
+ auto &dest_var = set<SPIRVariable>(ops[1], *var);
+ dest_var.basetype = ops[0];
+ ir.meta[ops[1]] = ir.meta[ops[2]];
+ inherit_expression_dependencies(ops[1], ops[2]);
+ return true;
+ }
+
+ return false;
+}
+
+bool CompilerMSL::is_out_of_bounds_tessellation_level(uint32_t id_lhs)
+{
+ if (!is_tessellating_triangles())
+ return false;
+
+ // In SPIR-V, TessLevelInner always has two elements and TessLevelOuter always has
+ // four. This is true even if we are tessellating triangles. This allows clients
+ // to use a single tessellation control shader with multiple tessellation evaluation
+ // shaders.
+ // In Metal, however, only the first element of TessLevelInner and the first three
+ // of TessLevelOuter are accessible. This stems from how in Metal, the tessellation
+ // levels must be stored to a dedicated buffer in a particular format that depends
+ // on the patch type. Therefore, in Triangles mode, any store to the second
+ // inner level or the fourth outer level must be dropped.
+ const auto *e = maybe_get<SPIRExpression>(id_lhs);
+ if (!e || !e->access_chain)
+ return false;
+ BuiltIn builtin = BuiltIn(get_decoration(e->loaded_from, DecorationBuiltIn));
+ if (builtin != BuiltInTessLevelInner && builtin != BuiltInTessLevelOuter)
+ return false;
+ auto *c = maybe_get<SPIRConstant>(e->implied_read_expressions[1]);
+ if (!c)
+ return false;
+ return (builtin == BuiltInTessLevelInner && c->scalar() == 1) ||
+ (builtin == BuiltInTessLevelOuter && c->scalar() == 3);
+}
+
+bool CompilerMSL::prepare_access_chain_for_scalar_access(std::string &expr, const SPIRType &type,
+ spv::StorageClass storage, bool &is_packed)
+{
+ // If there is any risk of writes happening with the access chain in question,
+ // and there is a risk of concurrent write access to other components,
+ // we must cast the access chain to a plain pointer to ensure we only access the exact scalars we expect.
+ // The MSL compiler refuses to allow component-level access for any non-packed vector types.
+ if (!is_packed && (storage == StorageClassStorageBuffer || storage == StorageClassWorkgroup))
+ {
+ const char *addr_space = storage == StorageClassWorkgroup ? "threadgroup" : "device";
+ expr = join("((", addr_space, " ", type_to_glsl(type), "*)&", enclose_expression(expr), ")");
+
+ // Further indexing should happen with packed rules (array index, not swizzle).
+ is_packed = true;
+ return true;
+ }
+ else
+ return false;
+}
+
+bool CompilerMSL::access_chain_needs_stage_io_builtin_translation(uint32_t base)
+{
+ auto *var = maybe_get_backing_variable(base);
+ if (!var || !is_tessellation_shader())
+ return true;
+
+ // We only need to rewrite builtin access chains when accessing flattened builtins like gl_ClipDistance_N.
+ // Avoid overriding it back to just gl_ClipDistance.
+ // This can only happen in scenarios where we cannot flatten/unflatten access chains, so, the only case
+ // where this triggers is evaluation shader inputs.
+ bool redirect_builtin = is_tese_shader() ? var->storage == StorageClassOutput : false;
+ return redirect_builtin;
+}
+
+// Sets the interface member index for an access chain to a pull-model interpolant.
+void CompilerMSL::fix_up_interpolant_access_chain(const uint32_t *ops, uint32_t length)
+{
+ auto *var = maybe_get_backing_variable(ops[2]);
+ if (!var || !pull_model_inputs.count(var->self))
+ return;
+ // Get the base index.
+ uint32_t interface_index;
+ auto &var_type = get_variable_data_type(*var);
+ auto &result_type = get<SPIRType>(ops[0]);
+ auto *type = &var_type;
+ if (has_extended_decoration(ops[2], SPIRVCrossDecorationInterfaceMemberIndex))
+ {
+ interface_index = get_extended_decoration(ops[2], SPIRVCrossDecorationInterfaceMemberIndex);
+ }
+ else
+ {
+ // Assume an access chain into a struct variable.
+ assert(var_type.basetype == SPIRType::Struct);
+ auto &c = get<SPIRConstant>(ops[3 + var_type.array.size()]);
+ interface_index =
+ get_extended_member_decoration(var->self, c.scalar(), SPIRVCrossDecorationInterfaceMemberIndex);
+ }
+ // Accumulate indices. We'll have to skip over the one for the struct, if present, because we already accounted
+ // for that getting the base index.
+ for (uint32_t i = 3; i < length; ++i)
+ {
+ if (is_vector(*type) && !is_array(*type) && is_scalar(result_type))
+ {
+ // We don't want to combine the next index. Actually, we need to save it
+ // so we know to apply a swizzle to the result of the interpolation.
+ set_extended_decoration(ops[1], SPIRVCrossDecorationInterpolantComponentExpr, ops[i]);
+ break;
+ }
+
+ auto *c = maybe_get<SPIRConstant>(ops[i]);
+ if (!c || c->specialization)
+ SPIRV_CROSS_THROW("Trying to dynamically index into an array interface variable using pull-model "
+ "interpolation. This is currently unsupported.");
+
+ if (type->parent_type)
+ type = &get<SPIRType>(type->parent_type);
+ else if (type->basetype == SPIRType::Struct)
+ type = &get<SPIRType>(type->member_types[c->scalar()]);
+
+ if (!has_extended_decoration(ops[2], SPIRVCrossDecorationInterfaceMemberIndex) &&
+ i - 3 == var_type.array.size())
+ continue;
+
+ interface_index += c->scalar();
+ }
+ // Save this to the access chain itself so we can recover it later when calling an interpolation function.
+ set_extended_decoration(ops[1], SPIRVCrossDecorationInterfaceMemberIndex, interface_index);
+}
+
+
+// If the physical type of a physical buffer pointer has been changed
+// to a ulong or ulongn vector, add a cast back to the pointer type.
+void CompilerMSL::check_physical_type_cast(std::string &expr, const SPIRType *type, uint32_t physical_type)
+{
+ auto *p_physical_type = maybe_get<SPIRType>(physical_type);
+ if (p_physical_type &&
+ p_physical_type->storage == StorageClassPhysicalStorageBuffer &&
+ p_physical_type->basetype == to_unsigned_basetype(64))
+ {
+ if (p_physical_type->vecsize > 1)
+ expr += ".x";
+
+ expr = join("((", type_to_glsl(*type), ")", expr, ")");
+ }
+}
+
+// Override for MSL-specific syntax instructions
+void CompilerMSL::emit_instruction(const Instruction &instruction)
+{
+#define MSL_BOP(op) emit_binary_op(ops[0], ops[1], ops[2], ops[3], #op)
+#define MSL_PTR_BOP(op) emit_binary_ptr_op(ops[0], ops[1], ops[2], ops[3], #op)
+ // MSL does care about implicit integer promotion, but those cases are all handled in common code.
+#define MSL_BOP_CAST(op, type) \
+ emit_binary_op_cast(ops[0], ops[1], ops[2], ops[3], #op, type, opcode_is_sign_invariant(opcode), false)
+#define MSL_UOP(op) emit_unary_op(ops[0], ops[1], ops[2], #op)
+#define MSL_QFOP(op) emit_quaternary_func_op(ops[0], ops[1], ops[2], ops[3], ops[4], ops[5], #op)
+#define MSL_TFOP(op) emit_trinary_func_op(ops[0], ops[1], ops[2], ops[3], ops[4], #op)
+#define MSL_BFOP(op) emit_binary_func_op(ops[0], ops[1], ops[2], ops[3], #op)
+#define MSL_BFOP_CAST(op, type) \
+ emit_binary_func_op_cast(ops[0], ops[1], ops[2], ops[3], #op, type, opcode_is_sign_invariant(opcode))
+#define MSL_UFOP(op) emit_unary_func_op(ops[0], ops[1], ops[2], #op)
+#define MSL_UNORD_BOP(op) emit_binary_unord_op(ops[0], ops[1], ops[2], ops[3], #op)
+
+ auto ops = stream(instruction);
+ auto opcode = static_cast<Op>(instruction.op);
+
+ opcode = get_remapped_spirv_op(opcode);
+
+ // If we need to do implicit bitcasts, make sure we do it with the correct type.
+ uint32_t integer_width = get_integer_width_for_instruction(instruction);
+ auto int_type = to_signed_basetype(integer_width);
+ auto uint_type = to_unsigned_basetype(integer_width);
+
+ switch (opcode)
+ {
+ case OpLoad:
+ {
+ uint32_t id = ops[1];
+ uint32_t ptr = ops[2];
+ if (is_tessellation_shader())
+ {
+ if (!emit_tessellation_io_load(ops[0], id, ptr))
+ CompilerGLSL::emit_instruction(instruction);
+ }
+ else
+ {
+ // Sample mask input for Metal is not an array
+ if (BuiltIn(get_decoration(ptr, DecorationBuiltIn)) == BuiltInSampleMask)
+ set_decoration(id, DecorationBuiltIn, BuiltInSampleMask);
+ CompilerGLSL::emit_instruction(instruction);
+ }
+ break;
+ }
+
+ // Comparisons
+ case OpIEqual:
+ MSL_BOP_CAST(==, int_type);
+ break;
+
+ case OpLogicalEqual:
+ case OpFOrdEqual:
+ MSL_BOP(==);
+ break;
+
+ case OpINotEqual:
+ MSL_BOP_CAST(!=, int_type);
+ break;
+
+ case OpLogicalNotEqual:
+ case OpFOrdNotEqual:
+ // TODO: Should probably negate the == result here.
+ // Typically OrdNotEqual comes from GLSL which itself does not really specify what
+ // happens with NaN.
+ // Consider fixing this if we run into real issues.
+ MSL_BOP(!=);
+ break;
+
+ case OpUGreaterThan:
+ MSL_BOP_CAST(>, uint_type);
+ break;
+
+ case OpSGreaterThan:
+ MSL_BOP_CAST(>, int_type);
+ break;
+
+ case OpFOrdGreaterThan:
+ MSL_BOP(>);
+ break;
+
+ case OpUGreaterThanEqual:
+ MSL_BOP_CAST(>=, uint_type);
+ break;
+
+ case OpSGreaterThanEqual:
+ MSL_BOP_CAST(>=, int_type);
+ break;
+
+ case OpFOrdGreaterThanEqual:
+ MSL_BOP(>=);
+ break;
+
+ case OpULessThan:
+ MSL_BOP_CAST(<, uint_type);
+ break;
+
+ case OpSLessThan:
+ MSL_BOP_CAST(<, int_type);
+ break;
+
+ case OpFOrdLessThan:
+ MSL_BOP(<);
+ break;
+
+ case OpULessThanEqual:
+ MSL_BOP_CAST(<=, uint_type);
+ break;
+
+ case OpSLessThanEqual:
+ MSL_BOP_CAST(<=, int_type);
+ break;
+
+ case OpFOrdLessThanEqual:
+ MSL_BOP(<=);
+ break;
+
+ case OpFUnordEqual:
+ MSL_UNORD_BOP(==);
+ break;
+
+ case OpFUnordNotEqual:
+ // not equal in MSL generates une opcodes to begin with.
+ // Since unordered not equal is how it works in C, just inherit that behavior.
+ MSL_BOP(!=);
+ break;
+
+ case OpFUnordGreaterThan:
+ MSL_UNORD_BOP(>);
+ break;
+
+ case OpFUnordGreaterThanEqual:
+ MSL_UNORD_BOP(>=);
+ break;
+
+ case OpFUnordLessThan:
+ MSL_UNORD_BOP(<);
+ break;
+
+ case OpFUnordLessThanEqual:
+ MSL_UNORD_BOP(<=);
+ break;
+
+ // Pointer math
+ case OpPtrEqual:
+ MSL_PTR_BOP(==);
+ break;
+
+ case OpPtrNotEqual:
+ MSL_PTR_BOP(!=);
+ break;
+
+ case OpPtrDiff:
+ MSL_PTR_BOP(-);
+ break;
+
+ // Derivatives
+ case OpDPdx:
+ case OpDPdxFine:
+ case OpDPdxCoarse:
+ MSL_UFOP(dfdx);
+ register_control_dependent_expression(ops[1]);
+ break;
+
+ case OpDPdy:
+ case OpDPdyFine:
+ case OpDPdyCoarse:
+ MSL_UFOP(dfdy);
+ register_control_dependent_expression(ops[1]);
+ break;
+
+ case OpFwidth:
+ case OpFwidthCoarse:
+ case OpFwidthFine:
+ MSL_UFOP(fwidth);
+ register_control_dependent_expression(ops[1]);
+ break;
+
+ // Bitfield
+ case OpBitFieldInsert:
+ {
+ emit_bitfield_insert_op(ops[0], ops[1], ops[2], ops[3], ops[4], ops[5], "insert_bits", SPIRType::UInt);
+ break;
+ }
+
+ case OpBitFieldSExtract:
+ {
+ emit_trinary_func_op_bitextract(ops[0], ops[1], ops[2], ops[3], ops[4], "extract_bits", int_type, int_type,
+ SPIRType::UInt, SPIRType::UInt);
+ break;
+ }
+
+ case OpBitFieldUExtract:
+ {
+ emit_trinary_func_op_bitextract(ops[0], ops[1], ops[2], ops[3], ops[4], "extract_bits", uint_type, uint_type,
+ SPIRType::UInt, SPIRType::UInt);
+ break;
+ }
+
+ case OpBitReverse:
+ // BitReverse does not have issues with sign since result type must match input type.
+ MSL_UFOP(reverse_bits);
+ break;
+
+ case OpBitCount:
+ {
+ auto basetype = expression_type(ops[2]).basetype;
+ emit_unary_func_op_cast(ops[0], ops[1], ops[2], "popcount", basetype, basetype);
+ break;
+ }
+
+ case OpFRem:
+ MSL_BFOP(fmod);
+ break;
+
+ case OpFMul:
+ if (msl_options.invariant_float_math || has_decoration(ops[1], DecorationNoContraction))
+ MSL_BFOP(spvFMul);
+ else
+ MSL_BOP(*);
+ break;
+
+ case OpFAdd:
+ if (msl_options.invariant_float_math || has_decoration(ops[1], DecorationNoContraction))
+ MSL_BFOP(spvFAdd);
+ else
+ MSL_BOP(+);
+ break;
+
+ case OpFSub:
+ if (msl_options.invariant_float_math || has_decoration(ops[1], DecorationNoContraction))
+ MSL_BFOP(spvFSub);
+ else
+ MSL_BOP(-);
+ break;
+
+ // Atomics
+ case OpAtomicExchange:
+ {
+ uint32_t result_type = ops[0];
+ uint32_t id = ops[1];
+ uint32_t ptr = ops[2];
+ uint32_t mem_sem = ops[4];
+ uint32_t val = ops[5];
+ emit_atomic_func_op(result_type, id, "atomic_exchange", opcode, mem_sem, mem_sem, false, ptr, val);
+ break;
+ }
+
+ case OpAtomicCompareExchange:
+ {
+ uint32_t result_type = ops[0];
+ uint32_t id = ops[1];
+ uint32_t ptr = ops[2];
+ uint32_t mem_sem_pass = ops[4];
+ uint32_t mem_sem_fail = ops[5];
+ uint32_t val = ops[6];
+ uint32_t comp = ops[7];
+ emit_atomic_func_op(result_type, id, "atomic_compare_exchange_weak", opcode,
+ mem_sem_pass, mem_sem_fail, true,
+ ptr, comp, true, false, val);
+ break;
+ }
+
+ case OpAtomicCompareExchangeWeak:
+ SPIRV_CROSS_THROW("OpAtomicCompareExchangeWeak is only supported in kernel profile.");
+
+ case OpAtomicLoad:
+ {
+ uint32_t result_type = ops[0];
+ uint32_t id = ops[1];
+ uint32_t ptr = ops[2];
+ uint32_t mem_sem = ops[4];
+ check_atomic_image(ptr);
+ emit_atomic_func_op(result_type, id, "atomic_load", opcode, mem_sem, mem_sem, false, ptr, 0);
+ break;
+ }
+
+ case OpAtomicStore:
+ {
+ uint32_t result_type = expression_type(ops[0]).self;
+ uint32_t id = ops[0];
+ uint32_t ptr = ops[0];
+ uint32_t mem_sem = ops[2];
+ uint32_t val = ops[3];
+ check_atomic_image(ptr);
+ emit_atomic_func_op(result_type, id, "atomic_store", opcode, mem_sem, mem_sem, false, ptr, val);
+ break;
+ }
+
+#define MSL_AFMO_IMPL(op, valsrc, valconst) \
+ do \
+ { \
+ uint32_t result_type = ops[0]; \
+ uint32_t id = ops[1]; \
+ uint32_t ptr = ops[2]; \
+ uint32_t mem_sem = ops[4]; \
+ uint32_t val = valsrc; \
+ emit_atomic_func_op(result_type, id, "atomic_fetch_" #op, opcode, \
+ mem_sem, mem_sem, false, ptr, val, \
+ false, valconst); \
+ } while (false)
+
+#define MSL_AFMO(op) MSL_AFMO_IMPL(op, ops[5], false)
+#define MSL_AFMIO(op) MSL_AFMO_IMPL(op, 1, true)
+
+ case OpAtomicIIncrement:
+ MSL_AFMIO(add);
+ break;
+
+ case OpAtomicIDecrement:
+ MSL_AFMIO(sub);
+ break;
+
+ case OpAtomicIAdd:
+ case OpAtomicFAddEXT:
+ MSL_AFMO(add);
+ break;
+
+ case OpAtomicISub:
+ MSL_AFMO(sub);
+ break;
+
+ case OpAtomicSMin:
+ case OpAtomicUMin:
+ MSL_AFMO(min);
+ break;
+
+ case OpAtomicSMax:
+ case OpAtomicUMax:
+ MSL_AFMO(max);
+ break;
+
+ case OpAtomicAnd:
+ MSL_AFMO(and);
+ break;
+
+ case OpAtomicOr:
+ MSL_AFMO(or);
+ break;
+
+ case OpAtomicXor:
+ MSL_AFMO(xor);
+ break;
+
+ // Images
+
+ // Reads == Fetches in Metal
+ case OpImageRead:
+ {
+ // Mark that this shader reads from this image
+ uint32_t img_id = ops[2];
+ auto &type = expression_type(img_id);
+ auto *p_var = maybe_get_backing_variable(img_id);
+ if (type.image.dim != DimSubpassData)
+ {
+ if (p_var && has_decoration(p_var->self, DecorationNonReadable))
+ {
+ unset_decoration(p_var->self, DecorationNonReadable);
+ force_recompile();
+ }
+ }
+
+ // Metal requires explicit fences to break up RAW hazards, even within the same shader invocation
+ if (msl_options.readwrite_texture_fences && p_var && !has_decoration(p_var->self, DecorationNonWritable))
+ {
+ add_spv_func_and_recompile(SPVFuncImplImageFence);
+ // Need to wrap this with a value type,
+ // since the Metal headers are broken and do not consider case when the image is a reference.
+ statement("spvImageFence(", to_expression(img_id), ");");
+ }
+
+ emit_texture_op(instruction, false);
+ break;
+ }
+
+ // Emulate texture2D atomic operations
+ case OpImageTexelPointer:
+ {
+ // When using the pointer, we need to know which variable it is actually loaded from.
+ auto *var = maybe_get_backing_variable(ops[2]);
+ if (var && atomic_image_vars_emulated.count(var->self))
+ {
+ uint32_t result_type = ops[0];
+ uint32_t id = ops[1];
+
+ std::string coord = to_expression(ops[3]);
+ auto &type = expression_type(ops[2]);
+ if (type.image.dim == Dim2D)
+ {
+ coord = join("spvImage2DAtomicCoord(", coord, ", ", to_expression(ops[2]), ")");
+ }
+
+ auto &e = set<SPIRExpression>(id, join(to_expression(ops[2]), "_atomic[", coord, "]"), result_type, true);
+ e.loaded_from = var ? var->self : ID(0);
+ inherit_expression_dependencies(id, ops[3]);
+ }
+ else
+ {
+ uint32_t result_type = ops[0];
+ uint32_t id = ops[1];
+
+ // Virtual expression. Split this up in the actual image atomic.
+ // In GLSL and HLSL we are able to resolve the dereference inline, but MSL has
+ // image.op(coord, ...) syntax.
+ auto &e =
+ set<SPIRExpression>(id, join(to_expression(ops[2]), "@",
+ bitcast_expression(SPIRType::UInt, ops[3])),
+ result_type, true);
+
+ // When using the pointer, we need to know which variable it is actually loaded from.
+ e.loaded_from = var ? var->self : ID(0);
+ inherit_expression_dependencies(id, ops[3]);
+ }
+ break;
+ }
+
+ case OpImageWrite:
+ {
+ uint32_t img_id = ops[0];
+ uint32_t coord_id = ops[1];
+ uint32_t texel_id = ops[2];
+ const uint32_t *opt = &ops[3];
+ uint32_t length = instruction.length - 3;
+
+ // Bypass pointers because we need the real image struct
+ auto &type = expression_type(img_id);
+ auto &img_type = get<SPIRType>(type.self);
+
+ // Ensure this image has been marked as being written to and force a
+ // recommpile so that the image type output will include write access
+ auto *p_var = maybe_get_backing_variable(img_id);
+ if (p_var && has_decoration(p_var->self, DecorationNonWritable))
+ {
+ unset_decoration(p_var->self, DecorationNonWritable);
+ force_recompile();
+ }
+
+ bool forward = false;
+ uint32_t bias = 0;
+ uint32_t lod = 0;
+ uint32_t flags = 0;
+
+ if (length)
+ {
+ flags = *opt++;
+ length--;
+ }
+
+ auto test = [&](uint32_t &v, uint32_t flag) {
+ if (length && (flags & flag))
+ {
+ v = *opt++;
+ length--;
+ }
+ };
+
+ test(bias, ImageOperandsBiasMask);
+ test(lod, ImageOperandsLodMask);
+
+ auto &texel_type = expression_type(texel_id);
+ auto store_type = texel_type;
+ store_type.vecsize = 4;
+
+ TextureFunctionArguments args = {};
+ args.base.img = img_id;
+ args.base.imgtype = &img_type;
+ args.base.is_fetch = true;
+ args.coord = coord_id;
+ args.lod = lod;
+
+ string expr;
+ if (needs_frag_discard_checks())
+ expr = join("(", builtin_to_glsl(BuiltInHelperInvocation, StorageClassInput), " ? ((void)0) : ");
+ expr += join(to_expression(img_id), ".write(",
+ remap_swizzle(store_type, texel_type.vecsize, to_expression(texel_id)), ", ",
+ CompilerMSL::to_function_args(args, &forward), ")");
+ if (needs_frag_discard_checks())
+ expr += ")";
+ statement(expr, ";");
+
+ if (p_var && variable_storage_is_aliased(*p_var))
+ flush_all_aliased_variables();
+
+ break;
+ }
+
+ case OpImageQuerySize:
+ case OpImageQuerySizeLod:
+ {
+ uint32_t rslt_type_id = ops[0];
+ auto &rslt_type = get<SPIRType>(rslt_type_id);
+
+ uint32_t id = ops[1];
+
+ uint32_t img_id = ops[2];
+ string img_exp = to_expression(img_id);
+ auto &img_type = expression_type(img_id);
+ Dim img_dim = img_type.image.dim;
+ bool img_is_array = img_type.image.arrayed;
+
+ if (img_type.basetype != SPIRType::Image)
+ SPIRV_CROSS_THROW("Invalid type for OpImageQuerySize.");
+
+ string lod;
+ if (opcode == OpImageQuerySizeLod)
+ {
+ // LOD index defaults to zero, so don't bother outputing level zero index
+ string decl_lod = to_expression(ops[3]);
+ if (decl_lod != "0")
+ lod = decl_lod;
+ }
+
+ string expr = type_to_glsl(rslt_type) + "(";
+ expr += img_exp + ".get_width(" + lod + ")";
+
+ if (img_dim == Dim2D || img_dim == DimCube || img_dim == Dim3D)
+ expr += ", " + img_exp + ".get_height(" + lod + ")";
+
+ if (img_dim == Dim3D)
+ expr += ", " + img_exp + ".get_depth(" + lod + ")";
+
+ if (img_is_array)
+ {
+ expr += ", " + img_exp + ".get_array_size()";
+ if (img_dim == DimCube && msl_options.emulate_cube_array)
+ expr += " / 6";
+ }
+
+ expr += ")";
+
+ emit_op(rslt_type_id, id, expr, should_forward(img_id));
+
+ break;
+ }
+
+ case OpImageQueryLod:
+ {
+ if (!msl_options.supports_msl_version(2, 2))
+ SPIRV_CROSS_THROW("ImageQueryLod is only supported on MSL 2.2 and up.");
+ uint32_t result_type = ops[0];
+ uint32_t id = ops[1];
+ uint32_t image_id = ops[2];
+ uint32_t coord_id = ops[3];
+ emit_uninitialized_temporary_expression(result_type, id);
+
+ std::string coord_expr = to_expression(coord_id);
+ auto sampler_expr = to_sampler_expression(image_id);
+ auto *combined = maybe_get<SPIRCombinedImageSampler>(image_id);
+ auto image_expr = combined ? to_expression(combined->image) : to_expression(image_id);
+ const SPIRType &image_type = expression_type(image_id);
+ const SPIRType &coord_type = expression_type(coord_id);
+
+ switch (image_type.image.dim)
+ {
+ case Dim1D:
+ if (!msl_options.texture_1D_as_2D)
+ SPIRV_CROSS_THROW("ImageQueryLod is not supported on 1D textures.");
+ [[fallthrough]];
+ case Dim2D:
+ if (coord_type.vecsize > 2)
+ coord_expr = enclose_expression(coord_expr) + ".xy";
+ break;
+ case DimCube:
+ case Dim3D:
+ if (coord_type.vecsize > 3)
+ coord_expr = enclose_expression(coord_expr) + ".xyz";
+ break;
+ default:
+ SPIRV_CROSS_THROW("Bad image type given to OpImageQueryLod");
+ }
+
+ // TODO: It is unclear if calculcate_clamped_lod also conditionally rounds
+ // the reported LOD based on the sampler. NEAREST miplevel should
+ // round the LOD, but LINEAR miplevel should not round.
+ // Let's hope this does not become an issue ...
+ statement(to_expression(id), ".x = ", image_expr, ".calculate_clamped_lod(", sampler_expr, ", ",
+ coord_expr, ");");
+ statement(to_expression(id), ".y = ", image_expr, ".calculate_unclamped_lod(", sampler_expr, ", ",
+ coord_expr, ");");
+ register_control_dependent_expression(id);
+ break;
+ }
+
+#define MSL_ImgQry(qrytype) \
+ do \
+ { \
+ uint32_t rslt_type_id = ops[0]; \
+ auto &rslt_type = get<SPIRType>(rslt_type_id); \
+ uint32_t id = ops[1]; \
+ uint32_t img_id = ops[2]; \
+ string img_exp = to_expression(img_id); \
+ string expr = type_to_glsl(rslt_type) + "(" + img_exp + ".get_num_" #qrytype "())"; \
+ emit_op(rslt_type_id, id, expr, should_forward(img_id)); \
+ } while (false)
+
+ case OpImageQueryLevels:
+ MSL_ImgQry(mip_levels);
+ break;
+
+ case OpImageQuerySamples:
+ MSL_ImgQry(samples);
+ break;
+
+ case OpImage:
+ {
+ uint32_t result_type = ops[0];
+ uint32_t id = ops[1];
+ auto *combined = maybe_get<SPIRCombinedImageSampler>(ops[2]);
+
+ if (combined)
+ {
+ auto &e = emit_op(result_type, id, to_expression(combined->image), true, true);
+ auto *var = maybe_get_backing_variable(combined->image);
+ if (var)
+ e.loaded_from = var->self;
+ }
+ else
+ {
+ auto *var = maybe_get_backing_variable(ops[2]);
+ SPIRExpression *e;
+ if (var && has_extended_decoration(var->self, SPIRVCrossDecorationDynamicImageSampler))
+ e = &emit_op(result_type, id, join(to_expression(ops[2]), ".plane0"), true, true);
+ else
+ e = &emit_op(result_type, id, to_expression(ops[2]), true, true);
+ if (var)
+ e->loaded_from = var->self;
+ }
+ break;
+ }
+
+ // Casting
+ case OpQuantizeToF16:
+ {
+ uint32_t result_type = ops[0];
+ uint32_t id = ops[1];
+ uint32_t arg = ops[2];
+ string exp = join("spvQuantizeToF16(", to_expression(arg), ")");
+ emit_op(result_type, id, exp, should_forward(arg));
+ break;
+ }
+
+ case OpInBoundsAccessChain:
+ case OpAccessChain:
+ case OpPtrAccessChain:
+ if (is_tessellation_shader())
+ {
+ if (!emit_tessellation_access_chain(ops, instruction.length))
+ CompilerGLSL::emit_instruction(instruction);
+ }
+ else
+ CompilerGLSL::emit_instruction(instruction);
+ fix_up_interpolant_access_chain(ops, instruction.length);
+ break;
+
+ case OpStore:
+ {
+ const auto &type = expression_type(ops[0]);
+
+ if (is_out_of_bounds_tessellation_level(ops[0]))
+ break;
+
+ if (needs_frag_discard_checks() &&
+ (type.storage == StorageClassStorageBuffer || type.storage == StorageClassUniform))
+ {
+ // If we're in a continue block, this kludge will make the block too complex
+ // to emit normally.
+ assert(current_emitting_block);
+ auto cont_type = continue_block_type(*current_emitting_block);
+ if (cont_type != SPIRBlock::ContinueNone && cont_type != SPIRBlock::ComplexLoop)
+ {
+ current_emitting_block->complex_continue = true;
+ force_recompile();
+ }
+ statement("if (!", builtin_to_glsl(BuiltInHelperInvocation, StorageClassInput), ")");
+ begin_scope();
+ }
+ if (!maybe_emit_array_assignment(ops[0], ops[1]))
+ CompilerGLSL::emit_instruction(instruction);
+ if (needs_frag_discard_checks() &&
+ (type.storage == StorageClassStorageBuffer || type.storage == StorageClassUniform))
+ end_scope();
+ break;
+ }
+
+ // Compute barriers
+ case OpMemoryBarrier:
+ emit_barrier(0, ops[0], ops[1]);
+ break;
+
+ case OpControlBarrier:
+ // In GLSL a memory barrier is often followed by a control barrier.
+ // But in MSL, memory barriers are also control barriers, so don't
+ // emit a simple control barrier if a memory barrier has just been emitted.
+ if (previous_instruction_opcode != OpMemoryBarrier)
+ emit_barrier(ops[0], ops[1], ops[2]);
+ break;
+
+ case OpOuterProduct:
+ {
+ uint32_t result_type = ops[0];
+ uint32_t id = ops[1];
+ uint32_t a = ops[2];
+ uint32_t b = ops[3];
+
+ auto &type = get<SPIRType>(result_type);
+ string expr = type_to_glsl_constructor(type);
+ expr += "(";
+ for (uint32_t col = 0; col < type.columns; col++)
+ {
+ expr += to_enclosed_unpacked_expression(a);
+ expr += " * ";
+ expr += to_extract_component_expression(b, col);
+ if (col + 1 < type.columns)
+ expr += ", ";
+ }
+ expr += ")";
+ emit_op(result_type, id, expr, should_forward(a) && should_forward(b));
+ inherit_expression_dependencies(id, a);
+ inherit_expression_dependencies(id, b);
+ break;
+ }
+
+ case OpVectorTimesMatrix:
+ case OpMatrixTimesVector:
+ {
+ if (!msl_options.invariant_float_math && !has_decoration(ops[1], DecorationNoContraction))
+ {
+ CompilerGLSL::emit_instruction(instruction);
+ break;
+ }
+
+ // If the matrix needs transpose, just flip the multiply order.
+ auto *e = maybe_get<SPIRExpression>(ops[opcode == OpMatrixTimesVector ? 2 : 3]);
+ if (e && e->need_transpose)
+ {
+ e->need_transpose = false;
+ string expr;
+
+ if (opcode == OpMatrixTimesVector)
+ {
+ expr = join("spvFMulVectorMatrix(", to_enclosed_unpacked_expression(ops[3]), ", ",
+ to_unpacked_row_major_matrix_expression(ops[2]), ")");
+ }
+ else
+ {
+ expr = join("spvFMulMatrixVector(", to_unpacked_row_major_matrix_expression(ops[3]), ", ",
+ to_enclosed_unpacked_expression(ops[2]), ")");
+ }
+
+ bool forward = should_forward(ops[2]) && should_forward(ops[3]);
+ emit_op(ops[0], ops[1], expr, forward);
+ e->need_transpose = true;
+ inherit_expression_dependencies(ops[1], ops[2]);
+ inherit_expression_dependencies(ops[1], ops[3]);
+ }
+ else
+ {
+ if (opcode == OpMatrixTimesVector)
+ MSL_BFOP(spvFMulMatrixVector);
+ else
+ MSL_BFOP(spvFMulVectorMatrix);
+ }
+ break;
+ }
+
+ case OpMatrixTimesMatrix:
+ {
+ if (!msl_options.invariant_float_math && !has_decoration(ops[1], DecorationNoContraction))
+ {
+ CompilerGLSL::emit_instruction(instruction);
+ break;
+ }
+
+ auto *a = maybe_get<SPIRExpression>(ops[2]);
+ auto *b = maybe_get<SPIRExpression>(ops[3]);
+
+ // If both matrices need transpose, we can multiply in flipped order and tag the expression as transposed.
+ // a^T * b^T = (b * a)^T.
+ if (a && b && a->need_transpose && b->need_transpose)
+ {
+ a->need_transpose = false;
+ b->need_transpose = false;
+
+ auto expr =
+ join("spvFMulMatrixMatrix(", enclose_expression(to_unpacked_row_major_matrix_expression(ops[3])), ", ",
+ enclose_expression(to_unpacked_row_major_matrix_expression(ops[2])), ")");
+
+ bool forward = should_forward(ops[2]) && should_forward(ops[3]);
+ auto &e = emit_op(ops[0], ops[1], expr, forward);
+ e.need_transpose = true;
+ a->need_transpose = true;
+ b->need_transpose = true;
+ inherit_expression_dependencies(ops[1], ops[2]);
+ inherit_expression_dependencies(ops[1], ops[3]);
+ }
+ else
+ MSL_BFOP(spvFMulMatrixMatrix);
+
+ break;
+ }
+
+ case OpIAddCarry:
+ case OpISubBorrow:
+ {
+ uint32_t result_type = ops[0];
+ uint32_t result_id = ops[1];
+ uint32_t op0 = ops[2];
+ uint32_t op1 = ops[3];
+ auto &type = get<SPIRType>(result_type);
+ emit_uninitialized_temporary_expression(result_type, result_id);
+
+ auto &res_type = get<SPIRType>(type.member_types[1]);
+ if (opcode == OpIAddCarry)
+ {
+ statement(to_expression(result_id), ".", to_member_name(type, 0), " = ",
+ to_enclosed_unpacked_expression(op0), " + ", to_enclosed_unpacked_expression(op1), ";");
+ statement(to_expression(result_id), ".", to_member_name(type, 1), " = select(", type_to_glsl(res_type),
+ "(1), ", type_to_glsl(res_type), "(0), ", to_unpacked_expression(result_id), ".", to_member_name(type, 0),
+ " >= max(", to_unpacked_expression(op0), ", ", to_unpacked_expression(op1), "));");
+ }
+ else
+ {
+ statement(to_expression(result_id), ".", to_member_name(type, 0), " = ", to_enclosed_unpacked_expression(op0), " - ",
+ to_enclosed_unpacked_expression(op1), ";");
+ statement(to_expression(result_id), ".", to_member_name(type, 1), " = select(", type_to_glsl(res_type),
+ "(1), ", type_to_glsl(res_type), "(0), ", to_enclosed_unpacked_expression(op0),
+ " >= ", to_enclosed_unpacked_expression(op1), ");");
+ }
+ break;
+ }
+
+ case OpUMulExtended:
+ case OpSMulExtended:
+ {
+ uint32_t result_type = ops[0];
+ uint32_t result_id = ops[1];
+ uint32_t op0 = ops[2];
+ uint32_t op1 = ops[3];
+ auto &type = get<SPIRType>(result_type);
+ auto input_type = opcode == OpSMulExtended ? int_type : uint_type;
+ string cast_op0, cast_op1;
+
+ binary_op_bitcast_helper(cast_op0, cast_op1, input_type, op0, op1, false);
+ emit_uninitialized_temporary_expression(result_type, result_id);
+ statement(to_expression(result_id), ".", to_member_name(type, 0), " = ", cast_op0, " * ", cast_op1, ";");
+ statement(to_expression(result_id), ".", to_member_name(type, 1), " = mulhi(", cast_op0, ", ", cast_op1, ");");
+ break;
+ }
+
+ case OpArrayLength:
+ {
+ auto &type = expression_type(ops[2]);
+ uint32_t offset = type_struct_member_offset(type, ops[3]);
+ uint32_t stride = type_struct_member_array_stride(type, ops[3]);
+
+ auto expr = join("(", to_buffer_size_expression(ops[2]), " - ", offset, ") / ", stride);
+ emit_op(ops[0], ops[1], expr, true);
+ break;
+ }
+
+ // Legacy sub-group stuff ...
+ case OpSubgroupBallotKHR:
+ case OpSubgroupFirstInvocationKHR:
+ case OpSubgroupReadInvocationKHR:
+ case OpSubgroupAllKHR:
+ case OpSubgroupAnyKHR:
+ case OpSubgroupAllEqualKHR:
+ emit_subgroup_op(instruction);
+ break;
+
+ // SPV_INTEL_shader_integer_functions2
+ case OpUCountLeadingZerosINTEL:
+ MSL_UFOP(clz);
+ break;
+
+ case OpUCountTrailingZerosINTEL:
+ MSL_UFOP(ctz);
+ break;
+
+ case OpAbsISubINTEL:
+ case OpAbsUSubINTEL:
+ MSL_BFOP(absdiff);
+ break;
+
+ case OpIAddSatINTEL:
+ case OpUAddSatINTEL:
+ MSL_BFOP(addsat);
+ break;
+
+ case OpIAverageINTEL:
+ case OpUAverageINTEL:
+ MSL_BFOP(hadd);
+ break;
+
+ case OpIAverageRoundedINTEL:
+ case OpUAverageRoundedINTEL:
+ MSL_BFOP(rhadd);
+ break;
+
+ case OpISubSatINTEL:
+ case OpUSubSatINTEL:
+ MSL_BFOP(subsat);
+ break;
+
+ case OpIMul32x16INTEL:
+ {
+ uint32_t result_type = ops[0];
+ uint32_t id = ops[1];
+ uint32_t a = ops[2], b = ops[3];
+ bool forward = should_forward(a) && should_forward(b);
+ emit_op(result_type, id, join("int(short(", to_unpacked_expression(a), ")) * int(short(", to_unpacked_expression(b), "))"), forward);
+ inherit_expression_dependencies(id, a);
+ inherit_expression_dependencies(id, b);
+ break;
+ }
+
+ case OpUMul32x16INTEL:
+ {
+ uint32_t result_type = ops[0];
+ uint32_t id = ops[1];
+ uint32_t a = ops[2], b = ops[3];
+ bool forward = should_forward(a) && should_forward(b);
+ emit_op(result_type, id, join("uint(ushort(", to_unpacked_expression(a), ")) * uint(ushort(", to_unpacked_expression(b), "))"), forward);
+ inherit_expression_dependencies(id, a);
+ inherit_expression_dependencies(id, b);
+ break;
+ }
+
+ // SPV_EXT_demote_to_helper_invocation
+ case OpDemoteToHelperInvocationEXT:
+ if (!msl_options.supports_msl_version(2, 3))
+ SPIRV_CROSS_THROW("discard_fragment() does not formally have demote semantics until MSL 2.3.");
+ CompilerGLSL::emit_instruction(instruction);
+ break;
+
+ case OpIsHelperInvocationEXT:
+ if (msl_options.is_ios() && !msl_options.supports_msl_version(2, 3))
+ SPIRV_CROSS_THROW("simd_is_helper_thread() requires MSL 2.3 on iOS.");
+ else if (msl_options.is_macos() && !msl_options.supports_msl_version(2, 1))
+ SPIRV_CROSS_THROW("simd_is_helper_thread() requires MSL 2.1 on macOS.");
+ emit_op(ops[0], ops[1],
+ needs_manual_helper_invocation_updates() ? builtin_to_glsl(BuiltInHelperInvocation, StorageClassInput) :
+ "simd_is_helper_thread()",
+ false);
+ break;
+
+ case OpBeginInvocationInterlockEXT:
+ case OpEndInvocationInterlockEXT:
+ if (!msl_options.supports_msl_version(2, 0))
+ SPIRV_CROSS_THROW("Raster order groups require MSL 2.0.");
+ break; // Nothing to do in the body
+
+ case OpConvertUToAccelerationStructureKHR:
+ SPIRV_CROSS_THROW("ConvertUToAccelerationStructure is not supported in MSL.");
+ case OpRayQueryGetIntersectionInstanceShaderBindingTableRecordOffsetKHR:
+ SPIRV_CROSS_THROW("BindingTableRecordOffset is not supported in MSL.");
+
+ case OpRayQueryInitializeKHR:
+ {
+ flush_variable_declaration(ops[0]);
+ register_write(ops[0]);
+ add_spv_func_and_recompile(SPVFuncImplRayQueryIntersectionParams);
+
+ statement(to_expression(ops[0]), ".reset(", "ray(", to_expression(ops[4]), ", ", to_expression(ops[6]), ", ",
+ to_expression(ops[5]), ", ", to_expression(ops[7]), "), ", to_expression(ops[1]), ", ", to_expression(ops[3]),
+ ", spvMakeIntersectionParams(", to_expression(ops[2]), "));");
+ break;
+ }
+ case OpRayQueryProceedKHR:
+ {
+ flush_variable_declaration(ops[0]);
+ register_write(ops[2]);
+ emit_op(ops[0], ops[1], join(to_expression(ops[2]), ".next()"), false);
+ break;
+ }
+#define MSL_RAY_QUERY_IS_CANDIDATE get<SPIRConstant>(ops[3]).scalar_i32() == 0
+
+#define MSL_RAY_QUERY_GET_OP(op, msl_op) \
+ case OpRayQueryGet##op##KHR: \
+ flush_variable_declaration(ops[2]); \
+ emit_op(ops[0], ops[1], join(to_expression(ops[2]), ".get_" #msl_op "()"), false); \
+ break
+
+#define MSL_RAY_QUERY_OP_INNER2(op, msl_prefix, msl_op) \
+ case OpRayQueryGet##op##KHR: \
+ flush_variable_declaration(ops[2]); \
+ if (MSL_RAY_QUERY_IS_CANDIDATE) \
+ emit_op(ops[0], ops[1], join(to_expression(ops[2]), #msl_prefix "_candidate_" #msl_op "()"), false); \
+ else \
+ emit_op(ops[0], ops[1], join(to_expression(ops[2]), #msl_prefix "_committed_" #msl_op "()"), false); \
+ break
+
+#define MSL_RAY_QUERY_GET_OP2(op, msl_op) MSL_RAY_QUERY_OP_INNER2(op, .get, msl_op)
+#define MSL_RAY_QUERY_IS_OP2(op, msl_op) MSL_RAY_QUERY_OP_INNER2(op, .is, msl_op)
+
+ MSL_RAY_QUERY_GET_OP(RayTMin, ray_min_distance);
+ MSL_RAY_QUERY_GET_OP(WorldRayOrigin, world_space_ray_origin);
+ MSL_RAY_QUERY_GET_OP(WorldRayDirection, world_space_ray_direction);
+ MSL_RAY_QUERY_GET_OP2(IntersectionInstanceId, instance_id);
+ MSL_RAY_QUERY_GET_OP2(IntersectionInstanceCustomIndex, user_instance_id);
+ MSL_RAY_QUERY_GET_OP2(IntersectionBarycentrics, triangle_barycentric_coord);
+ MSL_RAY_QUERY_GET_OP2(IntersectionPrimitiveIndex, primitive_id);
+ MSL_RAY_QUERY_GET_OP2(IntersectionGeometryIndex, geometry_id);
+ MSL_RAY_QUERY_GET_OP2(IntersectionObjectRayOrigin, ray_origin);
+ MSL_RAY_QUERY_GET_OP2(IntersectionObjectRayDirection, ray_direction);
+ MSL_RAY_QUERY_GET_OP2(IntersectionObjectToWorld, object_to_world_transform);
+ MSL_RAY_QUERY_GET_OP2(IntersectionWorldToObject, world_to_object_transform);
+ MSL_RAY_QUERY_IS_OP2(IntersectionFrontFace, triangle_front_facing);
+
+ case OpRayQueryGetIntersectionTypeKHR:
+ flush_variable_declaration(ops[2]);
+ if (MSL_RAY_QUERY_IS_CANDIDATE)
+ emit_op(ops[0], ops[1], join("uint(", to_expression(ops[2]), ".get_candidate_intersection_type()) - 1"),
+ false);
+ else
+ emit_op(ops[0], ops[1], join("uint(", to_expression(ops[2]), ".get_committed_intersection_type())"), false);
+ break;
+ case OpRayQueryGetIntersectionTKHR:
+ flush_variable_declaration(ops[2]);
+ if (MSL_RAY_QUERY_IS_CANDIDATE)
+ emit_op(ops[0], ops[1], join(to_expression(ops[2]), ".get_candidate_triangle_distance()"), false);
+ else
+ emit_op(ops[0], ops[1], join(to_expression(ops[2]), ".get_committed_distance()"), false);
+ break;
+ case OpRayQueryGetIntersectionCandidateAABBOpaqueKHR:
+ {
+ flush_variable_declaration(ops[0]);
+ emit_op(ops[0], ops[1], join(to_expression(ops[2]), ".is_candidate_non_opaque_bounding_box()"), false);
+ break;
+ }
+ case OpRayQueryConfirmIntersectionKHR:
+ flush_variable_declaration(ops[0]);
+ register_write(ops[0]);
+ statement(to_expression(ops[0]), ".commit_triangle_intersection();");
+ break;
+ case OpRayQueryGenerateIntersectionKHR:
+ flush_variable_declaration(ops[0]);
+ register_write(ops[0]);
+ statement(to_expression(ops[0]), ".commit_bounding_box_intersection(", to_expression(ops[1]), ");");
+ break;
+ case OpRayQueryTerminateKHR:
+ flush_variable_declaration(ops[0]);
+ register_write(ops[0]);
+ statement(to_expression(ops[0]), ".abort();");
+ break;
+#undef MSL_RAY_QUERY_GET_OP
+#undef MSL_RAY_QUERY_IS_CANDIDATE
+#undef MSL_RAY_QUERY_IS_OP2
+#undef MSL_RAY_QUERY_GET_OP2
+#undef MSL_RAY_QUERY_OP_INNER2
+
+ case OpConvertPtrToU:
+ case OpConvertUToPtr:
+ case OpBitcast:
+ {
+ auto &type = get<SPIRType>(ops[0]);
+ auto &input_type = expression_type(ops[2]);
+
+ if (opcode != OpBitcast || type.pointer || input_type.pointer)
+ {
+ string op;
+
+ if (type.vecsize == 1 && input_type.vecsize == 1)
+ op = join("reinterpret_cast<", type_to_glsl(type), ">(", to_unpacked_expression(ops[2]), ")");
+ else if (input_type.vecsize == 2)
+ op = join("reinterpret_cast<", type_to_glsl(type), ">(as_type<ulong>(", to_unpacked_expression(ops[2]), "))");
+ else
+ op = join("as_type<", type_to_glsl(type), ">(reinterpret_cast<ulong>(", to_unpacked_expression(ops[2]), "))");
+
+ emit_op(ops[0], ops[1], op, should_forward(ops[2]));
+ inherit_expression_dependencies(ops[1], ops[2]);
+ }
+ else
+ CompilerGLSL::emit_instruction(instruction);
+
+ break;
+ }
+
+ case OpSDot:
+ case OpUDot:
+ case OpSUDot:
+ {
+ uint32_t result_type = ops[0];
+ uint32_t id = ops[1];
+ uint32_t vec1 = ops[2];
+ uint32_t vec2 = ops[3];
+
+ auto &input_type1 = expression_type(vec1);
+ auto &input_type2 = expression_type(vec2);
+
+ string vec1input, vec2input;
+ auto input_size = input_type1.vecsize;
+ if (instruction.length == 5)
+ {
+ if (ops[4] == PackedVectorFormatPackedVectorFormat4x8Bit)
+ {
+ string type = opcode == OpSDot || opcode == OpSUDot ? "char4" : "uchar4";
+ vec1input = join("as_type<", type, ">(", to_expression(vec1), ")");
+ type = opcode == OpSDot ? "char4" : "uchar4";
+ vec2input = join("as_type<", type, ">(", to_expression(vec2), ")");
+ input_size = 4;
+ }
+ else
+ SPIRV_CROSS_THROW("Packed vector formats other than 4x8Bit for integer dot product is not supported.");
+ }
+ else
+ {
+ // Inputs are sign or zero-extended to their target width.
+ SPIRType::BaseType vec1_expected_type =
+ opcode != OpUDot ?
+ to_signed_basetype(input_type1.width) :
+ to_unsigned_basetype(input_type1.width);
+
+ SPIRType::BaseType vec2_expected_type =
+ opcode != OpSDot ?
+ to_unsigned_basetype(input_type2.width) :
+ to_signed_basetype(input_type2.width);
+
+ vec1input = bitcast_expression(vec1_expected_type, vec1);
+ vec2input = bitcast_expression(vec2_expected_type, vec2);
+ }
+
+ auto &type = get<SPIRType>(result_type);
+
+ // We'll get the appropriate sign-extend or zero-extend, no matter which type we cast to here.
+ // The addition in reduce_add is sign-invariant.
+ auto result_type_cast = join(type_to_glsl(type), input_size);
+
+ string exp = join("reduce_add(",
+ result_type_cast, "(", vec1input, ") * ",
+ result_type_cast, "(", vec2input, "))");
+
+ emit_op(result_type, id, exp, should_forward(vec1) && should_forward(vec2));
+ inherit_expression_dependencies(id, vec1);
+ inherit_expression_dependencies(id, vec2);
+ break;
+ }
+
+ case OpSDotAccSat:
+ case OpUDotAccSat:
+ case OpSUDotAccSat:
+ {
+ uint32_t result_type = ops[0];
+ uint32_t id = ops[1];
+ uint32_t vec1 = ops[2];
+ uint32_t vec2 = ops[3];
+ uint32_t acc = ops[4];
+
+ auto input_type1 = expression_type(vec1);
+ auto input_type2 = expression_type(vec2);
+
+ string vec1input, vec2input;
+ if (instruction.length == 6)
+ {
+ if (ops[5] == PackedVectorFormatPackedVectorFormat4x8Bit)
+ {
+ string type = opcode == OpSDotAccSat || opcode == OpSUDotAccSat ? "char4" : "uchar4";
+ vec1input = join("as_type<", type, ">(", to_expression(vec1), ")");
+ type = opcode == OpSDotAccSat ? "char4" : "uchar4";
+ vec2input = join("as_type<", type, ">(", to_expression(vec2), ")");
+ input_type1.vecsize = 4;
+ input_type2.vecsize = 4;
+ }
+ else
+ SPIRV_CROSS_THROW("Packed vector formats other than 4x8Bit for integer dot product is not supported.");
+ }
+ else
+ {
+ // Inputs are sign or zero-extended to their target width.
+ SPIRType::BaseType vec1_expected_type =
+ opcode != OpUDotAccSat ?
+ to_signed_basetype(input_type1.width) :
+ to_unsigned_basetype(input_type1.width);
+
+ SPIRType::BaseType vec2_expected_type =
+ opcode != OpSDotAccSat ?
+ to_unsigned_basetype(input_type2.width) :
+ to_signed_basetype(input_type2.width);
+
+ vec1input = bitcast_expression(vec1_expected_type, vec1);
+ vec2input = bitcast_expression(vec2_expected_type, vec2);
+ }
+
+ auto &type = get<SPIRType>(result_type);
+
+ SPIRType::BaseType pre_saturate_type =
+ opcode != OpUDotAccSat ?
+ to_signed_basetype(type.width) :
+ to_unsigned_basetype(type.width);
+
+ input_type1.basetype = pre_saturate_type;
+ input_type2.basetype = pre_saturate_type;
+
+ string exp = join(type_to_glsl(type), "(addsat(reduce_add(",
+ type_to_glsl(input_type1), "(", vec1input, ") * ",
+ type_to_glsl(input_type2), "(", vec2input, ")), ",
+ bitcast_expression(pre_saturate_type, acc), "))");
+
+ emit_op(result_type, id, exp, should_forward(vec1) && should_forward(vec2));
+ inherit_expression_dependencies(id, vec1);
+ inherit_expression_dependencies(id, vec2);
+ break;
+ }
+
+ default:
+ CompilerGLSL::emit_instruction(instruction);
+ break;
+ }
+
+ previous_instruction_opcode = opcode;
+}
+
+void CompilerMSL::emit_texture_op(const Instruction &i, bool sparse)
+{
+ if (sparse)
+ SPIRV_CROSS_THROW("Sparse feedback not yet supported in MSL.");
+
+ if (msl_options.use_framebuffer_fetch_subpasses)
+ {
+ auto *ops = stream(i);
+
+ uint32_t result_type_id = ops[0];
+ uint32_t id = ops[1];
+ uint32_t img = ops[2];
+
+ auto &type = expression_type(img);
+ auto &imgtype = get<SPIRType>(type.self);
+
+ // Use Metal's native frame-buffer fetch API for subpass inputs.
+ if (imgtype.image.dim == DimSubpassData)
+ {
+ // Subpass inputs cannot be invalidated,
+ // so just forward the expression directly.
+ string expr = to_expression(img);
+ emit_op(result_type_id, id, expr, true);
+ return;
+ }
+ }
+
+ // Fallback to default implementation
+ CompilerGLSL::emit_texture_op(i, sparse);
+}
+
+void CompilerMSL::emit_barrier(uint32_t id_exe_scope, uint32_t id_mem_scope, uint32_t id_mem_sem)
+{
+ if (get_execution_model() != ExecutionModelGLCompute && !is_tesc_shader())
+ return;
+
+ uint32_t exe_scope = id_exe_scope ? evaluate_constant_u32(id_exe_scope) : uint32_t(ScopeInvocation);
+ uint32_t mem_scope = id_mem_scope ? evaluate_constant_u32(id_mem_scope) : uint32_t(ScopeInvocation);
+ // Use the wider of the two scopes (smaller value)
+ exe_scope = min(exe_scope, mem_scope);
+
+ if (msl_options.emulate_subgroups && exe_scope >= ScopeSubgroup && !id_mem_sem)
+ // In this case, we assume a "subgroup" size of 1. The barrier, then, is a noop.
+ return;
+
+ string bar_stmt;
+ if ((msl_options.is_ios() && msl_options.supports_msl_version(1, 2)) || msl_options.supports_msl_version(2))
+ bar_stmt = exe_scope < ScopeSubgroup ? "threadgroup_barrier" : "simdgroup_barrier";
+ else
+ bar_stmt = "threadgroup_barrier";
+ bar_stmt += "(";
+
+ uint32_t mem_sem = id_mem_sem ? evaluate_constant_u32(id_mem_sem) : uint32_t(MemorySemanticsMaskNone);
+
+ // Use the | operator to combine flags if we can.
+ if (msl_options.supports_msl_version(1, 2))
+ {
+ string mem_flags = "";
+ // For tesc shaders, this also affects objects in the Output storage class.
+ // Since in Metal, these are placed in a device buffer, we have to sync device memory here.
+ if (is_tesc_shader() ||
+ (mem_sem & (MemorySemanticsUniformMemoryMask | MemorySemanticsCrossWorkgroupMemoryMask)))
+ mem_flags += "mem_flags::mem_device";
+
+ // Fix tessellation patch function processing
+ if (is_tesc_shader() || (mem_sem & (MemorySemanticsSubgroupMemoryMask | MemorySemanticsWorkgroupMemoryMask)))
+ {
+ if (!mem_flags.empty())
+ mem_flags += " | ";
+ mem_flags += "mem_flags::mem_threadgroup";
+ }
+ if (mem_sem & MemorySemanticsImageMemoryMask)
+ {
+ if (!mem_flags.empty())
+ mem_flags += " | ";
+ mem_flags += "mem_flags::mem_texture";
+ }
+
+ if (mem_flags.empty())
+ mem_flags = "mem_flags::mem_none";
+
+ bar_stmt += mem_flags;
+ }
+ else
+ {
+ if ((mem_sem & (MemorySemanticsUniformMemoryMask | MemorySemanticsCrossWorkgroupMemoryMask)) &&
+ (mem_sem & (MemorySemanticsSubgroupMemoryMask | MemorySemanticsWorkgroupMemoryMask)))
+ bar_stmt += "mem_flags::mem_device_and_threadgroup";
+ else if (mem_sem & (MemorySemanticsUniformMemoryMask | MemorySemanticsCrossWorkgroupMemoryMask))
+ bar_stmt += "mem_flags::mem_device";
+ else if (mem_sem & (MemorySemanticsSubgroupMemoryMask | MemorySemanticsWorkgroupMemoryMask))
+ bar_stmt += "mem_flags::mem_threadgroup";
+ else if (mem_sem & MemorySemanticsImageMemoryMask)
+ bar_stmt += "mem_flags::mem_texture";
+ else
+ bar_stmt += "mem_flags::mem_none";
+ }
+
+ bar_stmt += ");";
+
+ statement(bar_stmt);
+
+ assert(current_emitting_block);
+ flush_control_dependent_expressions(current_emitting_block->self);
+ flush_all_active_variables();
+}
+
+static bool storage_class_array_is_thread(StorageClass storage)
+{
+ switch (storage)
+ {
+ case StorageClassInput:
+ case StorageClassOutput:
+ case StorageClassGeneric:
+ case StorageClassFunction:
+ case StorageClassPrivate:
+ return true;
+
+ default:
+ return false;
+ }
+}
+
+bool CompilerMSL::emit_array_copy(const char *expr, uint32_t lhs_id, uint32_t rhs_id,
+ StorageClass lhs_storage, StorageClass rhs_storage)
+{
+ // Allow Metal to use the array<T> template to make arrays a value type.
+ // This, however, cannot be used for threadgroup address specifiers, so consider the custom array copy as fallback.
+ bool lhs_is_thread_storage = storage_class_array_is_thread(lhs_storage);
+ bool rhs_is_thread_storage = storage_class_array_is_thread(rhs_storage);
+
+ bool lhs_is_array_template = lhs_is_thread_storage || lhs_storage == StorageClassWorkgroup;
+ bool rhs_is_array_template = rhs_is_thread_storage || rhs_storage == StorageClassWorkgroup;
+
+ // Special considerations for stage IO variables.
+ // If the variable is actually backed by non-user visible device storage, we use array templates for those.
+ //
+ // Another special consideration is given to thread local variables which happen to have Offset decorations
+ // applied to them. Block-like types do not use array templates, so we need to force POD path if we detect
+ // these scenarios. This check isn't perfect since it would be technically possible to mix and match these things,
+ // and for a fully correct solution we might have to track array template state through access chains as well,
+ // but for all reasonable use cases, this should suffice.
+ // This special case should also only apply to Function/Private storage classes.
+ // We should not check backing variable for temporaries.
+ auto *lhs_var = maybe_get_backing_variable(lhs_id);
+ if (lhs_var && lhs_storage == StorageClassStorageBuffer && storage_class_array_is_thread(lhs_var->storage))
+ lhs_is_array_template = true;
+ else if (lhs_var && lhs_storage != StorageClassGeneric && type_is_block_like(get<SPIRType>(lhs_var->basetype)))
+ lhs_is_array_template = false;
+
+ auto *rhs_var = maybe_get_backing_variable(rhs_id);
+ if (rhs_var && rhs_storage == StorageClassStorageBuffer && storage_class_array_is_thread(rhs_var->storage))
+ rhs_is_array_template = true;
+ else if (rhs_var && rhs_storage != StorageClassGeneric && type_is_block_like(get<SPIRType>(rhs_var->basetype)))
+ rhs_is_array_template = false;
+
+ // If threadgroup storage qualifiers are *not* used:
+ // Avoid spvCopy* wrapper functions; Otherwise, spvUnsafeArray<> template cannot be used with that storage qualifier.
+ if (lhs_is_array_template && rhs_is_array_template && !using_builtin_array())
+ {
+ // Fall back to normal copy path.
+ return false;
+ }
+ else
+ {
+ // Ensure the LHS variable has been declared
+ if (lhs_var)
+ flush_variable_declaration(lhs_var->self);
+
+ string lhs;
+ if (expr)
+ lhs = expr;
+ else
+ lhs = to_expression(lhs_id);
+
+ // Assignment from an array initializer is fine.
+ auto &type = expression_type(rhs_id);
+ auto *var = maybe_get_backing_variable(rhs_id);
+
+ // Unfortunately, we cannot template on address space in MSL,
+ // so explicit address space redirection it is ...
+ bool is_constant = false;
+ if (ir.ids[rhs_id].get_type() == TypeConstant)
+ {
+ is_constant = true;
+ }
+ else if (var && var->remapped_variable && var->statically_assigned &&
+ ir.ids[var->static_expression].get_type() == TypeConstant)
+ {
+ is_constant = true;
+ }
+ else if (rhs_storage == StorageClassUniform || rhs_storage == StorageClassUniformConstant)
+ {
+ is_constant = true;
+ }
+
+ // For the case where we have OpLoad triggering an array copy,
+ // we cannot easily detect this case ahead of time since it's
+ // context dependent. We might have to force a recompile here
+ // if this is the only use of array copies in our shader.
+ add_spv_func_and_recompile(type.array.size() > 1 ? SPVFuncImplArrayCopyMultidim : SPVFuncImplArrayCopy);
+
+ const char *tag = nullptr;
+ if (lhs_is_thread_storage && is_constant)
+ tag = "FromConstantToStack";
+ else if (lhs_storage == StorageClassWorkgroup && is_constant)
+ tag = "FromConstantToThreadGroup";
+ else if (lhs_is_thread_storage && rhs_is_thread_storage)
+ tag = "FromStackToStack";
+ else if (lhs_storage == StorageClassWorkgroup && rhs_is_thread_storage)
+ tag = "FromStackToThreadGroup";
+ else if (lhs_is_thread_storage && rhs_storage == StorageClassWorkgroup)
+ tag = "FromThreadGroupToStack";
+ else if (lhs_storage == StorageClassWorkgroup && rhs_storage == StorageClassWorkgroup)
+ tag = "FromThreadGroupToThreadGroup";
+ else if (lhs_storage == StorageClassStorageBuffer && rhs_storage == StorageClassStorageBuffer)
+ tag = "FromDeviceToDevice";
+ else if (lhs_storage == StorageClassStorageBuffer && is_constant)
+ tag = "FromConstantToDevice";
+ else if (lhs_storage == StorageClassStorageBuffer && rhs_storage == StorageClassWorkgroup)
+ tag = "FromThreadGroupToDevice";
+ else if (lhs_storage == StorageClassStorageBuffer && rhs_is_thread_storage)
+ tag = "FromStackToDevice";
+ else if (lhs_storage == StorageClassWorkgroup && rhs_storage == StorageClassStorageBuffer)
+ tag = "FromDeviceToThreadGroup";
+ else if (lhs_is_thread_storage && rhs_storage == StorageClassStorageBuffer)
+ tag = "FromDeviceToStack";
+ else
+ SPIRV_CROSS_THROW("Unknown storage class used for copying arrays.");
+
+ // Pass internal array of spvUnsafeArray<> into wrapper functions
+ if (lhs_is_array_template && rhs_is_array_template && !msl_options.force_native_arrays)
+ statement("spvArrayCopy", tag, "(", lhs, ".elements, ", to_expression(rhs_id), ".elements);");
+ if (lhs_is_array_template && !msl_options.force_native_arrays)
+ statement("spvArrayCopy", tag, "(", lhs, ".elements, ", to_expression(rhs_id), ");");
+ else if (rhs_is_array_template && !msl_options.force_native_arrays)
+ statement("spvArrayCopy", tag, "(", lhs, ", ", to_expression(rhs_id), ".elements);");
+ else
+ statement("spvArrayCopy", tag, "(", lhs, ", ", to_expression(rhs_id), ");");
+ }
+
+ return true;
+}
+
+uint32_t CompilerMSL::get_physical_tess_level_array_size(spv::BuiltIn builtin) const
+{
+ if (is_tessellating_triangles())
+ return builtin == BuiltInTessLevelInner ? 1 : 3;
+ else
+ return builtin == BuiltInTessLevelInner ? 2 : 4;
+}
+
+// Since MSL does not allow arrays to be copied via simple variable assignment,
+// if the LHS and RHS represent an assignment of an entire array, it must be
+// implemented by calling an array copy function.
+// Returns whether the struct assignment was emitted.
+bool CompilerMSL::maybe_emit_array_assignment(uint32_t id_lhs, uint32_t id_rhs)
+{
+ // We only care about assignments of an entire array
+ auto &type = expression_type(id_lhs);
+ if (!is_array(get_pointee_type(type)))
+ return false;
+
+ auto *var = maybe_get<SPIRVariable>(id_lhs);
+
+ // Is this a remapped, static constant? Don't do anything.
+ if (var && var->remapped_variable && var->statically_assigned)
+ return true;
+
+ if (ir.ids[id_rhs].get_type() == TypeConstant && var && var->deferred_declaration)
+ {
+ // Special case, if we end up declaring a variable when assigning the constant array,
+ // we can avoid the copy by directly assigning the constant expression.
+ // This is likely necessary to be able to use a variable as a true look-up table, as it is unlikely
+ // the compiler will be able to optimize the spvArrayCopy() into a constant LUT.
+ // After a variable has been declared, we can no longer assign constant arrays in MSL unfortunately.
+ statement(to_expression(id_lhs), " = ", constant_expression(get<SPIRConstant>(id_rhs)), ";");
+ return true;
+ }
+
+ if (is_tesc_shader() && has_decoration(id_lhs, DecorationBuiltIn))
+ {
+ auto builtin = BuiltIn(get_decoration(id_lhs, DecorationBuiltIn));
+ // Need to manually unroll the array store.
+ if (builtin == BuiltInTessLevelInner || builtin == BuiltInTessLevelOuter)
+ {
+ uint32_t array_size = get_physical_tess_level_array_size(builtin);
+ if (array_size == 1)
+ statement(to_expression(id_lhs), " = half(", to_expression(id_rhs), "[0]);");
+ else
+ {
+ for (uint32_t i = 0; i < array_size; i++)
+ statement(to_expression(id_lhs), "[", i, "] = half(", to_expression(id_rhs), "[", i, "]);");
+ }
+ return true;
+ }
+ }
+
+ auto lhs_storage = get_expression_effective_storage_class(id_lhs);
+ auto rhs_storage = get_expression_effective_storage_class(id_rhs);
+ if (!emit_array_copy(nullptr, id_lhs, id_rhs, lhs_storage, rhs_storage))
+ return false;
+
+ register_write(id_lhs);
+
+ return true;
+}
+
+// Emits one of the atomic functions. In MSL, the atomic functions operate on pointers
+void CompilerMSL::emit_atomic_func_op(uint32_t result_type, uint32_t result_id, const char *op, Op opcode,
+ uint32_t mem_order_1, uint32_t mem_order_2, bool has_mem_order_2, uint32_t obj, uint32_t op1,
+ bool op1_is_pointer, bool op1_is_literal, uint32_t op2)
+{
+ string exp;
+
+ auto &ptr_type = expression_type(obj);
+ auto &type = get_pointee_type(ptr_type);
+ auto expected_type = type.basetype;
+ if (opcode == OpAtomicUMax || opcode == OpAtomicUMin)
+ expected_type = to_unsigned_basetype(type.width);
+ else if (opcode == OpAtomicSMax || opcode == OpAtomicSMin)
+ expected_type = to_signed_basetype(type.width);
+
+ bool use_native_image_atomic;
+ if (msl_options.supports_msl_version(3, 1))
+ use_native_image_atomic = check_atomic_image(obj);
+ else
+ use_native_image_atomic = false;
+
+ if (type.width == 64)
+ SPIRV_CROSS_THROW("MSL currently does not support 64-bit atomics.");
+
+ auto remapped_type = type;
+ remapped_type.basetype = expected_type;
+
+ auto *var = maybe_get_backing_variable(obj);
+ const auto *res_type = var ? &get<SPIRType>(var->basetype) : nullptr;
+ assert(type.storage != StorageClassImage || res_type);
+
+ bool is_atomic_compare_exchange_strong = op1_is_pointer && op1;
+
+ bool check_discard = opcode != OpAtomicLoad && needs_frag_discard_checks() &&
+ ptr_type.storage != StorageClassWorkgroup;
+
+ // Even compare exchange atomics are vec4 on metal for ... reasons :v
+ uint32_t vec4_temporary_id = 0;
+ if (use_native_image_atomic && is_atomic_compare_exchange_strong)
+ {
+ uint32_t &tmp_id = extra_sub_expressions[result_id];
+ if (!tmp_id)
+ {
+ tmp_id = ir.increase_bound_by(2);
+
+ auto vec4_type = get<SPIRType>(result_type);
+ vec4_type.vecsize = 4;
+ set<SPIRType>(tmp_id + 1, vec4_type);
+ }
+
+ vec4_temporary_id = tmp_id;
+ }
+
+ if (check_discard)
+ {
+ if (is_atomic_compare_exchange_strong)
+ {
+ // We're already emitting a CAS loop here; a conditional won't hurt.
+ emit_uninitialized_temporary_expression(result_type, result_id);
+ if (vec4_temporary_id)
+ emit_uninitialized_temporary_expression(vec4_temporary_id + 1, vec4_temporary_id);
+ statement("if (!", builtin_to_glsl(BuiltInHelperInvocation, StorageClassInput), ")");
+ begin_scope();
+ }
+ else
+ exp = join("(!", builtin_to_glsl(BuiltInHelperInvocation, StorageClassInput), " ? ");
+ }
+
+ if (use_native_image_atomic)
+ {
+ auto obj_expression = to_expression(obj);
+ auto split_index = obj_expression.find_first_of('@');
+
+ // Will only be false if we're in "force recompile later" mode.
+ if (split_index != string::npos)
+ {
+ auto coord = obj_expression.substr(split_index + 1);
+ auto image_expr = obj_expression.substr(0, split_index);
+
+ // Handle problem cases with sign where we need signed min/max on a uint image for example.
+ // It seems to work to cast the texture type itself, even if it is probably wildly outside of spec,
+ // but SPIR-V requires this to work.
+ if ((opcode == OpAtomicUMax || opcode == OpAtomicUMin ||
+ opcode == OpAtomicSMax || opcode == OpAtomicSMin) &&
+ type.basetype != expected_type)
+ {
+ auto *backing_var = maybe_get_backing_variable(obj);
+ if (backing_var)
+ {
+ add_spv_func_and_recompile(SPVFuncImplTextureCast);
+
+ const auto *backing_type = &get<SPIRType>(backing_var->basetype);
+ while (backing_type->op != OpTypeImage)
+ backing_type = &get<SPIRType>(backing_type->parent_type);
+
+ auto img_type = *backing_type;
+ auto tmp_type = type;
+ tmp_type.basetype = expected_type;
+ img_type.image.type = ir.increase_bound_by(1);
+ set<SPIRType>(img_type.image.type, tmp_type);
+
+ image_expr = join("spvTextureCast<", type_to_glsl(img_type, obj), ">(", image_expr, ")");
+ }
+ }
+
+ exp += join(image_expr, ".", op, "(");
+ if (ptr_type.storage == StorageClassImage && res_type->image.arrayed)
+ {
+ switch (res_type->image.dim)
+ {
+ case Dim1D:
+ if (msl_options.texture_1D_as_2D)
+ exp += join("uint2(", coord, ".x, 0), ", coord, ".y");
+ else
+ exp += join(coord, ".x, ", coord, ".y");
+
+ break;
+ case Dim2D:
+ exp += join(coord, ".xy, ", coord, ".z");
+ break;
+ default:
+ SPIRV_CROSS_THROW("Cannot do atomics on Cube textures.");
+ }
+ }
+ else if (ptr_type.storage == StorageClassImage && res_type->image.dim == Dim1D && msl_options.texture_1D_as_2D)
+ exp += join("uint2(", coord, ", 0)");
+ else
+ exp += coord;
+ }
+ else
+ {
+ exp += obj_expression;
+ }
+ }
+ else
+ {
+ exp += string(op) + "_explicit(";
+ exp += "(";
+ // Emulate texture2D atomic operations
+ if (ptr_type.storage == StorageClassImage)
+ {
+ auto &flags = ir.get_decoration_bitset(var->self);
+ if (decoration_flags_signal_volatile(flags))
+ exp += "volatile ";
+ exp += "device";
+ }
+ else if (var && ptr_type.storage != StorageClassPhysicalStorageBuffer)
+ {
+ exp += get_argument_address_space(*var);
+ }
+ else
+ {
+ // Fallback scenario, could happen for raw pointers.
+ exp += ptr_type.storage == StorageClassWorkgroup ? "threadgroup" : "device";
+ }
+
+ exp += " atomic_";
+ // For signed and unsigned min/max, we can signal this through the pointer type.
+ // There is no other way, since C++ does not have explicit signage for atomics.
+ exp += type_to_glsl(remapped_type);
+ exp += "*)";
+
+ exp += "&";
+ exp += to_enclosed_expression(obj);
+ }
+
+ if (is_atomic_compare_exchange_strong)
+ {
+ assert(strcmp(op, "atomic_compare_exchange_weak") == 0);
+ assert(op2);
+ assert(has_mem_order_2);
+ exp += ", &";
+ exp += to_name(vec4_temporary_id ? vec4_temporary_id : result_id);
+ exp += ", ";
+ exp += to_expression(op2);
+
+ if (!use_native_image_atomic)
+ {
+ exp += ", ";
+ exp += get_memory_order(mem_order_1);
+ exp += ", ";
+ exp += get_memory_order(mem_order_2);
+ }
+ exp += ")";
+
+ // MSL only supports the weak atomic compare exchange, so emit a CAS loop here.
+ // The MSL function returns false if the atomic write fails OR the comparison test fails,
+ // so we must validate that it wasn't the comparison test that failed before continuing
+ // the CAS loop, otherwise it will loop infinitely, with the comparison test always failing.
+ // The function updates the comparator value from the memory value, so the additional
+ // comparison test evaluates the memory value against the expected value.
+ if (!check_discard)
+ {
+ emit_uninitialized_temporary_expression(result_type, result_id);
+ if (vec4_temporary_id)
+ emit_uninitialized_temporary_expression(vec4_temporary_id + 1, vec4_temporary_id);
+ }
+
+ statement("do");
+ begin_scope();
+
+ string scalar_expression;
+ if (vec4_temporary_id)
+ scalar_expression = join(to_expression(vec4_temporary_id), ".x");
+ else
+ scalar_expression = to_expression(result_id);
+
+ statement(scalar_expression, " = ", to_expression(op1), ";");
+ end_scope_decl(join("while (!", exp, " && ", scalar_expression, " == ", to_enclosed_expression(op1), ")"));
+ if (vec4_temporary_id)
+ statement(to_expression(result_id), " = ", scalar_expression, ";");
+
+ // Vulkan: (section 9.29: ... and values returned by atomic instructions in helper invocations are undefined)
+ if (check_discard)
+ {
+ end_scope();
+ statement("else");
+ begin_scope();
+ statement(to_expression(result_id), " = {};");
+ end_scope();
+ }
+ }
+ else
+ {
+ assert(strcmp(op, "atomic_compare_exchange_weak") != 0);
+
+ if (op1)
+ {
+ exp += ", ";
+ if (op1_is_literal)
+ exp += to_string(op1);
+ else
+ exp += bitcast_expression(expected_type, op1);
+ }
+
+ if (op2)
+ exp += ", " + to_expression(op2);
+
+ if (!use_native_image_atomic)
+ {
+ exp += string(", ") + get_memory_order(mem_order_1);
+ if (has_mem_order_2)
+ exp += string(", ") + get_memory_order(mem_order_2);
+ }
+
+ exp += ")";
+
+ // For some particular reason, atomics return vec4 in Metal ...
+ if (use_native_image_atomic)
+ exp += ".x";
+
+ // Vulkan: (section 9.29: ... and values returned by atomic instructions in helper invocations are undefined)
+ if (check_discard)
+ {
+ exp += " : ";
+ if (strcmp(op, "atomic_store") != 0)
+ exp += join(type_to_glsl(get<SPIRType>(result_type)), "{}");
+ else
+ exp += "((void)0)";
+ exp += ")";
+ }
+
+ if (expected_type != type.basetype)
+ exp = bitcast_expression(type, expected_type, exp);
+
+ if (strcmp(op, "atomic_store") != 0)
+ emit_op(result_type, result_id, exp, false);
+ else
+ statement(exp, ";");
+ }
+
+ flush_all_atomic_capable_variables();
+}
+
+// Metal only supports relaxed memory order for now
+const char *CompilerMSL::get_memory_order(uint32_t)
+{
+ return "memory_order_relaxed";
+}
+
+// Override for MSL-specific extension syntax instructions.
+// In some cases, deliberately select either the fast or precise versions of the MSL functions to match Vulkan math precision results.
+void CompilerMSL::emit_glsl_op(uint32_t result_type, uint32_t id, uint32_t eop, const uint32_t *args, uint32_t count)
+{
+ auto op = static_cast<GLSLstd450>(eop);
+
+ // If we need to do implicit bitcasts, make sure we do it with the correct type.
+ uint32_t integer_width = get_integer_width_for_glsl_instruction(op, args, count);
+ auto int_type = to_signed_basetype(integer_width);
+ auto uint_type = to_unsigned_basetype(integer_width);
+
+ op = get_remapped_glsl_op(op);
+
+ auto &restype = get<SPIRType>(result_type);
+
+ switch (op)
+ {
+ case GLSLstd450Sinh:
+ if (restype.basetype == SPIRType::Half)
+ {
+ // MSL does not have overload for half. Force-cast back to half.
+ auto expr = join("half(fast::sinh(", to_unpacked_expression(args[0]), "))");
+ emit_op(result_type, id, expr, should_forward(args[0]));
+ inherit_expression_dependencies(id, args[0]);
+ }
+ else
+ emit_unary_func_op(result_type, id, args[0], "fast::sinh");
+ break;
+ case GLSLstd450Cosh:
+ if (restype.basetype == SPIRType::Half)
+ {
+ // MSL does not have overload for half. Force-cast back to half.
+ auto expr = join("half(fast::cosh(", to_unpacked_expression(args[0]), "))");
+ emit_op(result_type, id, expr, should_forward(args[0]));
+ inherit_expression_dependencies(id, args[0]);
+ }
+ else
+ emit_unary_func_op(result_type, id, args[0], "fast::cosh");
+ break;
+ case GLSLstd450Tanh:
+ if (restype.basetype == SPIRType::Half)
+ {
+ // MSL does not have overload for half. Force-cast back to half.
+ auto expr = join("half(fast::tanh(", to_unpacked_expression(args[0]), "))");
+ emit_op(result_type, id, expr, should_forward(args[0]));
+ inherit_expression_dependencies(id, args[0]);
+ }
+ else
+ emit_unary_func_op(result_type, id, args[0], "precise::tanh");
+ break;
+ case GLSLstd450Atan2:
+ if (restype.basetype == SPIRType::Half)
+ {
+ // MSL does not have overload for half. Force-cast back to half.
+ auto expr = join("half(fast::atan2(", to_unpacked_expression(args[0]), ", ", to_unpacked_expression(args[1]), "))");
+ emit_op(result_type, id, expr, should_forward(args[0]) && should_forward(args[1]));
+ inherit_expression_dependencies(id, args[0]);
+ inherit_expression_dependencies(id, args[1]);
+ }
+ else
+ emit_binary_func_op(result_type, id, args[0], args[1], "precise::atan2");
+ break;
+ case GLSLstd450InverseSqrt:
+ emit_unary_func_op(result_type, id, args[0], "rsqrt");
+ break;
+ case GLSLstd450RoundEven:
+ emit_unary_func_op(result_type, id, args[0], "rint");
+ break;
+
+ case GLSLstd450FindILsb:
+ {
+ // In this template version of findLSB, we return T.
+ auto basetype = expression_type(args[0]).basetype;
+ emit_unary_func_op_cast(result_type, id, args[0], "spvFindLSB", basetype, basetype);
+ break;
+ }
+
+ case GLSLstd450FindSMsb:
+ emit_unary_func_op_cast(result_type, id, args[0], "spvFindSMSB", int_type, int_type);
+ break;
+
+ case GLSLstd450FindUMsb:
+ emit_unary_func_op_cast(result_type, id, args[0], "spvFindUMSB", uint_type, uint_type);
+ break;
+
+ case GLSLstd450PackSnorm4x8:
+ emit_unary_func_op(result_type, id, args[0], "pack_float_to_snorm4x8");
+ break;
+ case GLSLstd450PackUnorm4x8:
+ emit_unary_func_op(result_type, id, args[0], "pack_float_to_unorm4x8");
+ break;
+ case GLSLstd450PackSnorm2x16:
+ emit_unary_func_op(result_type, id, args[0], "pack_float_to_snorm2x16");
+ break;
+ case GLSLstd450PackUnorm2x16:
+ emit_unary_func_op(result_type, id, args[0], "pack_float_to_unorm2x16");
+ break;
+
+ case GLSLstd450PackHalf2x16:
+ {
+ auto expr = join("as_type<uint>(half2(", to_expression(args[0]), "))");
+ emit_op(result_type, id, expr, should_forward(args[0]));
+ inherit_expression_dependencies(id, args[0]);
+ break;
+ }
+
+ case GLSLstd450UnpackSnorm4x8:
+ emit_unary_func_op(result_type, id, args[0], "unpack_snorm4x8_to_float");
+ break;
+ case GLSLstd450UnpackUnorm4x8:
+ emit_unary_func_op(result_type, id, args[0], "unpack_unorm4x8_to_float");
+ break;
+ case GLSLstd450UnpackSnorm2x16:
+ emit_unary_func_op(result_type, id, args[0], "unpack_snorm2x16_to_float");
+ break;
+ case GLSLstd450UnpackUnorm2x16:
+ emit_unary_func_op(result_type, id, args[0], "unpack_unorm2x16_to_float");
+ break;
+
+ case GLSLstd450UnpackHalf2x16:
+ {
+ auto expr = join("float2(as_type<half2>(", to_expression(args[0]), "))");
+ emit_op(result_type, id, expr, should_forward(args[0]));
+ inherit_expression_dependencies(id, args[0]);
+ break;
+ }
+
+ case GLSLstd450PackDouble2x32:
+ emit_unary_func_op(result_type, id, args[0], "unsupported_GLSLstd450PackDouble2x32"); // Currently unsupported
+ break;
+ case GLSLstd450UnpackDouble2x32:
+ emit_unary_func_op(result_type, id, args[0], "unsupported_GLSLstd450UnpackDouble2x32"); // Currently unsupported
+ break;
+
+ case GLSLstd450MatrixInverse:
+ {
+ auto &mat_type = get<SPIRType>(result_type);
+ switch (mat_type.columns)
+ {
+ case 2:
+ emit_unary_func_op(result_type, id, args[0], "spvInverse2x2");
+ break;
+ case 3:
+ emit_unary_func_op(result_type, id, args[0], "spvInverse3x3");
+ break;
+ case 4:
+ emit_unary_func_op(result_type, id, args[0], "spvInverse4x4");
+ break;
+ default:
+ break;
+ }
+ break;
+ }
+
+ case GLSLstd450FMin:
+ // If the result type isn't float, don't bother calling the specific
+ // precise::/fast:: version. Metal doesn't have those for half and
+ // double types.
+ if (get<SPIRType>(result_type).basetype != SPIRType::Float)
+ emit_binary_func_op(result_type, id, args[0], args[1], "min");
+ else
+ emit_binary_func_op(result_type, id, args[0], args[1], "fast::min");
+ break;
+
+ case GLSLstd450FMax:
+ if (get<SPIRType>(result_type).basetype != SPIRType::Float)
+ emit_binary_func_op(result_type, id, args[0], args[1], "max");
+ else
+ emit_binary_func_op(result_type, id, args[0], args[1], "fast::max");
+ break;
+
+ case GLSLstd450FClamp:
+ // TODO: If args[1] is 0 and args[2] is 1, emit a saturate() call.
+ if (get<SPIRType>(result_type).basetype != SPIRType::Float)
+ emit_trinary_func_op(result_type, id, args[0], args[1], args[2], "clamp");
+ else
+ emit_trinary_func_op(result_type, id, args[0], args[1], args[2], "fast::clamp");
+ break;
+
+ case GLSLstd450NMin:
+ if (get<SPIRType>(result_type).basetype != SPIRType::Float)
+ emit_binary_func_op(result_type, id, args[0], args[1], "min");
+ else
+ emit_binary_func_op(result_type, id, args[0], args[1], "precise::min");
+ break;
+
+ case GLSLstd450NMax:
+ if (get<SPIRType>(result_type).basetype != SPIRType::Float)
+ emit_binary_func_op(result_type, id, args[0], args[1], "max");
+ else
+ emit_binary_func_op(result_type, id, args[0], args[1], "precise::max");
+ break;
+
+ case GLSLstd450NClamp:
+ // TODO: If args[1] is 0 and args[2] is 1, emit a saturate() call.
+ if (get<SPIRType>(result_type).basetype != SPIRType::Float)
+ emit_trinary_func_op(result_type, id, args[0], args[1], args[2], "clamp");
+ else
+ emit_trinary_func_op(result_type, id, args[0], args[1], args[2], "precise::clamp");
+ break;
+
+ case GLSLstd450InterpolateAtCentroid:
+ {
+ // We can't just emit the expression normally, because the qualified name contains a call to the default
+ // interpolate method, or refers to a local variable. We saved the interface index we need; use it to construct
+ // the base for the method call.
+ uint32_t interface_index = get_extended_decoration(args[0], SPIRVCrossDecorationInterfaceMemberIndex);
+ string component;
+ if (has_extended_decoration(args[0], SPIRVCrossDecorationInterpolantComponentExpr))
+ {
+ uint32_t index_expr = get_extended_decoration(args[0], SPIRVCrossDecorationInterpolantComponentExpr);
+ auto *c = maybe_get<SPIRConstant>(index_expr);
+ if (!c || c->specialization)
+ component = join("[", to_expression(index_expr), "]");
+ else
+ component = join(".", index_to_swizzle(c->scalar()));
+ }
+ emit_op(result_type, id,
+ join(to_name(stage_in_var_id), ".", to_member_name(get_stage_in_struct_type(), interface_index),
+ ".interpolate_at_centroid()", component),
+ should_forward(args[0]));
+ break;
+ }
+
+ case GLSLstd450InterpolateAtSample:
+ {
+ uint32_t interface_index = get_extended_decoration(args[0], SPIRVCrossDecorationInterfaceMemberIndex);
+ string component;
+ if (has_extended_decoration(args[0], SPIRVCrossDecorationInterpolantComponentExpr))
+ {
+ uint32_t index_expr = get_extended_decoration(args[0], SPIRVCrossDecorationInterpolantComponentExpr);
+ auto *c = maybe_get<SPIRConstant>(index_expr);
+ if (!c || c->specialization)
+ component = join("[", to_expression(index_expr), "]");
+ else
+ component = join(".", index_to_swizzle(c->scalar()));
+ }
+ emit_op(result_type, id,
+ join(to_name(stage_in_var_id), ".", to_member_name(get_stage_in_struct_type(), interface_index),
+ ".interpolate_at_sample(", to_expression(args[1]), ")", component),
+ should_forward(args[0]) && should_forward(args[1]));
+ break;
+ }
+
+ case GLSLstd450InterpolateAtOffset:
+ {
+ uint32_t interface_index = get_extended_decoration(args[0], SPIRVCrossDecorationInterfaceMemberIndex);
+ string component;
+ if (has_extended_decoration(args[0], SPIRVCrossDecorationInterpolantComponentExpr))
+ {
+ uint32_t index_expr = get_extended_decoration(args[0], SPIRVCrossDecorationInterpolantComponentExpr);
+ auto *c = maybe_get<SPIRConstant>(index_expr);
+ if (!c || c->specialization)
+ component = join("[", to_expression(index_expr), "]");
+ else
+ component = join(".", index_to_swizzle(c->scalar()));
+ }
+ // Like Direct3D, Metal puts the (0, 0) at the upper-left corner, not the center as SPIR-V and GLSL do.
+ // Offset the offset by (1/2 - 1/16), or 0.4375, to compensate for this.
+ // It has to be (1/2 - 1/16) and not 1/2, or several CTS tests subtly break on Intel.
+ emit_op(result_type, id,
+ join(to_name(stage_in_var_id), ".", to_member_name(get_stage_in_struct_type(), interface_index),
+ ".interpolate_at_offset(", to_expression(args[1]), " + 0.4375)", component),
+ should_forward(args[0]) && should_forward(args[1]));
+ break;
+ }
+
+ case GLSLstd450Distance:
+ // MSL does not support scalar versions here.
+ if (expression_type(args[0]).vecsize == 1)
+ {
+ // Equivalent to length(a - b) -> abs(a - b).
+ emit_op(result_type, id,
+ join("abs(", to_enclosed_unpacked_expression(args[0]), " - ",
+ to_enclosed_unpacked_expression(args[1]), ")"),
+ should_forward(args[0]) && should_forward(args[1]));
+ inherit_expression_dependencies(id, args[0]);
+ inherit_expression_dependencies(id, args[1]);
+ }
+ else
+ CompilerGLSL::emit_glsl_op(result_type, id, eop, args, count);
+ break;
+
+ case GLSLstd450Length:
+ // MSL does not support scalar versions, so use abs().
+ if (expression_type(args[0]).vecsize == 1)
+ emit_unary_func_op(result_type, id, args[0], "abs");
+ else
+ CompilerGLSL::emit_glsl_op(result_type, id, eop, args, count);
+ break;
+
+ case GLSLstd450Normalize:
+ {
+ auto &exp_type = expression_type(args[0]);
+ // MSL does not support scalar versions here.
+ // MSL has no implementation for normalize in the fast:: namespace for half2 and half3
+ // Returns -1 or 1 for valid input, sign() does the job.
+ if (exp_type.vecsize == 1)
+ emit_unary_func_op(result_type, id, args[0], "sign");
+ else if (exp_type.vecsize <= 3 && exp_type.basetype == SPIRType::Half)
+ emit_unary_func_op(result_type, id, args[0], "normalize");
+ else
+ emit_unary_func_op(result_type, id, args[0], "fast::normalize");
+ break;
+ }
+ case GLSLstd450Reflect:
+ if (get<SPIRType>(result_type).vecsize == 1)
+ emit_binary_func_op(result_type, id, args[0], args[1], "spvReflect");
+ else
+ CompilerGLSL::emit_glsl_op(result_type, id, eop, args, count);
+ break;
+
+ case GLSLstd450Refract:
+ if (get<SPIRType>(result_type).vecsize == 1)
+ emit_trinary_func_op(result_type, id, args[0], args[1], args[2], "spvRefract");
+ else
+ CompilerGLSL::emit_glsl_op(result_type, id, eop, args, count);
+ break;
+
+ case GLSLstd450FaceForward:
+ if (get<SPIRType>(result_type).vecsize == 1)
+ emit_trinary_func_op(result_type, id, args[0], args[1], args[2], "spvFaceForward");
+ else
+ CompilerGLSL::emit_glsl_op(result_type, id, eop, args, count);
+ break;
+
+ case GLSLstd450Modf:
+ case GLSLstd450Frexp:
+ {
+ // Special case. If the variable is a scalar access chain, we cannot use it directly. We have to emit a temporary.
+ // Another special case is if the variable is in a storage class which is not thread.
+ auto *ptr = maybe_get<SPIRExpression>(args[1]);
+ auto &type = expression_type(args[1]);
+
+ bool is_thread_storage = storage_class_array_is_thread(type.storage);
+ if (type.storage == StorageClassOutput && capture_output_to_buffer)
+ is_thread_storage = false;
+
+ if (!is_thread_storage ||
+ (ptr && ptr->access_chain && is_scalar(expression_type(args[1]))))
+ {
+ register_call_out_argument(args[1]);
+ forced_temporaries.insert(id);
+
+ // Need to create temporaries and copy over to access chain after.
+ // We cannot directly take the reference of a vector swizzle in MSL, even if it's scalar ...
+ uint32_t &tmp_id = extra_sub_expressions[id];
+ if (!tmp_id)
+ tmp_id = ir.increase_bound_by(1);
+
+ uint32_t tmp_type_id = get_pointee_type_id(expression_type_id(args[1]));
+ emit_uninitialized_temporary_expression(tmp_type_id, tmp_id);
+ emit_binary_func_op(result_type, id, args[0], tmp_id, eop == GLSLstd450Modf ? "modf" : "frexp");
+ statement(to_expression(args[1]), " = ", to_expression(tmp_id), ";");
+ }
+ else
+ CompilerGLSL::emit_glsl_op(result_type, id, eop, args, count);
+ break;
+ }
+
+ case GLSLstd450Pow:
+ // powr makes x < 0.0 undefined, just like SPIR-V.
+ emit_binary_func_op(result_type, id, args[0], args[1], "powr");
+ break;
+
+ default:
+ CompilerGLSL::emit_glsl_op(result_type, id, eop, args, count);
+ break;
+ }
+}
+
+void CompilerMSL::emit_spv_amd_shader_trinary_minmax_op(uint32_t result_type, uint32_t id, uint32_t eop,
+ const uint32_t *args, uint32_t count)
+{
+ enum AMDShaderTrinaryMinMax
+ {
+ FMin3AMD = 1,
+ UMin3AMD = 2,
+ SMin3AMD = 3,
+ FMax3AMD = 4,
+ UMax3AMD = 5,
+ SMax3AMD = 6,
+ FMid3AMD = 7,
+ UMid3AMD = 8,
+ SMid3AMD = 9
+ };
+
+ if (!msl_options.supports_msl_version(2, 1))
+ SPIRV_CROSS_THROW("Trinary min/max functions require MSL 2.1.");
+
+ auto op = static_cast<AMDShaderTrinaryMinMax>(eop);
+
+ switch (op)
+ {
+ case FMid3AMD:
+ case UMid3AMD:
+ case SMid3AMD:
+ emit_trinary_func_op(result_type, id, args[0], args[1], args[2], "median3");
+ break;
+ default:
+ CompilerGLSL::emit_spv_amd_shader_trinary_minmax_op(result_type, id, eop, args, count);
+ break;
+ }
+}
+
+// Emit a structure declaration for the specified interface variable.
+void CompilerMSL::emit_interface_block(uint32_t ib_var_id)
+{
+ if (ib_var_id)
+ {
+ auto &ib_var = get<SPIRVariable>(ib_var_id);
+ auto &ib_type = get_variable_data_type(ib_var);
+ //assert(ib_type.basetype == SPIRType::Struct && !ib_type.member_types.empty());
+ assert(ib_type.basetype == SPIRType::Struct);
+ emit_struct(ib_type);
+ }
+}
+
+// Emits the declaration signature of the specified function.
+// If this is the entry point function, Metal-specific return value and function arguments are added.
+void CompilerMSL::emit_function_prototype(SPIRFunction &func, const Bitset &)
+{
+ if (func.self != ir.default_entry_point)
+ add_function_overload(func);
+
+ local_variable_names = resource_names;
+ string decl;
+
+ processing_entry_point = func.self == ir.default_entry_point;
+
+ // Metal helper functions must be static force-inline otherwise they will cause problems when linked together in a single Metallib.
+ if (!processing_entry_point)
+ statement(force_inline);
+
+ auto &type = get<SPIRType>(func.return_type);
+
+ if (!type.array.empty() && msl_options.force_native_arrays)
+ {
+ // We cannot return native arrays in MSL, so "return" through an out variable.
+ decl += "void";
+ }
+ else
+ {
+ decl += func_type_decl(type);
+ }
+
+ decl += " ";
+ decl += to_name(func.self);
+ decl += "(";
+
+ if (!type.array.empty() && msl_options.force_native_arrays)
+ {
+ // Fake arrays returns by writing to an out array instead.
+ decl += "thread ";
+ decl += type_to_glsl(type);
+ decl += " (&spvReturnValue)";
+ decl += type_to_array_glsl(type, 0);
+ if (!func.arguments.empty())
+ decl += ", ";
+ }
+
+ if (processing_entry_point)
+ {
+ if (msl_options.argument_buffers)
+ decl += entry_point_args_argument_buffer(!func.arguments.empty());
+ else
+ decl += entry_point_args_classic(!func.arguments.empty());
+
+ // append entry point args to avoid conflicts in local variable names.
+ local_variable_names.insert(resource_names.begin(), resource_names.end());
+
+ // If entry point function has variables that require early declaration,
+ // ensure they each have an empty initializer, creating one if needed.
+ // This is done at this late stage because the initialization expression
+ // is cleared after each compilation pass.
+ for (auto var_id : vars_needing_early_declaration)
+ {
+ auto &ed_var = get<SPIRVariable>(var_id);
+ ID &initializer = ed_var.initializer;
+ if (!initializer)
+ initializer = ir.increase_bound_by(1);
+
+ // Do not override proper initializers.
+ if (ir.ids[initializer].get_type() == TypeNone || ir.ids[initializer].get_type() == TypeExpression)
+ set<SPIRExpression>(ed_var.initializer, "{}", ed_var.basetype, true);
+ }
+ }
+
+ for (auto &arg : func.arguments)
+ {
+ uint32_t name_id = arg.id;
+
+ auto *var = maybe_get<SPIRVariable>(arg.id);
+ if (var)
+ {
+ // If we need to modify the name of the variable, make sure we modify the original variable.
+ // Our alias is just a shadow variable.
+ if (arg.alias_global_variable && var->basevariable)
+ name_id = var->basevariable;
+
+ var->parameter = &arg; // Hold a pointer to the parameter so we can invalidate the readonly field if needed.
+ }
+
+ add_local_variable_name(name_id);
+
+ decl += argument_decl(arg);
+
+ bool is_dynamic_img_sampler = has_extended_decoration(arg.id, SPIRVCrossDecorationDynamicImageSampler);
+
+ auto &arg_type = get<SPIRType>(arg.type);
+ if (arg_type.basetype == SPIRType::SampledImage && !is_dynamic_img_sampler)
+ {
+ // Manufacture automatic plane args for multiplanar texture
+ uint32_t planes = 1;
+ if (auto *constexpr_sampler = find_constexpr_sampler(name_id))
+ if (constexpr_sampler->ycbcr_conversion_enable)
+ planes = constexpr_sampler->planes;
+ for (uint32_t i = 1; i < planes; i++)
+ decl += join(", ", argument_decl(arg), plane_name_suffix, i);
+
+ // Manufacture automatic sampler arg for SampledImage texture
+ if (arg_type.image.dim != DimBuffer)
+ {
+ if (arg_type.array.empty() || (var ? is_var_runtime_size_array(*var) : is_runtime_size_array(arg_type)))
+ {
+ decl += join(", ", sampler_type(arg_type, arg.id, false), " ", to_sampler_expression(name_id));
+ }
+ else
+ {
+ const char *sampler_address_space =
+ descriptor_address_space(name_id,
+ StorageClassUniformConstant,
+ "thread const");
+ decl += join(", ", sampler_address_space, " ", sampler_type(arg_type, name_id, false), "& ",
+ to_sampler_expression(name_id));
+ }
+ }
+ }
+
+ // Manufacture automatic swizzle arg.
+ if (msl_options.swizzle_texture_samples && has_sampled_images && is_sampled_image_type(arg_type) &&
+ !is_dynamic_img_sampler)
+ {
+ bool arg_is_array = !arg_type.array.empty();
+ decl += join(", constant uint", arg_is_array ? "* " : "& ", to_swizzle_expression(name_id));
+ }
+
+ if (buffer_requires_array_length(name_id))
+ {
+ bool arg_is_array = !arg_type.array.empty();
+ decl += join(", constant uint", arg_is_array ? "* " : "& ", to_buffer_size_expression(name_id));
+ }
+
+ if (&arg != &func.arguments.back())
+ decl += ", ";
+ }
+
+ decl += ")";
+ statement(decl);
+}
+
+static bool needs_chroma_reconstruction(const MSLConstexprSampler *constexpr_sampler)
+{
+ // For now, only multiplanar images need explicit reconstruction. GBGR and BGRG images
+ // use implicit reconstruction.
+ return constexpr_sampler && constexpr_sampler->ycbcr_conversion_enable && constexpr_sampler->planes > 1;
+}
+
+// Returns the texture sampling function string for the specified image and sampling characteristics.
+string CompilerMSL::to_function_name(const TextureFunctionNameArguments &args)
+{
+ VariableID img = args.base.img;
+ const MSLConstexprSampler *constexpr_sampler = nullptr;
+ bool is_dynamic_img_sampler = false;
+ if (auto *var = maybe_get_backing_variable(img))
+ {
+ constexpr_sampler = find_constexpr_sampler(var->basevariable ? var->basevariable : VariableID(var->self));
+ is_dynamic_img_sampler = has_extended_decoration(var->self, SPIRVCrossDecorationDynamicImageSampler);
+ }
+
+ // Special-case gather. We have to alter the component being looked up in the swizzle case.
+ if (msl_options.swizzle_texture_samples && args.base.is_gather && !is_dynamic_img_sampler &&
+ (!constexpr_sampler || !constexpr_sampler->ycbcr_conversion_enable))
+ {
+ bool is_compare = comparison_ids.count(img);
+ add_spv_func_and_recompile(is_compare ? SPVFuncImplGatherCompareSwizzle : SPVFuncImplGatherSwizzle);
+ return is_compare ? "spvGatherCompareSwizzle" : "spvGatherSwizzle";
+ }
+
+ // Special-case gather with an array of offsets. We have to lower into 4 separate gathers.
+ if (args.has_array_offsets && !is_dynamic_img_sampler &&
+ (!constexpr_sampler || !constexpr_sampler->ycbcr_conversion_enable))
+ {
+ bool is_compare = comparison_ids.count(img);
+ add_spv_func_and_recompile(is_compare ? SPVFuncImplGatherCompareConstOffsets : SPVFuncImplGatherConstOffsets);
+ add_spv_func_and_recompile(SPVFuncImplForwardArgs);
+ return is_compare ? "spvGatherCompareConstOffsets" : "spvGatherConstOffsets";
+ }
+
+ auto *combined = maybe_get<SPIRCombinedImageSampler>(img);
+
+ // Texture reference
+ string fname;
+ if (needs_chroma_reconstruction(constexpr_sampler) && !is_dynamic_img_sampler)
+ {
+ if (constexpr_sampler->planes != 2 && constexpr_sampler->planes != 3)
+ SPIRV_CROSS_THROW("Unhandled number of color image planes!");
+ // 444 images aren't downsampled, so we don't need to do linear filtering.
+ if (constexpr_sampler->resolution == MSL_FORMAT_RESOLUTION_444 ||
+ constexpr_sampler->chroma_filter == MSL_SAMPLER_FILTER_NEAREST)
+ {
+ if (constexpr_sampler->planes == 2)
+ add_spv_func_and_recompile(SPVFuncImplChromaReconstructNearest2Plane);
+ else
+ add_spv_func_and_recompile(SPVFuncImplChromaReconstructNearest3Plane);
+ fname = "spvChromaReconstructNearest";
+ }
+ else // Linear with a downsampled format
+ {
+ fname = "spvChromaReconstructLinear";
+ switch (constexpr_sampler->resolution)
+ {
+ case MSL_FORMAT_RESOLUTION_444:
+ assert(false);
+ break; // not reached
+ case MSL_FORMAT_RESOLUTION_422:
+ switch (constexpr_sampler->x_chroma_offset)
+ {
+ case MSL_CHROMA_LOCATION_COSITED_EVEN:
+ if (constexpr_sampler->planes == 2)
+ add_spv_func_and_recompile(SPVFuncImplChromaReconstructLinear422CositedEven2Plane);
+ else
+ add_spv_func_and_recompile(SPVFuncImplChromaReconstructLinear422CositedEven3Plane);
+ fname += "422CositedEven";
+ break;
+ case MSL_CHROMA_LOCATION_MIDPOINT:
+ if (constexpr_sampler->planes == 2)
+ add_spv_func_and_recompile(SPVFuncImplChromaReconstructLinear422Midpoint2Plane);
+ else
+ add_spv_func_and_recompile(SPVFuncImplChromaReconstructLinear422Midpoint3Plane);
+ fname += "422Midpoint";
+ break;
+ default:
+ SPIRV_CROSS_THROW("Invalid chroma location.");
+ }
+ break;
+ case MSL_FORMAT_RESOLUTION_420:
+ fname += "420";
+ switch (constexpr_sampler->x_chroma_offset)
+ {
+ case MSL_CHROMA_LOCATION_COSITED_EVEN:
+ switch (constexpr_sampler->y_chroma_offset)
+ {
+ case MSL_CHROMA_LOCATION_COSITED_EVEN:
+ if (constexpr_sampler->planes == 2)
+ add_spv_func_and_recompile(
+ SPVFuncImplChromaReconstructLinear420XCositedEvenYCositedEven2Plane);
+ else
+ add_spv_func_and_recompile(
+ SPVFuncImplChromaReconstructLinear420XCositedEvenYCositedEven3Plane);
+ fname += "XCositedEvenYCositedEven";
+ break;
+ case MSL_CHROMA_LOCATION_MIDPOINT:
+ if (constexpr_sampler->planes == 2)
+ add_spv_func_and_recompile(
+ SPVFuncImplChromaReconstructLinear420XCositedEvenYMidpoint2Plane);
+ else
+ add_spv_func_and_recompile(
+ SPVFuncImplChromaReconstructLinear420XCositedEvenYMidpoint3Plane);
+ fname += "XCositedEvenYMidpoint";
+ break;
+ default:
+ SPIRV_CROSS_THROW("Invalid Y chroma location.");
+ }
+ break;
+ case MSL_CHROMA_LOCATION_MIDPOINT:
+ switch (constexpr_sampler->y_chroma_offset)
+ {
+ case MSL_CHROMA_LOCATION_COSITED_EVEN:
+ if (constexpr_sampler->planes == 2)
+ add_spv_func_and_recompile(
+ SPVFuncImplChromaReconstructLinear420XMidpointYCositedEven2Plane);
+ else
+ add_spv_func_and_recompile(
+ SPVFuncImplChromaReconstructLinear420XMidpointYCositedEven3Plane);
+ fname += "XMidpointYCositedEven";
+ break;
+ case MSL_CHROMA_LOCATION_MIDPOINT:
+ if (constexpr_sampler->planes == 2)
+ add_spv_func_and_recompile(SPVFuncImplChromaReconstructLinear420XMidpointYMidpoint2Plane);
+ else
+ add_spv_func_and_recompile(SPVFuncImplChromaReconstructLinear420XMidpointYMidpoint3Plane);
+ fname += "XMidpointYMidpoint";
+ break;
+ default:
+ SPIRV_CROSS_THROW("Invalid Y chroma location.");
+ }
+ break;
+ default:
+ SPIRV_CROSS_THROW("Invalid X chroma location.");
+ }
+ break;
+ default:
+ SPIRV_CROSS_THROW("Invalid format resolution.");
+ }
+ }
+ }
+ else
+ {
+ fname = to_expression(combined ? combined->image : img) + ".";
+
+ // Texture function and sampler
+ if (args.base.is_fetch)
+ fname += "read";
+ else if (args.base.is_gather)
+ fname += "gather";
+ else
+ fname += "sample";
+
+ if (args.has_dref)
+ fname += "_compare";
+ }
+
+ return fname;
+}
+
+string CompilerMSL::convert_to_f32(const string &expr, uint32_t components)
+{
+ SPIRType t { components > 1 ? OpTypeVector : OpTypeFloat };
+ t.basetype = SPIRType::Float;
+ t.vecsize = components;
+ t.columns = 1;
+ return join(type_to_glsl_constructor(t), "(", expr, ")");
+}
+
+static inline bool sampling_type_needs_f32_conversion(const SPIRType &type)
+{
+ // Double is not supported to begin with, but doesn't hurt to check for completion.
+ return type.basetype == SPIRType::Half || type.basetype == SPIRType::Double;
+}
+
+// Returns the function args for a texture sampling function for the specified image and sampling characteristics.
+string CompilerMSL::to_function_args(const TextureFunctionArguments &args, bool *p_forward)
+{
+ VariableID img = args.base.img;
+ auto &imgtype = *args.base.imgtype;
+ uint32_t lod = args.lod;
+ uint32_t grad_x = args.grad_x;
+ uint32_t grad_y = args.grad_y;
+ uint32_t bias = args.bias;
+
+ const MSLConstexprSampler *constexpr_sampler = nullptr;
+ bool is_dynamic_img_sampler = false;
+ if (auto *var = maybe_get_backing_variable(img))
+ {
+ constexpr_sampler = find_constexpr_sampler(var->basevariable ? var->basevariable : VariableID(var->self));
+ is_dynamic_img_sampler = has_extended_decoration(var->self, SPIRVCrossDecorationDynamicImageSampler);
+ }
+
+ string farg_str;
+ bool forward = true;
+
+ if (!is_dynamic_img_sampler)
+ {
+ // Texture reference (for some cases)
+ if (needs_chroma_reconstruction(constexpr_sampler))
+ {
+ // Multiplanar images need two or three textures.
+ farg_str += to_expression(img);
+ for (uint32_t i = 1; i < constexpr_sampler->planes; i++)
+ farg_str += join(", ", to_expression(img), plane_name_suffix, i);
+ }
+ else if ((!constexpr_sampler || !constexpr_sampler->ycbcr_conversion_enable) &&
+ msl_options.swizzle_texture_samples && args.base.is_gather)
+ {
+ auto *combined = maybe_get<SPIRCombinedImageSampler>(img);
+ farg_str += to_expression(combined ? combined->image : img);
+ }
+
+ // Gathers with constant offsets call a special function, so include the texture.
+ if (args.has_array_offsets)
+ farg_str += to_expression(img);
+
+ // Sampler reference
+ if (!args.base.is_fetch)
+ {
+ if (!farg_str.empty())
+ farg_str += ", ";
+ farg_str += to_sampler_expression(img);
+ }
+
+ if ((!constexpr_sampler || !constexpr_sampler->ycbcr_conversion_enable) &&
+ msl_options.swizzle_texture_samples && args.base.is_gather)
+ {
+ // Add the swizzle constant from the swizzle buffer.
+ farg_str += ", " + to_swizzle_expression(img);
+ used_swizzle_buffer = true;
+ }
+
+ // Const offsets gather puts the const offsets before the other args.
+ if (args.has_array_offsets)
+ {
+ forward = forward && should_forward(args.offset);
+ farg_str += ", " + to_expression(args.offset);
+ }
+
+ // Const offsets gather or swizzled gather puts the component before the other args.
+ if (args.component && (args.has_array_offsets || msl_options.swizzle_texture_samples))
+ {
+ forward = forward && should_forward(args.component);
+ farg_str += ", " + to_component_argument(args.component);
+ }
+ }
+
+ // Texture coordinates
+ forward = forward && should_forward(args.coord);
+ auto coord_expr = to_enclosed_expression(args.coord);
+ auto &coord_type = expression_type(args.coord);
+ bool coord_is_fp = type_is_floating_point(coord_type);
+ bool is_cube_fetch = false;
+
+ string tex_coords = coord_expr;
+ uint32_t alt_coord_component = 0;
+
+ switch (imgtype.image.dim)
+ {
+
+ case Dim1D:
+ if (coord_type.vecsize > 1)
+ tex_coords = enclose_expression(tex_coords) + ".x";
+
+ if (args.base.is_fetch)
+ tex_coords = "uint(" + round_fp_tex_coords(tex_coords, coord_is_fp) + ")";
+ else if (sampling_type_needs_f32_conversion(coord_type))
+ tex_coords = convert_to_f32(tex_coords, 1);
+
+ if (msl_options.texture_1D_as_2D)
+ {
+ if (args.base.is_fetch)
+ tex_coords = "uint2(" + tex_coords + ", 0)";
+ else
+ tex_coords = "float2(" + tex_coords + ", 0.5)";
+ }
+
+ alt_coord_component = 1;
+ break;
+
+ case DimBuffer:
+ if (coord_type.vecsize > 1)
+ tex_coords = enclose_expression(tex_coords) + ".x";
+
+ if (msl_options.texture_buffer_native)
+ {
+ tex_coords = "uint(" + round_fp_tex_coords(tex_coords, coord_is_fp) + ")";
+ }
+ else
+ {
+ // Metal texel buffer textures are 2D, so convert 1D coord to 2D.
+ // Support for Metal 2.1's new texture_buffer type.
+ if (args.base.is_fetch)
+ {
+ if (msl_options.texel_buffer_texture_width > 0)
+ {
+ tex_coords = "spvTexelBufferCoord(" + round_fp_tex_coords(tex_coords, coord_is_fp) + ")";
+ }
+ else
+ {
+ tex_coords = "spvTexelBufferCoord(" + round_fp_tex_coords(tex_coords, coord_is_fp) + ", " +
+ to_expression(img) + ")";
+ }
+ }
+ }
+
+ alt_coord_component = 1;
+ break;
+
+ case DimSubpassData:
+ // If we're using Metal's native frame-buffer fetch API for subpass inputs,
+ // this path will not be hit.
+ tex_coords = "uint2(gl_FragCoord.xy)";
+ alt_coord_component = 2;
+ break;
+
+ case Dim2D:
+ if (coord_type.vecsize > 2)
+ tex_coords = enclose_expression(tex_coords) + ".xy";
+
+ if (args.base.is_fetch)
+ tex_coords = "uint2(" + round_fp_tex_coords(tex_coords, coord_is_fp) + ")";
+ else if (sampling_type_needs_f32_conversion(coord_type))
+ tex_coords = convert_to_f32(tex_coords, 2);
+
+ alt_coord_component = 2;
+ break;
+
+ case Dim3D:
+ if (coord_type.vecsize > 3)
+ tex_coords = enclose_expression(tex_coords) + ".xyz";
+
+ if (args.base.is_fetch)
+ tex_coords = "uint3(" + round_fp_tex_coords(tex_coords, coord_is_fp) + ")";
+ else if (sampling_type_needs_f32_conversion(coord_type))
+ tex_coords = convert_to_f32(tex_coords, 3);
+
+ alt_coord_component = 3;
+ break;
+
+ case DimCube:
+ if (args.base.is_fetch)
+ {
+ is_cube_fetch = true;
+ tex_coords += ".xy";
+ tex_coords = "uint2(" + round_fp_tex_coords(tex_coords, coord_is_fp) + ")";
+ }
+ else
+ {
+ if (coord_type.vecsize > 3)
+ tex_coords = enclose_expression(tex_coords) + ".xyz";
+ }
+
+ if (sampling_type_needs_f32_conversion(coord_type))
+ tex_coords = convert_to_f32(tex_coords, 3);
+
+ alt_coord_component = 3;
+ break;
+
+ default:
+ break;
+ }
+
+ if (args.base.is_fetch && args.offset)
+ {
+ // Fetch offsets must be applied directly to the coordinate.
+ forward = forward && should_forward(args.offset);
+ auto &type = expression_type(args.offset);
+ if (imgtype.image.dim == Dim1D && msl_options.texture_1D_as_2D)
+ {
+ if (type.basetype != SPIRType::UInt)
+ tex_coords += join(" + uint2(", bitcast_expression(SPIRType::UInt, args.offset), ", 0)");
+ else
+ tex_coords += join(" + uint2(", to_enclosed_expression(args.offset), ", 0)");
+ }
+ else
+ {
+ if (type.basetype != SPIRType::UInt)
+ tex_coords += " + " + bitcast_expression(SPIRType::UInt, args.offset);
+ else
+ tex_coords += " + " + to_enclosed_expression(args.offset);
+ }
+ }
+
+ // If projection, use alt coord as divisor
+ if (args.base.is_proj)
+ {
+ if (sampling_type_needs_f32_conversion(coord_type))
+ tex_coords += " / " + convert_to_f32(to_extract_component_expression(args.coord, alt_coord_component), 1);
+ else
+ tex_coords += " / " + to_extract_component_expression(args.coord, alt_coord_component);
+ }
+
+ if (!farg_str.empty())
+ farg_str += ", ";
+
+ if (imgtype.image.dim == DimCube && imgtype.image.arrayed && msl_options.emulate_cube_array)
+ {
+ farg_str += "spvCubemapTo2DArrayFace(" + tex_coords + ").xy";
+
+ if (is_cube_fetch)
+ farg_str += ", uint(" + to_extract_component_expression(args.coord, 2) + ")";
+ else
+ farg_str +=
+ ", uint(spvCubemapTo2DArrayFace(" + tex_coords + ").z) + (uint(" +
+ round_fp_tex_coords(to_extract_component_expression(args.coord, alt_coord_component), coord_is_fp) +
+ ") * 6u)";
+
+ add_spv_func_and_recompile(SPVFuncImplCubemapTo2DArrayFace);
+ }
+ else
+ {
+ farg_str += tex_coords;
+
+ // If fetch from cube, add face explicitly
+ if (is_cube_fetch)
+ {
+ // Special case for cube arrays, face and layer are packed in one dimension.
+ if (imgtype.image.arrayed)
+ farg_str += ", uint(" + to_extract_component_expression(args.coord, 2) + ") % 6u";
+ else
+ farg_str +=
+ ", uint(" + round_fp_tex_coords(to_extract_component_expression(args.coord, 2), coord_is_fp) + ")";
+ }
+
+ // If array, use alt coord
+ if (imgtype.image.arrayed)
+ {
+ // Special case for cube arrays, face and layer are packed in one dimension.
+ if (imgtype.image.dim == DimCube && args.base.is_fetch)
+ {
+ farg_str += ", uint(" + to_extract_component_expression(args.coord, 2) + ") / 6u";
+ }
+ else
+ {
+ farg_str +=
+ ", uint(" +
+ round_fp_tex_coords(to_extract_component_expression(args.coord, alt_coord_component), coord_is_fp) +
+ ")";
+ if (imgtype.image.dim == DimSubpassData)
+ {
+ if (msl_options.multiview)
+ farg_str += " + gl_ViewIndex";
+ else if (msl_options.arrayed_subpass_input)
+ farg_str += " + gl_Layer";
+ }
+ }
+ }
+ else if (imgtype.image.dim == DimSubpassData)
+ {
+ if (msl_options.multiview)
+ farg_str += ", gl_ViewIndex";
+ else if (msl_options.arrayed_subpass_input)
+ farg_str += ", gl_Layer";
+ }
+ }
+
+ // Depth compare reference value
+ if (args.dref)
+ {
+ forward = forward && should_forward(args.dref);
+ farg_str += ", ";
+
+ auto &dref_type = expression_type(args.dref);
+
+ string dref_expr;
+ if (args.base.is_proj)
+ dref_expr = join(to_enclosed_expression(args.dref), " / ",
+ to_extract_component_expression(args.coord, alt_coord_component));
+ else
+ dref_expr = to_expression(args.dref);
+
+ if (sampling_type_needs_f32_conversion(dref_type))
+ dref_expr = convert_to_f32(dref_expr, 1);
+
+ farg_str += dref_expr;
+
+ if (msl_options.is_macos() && (grad_x || grad_y))
+ {
+ // For sample compare, MSL does not support gradient2d for all targets (only iOS apparently according to docs).
+ // However, the most common case here is to have a constant gradient of 0, as that is the only way to express
+ // LOD == 0 in GLSL with sampler2DArrayShadow (cascaded shadow mapping).
+ // We will detect a compile-time constant 0 value for gradient and promote that to level(0) on MSL.
+ bool constant_zero_x = !grad_x || expression_is_constant_null(grad_x);
+ bool constant_zero_y = !grad_y || expression_is_constant_null(grad_y);
+ if (constant_zero_x && constant_zero_y &&
+ (!imgtype.image.arrayed || !msl_options.sample_dref_lod_array_as_grad))
+ {
+ lod = 0;
+ grad_x = 0;
+ grad_y = 0;
+ farg_str += ", level(0)";
+ }
+ else if (!msl_options.supports_msl_version(2, 3))
+ {
+ SPIRV_CROSS_THROW("Using non-constant 0.0 gradient() qualifier for sample_compare. This is not "
+ "supported on macOS prior to MSL 2.3.");
+ }
+ }
+
+ if (msl_options.is_macos() && bias)
+ {
+ // Bias is not supported either on macOS with sample_compare.
+ // Verify it is compile-time zero, and drop the argument.
+ if (expression_is_constant_null(bias))
+ {
+ bias = 0;
+ }
+ else if (!msl_options.supports_msl_version(2, 3))
+ {
+ SPIRV_CROSS_THROW("Using non-constant 0.0 bias() qualifier for sample_compare. This is not supported "
+ "on macOS prior to MSL 2.3.");
+ }
+ }
+ }
+
+ // LOD Options
+ // Metal does not support LOD for 1D textures.
+ if (bias && (imgtype.image.dim != Dim1D || msl_options.texture_1D_as_2D))
+ {
+ forward = forward && should_forward(bias);
+ farg_str += ", bias(" + to_expression(bias) + ")";
+ }
+
+ // Metal does not support LOD for 1D textures.
+ if (lod && (imgtype.image.dim != Dim1D || msl_options.texture_1D_as_2D))
+ {
+ forward = forward && should_forward(lod);
+ if (args.base.is_fetch)
+ {
+ farg_str += ", " + to_expression(lod);
+ }
+ else if (msl_options.sample_dref_lod_array_as_grad && args.dref && imgtype.image.arrayed)
+ {
+ if (msl_options.is_macos() && !msl_options.supports_msl_version(2, 3))
+ SPIRV_CROSS_THROW("Using non-constant 0.0 gradient() qualifier for sample_compare. This is not "
+ "supported on macOS prior to MSL 2.3.");
+ // Some Metal devices have a bug where the LoD is erroneously biased upward
+ // when using a level() argument. Since this doesn't happen as much with gradient2d(),
+ // if we perform the LoD calculation in reverse, we can pass a gradient
+ // instead.
+ // lod = log2(rhoMax/eta) -> exp2(lod) = rhoMax/eta
+ // If we make all of the scale factors the same, eta will be 1 and
+ // exp2(lod) = rho.
+ // rhoX = dP/dx * extent; rhoY = dP/dy * extent
+ // Therefore, dP/dx = dP/dy = exp2(lod)/extent.
+ // (Subtracting 0.5 before exponentiation gives better results.)
+ string grad_opt, extent, grad_coord;
+ VariableID base_img = img;
+ if (auto *combined = maybe_get<SPIRCombinedImageSampler>(img))
+ base_img = combined->image;
+ switch (imgtype.image.dim)
+ {
+ case Dim1D:
+ grad_opt = "gradient2d";
+ extent = join("float2(", to_expression(base_img), ".get_width(), 1.0)");
+ break;
+ case Dim2D:
+ grad_opt = "gradient2d";
+ extent = join("float2(", to_expression(base_img), ".get_width(), ", to_expression(base_img), ".get_height())");
+ break;
+ case DimCube:
+ if (imgtype.image.arrayed && msl_options.emulate_cube_array)
+ {
+ grad_opt = "gradient2d";
+ extent = join("float2(", to_expression(base_img), ".get_width())");
+ }
+ else
+ {
+ if (msl_options.agx_manual_cube_grad_fixup)
+ {
+ add_spv_func_and_recompile(SPVFuncImplGradientCube);
+ grad_opt = "spvGradientCube";
+ grad_coord = tex_coords + ", ";
+ }
+ else
+ {
+ grad_opt = "gradientcube";
+ }
+ extent = join("float3(", to_expression(base_img), ".get_width())");
+ }
+ break;
+ default:
+ grad_opt = "unsupported_gradient_dimension";
+ extent = "float3(1.0)";
+ break;
+ }
+ farg_str += join(", ", grad_opt, "(", grad_coord, "exp2(", to_expression(lod), " - 0.5) / ", extent,
+ ", exp2(", to_expression(lod), " - 0.5) / ", extent, ")");
+ }
+ else
+ {
+ farg_str += ", level(" + to_expression(lod) + ")";
+ }
+ }
+ else if (args.base.is_fetch && !lod && (imgtype.image.dim != Dim1D || msl_options.texture_1D_as_2D) &&
+ imgtype.image.dim != DimBuffer && !imgtype.image.ms && imgtype.image.sampled != 2)
+ {
+ // Lod argument is optional in OpImageFetch, but we require a LOD value, pick 0 as the default.
+ // Check for sampled type as well, because is_fetch is also used for OpImageRead in MSL.
+ farg_str += ", 0";
+ }
+
+ // Metal does not support LOD for 1D textures.
+ if ((grad_x || grad_y) && (imgtype.image.dim != Dim1D || msl_options.texture_1D_as_2D))
+ {
+ forward = forward && should_forward(grad_x);
+ forward = forward && should_forward(grad_y);
+ string grad_opt, grad_coord;
+ switch (imgtype.image.dim)
+ {
+ case Dim1D:
+ case Dim2D:
+ grad_opt = "gradient2d";
+ break;
+ case Dim3D:
+ grad_opt = "gradient3d";
+ break;
+ case DimCube:
+ if (imgtype.image.arrayed && msl_options.emulate_cube_array)
+ {
+ grad_opt = "gradient2d";
+ }
+ else if (msl_options.agx_manual_cube_grad_fixup)
+ {
+ add_spv_func_and_recompile(SPVFuncImplGradientCube);
+ grad_opt = "spvGradientCube";
+ grad_coord = tex_coords + ", ";
+ }
+ else
+ {
+ grad_opt = "gradientcube";
+ }
+ break;
+ default:
+ grad_opt = "unsupported_gradient_dimension";
+ break;
+ }
+ farg_str += join(", ", grad_opt, "(", grad_coord, to_expression(grad_x), ", ", to_expression(grad_y), ")");
+ }
+
+ if (args.min_lod)
+ {
+ if (!msl_options.supports_msl_version(2, 2))
+ SPIRV_CROSS_THROW("min_lod_clamp() is only supported in MSL 2.2+ and up.");
+
+ forward = forward && should_forward(args.min_lod);
+ farg_str += ", min_lod_clamp(" + to_expression(args.min_lod) + ")";
+ }
+
+ // Add offsets
+ string offset_expr;
+ const SPIRType *offset_type = nullptr;
+ if (args.offset && !args.base.is_fetch && !args.has_array_offsets)
+ {
+ forward = forward && should_forward(args.offset);
+ offset_expr = to_expression(args.offset);
+ offset_type = &expression_type(args.offset);
+ }
+
+ if (!offset_expr.empty())
+ {
+ switch (imgtype.image.dim)
+ {
+ case Dim1D:
+ if (!msl_options.texture_1D_as_2D)
+ break;
+ if (offset_type->vecsize > 1)
+ offset_expr = enclose_expression(offset_expr) + ".x";
+
+ farg_str += join(", int2(", offset_expr, ", 0)");
+ break;
+
+ case Dim2D:
+ if (offset_type->vecsize > 2)
+ offset_expr = enclose_expression(offset_expr) + ".xy";
+
+ farg_str += ", " + offset_expr;
+ break;
+
+ case Dim3D:
+ if (offset_type->vecsize > 3)
+ offset_expr = enclose_expression(offset_expr) + ".xyz";
+
+ farg_str += ", " + offset_expr;
+ break;
+
+ default:
+ break;
+ }
+ }
+
+ if (args.component && !args.has_array_offsets)
+ {
+ // If 2D has gather component, ensure it also has an offset arg
+ if (imgtype.image.dim == Dim2D && offset_expr.empty())
+ farg_str += ", int2(0)";
+
+ if (!msl_options.swizzle_texture_samples || is_dynamic_img_sampler)
+ {
+ forward = forward && should_forward(args.component);
+
+ uint32_t image_var = 0;
+ if (const auto *combined = maybe_get<SPIRCombinedImageSampler>(img))
+ {
+ if (const auto *img_var = maybe_get_backing_variable(combined->image))
+ image_var = img_var->self;
+ }
+ else if (const auto *var = maybe_get_backing_variable(img))
+ {
+ image_var = var->self;
+ }
+
+ if (image_var == 0 || !is_depth_image(expression_type(image_var), image_var))
+ farg_str += ", " + to_component_argument(args.component);
+ }
+ }
+
+ if (args.sample)
+ {
+ forward = forward && should_forward(args.sample);
+ farg_str += ", ";
+ farg_str += to_expression(args.sample);
+ }
+
+ *p_forward = forward;
+
+ return farg_str;
+}
+
+// If the texture coordinates are floating point, invokes MSL round() function to round them.
+string CompilerMSL::round_fp_tex_coords(string tex_coords, bool coord_is_fp)
+{
+ return coord_is_fp ? ("rint(" + tex_coords + ")") : tex_coords;
+}
+
+// Returns a string to use in an image sampling function argument.
+// The ID must be a scalar constant.
+string CompilerMSL::to_component_argument(uint32_t id)
+{
+ uint32_t component_index = evaluate_constant_u32(id);
+ switch (component_index)
+ {
+ case 0:
+ return "component::x";
+ case 1:
+ return "component::y";
+ case 2:
+ return "component::z";
+ case 3:
+ return "component::w";
+
+ default:
+ SPIRV_CROSS_THROW("The value (" + to_string(component_index) + ") of OpConstant ID " + to_string(id) +
+ " is not a valid Component index, which must be one of 0, 1, 2, or 3.");
+ }
+}
+
+// Establish sampled image as expression object and assign the sampler to it.
+void CompilerMSL::emit_sampled_image_op(uint32_t result_type, uint32_t result_id, uint32_t image_id, uint32_t samp_id)
+{
+ set<SPIRCombinedImageSampler>(result_id, result_type, image_id, samp_id);
+}
+
+string CompilerMSL::to_texture_op(const Instruction &i, bool sparse, bool *forward,
+ SmallVector<uint32_t> &inherited_expressions)
+{
+ auto *ops = stream(i);
+ uint32_t result_type_id = ops[0];
+ uint32_t img = ops[2];
+ auto &result_type = get<SPIRType>(result_type_id);
+ auto op = static_cast<Op>(i.op);
+ bool is_gather = (op == OpImageGather || op == OpImageDrefGather);
+
+ // Bypass pointers because we need the real image struct
+ auto &type = expression_type(img);
+ auto &imgtype = get<SPIRType>(type.self);
+
+ const MSLConstexprSampler *constexpr_sampler = nullptr;
+ bool is_dynamic_img_sampler = false;
+ if (auto *var = maybe_get_backing_variable(img))
+ {
+ constexpr_sampler = find_constexpr_sampler(var->basevariable ? var->basevariable : VariableID(var->self));
+ is_dynamic_img_sampler = has_extended_decoration(var->self, SPIRVCrossDecorationDynamicImageSampler);
+ }
+
+ string expr;
+ if (constexpr_sampler && constexpr_sampler->ycbcr_conversion_enable && !is_dynamic_img_sampler)
+ {
+ // If this needs sampler Y'CbCr conversion, we need to do some additional
+ // processing.
+ switch (constexpr_sampler->ycbcr_model)
+ {
+ case MSL_SAMPLER_YCBCR_MODEL_CONVERSION_RGB_IDENTITY:
+ case MSL_SAMPLER_YCBCR_MODEL_CONVERSION_YCBCR_IDENTITY:
+ // Default
+ break;
+ case MSL_SAMPLER_YCBCR_MODEL_CONVERSION_YCBCR_BT_709:
+ add_spv_func_and_recompile(SPVFuncImplConvertYCbCrBT709);
+ expr += "spvConvertYCbCrBT709(";
+ break;
+ case MSL_SAMPLER_YCBCR_MODEL_CONVERSION_YCBCR_BT_601:
+ add_spv_func_and_recompile(SPVFuncImplConvertYCbCrBT601);
+ expr += "spvConvertYCbCrBT601(";
+ break;
+ case MSL_SAMPLER_YCBCR_MODEL_CONVERSION_YCBCR_BT_2020:
+ add_spv_func_and_recompile(SPVFuncImplConvertYCbCrBT2020);
+ expr += "spvConvertYCbCrBT2020(";
+ break;
+ default:
+ SPIRV_CROSS_THROW("Invalid Y'CbCr model conversion.");
+ }
+
+ if (constexpr_sampler->ycbcr_model != MSL_SAMPLER_YCBCR_MODEL_CONVERSION_RGB_IDENTITY)
+ {
+ switch (constexpr_sampler->ycbcr_range)
+ {
+ case MSL_SAMPLER_YCBCR_RANGE_ITU_FULL:
+ add_spv_func_and_recompile(SPVFuncImplExpandITUFullRange);
+ expr += "spvExpandITUFullRange(";
+ break;
+ case MSL_SAMPLER_YCBCR_RANGE_ITU_NARROW:
+ add_spv_func_and_recompile(SPVFuncImplExpandITUNarrowRange);
+ expr += "spvExpandITUNarrowRange(";
+ break;
+ default:
+ SPIRV_CROSS_THROW("Invalid Y'CbCr range.");
+ }
+ }
+ }
+ else if (msl_options.swizzle_texture_samples && !is_gather && is_sampled_image_type(imgtype) &&
+ !is_dynamic_img_sampler)
+ {
+ add_spv_func_and_recompile(SPVFuncImplTextureSwizzle);
+ expr += "spvTextureSwizzle(";
+ }
+
+ string inner_expr = CompilerGLSL::to_texture_op(i, sparse, forward, inherited_expressions);
+
+ if (constexpr_sampler && constexpr_sampler->ycbcr_conversion_enable && !is_dynamic_img_sampler)
+ {
+ if (!constexpr_sampler->swizzle_is_identity())
+ {
+ static const char swizzle_names[] = "rgba";
+ if (!constexpr_sampler->swizzle_has_one_or_zero())
+ {
+ // If we can, do it inline.
+ expr += inner_expr + ".";
+ for (uint32_t c = 0; c < 4; c++)
+ {
+ switch (constexpr_sampler->swizzle[c])
+ {
+ case MSL_COMPONENT_SWIZZLE_IDENTITY:
+ expr += swizzle_names[c];
+ break;
+ case MSL_COMPONENT_SWIZZLE_R:
+ case MSL_COMPONENT_SWIZZLE_G:
+ case MSL_COMPONENT_SWIZZLE_B:
+ case MSL_COMPONENT_SWIZZLE_A:
+ expr += swizzle_names[constexpr_sampler->swizzle[c] - MSL_COMPONENT_SWIZZLE_R];
+ break;
+ default:
+ SPIRV_CROSS_THROW("Invalid component swizzle.");
+ }
+ }
+ }
+ else
+ {
+ // Otherwise, we need to emit a temporary and swizzle that.
+ uint32_t temp_id = ir.increase_bound_by(1);
+ emit_op(result_type_id, temp_id, inner_expr, false);
+ for (auto &inherit : inherited_expressions)
+ inherit_expression_dependencies(temp_id, inherit);
+ inherited_expressions.clear();
+ inherited_expressions.push_back(temp_id);
+
+ switch (op)
+ {
+ case OpImageSampleDrefImplicitLod:
+ case OpImageSampleImplicitLod:
+ case OpImageSampleProjImplicitLod:
+ case OpImageSampleProjDrefImplicitLod:
+ register_control_dependent_expression(temp_id);
+ break;
+
+ default:
+ break;
+ }
+ expr += type_to_glsl(result_type) + "(";
+ for (uint32_t c = 0; c < 4; c++)
+ {
+ switch (constexpr_sampler->swizzle[c])
+ {
+ case MSL_COMPONENT_SWIZZLE_IDENTITY:
+ expr += to_expression(temp_id) + "." + swizzle_names[c];
+ break;
+ case MSL_COMPONENT_SWIZZLE_ZERO:
+ expr += "0";
+ break;
+ case MSL_COMPONENT_SWIZZLE_ONE:
+ expr += "1";
+ break;
+ case MSL_COMPONENT_SWIZZLE_R:
+ case MSL_COMPONENT_SWIZZLE_G:
+ case MSL_COMPONENT_SWIZZLE_B:
+ case MSL_COMPONENT_SWIZZLE_A:
+ expr += to_expression(temp_id) + "." +
+ swizzle_names[constexpr_sampler->swizzle[c] - MSL_COMPONENT_SWIZZLE_R];
+ break;
+ default:
+ SPIRV_CROSS_THROW("Invalid component swizzle.");
+ }
+ if (c < 3)
+ expr += ", ";
+ }
+ expr += ")";
+ }
+ }
+ else
+ expr += inner_expr;
+ if (constexpr_sampler->ycbcr_model != MSL_SAMPLER_YCBCR_MODEL_CONVERSION_RGB_IDENTITY)
+ {
+ expr += join(", ", constexpr_sampler->bpc, ")");
+ if (constexpr_sampler->ycbcr_model != MSL_SAMPLER_YCBCR_MODEL_CONVERSION_YCBCR_IDENTITY)
+ expr += ")";
+ }
+ }
+ else
+ {
+ expr += inner_expr;
+ if (msl_options.swizzle_texture_samples && !is_gather && is_sampled_image_type(imgtype) &&
+ !is_dynamic_img_sampler)
+ {
+ // Add the swizzle constant from the swizzle buffer.
+ expr += ", " + to_swizzle_expression(img) + ")";
+ used_swizzle_buffer = true;
+ }
+ }
+
+ return expr;
+}
+
+static string create_swizzle(MSLComponentSwizzle swizzle)
+{
+ switch (swizzle)
+ {
+ case MSL_COMPONENT_SWIZZLE_IDENTITY:
+ return "spvSwizzle::none";
+ case MSL_COMPONENT_SWIZZLE_ZERO:
+ return "spvSwizzle::zero";
+ case MSL_COMPONENT_SWIZZLE_ONE:
+ return "spvSwizzle::one";
+ case MSL_COMPONENT_SWIZZLE_R:
+ return "spvSwizzle::red";
+ case MSL_COMPONENT_SWIZZLE_G:
+ return "spvSwizzle::green";
+ case MSL_COMPONENT_SWIZZLE_B:
+ return "spvSwizzle::blue";
+ case MSL_COMPONENT_SWIZZLE_A:
+ return "spvSwizzle::alpha";
+ default:
+ SPIRV_CROSS_THROW("Invalid component swizzle.");
+ }
+}
+
+// Returns a string representation of the ID, usable as a function arg.
+// Manufacture automatic sampler arg for SampledImage texture.
+string CompilerMSL::to_func_call_arg(const SPIRFunction::Parameter &arg, uint32_t id)
+{
+ string arg_str;
+
+ auto &type = expression_type(id);
+ bool is_dynamic_img_sampler = has_extended_decoration(arg.id, SPIRVCrossDecorationDynamicImageSampler);
+ // If the argument *itself* is a "dynamic" combined-image sampler, then we can just pass that around.
+ bool arg_is_dynamic_img_sampler = has_extended_decoration(id, SPIRVCrossDecorationDynamicImageSampler);
+ if (is_dynamic_img_sampler && !arg_is_dynamic_img_sampler)
+ arg_str = join("spvDynamicImageSampler<", type_to_glsl(get<SPIRType>(type.image.type)), ">(");
+
+ auto *c = maybe_get<SPIRConstant>(id);
+ if (msl_options.force_native_arrays && c && !get<SPIRType>(c->constant_type).array.empty())
+ {
+ // If we are passing a constant array directly to a function for some reason,
+ // the callee will expect an argument in thread const address space
+ // (since we can only bind to arrays with references in MSL).
+ // To resolve this, we must emit a copy in this address space.
+ // This kind of code gen should be rare enough that performance is not a real concern.
+ // Inline the SPIR-V to avoid this kind of suboptimal codegen.
+ //
+ // We risk calling this inside a continue block (invalid code),
+ // so just create a thread local copy in the current function.
+ arg_str = join("_", id, "_array_copy");
+ auto &constants = current_function->constant_arrays_needed_on_stack;
+ auto itr = find(begin(constants), end(constants), ID(id));
+ if (itr == end(constants))
+ {
+ force_recompile();
+ constants.push_back(id);
+ }
+ }
+ // Dereference pointer variables where needed.
+ // FIXME: This dereference is actually backwards. We should really just support passing pointer variables between functions.
+ else if (should_dereference(id))
+ arg_str += dereference_expression(type, CompilerGLSL::to_func_call_arg(arg, id));
+ else
+ arg_str += CompilerGLSL::to_func_call_arg(arg, id);
+
+ // Need to check the base variable in case we need to apply a qualified alias.
+ uint32_t var_id = 0;
+ auto *var = maybe_get<SPIRVariable>(id);
+ if (var)
+ var_id = var->basevariable;
+
+ if (!arg_is_dynamic_img_sampler)
+ {
+ auto *constexpr_sampler = find_constexpr_sampler(var_id ? var_id : id);
+ if (type.basetype == SPIRType::SampledImage)
+ {
+ // Manufacture automatic plane args for multiplanar texture
+ uint32_t planes = 1;
+ if (constexpr_sampler && constexpr_sampler->ycbcr_conversion_enable)
+ {
+ planes = constexpr_sampler->planes;
+ // If this parameter isn't aliasing a global, then we need to use
+ // the special "dynamic image-sampler" class to pass it--and we need
+ // to use it for *every* non-alias parameter, in case a combined
+ // image-sampler with a Y'CbCr conversion is passed. Hopefully, this
+ // pathological case is so rare that it should never be hit in practice.
+ if (!arg.alias_global_variable)
+ add_spv_func_and_recompile(SPVFuncImplDynamicImageSampler);
+ }
+ for (uint32_t i = 1; i < planes; i++)
+ arg_str += join(", ", CompilerGLSL::to_func_call_arg(arg, id), plane_name_suffix, i);
+ // Manufacture automatic sampler arg if the arg is a SampledImage texture.
+ if (type.image.dim != DimBuffer)
+ arg_str += ", " + to_sampler_expression(var_id ? var_id : id);
+
+ // Add sampler Y'CbCr conversion info if we have it
+ if (is_dynamic_img_sampler && constexpr_sampler && constexpr_sampler->ycbcr_conversion_enable)
+ {
+ SmallVector<string> samp_args;
+
+ switch (constexpr_sampler->resolution)
+ {
+ case MSL_FORMAT_RESOLUTION_444:
+ // Default
+ break;
+ case MSL_FORMAT_RESOLUTION_422:
+ samp_args.push_back("spvFormatResolution::_422");
+ break;
+ case MSL_FORMAT_RESOLUTION_420:
+ samp_args.push_back("spvFormatResolution::_420");
+ break;
+ default:
+ SPIRV_CROSS_THROW("Invalid format resolution.");
+ }
+
+ if (constexpr_sampler->chroma_filter != MSL_SAMPLER_FILTER_NEAREST)
+ samp_args.push_back("spvChromaFilter::linear");
+
+ if (constexpr_sampler->x_chroma_offset != MSL_CHROMA_LOCATION_COSITED_EVEN)
+ samp_args.push_back("spvXChromaLocation::midpoint");
+ if (constexpr_sampler->y_chroma_offset != MSL_CHROMA_LOCATION_COSITED_EVEN)
+ samp_args.push_back("spvYChromaLocation::midpoint");
+ switch (constexpr_sampler->ycbcr_model)
+ {
+ case MSL_SAMPLER_YCBCR_MODEL_CONVERSION_RGB_IDENTITY:
+ // Default
+ break;
+ case MSL_SAMPLER_YCBCR_MODEL_CONVERSION_YCBCR_IDENTITY:
+ samp_args.push_back("spvYCbCrModelConversion::ycbcr_identity");
+ break;
+ case MSL_SAMPLER_YCBCR_MODEL_CONVERSION_YCBCR_BT_709:
+ samp_args.push_back("spvYCbCrModelConversion::ycbcr_bt_709");
+ break;
+ case MSL_SAMPLER_YCBCR_MODEL_CONVERSION_YCBCR_BT_601:
+ samp_args.push_back("spvYCbCrModelConversion::ycbcr_bt_601");
+ break;
+ case MSL_SAMPLER_YCBCR_MODEL_CONVERSION_YCBCR_BT_2020:
+ samp_args.push_back("spvYCbCrModelConversion::ycbcr_bt_2020");
+ break;
+ default:
+ SPIRV_CROSS_THROW("Invalid Y'CbCr model conversion.");
+ }
+ if (constexpr_sampler->ycbcr_range != MSL_SAMPLER_YCBCR_RANGE_ITU_FULL)
+ samp_args.push_back("spvYCbCrRange::itu_narrow");
+ samp_args.push_back(join("spvComponentBits(", constexpr_sampler->bpc, ")"));
+ arg_str += join(", spvYCbCrSampler(", merge(samp_args), ")");
+ }
+ }
+
+ if (is_dynamic_img_sampler && constexpr_sampler && constexpr_sampler->ycbcr_conversion_enable)
+ arg_str += join(", (uint(", create_swizzle(constexpr_sampler->swizzle[3]), ") << 24) | (uint(",
+ create_swizzle(constexpr_sampler->swizzle[2]), ") << 16) | (uint(",
+ create_swizzle(constexpr_sampler->swizzle[1]), ") << 8) | uint(",
+ create_swizzle(constexpr_sampler->swizzle[0]), ")");
+ else if (msl_options.swizzle_texture_samples && has_sampled_images && is_sampled_image_type(type))
+ arg_str += ", " + to_swizzle_expression(var_id ? var_id : id);
+
+ if (buffer_requires_array_length(var_id))
+ arg_str += ", " + to_buffer_size_expression(var_id ? var_id : id);
+
+ if (is_dynamic_img_sampler)
+ arg_str += ")";
+ }
+
+ // Emulate texture2D atomic operations
+ auto *backing_var = maybe_get_backing_variable(var_id);
+ if (backing_var && atomic_image_vars_emulated.count(backing_var->self))
+ {
+ arg_str += ", " + to_expression(var_id) + "_atomic";
+ }
+
+ return arg_str;
+}
+
+// If the ID represents a sampled image that has been assigned a sampler already,
+// generate an expression for the sampler, otherwise generate a fake sampler name
+// by appending a suffix to the expression constructed from the ID.
+string CompilerMSL::to_sampler_expression(uint32_t id)
+{
+ auto *combined = maybe_get<SPIRCombinedImageSampler>(id);
+ if (combined && combined->sampler)
+ return to_expression(combined->sampler);
+
+ uint32_t expr_id = combined ? uint32_t(combined->image) : id;
+
+ // Constexpr samplers are declared as local variables,
+ // so exclude any qualifier names on the image expression.
+ if (auto *var = maybe_get_backing_variable(expr_id))
+ {
+ uint32_t img_id = var->basevariable ? var->basevariable : VariableID(var->self);
+ if (find_constexpr_sampler(img_id))
+ return Compiler::to_name(img_id) + sampler_name_suffix;
+ }
+
+ auto img_expr = to_expression(expr_id);
+ auto index = img_expr.find_first_of('[');
+ if (index == string::npos)
+ return img_expr + sampler_name_suffix;
+ else
+ return img_expr.substr(0, index) + sampler_name_suffix + img_expr.substr(index);
+}
+
+string CompilerMSL::to_swizzle_expression(uint32_t id)
+{
+ auto *combined = maybe_get<SPIRCombinedImageSampler>(id);
+
+ auto expr = to_expression(combined ? combined->image : VariableID(id));
+ auto index = expr.find_first_of('[');
+
+ // If an image is part of an argument buffer translate this to a legal identifier.
+ string::size_type period = 0;
+ while ((period = expr.find_first_of('.', period)) != string::npos && period < index)
+ expr[period] = '_';
+
+ if (index == string::npos)
+ return expr + swizzle_name_suffix;
+ else
+ {
+ auto image_expr = expr.substr(0, index);
+ auto array_expr = expr.substr(index);
+ return image_expr + swizzle_name_suffix + array_expr;
+ }
+}
+
+string CompilerMSL::to_buffer_size_expression(uint32_t id)
+{
+ auto expr = to_expression(id);
+ auto index = expr.find_first_of('[');
+
+ // This is quite crude, but we need to translate the reference name (*spvDescriptorSetN.name) to
+ // the pointer expression spvDescriptorSetN.name to make a reasonable expression here.
+ // This only happens if we have argument buffers and we are using OpArrayLength on a lone SSBO in that set.
+ if (expr.size() >= 3 && expr[0] == '(' && expr[1] == '*')
+ expr = address_of_expression(expr);
+
+ // If a buffer is part of an argument buffer translate this to a legal identifier.
+ for (auto &c : expr)
+ if (c == '.')
+ c = '_';
+
+ if (index == string::npos)
+ return expr + buffer_size_name_suffix;
+ else
+ {
+ auto buffer_expr = expr.substr(0, index);
+ auto array_expr = expr.substr(index);
+ if (auto var = maybe_get_backing_variable(id))
+ {
+ if (is_var_runtime_size_array(*var))
+ {
+ if (!msl_options.runtime_array_rich_descriptor)
+ SPIRV_CROSS_THROW("OpArrayLength requires rich descriptor format");
+
+ auto last_pos = array_expr.find_last_of(']');
+ if (last_pos != std::string::npos)
+ return buffer_expr + ".length(" + array_expr.substr(1, last_pos - 1) + ")";
+ }
+ }
+ return buffer_expr + buffer_size_name_suffix + array_expr;
+ }
+}
+
+// Checks whether the type is a Block all of whose members have DecorationPatch.
+bool CompilerMSL::is_patch_block(const SPIRType &type)
+{
+ if (!has_decoration(type.self, DecorationBlock))
+ return false;
+
+ for (uint32_t i = 0; i < type.member_types.size(); i++)
+ {
+ if (!has_member_decoration(type.self, i, DecorationPatch))
+ return false;
+ }
+
+ return true;
+}
+
+// Checks whether the ID is a row_major matrix that requires conversion before use
+bool CompilerMSL::is_non_native_row_major_matrix(uint32_t id)
+{
+ auto *e = maybe_get<SPIRExpression>(id);
+ if (e)
+ return e->need_transpose;
+ else
+ return has_decoration(id, DecorationRowMajor);
+}
+
+// Checks whether the member is a row_major matrix that requires conversion before use
+bool CompilerMSL::member_is_non_native_row_major_matrix(const SPIRType &type, uint32_t index)
+{
+ return has_member_decoration(type.self, index, DecorationRowMajor);
+}
+
+string CompilerMSL::convert_row_major_matrix(string exp_str, const SPIRType &exp_type, uint32_t physical_type_id,
+ bool is_packed, bool relaxed)
+{
+ if (!is_matrix(exp_type))
+ {
+ return CompilerGLSL::convert_row_major_matrix(std::move(exp_str), exp_type, physical_type_id, is_packed, relaxed);
+ }
+ else
+ {
+ strip_enclosed_expression(exp_str);
+ if (physical_type_id != 0 || is_packed)
+ exp_str = unpack_expression_type(exp_str, exp_type, physical_type_id, is_packed, true);
+ return join("transpose(", exp_str, ")");
+ }
+}
+
+// Called automatically at the end of the entry point function
+void CompilerMSL::emit_fixup()
+{
+ if (is_vertex_like_shader() && stage_out_var_id && !qual_pos_var_name.empty() && !capture_output_to_buffer)
+ {
+ if (options.vertex.fixup_clipspace)
+ statement(qual_pos_var_name, ".z = (", qual_pos_var_name, ".z + ", qual_pos_var_name,
+ ".w) * 0.5; // Adjust clip-space for Metal");
+
+ if (options.vertex.flip_vert_y)
+ statement(qual_pos_var_name, ".y = -(", qual_pos_var_name, ".y);", " // Invert Y-axis for Metal");
+ }
+}
+
+// Return a string defining a structure member, with padding and packing.
+string CompilerMSL::to_struct_member(const SPIRType &type, uint32_t member_type_id, uint32_t index,
+ const string &qualifier)
+{
+ uint32_t orig_member_type_id = member_type_id;
+ if (member_is_remapped_physical_type(type, index))
+ member_type_id = get_extended_member_decoration(type.self, index, SPIRVCrossDecorationPhysicalTypeID);
+ auto &physical_type = get<SPIRType>(member_type_id);
+
+ // If this member is packed, mark it as so.
+ string pack_pfx;
+
+ // Allow Metal to use the array<T> template to make arrays a value type
+ uint32_t orig_id = 0;
+ if (has_extended_member_decoration(type.self, index, SPIRVCrossDecorationInterfaceOrigID))
+ orig_id = get_extended_member_decoration(type.self, index, SPIRVCrossDecorationInterfaceOrigID);
+
+ bool row_major = false;
+ if (is_matrix(physical_type))
+ row_major = has_member_decoration(type.self, index, DecorationRowMajor);
+
+ SPIRType row_major_physical_type { OpTypeMatrix };
+ const SPIRType *declared_type = &physical_type;
+
+ // If a struct is being declared with physical layout,
+ // do not use array<T> wrappers.
+ // This avoids a lot of complicated cases with packed vectors and matrices,
+ // and generally we cannot copy full arrays in and out of buffers into Function
+ // address space.
+ // Array of resources should also be declared as builtin arrays.
+ if (has_member_decoration(type.self, index, DecorationOffset))
+ is_using_builtin_array = true;
+ else if (has_extended_member_decoration(type.self, index, SPIRVCrossDecorationResourceIndexPrimary))
+ is_using_builtin_array = true;
+
+ if (member_is_packed_physical_type(type, index))
+ {
+ // If we're packing a matrix, output an appropriate typedef
+ if (physical_type.basetype == SPIRType::Struct)
+ {
+ SPIRV_CROSS_THROW("Cannot emit a packed struct currently.");
+ }
+ else if (is_matrix(physical_type))
+ {
+ uint32_t rows = physical_type.vecsize;
+ uint32_t cols = physical_type.columns;
+ pack_pfx = "packed_";
+ if (row_major)
+ {
+ // These are stored transposed.
+ rows = physical_type.columns;
+ cols = physical_type.vecsize;
+ pack_pfx = "packed_rm_";
+ }
+ string base_type = physical_type.width == 16 ? "half" : "float";
+ string td_line = "typedef ";
+ td_line += "packed_" + base_type + to_string(rows);
+ td_line += " " + pack_pfx;
+ // Use the actual matrix size here.
+ td_line += base_type + to_string(physical_type.columns) + "x" + to_string(physical_type.vecsize);
+ td_line += "[" + to_string(cols) + "]";
+ td_line += ";";
+ add_typedef_line(td_line);
+ }
+ else if (!is_scalar(physical_type)) // scalar type is already packed.
+ pack_pfx = "packed_";
+ }
+ else if (is_matrix(physical_type))
+ {
+ if (!msl_options.supports_msl_version(3, 0) &&
+ has_extended_decoration(type.self, SPIRVCrossDecorationWorkgroupStruct))
+ {
+ pack_pfx = "spvStorage_";
+ add_spv_func_and_recompile(SPVFuncImplStorageMatrix);
+ // The pack prefix causes problems with array<T> wrappers.
+ is_using_builtin_array = true;
+ }
+ if (row_major)
+ {
+ // Need to declare type with flipped vecsize/columns.
+ row_major_physical_type = physical_type;
+ swap(row_major_physical_type.vecsize, row_major_physical_type.columns);
+ declared_type = &row_major_physical_type;
+ }
+ }
+
+ // iOS Tier 1 argument buffers do not support writable images.
+ if (physical_type.basetype == SPIRType::Image &&
+ physical_type.image.sampled == 2 &&
+ msl_options.is_ios() &&
+ msl_options.argument_buffers_tier <= Options::ArgumentBuffersTier::Tier1 &&
+ !has_decoration(orig_id, DecorationNonWritable))
+ {
+ SPIRV_CROSS_THROW("Writable images are not allowed on Tier1 argument buffers on iOS.");
+ }
+
+ // Array information is baked into these types.
+ string array_type;
+ if (physical_type.basetype != SPIRType::Image && physical_type.basetype != SPIRType::Sampler &&
+ physical_type.basetype != SPIRType::SampledImage)
+ {
+ BuiltIn builtin = BuiltInMax;
+
+ // Special handling. In [[stage_out]] or [[stage_in]] blocks,
+ // we need flat arrays, but if we're somehow declaring gl_PerVertex for constant array reasons, we want
+ // template array types to be declared.
+ bool is_ib_in_out =
+ ((stage_out_var_id && get_stage_out_struct_type().self == type.self &&
+ variable_storage_requires_stage_io(StorageClassOutput)) ||
+ (stage_in_var_id && get_stage_in_struct_type().self == type.self &&
+ variable_storage_requires_stage_io(StorageClassInput)));
+ if (is_ib_in_out && is_member_builtin(type, index, &builtin))
+ is_using_builtin_array = true;
+ array_type = type_to_array_glsl(physical_type, orig_id);
+ }
+
+ if (orig_id)
+ {
+ auto *data_type = declared_type;
+ if (is_pointer(*data_type))
+ data_type = &get_pointee_type(*data_type);
+
+ if (is_array(*data_type) && get_resource_array_size(*data_type, orig_id) == 0)
+ {
+ // Hack for declaring unsized array of resources. Need to declare dummy sized array by value inline.
+ // This can then be wrapped in spvDescriptorArray as usual.
+ array_type = "[1] /* unsized array hack */";
+ }
+ }
+
+ string decl_type;
+ if (declared_type->vecsize > 4)
+ {
+ auto orig_type = get<SPIRType>(orig_member_type_id);
+ if (is_matrix(orig_type) && row_major)
+ swap(orig_type.vecsize, orig_type.columns);
+ orig_type.columns = 1;
+ decl_type = type_to_glsl(orig_type, orig_id, true);
+
+ if (declared_type->columns > 1)
+ decl_type = join("spvPaddedStd140Matrix<", decl_type, ", ", declared_type->columns, ">");
+ else
+ decl_type = join("spvPaddedStd140<", decl_type, ">");
+ }
+ else
+ decl_type = type_to_glsl(*declared_type, orig_id, true);
+
+ const char *overlapping_binding_tag =
+ has_extended_member_decoration(type.self, index, SPIRVCrossDecorationOverlappingBinding) ?
+ "// Overlapping binding: " : "";
+
+ auto result = join(overlapping_binding_tag, pack_pfx, decl_type, " ", qualifier,
+ to_member_name(type, index), member_attribute_qualifier(type, index), array_type, ";");
+
+ is_using_builtin_array = false;
+ return result;
+}
+
+// Emit a structure member, padding and packing to maintain the correct memeber alignments.
+void CompilerMSL::emit_struct_member(const SPIRType &type, uint32_t member_type_id, uint32_t index,
+ const string &qualifier, uint32_t)
+{
+ // If this member requires padding to maintain its declared offset, emit a dummy padding member before it.
+ if (has_extended_member_decoration(type.self, index, SPIRVCrossDecorationPaddingTarget))
+ {
+ uint32_t pad_len = get_extended_member_decoration(type.self, index, SPIRVCrossDecorationPaddingTarget);
+ statement("char _m", index, "_pad", "[", pad_len, "];");
+ }
+
+ // Handle HLSL-style 0-based vertex/instance index.
+ builtin_declaration = true;
+ statement(to_struct_member(type, member_type_id, index, qualifier));
+ builtin_declaration = false;
+}
+
+void CompilerMSL::emit_struct_padding_target(const SPIRType &type)
+{
+ uint32_t struct_size = get_declared_struct_size_msl(type, true, true);
+ uint32_t target_size = get_extended_decoration(type.self, SPIRVCrossDecorationPaddingTarget);
+ if (target_size < struct_size)
+ SPIRV_CROSS_THROW("Cannot pad with negative bytes.");
+ else if (target_size > struct_size)
+ statement("char _m0_final_padding[", target_size - struct_size, "];");
+}
+
+// Return a MSL qualifier for the specified function attribute member
+string CompilerMSL::member_attribute_qualifier(const SPIRType &type, uint32_t index)
+{
+ auto &execution = get_entry_point();
+
+ uint32_t mbr_type_id = type.member_types[index];
+ auto &mbr_type = get<SPIRType>(mbr_type_id);
+
+ BuiltIn builtin = BuiltInMax;
+ bool is_builtin = is_member_builtin(type, index, &builtin);
+
+ if (has_extended_member_decoration(type.self, index, SPIRVCrossDecorationResourceIndexPrimary))
+ {
+ string quals = join(
+ " [[id(", get_extended_member_decoration(type.self, index, SPIRVCrossDecorationResourceIndexPrimary), ")");
+ if (interlocked_resources.count(
+ get_extended_member_decoration(type.self, index, SPIRVCrossDecorationInterfaceOrigID)))
+ quals += ", raster_order_group(0)";
+ quals += "]]";
+ return quals;
+ }
+
+ // Vertex function inputs
+ if (execution.model == ExecutionModelVertex && type.storage == StorageClassInput)
+ {
+ if (is_builtin)
+ {
+ switch (builtin)
+ {
+ case BuiltInVertexId:
+ case BuiltInVertexIndex:
+ case BuiltInBaseVertex:
+ case BuiltInInstanceId:
+ case BuiltInInstanceIndex:
+ case BuiltInBaseInstance:
+ if (msl_options.vertex_for_tessellation)
+ return "";
+ return string(" [[") + builtin_qualifier(builtin) + "]]";
+
+ case BuiltInDrawIndex:
+ SPIRV_CROSS_THROW("DrawIndex is not supported in MSL.");
+
+ default:
+ return "";
+ }
+ }
+
+ uint32_t locn;
+ if (is_builtin)
+ locn = get_or_allocate_builtin_input_member_location(builtin, type.self, index);
+ else
+ locn = get_member_location(type.self, index);
+
+ if (locn != k_unknown_location)
+ return string(" [[attribute(") + convert_to_string(locn) + ")]]";
+ }
+
+ // Vertex and tessellation evaluation function outputs
+ if (((execution.model == ExecutionModelVertex && !msl_options.vertex_for_tessellation) || is_tese_shader()) &&
+ type.storage == StorageClassOutput)
+ {
+ if (is_builtin)
+ {
+ switch (builtin)
+ {
+ case BuiltInPointSize:
+ // Only mark the PointSize builtin if really rendering points.
+ // Some shaders may include a PointSize builtin even when used to render
+ // non-point topologies, and Metal will reject this builtin when compiling
+ // the shader into a render pipeline that uses a non-point topology.
+ return msl_options.enable_point_size_builtin ? (string(" [[") + builtin_qualifier(builtin) + "]]") : "";
+
+ case BuiltInViewportIndex:
+ if (!msl_options.supports_msl_version(2, 0))
+ SPIRV_CROSS_THROW("ViewportIndex requires Metal 2.0.");
+ /* fallthrough */
+ case BuiltInPosition:
+ case BuiltInLayer:
+ return string(" [[") + builtin_qualifier(builtin) + "]]" + (mbr_type.array.empty() ? "" : " ");
+
+ case BuiltInClipDistance:
+ if (has_member_decoration(type.self, index, DecorationIndex))
+ return join(" [[user(clip", get_member_decoration(type.self, index, DecorationIndex), ")]]");
+ else
+ return string(" [[") + builtin_qualifier(builtin) + "]]" + (mbr_type.array.empty() ? "" : " ");
+
+ case BuiltInCullDistance:
+ if (has_member_decoration(type.self, index, DecorationIndex))
+ return join(" [[user(cull", get_member_decoration(type.self, index, DecorationIndex), ")]]");
+ else
+ return string(" [[") + builtin_qualifier(builtin) + "]]" + (mbr_type.array.empty() ? "" : " ");
+
+ default:
+ return "";
+ }
+ }
+ string loc_qual = member_location_attribute_qualifier(type, index);
+ if (!loc_qual.empty())
+ return join(" [[", loc_qual, "]]");
+ }
+
+ if (execution.model == ExecutionModelVertex && msl_options.vertex_for_tessellation && type.storage == StorageClassOutput)
+ {
+ // For this type of shader, we always arrange for it to capture its
+ // output to a buffer. For this reason, qualifiers are irrelevant here.
+ if (is_builtin)
+ // We still have to assign a location so the output struct will sort correctly.
+ get_or_allocate_builtin_output_member_location(builtin, type.self, index);
+ return "";
+ }
+
+ // Tessellation control function inputs
+ if (is_tesc_shader() && type.storage == StorageClassInput)
+ {
+ if (is_builtin)
+ {
+ switch (builtin)
+ {
+ case BuiltInInvocationId:
+ case BuiltInPrimitiveId:
+ if (msl_options.multi_patch_workgroup)
+ return "";
+ return string(" [[") + builtin_qualifier(builtin) + "]]" + (mbr_type.array.empty() ? "" : " ");
+ case BuiltInSubgroupLocalInvocationId: // FIXME: Should work in any stage
+ case BuiltInSubgroupSize: // FIXME: Should work in any stage
+ if (msl_options.emulate_subgroups)
+ return "";
+ return string(" [[") + builtin_qualifier(builtin) + "]]" + (mbr_type.array.empty() ? "" : " ");
+ case BuiltInPatchVertices:
+ return "";
+ // Others come from stage input.
+ default:
+ break;
+ }
+ }
+ if (msl_options.multi_patch_workgroup)
+ return "";
+
+ uint32_t locn;
+ if (is_builtin)
+ locn = get_or_allocate_builtin_input_member_location(builtin, type.self, index);
+ else
+ locn = get_member_location(type.self, index);
+
+ if (locn != k_unknown_location)
+ return string(" [[attribute(") + convert_to_string(locn) + ")]]";
+ }
+
+ // Tessellation control function outputs
+ if (is_tesc_shader() && type.storage == StorageClassOutput)
+ {
+ // For this type of shader, we always arrange for it to capture its
+ // output to a buffer. For this reason, qualifiers are irrelevant here.
+ if (is_builtin)
+ // We still have to assign a location so the output struct will sort correctly.
+ get_or_allocate_builtin_output_member_location(builtin, type.self, index);
+ return "";
+ }
+
+ // Tessellation evaluation function inputs
+ if (is_tese_shader() && type.storage == StorageClassInput)
+ {
+ if (is_builtin)
+ {
+ switch (builtin)
+ {
+ case BuiltInPrimitiveId:
+ case BuiltInTessCoord:
+ return string(" [[") + builtin_qualifier(builtin) + "]]";
+ case BuiltInPatchVertices:
+ return "";
+ // Others come from stage input.
+ default:
+ break;
+ }
+ }
+
+ if (msl_options.raw_buffer_tese_input)
+ return "";
+
+ // The special control point array must not be marked with an attribute.
+ if (get_type(type.member_types[index]).basetype == SPIRType::ControlPointArray)
+ return "";
+
+ uint32_t locn;
+ if (is_builtin)
+ locn = get_or_allocate_builtin_input_member_location(builtin, type.self, index);
+ else
+ locn = get_member_location(type.self, index);
+
+ if (locn != k_unknown_location)
+ return string(" [[attribute(") + convert_to_string(locn) + ")]]";
+ }
+
+ // Tessellation evaluation function outputs were handled above.
+
+ // Fragment function inputs
+ if (execution.model == ExecutionModelFragment && type.storage == StorageClassInput)
+ {
+ string quals;
+ if (is_builtin)
+ {
+ switch (builtin)
+ {
+ case BuiltInViewIndex:
+ if (!msl_options.multiview || !msl_options.multiview_layered_rendering)
+ break;
+ /* fallthrough */
+ case BuiltInFrontFacing:
+ case BuiltInPointCoord:
+ case BuiltInFragCoord:
+ case BuiltInSampleId:
+ case BuiltInSampleMask:
+ case BuiltInLayer:
+ case BuiltInBaryCoordKHR:
+ case BuiltInBaryCoordNoPerspKHR:
+ quals = builtin_qualifier(builtin);
+ break;
+
+ case BuiltInClipDistance:
+ return join(" [[user(clip", get_member_decoration(type.self, index, DecorationIndex), ")]]");
+ case BuiltInCullDistance:
+ return join(" [[user(cull", get_member_decoration(type.self, index, DecorationIndex), ")]]");
+
+ default:
+ break;
+ }
+ }
+ else
+ quals = member_location_attribute_qualifier(type, index);
+
+ if (builtin == BuiltInBaryCoordKHR || builtin == BuiltInBaryCoordNoPerspKHR)
+ {
+ if (has_member_decoration(type.self, index, DecorationFlat) ||
+ has_member_decoration(type.self, index, DecorationCentroid) ||
+ has_member_decoration(type.self, index, DecorationSample) ||
+ has_member_decoration(type.self, index, DecorationNoPerspective))
+ {
+ // NoPerspective is baked into the builtin type.
+ SPIRV_CROSS_THROW(
+ "Flat, Centroid, Sample, NoPerspective decorations are not supported for BaryCoord inputs.");
+ }
+ }
+
+ // Don't bother decorating integers with the 'flat' attribute; it's
+ // the default (in fact, the only option). Also don't bother with the
+ // FragCoord builtin; it's always noperspective on Metal.
+ if (!type_is_integral(mbr_type) && (!is_builtin || builtin != BuiltInFragCoord))
+ {
+ if (has_member_decoration(type.self, index, DecorationFlat))
+ {
+ if (!quals.empty())
+ quals += ", ";
+ quals += "flat";
+ }
+ else if (has_member_decoration(type.self, index, DecorationCentroid))
+ {
+ if (!quals.empty())
+ quals += ", ";
+ if (has_member_decoration(type.self, index, DecorationNoPerspective))
+ quals += "centroid_no_perspective";
+ else
+ quals += "centroid_perspective";
+ }
+ else if (has_member_decoration(type.self, index, DecorationSample))
+ {
+ if (!quals.empty())
+ quals += ", ";
+ if (has_member_decoration(type.self, index, DecorationNoPerspective))
+ quals += "sample_no_perspective";
+ else
+ quals += "sample_perspective";
+ }
+ else if (has_member_decoration(type.self, index, DecorationNoPerspective))
+ {
+ if (!quals.empty())
+ quals += ", ";
+ quals += "center_no_perspective";
+ }
+ }
+
+ if (!quals.empty())
+ return " [[" + quals + "]]";
+ }
+
+ // Fragment function outputs
+ if (execution.model == ExecutionModelFragment && type.storage == StorageClassOutput)
+ {
+ if (is_builtin)
+ {
+ switch (builtin)
+ {
+ case BuiltInFragStencilRefEXT:
+ // Similar to PointSize, only mark FragStencilRef if there's a stencil buffer.
+ // Some shaders may include a FragStencilRef builtin even when used to render
+ // without a stencil attachment, and Metal will reject this builtin
+ // when compiling the shader into a render pipeline that does not set
+ // stencilAttachmentPixelFormat.
+ if (!msl_options.enable_frag_stencil_ref_builtin)
+ return "";
+ if (!msl_options.supports_msl_version(2, 1))
+ SPIRV_CROSS_THROW("Stencil export only supported in MSL 2.1 and up.");
+ return string(" [[") + builtin_qualifier(builtin) + "]]";
+
+ case BuiltInFragDepth:
+ // Ditto FragDepth.
+ if (!msl_options.enable_frag_depth_builtin)
+ return "";
+ /* fallthrough */
+ case BuiltInSampleMask:
+ return string(" [[") + builtin_qualifier(builtin) + "]]";
+
+ default:
+ return "";
+ }
+ }
+ uint32_t locn = get_member_location(type.self, index);
+ // Metal will likely complain about missing color attachments, too.
+ if (locn != k_unknown_location && !(msl_options.enable_frag_output_mask & (1 << locn)))
+ return "";
+ if (locn != k_unknown_location && has_member_decoration(type.self, index, DecorationIndex))
+ return join(" [[color(", locn, "), index(", get_member_decoration(type.self, index, DecorationIndex),
+ ")]]");
+ else if (locn != k_unknown_location)
+ return join(" [[color(", locn, ")]]");
+ else if (has_member_decoration(type.self, index, DecorationIndex))
+ return join(" [[index(", get_member_decoration(type.self, index, DecorationIndex), ")]]");
+ else
+ return "";
+ }
+
+ // Compute function inputs
+ if (execution.model == ExecutionModelGLCompute && type.storage == StorageClassInput)
+ {
+ if (is_builtin)
+ {
+ switch (builtin)
+ {
+ case BuiltInNumSubgroups:
+ case BuiltInSubgroupId:
+ case BuiltInSubgroupLocalInvocationId: // FIXME: Should work in any stage
+ case BuiltInSubgroupSize: // FIXME: Should work in any stage
+ if (msl_options.emulate_subgroups)
+ break;
+ /* fallthrough */
+ case BuiltInGlobalInvocationId:
+ case BuiltInWorkgroupId:
+ case BuiltInNumWorkgroups:
+ case BuiltInLocalInvocationId:
+ case BuiltInLocalInvocationIndex:
+ return string(" [[") + builtin_qualifier(builtin) + "]]";
+
+ default:
+ return "";
+ }
+ }
+ }
+
+ return "";
+}
+
+// A user-defined output variable is considered to match an input variable in the subsequent
+// stage if the two variables are declared with the same Location and Component decoration and
+// match in type and decoration, except that interpolation decorations are not required to match.
+// For the purposes of interface matching, variables declared without a Component decoration are
+// considered to have a Component decoration of zero.
+string CompilerMSL::member_location_attribute_qualifier(const SPIRType &type, uint32_t index)
+{
+ string quals;
+ uint32_t comp;
+ uint32_t locn = get_member_location(type.self, index, &comp);
+ if (locn != k_unknown_location)
+ {
+ quals += "user(locn";
+ quals += convert_to_string(locn);
+ if (comp != k_unknown_component && comp != 0)
+ {
+ quals += "_";
+ quals += convert_to_string(comp);
+ }
+ quals += ")";
+ }
+ return quals;
+}
+
+// Returns the location decoration of the member with the specified index in the specified type.
+// If the location of the member has been explicitly set, that location is used. If not, this
+// function assumes the members are ordered in their location order, and simply returns the
+// index as the location.
+uint32_t CompilerMSL::get_member_location(uint32_t type_id, uint32_t index, uint32_t *comp) const
+{
+ if (comp)
+ {
+ if (has_member_decoration(type_id, index, DecorationComponent))
+ *comp = get_member_decoration(type_id, index, DecorationComponent);
+ else
+ *comp = k_unknown_component;
+ }
+
+ if (has_member_decoration(type_id, index, DecorationLocation))
+ return get_member_decoration(type_id, index, DecorationLocation);
+ else
+ return k_unknown_location;
+}
+
+uint32_t CompilerMSL::get_or_allocate_builtin_input_member_location(spv::BuiltIn builtin,
+ uint32_t type_id, uint32_t index,
+ uint32_t *comp)
+{
+ uint32_t loc = get_member_location(type_id, index, comp);
+ if (loc != k_unknown_location)
+ return loc;
+
+ if (comp)
+ *comp = k_unknown_component;
+
+ // Late allocation. Find a location which is unused by the application.
+ // This can happen for built-in inputs in tessellation which are mixed and matched with user inputs.
+ auto &mbr_type = get<SPIRType>(get<SPIRType>(type_id).member_types[index]);
+ uint32_t count = type_to_location_count(mbr_type);
+
+ loc = 0;
+
+ const auto location_range_in_use = [this](uint32_t location, uint32_t location_count) -> bool {
+ for (uint32_t i = 0; i < location_count; i++)
+ if (location_inputs_in_use.count(location + i) != 0)
+ return true;
+ return false;
+ };
+
+ while (location_range_in_use(loc, count))
+ loc++;
+
+ set_member_decoration(type_id, index, DecorationLocation, loc);
+
+ // Triangle tess level inputs are shared in one packed float4,
+ // mark both builtins as sharing one location.
+ if (!msl_options.raw_buffer_tese_input && is_tessellating_triangles() &&
+ (builtin == BuiltInTessLevelInner || builtin == BuiltInTessLevelOuter))
+ {
+ builtin_to_automatic_input_location[BuiltInTessLevelInner] = loc;
+ builtin_to_automatic_input_location[BuiltInTessLevelOuter] = loc;
+ }
+ else
+ builtin_to_automatic_input_location[builtin] = loc;
+
+ mark_location_as_used_by_shader(loc, mbr_type, StorageClassInput, true);
+ return loc;
+}
+
+uint32_t CompilerMSL::get_or_allocate_builtin_output_member_location(spv::BuiltIn builtin,
+ uint32_t type_id, uint32_t index,
+ uint32_t *comp)
+{
+ uint32_t loc = get_member_location(type_id, index, comp);
+ if (loc != k_unknown_location)
+ return loc;
+ loc = 0;
+
+ if (comp)
+ *comp = k_unknown_component;
+
+ // Late allocation. Find a location which is unused by the application.
+ // This can happen for built-in outputs in tessellation which are mixed and matched with user inputs.
+ auto &mbr_type = get<SPIRType>(get<SPIRType>(type_id).member_types[index]);
+ uint32_t count = type_to_location_count(mbr_type);
+
+ const auto location_range_in_use = [this](uint32_t location, uint32_t location_count) -> bool {
+ for (uint32_t i = 0; i < location_count; i++)
+ if (location_outputs_in_use.count(location + i) != 0)
+ return true;
+ return false;
+ };
+
+ while (location_range_in_use(loc, count))
+ loc++;
+
+ set_member_decoration(type_id, index, DecorationLocation, loc);
+
+ // Triangle tess level inputs are shared in one packed float4;
+ // mark both builtins as sharing one location.
+ if (is_tessellating_triangles() && (builtin == BuiltInTessLevelInner || builtin == BuiltInTessLevelOuter))
+ {
+ builtin_to_automatic_output_location[BuiltInTessLevelInner] = loc;
+ builtin_to_automatic_output_location[BuiltInTessLevelOuter] = loc;
+ }
+ else
+ builtin_to_automatic_output_location[builtin] = loc;
+
+ mark_location_as_used_by_shader(loc, mbr_type, StorageClassOutput, true);
+ return loc;
+}
+
+// Returns the type declaration for a function, including the
+// entry type if the current function is the entry point function
+string CompilerMSL::func_type_decl(SPIRType &type)
+{
+ // The regular function return type. If not processing the entry point function, that's all we need
+ string return_type = type_to_glsl(type) + type_to_array_glsl(type, 0);
+ if (!processing_entry_point)
+ return return_type;
+
+ // If an outgoing interface block has been defined, and it should be returned, override the entry point return type
+ bool ep_should_return_output = !get_is_rasterization_disabled();
+ if (stage_out_var_id && ep_should_return_output)
+ return_type = type_to_glsl(get_stage_out_struct_type()) + type_to_array_glsl(type, 0);
+
+ // Prepend a entry type, based on the execution model
+ string entry_type;
+ auto &execution = get_entry_point();
+ switch (execution.model)
+ {
+ case ExecutionModelVertex:
+ if (msl_options.vertex_for_tessellation && !msl_options.supports_msl_version(1, 2))
+ SPIRV_CROSS_THROW("Tessellation requires Metal 1.2.");
+ entry_type = msl_options.vertex_for_tessellation ? "kernel" : "vertex";
+ break;
+ case ExecutionModelTessellationEvaluation:
+ if (!msl_options.supports_msl_version(1, 2))
+ SPIRV_CROSS_THROW("Tessellation requires Metal 1.2.");
+ if (execution.flags.get(ExecutionModeIsolines))
+ SPIRV_CROSS_THROW("Metal does not support isoline tessellation.");
+ if (msl_options.is_ios())
+ entry_type = join("[[ patch(", is_tessellating_triangles() ? "triangle" : "quad", ") ]] vertex");
+ else
+ entry_type = join("[[ patch(", is_tessellating_triangles() ? "triangle" : "quad", ", ",
+ execution.output_vertices, ") ]] vertex");
+ break;
+ case ExecutionModelFragment:
+ entry_type = uses_explicit_early_fragment_test() ? "[[ early_fragment_tests ]] fragment" : "fragment";
+ break;
+ case ExecutionModelTessellationControl:
+ if (!msl_options.supports_msl_version(1, 2))
+ SPIRV_CROSS_THROW("Tessellation requires Metal 1.2.");
+ if (execution.flags.get(ExecutionModeIsolines))
+ SPIRV_CROSS_THROW("Metal does not support isoline tessellation.");
+ /* fallthrough */
+ case ExecutionModelGLCompute:
+ case ExecutionModelKernel:
+ entry_type = "kernel";
+ break;
+ default:
+ entry_type = "unknown";
+ break;
+ }
+
+ return entry_type + " " + return_type;
+}
+
+bool CompilerMSL::is_tesc_shader() const
+{
+ return get_execution_model() == ExecutionModelTessellationControl;
+}
+
+bool CompilerMSL::is_tese_shader() const
+{
+ return get_execution_model() == ExecutionModelTessellationEvaluation;
+}
+
+bool CompilerMSL::uses_explicit_early_fragment_test()
+{
+ auto &ep_flags = get_entry_point().flags;
+ return ep_flags.get(ExecutionModeEarlyFragmentTests) || ep_flags.get(ExecutionModePostDepthCoverage);
+}
+
+// In MSL, address space qualifiers are required for all pointer or reference variables
+string CompilerMSL::get_argument_address_space(const SPIRVariable &argument)
+{
+ const auto &type = get<SPIRType>(argument.basetype);
+ return get_type_address_space(type, argument.self, true);
+}
+
+bool CompilerMSL::decoration_flags_signal_volatile(const Bitset &flags)
+{
+ return flags.get(DecorationVolatile) || flags.get(DecorationCoherent);
+}
+
+string CompilerMSL::get_type_address_space(const SPIRType &type, uint32_t id, bool argument)
+{
+ // This can be called for variable pointer contexts as well, so be very careful about which method we choose.
+ Bitset flags;
+ auto *var = maybe_get<SPIRVariable>(id);
+ if (var && type.basetype == SPIRType::Struct &&
+ (has_decoration(type.self, DecorationBlock) || has_decoration(type.self, DecorationBufferBlock)))
+ flags = get_buffer_block_flags(id);
+ else
+ flags = get_decoration_bitset(id);
+
+ const char *addr_space = nullptr;
+ switch (type.storage)
+ {
+ case StorageClassWorkgroup:
+ addr_space = "threadgroup";
+ break;
+
+ case StorageClassStorageBuffer:
+ case StorageClassPhysicalStorageBuffer:
+ {
+ // For arguments from variable pointers, we use the write count deduction, so
+ // we should not assume any constness here. Only for global SSBOs.
+ bool readonly = false;
+ if (!var || has_decoration(type.self, DecorationBlock))
+ readonly = flags.get(DecorationNonWritable);
+
+ addr_space = readonly ? "const device" : "device";
+ break;
+ }
+
+ case StorageClassUniform:
+ case StorageClassUniformConstant:
+ case StorageClassPushConstant:
+ if (type.basetype == SPIRType::Struct)
+ {
+ bool ssbo = has_decoration(type.self, DecorationBufferBlock);
+ if (ssbo)
+ addr_space = flags.get(DecorationNonWritable) ? "const device" : "device";
+ else
+ addr_space = "constant";
+ }
+ else if (!argument)
+ {
+ addr_space = "constant";
+ }
+ else if (type_is_msl_framebuffer_fetch(type))
+ {
+ // Subpass inputs are passed around by value.
+ addr_space = "";
+ }
+ break;
+
+ case StorageClassFunction:
+ case StorageClassGeneric:
+ break;
+
+ case StorageClassInput:
+ if (is_tesc_shader() && var && var->basevariable == stage_in_ptr_var_id)
+ addr_space = msl_options.multi_patch_workgroup ? "const device" : "threadgroup";
+ // Don't pass tessellation levels in the device AS; we load and convert them
+ // to float manually.
+ if (is_tese_shader() && msl_options.raw_buffer_tese_input && var)
+ {
+ bool is_stage_in = var->basevariable == stage_in_ptr_var_id;
+ bool is_patch_stage_in = has_decoration(var->self, DecorationPatch);
+ bool is_builtin = has_decoration(var->self, DecorationBuiltIn);
+ BuiltIn builtin = (BuiltIn)get_decoration(var->self, DecorationBuiltIn);
+ bool is_tess_level = is_builtin && (builtin == BuiltInTessLevelOuter || builtin == BuiltInTessLevelInner);
+ if (is_stage_in || (is_patch_stage_in && !is_tess_level))
+ addr_space = "const device";
+ }
+ if (get_execution_model() == ExecutionModelFragment && var && var->basevariable == stage_in_var_id)
+ addr_space = "thread";
+ break;
+
+ case StorageClassOutput:
+ if (capture_output_to_buffer)
+ {
+ if (var && type.storage == StorageClassOutput)
+ {
+ bool is_masked = is_stage_output_variable_masked(*var);
+
+ if (is_masked)
+ {
+ if (is_tessellation_shader())
+ addr_space = "threadgroup";
+ else
+ addr_space = "thread";
+ }
+ else if (variable_decl_is_remapped_storage(*var, StorageClassWorkgroup))
+ addr_space = "threadgroup";
+ }
+
+ if (!addr_space)
+ addr_space = "device";
+ }
+ break;
+
+ default:
+ break;
+ }
+
+ if (!addr_space)
+ {
+ // No address space for plain values.
+ addr_space = type.pointer || (argument && type.basetype == SPIRType::ControlPointArray) ? "thread" : "";
+ }
+
+ return join(decoration_flags_signal_volatile(flags) ? "volatile " : "", addr_space);
+}
+
+const char *CompilerMSL::to_restrict(uint32_t id, bool space)
+{
+ // This can be called for variable pointer contexts as well, so be very careful about which method we choose.
+ Bitset flags;
+ if (ir.ids[id].get_type() == TypeVariable)
+ {
+ uint32_t type_id = expression_type_id(id);
+ auto &type = expression_type(id);
+ if (type.basetype == SPIRType::Struct &&
+ (has_decoration(type_id, DecorationBlock) || has_decoration(type_id, DecorationBufferBlock)))
+ flags = get_buffer_block_flags(id);
+ else
+ flags = get_decoration_bitset(id);
+ }
+ else
+ flags = get_decoration_bitset(id);
+
+ return flags.get(DecorationRestrict) || flags.get(DecorationRestrictPointerEXT) ?
+ (space ? "__restrict " : "__restrict") : "";
+}
+
+string CompilerMSL::entry_point_arg_stage_in()
+{
+ string decl;
+
+ if ((is_tesc_shader() && msl_options.multi_patch_workgroup) ||
+ (is_tese_shader() && msl_options.raw_buffer_tese_input))
+ return decl;
+
+ // Stage-in structure
+ uint32_t stage_in_id;
+ if (is_tese_shader())
+ stage_in_id = patch_stage_in_var_id;
+ else
+ stage_in_id = stage_in_var_id;
+
+ if (stage_in_id)
+ {
+ auto &var = get<SPIRVariable>(stage_in_id);
+ auto &type = get_variable_data_type(var);
+
+ add_resource_name(var.self);
+ decl = join(type_to_glsl(type), " ", to_name(var.self), " [[stage_in]]");
+ }
+
+ return decl;
+}
+
+// Returns true if this input builtin should be a direct parameter on a shader function parameter list,
+// and false for builtins that should be passed or calculated some other way.
+bool CompilerMSL::is_direct_input_builtin(BuiltIn bi_type)
+{
+ switch (bi_type)
+ {
+ // Vertex function in
+ case BuiltInVertexId:
+ case BuiltInVertexIndex:
+ case BuiltInBaseVertex:
+ case BuiltInInstanceId:
+ case BuiltInInstanceIndex:
+ case BuiltInBaseInstance:
+ return get_execution_model() != ExecutionModelVertex || !msl_options.vertex_for_tessellation;
+ // Tess. control function in
+ case BuiltInPosition:
+ case BuiltInPointSize:
+ case BuiltInClipDistance:
+ case BuiltInCullDistance:
+ case BuiltInPatchVertices:
+ return false;
+ case BuiltInInvocationId:
+ case BuiltInPrimitiveId:
+ return !is_tesc_shader() || !msl_options.multi_patch_workgroup;
+ // Tess. evaluation function in
+ case BuiltInTessLevelInner:
+ case BuiltInTessLevelOuter:
+ return false;
+ // Fragment function in
+ case BuiltInSamplePosition:
+ case BuiltInHelperInvocation:
+ case BuiltInBaryCoordKHR:
+ case BuiltInBaryCoordNoPerspKHR:
+ return false;
+ case BuiltInViewIndex:
+ return get_execution_model() == ExecutionModelFragment && msl_options.multiview &&
+ msl_options.multiview_layered_rendering;
+ // Compute function in
+ case BuiltInSubgroupId:
+ case BuiltInNumSubgroups:
+ return !msl_options.emulate_subgroups;
+ // Any stage function in
+ case BuiltInDeviceIndex:
+ case BuiltInSubgroupEqMask:
+ case BuiltInSubgroupGeMask:
+ case BuiltInSubgroupGtMask:
+ case BuiltInSubgroupLeMask:
+ case BuiltInSubgroupLtMask:
+ return false;
+ case BuiltInSubgroupSize:
+ if (msl_options.fixed_subgroup_size != 0)
+ return false;
+ /* fallthrough */
+ case BuiltInSubgroupLocalInvocationId:
+ return !msl_options.emulate_subgroups;
+ default:
+ return true;
+ }
+}
+
+// Returns true if this is a fragment shader that runs per sample, and false otherwise.
+bool CompilerMSL::is_sample_rate() const
+{
+ auto &caps = get_declared_capabilities();
+ return get_execution_model() == ExecutionModelFragment &&
+ (msl_options.force_sample_rate_shading ||
+ std::find(caps.begin(), caps.end(), CapabilitySampleRateShading) != caps.end() ||
+ (msl_options.use_framebuffer_fetch_subpasses && need_subpass_input_ms));
+}
+
+bool CompilerMSL::is_intersection_query() const
+{
+ auto &caps = get_declared_capabilities();
+ return std::find(caps.begin(), caps.end(), CapabilityRayQueryKHR) != caps.end();
+}
+
+void CompilerMSL::entry_point_args_builtin(string &ep_args)
+{
+ // Builtin variables
+ SmallVector<pair<SPIRVariable *, BuiltIn>, 8> active_builtins;
+ ir.for_each_typed_id<SPIRVariable>([&](uint32_t var_id, SPIRVariable &var) {
+ if (var.storage != StorageClassInput)
+ return;
+
+ auto bi_type = BuiltIn(get_decoration(var_id, DecorationBuiltIn));
+
+ // Don't emit SamplePosition as a separate parameter. In the entry
+ // point, we get that by calling get_sample_position() on the sample ID.
+ if (is_builtin_variable(var) &&
+ get_variable_data_type(var).basetype != SPIRType::Struct &&
+ get_variable_data_type(var).basetype != SPIRType::ControlPointArray)
+ {
+ // If the builtin is not part of the active input builtin set, don't emit it.
+ // Relevant for multiple entry-point modules which might declare unused builtins.
+ if (!active_input_builtins.get(bi_type) || !interface_variable_exists_in_entry_point(var_id))
+ return;
+
+ // Remember this variable. We may need to correct its type.
+ active_builtins.push_back(make_pair(&var, bi_type));
+
+ if (is_direct_input_builtin(bi_type))
+ {
+ if (!ep_args.empty())
+ ep_args += ", ";
+
+ // Handle HLSL-style 0-based vertex/instance index.
+ builtin_declaration = true;
+
+ // Handle different MSL gl_TessCoord types. (float2, float3)
+ if (bi_type == BuiltInTessCoord && get_entry_point().flags.get(ExecutionModeQuads))
+ ep_args += "float2 " + to_expression(var_id) + "In";
+ else
+ ep_args += builtin_type_decl(bi_type, var_id) + " " + to_expression(var_id);
+
+ ep_args += string(" [[") + builtin_qualifier(bi_type);
+ if (bi_type == BuiltInSampleMask && get_entry_point().flags.get(ExecutionModePostDepthCoverage))
+ {
+ if (!msl_options.supports_msl_version(2))
+ SPIRV_CROSS_THROW("Post-depth coverage requires MSL 2.0.");
+ if (msl_options.is_macos() && !msl_options.supports_msl_version(2, 3))
+ SPIRV_CROSS_THROW("Post-depth coverage on Mac requires MSL 2.3.");
+ ep_args += ", post_depth_coverage";
+ }
+ ep_args += "]]";
+ builtin_declaration = false;
+ }
+ }
+
+ if (has_extended_decoration(var_id, SPIRVCrossDecorationBuiltInDispatchBase))
+ {
+ // This is a special implicit builtin, not corresponding to any SPIR-V builtin,
+ // which holds the base that was passed to vkCmdDispatchBase() or vkCmdDrawIndexed(). If it's present,
+ // assume we emitted it for a good reason.
+ assert(msl_options.supports_msl_version(1, 2));
+ if (!ep_args.empty())
+ ep_args += ", ";
+
+ ep_args += type_to_glsl(get_variable_data_type(var)) + " " + to_expression(var_id) + " [[grid_origin]]";
+ }
+
+ if (has_extended_decoration(var_id, SPIRVCrossDecorationBuiltInStageInputSize))
+ {
+ // This is another special implicit builtin, not corresponding to any SPIR-V builtin,
+ // which holds the number of vertices and instances to draw. If it's present,
+ // assume we emitted it for a good reason.
+ assert(msl_options.supports_msl_version(1, 2));
+ if (!ep_args.empty())
+ ep_args += ", ";
+
+ ep_args += type_to_glsl(get_variable_data_type(var)) + " " + to_expression(var_id) + " [[grid_size]]";
+ }
+ });
+
+ // Correct the types of all encountered active builtins. We couldn't do this before
+ // because ensure_correct_builtin_type() may increase the bound, which isn't allowed
+ // while iterating over IDs.
+ for (auto &var : active_builtins)
+ var.first->basetype = ensure_correct_builtin_type(var.first->basetype, var.second);
+
+ // Handle HLSL-style 0-based vertex/instance index.
+ if (needs_base_vertex_arg == TriState::Yes)
+ ep_args += built_in_func_arg(BuiltInBaseVertex, !ep_args.empty());
+
+ if (needs_base_instance_arg == TriState::Yes)
+ ep_args += built_in_func_arg(BuiltInBaseInstance, !ep_args.empty());
+
+ if (capture_output_to_buffer)
+ {
+ // Add parameters to hold the indirect draw parameters and the shader output. This has to be handled
+ // specially because it needs to be a pointer, not a reference.
+ if (stage_out_var_id)
+ {
+ if (!ep_args.empty())
+ ep_args += ", ";
+ ep_args += join("device ", type_to_glsl(get_stage_out_struct_type()), "* ", output_buffer_var_name,
+ " [[buffer(", msl_options.shader_output_buffer_index, ")]]");
+ }
+
+ if (is_tesc_shader())
+ {
+ if (!ep_args.empty())
+ ep_args += ", ";
+ ep_args +=
+ join("constant uint* spvIndirectParams [[buffer(", msl_options.indirect_params_buffer_index, ")]]");
+ }
+ else if (stage_out_var_id &&
+ !(get_execution_model() == ExecutionModelVertex && msl_options.vertex_for_tessellation))
+ {
+ if (!ep_args.empty())
+ ep_args += ", ";
+ ep_args +=
+ join("device uint* spvIndirectParams [[buffer(", msl_options.indirect_params_buffer_index, ")]]");
+ }
+
+ if (get_execution_model() == ExecutionModelVertex && msl_options.vertex_for_tessellation &&
+ (active_input_builtins.get(BuiltInVertexIndex) || active_input_builtins.get(BuiltInVertexId)) &&
+ msl_options.vertex_index_type != Options::IndexType::None)
+ {
+ // Add the index buffer so we can set gl_VertexIndex correctly.
+ if (!ep_args.empty())
+ ep_args += ", ";
+ switch (msl_options.vertex_index_type)
+ {
+ case Options::IndexType::None:
+ break;
+ case Options::IndexType::UInt16:
+ ep_args += join("const device ushort* ", index_buffer_var_name, " [[buffer(",
+ msl_options.shader_index_buffer_index, ")]]");
+ break;
+ case Options::IndexType::UInt32:
+ ep_args += join("const device uint* ", index_buffer_var_name, " [[buffer(",
+ msl_options.shader_index_buffer_index, ")]]");
+ break;
+ }
+ }
+
+ // Tessellation control shaders get three additional parameters:
+ // a buffer to hold the per-patch data, a buffer to hold the per-patch
+ // tessellation levels, and a block of workgroup memory to hold the
+ // input control point data.
+ if (is_tesc_shader())
+ {
+ if (patch_stage_out_var_id)
+ {
+ if (!ep_args.empty())
+ ep_args += ", ";
+ ep_args +=
+ join("device ", type_to_glsl(get_patch_stage_out_struct_type()), "* ", patch_output_buffer_var_name,
+ " [[buffer(", convert_to_string(msl_options.shader_patch_output_buffer_index), ")]]");
+ }
+ if (!ep_args.empty())
+ ep_args += ", ";
+ ep_args += join("device ", get_tess_factor_struct_name(), "* ", tess_factor_buffer_var_name, " [[buffer(",
+ convert_to_string(msl_options.shader_tess_factor_buffer_index), ")]]");
+
+ // Initializer for tess factors must be handled specially since it's never declared as a normal variable.
+ uint32_t outer_factor_initializer_id = 0;
+ uint32_t inner_factor_initializer_id = 0;
+ ir.for_each_typed_id<SPIRVariable>([&](uint32_t, SPIRVariable &var) {
+ if (!has_decoration(var.self, DecorationBuiltIn) || var.storage != StorageClassOutput || !var.initializer)
+ return;
+
+ BuiltIn builtin = BuiltIn(get_decoration(var.self, DecorationBuiltIn));
+ if (builtin == BuiltInTessLevelInner)
+ inner_factor_initializer_id = var.initializer;
+ else if (builtin == BuiltInTessLevelOuter)
+ outer_factor_initializer_id = var.initializer;
+ });
+
+ const SPIRConstant *c = nullptr;
+
+ if (outer_factor_initializer_id && (c = maybe_get<SPIRConstant>(outer_factor_initializer_id)))
+ {
+ auto &entry_func = get<SPIRFunction>(ir.default_entry_point);
+ entry_func.fixup_hooks_in.push_back(
+ [=]()
+ {
+ uint32_t components = is_tessellating_triangles() ? 3 : 4;
+ for (uint32_t i = 0; i < components; i++)
+ {
+ statement(builtin_to_glsl(BuiltInTessLevelOuter, StorageClassOutput), "[", i,
+ "] = ", "half(", to_expression(c->subconstants[i]), ");");
+ }
+ });
+ }
+
+ if (inner_factor_initializer_id && (c = maybe_get<SPIRConstant>(inner_factor_initializer_id)))
+ {
+ auto &entry_func = get<SPIRFunction>(ir.default_entry_point);
+ if (is_tessellating_triangles())
+ {
+ entry_func.fixup_hooks_in.push_back([=]() {
+ statement(builtin_to_glsl(BuiltInTessLevelInner, StorageClassOutput), " = ", "half(",
+ to_expression(c->subconstants[0]), ");");
+ });
+ }
+ else
+ {
+ entry_func.fixup_hooks_in.push_back([=]() {
+ for (uint32_t i = 0; i < 2; i++)
+ {
+ statement(builtin_to_glsl(BuiltInTessLevelInner, StorageClassOutput), "[", i, "] = ",
+ "half(", to_expression(c->subconstants[i]), ");");
+ }
+ });
+ }
+ }
+
+ if (stage_in_var_id)
+ {
+ if (!ep_args.empty())
+ ep_args += ", ";
+ if (msl_options.multi_patch_workgroup)
+ {
+ ep_args += join("device ", type_to_glsl(get_stage_in_struct_type()), "* ", input_buffer_var_name,
+ " [[buffer(", convert_to_string(msl_options.shader_input_buffer_index), ")]]");
+ }
+ else
+ {
+ ep_args += join("threadgroup ", type_to_glsl(get_stage_in_struct_type()), "* ", input_wg_var_name,
+ " [[threadgroup(", convert_to_string(msl_options.shader_input_wg_index), ")]]");
+ }
+ }
+ }
+ }
+ // Tessellation evaluation shaders get three additional parameters:
+ // a buffer for the per-patch data, a buffer for the per-patch
+ // tessellation levels, and a buffer for the control point data.
+ if (is_tese_shader() && msl_options.raw_buffer_tese_input)
+ {
+ if (patch_stage_in_var_id)
+ {
+ if (!ep_args.empty())
+ ep_args += ", ";
+ ep_args +=
+ join("const device ", type_to_glsl(get_patch_stage_in_struct_type()), "* ", patch_input_buffer_var_name,
+ " [[buffer(", convert_to_string(msl_options.shader_patch_input_buffer_index), ")]]");
+ }
+
+ if (tess_level_inner_var_id || tess_level_outer_var_id)
+ {
+ if (!ep_args.empty())
+ ep_args += ", ";
+ ep_args += join("const device ", get_tess_factor_struct_name(), "* ", tess_factor_buffer_var_name,
+ " [[buffer(", convert_to_string(msl_options.shader_tess_factor_buffer_index), ")]]");
+ }
+
+ if (stage_in_var_id)
+ {
+ if (!ep_args.empty())
+ ep_args += ", ";
+ ep_args += join("const device ", type_to_glsl(get_stage_in_struct_type()), "* ", input_buffer_var_name,
+ " [[buffer(", convert_to_string(msl_options.shader_input_buffer_index), ")]]");
+ }
+ }
+}
+
+string CompilerMSL::entry_point_args_argument_buffer(bool append_comma)
+{
+ string ep_args = entry_point_arg_stage_in();
+ Bitset claimed_bindings;
+
+ for (uint32_t i = 0; i < kMaxArgumentBuffers; i++)
+ {
+ uint32_t id = argument_buffer_ids[i];
+ if (id == 0)
+ continue;
+
+ add_resource_name(id);
+ auto &var = get<SPIRVariable>(id);
+ auto &type = get_variable_data_type(var);
+
+ if (!ep_args.empty())
+ ep_args += ", ";
+
+ // Check if the argument buffer binding itself has been remapped.
+ uint32_t buffer_binding;
+ auto itr = resource_bindings.find({ get_entry_point().model, i, kArgumentBufferBinding });
+ if (itr != end(resource_bindings))
+ {
+ buffer_binding = itr->second.first.msl_buffer;
+ itr->second.second = true;
+ }
+ else
+ {
+ // As a fallback, directly map desc set <-> binding.
+ // If that was taken, take the next buffer binding.
+ if (claimed_bindings.get(i))
+ buffer_binding = next_metal_resource_index_buffer;
+ else
+ buffer_binding = i;
+ }
+
+ claimed_bindings.set(buffer_binding);
+
+ ep_args += get_argument_address_space(var) + " ";
+
+ if (recursive_inputs.count(type.self))
+ ep_args += string("void* ") + to_restrict(id, true) + to_name(id) + "_vp";
+ else
+ ep_args += type_to_glsl(type) + "& " + to_restrict(id, true) + to_name(id);
+
+ ep_args += " [[buffer(" + convert_to_string(buffer_binding) + ")]]";
+
+ next_metal_resource_index_buffer = max(next_metal_resource_index_buffer, buffer_binding + 1);
+ }
+
+ entry_point_args_discrete_descriptors(ep_args);
+ entry_point_args_builtin(ep_args);
+
+ if (!ep_args.empty() && append_comma)
+ ep_args += ", ";
+
+ return ep_args;
+}
+
+const MSLConstexprSampler *CompilerMSL::find_constexpr_sampler(uint32_t id) const
+{
+ // Try by ID.
+ {
+ auto itr = constexpr_samplers_by_id.find(id);
+ if (itr != end(constexpr_samplers_by_id))
+ return &itr->second;
+ }
+
+ // Try by binding.
+ {
+ uint32_t desc_set = get_decoration(id, DecorationDescriptorSet);
+ uint32_t binding = get_decoration(id, DecorationBinding);
+
+ auto itr = constexpr_samplers_by_binding.find({ desc_set, binding });
+ if (itr != end(constexpr_samplers_by_binding))
+ return &itr->second;
+ }
+
+ return nullptr;
+}
+
+void CompilerMSL::entry_point_args_discrete_descriptors(string &ep_args)
+{
+ // Output resources, sorted by resource index & type
+ // We need to sort to work around a bug on macOS 10.13 with NVidia drivers where switching between shaders
+ // with different order of buffers can result in issues with buffer assignments inside the driver.
+ struct Resource
+ {
+ SPIRVariable *var;
+ SPIRVariable *discrete_descriptor_alias;
+ string name;
+ SPIRType::BaseType basetype;
+ uint32_t index;
+ uint32_t plane;
+ uint32_t secondary_index;
+ };
+
+ SmallVector<Resource> resources;
+
+ entry_point_bindings.clear();
+ ir.for_each_typed_id<SPIRVariable>([&](uint32_t var_id, SPIRVariable &var) {
+ if ((var.storage == StorageClassUniform || var.storage == StorageClassUniformConstant ||
+ var.storage == StorageClassPushConstant || var.storage == StorageClassStorageBuffer) &&
+ !is_hidden_variable(var))
+ {
+ auto &type = get_variable_data_type(var);
+ uint32_t desc_set = get_decoration(var_id, DecorationDescriptorSet);
+
+ if (is_supported_argument_buffer_type(type) && var.storage != StorageClassPushConstant)
+ {
+ if (descriptor_set_is_argument_buffer(desc_set))
+ {
+ if (is_var_runtime_size_array(var))
+ {
+ // Runtime arrays need to be wrapped in spvDescriptorArray from argument buffer payload.
+ entry_point_bindings.push_back(&var);
+ // We'll wrap this, so to_name() will always use non-qualified name.
+ // We'll need the qualified name to create temporary variable instead.
+ ir.meta[var_id].decoration.qualified_alias_explicit_override = true;
+ }
+ return;
+ }
+ }
+
+ // Handle descriptor aliasing of simple discrete cases.
+ // We can handle aliasing of buffers by casting pointers.
+ // The amount of aliasing we can perform for discrete descriptors is very limited.
+ // For fully mutable-style aliasing, we need argument buffers where we can exploit the fact
+ // that descriptors are all 8 bytes.
+ SPIRVariable *discrete_descriptor_alias = nullptr;
+ if (var.storage == StorageClassUniform || var.storage == StorageClassStorageBuffer)
+ {
+ for (auto &resource : resources)
+ {
+ if (get_decoration(resource.var->self, DecorationDescriptorSet) ==
+ get_decoration(var_id, DecorationDescriptorSet) &&
+ get_decoration(resource.var->self, DecorationBinding) ==
+ get_decoration(var_id, DecorationBinding) &&
+ resource.basetype == SPIRType::Struct && type.basetype == SPIRType::Struct &&
+ (resource.var->storage == StorageClassUniform ||
+ resource.var->storage == StorageClassStorageBuffer))
+ {
+ discrete_descriptor_alias = resource.var;
+ // Self-reference marks that we should declare the resource,
+ // and it's being used as an alias (so we can emit void* instead).
+ resource.discrete_descriptor_alias = resource.var;
+ // Need to promote interlocked usage so that the primary declaration is correct.
+ if (interlocked_resources.count(var_id))
+ interlocked_resources.insert(resource.var->self);
+ break;
+ }
+ }
+ }
+
+ const MSLConstexprSampler *constexpr_sampler = nullptr;
+ if (type.basetype == SPIRType::SampledImage || type.basetype == SPIRType::Sampler)
+ {
+ constexpr_sampler = find_constexpr_sampler(var_id);
+ if (constexpr_sampler)
+ {
+ // Mark this ID as a constexpr sampler for later in case it came from set/bindings.
+ constexpr_samplers_by_id[var_id] = *constexpr_sampler;
+ }
+ }
+
+ // Emulate texture2D atomic operations
+ uint32_t secondary_index = 0;
+ if (atomic_image_vars_emulated.count(var.self))
+ {
+ secondary_index = get_metal_resource_index(var, SPIRType::AtomicCounter, 0);
+ }
+
+ if (type.basetype == SPIRType::SampledImage)
+ {
+ add_resource_name(var_id);
+
+ uint32_t plane_count = 1;
+ if (constexpr_sampler && constexpr_sampler->ycbcr_conversion_enable)
+ plane_count = constexpr_sampler->planes;
+
+ entry_point_bindings.push_back(&var);
+ for (uint32_t i = 0; i < plane_count; i++)
+ resources.push_back({&var, discrete_descriptor_alias, to_name(var_id), SPIRType::Image,
+ get_metal_resource_index(var, SPIRType::Image, i), i, secondary_index });
+
+ if (type.image.dim != DimBuffer && !constexpr_sampler)
+ {
+ resources.push_back({&var, discrete_descriptor_alias, to_sampler_expression(var_id), SPIRType::Sampler,
+ get_metal_resource_index(var, SPIRType::Sampler), 0, 0 });
+ }
+ }
+ else if (!constexpr_sampler)
+ {
+ // constexpr samplers are not declared as resources.
+ add_resource_name(var_id);
+
+ // Don't allocate resource indices for aliases.
+ uint32_t resource_index = ~0u;
+ if (!discrete_descriptor_alias)
+ resource_index = get_metal_resource_index(var, type.basetype);
+
+ entry_point_bindings.push_back(&var);
+ resources.push_back({&var, discrete_descriptor_alias, to_name(var_id), type.basetype,
+ resource_index, 0, secondary_index });
+ }
+ }
+ });
+
+ stable_sort(resources.begin(), resources.end(),
+ [](const Resource &lhs, const Resource &rhs)
+ { return tie(lhs.basetype, lhs.index) < tie(rhs.basetype, rhs.index); });
+
+ for (auto &r : resources)
+ {
+ auto &var = *r.var;
+ auto &type = get_variable_data_type(var);
+
+ uint32_t var_id = var.self;
+
+ switch (r.basetype)
+ {
+ case SPIRType::Struct:
+ {
+ auto &m = ir.meta[type.self];
+ if (m.members.size() == 0)
+ break;
+
+ if (r.discrete_descriptor_alias)
+ {
+ if (r.var == r.discrete_descriptor_alias)
+ {
+ auto primary_name = join("spvBufferAliasSet",
+ get_decoration(var_id, DecorationDescriptorSet),
+ "Binding",
+ get_decoration(var_id, DecorationBinding));
+
+ // Declare the primary alias as void*
+ if (!ep_args.empty())
+ ep_args += ", ";
+ ep_args += get_argument_address_space(var) + " void* " + primary_name;
+ ep_args += " [[buffer(" + convert_to_string(r.index) + ")";
+ if (interlocked_resources.count(var_id))
+ ep_args += ", raster_order_group(0)";
+ ep_args += "]]";
+ }
+
+ buffer_aliases_discrete.push_back(r.var->self);
+ }
+ else if (!type.array.empty())
+ {
+ if (type.array.size() > 1)
+ SPIRV_CROSS_THROW("Arrays of arrays of buffers are not supported.");
+
+ is_using_builtin_array = true;
+ if (is_var_runtime_size_array(var))
+ {
+ add_spv_func_and_recompile(SPVFuncImplVariableDescriptorArray);
+ if (!ep_args.empty())
+ ep_args += ", ";
+ const bool ssbo = has_decoration(type.self, DecorationBufferBlock);
+ if ((var.storage == spv::StorageClassStorageBuffer || ssbo) &&
+ msl_options.runtime_array_rich_descriptor)
+ {
+ add_spv_func_and_recompile(SPVFuncImplVariableSizedDescriptor);
+ ep_args += "const device spvBufferDescriptor<" + get_argument_address_space(var) + " " +
+ type_to_glsl(type) + "*>* ";
+ }
+ else
+ {
+ ep_args += "const device spvDescriptor<" + get_argument_address_space(var) + " " +
+ type_to_glsl(type) + "*>* ";
+ }
+ ep_args += to_restrict(var_id, true) + r.name + "_";
+ ep_args += " [[buffer(" + convert_to_string(r.index) + ")";
+ if (interlocked_resources.count(var_id))
+ ep_args += ", raster_order_group(0)";
+ ep_args += "]]";
+ }
+ else
+ {
+ uint32_t array_size = get_resource_array_size(type, var_id);
+ for (uint32_t i = 0; i < array_size; ++i)
+ {
+ if (!ep_args.empty())
+ ep_args += ", ";
+ ep_args += get_argument_address_space(var) + " " + type_to_glsl(type) + "* " +
+ to_restrict(var_id, true) + r.name + "_" + convert_to_string(i);
+ ep_args += " [[buffer(" + convert_to_string(r.index + i) + ")";
+ if (interlocked_resources.count(var_id))
+ ep_args += ", raster_order_group(0)";
+ ep_args += "]]";
+ }
+ }
+ is_using_builtin_array = false;
+ }
+ else
+ {
+ if (!ep_args.empty())
+ ep_args += ", ";
+ ep_args += get_argument_address_space(var) + " ";
+
+ if (recursive_inputs.count(type.self))
+ ep_args += string("void* ") + to_restrict(var_id, true) + r.name + "_vp";
+ else
+ ep_args += type_to_glsl(type) + "& " + to_restrict(var_id, true) + r.name;
+
+ ep_args += " [[buffer(" + convert_to_string(r.index) + ")";
+ if (interlocked_resources.count(var_id))
+ ep_args += ", raster_order_group(0)";
+ ep_args += "]]";
+ }
+ break;
+ }
+ case SPIRType::Sampler:
+ if (!ep_args.empty())
+ ep_args += ", ";
+ ep_args += sampler_type(type, var_id, false) + " " + r.name;
+ if (is_var_runtime_size_array(var))
+ ep_args += "_ [[buffer(" + convert_to_string(r.index) + ")]]";
+ else
+ ep_args += " [[sampler(" + convert_to_string(r.index) + ")]]";
+ break;
+ case SPIRType::Image:
+ {
+ if (!ep_args.empty())
+ ep_args += ", ";
+
+ // Use Metal's native frame-buffer fetch API for subpass inputs.
+ const auto &basetype = get<SPIRType>(var.basetype);
+ if (!type_is_msl_framebuffer_fetch(basetype))
+ {
+ ep_args += image_type_glsl(type, var_id, false) + " " + r.name;
+ if (r.plane > 0)
+ ep_args += join(plane_name_suffix, r.plane);
+
+ if (is_var_runtime_size_array(var))
+ ep_args += "_ [[buffer(" + convert_to_string(r.index) + ")";
+ else
+ ep_args += " [[texture(" + convert_to_string(r.index) + ")";
+
+ if (interlocked_resources.count(var_id))
+ ep_args += ", raster_order_group(0)";
+ ep_args += "]]";
+ }
+ else
+ {
+ if (msl_options.is_macos() && !msl_options.supports_msl_version(2, 3))
+ SPIRV_CROSS_THROW("Framebuffer fetch on Mac is not supported before MSL 2.3.");
+ ep_args += image_type_glsl(type, var_id, false) + " " + r.name;
+ ep_args += " [[color(" + convert_to_string(r.index) + ")]]";
+ }
+
+ // Emulate texture2D atomic operations
+ if (atomic_image_vars_emulated.count(var.self))
+ {
+ auto &flags = ir.get_decoration_bitset(var.self);
+ const char *cv_flags = decoration_flags_signal_volatile(flags) ? "volatile " : "";
+ ep_args += join(", ", cv_flags, "device atomic_", type_to_glsl(get<SPIRType>(basetype.image.type), 0));
+ ep_args += "* " + r.name + "_atomic";
+ ep_args += " [[buffer(" + convert_to_string(r.secondary_index) + ")";
+ if (interlocked_resources.count(var_id))
+ ep_args += ", raster_order_group(0)";
+ ep_args += "]]";
+ }
+ break;
+ }
+ case SPIRType::AccelerationStructure:
+ {
+ if (is_var_runtime_size_array(var))
+ {
+ add_spv_func_and_recompile(SPVFuncImplVariableDescriptor);
+ const auto &parent_type = get<SPIRType>(type.parent_type);
+ if (!ep_args.empty())
+ ep_args += ", ";
+ ep_args += "const device spvDescriptor<" + type_to_glsl(parent_type) + ">* " +
+ to_restrict(var_id, true) + r.name + "_";
+ ep_args += " [[buffer(" + convert_to_string(r.index) + ")]]";
+ }
+ else
+ {
+ if (!ep_args.empty())
+ ep_args += ", ";
+ ep_args += type_to_glsl(type, var_id) + " " + r.name;
+ ep_args += " [[buffer(" + convert_to_string(r.index) + ")]]";
+ }
+ break;
+ }
+ default:
+ if (!ep_args.empty())
+ ep_args += ", ";
+ if (!type.pointer)
+ ep_args += get_type_address_space(get<SPIRType>(var.basetype), var_id) + " " +
+ type_to_glsl(type, var_id) + "& " + r.name;
+ else
+ ep_args += type_to_glsl(type, var_id) + " " + r.name;
+ ep_args += " [[buffer(" + convert_to_string(r.index) + ")";
+ if (interlocked_resources.count(var_id))
+ ep_args += ", raster_order_group(0)";
+ ep_args += "]]";
+ break;
+ }
+ }
+}
+
+// Returns a string containing a comma-delimited list of args for the entry point function
+// This is the "classic" method of MSL 1 when we don't have argument buffer support.
+string CompilerMSL::entry_point_args_classic(bool append_comma)
+{
+ string ep_args = entry_point_arg_stage_in();
+ entry_point_args_discrete_descriptors(ep_args);
+ entry_point_args_builtin(ep_args);
+
+ if (!ep_args.empty() && append_comma)
+ ep_args += ", ";
+
+ return ep_args;
+}
+
+void CompilerMSL::fix_up_shader_inputs_outputs()
+{
+ auto &entry_func = this->get<SPIRFunction>(ir.default_entry_point);
+
+ // Emit a guard to ensure we don't execute beyond the last vertex.
+ // Vertex shaders shouldn't have the problems with barriers in non-uniform control flow that
+ // tessellation control shaders do, so early returns should be OK. We may need to revisit this
+ // if it ever becomes possible to use barriers from a vertex shader.
+ if (get_execution_model() == ExecutionModelVertex && msl_options.vertex_for_tessellation)
+ {
+ entry_func.fixup_hooks_in.push_back([this]() {
+ statement("if (any(", to_expression(builtin_invocation_id_id),
+ " >= ", to_expression(builtin_stage_input_size_id), "))");
+ statement(" return;");
+ });
+ }
+
+ // Look for sampled images and buffer. Add hooks to set up the swizzle constants or array lengths.
+ ir.for_each_typed_id<SPIRVariable>([&](uint32_t, SPIRVariable &var) {
+ auto &type = get_variable_data_type(var);
+ uint32_t var_id = var.self;
+ bool ssbo = has_decoration(type.self, DecorationBufferBlock);
+
+ if (var.storage == StorageClassUniformConstant && !is_hidden_variable(var))
+ {
+ if (msl_options.swizzle_texture_samples && has_sampled_images && is_sampled_image_type(type))
+ {
+ entry_func.fixup_hooks_in.push_back([this, &type, &var, var_id]() {
+ bool is_array_type = !type.array.empty();
+
+ uint32_t desc_set = get_decoration(var_id, DecorationDescriptorSet);
+ if (descriptor_set_is_argument_buffer(desc_set))
+ {
+ statement("constant uint", is_array_type ? "* " : "& ", to_swizzle_expression(var_id),
+ is_array_type ? " = &" : " = ", to_name(argument_buffer_ids[desc_set]),
+ ".spvSwizzleConstants", "[",
+ convert_to_string(get_metal_resource_index(var, SPIRType::Image)), "];");
+ }
+ else
+ {
+ // If we have an array of images, we need to be able to index into it, so take a pointer instead.
+ statement("constant uint", is_array_type ? "* " : "& ", to_swizzle_expression(var_id),
+ is_array_type ? " = &" : " = ", to_name(swizzle_buffer_id), "[",
+ convert_to_string(get_metal_resource_index(var, SPIRType::Image)), "];");
+ }
+ });
+ }
+ }
+ else if ((var.storage == StorageClassStorageBuffer || (var.storage == StorageClassUniform && ssbo)) &&
+ !is_hidden_variable(var))
+ {
+ if (buffer_requires_array_length(var.self))
+ {
+ entry_func.fixup_hooks_in.push_back(
+ [this, &type, &var, var_id]()
+ {
+ bool is_array_type = !type.array.empty() && !is_var_runtime_size_array(var);
+
+ uint32_t desc_set = get_decoration(var_id, DecorationDescriptorSet);
+ if (descriptor_set_is_argument_buffer(desc_set))
+ {
+ statement("constant uint", is_array_type ? "* " : "& ", to_buffer_size_expression(var_id),
+ is_array_type ? " = &" : " = ", to_name(argument_buffer_ids[desc_set]),
+ ".spvBufferSizeConstants", "[",
+ convert_to_string(get_metal_resource_index(var, SPIRType::UInt)), "];");
+ }
+ else
+ {
+ // If we have an array of images, we need to be able to index into it, so take a pointer instead.
+ statement("constant uint", is_array_type ? "* " : "& ", to_buffer_size_expression(var_id),
+ is_array_type ? " = &" : " = ", to_name(buffer_size_buffer_id), "[",
+ convert_to_string(get_metal_resource_index(var, type.basetype)), "];");
+ }
+ });
+ }
+ }
+
+ if (!msl_options.argument_buffers &&
+ msl_options.replace_recursive_inputs && type_contains_recursion(type) &&
+ (var.storage == StorageClassUniform || var.storage == StorageClassUniformConstant ||
+ var.storage == StorageClassPushConstant || var.storage == StorageClassStorageBuffer))
+ {
+ recursive_inputs.insert(type.self);
+ entry_func.fixup_hooks_in.push_back([this, &type, &var, var_id]() {
+ auto addr_space = get_argument_address_space(var);
+ auto var_name = to_name(var_id);
+ statement(addr_space, " auto& ", to_restrict(var_id, true), var_name,
+ " = *(", addr_space, " ", type_to_glsl(type), "*)", var_name, "_vp;");
+ });
+ }
+ });
+
+ // Builtin variables
+ ir.for_each_typed_id<SPIRVariable>([this, &entry_func](uint32_t, SPIRVariable &var) {
+ uint32_t var_id = var.self;
+ BuiltIn bi_type = ir.meta[var_id].decoration.builtin_type;
+
+ if (var.storage != StorageClassInput && var.storage != StorageClassOutput)
+ return;
+ if (!interface_variable_exists_in_entry_point(var.self))
+ return;
+
+ if (var.storage == StorageClassInput && is_builtin_variable(var) && active_input_builtins.get(bi_type))
+ {
+ switch (bi_type)
+ {
+ case BuiltInSamplePosition:
+ entry_func.fixup_hooks_in.push_back([=]() {
+ statement(builtin_type_decl(bi_type), " ", to_expression(var_id), " = get_sample_position(",
+ to_expression(builtin_sample_id_id), ");");
+ });
+ break;
+ case BuiltInFragCoord:
+ if (is_sample_rate())
+ {
+ entry_func.fixup_hooks_in.push_back([=]() {
+ statement(to_expression(var_id), ".xy += get_sample_position(",
+ to_expression(builtin_sample_id_id), ") - 0.5;");
+ });
+ }
+ break;
+ case BuiltInInvocationId:
+ // This is direct-mapped without multi-patch workgroups.
+ if (!is_tesc_shader() || !msl_options.multi_patch_workgroup)
+ break;
+
+ entry_func.fixup_hooks_in.push_back([=]() {
+ statement(builtin_type_decl(bi_type), " ", to_expression(var_id), " = ",
+ to_expression(builtin_invocation_id_id), ".x % ", this->get_entry_point().output_vertices,
+ ";");
+ });
+ break;
+ case BuiltInPrimitiveId:
+ // This is natively supported by fragment and tessellation evaluation shaders.
+ // In tessellation control shaders, this is direct-mapped without multi-patch workgroups.
+ if (!is_tesc_shader() || !msl_options.multi_patch_workgroup)
+ break;
+
+ entry_func.fixup_hooks_in.push_back([=]() {
+ statement(builtin_type_decl(bi_type), " ", to_expression(var_id), " = min(",
+ to_expression(builtin_invocation_id_id), ".x / ", this->get_entry_point().output_vertices,
+ ", spvIndirectParams[1] - 1);");
+ });
+ break;
+ case BuiltInPatchVertices:
+ if (is_tese_shader())
+ {
+ if (msl_options.raw_buffer_tese_input)
+ {
+ entry_func.fixup_hooks_in.push_back(
+ [=]() {
+ statement(builtin_type_decl(bi_type), " ", to_expression(var_id), " = ",
+ get_entry_point().output_vertices, ";");
+ });
+ }
+ else
+ {
+ entry_func.fixup_hooks_in.push_back(
+ [=]()
+ {
+ statement(builtin_type_decl(bi_type), " ", to_expression(var_id), " = ",
+ to_expression(patch_stage_in_var_id), ".gl_in.size();");
+ });
+ }
+ }
+ else
+ {
+ entry_func.fixup_hooks_in.push_back([=]() {
+ statement(builtin_type_decl(bi_type), " ", to_expression(var_id), " = spvIndirectParams[0];");
+ });
+ }
+ break;
+ case BuiltInTessCoord:
+ if (get_entry_point().flags.get(ExecutionModeQuads))
+ {
+ // The entry point will only have a float2 TessCoord variable.
+ // Pad to float3.
+ entry_func.fixup_hooks_in.push_back([=]() {
+ auto name = builtin_to_glsl(BuiltInTessCoord, StorageClassInput);
+ statement("float3 " + name + " = float3(" + name + "In.x, " + name + "In.y, 0.0);");
+ });
+ }
+
+ // Emit a fixup to account for the shifted domain. Don't do this for triangles;
+ // MoltenVK will just reverse the winding order instead.
+ if (msl_options.tess_domain_origin_lower_left && !is_tessellating_triangles())
+ {
+ string tc = to_expression(var_id);
+ entry_func.fixup_hooks_in.push_back([=]() { statement(tc, ".y = 1.0 - ", tc, ".y;"); });
+ }
+ break;
+ case BuiltInSubgroupId:
+ if (!msl_options.emulate_subgroups)
+ break;
+ // For subgroup emulation, this is the same as the local invocation index.
+ entry_func.fixup_hooks_in.push_back([=]() {
+ statement(builtin_type_decl(bi_type), " ", to_expression(var_id), " = ",
+ to_expression(builtin_local_invocation_index_id), ";");
+ });
+ break;
+ case BuiltInNumSubgroups:
+ if (!msl_options.emulate_subgroups)
+ break;
+ // For subgroup emulation, this is the same as the workgroup size.
+ entry_func.fixup_hooks_in.push_back([=]() {
+ auto &type = expression_type(builtin_workgroup_size_id);
+ string size_expr = to_expression(builtin_workgroup_size_id);
+ if (type.vecsize >= 3)
+ size_expr = join(size_expr, ".x * ", size_expr, ".y * ", size_expr, ".z");
+ else if (type.vecsize == 2)
+ size_expr = join(size_expr, ".x * ", size_expr, ".y");
+ statement(builtin_type_decl(bi_type), " ", to_expression(var_id), " = ", size_expr, ";");
+ });
+ break;
+ case BuiltInSubgroupLocalInvocationId:
+ if (!msl_options.emulate_subgroups)
+ break;
+ // For subgroup emulation, assume subgroups of size 1.
+ entry_func.fixup_hooks_in.push_back(
+ [=]() { statement(builtin_type_decl(bi_type), " ", to_expression(var_id), " = 0;"); });
+ break;
+ case BuiltInSubgroupSize:
+ if (msl_options.emulate_subgroups)
+ {
+ // For subgroup emulation, assume subgroups of size 1.
+ entry_func.fixup_hooks_in.push_back(
+ [=]() { statement(builtin_type_decl(bi_type), " ", to_expression(var_id), " = 1;"); });
+ }
+ else if (msl_options.fixed_subgroup_size != 0)
+ {
+ entry_func.fixup_hooks_in.push_back([=]() {
+ statement(builtin_type_decl(bi_type), " ", to_expression(var_id), " = ",
+ msl_options.fixed_subgroup_size, ";");
+ });
+ }
+ break;
+ case BuiltInSubgroupEqMask:
+ if (msl_options.is_ios() && !msl_options.supports_msl_version(2, 2))
+ SPIRV_CROSS_THROW("Subgroup ballot functionality requires Metal 2.2 on iOS.");
+ if (!msl_options.supports_msl_version(2, 1))
+ SPIRV_CROSS_THROW("Subgroup ballot functionality requires Metal 2.1.");
+ entry_func.fixup_hooks_in.push_back([=]() {
+ if (msl_options.is_ios())
+ {
+ statement(builtin_type_decl(bi_type), " ", to_expression(var_id), " = ", "uint4(1 << ",
+ to_expression(builtin_subgroup_invocation_id_id), ", uint3(0));");
+ }
+ else
+ {
+ statement(builtin_type_decl(bi_type), " ", to_expression(var_id), " = ",
+ to_expression(builtin_subgroup_invocation_id_id), " >= 32 ? uint4(0, (1 << (",
+ to_expression(builtin_subgroup_invocation_id_id), " - 32)), uint2(0)) : uint4(1 << ",
+ to_expression(builtin_subgroup_invocation_id_id), ", uint3(0));");
+ }
+ });
+ break;
+ case BuiltInSubgroupGeMask:
+ if (msl_options.is_ios() && !msl_options.supports_msl_version(2, 2))
+ SPIRV_CROSS_THROW("Subgroup ballot functionality requires Metal 2.2 on iOS.");
+ if (!msl_options.supports_msl_version(2, 1))
+ SPIRV_CROSS_THROW("Subgroup ballot functionality requires Metal 2.1.");
+ if (msl_options.fixed_subgroup_size != 0)
+ add_spv_func_and_recompile(SPVFuncImplSubgroupBallot);
+ entry_func.fixup_hooks_in.push_back([=]() {
+ // Case where index < 32, size < 32:
+ // mask0 = bfi(0, 0xFFFFFFFF, index, size - index);
+ // mask1 = bfi(0, 0xFFFFFFFF, 0, 0); // Gives 0
+ // Case where index < 32 but size >= 32:
+ // mask0 = bfi(0, 0xFFFFFFFF, index, 32 - index);
+ // mask1 = bfi(0, 0xFFFFFFFF, 0, size - 32);
+ // Case where index >= 32:
+ // mask0 = bfi(0, 0xFFFFFFFF, 32, 0); // Gives 0
+ // mask1 = bfi(0, 0xFFFFFFFF, index - 32, size - index);
+ // This is expressed without branches to avoid divergent
+ // control flow--hence the complicated min/max expressions.
+ // This is further complicated by the fact that if you attempt
+ // to bfi/bfe out-of-bounds on Metal, undefined behavior is the
+ // result.
+ if (msl_options.fixed_subgroup_size > 32)
+ {
+ // Don't use the subgroup size variable with fixed subgroup sizes,
+ // since the variables could be defined in the wrong order.
+ statement(builtin_type_decl(bi_type), " ", to_expression(var_id),
+ " = uint4(insert_bits(0u, 0xFFFFFFFF, min(",
+ to_expression(builtin_subgroup_invocation_id_id), ", 32u), (uint)max(32 - (int)",
+ to_expression(builtin_subgroup_invocation_id_id),
+ ", 0)), insert_bits(0u, 0xFFFFFFFF,"
+ " (uint)max((int)",
+ to_expression(builtin_subgroup_invocation_id_id), " - 32, 0), ",
+ msl_options.fixed_subgroup_size, " - max(",
+ to_expression(builtin_subgroup_invocation_id_id),
+ ", 32u)), uint2(0));");
+ }
+ else if (msl_options.fixed_subgroup_size != 0)
+ {
+ statement(builtin_type_decl(bi_type), " ", to_expression(var_id),
+ " = uint4(insert_bits(0u, 0xFFFFFFFF, ",
+ to_expression(builtin_subgroup_invocation_id_id), ", ",
+ msl_options.fixed_subgroup_size, " - ",
+ to_expression(builtin_subgroup_invocation_id_id),
+ "), uint3(0));");
+ }
+ else if (msl_options.is_ios())
+ {
+ // On iOS, the SIMD-group size will currently never exceed 32.
+ statement(builtin_type_decl(bi_type), " ", to_expression(var_id),
+ " = uint4(insert_bits(0u, 0xFFFFFFFF, ",
+ to_expression(builtin_subgroup_invocation_id_id), ", ",
+ to_expression(builtin_subgroup_size_id), " - ",
+ to_expression(builtin_subgroup_invocation_id_id), "), uint3(0));");
+ }
+ else
+ {
+ statement(builtin_type_decl(bi_type), " ", to_expression(var_id),
+ " = uint4(insert_bits(0u, 0xFFFFFFFF, min(",
+ to_expression(builtin_subgroup_invocation_id_id), ", 32u), (uint)max(min((int)",
+ to_expression(builtin_subgroup_size_id), ", 32) - (int)",
+ to_expression(builtin_subgroup_invocation_id_id),
+ ", 0)), insert_bits(0u, 0xFFFFFFFF, (uint)max((int)",
+ to_expression(builtin_subgroup_invocation_id_id), " - 32, 0), (uint)max((int)",
+ to_expression(builtin_subgroup_size_id), " - (int)max(",
+ to_expression(builtin_subgroup_invocation_id_id), ", 32u), 0)), uint2(0));");
+ }
+ });
+ break;
+ case BuiltInSubgroupGtMask:
+ if (msl_options.is_ios() && !msl_options.supports_msl_version(2, 2))
+ SPIRV_CROSS_THROW("Subgroup ballot functionality requires Metal 2.2 on iOS.");
+ if (!msl_options.supports_msl_version(2, 1))
+ SPIRV_CROSS_THROW("Subgroup ballot functionality requires Metal 2.1.");
+ add_spv_func_and_recompile(SPVFuncImplSubgroupBallot);
+ entry_func.fixup_hooks_in.push_back([=]() {
+ // The same logic applies here, except now the index is one
+ // more than the subgroup invocation ID.
+ if (msl_options.fixed_subgroup_size > 32)
+ {
+ statement(builtin_type_decl(bi_type), " ", to_expression(var_id),
+ " = uint4(insert_bits(0u, 0xFFFFFFFF, min(",
+ to_expression(builtin_subgroup_invocation_id_id), " + 1, 32u), (uint)max(32 - (int)",
+ to_expression(builtin_subgroup_invocation_id_id),
+ " - 1, 0)), insert_bits(0u, 0xFFFFFFFF, (uint)max((int)",
+ to_expression(builtin_subgroup_invocation_id_id), " + 1 - 32, 0), ",
+ msl_options.fixed_subgroup_size, " - max(",
+ to_expression(builtin_subgroup_invocation_id_id),
+ " + 1, 32u)), uint2(0));");
+ }
+ else if (msl_options.fixed_subgroup_size != 0)
+ {
+ statement(builtin_type_decl(bi_type), " ", to_expression(var_id),
+ " = uint4(insert_bits(0u, 0xFFFFFFFF, ",
+ to_expression(builtin_subgroup_invocation_id_id), " + 1, ",
+ msl_options.fixed_subgroup_size, " - ",
+ to_expression(builtin_subgroup_invocation_id_id),
+ " - 1), uint3(0));");
+ }
+ else if (msl_options.is_ios())
+ {
+ statement(builtin_type_decl(bi_type), " ", to_expression(var_id),
+ " = uint4(insert_bits(0u, 0xFFFFFFFF, ",
+ to_expression(builtin_subgroup_invocation_id_id), " + 1, ",
+ to_expression(builtin_subgroup_size_id), " - ",
+ to_expression(builtin_subgroup_invocation_id_id), " - 1), uint3(0));");
+ }
+ else
+ {
+ statement(builtin_type_decl(bi_type), " ", to_expression(var_id),
+ " = uint4(insert_bits(0u, 0xFFFFFFFF, min(",
+ to_expression(builtin_subgroup_invocation_id_id), " + 1, 32u), (uint)max(min((int)",
+ to_expression(builtin_subgroup_size_id), ", 32) - (int)",
+ to_expression(builtin_subgroup_invocation_id_id),
+ " - 1, 0)), insert_bits(0u, 0xFFFFFFFF, (uint)max((int)",
+ to_expression(builtin_subgroup_invocation_id_id), " + 1 - 32, 0), (uint)max((int)",
+ to_expression(builtin_subgroup_size_id), " - (int)max(",
+ to_expression(builtin_subgroup_invocation_id_id), " + 1, 32u), 0)), uint2(0));");
+ }
+ });
+ break;
+ case BuiltInSubgroupLeMask:
+ if (msl_options.is_ios() && !msl_options.supports_msl_version(2, 2))
+ SPIRV_CROSS_THROW("Subgroup ballot functionality requires Metal 2.2 on iOS.");
+ if (!msl_options.supports_msl_version(2, 1))
+ SPIRV_CROSS_THROW("Subgroup ballot functionality requires Metal 2.1.");
+ add_spv_func_and_recompile(SPVFuncImplSubgroupBallot);
+ entry_func.fixup_hooks_in.push_back([=]() {
+ if (msl_options.is_ios())
+ {
+ statement(builtin_type_decl(bi_type), " ", to_expression(var_id),
+ " = uint4(extract_bits(0xFFFFFFFF, 0, ",
+ to_expression(builtin_subgroup_invocation_id_id), " + 1), uint3(0));");
+ }
+ else
+ {
+ statement(builtin_type_decl(bi_type), " ", to_expression(var_id),
+ " = uint4(extract_bits(0xFFFFFFFF, 0, min(",
+ to_expression(builtin_subgroup_invocation_id_id),
+ " + 1, 32u)), extract_bits(0xFFFFFFFF, 0, (uint)max((int)",
+ to_expression(builtin_subgroup_invocation_id_id), " + 1 - 32, 0)), uint2(0));");
+ }
+ });
+ break;
+ case BuiltInSubgroupLtMask:
+ if (msl_options.is_ios() && !msl_options.supports_msl_version(2, 2))
+ SPIRV_CROSS_THROW("Subgroup ballot functionality requires Metal 2.2 on iOS.");
+ if (!msl_options.supports_msl_version(2, 1))
+ SPIRV_CROSS_THROW("Subgroup ballot functionality requires Metal 2.1.");
+ add_spv_func_and_recompile(SPVFuncImplSubgroupBallot);
+ entry_func.fixup_hooks_in.push_back([=]() {
+ if (msl_options.is_ios())
+ {
+ statement(builtin_type_decl(bi_type), " ", to_expression(var_id),
+ " = uint4(extract_bits(0xFFFFFFFF, 0, ",
+ to_expression(builtin_subgroup_invocation_id_id), "), uint3(0));");
+ }
+ else
+ {
+ statement(builtin_type_decl(bi_type), " ", to_expression(var_id),
+ " = uint4(extract_bits(0xFFFFFFFF, 0, min(",
+ to_expression(builtin_subgroup_invocation_id_id),
+ ", 32u)), extract_bits(0xFFFFFFFF, 0, (uint)max((int)",
+ to_expression(builtin_subgroup_invocation_id_id), " - 32, 0)), uint2(0));");
+ }
+ });
+ break;
+ case BuiltInViewIndex:
+ if (!msl_options.multiview)
+ {
+ // According to the Vulkan spec, when not running under a multiview
+ // render pass, ViewIndex is 0.
+ entry_func.fixup_hooks_in.push_back([=]() {
+ statement("const ", builtin_type_decl(bi_type), " ", to_expression(var_id), " = 0;");
+ });
+ }
+ else if (msl_options.view_index_from_device_index)
+ {
+ // In this case, we take the view index from that of the device we're running on.
+ entry_func.fixup_hooks_in.push_back([=]() {
+ statement("const ", builtin_type_decl(bi_type), " ", to_expression(var_id), " = ",
+ msl_options.device_index, ";");
+ });
+ // We actually don't want to set the render_target_array_index here.
+ // Since every physical device is rendering a different view,
+ // there's no need for layered rendering here.
+ }
+ else if (!msl_options.multiview_layered_rendering)
+ {
+ // In this case, the views are rendered one at a time. The view index, then,
+ // is just the first part of the "view mask".
+ entry_func.fixup_hooks_in.push_back([=]() {
+ statement("const ", builtin_type_decl(bi_type), " ", to_expression(var_id), " = ",
+ to_expression(view_mask_buffer_id), "[0];");
+ });
+ }
+ else if (get_execution_model() == ExecutionModelFragment)
+ {
+ // Because we adjusted the view index in the vertex shader, we have to
+ // adjust it back here.
+ entry_func.fixup_hooks_in.push_back([=]() {
+ statement(to_expression(var_id), " += ", to_expression(view_mask_buffer_id), "[0];");
+ });
+ }
+ else if (get_execution_model() == ExecutionModelVertex)
+ {
+ // Metal provides no special support for multiview, so we smuggle
+ // the view index in the instance index.
+ entry_func.fixup_hooks_in.push_back([=]() {
+ statement(builtin_type_decl(bi_type), " ", to_expression(var_id), " = ",
+ to_expression(view_mask_buffer_id), "[0] + (", to_expression(builtin_instance_idx_id),
+ " - ", to_expression(builtin_base_instance_id), ") % ",
+ to_expression(view_mask_buffer_id), "[1];");
+ statement(to_expression(builtin_instance_idx_id), " = (",
+ to_expression(builtin_instance_idx_id), " - ",
+ to_expression(builtin_base_instance_id), ") / ", to_expression(view_mask_buffer_id),
+ "[1] + ", to_expression(builtin_base_instance_id), ";");
+ });
+ // In addition to setting the variable itself, we also need to
+ // set the render_target_array_index with it on output. We have to
+ // offset this by the base view index, because Metal isn't in on
+ // our little game here.
+ entry_func.fixup_hooks_out.push_back([=]() {
+ statement(to_expression(builtin_layer_id), " = ", to_expression(var_id), " - ",
+ to_expression(view_mask_buffer_id), "[0];");
+ });
+ }
+ break;
+ case BuiltInDeviceIndex:
+ // Metal pipelines belong to the devices which create them, so we'll
+ // need to create a MTLPipelineState for every MTLDevice in a grouped
+ // VkDevice. We can assume, then, that the device index is constant.
+ entry_func.fixup_hooks_in.push_back([=]() {
+ statement("const ", builtin_type_decl(bi_type), " ", to_expression(var_id), " = ",
+ msl_options.device_index, ";");
+ });
+ break;
+ case BuiltInWorkgroupId:
+ if (!msl_options.dispatch_base || !active_input_builtins.get(BuiltInWorkgroupId))
+ break;
+
+ // The vkCmdDispatchBase() command lets the client set the base value
+ // of WorkgroupId. Metal has no direct equivalent; we must make this
+ // adjustment ourselves.
+ entry_func.fixup_hooks_in.push_back([=]() {
+ statement(to_expression(var_id), " += ", to_dereferenced_expression(builtin_dispatch_base_id), ";");
+ });
+ break;
+ case BuiltInGlobalInvocationId:
+ if (!msl_options.dispatch_base || !active_input_builtins.get(BuiltInGlobalInvocationId))
+ break;
+
+ // GlobalInvocationId is defined as LocalInvocationId + WorkgroupId * WorkgroupSize.
+ // This needs to be adjusted too.
+ entry_func.fixup_hooks_in.push_back([=]() {
+ auto &execution = this->get_entry_point();
+ uint32_t workgroup_size_id = execution.workgroup_size.constant;
+ if (workgroup_size_id)
+ statement(to_expression(var_id), " += ", to_dereferenced_expression(builtin_dispatch_base_id),
+ " * ", to_expression(workgroup_size_id), ";");
+ else
+ statement(to_expression(var_id), " += ", to_dereferenced_expression(builtin_dispatch_base_id),
+ " * uint3(", execution.workgroup_size.x, ", ", execution.workgroup_size.y, ", ",
+ execution.workgroup_size.z, ");");
+ });
+ break;
+ case BuiltInVertexId:
+ case BuiltInVertexIndex:
+ // This is direct-mapped normally.
+ if (!msl_options.vertex_for_tessellation)
+ break;
+
+ entry_func.fixup_hooks_in.push_back([=]() {
+ builtin_declaration = true;
+ switch (msl_options.vertex_index_type)
+ {
+ case Options::IndexType::None:
+ statement(builtin_type_decl(bi_type), " ", to_expression(var_id), " = ",
+ to_expression(builtin_invocation_id_id), ".x + ",
+ to_expression(builtin_dispatch_base_id), ".x;");
+ break;
+ case Options::IndexType::UInt16:
+ case Options::IndexType::UInt32:
+ statement(builtin_type_decl(bi_type), " ", to_expression(var_id), " = ", index_buffer_var_name,
+ "[", to_expression(builtin_invocation_id_id), ".x] + ",
+ to_expression(builtin_dispatch_base_id), ".x;");
+ break;
+ }
+ builtin_declaration = false;
+ });
+ break;
+ case BuiltInBaseVertex:
+ // This is direct-mapped normally.
+ if (!msl_options.vertex_for_tessellation)
+ break;
+
+ entry_func.fixup_hooks_in.push_back([=]() {
+ statement(builtin_type_decl(bi_type), " ", to_expression(var_id), " = ",
+ to_expression(builtin_dispatch_base_id), ".x;");
+ });
+ break;
+ case BuiltInInstanceId:
+ case BuiltInInstanceIndex:
+ // This is direct-mapped normally.
+ if (!msl_options.vertex_for_tessellation)
+ break;
+
+ entry_func.fixup_hooks_in.push_back([=]() {
+ builtin_declaration = true;
+ statement(builtin_type_decl(bi_type), " ", to_expression(var_id), " = ",
+ to_expression(builtin_invocation_id_id), ".y + ", to_expression(builtin_dispatch_base_id),
+ ".y;");
+ builtin_declaration = false;
+ });
+ break;
+ case BuiltInBaseInstance:
+ // This is direct-mapped normally.
+ if (!msl_options.vertex_for_tessellation)
+ break;
+
+ entry_func.fixup_hooks_in.push_back([=]() {
+ statement(builtin_type_decl(bi_type), " ", to_expression(var_id), " = ",
+ to_expression(builtin_dispatch_base_id), ".y;");
+ });
+ break;
+ default:
+ break;
+ }
+ }
+ else if (var.storage == StorageClassOutput && get_execution_model() == ExecutionModelFragment &&
+ is_builtin_variable(var) && active_output_builtins.get(bi_type))
+ {
+ switch (bi_type)
+ {
+ case BuiltInSampleMask:
+ if (has_additional_fixed_sample_mask())
+ {
+ // If the additional fixed sample mask was set, we need to adjust the sample_mask
+ // output to reflect that. If the shader outputs the sample_mask itself too, we need
+ // to AND the two masks to get the final one.
+ string op_str = does_shader_write_sample_mask ? " &= " : " = ";
+ entry_func.fixup_hooks_out.push_back([=]() {
+ statement(to_expression(builtin_sample_mask_id), op_str, additional_fixed_sample_mask_str(), ";");
+ });
+ }
+ break;
+ case BuiltInFragDepth:
+ if (msl_options.input_attachment_is_ds_attachment && !writes_to_depth)
+ {
+ entry_func.fixup_hooks_out.push_back([=]() {
+ statement(to_expression(builtin_frag_depth_id), " = ", to_expression(builtin_frag_coord_id), ".z;");
+ });
+ }
+ break;
+ default:
+ break;
+ }
+ }
+ });
+}
+
+// Returns the Metal index of the resource of the specified type as used by the specified variable.
+uint32_t CompilerMSL::get_metal_resource_index(SPIRVariable &var, SPIRType::BaseType basetype, uint32_t plane)
+{
+ auto &execution = get_entry_point();
+ auto &var_dec = ir.meta[var.self].decoration;
+ auto &var_type = get<SPIRType>(var.basetype);
+ uint32_t var_desc_set = (var.storage == StorageClassPushConstant) ? kPushConstDescSet : var_dec.set;
+ uint32_t var_binding = (var.storage == StorageClassPushConstant) ? kPushConstBinding : var_dec.binding;
+
+ // If a matching binding has been specified, find and use it.
+ auto itr = resource_bindings.find({ execution.model, var_desc_set, var_binding });
+
+ // Atomic helper buffers for image atomics need to use secondary bindings as well.
+ bool use_secondary_binding = (var_type.basetype == SPIRType::SampledImage && basetype == SPIRType::Sampler) ||
+ basetype == SPIRType::AtomicCounter;
+
+ auto resource_decoration =
+ use_secondary_binding ? SPIRVCrossDecorationResourceIndexSecondary : SPIRVCrossDecorationResourceIndexPrimary;
+
+ if (plane == 1)
+ resource_decoration = SPIRVCrossDecorationResourceIndexTertiary;
+ if (plane == 2)
+ resource_decoration = SPIRVCrossDecorationResourceIndexQuaternary;
+
+ if (itr != end(resource_bindings))
+ {
+ auto &remap = itr->second;
+ remap.second = true;
+ switch (basetype)
+ {
+ case SPIRType::Image:
+ set_extended_decoration(var.self, resource_decoration, remap.first.msl_texture + plane);
+ return remap.first.msl_texture + plane;
+ case SPIRType::Sampler:
+ set_extended_decoration(var.self, resource_decoration, remap.first.msl_sampler);
+ return remap.first.msl_sampler;
+ default:
+ set_extended_decoration(var.self, resource_decoration, remap.first.msl_buffer);
+ return remap.first.msl_buffer;
+ }
+ }
+
+ // If we have already allocated an index, keep using it.
+ if (has_extended_decoration(var.self, resource_decoration))
+ return get_extended_decoration(var.self, resource_decoration);
+
+ auto &type = get<SPIRType>(var.basetype);
+
+ if (type_is_msl_framebuffer_fetch(type))
+ {
+ // Frame-buffer fetch gets its fallback resource index from the input attachment index,
+ // which is then treated as color index.
+ return get_decoration(var.self, DecorationInputAttachmentIndex);
+ }
+ else if (msl_options.enable_decoration_binding)
+ {
+ // Allow user to enable decoration binding.
+ // If there is no explicit mapping of bindings to MSL, use the declared binding as a fallback.
+ if (has_decoration(var.self, DecorationBinding))
+ {
+ var_binding = get_decoration(var.self, DecorationBinding);
+ // Avoid emitting sentinel bindings.
+ if (var_binding < 0x80000000u)
+ return var_binding;
+ }
+ }
+
+ // If we did not explicitly remap, allocate bindings on demand.
+ // We cannot reliably use Binding decorations since SPIR-V and MSL's binding models are very different.
+
+ bool allocate_argument_buffer_ids = false;
+
+ if (var.storage != StorageClassPushConstant)
+ allocate_argument_buffer_ids = descriptor_set_is_argument_buffer(var_desc_set);
+
+ uint32_t binding_stride = 1;
+ for (uint32_t i = 0; i < uint32_t(type.array.size()); i++)
+ binding_stride *= to_array_size_literal(type, i);
+
+ // If a binding has not been specified, revert to incrementing resource indices.
+ uint32_t resource_index;
+
+ if (allocate_argument_buffer_ids)
+ {
+ // Allocate from a flat ID binding space.
+ resource_index = next_metal_resource_ids[var_desc_set];
+ next_metal_resource_ids[var_desc_set] += binding_stride;
+ }
+ else
+ {
+ if (is_var_runtime_size_array(var))
+ {
+ basetype = SPIRType::Struct;
+ binding_stride = 1;
+ }
+ // Allocate from plain bindings which are allocated per resource type.
+ switch (basetype)
+ {
+ case SPIRType::Image:
+ resource_index = next_metal_resource_index_texture;
+ next_metal_resource_index_texture += binding_stride;
+ break;
+ case SPIRType::Sampler:
+ resource_index = next_metal_resource_index_sampler;
+ next_metal_resource_index_sampler += binding_stride;
+ break;
+ default:
+ resource_index = next_metal_resource_index_buffer;
+ next_metal_resource_index_buffer += binding_stride;
+ break;
+ }
+ }
+
+ set_extended_decoration(var.self, resource_decoration, resource_index);
+ return resource_index;
+}
+
+bool CompilerMSL::type_is_msl_framebuffer_fetch(const SPIRType &type) const
+{
+ return type.basetype == SPIRType::Image && type.image.dim == DimSubpassData &&
+ msl_options.use_framebuffer_fetch_subpasses;
+}
+
+const char *CompilerMSL::descriptor_address_space(uint32_t id, StorageClass storage, const char *plain_address_space) const
+{
+ if (msl_options.argument_buffers)
+ {
+ bool storage_class_is_descriptor = storage == StorageClassUniform ||
+ storage == StorageClassStorageBuffer ||
+ storage == StorageClassUniformConstant;
+
+ uint32_t desc_set = get_decoration(id, DecorationDescriptorSet);
+ if (storage_class_is_descriptor && descriptor_set_is_argument_buffer(desc_set))
+ {
+ // An awkward case where we need to emit *more* address space declarations (yay!).
+ // An example is where we pass down an array of buffer pointers to leaf functions.
+ // It's a constant array containing pointers to constants.
+ // The pointer array is always constant however. E.g.
+ // device SSBO * constant (&array)[N].
+ // const device SSBO * constant (&array)[N].
+ // constant SSBO * constant (&array)[N].
+ // However, this only matters for argument buffers, since for MSL 1.0 style codegen,
+ // we emit the buffer array on stack instead, and that seems to work just fine apparently.
+
+ // If the argument was marked as being in device address space, any pointer to member would
+ // be const device, not constant.
+ if (argument_buffer_device_storage_mask & (1u << desc_set))
+ return "const device";
+ else
+ return "constant";
+ }
+ }
+
+ return plain_address_space;
+}
+
+string CompilerMSL::argument_decl(const SPIRFunction::Parameter &arg)
+{
+ auto &var = get<SPIRVariable>(arg.id);
+ auto &type = get_variable_data_type(var);
+ auto &var_type = get<SPIRType>(arg.type);
+ StorageClass type_storage = var_type.storage;
+
+ // If we need to modify the name of the variable, make sure we use the original variable.
+ // Our alias is just a shadow variable.
+ uint32_t name_id = var.self;
+ if (arg.alias_global_variable && var.basevariable)
+ name_id = var.basevariable;
+
+ bool constref = !arg.alias_global_variable && is_pointer(var_type) && arg.write_count == 0;
+ // Framebuffer fetch is plain value, const looks out of place, but it is not wrong.
+ if (type_is_msl_framebuffer_fetch(type))
+ constref = false;
+ else if (type_storage == StorageClassUniformConstant)
+ constref = true;
+
+ bool type_is_image = type.basetype == SPIRType::Image || type.basetype == SPIRType::SampledImage ||
+ type.basetype == SPIRType::Sampler;
+ bool type_is_tlas = type.basetype == SPIRType::AccelerationStructure;
+
+ // For opaque types we handle const later due to descriptor address spaces.
+ const char *cv_qualifier = (constref && !type_is_image) ? "const " : "";
+ string decl;
+
+ // If this is a combined image-sampler for a 2D image with floating-point type,
+ // we emitted the 'spvDynamicImageSampler' type, and this is *not* an alias parameter
+ // for a global, then we need to emit a "dynamic" combined image-sampler.
+ // Unfortunately, this is necessary to properly support passing around
+ // combined image-samplers with Y'CbCr conversions on them.
+ bool is_dynamic_img_sampler = !arg.alias_global_variable && type.basetype == SPIRType::SampledImage &&
+ type.image.dim == Dim2D && type_is_floating_point(get<SPIRType>(type.image.type)) &&
+ spv_function_implementations.count(SPVFuncImplDynamicImageSampler);
+
+ // Allow Metal to use the array<T> template to make arrays a value type
+ string address_space = get_argument_address_space(var);
+ bool builtin = has_decoration(var.self, DecorationBuiltIn);
+ auto builtin_type = BuiltIn(get_decoration(arg.id, DecorationBuiltIn));
+
+ if (var.basevariable && (var.basevariable == stage_in_ptr_var_id || var.basevariable == stage_out_ptr_var_id))
+ decl = join(cv_qualifier, type_to_glsl(type, arg.id));
+ else if (builtin)
+ {
+ // Only use templated array for Clip/Cull distance when feasible.
+ // In other scenarios, we need need to override array length for tess levels (if used as outputs),
+ // or we need to emit the expected type for builtins (uint vs int).
+ auto storage = get<SPIRType>(var.basetype).storage;
+
+ if (storage == StorageClassInput &&
+ (builtin_type == BuiltInTessLevelInner || builtin_type == BuiltInTessLevelOuter))
+ {
+ is_using_builtin_array = false;
+ }
+ else if (builtin_type != BuiltInClipDistance && builtin_type != BuiltInCullDistance)
+ {
+ is_using_builtin_array = true;
+ }
+
+ if (storage == StorageClassOutput && variable_storage_requires_stage_io(storage) &&
+ !is_stage_output_builtin_masked(builtin_type))
+ is_using_builtin_array = true;
+
+ if (is_using_builtin_array)
+ decl = join(cv_qualifier, builtin_type_decl(builtin_type, arg.id));
+ else
+ decl = join(cv_qualifier, type_to_glsl(type, arg.id));
+ }
+ else if (is_var_runtime_size_array(var))
+ {
+ const auto *parent_type = &get<SPIRType>(type.parent_type);
+ auto type_name = type_to_glsl(*parent_type, arg.id);
+ if (type.basetype == SPIRType::AccelerationStructure)
+ decl = join("spvDescriptorArray<", type_name, ">");
+ else if (type_is_image)
+ decl = join("spvDescriptorArray<", cv_qualifier, type_name, ">");
+ else
+ decl = join("spvDescriptorArray<", address_space, " ", type_name, "*>");
+ address_space = "const";
+ }
+ else if ((type_storage == StorageClassUniform || type_storage == StorageClassStorageBuffer) && is_array(type))
+ {
+ is_using_builtin_array = true;
+ decl += join(cv_qualifier, type_to_glsl(type, arg.id), "*");
+ }
+ else if (is_dynamic_img_sampler)
+ {
+ decl = join(cv_qualifier, "spvDynamicImageSampler<", type_to_glsl(get<SPIRType>(type.image.type)), ">");
+ // Mark the variable so that we can handle passing it to another function.
+ set_extended_decoration(arg.id, SPIRVCrossDecorationDynamicImageSampler);
+ }
+ else
+ {
+ // The type is a pointer type we need to emit cv_qualifier late.
+ if (is_pointer(type))
+ {
+ decl = type_to_glsl(type, arg.id);
+ if (*cv_qualifier != '\0')
+ decl += join(" ", cv_qualifier);
+ }
+ else
+ {
+ decl = join(cv_qualifier, type_to_glsl(type, arg.id));
+ }
+ }
+
+ if (!builtin && !is_pointer(var_type) &&
+ (type_storage == StorageClassFunction || type_storage == StorageClassGeneric))
+ {
+ // If the argument is a pure value and not an opaque type, we will pass by value.
+ if (msl_options.force_native_arrays && is_array(type))
+ {
+ // We are receiving an array by value. This is problematic.
+ // We cannot be sure of the target address space since we are supposed to receive a copy,
+ // but this is not possible with MSL without some extra work.
+ // We will have to assume we're getting a reference in thread address space.
+ // If we happen to get a reference in constant address space, the caller must emit a copy and pass that.
+ // Thread const therefore becomes the only logical choice, since we cannot "create" a constant array from
+ // non-constant arrays, but we can create thread const from constant.
+ decl = string("thread const ") + decl;
+ decl += " (&";
+ const char *restrict_kw = to_restrict(name_id, true);
+ if (*restrict_kw)
+ {
+ decl += " ";
+ decl += restrict_kw;
+ }
+ decl += to_expression(name_id);
+ decl += ")";
+ decl += type_to_array_glsl(type, name_id);
+ }
+ else
+ {
+ if (!address_space.empty())
+ decl = join(address_space, " ", decl);
+ decl += " ";
+ decl += to_expression(name_id);
+ }
+ }
+ else if (is_array(type) && !type_is_image)
+ {
+ // Arrays of opaque types are special cased.
+ if (!address_space.empty())
+ decl = join(address_space, " ", decl);
+
+ // spvDescriptorArray absorbs the address space inside the template.
+ if (!is_var_runtime_size_array(var))
+ {
+ const char *argument_buffer_space = descriptor_address_space(name_id, type_storage, nullptr);
+ if (argument_buffer_space)
+ {
+ decl += " ";
+ decl += argument_buffer_space;
+ }
+ }
+
+ // Special case, need to override the array size here if we're using tess level as an argument.
+ if (is_tesc_shader() && builtin &&
+ (builtin_type == BuiltInTessLevelInner || builtin_type == BuiltInTessLevelOuter))
+ {
+ uint32_t array_size = get_physical_tess_level_array_size(builtin_type);
+ if (array_size == 1)
+ {
+ decl += " &";
+ decl += to_expression(name_id);
+ }
+ else
+ {
+ decl += " (&";
+ decl += to_expression(name_id);
+ decl += ")";
+ decl += join("[", array_size, "]");
+ }
+ }
+ else if (is_var_runtime_size_array(var))
+ {
+ decl += " " + to_expression(name_id);
+ }
+ else
+ {
+ auto array_size_decl = type_to_array_glsl(type, name_id);
+ if (array_size_decl.empty())
+ decl += "& ";
+ else
+ decl += " (&";
+
+ const char *restrict_kw = to_restrict(name_id, true);
+ if (*restrict_kw)
+ {
+ decl += " ";
+ decl += restrict_kw;
+ }
+ decl += to_expression(name_id);
+
+ if (!array_size_decl.empty())
+ {
+ decl += ")";
+ decl += array_size_decl;
+ }
+ }
+ }
+ else if (!type_is_image && !type_is_tlas &&
+ (!pull_model_inputs.count(var.basevariable) || type.basetype == SPIRType::Struct))
+ {
+ // If this is going to be a reference to a variable pointer, the address space
+ // for the reference has to go before the '&', but after the '*'.
+ if (!address_space.empty())
+ {
+ if (is_pointer(type))
+ {
+ if (*cv_qualifier == '\0')
+ decl += ' ';
+ decl += join(address_space, " ");
+ }
+ else
+ decl = join(address_space, " ", decl);
+ }
+ decl += "&";
+ decl += " ";
+ decl += to_restrict(name_id, true);
+ decl += to_expression(name_id);
+ }
+ else if (type_is_image || type_is_tlas)
+ {
+ if (is_var_runtime_size_array(var))
+ {
+ decl = address_space + " " + decl + " " + to_expression(name_id);
+ }
+ else if (type.array.empty())
+ {
+ // For non-arrayed types we can just pass opaque descriptors by value.
+ // This fixes problems if descriptors are passed by value from argument buffers and plain descriptors
+ // in same shader.
+ // There is no address space we can actually use, but value will work.
+ // This will break if applications attempt to pass down descriptor arrays as arguments, but
+ // fortunately that is extremely unlikely ...
+ decl += " ";
+ decl += to_expression(name_id);
+ }
+ else
+ {
+ const char *img_address_space = descriptor_address_space(name_id, type_storage, "thread const");
+ decl = join(img_address_space, " ", decl);
+ decl += "& ";
+ decl += to_expression(name_id);
+ }
+ }
+ else
+ {
+ if (!address_space.empty())
+ decl = join(address_space, " ", decl);
+ decl += " ";
+ decl += to_expression(name_id);
+ }
+
+ // Emulate texture2D atomic operations
+ auto *backing_var = maybe_get_backing_variable(name_id);
+ if (backing_var && atomic_image_vars_emulated.count(backing_var->self))
+ {
+ auto &flags = ir.get_decoration_bitset(backing_var->self);
+ const char *cv_flags = decoration_flags_signal_volatile(flags) ? "volatile " : "";
+ decl += join(", ", cv_flags, "device atomic_", type_to_glsl(get<SPIRType>(var_type.image.type), 0));
+ decl += "* " + to_expression(name_id) + "_atomic";
+ }
+
+ is_using_builtin_array = false;
+
+ return decl;
+}
+
+// If we're currently in the entry point function, and the object
+// has a qualified name, use it, otherwise use the standard name.
+string CompilerMSL::to_name(uint32_t id, bool allow_alias) const
+{
+ if (current_function && (current_function->self == ir.default_entry_point))
+ {
+ auto *m = ir.find_meta(id);
+ if (m && !m->decoration.qualified_alias_explicit_override && !m->decoration.qualified_alias.empty())
+ return m->decoration.qualified_alias;
+ }
+ return Compiler::to_name(id, allow_alias);
+}
+
+// Appends the name of the member to the variable qualifier string, except for Builtins.
+string CompilerMSL::append_member_name(const string &qualifier, const SPIRType &type, uint32_t index)
+{
+ // Don't qualify Builtin names because they are unique and are treated as such when building expressions
+ BuiltIn builtin = BuiltInMax;
+ if (is_member_builtin(type, index, &builtin))
+ return builtin_to_glsl(builtin, type.storage);
+
+ // Strip any underscore prefix from member name
+ string mbr_name = to_member_name(type, index);
+ size_t startPos = mbr_name.find_first_not_of("_");
+ mbr_name = (startPos != string::npos) ? mbr_name.substr(startPos) : "";
+ return join(qualifier, "_", mbr_name);
+}
+
+// Ensures that the specified name is permanently usable by prepending a prefix
+// if the first chars are _ and a digit, which indicate a transient name.
+string CompilerMSL::ensure_valid_name(string name, string pfx)
+{
+ return (name.size() >= 2 && name[0] == '_' && isdigit(name[1])) ? (pfx + name) : name;
+}
+
+const std::unordered_set<std::string> &CompilerMSL::get_reserved_keyword_set()
+{
+ static const unordered_set<string> keywords = {
+ "kernel",
+ "vertex",
+ "fragment",
+ "compute",
+ "constant",
+ "device",
+ "bias",
+ "level",
+ "gradient2d",
+ "gradientcube",
+ "gradient3d",
+ "min_lod_clamp",
+ "assert",
+ "VARIABLE_TRACEPOINT",
+ "STATIC_DATA_TRACEPOINT",
+ "STATIC_DATA_TRACEPOINT_V",
+ "METAL_ALIGN",
+ "METAL_ASM",
+ "METAL_CONST",
+ "METAL_DEPRECATED",
+ "METAL_ENABLE_IF",
+ "METAL_FUNC",
+ "METAL_INTERNAL",
+ "METAL_NON_NULL_RETURN",
+ "METAL_NORETURN",
+ "METAL_NOTHROW",
+ "METAL_PURE",
+ "METAL_UNAVAILABLE",
+ "METAL_IMPLICIT",
+ "METAL_EXPLICIT",
+ "METAL_CONST_ARG",
+ "METAL_ARG_UNIFORM",
+ "METAL_ZERO_ARG",
+ "METAL_VALID_LOD_ARG",
+ "METAL_VALID_LEVEL_ARG",
+ "METAL_VALID_STORE_ORDER",
+ "METAL_VALID_LOAD_ORDER",
+ "METAL_VALID_COMPARE_EXCHANGE_FAILURE_ORDER",
+ "METAL_COMPATIBLE_COMPARE_EXCHANGE_ORDERS",
+ "METAL_VALID_RENDER_TARGET",
+ "is_function_constant_defined",
+ "CHAR_BIT",
+ "SCHAR_MAX",
+ "SCHAR_MIN",
+ "UCHAR_MAX",
+ "CHAR_MAX",
+ "CHAR_MIN",
+ "USHRT_MAX",
+ "SHRT_MAX",
+ "SHRT_MIN",
+ "UINT_MAX",
+ "INT_MAX",
+ "INT_MIN",
+ "FLT_DIG",
+ "FLT_MANT_DIG",
+ "FLT_MAX_10_EXP",
+ "FLT_MAX_EXP",
+ "FLT_MIN_10_EXP",
+ "FLT_MIN_EXP",
+ "FLT_RADIX",
+ "FLT_MAX",
+ "FLT_MIN",
+ "FLT_EPSILON",
+ "FP_ILOGB0",
+ "FP_ILOGBNAN",
+ "MAXFLOAT",
+ "HUGE_VALF",
+ "INFINITY",
+ "NAN",
+ "M_E_F",
+ "M_LOG2E_F",
+ "M_LOG10E_F",
+ "M_LN2_F",
+ "M_LN10_F",
+ "M_PI_F",
+ "M_PI_2_F",
+ "M_PI_4_F",
+ "M_1_PI_F",
+ "M_2_PI_F",
+ "M_2_SQRTPI_F",
+ "M_SQRT2_F",
+ "M_SQRT1_2_F",
+ "HALF_DIG",
+ "HALF_MANT_DIG",
+ "HALF_MAX_10_EXP",
+ "HALF_MAX_EXP",
+ "HALF_MIN_10_EXP",
+ "HALF_MIN_EXP",
+ "HALF_RADIX",
+ "HALF_MAX",
+ "HALF_MIN",
+ "HALF_EPSILON",
+ "MAXHALF",
+ "HUGE_VALH",
+ "M_E_H",
+ "M_LOG2E_H",
+ "M_LOG10E_H",
+ "M_LN2_H",
+ "M_LN10_H",
+ "M_PI_H",
+ "M_PI_2_H",
+ "M_PI_4_H",
+ "M_1_PI_H",
+ "M_2_PI_H",
+ "M_2_SQRTPI_H",
+ "M_SQRT2_H",
+ "M_SQRT1_2_H",
+ "DBL_DIG",
+ "DBL_MANT_DIG",
+ "DBL_MAX_10_EXP",
+ "DBL_MAX_EXP",
+ "DBL_MIN_10_EXP",
+ "DBL_MIN_EXP",
+ "DBL_RADIX",
+ "DBL_MAX",
+ "DBL_MIN",
+ "DBL_EPSILON",
+ "HUGE_VAL",
+ "M_E",
+ "M_LOG2E",
+ "M_LOG10E",
+ "M_LN2",
+ "M_LN10",
+ "M_PI",
+ "M_PI_2",
+ "M_PI_4",
+ "M_1_PI",
+ "M_2_PI",
+ "M_2_SQRTPI",
+ "M_SQRT2",
+ "M_SQRT1_2",
+ "quad_broadcast",
+ "thread",
+ "threadgroup",
+ };
+
+ return keywords;
+}
+
+const std::unordered_set<std::string> &CompilerMSL::get_illegal_func_names()
+{
+ static const unordered_set<string> illegal_func_names = {
+ "main",
+ "saturate",
+ "assert",
+ "fmin3",
+ "fmax3",
+ "divide",
+ "median3",
+ "VARIABLE_TRACEPOINT",
+ "STATIC_DATA_TRACEPOINT",
+ "STATIC_DATA_TRACEPOINT_V",
+ "METAL_ALIGN",
+ "METAL_ASM",
+ "METAL_CONST",
+ "METAL_DEPRECATED",
+ "METAL_ENABLE_IF",
+ "METAL_FUNC",
+ "METAL_INTERNAL",
+ "METAL_NON_NULL_RETURN",
+ "METAL_NORETURN",
+ "METAL_NOTHROW",
+ "METAL_PURE",
+ "METAL_UNAVAILABLE",
+ "METAL_IMPLICIT",
+ "METAL_EXPLICIT",
+ "METAL_CONST_ARG",
+ "METAL_ARG_UNIFORM",
+ "METAL_ZERO_ARG",
+ "METAL_VALID_LOD_ARG",
+ "METAL_VALID_LEVEL_ARG",
+ "METAL_VALID_STORE_ORDER",
+ "METAL_VALID_LOAD_ORDER",
+ "METAL_VALID_COMPARE_EXCHANGE_FAILURE_ORDER",
+ "METAL_COMPATIBLE_COMPARE_EXCHANGE_ORDERS",
+ "METAL_VALID_RENDER_TARGET",
+ "is_function_constant_defined",
+ "CHAR_BIT",
+ "SCHAR_MAX",
+ "SCHAR_MIN",
+ "UCHAR_MAX",
+ "CHAR_MAX",
+ "CHAR_MIN",
+ "USHRT_MAX",
+ "SHRT_MAX",
+ "SHRT_MIN",
+ "UINT_MAX",
+ "INT_MAX",
+ "INT_MIN",
+ "FLT_DIG",
+ "FLT_MANT_DIG",
+ "FLT_MAX_10_EXP",
+ "FLT_MAX_EXP",
+ "FLT_MIN_10_EXP",
+ "FLT_MIN_EXP",
+ "FLT_RADIX",
+ "FLT_MAX",
+ "FLT_MIN",
+ "FLT_EPSILON",
+ "FP_ILOGB0",
+ "FP_ILOGBNAN",
+ "MAXFLOAT",
+ "HUGE_VALF",
+ "INFINITY",
+ "NAN",
+ "M_E_F",
+ "M_LOG2E_F",
+ "M_LOG10E_F",
+ "M_LN2_F",
+ "M_LN10_F",
+ "M_PI_F",
+ "M_PI_2_F",
+ "M_PI_4_F",
+ "M_1_PI_F",
+ "M_2_PI_F",
+ "M_2_SQRTPI_F",
+ "M_SQRT2_F",
+ "M_SQRT1_2_F",
+ "HALF_DIG",
+ "HALF_MANT_DIG",
+ "HALF_MAX_10_EXP",
+ "HALF_MAX_EXP",
+ "HALF_MIN_10_EXP",
+ "HALF_MIN_EXP",
+ "HALF_RADIX",
+ "HALF_MAX",
+ "HALF_MIN",
+ "HALF_EPSILON",
+ "MAXHALF",
+ "HUGE_VALH",
+ "M_E_H",
+ "M_LOG2E_H",
+ "M_LOG10E_H",
+ "M_LN2_H",
+ "M_LN10_H",
+ "M_PI_H",
+ "M_PI_2_H",
+ "M_PI_4_H",
+ "M_1_PI_H",
+ "M_2_PI_H",
+ "M_2_SQRTPI_H",
+ "M_SQRT2_H",
+ "M_SQRT1_2_H",
+ "DBL_DIG",
+ "DBL_MANT_DIG",
+ "DBL_MAX_10_EXP",
+ "DBL_MAX_EXP",
+ "DBL_MIN_10_EXP",
+ "DBL_MIN_EXP",
+ "DBL_RADIX",
+ "DBL_MAX",
+ "DBL_MIN",
+ "DBL_EPSILON",
+ "HUGE_VAL",
+ "M_E",
+ "M_LOG2E",
+ "M_LOG10E",
+ "M_LN2",
+ "M_LN10",
+ "M_PI",
+ "M_PI_2",
+ "M_PI_4",
+ "M_1_PI",
+ "M_2_PI",
+ "M_2_SQRTPI",
+ "M_SQRT2",
+ "M_SQRT1_2",
+ };
+
+ return illegal_func_names;
+}
+
+// Replace all names that match MSL keywords or Metal Standard Library functions.
+void CompilerMSL::replace_illegal_names()
+{
+ // FIXME: MSL and GLSL are doing two different things here.
+ // Agree on convention and remove this override.
+ auto &keywords = get_reserved_keyword_set();
+ auto &illegal_func_names = get_illegal_func_names();
+
+ ir.for_each_typed_id<SPIRVariable>([&](uint32_t self, SPIRVariable &) {
+ auto *meta = ir.find_meta(self);
+ if (!meta)
+ return;
+
+ auto &dec = meta->decoration;
+ if (keywords.find(dec.alias) != end(keywords))
+ dec.alias += "0";
+ });
+
+ ir.for_each_typed_id<SPIRFunction>([&](uint32_t self, SPIRFunction &) {
+ auto *meta = ir.find_meta(self);
+ if (!meta)
+ return;
+
+ auto &dec = meta->decoration;
+ if (illegal_func_names.find(dec.alias) != end(illegal_func_names))
+ dec.alias += "0";
+ });
+
+ ir.for_each_typed_id<SPIRType>([&](uint32_t self, SPIRType &) {
+ auto *meta = ir.find_meta(self);
+ if (!meta)
+ return;
+
+ for (auto &mbr_dec : meta->members)
+ if (keywords.find(mbr_dec.alias) != end(keywords))
+ mbr_dec.alias += "0";
+ });
+
+ CompilerGLSL::replace_illegal_names();
+}
+
+void CompilerMSL::replace_illegal_entry_point_names()
+{
+ auto &illegal_func_names = get_illegal_func_names();
+
+ // It is important to this before we fixup identifiers,
+ // since if ep_name is reserved, we will need to fix that up,
+ // and then copy alias back into entry.name after the fixup.
+ for (auto &entry : ir.entry_points)
+ {
+ // Change both the entry point name and the alias, to keep them synced.
+ string &ep_name = entry.second.name;
+ if (illegal_func_names.find(ep_name) != end(illegal_func_names))
+ ep_name += "0";
+
+ ir.meta[entry.first].decoration.alias = ep_name;
+ }
+}
+
+void CompilerMSL::sync_entry_point_aliases_and_names()
+{
+ for (auto &entry : ir.entry_points)
+ entry.second.name = ir.meta[entry.first].decoration.alias;
+}
+
+string CompilerMSL::to_member_reference(uint32_t base, const SPIRType &type, uint32_t index, bool ptr_chain_is_resolved)
+{
+ auto *var = maybe_get_backing_variable(base);
+ // If this is a buffer array, we have to dereference the buffer pointers.
+ // Otherwise, if this is a pointer expression, dereference it.
+
+ bool declared_as_pointer = false;
+
+ if (var)
+ {
+ // Only allow -> dereference for block types. This is so we get expressions like
+ // buffer[i]->first_member.second_member, rather than buffer[i]->first->second.
+ const bool is_block =
+ has_decoration(type.self, DecorationBlock) || has_decoration(type.self, DecorationBufferBlock);
+
+ bool is_buffer_variable =
+ is_block && (var->storage == StorageClassUniform || var->storage == StorageClassStorageBuffer);
+ declared_as_pointer = is_buffer_variable && is_array(get_pointee_type(var->basetype));
+ }
+
+ if (declared_as_pointer || (!ptr_chain_is_resolved && should_dereference(base)))
+ return join("->", to_member_name(type, index));
+ else
+ return join(".", to_member_name(type, index));
+}
+
+string CompilerMSL::to_qualifiers_glsl(uint32_t id)
+{
+ string quals;
+
+ auto *var = maybe_get<SPIRVariable>(id);
+ auto &type = expression_type(id);
+
+ if (type.storage == StorageClassWorkgroup || (var && variable_decl_is_remapped_storage(*var, StorageClassWorkgroup)))
+ quals += "threadgroup ";
+
+ return quals;
+}
+
+// The optional id parameter indicates the object whose type we are trying
+// to find the description for. It is optional. Most type descriptions do not
+// depend on a specific object's use of that type.
+string CompilerMSL::type_to_glsl(const SPIRType &type, uint32_t id, bool member)
+{
+ string type_name;
+
+ // Pointer?
+ if (is_pointer(type) || type_is_array_of_pointers(type))
+ {
+ assert(type.pointer_depth > 0);
+
+ const char *restrict_kw;
+
+ auto type_address_space = get_type_address_space(type, id);
+ const auto *p_parent_type = &get<SPIRType>(type.parent_type);
+
+ // If we're wrapping buffer descriptors in a spvDescriptorArray, we'll have to handle it as a special case.
+ if (member && id)
+ {
+ auto &var = get<SPIRVariable>(id);
+ if (is_var_runtime_size_array(var) && is_runtime_size_array(*p_parent_type))
+ {
+ const bool ssbo = has_decoration(p_parent_type->self, DecorationBufferBlock);
+ bool buffer_desc =
+ (var.storage == StorageClassStorageBuffer || ssbo) &&
+ msl_options.runtime_array_rich_descriptor;
+
+ const char *wrapper_type = buffer_desc ? "spvBufferDescriptor" : "spvDescriptor";
+ add_spv_func_and_recompile(SPVFuncImplVariableDescriptorArray);
+ add_spv_func_and_recompile(buffer_desc ? SPVFuncImplVariableSizedDescriptor : SPVFuncImplVariableDescriptor);
+
+ type_name = join(wrapper_type, "<", type_address_space, " ", type_to_glsl(*p_parent_type, id), " *>");
+ return type_name;
+ }
+ }
+
+ // Work around C pointer qualifier rules. If glsl_type is a pointer type as well
+ // we'll need to emit the address space to the right.
+ // We could always go this route, but it makes the code unnatural.
+ // Prefer emitting thread T *foo over T thread* foo since it's more readable,
+ // but we'll have to emit thread T * thread * T constant bar; for example.
+ if (is_pointer(type) && is_pointer(*p_parent_type))
+ type_name = join(type_to_glsl(*p_parent_type, id), " ", type_address_space, " ");
+ else
+ {
+ // Since this is not a pointer-to-pointer, ensure we've dug down to the base type.
+ // Some situations chain pointers even though they are not formally pointers-of-pointers.
+ while (is_pointer(*p_parent_type))
+ p_parent_type = &get<SPIRType>(p_parent_type->parent_type);
+
+ // If we're emitting BDA, just use the templated type.
+ // Emitting builtin arrays need a lot of cooperation with other code to ensure
+ // the C-style nesting works right.
+ // FIXME: This is somewhat of a hack.
+ bool old_is_using_builtin_array = is_using_builtin_array;
+ if (is_physical_pointer(type))
+ is_using_builtin_array = false;
+
+ type_name = join(type_address_space, " ", type_to_glsl(*p_parent_type, id));
+
+ is_using_builtin_array = old_is_using_builtin_array;
+ }
+
+ switch (type.basetype)
+ {
+ case SPIRType::Image:
+ case SPIRType::SampledImage:
+ case SPIRType::Sampler:
+ // These are handles.
+ break;
+ default:
+ // Anything else can be a raw pointer.
+ type_name += "*";
+ restrict_kw = to_restrict(id, false);
+ if (*restrict_kw)
+ {
+ type_name += " ";
+ type_name += restrict_kw;
+ }
+ break;
+ }
+ return type_name;
+ }
+
+ switch (type.basetype)
+ {
+ case SPIRType::Struct:
+ // Need OpName lookup here to get a "sensible" name for a struct.
+ // Allow Metal to use the array<T> template to make arrays a value type
+ type_name = to_name(type.self);
+ break;
+
+ case SPIRType::Image:
+ case SPIRType::SampledImage:
+ return image_type_glsl(type, id, member);
+
+ case SPIRType::Sampler:
+ return sampler_type(type, id, member);
+
+ case SPIRType::Void:
+ return "void";
+
+ case SPIRType::AtomicCounter:
+ return "atomic_uint";
+
+ case SPIRType::ControlPointArray:
+ return join("patch_control_point<", type_to_glsl(get<SPIRType>(type.parent_type), id), ">");
+
+ case SPIRType::Interpolant:
+ return join("interpolant<", type_to_glsl(get<SPIRType>(type.parent_type), id), ", interpolation::",
+ has_decoration(type.self, DecorationNoPerspective) ? "no_perspective" : "perspective", ">");
+
+ // Scalars
+ case SPIRType::Boolean:
+ {
+ auto *var = maybe_get_backing_variable(id);
+ if (var && var->basevariable)
+ var = &get<SPIRVariable>(var->basevariable);
+
+ // Need to special-case threadgroup booleans. They are supposed to be logical
+ // storage, but MSL compilers will sometimes crash if you use threadgroup bool.
+ // Workaround this by using 16-bit types instead and fixup on load-store to this data.
+ if ((var && var->storage == StorageClassWorkgroup) || type.storage == StorageClassWorkgroup || member)
+ type_name = "short";
+ else
+ type_name = "bool";
+ break;
+ }
+
+ case SPIRType::Char:
+ case SPIRType::SByte:
+ type_name = "char";
+ break;
+ case SPIRType::UByte:
+ type_name = "uchar";
+ break;
+ case SPIRType::Short:
+ type_name = "short";
+ break;
+ case SPIRType::UShort:
+ type_name = "ushort";
+ break;
+ case SPIRType::Int:
+ type_name = "int";
+ break;
+ case SPIRType::UInt:
+ type_name = "uint";
+ break;
+ case SPIRType::Int64:
+ if (!msl_options.supports_msl_version(2, 2))
+ SPIRV_CROSS_THROW("64-bit integers are only supported in MSL 2.2 and above.");
+ type_name = "long";
+ break;
+ case SPIRType::UInt64:
+ if (!msl_options.supports_msl_version(2, 2))
+ SPIRV_CROSS_THROW("64-bit integers are only supported in MSL 2.2 and above.");
+ type_name = "ulong";
+ break;
+ case SPIRType::Half:
+ type_name = "half";
+ break;
+ case SPIRType::Float:
+ type_name = "float";
+ break;
+ case SPIRType::Double:
+ type_name = "double"; // Currently unsupported
+ break;
+ case SPIRType::AccelerationStructure:
+ if (msl_options.supports_msl_version(2, 4))
+ type_name = "raytracing::acceleration_structure<raytracing::instancing>";
+ else if (msl_options.supports_msl_version(2, 3))
+ type_name = "raytracing::instance_acceleration_structure";
+ else
+ SPIRV_CROSS_THROW("Acceleration Structure Type is supported in MSL 2.3 and above.");
+ break;
+ case SPIRType::RayQuery:
+ return "raytracing::intersection_query<raytracing::instancing, raytracing::triangle_data>";
+
+ default:
+ return "unknown_type";
+ }
+
+ // Matrix?
+ if (type.columns > 1)
+ {
+ auto *var = maybe_get_backing_variable(id);
+ if (var && var->basevariable)
+ var = &get<SPIRVariable>(var->basevariable);
+
+ // Need to special-case threadgroup matrices. Due to an oversight, Metal's
+ // matrix struct prior to Metal 3 lacks constructors in the threadgroup AS,
+ // preventing us from default-constructing or initializing matrices in threadgroup storage.
+ // Work around this by using our own type as storage.
+ if (((var && var->storage == StorageClassWorkgroup) || type.storage == StorageClassWorkgroup) &&
+ !msl_options.supports_msl_version(3, 0))
+ {
+ add_spv_func_and_recompile(SPVFuncImplStorageMatrix);
+ type_name = "spvStorage_" + type_name;
+ }
+
+ type_name += to_string(type.columns) + "x";
+ }
+
+ // Vector or Matrix?
+ if (type.vecsize > 1)
+ type_name += to_string(type.vecsize);
+
+ if (type.array.empty() || using_builtin_array())
+ {
+ return type_name;
+ }
+ else
+ {
+ // Allow Metal to use the array<T> template to make arrays a value type
+ add_spv_func_and_recompile(SPVFuncImplUnsafeArray);
+ string res;
+ string sizes;
+
+ for (uint32_t i = 0; i < uint32_t(type.array.size()); i++)
+ {
+ res += "spvUnsafeArray<";
+ sizes += ", ";
+ sizes += to_array_size(type, i);
+ sizes += ">";
+ }
+
+ res += type_name + sizes;
+ return res;
+ }
+}
+
+string CompilerMSL::type_to_glsl(const SPIRType &type, uint32_t id)
+{
+ return type_to_glsl(type, id, false);
+}
+
+string CompilerMSL::type_to_array_glsl(const SPIRType &type, uint32_t variable_id)
+{
+ // Allow Metal to use the array<T> template to make arrays a value type
+ switch (type.basetype)
+ {
+ case SPIRType::AtomicCounter:
+ case SPIRType::ControlPointArray:
+ case SPIRType::RayQuery:
+ return CompilerGLSL::type_to_array_glsl(type, variable_id);
+
+ default:
+ if (type_is_array_of_pointers(type) || using_builtin_array())
+ {
+ const SPIRVariable *var = variable_id ? &get<SPIRVariable>(variable_id) : nullptr;
+ if (var && (var->storage == StorageClassUniform || var->storage == StorageClassStorageBuffer) &&
+ is_array(get_variable_data_type(*var)))
+ {
+ return join("[", get_resource_array_size(type, variable_id), "]");
+ }
+ else
+ return CompilerGLSL::type_to_array_glsl(type, variable_id);
+ }
+ else
+ return "";
+ }
+}
+
+string CompilerMSL::constant_op_expression(const SPIRConstantOp &cop)
+{
+ switch (cop.opcode)
+ {
+ case OpQuantizeToF16:
+ add_spv_func_and_recompile(SPVFuncImplQuantizeToF16);
+ return join("spvQuantizeToF16(", to_expression(cop.arguments[0]), ")");
+ default:
+ return CompilerGLSL::constant_op_expression(cop);
+ }
+}
+
+bool CompilerMSL::variable_decl_is_remapped_storage(const SPIRVariable &variable, spv::StorageClass storage) const
+{
+ if (variable.storage == storage)
+ return true;
+
+ if (storage == StorageClassWorkgroup)
+ {
+ // Specially masked IO block variable.
+ // Normally, we will never access IO blocks directly here.
+ // The only scenario which that should occur is with a masked IO block.
+ if (is_tesc_shader() && variable.storage == StorageClassOutput &&
+ has_decoration(get<SPIRType>(variable.basetype).self, DecorationBlock))
+ {
+ return true;
+ }
+
+ return variable.storage == StorageClassOutput && is_tesc_shader() && is_stage_output_variable_masked(variable);
+ }
+ else if (storage == StorageClassStorageBuffer)
+ {
+ // These builtins are passed directly; we don't want to use remapping
+ // for them.
+ auto builtin = (BuiltIn)get_decoration(variable.self, DecorationBuiltIn);
+ if (is_tese_shader() && is_builtin_variable(variable) && (builtin == BuiltInTessCoord || builtin == BuiltInPrimitiveId))
+ return false;
+
+ // We won't be able to catch writes to control point outputs here since variable
+ // refers to a function local pointer.
+ // This is fine, as there cannot be concurrent writers to that memory anyways,
+ // so we just ignore that case.
+
+ return (variable.storage == StorageClassOutput || variable.storage == StorageClassInput) &&
+ !variable_storage_requires_stage_io(variable.storage) &&
+ (variable.storage != StorageClassOutput || !is_stage_output_variable_masked(variable));
+ }
+ else
+ {
+ return false;
+ }
+}
+
+// GCC workaround of lambdas calling protected funcs
+std::string CompilerMSL::variable_decl(const SPIRType &type, const std::string &name, uint32_t id)
+{
+ return CompilerGLSL::variable_decl(type, name, id);
+}
+
+std::string CompilerMSL::sampler_type(const SPIRType &type, uint32_t id, bool member)
+{
+ auto *var = maybe_get<SPIRVariable>(id);
+ if (var && var->basevariable)
+ {
+ // Check against the base variable, and not a fake ID which might have been generated for this variable.
+ id = var->basevariable;
+ }
+
+ if (!type.array.empty())
+ {
+ if (!msl_options.supports_msl_version(2))
+ SPIRV_CROSS_THROW("MSL 2.0 or greater is required for arrays of samplers.");
+
+ if (type.array.size() > 1)
+ SPIRV_CROSS_THROW("Arrays of arrays of samplers are not supported in MSL.");
+
+ // Arrays of samplers in MSL must be declared with a special array<T, N> syntax ala C++11 std::array.
+ // If we have a runtime array, it could be a variable-count descriptor set binding.
+ auto &parent = get<SPIRType>(get_pointee_type(type).parent_type);
+ uint32_t array_size = get_resource_array_size(type, id);
+
+ if (array_size == 0)
+ {
+ add_spv_func_and_recompile(SPVFuncImplVariableDescriptor);
+ add_spv_func_and_recompile(SPVFuncImplVariableDescriptorArray);
+
+ const char *descriptor_wrapper = processing_entry_point ? "const device spvDescriptor" : "const spvDescriptorArray";
+ if (member)
+ descriptor_wrapper = "spvDescriptor";
+ return join(descriptor_wrapper, "<", sampler_type(parent, id, false), ">",
+ processing_entry_point ? "*" : "");
+ }
+ else
+ {
+ return join("array<", sampler_type(parent, id, false), ", ", array_size, ">");
+ }
+ }
+ else
+ return "sampler";
+}
+
+// Returns an MSL string describing the SPIR-V image type
+string CompilerMSL::image_type_glsl(const SPIRType &type, uint32_t id, bool member)
+{
+ auto *var = maybe_get<SPIRVariable>(id);
+ if (var && var->basevariable)
+ {
+ // For comparison images, check against the base variable,
+ // and not the fake ID which might have been generated for this variable.
+ id = var->basevariable;
+ }
+
+ if (!type.array.empty())
+ {
+ uint32_t major = 2, minor = 0;
+ if (msl_options.is_ios())
+ {
+ major = 1;
+ minor = 2;
+ }
+ if (!msl_options.supports_msl_version(major, minor))
+ {
+ if (msl_options.is_ios())
+ SPIRV_CROSS_THROW("MSL 1.2 or greater is required for arrays of textures.");
+ else
+ SPIRV_CROSS_THROW("MSL 2.0 or greater is required for arrays of textures.");
+ }
+
+ if (type.array.size() > 1)
+ SPIRV_CROSS_THROW("Arrays of arrays of textures are not supported in MSL.");
+
+ // Arrays of images in MSL must be declared with a special array<T, N> syntax ala C++11 std::array.
+ // If we have a runtime array, it could be a variable-count descriptor set binding.
+ auto &parent = get<SPIRType>(get_pointee_type(type).parent_type);
+ uint32_t array_size = get_resource_array_size(type, id);
+
+ if (array_size == 0)
+ {
+ add_spv_func_and_recompile(SPVFuncImplVariableDescriptor);
+ add_spv_func_and_recompile(SPVFuncImplVariableDescriptorArray);
+ const char *descriptor_wrapper = processing_entry_point ? "const device spvDescriptor" : "const spvDescriptorArray";
+ if (member)
+ {
+ descriptor_wrapper = "spvDescriptor";
+ // This requires a specialized wrapper type that packs image and sampler side by side.
+ // It is possible in theory.
+ if (type.basetype == SPIRType::SampledImage)
+ SPIRV_CROSS_THROW("Argument buffer runtime array currently not supported for combined image sampler.");
+ }
+ return join(descriptor_wrapper, "<", image_type_glsl(parent, id, false), ">",
+ processing_entry_point ? "*" : "");
+ }
+ else
+ {
+ return join("array<", image_type_glsl(parent, id, false), ", ", array_size, ">");
+ }
+ }
+
+ string img_type_name;
+
+ auto &img_type = type.image;
+
+ if (is_depth_image(type, id))
+ {
+ switch (img_type.dim)
+ {
+ case Dim1D:
+ case Dim2D:
+ if (img_type.dim == Dim1D && !msl_options.texture_1D_as_2D)
+ {
+ // Use a native Metal 1D texture
+ img_type_name += "depth1d_unsupported_by_metal";
+ break;
+ }
+
+ if (img_type.ms && img_type.arrayed)
+ {
+ if (!msl_options.supports_msl_version(2, 1))
+ SPIRV_CROSS_THROW("Multisampled array textures are supported from 2.1.");
+ img_type_name += "depth2d_ms_array";
+ }
+ else if (img_type.ms)
+ img_type_name += "depth2d_ms";
+ else if (img_type.arrayed)
+ img_type_name += "depth2d_array";
+ else
+ img_type_name += "depth2d";
+ break;
+ case Dim3D:
+ img_type_name += "depth3d_unsupported_by_metal";
+ break;
+ case DimCube:
+ if (!msl_options.emulate_cube_array)
+ img_type_name += (img_type.arrayed ? "depthcube_array" : "depthcube");
+ else
+ img_type_name += (img_type.arrayed ? "depth2d_array" : "depthcube");
+ break;
+ default:
+ img_type_name += "unknown_depth_texture_type";
+ break;
+ }
+ }
+ else
+ {
+ switch (img_type.dim)
+ {
+ case DimBuffer:
+ if (img_type.ms || img_type.arrayed)
+ SPIRV_CROSS_THROW("Cannot use texel buffers with multisampling or array layers.");
+
+ if (msl_options.texture_buffer_native)
+ {
+ if (!msl_options.supports_msl_version(2, 1))
+ SPIRV_CROSS_THROW("Native texture_buffer type is only supported in MSL 2.1.");
+ img_type_name = "texture_buffer";
+ }
+ else
+ img_type_name += "texture2d";
+ break;
+ case Dim1D:
+ case Dim2D:
+ case DimSubpassData:
+ {
+ bool subpass_array =
+ img_type.dim == DimSubpassData && (msl_options.multiview || msl_options.arrayed_subpass_input);
+ if (img_type.dim == Dim1D && !msl_options.texture_1D_as_2D)
+ {
+ // Use a native Metal 1D texture
+ img_type_name += (img_type.arrayed ? "texture1d_array" : "texture1d");
+ break;
+ }
+
+ // Use Metal's native frame-buffer fetch API for subpass inputs.
+ if (type_is_msl_framebuffer_fetch(type))
+ {
+ auto img_type_4 = get<SPIRType>(img_type.type);
+ img_type_4.vecsize = 4;
+ return type_to_glsl(img_type_4);
+ }
+ if (img_type.ms && (img_type.arrayed || subpass_array))
+ {
+ if (!msl_options.supports_msl_version(2, 1))
+ SPIRV_CROSS_THROW("Multisampled array textures are supported from 2.1.");
+ img_type_name += "texture2d_ms_array";
+ }
+ else if (img_type.ms)
+ img_type_name += "texture2d_ms";
+ else if (img_type.arrayed || subpass_array)
+ img_type_name += "texture2d_array";
+ else
+ img_type_name += "texture2d";
+ break;
+ }
+ case Dim3D:
+ img_type_name += "texture3d";
+ break;
+ case DimCube:
+ if (!msl_options.emulate_cube_array)
+ img_type_name += (img_type.arrayed ? "texturecube_array" : "texturecube");
+ else
+ img_type_name += (img_type.arrayed ? "texture2d_array" : "texturecube");
+ break;
+ default:
+ img_type_name += "unknown_texture_type";
+ break;
+ }
+ }
+
+ // Append the pixel type
+ img_type_name += "<";
+ img_type_name += type_to_glsl(get<SPIRType>(img_type.type));
+
+ // For unsampled images, append the sample/read/write access qualifier.
+ // For kernel images, the access qualifier my be supplied directly by SPIR-V.
+ // Otherwise it may be set based on whether the image is read from or written to within the shader.
+ if (type.basetype == SPIRType::Image && type.image.sampled == 2 && type.image.dim != DimSubpassData)
+ {
+ switch (img_type.access)
+ {
+ case AccessQualifierReadOnly:
+ img_type_name += ", access::read";
+ break;
+
+ case AccessQualifierWriteOnly:
+ img_type_name += ", access::write";
+ break;
+
+ case AccessQualifierReadWrite:
+ img_type_name += ", access::read_write";
+ break;
+
+ default:
+ {
+ auto *p_var = maybe_get_backing_variable(id);
+ if (p_var && p_var->basevariable)
+ p_var = maybe_get<SPIRVariable>(p_var->basevariable);
+ if (p_var && !has_decoration(p_var->self, DecorationNonWritable))
+ {
+ img_type_name += ", access::";
+
+ if (!has_decoration(p_var->self, DecorationNonReadable))
+ img_type_name += "read_";
+
+ img_type_name += "write";
+ }
+ break;
+ }
+ }
+ }
+
+ img_type_name += ">";
+
+ return img_type_name;
+}
+
+void CompilerMSL::emit_subgroup_op(const Instruction &i)
+{
+ const uint32_t *ops = stream(i);
+ auto op = static_cast<Op>(i.op);
+
+ if (msl_options.emulate_subgroups)
+ {
+ // In this mode, only the GroupNonUniform cap is supported. The only op
+ // we need to handle, then, is OpGroupNonUniformElect.
+ if (op != OpGroupNonUniformElect)
+ SPIRV_CROSS_THROW("Subgroup emulation does not support operations other than Elect.");
+ // In this mode, the subgroup size is assumed to be one, so every invocation
+ // is elected.
+ emit_op(ops[0], ops[1], "true", true);
+ return;
+ }
+
+ // Metal 2.0 is required. iOS only supports quad ops on 11.0 (2.0), with
+ // full support in 13.0 (2.2). macOS only supports broadcast and shuffle on
+ // 10.13 (2.0), with full support in 10.14 (2.1).
+ // Note that Apple GPUs before A13 make no distinction between a quad-group
+ // and a SIMD-group; all SIMD-groups are quad-groups on those.
+ if (!msl_options.supports_msl_version(2))
+ SPIRV_CROSS_THROW("Subgroups are only supported in Metal 2.0 and up.");
+
+ // If we need to do implicit bitcasts, make sure we do it with the correct type.
+ uint32_t integer_width = get_integer_width_for_instruction(i);
+ auto int_type = to_signed_basetype(integer_width);
+ auto uint_type = to_unsigned_basetype(integer_width);
+
+ if (msl_options.is_ios() && (!msl_options.supports_msl_version(2, 3) || !msl_options.ios_use_simdgroup_functions))
+ {
+ switch (op)
+ {
+ default:
+ SPIRV_CROSS_THROW("Subgroup ops beyond broadcast, ballot, and shuffle on iOS require Metal 2.3 and up.");
+ case OpGroupNonUniformBroadcastFirst:
+ if (!msl_options.supports_msl_version(2, 2))
+ SPIRV_CROSS_THROW("BroadcastFirst on iOS requires Metal 2.2 and up.");
+ break;
+ case OpGroupNonUniformElect:
+ if (!msl_options.supports_msl_version(2, 2))
+ SPIRV_CROSS_THROW("Elect on iOS requires Metal 2.2 and up.");
+ break;
+ case OpGroupNonUniformAny:
+ case OpGroupNonUniformAll:
+ case OpGroupNonUniformAllEqual:
+ case OpGroupNonUniformBallot:
+ case OpGroupNonUniformInverseBallot:
+ case OpGroupNonUniformBallotBitExtract:
+ case OpGroupNonUniformBallotFindLSB:
+ case OpGroupNonUniformBallotFindMSB:
+ case OpGroupNonUniformBallotBitCount:
+ case OpSubgroupBallotKHR:
+ case OpSubgroupAllKHR:
+ case OpSubgroupAnyKHR:
+ case OpSubgroupAllEqualKHR:
+ if (!msl_options.supports_msl_version(2, 2))
+ SPIRV_CROSS_THROW("Ballot ops on iOS requires Metal 2.2 and up.");
+ break;
+ case OpGroupNonUniformBroadcast:
+ case OpGroupNonUniformShuffle:
+ case OpGroupNonUniformShuffleXor:
+ case OpGroupNonUniformShuffleUp:
+ case OpGroupNonUniformShuffleDown:
+ case OpGroupNonUniformQuadSwap:
+ case OpGroupNonUniformQuadBroadcast:
+ case OpSubgroupReadInvocationKHR:
+ break;
+ }
+ }
+
+ if (msl_options.is_macos() && !msl_options.supports_msl_version(2, 1))
+ {
+ switch (op)
+ {
+ default:
+ SPIRV_CROSS_THROW("Subgroup ops beyond broadcast and shuffle on macOS require Metal 2.1 and up.");
+ case OpGroupNonUniformBroadcast:
+ case OpGroupNonUniformShuffle:
+ case OpGroupNonUniformShuffleXor:
+ case OpGroupNonUniformShuffleUp:
+ case OpGroupNonUniformShuffleDown:
+ case OpSubgroupReadInvocationKHR:
+ break;
+ }
+ }
+
+ uint32_t op_idx = 0;
+ uint32_t result_type = ops[op_idx++];
+ uint32_t id = ops[op_idx++];
+
+ Scope scope;
+ switch (op)
+ {
+ case OpSubgroupBallotKHR:
+ case OpSubgroupFirstInvocationKHR:
+ case OpSubgroupReadInvocationKHR:
+ case OpSubgroupAllKHR:
+ case OpSubgroupAnyKHR:
+ case OpSubgroupAllEqualKHR:
+ // These earlier instructions don't have the scope operand.
+ scope = ScopeSubgroup;
+ break;
+ default:
+ scope = static_cast<Scope>(evaluate_constant_u32(ops[op_idx++]));
+ break;
+ }
+ if (scope != ScopeSubgroup)
+ SPIRV_CROSS_THROW("Only subgroup scope is supported.");
+
+ switch (op)
+ {
+ case OpGroupNonUniformElect:
+ if (msl_options.use_quadgroup_operation())
+ emit_op(result_type, id, "quad_is_first()", false);
+ else
+ emit_op(result_type, id, "simd_is_first()", false);
+ break;
+
+ case OpGroupNonUniformBroadcast:
+ case OpSubgroupReadInvocationKHR:
+ emit_binary_func_op(result_type, id, ops[op_idx], ops[op_idx + 1], "spvSubgroupBroadcast");
+ break;
+
+ case OpGroupNonUniformBroadcastFirst:
+ case OpSubgroupFirstInvocationKHR:
+ emit_unary_func_op(result_type, id, ops[op_idx], "spvSubgroupBroadcastFirst");
+ break;
+
+ case OpGroupNonUniformBallot:
+ case OpSubgroupBallotKHR:
+ emit_unary_func_op(result_type, id, ops[op_idx], "spvSubgroupBallot");
+ break;
+
+ case OpGroupNonUniformInverseBallot:
+ emit_binary_func_op(result_type, id, ops[op_idx], builtin_subgroup_invocation_id_id, "spvSubgroupBallotBitExtract");
+ break;
+
+ case OpGroupNonUniformBallotBitExtract:
+ emit_binary_func_op(result_type, id, ops[op_idx], ops[op_idx + 1], "spvSubgroupBallotBitExtract");
+ break;
+
+ case OpGroupNonUniformBallotFindLSB:
+ emit_binary_func_op(result_type, id, ops[op_idx], builtin_subgroup_size_id, "spvSubgroupBallotFindLSB");
+ break;
+
+ case OpGroupNonUniformBallotFindMSB:
+ emit_binary_func_op(result_type, id, ops[op_idx], builtin_subgroup_size_id, "spvSubgroupBallotFindMSB");
+ break;
+
+ case OpGroupNonUniformBallotBitCount:
+ {
+ auto operation = static_cast<GroupOperation>(ops[op_idx++]);
+ switch (operation)
+ {
+ case GroupOperationReduce:
+ emit_binary_func_op(result_type, id, ops[op_idx], builtin_subgroup_size_id, "spvSubgroupBallotBitCount");
+ break;
+ case GroupOperationInclusiveScan:
+ emit_binary_func_op(result_type, id, ops[op_idx], builtin_subgroup_invocation_id_id,
+ "spvSubgroupBallotInclusiveBitCount");
+ break;
+ case GroupOperationExclusiveScan:
+ emit_binary_func_op(result_type, id, ops[op_idx], builtin_subgroup_invocation_id_id,
+ "spvSubgroupBallotExclusiveBitCount");
+ break;
+ default:
+ SPIRV_CROSS_THROW("Invalid BitCount operation.");
+ }
+ break;
+ }
+
+ case OpGroupNonUniformShuffle:
+ emit_binary_func_op(result_type, id, ops[op_idx], ops[op_idx + 1], "spvSubgroupShuffle");
+ break;
+
+ case OpGroupNonUniformShuffleXor:
+ emit_binary_func_op(result_type, id, ops[op_idx], ops[op_idx + 1], "spvSubgroupShuffleXor");
+ break;
+
+ case OpGroupNonUniformShuffleUp:
+ emit_binary_func_op(result_type, id, ops[op_idx], ops[op_idx + 1], "spvSubgroupShuffleUp");
+ break;
+
+ case OpGroupNonUniformShuffleDown:
+ emit_binary_func_op(result_type, id, ops[op_idx], ops[op_idx + 1], "spvSubgroupShuffleDown");
+ break;
+
+ case OpGroupNonUniformAll:
+ case OpSubgroupAllKHR:
+ if (msl_options.use_quadgroup_operation())
+ emit_unary_func_op(result_type, id, ops[op_idx], "quad_all");
+ else
+ emit_unary_func_op(result_type, id, ops[op_idx], "simd_all");
+ break;
+
+ case OpGroupNonUniformAny:
+ case OpSubgroupAnyKHR:
+ if (msl_options.use_quadgroup_operation())
+ emit_unary_func_op(result_type, id, ops[op_idx], "quad_any");
+ else
+ emit_unary_func_op(result_type, id, ops[op_idx], "simd_any");
+ break;
+
+ case OpGroupNonUniformAllEqual:
+ case OpSubgroupAllEqualKHR:
+ emit_unary_func_op(result_type, id, ops[op_idx], "spvSubgroupAllEqual");
+ break;
+
+ // clang-format off
+#define MSL_GROUP_OP(op, msl_op) \
+case OpGroupNonUniform##op: \
+ { \
+ auto operation = static_cast<GroupOperation>(ops[op_idx++]); \
+ if (operation == GroupOperationReduce) \
+ emit_unary_func_op(result_type, id, ops[op_idx], "simd_" #msl_op); \
+ else if (operation == GroupOperationInclusiveScan) \
+ emit_unary_func_op(result_type, id, ops[op_idx], "simd_prefix_inclusive_" #msl_op); \
+ else if (operation == GroupOperationExclusiveScan) \
+ emit_unary_func_op(result_type, id, ops[op_idx], "simd_prefix_exclusive_" #msl_op); \
+ else if (operation == GroupOperationClusteredReduce) \
+ { \
+ /* Only cluster sizes of 4 are supported. */ \
+ uint32_t cluster_size = evaluate_constant_u32(ops[op_idx + 1]); \
+ if (cluster_size != 4) \
+ SPIRV_CROSS_THROW("Metal only supports quad ClusteredReduce."); \
+ emit_unary_func_op(result_type, id, ops[op_idx], "quad_" #msl_op); \
+ } \
+ else \
+ SPIRV_CROSS_THROW("Invalid group operation."); \
+ break; \
+ }
+ MSL_GROUP_OP(FAdd, sum)
+ MSL_GROUP_OP(FMul, product)
+ MSL_GROUP_OP(IAdd, sum)
+ MSL_GROUP_OP(IMul, product)
+#undef MSL_GROUP_OP
+ // The others, unfortunately, don't support InclusiveScan or ExclusiveScan.
+
+#define MSL_GROUP_OP(op, msl_op) \
+case OpGroupNonUniform##op: \
+ { \
+ auto operation = static_cast<GroupOperation>(ops[op_idx++]); \
+ if (operation == GroupOperationReduce) \
+ emit_unary_func_op(result_type, id, ops[op_idx], "simd_" #msl_op); \
+ else if (operation == GroupOperationInclusiveScan) \
+ SPIRV_CROSS_THROW("Metal doesn't support InclusiveScan for OpGroupNonUniform" #op "."); \
+ else if (operation == GroupOperationExclusiveScan) \
+ SPIRV_CROSS_THROW("Metal doesn't support ExclusiveScan for OpGroupNonUniform" #op "."); \
+ else if (operation == GroupOperationClusteredReduce) \
+ { \
+ /* Only cluster sizes of 4 are supported. */ \
+ uint32_t cluster_size = evaluate_constant_u32(ops[op_idx + 1]); \
+ if (cluster_size != 4) \
+ SPIRV_CROSS_THROW("Metal only supports quad ClusteredReduce."); \
+ emit_unary_func_op(result_type, id, ops[op_idx], "quad_" #msl_op); \
+ } \
+ else \
+ SPIRV_CROSS_THROW("Invalid group operation."); \
+ break; \
+ }
+
+#define MSL_GROUP_OP_CAST(op, msl_op, type) \
+case OpGroupNonUniform##op: \
+ { \
+ auto operation = static_cast<GroupOperation>(ops[op_idx++]); \
+ if (operation == GroupOperationReduce) \
+ emit_unary_func_op_cast(result_type, id, ops[op_idx], "simd_" #msl_op, type, type); \
+ else if (operation == GroupOperationInclusiveScan) \
+ SPIRV_CROSS_THROW("Metal doesn't support InclusiveScan for OpGroupNonUniform" #op "."); \
+ else if (operation == GroupOperationExclusiveScan) \
+ SPIRV_CROSS_THROW("Metal doesn't support ExclusiveScan for OpGroupNonUniform" #op "."); \
+ else if (operation == GroupOperationClusteredReduce) \
+ { \
+ /* Only cluster sizes of 4 are supported. */ \
+ uint32_t cluster_size = evaluate_constant_u32(ops[op_idx + 1]); \
+ if (cluster_size != 4) \
+ SPIRV_CROSS_THROW("Metal only supports quad ClusteredReduce."); \
+ emit_unary_func_op_cast(result_type, id, ops[op_idx], "quad_" #msl_op, type, type); \
+ } \
+ else \
+ SPIRV_CROSS_THROW("Invalid group operation."); \
+ break; \
+ }
+
+ MSL_GROUP_OP(FMin, min)
+ MSL_GROUP_OP(FMax, max)
+ MSL_GROUP_OP_CAST(SMin, min, int_type)
+ MSL_GROUP_OP_CAST(SMax, max, int_type)
+ MSL_GROUP_OP_CAST(UMin, min, uint_type)
+ MSL_GROUP_OP_CAST(UMax, max, uint_type)
+ MSL_GROUP_OP(BitwiseAnd, and)
+ MSL_GROUP_OP(BitwiseOr, or)
+ MSL_GROUP_OP(BitwiseXor, xor)
+ MSL_GROUP_OP(LogicalAnd, and)
+ MSL_GROUP_OP(LogicalOr, or)
+ MSL_GROUP_OP(LogicalXor, xor)
+ // clang-format on
+#undef MSL_GROUP_OP
+#undef MSL_GROUP_OP_CAST
+
+ case OpGroupNonUniformQuadSwap:
+ emit_binary_func_op(result_type, id, ops[op_idx], ops[op_idx + 1], "spvQuadSwap");
+ break;
+
+ case OpGroupNonUniformQuadBroadcast:
+ emit_binary_func_op(result_type, id, ops[op_idx], ops[op_idx + 1], "spvQuadBroadcast");
+ break;
+
+ default:
+ SPIRV_CROSS_THROW("Invalid opcode for subgroup.");
+ }
+
+ register_control_dependent_expression(id);
+}
+
+string CompilerMSL::bitcast_glsl_op(const SPIRType &out_type, const SPIRType &in_type)
+{
+ if (out_type.basetype == in_type.basetype)
+ return "";
+
+ assert(out_type.basetype != SPIRType::Boolean);
+ assert(in_type.basetype != SPIRType::Boolean);
+
+ bool integral_cast = type_is_integral(out_type) && type_is_integral(in_type) && (out_type.vecsize == in_type.vecsize);
+ bool same_size_cast = (out_type.width * out_type.vecsize) == (in_type.width * in_type.vecsize);
+
+ // Bitcasting can only be used between types of the same overall size.
+ // And always formally cast between integers, because it's trivial, and also
+ // because Metal can internally cast the results of some integer ops to a larger
+ // size (eg. short shift right becomes int), which means chaining integer ops
+ // together may introduce size variations that SPIR-V doesn't know about.
+ if (same_size_cast && !integral_cast)
+ return "as_type<" + type_to_glsl(out_type) + ">";
+ else
+ return type_to_glsl(out_type);
+}
+
+bool CompilerMSL::emit_complex_bitcast(uint32_t, uint32_t, uint32_t)
+{
+ // This is handled from the outside where we deal with PtrToU/UToPtr and friends.
+ return false;
+}
+
+// Returns an MSL string identifying the name of a SPIR-V builtin.
+// Output builtins are qualified with the name of the stage out structure.
+string CompilerMSL::builtin_to_glsl(BuiltIn builtin, StorageClass storage)
+{
+ switch (builtin)
+ {
+ // Handle HLSL-style 0-based vertex/instance index.
+ // Override GLSL compiler strictness
+ case BuiltInVertexId:
+ ensure_builtin(StorageClassInput, BuiltInVertexId);
+ if (msl_options.enable_base_index_zero && msl_options.supports_msl_version(1, 1) &&
+ (msl_options.ios_support_base_vertex_instance || msl_options.is_macos()))
+ {
+ if (builtin_declaration)
+ {
+ if (needs_base_vertex_arg != TriState::No)
+ needs_base_vertex_arg = TriState::Yes;
+ return "gl_VertexID";
+ }
+ else
+ {
+ ensure_builtin(StorageClassInput, BuiltInBaseVertex);
+ return "(gl_VertexID - gl_BaseVertex)";
+ }
+ }
+ else
+ {
+ return "gl_VertexID";
+ }
+ case BuiltInInstanceId:
+ ensure_builtin(StorageClassInput, BuiltInInstanceId);
+ if (msl_options.enable_base_index_zero && msl_options.supports_msl_version(1, 1) &&
+ (msl_options.ios_support_base_vertex_instance || msl_options.is_macos()))
+ {
+ if (builtin_declaration)
+ {
+ if (needs_base_instance_arg != TriState::No)
+ needs_base_instance_arg = TriState::Yes;
+ return "gl_InstanceID";
+ }
+ else
+ {
+ ensure_builtin(StorageClassInput, BuiltInBaseInstance);
+ return "(gl_InstanceID - gl_BaseInstance)";
+ }
+ }
+ else
+ {
+ return "gl_InstanceID";
+ }
+ case BuiltInVertexIndex:
+ ensure_builtin(StorageClassInput, BuiltInVertexIndex);
+ if (msl_options.enable_base_index_zero && msl_options.supports_msl_version(1, 1) &&
+ (msl_options.ios_support_base_vertex_instance || msl_options.is_macos()))
+ {
+ if (builtin_declaration)
+ {
+ if (needs_base_vertex_arg != TriState::No)
+ needs_base_vertex_arg = TriState::Yes;
+ return "gl_VertexIndex";
+ }
+ else
+ {
+ ensure_builtin(StorageClassInput, BuiltInBaseVertex);
+ return "(gl_VertexIndex - gl_BaseVertex)";
+ }
+ }
+ else
+ {
+ return "gl_VertexIndex";
+ }
+ case BuiltInInstanceIndex:
+ ensure_builtin(StorageClassInput, BuiltInInstanceIndex);
+ if (msl_options.enable_base_index_zero && msl_options.supports_msl_version(1, 1) &&
+ (msl_options.ios_support_base_vertex_instance || msl_options.is_macos()))
+ {
+ if (builtin_declaration)
+ {
+ if (needs_base_instance_arg != TriState::No)
+ needs_base_instance_arg = TriState::Yes;
+ return "gl_InstanceIndex";
+ }
+ else
+ {
+ ensure_builtin(StorageClassInput, BuiltInBaseInstance);
+ return "(gl_InstanceIndex - gl_BaseInstance)";
+ }
+ }
+ else
+ {
+ return "gl_InstanceIndex";
+ }
+ case BuiltInBaseVertex:
+ if (msl_options.supports_msl_version(1, 1) &&
+ (msl_options.ios_support_base_vertex_instance || msl_options.is_macos()))
+ {
+ needs_base_vertex_arg = TriState::No;
+ return "gl_BaseVertex";
+ }
+ else
+ {
+ SPIRV_CROSS_THROW("BaseVertex requires Metal 1.1 and Mac or Apple A9+ hardware.");
+ }
+ case BuiltInBaseInstance:
+ if (msl_options.supports_msl_version(1, 1) &&
+ (msl_options.ios_support_base_vertex_instance || msl_options.is_macos()))
+ {
+ needs_base_instance_arg = TriState::No;
+ return "gl_BaseInstance";
+ }
+ else
+ {
+ SPIRV_CROSS_THROW("BaseInstance requires Metal 1.1 and Mac or Apple A9+ hardware.");
+ }
+ case BuiltInDrawIndex:
+ SPIRV_CROSS_THROW("DrawIndex is not supported in MSL.");
+
+ // When used in the entry function, output builtins are qualified with output struct name.
+ // Test storage class as NOT Input, as output builtins might be part of generic type.
+ // Also don't do this for tessellation control shaders.
+ case BuiltInViewportIndex:
+ if (!msl_options.supports_msl_version(2, 0))
+ SPIRV_CROSS_THROW("ViewportIndex requires Metal 2.0.");
+ /* fallthrough */
+ case BuiltInFragDepth:
+ case BuiltInFragStencilRefEXT:
+ if ((builtin == BuiltInFragDepth && !msl_options.enable_frag_depth_builtin) ||
+ (builtin == BuiltInFragStencilRefEXT && !msl_options.enable_frag_stencil_ref_builtin))
+ break;
+ /* fallthrough */
+ case BuiltInPosition:
+ case BuiltInPointSize:
+ case BuiltInClipDistance:
+ case BuiltInCullDistance:
+ case BuiltInLayer:
+ if (is_tesc_shader())
+ break;
+ if (storage != StorageClassInput && current_function && (current_function->self == ir.default_entry_point) &&
+ !is_stage_output_builtin_masked(builtin))
+ return stage_out_var_name + "." + CompilerGLSL::builtin_to_glsl(builtin, storage);
+ break;
+
+ case BuiltInSampleMask:
+ if (storage == StorageClassInput && current_function && (current_function->self == ir.default_entry_point) &&
+ (has_additional_fixed_sample_mask() || needs_sample_id))
+ {
+ string samp_mask_in;
+ samp_mask_in += "(" + CompilerGLSL::builtin_to_glsl(builtin, storage);
+ if (has_additional_fixed_sample_mask())
+ samp_mask_in += " & " + additional_fixed_sample_mask_str();
+ if (needs_sample_id)
+ samp_mask_in += " & (1 << gl_SampleID)";
+ samp_mask_in += ")";
+ return samp_mask_in;
+ }
+ if (storage != StorageClassInput && current_function && (current_function->self == ir.default_entry_point) &&
+ !is_stage_output_builtin_masked(builtin))
+ return stage_out_var_name + "." + CompilerGLSL::builtin_to_glsl(builtin, storage);
+ break;
+
+ case BuiltInBaryCoordKHR:
+ case BuiltInBaryCoordNoPerspKHR:
+ if (storage == StorageClassInput && current_function && (current_function->self == ir.default_entry_point))
+ return stage_in_var_name + "." + CompilerGLSL::builtin_to_glsl(builtin, storage);
+ break;
+
+ case BuiltInTessLevelOuter:
+ if (is_tesc_shader() && storage != StorageClassInput && current_function &&
+ (current_function->self == ir.default_entry_point))
+ {
+ return join(tess_factor_buffer_var_name, "[", to_expression(builtin_primitive_id_id),
+ "].edgeTessellationFactor");
+ }
+ break;
+
+ case BuiltInTessLevelInner:
+ if (is_tesc_shader() && storage != StorageClassInput && current_function &&
+ (current_function->self == ir.default_entry_point))
+ {
+ return join(tess_factor_buffer_var_name, "[", to_expression(builtin_primitive_id_id),
+ "].insideTessellationFactor");
+ }
+ break;
+
+ case BuiltInHelperInvocation:
+ if (needs_manual_helper_invocation_updates())
+ break;
+ if (msl_options.is_ios() && !msl_options.supports_msl_version(2, 3))
+ SPIRV_CROSS_THROW("simd_is_helper_thread() requires version 2.3 on iOS.");
+ else if (msl_options.is_macos() && !msl_options.supports_msl_version(2, 1))
+ SPIRV_CROSS_THROW("simd_is_helper_thread() requires version 2.1 on macOS.");
+ // In SPIR-V 1.6 with Volatile HelperInvocation, we cannot emit a fixup early.
+ return "simd_is_helper_thread()";
+
+ default:
+ break;
+ }
+
+ return CompilerGLSL::builtin_to_glsl(builtin, storage);
+}
+
+// Returns an MSL string attribute qualifer for a SPIR-V builtin
+string CompilerMSL::builtin_qualifier(BuiltIn builtin)
+{
+ auto &execution = get_entry_point();
+
+ switch (builtin)
+ {
+ // Vertex function in
+ case BuiltInVertexId:
+ return "vertex_id";
+ case BuiltInVertexIndex:
+ return "vertex_id";
+ case BuiltInBaseVertex:
+ return "base_vertex";
+ case BuiltInInstanceId:
+ return "instance_id";
+ case BuiltInInstanceIndex:
+ return "instance_id";
+ case BuiltInBaseInstance:
+ return "base_instance";
+ case BuiltInDrawIndex:
+ SPIRV_CROSS_THROW("DrawIndex is not supported in MSL.");
+
+ // Vertex function out
+ case BuiltInClipDistance:
+ return "clip_distance";
+ case BuiltInPointSize:
+ return "point_size";
+ case BuiltInPosition:
+ if (position_invariant)
+ {
+ if (!msl_options.supports_msl_version(2, 1))
+ SPIRV_CROSS_THROW("Invariant position is only supported on MSL 2.1 and up.");
+ return "position, invariant";
+ }
+ else
+ return "position";
+ case BuiltInLayer:
+ return "render_target_array_index";
+ case BuiltInViewportIndex:
+ if (!msl_options.supports_msl_version(2, 0))
+ SPIRV_CROSS_THROW("ViewportIndex requires Metal 2.0.");
+ return "viewport_array_index";
+
+ // Tess. control function in
+ case BuiltInInvocationId:
+ if (msl_options.multi_patch_workgroup)
+ {
+ // Shouldn't be reached.
+ SPIRV_CROSS_THROW("InvocationId is computed manually with multi-patch workgroups in MSL.");
+ }
+ return "thread_index_in_threadgroup";
+ case BuiltInPatchVertices:
+ // Shouldn't be reached.
+ SPIRV_CROSS_THROW("PatchVertices is derived from the auxiliary buffer in MSL.");
+ case BuiltInPrimitiveId:
+ switch (execution.model)
+ {
+ case ExecutionModelTessellationControl:
+ if (msl_options.multi_patch_workgroup)
+ {
+ // Shouldn't be reached.
+ SPIRV_CROSS_THROW("PrimitiveId is computed manually with multi-patch workgroups in MSL.");
+ }
+ return "threadgroup_position_in_grid";
+ case ExecutionModelTessellationEvaluation:
+ return "patch_id";
+ case ExecutionModelFragment:
+ if (msl_options.is_ios() && !msl_options.supports_msl_version(2, 3))
+ SPIRV_CROSS_THROW("PrimitiveId on iOS requires MSL 2.3.");
+ else if (msl_options.is_macos() && !msl_options.supports_msl_version(2, 2))
+ SPIRV_CROSS_THROW("PrimitiveId on macOS requires MSL 2.2.");
+ return "primitive_id";
+ default:
+ SPIRV_CROSS_THROW("PrimitiveId is not supported in this execution model.");
+ }
+
+ // Tess. control function out
+ case BuiltInTessLevelOuter:
+ case BuiltInTessLevelInner:
+ // Shouldn't be reached.
+ SPIRV_CROSS_THROW("Tessellation levels are handled specially in MSL.");
+
+ // Tess. evaluation function in
+ case BuiltInTessCoord:
+ return "position_in_patch";
+
+ // Fragment function in
+ case BuiltInFrontFacing:
+ return "front_facing";
+ case BuiltInPointCoord:
+ return "point_coord";
+ case BuiltInFragCoord:
+ return "position";
+ case BuiltInSampleId:
+ return "sample_id";
+ case BuiltInSampleMask:
+ return "sample_mask";
+ case BuiltInSamplePosition:
+ // Shouldn't be reached.
+ SPIRV_CROSS_THROW("Sample position is retrieved by a function in MSL.");
+ case BuiltInViewIndex:
+ if (execution.model != ExecutionModelFragment)
+ SPIRV_CROSS_THROW("ViewIndex is handled specially outside fragment shaders.");
+ // The ViewIndex was implicitly used in the prior stages to set the render_target_array_index,
+ // so we can get it from there.
+ return "render_target_array_index";
+
+ // Fragment function out
+ case BuiltInFragDepth:
+ if (execution.flags.get(ExecutionModeDepthGreater))
+ return "depth(greater)";
+ else if (execution.flags.get(ExecutionModeDepthLess))
+ return "depth(less)";
+ else
+ return "depth(any)";
+
+ case BuiltInFragStencilRefEXT:
+ return "stencil";
+
+ // Compute function in
+ case BuiltInGlobalInvocationId:
+ return "thread_position_in_grid";
+
+ case BuiltInWorkgroupId:
+ return "threadgroup_position_in_grid";
+
+ case BuiltInNumWorkgroups:
+ return "threadgroups_per_grid";
+
+ case BuiltInLocalInvocationId:
+ return "thread_position_in_threadgroup";
+
+ case BuiltInLocalInvocationIndex:
+ return "thread_index_in_threadgroup";
+
+ case BuiltInSubgroupSize:
+ if (msl_options.emulate_subgroups || msl_options.fixed_subgroup_size != 0)
+ // Shouldn't be reached.
+ SPIRV_CROSS_THROW("Emitting threads_per_simdgroup attribute with fixed subgroup size??");
+ if (execution.model == ExecutionModelFragment)
+ {
+ if (!msl_options.supports_msl_version(2, 2))
+ SPIRV_CROSS_THROW("threads_per_simdgroup requires Metal 2.2 in fragment shaders.");
+ return "threads_per_simdgroup";
+ }
+ else
+ {
+ // thread_execution_width is an alias for threads_per_simdgroup, and it's only available since 1.0,
+ // but not in fragment.
+ return "thread_execution_width";
+ }
+
+ case BuiltInNumSubgroups:
+ if (msl_options.emulate_subgroups)
+ // Shouldn't be reached.
+ SPIRV_CROSS_THROW("NumSubgroups is handled specially with emulation.");
+ if (!msl_options.supports_msl_version(2))
+ SPIRV_CROSS_THROW("Subgroup builtins require Metal 2.0.");
+ return msl_options.use_quadgroup_operation() ? "quadgroups_per_threadgroup" : "simdgroups_per_threadgroup";
+
+ case BuiltInSubgroupId:
+ if (msl_options.emulate_subgroups)
+ // Shouldn't be reached.
+ SPIRV_CROSS_THROW("SubgroupId is handled specially with emulation.");
+ if (!msl_options.supports_msl_version(2))
+ SPIRV_CROSS_THROW("Subgroup builtins require Metal 2.0.");
+ return msl_options.use_quadgroup_operation() ? "quadgroup_index_in_threadgroup" : "simdgroup_index_in_threadgroup";
+
+ case BuiltInSubgroupLocalInvocationId:
+ if (msl_options.emulate_subgroups)
+ // Shouldn't be reached.
+ SPIRV_CROSS_THROW("SubgroupLocalInvocationId is handled specially with emulation.");
+ if (execution.model == ExecutionModelFragment)
+ {
+ if (!msl_options.supports_msl_version(2, 2))
+ SPIRV_CROSS_THROW("thread_index_in_simdgroup requires Metal 2.2 in fragment shaders.");
+ return "thread_index_in_simdgroup";
+ }
+ else if (execution.model == ExecutionModelKernel || execution.model == ExecutionModelGLCompute ||
+ execution.model == ExecutionModelTessellationControl ||
+ (execution.model == ExecutionModelVertex && msl_options.vertex_for_tessellation))
+ {
+ // We are generating a Metal kernel function.
+ if (!msl_options.supports_msl_version(2))
+ SPIRV_CROSS_THROW("Subgroup builtins in kernel functions require Metal 2.0.");
+ return msl_options.use_quadgroup_operation() ? "thread_index_in_quadgroup" : "thread_index_in_simdgroup";
+ }
+ else
+ SPIRV_CROSS_THROW("Subgroup builtins are not available in this type of function.");
+
+ case BuiltInSubgroupEqMask:
+ case BuiltInSubgroupGeMask:
+ case BuiltInSubgroupGtMask:
+ case BuiltInSubgroupLeMask:
+ case BuiltInSubgroupLtMask:
+ // Shouldn't be reached.
+ SPIRV_CROSS_THROW("Subgroup ballot masks are handled specially in MSL.");
+
+ case BuiltInBaryCoordKHR:
+ if (msl_options.is_ios() && !msl_options.supports_msl_version(2, 3))
+ SPIRV_CROSS_THROW("Barycentrics are only supported in MSL 2.3 and above on iOS.");
+ else if (!msl_options.supports_msl_version(2, 2))
+ SPIRV_CROSS_THROW("Barycentrics are only supported in MSL 2.2 and above on macOS.");
+ return "barycentric_coord, center_perspective";
+
+ case BuiltInBaryCoordNoPerspKHR:
+ if (msl_options.is_ios() && !msl_options.supports_msl_version(2, 3))
+ SPIRV_CROSS_THROW("Barycentrics are only supported in MSL 2.3 and above on iOS.");
+ else if (!msl_options.supports_msl_version(2, 2))
+ SPIRV_CROSS_THROW("Barycentrics are only supported in MSL 2.2 and above on macOS.");
+ return "barycentric_coord, center_no_perspective";
+
+ default:
+ return "unsupported-built-in";
+ }
+}
+
+// Returns an MSL string type declaration for a SPIR-V builtin
+string CompilerMSL::builtin_type_decl(BuiltIn builtin, uint32_t id)
+{
+ switch (builtin)
+ {
+ // Vertex function in
+ case BuiltInVertexId:
+ return "uint";
+ case BuiltInVertexIndex:
+ return "uint";
+ case BuiltInBaseVertex:
+ return "uint";
+ case BuiltInInstanceId:
+ return "uint";
+ case BuiltInInstanceIndex:
+ return "uint";
+ case BuiltInBaseInstance:
+ return "uint";
+ case BuiltInDrawIndex:
+ SPIRV_CROSS_THROW("DrawIndex is not supported in MSL.");
+
+ // Vertex function out
+ case BuiltInClipDistance:
+ case BuiltInCullDistance:
+ return "float";
+ case BuiltInPointSize:
+ return "float";
+ case BuiltInPosition:
+ return "float4";
+ case BuiltInLayer:
+ return "uint";
+ case BuiltInViewportIndex:
+ if (!msl_options.supports_msl_version(2, 0))
+ SPIRV_CROSS_THROW("ViewportIndex requires Metal 2.0.");
+ return "uint";
+
+ // Tess. control function in
+ case BuiltInInvocationId:
+ return "uint";
+ case BuiltInPatchVertices:
+ return "uint";
+ case BuiltInPrimitiveId:
+ return "uint";
+
+ // Tess. control function out
+ case BuiltInTessLevelInner:
+ if (is_tese_shader())
+ return (msl_options.raw_buffer_tese_input || is_tessellating_triangles()) ? "float" : "float2";
+ return "half";
+ case BuiltInTessLevelOuter:
+ if (is_tese_shader())
+ return (msl_options.raw_buffer_tese_input || is_tessellating_triangles()) ? "float" : "float4";
+ return "half";
+
+ // Tess. evaluation function in
+ case BuiltInTessCoord:
+ return "float3";
+
+ // Fragment function in
+ case BuiltInFrontFacing:
+ return "bool";
+ case BuiltInPointCoord:
+ return "float2";
+ case BuiltInFragCoord:
+ return "float4";
+ case BuiltInSampleId:
+ return "uint";
+ case BuiltInSampleMask:
+ return "uint";
+ case BuiltInSamplePosition:
+ return "float2";
+ case BuiltInViewIndex:
+ return "uint";
+
+ case BuiltInHelperInvocation:
+ return "bool";
+
+ case BuiltInBaryCoordKHR:
+ case BuiltInBaryCoordNoPerspKHR:
+ // Use the type as declared, can be 1, 2 or 3 components.
+ return type_to_glsl(get_variable_data_type(get<SPIRVariable>(id)));
+
+ // Fragment function out
+ case BuiltInFragDepth:
+ return "float";
+
+ case BuiltInFragStencilRefEXT:
+ return "uint";
+
+ // Compute function in
+ case BuiltInGlobalInvocationId:
+ case BuiltInLocalInvocationId:
+ case BuiltInNumWorkgroups:
+ case BuiltInWorkgroupId:
+ return "uint3";
+ case BuiltInLocalInvocationIndex:
+ case BuiltInNumSubgroups:
+ case BuiltInSubgroupId:
+ case BuiltInSubgroupSize:
+ case BuiltInSubgroupLocalInvocationId:
+ return "uint";
+ case BuiltInSubgroupEqMask:
+ case BuiltInSubgroupGeMask:
+ case BuiltInSubgroupGtMask:
+ case BuiltInSubgroupLeMask:
+ case BuiltInSubgroupLtMask:
+ return "uint4";
+
+ case BuiltInDeviceIndex:
+ return "int";
+
+ default:
+ return "unsupported-built-in-type";
+ }
+}
+
+// Returns the declaration of a built-in argument to a function
+string CompilerMSL::built_in_func_arg(BuiltIn builtin, bool prefix_comma)
+{
+ string bi_arg;
+ if (prefix_comma)
+ bi_arg += ", ";
+
+ // Handle HLSL-style 0-based vertex/instance index.
+ builtin_declaration = true;
+ bi_arg += builtin_type_decl(builtin);
+ bi_arg += string(" ") + builtin_to_glsl(builtin, StorageClassInput);
+ bi_arg += string(" [[") + builtin_qualifier(builtin) + string("]]");
+ builtin_declaration = false;
+
+ return bi_arg;
+}
+
+const SPIRType &CompilerMSL::get_physical_member_type(const SPIRType &type, uint32_t index) const
+{
+ if (member_is_remapped_physical_type(type, index))
+ return get<SPIRType>(get_extended_member_decoration(type.self, index, SPIRVCrossDecorationPhysicalTypeID));
+ else
+ return get<SPIRType>(type.member_types[index]);
+}
+
+SPIRType CompilerMSL::get_presumed_input_type(const SPIRType &ib_type, uint32_t index) const
+{
+ SPIRType type = get_physical_member_type(ib_type, index);
+ uint32_t loc = get_member_decoration(ib_type.self, index, DecorationLocation);
+ uint32_t cmp = get_member_decoration(ib_type.self, index, DecorationComponent);
+ auto p_va = inputs_by_location.find({loc, cmp});
+ if (p_va != end(inputs_by_location) && p_va->second.vecsize > type.vecsize)
+ type.vecsize = p_va->second.vecsize;
+
+ return type;
+}
+
+uint32_t CompilerMSL::get_declared_type_array_stride_msl(const SPIRType &type, bool is_packed, bool row_major) const
+{
+ // Array stride in MSL is always size * array_size. sizeof(float3) == 16,
+ // unlike GLSL and HLSL where array stride would be 16 and size 12.
+
+ // We could use parent type here and recurse, but that makes creating physical type remappings
+ // far more complicated. We'd rather just create the final type, and ignore having to create the entire type
+ // hierarchy in order to compute this value, so make a temporary type on the stack.
+
+ auto basic_type = type;
+ basic_type.array.clear();
+ basic_type.array_size_literal.clear();
+ uint32_t value_size = get_declared_type_size_msl(basic_type, is_packed, row_major);
+
+ uint32_t dimensions = uint32_t(type.array.size());
+ assert(dimensions > 0);
+ dimensions--;
+
+ // Multiply together every dimension, except the last one.
+ for (uint32_t dim = 0; dim < dimensions; dim++)
+ {
+ uint32_t array_size = to_array_size_literal(type, dim);
+ value_size *= max<uint32_t>(array_size, 1u);
+ }
+
+ return value_size;
+}
+
+uint32_t CompilerMSL::get_declared_struct_member_array_stride_msl(const SPIRType &type, uint32_t index) const
+{
+ return get_declared_type_array_stride_msl(get_physical_member_type(type, index),
+ member_is_packed_physical_type(type, index),
+ has_member_decoration(type.self, index, DecorationRowMajor));
+}
+
+uint32_t CompilerMSL::get_declared_input_array_stride_msl(const SPIRType &type, uint32_t index) const
+{
+ return get_declared_type_array_stride_msl(get_presumed_input_type(type, index), false,
+ has_member_decoration(type.self, index, DecorationRowMajor));
+}
+
+uint32_t CompilerMSL::get_declared_type_matrix_stride_msl(const SPIRType &type, bool packed, bool row_major) const
+{
+ // For packed matrices, we just use the size of the vector type.
+ // Otherwise, MatrixStride == alignment, which is the size of the underlying vector type.
+ if (packed)
+ return (type.width / 8) * ((row_major && type.columns > 1) ? type.columns : type.vecsize);
+ else
+ return get_declared_type_alignment_msl(type, false, row_major);
+}
+
+uint32_t CompilerMSL::get_declared_struct_member_matrix_stride_msl(const SPIRType &type, uint32_t index) const
+{
+ return get_declared_type_matrix_stride_msl(get_physical_member_type(type, index),
+ member_is_packed_physical_type(type, index),
+ has_member_decoration(type.self, index, DecorationRowMajor));
+}
+
+uint32_t CompilerMSL::get_declared_input_matrix_stride_msl(const SPIRType &type, uint32_t index) const
+{
+ return get_declared_type_matrix_stride_msl(get_presumed_input_type(type, index), false,
+ has_member_decoration(type.self, index, DecorationRowMajor));
+}
+
+uint32_t CompilerMSL::get_declared_struct_size_msl(const SPIRType &struct_type, bool ignore_alignment,
+ bool ignore_padding) const
+{
+ // If we have a target size, that is the declared size as well.
+ if (!ignore_padding && has_extended_decoration(struct_type.self, SPIRVCrossDecorationPaddingTarget))
+ return get_extended_decoration(struct_type.self, SPIRVCrossDecorationPaddingTarget);
+
+ if (struct_type.member_types.empty())
+ return 0;
+
+ uint32_t mbr_cnt = uint32_t(struct_type.member_types.size());
+
+ // In MSL, a struct's alignment is equal to the maximum alignment of any of its members.
+ uint32_t alignment = 1;
+
+ if (!ignore_alignment)
+ {
+ for (uint32_t i = 0; i < mbr_cnt; i++)
+ {
+ uint32_t mbr_alignment = get_declared_struct_member_alignment_msl(struct_type, i);
+ alignment = max(alignment, mbr_alignment);
+ }
+ }
+
+ // Last member will always be matched to the final Offset decoration, but size of struct in MSL now depends
+ // on physical size in MSL, and the size of the struct itself is then aligned to struct alignment.
+ uint32_t spirv_offset = type_struct_member_offset(struct_type, mbr_cnt - 1);
+ uint32_t msl_size = spirv_offset + get_declared_struct_member_size_msl(struct_type, mbr_cnt - 1);
+ msl_size = (msl_size + alignment - 1) & ~(alignment - 1);
+ return msl_size;
+}
+
+uint32_t CompilerMSL::get_physical_type_stride(const SPIRType &type) const
+{
+ // This should only be relevant for plain types such as scalars and vectors?
+ // If we're pointing to a struct, it will recursively pick up packed/row-major state.
+ return get_declared_type_size_msl(type, false, false);
+}
+
+// Returns the byte size of a struct member.
+uint32_t CompilerMSL::get_declared_type_size_msl(const SPIRType &type, bool is_packed, bool row_major) const
+{
+ // Pointers take 8 bytes each
+ // Match both pointer and array-of-pointer here.
+ if (type.pointer && type.storage == StorageClassPhysicalStorageBuffer)
+ {
+ uint32_t type_size = 8;
+
+ // Work our way through potentially layered arrays,
+ // stopping when we hit a pointer that is not also an array.
+ int32_t dim_idx = (int32_t)type.array.size() - 1;
+ auto *p_type = &type;
+ while (!is_pointer(*p_type) && dim_idx >= 0)
+ {
+ type_size *= to_array_size_literal(*p_type, dim_idx);
+ p_type = &get<SPIRType>(p_type->parent_type);
+ dim_idx--;
+ }
+
+ return type_size;
+ }
+
+ switch (type.basetype)
+ {
+ case SPIRType::Unknown:
+ case SPIRType::Void:
+ case SPIRType::AtomicCounter:
+ case SPIRType::Image:
+ case SPIRType::SampledImage:
+ case SPIRType::Sampler:
+ SPIRV_CROSS_THROW("Querying size of opaque object.");
+
+ default:
+ {
+ if (!type.array.empty())
+ {
+ uint32_t array_size = to_array_size_literal(type);
+ return get_declared_type_array_stride_msl(type, is_packed, row_major) * max<uint32_t>(array_size, 1u);
+ }
+
+ if (type.basetype == SPIRType::Struct)
+ return get_declared_struct_size_msl(type);
+
+ if (is_packed)
+ {
+ return type.vecsize * type.columns * (type.width / 8);
+ }
+ else
+ {
+ // An unpacked 3-element vector or matrix column is the same memory size as a 4-element.
+ uint32_t vecsize = type.vecsize;
+ uint32_t columns = type.columns;
+
+ if (row_major && columns > 1)
+ swap(vecsize, columns);
+
+ if (vecsize == 3)
+ vecsize = 4;
+
+ return vecsize * columns * (type.width / 8);
+ }
+ }
+ }
+}
+
+uint32_t CompilerMSL::get_declared_struct_member_size_msl(const SPIRType &type, uint32_t index) const
+{
+ return get_declared_type_size_msl(get_physical_member_type(type, index),
+ member_is_packed_physical_type(type, index),
+ has_member_decoration(type.self, index, DecorationRowMajor));
+}
+
+uint32_t CompilerMSL::get_declared_input_size_msl(const SPIRType &type, uint32_t index) const
+{
+ return get_declared_type_size_msl(get_presumed_input_type(type, index), false,
+ has_member_decoration(type.self, index, DecorationRowMajor));
+}
+
+// Returns the byte alignment of a type.
+uint32_t CompilerMSL::get_declared_type_alignment_msl(const SPIRType &type, bool is_packed, bool row_major) const
+{
+ // Pointers align on multiples of 8 bytes.
+ // Deliberately ignore array-ness here. It's not relevant for alignment.
+ if (type.pointer && type.storage == StorageClassPhysicalStorageBuffer)
+ return 8;
+
+ switch (type.basetype)
+ {
+ case SPIRType::Unknown:
+ case SPIRType::Void:
+ case SPIRType::AtomicCounter:
+ case SPIRType::Image:
+ case SPIRType::SampledImage:
+ case SPIRType::Sampler:
+ SPIRV_CROSS_THROW("Querying alignment of opaque object.");
+
+ case SPIRType::Double:
+ SPIRV_CROSS_THROW("double types are not supported in buffers in MSL.");
+
+ case SPIRType::Struct:
+ {
+ // In MSL, a struct's alignment is equal to the maximum alignment of any of its members.
+ uint32_t alignment = 1;
+ for (uint32_t i = 0; i < type.member_types.size(); i++)
+ alignment = max(alignment, uint32_t(get_declared_struct_member_alignment_msl(type, i)));
+ return alignment;
+ }
+
+ default:
+ {
+ if (type.basetype == SPIRType::Int64 && !msl_options.supports_msl_version(2, 3))
+ SPIRV_CROSS_THROW("long types in buffers are only supported in MSL 2.3 and above.");
+ if (type.basetype == SPIRType::UInt64 && !msl_options.supports_msl_version(2, 3))
+ SPIRV_CROSS_THROW("ulong types in buffers are only supported in MSL 2.3 and above.");
+ // Alignment of packed type is the same as the underlying component or column size.
+ // Alignment of unpacked type is the same as the vector size.
+ // Alignment of 3-elements vector is the same as 4-elements (including packed using column).
+ if (is_packed)
+ {
+ // If we have packed_T and friends, the alignment is always scalar.
+ return type.width / 8;
+ }
+ else
+ {
+ // This is the general rule for MSL. Size == alignment.
+ uint32_t vecsize = (row_major && type.columns > 1) ? type.columns : type.vecsize;
+ return (type.width / 8) * (vecsize == 3 ? 4 : vecsize);
+ }
+ }
+ }
+}
+
+uint32_t CompilerMSL::get_declared_struct_member_alignment_msl(const SPIRType &type, uint32_t index) const
+{
+ return get_declared_type_alignment_msl(get_physical_member_type(type, index),
+ member_is_packed_physical_type(type, index),
+ has_member_decoration(type.self, index, DecorationRowMajor));
+}
+
+uint32_t CompilerMSL::get_declared_input_alignment_msl(const SPIRType &type, uint32_t index) const
+{
+ return get_declared_type_alignment_msl(get_presumed_input_type(type, index), false,
+ has_member_decoration(type.self, index, DecorationRowMajor));
+}
+
+bool CompilerMSL::skip_argument(uint32_t) const
+{
+ return false;
+}
+
+void CompilerMSL::analyze_sampled_image_usage()
+{
+ if (msl_options.swizzle_texture_samples)
+ {
+ SampledImageScanner scanner(*this);
+ traverse_all_reachable_opcodes(get<SPIRFunction>(ir.default_entry_point), scanner);
+ }
+}
+
+bool CompilerMSL::SampledImageScanner::handle(spv::Op opcode, const uint32_t *args, uint32_t length)
+{
+ switch (opcode)
+ {
+ case OpLoad:
+ case OpImage:
+ case OpSampledImage:
+ {
+ if (length < 3)
+ return false;
+
+ uint32_t result_type = args[0];
+ auto &type = compiler.get<SPIRType>(result_type);
+ if ((type.basetype != SPIRType::Image && type.basetype != SPIRType::SampledImage) || type.image.sampled != 1)
+ return true;
+
+ uint32_t id = args[1];
+ compiler.set<SPIRExpression>(id, "", result_type, true);
+ break;
+ }
+ case OpImageSampleExplicitLod:
+ case OpImageSampleProjExplicitLod:
+ case OpImageSampleDrefExplicitLod:
+ case OpImageSampleProjDrefExplicitLod:
+ case OpImageSampleImplicitLod:
+ case OpImageSampleProjImplicitLod:
+ case OpImageSampleDrefImplicitLod:
+ case OpImageSampleProjDrefImplicitLod:
+ case OpImageFetch:
+ case OpImageGather:
+ case OpImageDrefGather:
+ compiler.has_sampled_images =
+ compiler.has_sampled_images || compiler.is_sampled_image_type(compiler.expression_type(args[2]));
+ compiler.needs_swizzle_buffer_def = compiler.needs_swizzle_buffer_def || compiler.has_sampled_images;
+ break;
+ default:
+ break;
+ }
+ return true;
+}
+
+// If a needed custom function wasn't added before, add it and force a recompile.
+void CompilerMSL::add_spv_func_and_recompile(SPVFuncImpl spv_func)
+{
+ if (spv_function_implementations.count(spv_func) == 0)
+ {
+ spv_function_implementations.insert(spv_func);
+ suppress_missing_prototypes = true;
+ force_recompile();
+ }
+}
+
+bool CompilerMSL::OpCodePreprocessor::handle(Op opcode, const uint32_t *args, uint32_t length)
+{
+ // Since MSL exists in a single execution scope, function prototype declarations are not
+ // needed, and clutter the output. If secondary functions are output (either as a SPIR-V
+ // function implementation or as indicated by the presence of OpFunctionCall), then set
+ // suppress_missing_prototypes to suppress compiler warnings of missing function prototypes.
+
+ // Mark if the input requires the implementation of an SPIR-V function that does not exist in Metal.
+ SPVFuncImpl spv_func = get_spv_func_impl(opcode, args);
+ if (spv_func != SPVFuncImplNone)
+ {
+ compiler.spv_function_implementations.insert(spv_func);
+ suppress_missing_prototypes = true;
+ }
+
+ switch (opcode)
+ {
+
+ case OpFunctionCall:
+ suppress_missing_prototypes = true;
+ break;
+
+ case OpDemoteToHelperInvocationEXT:
+ uses_discard = true;
+ break;
+
+ // Emulate texture2D atomic operations
+ case OpImageTexelPointer:
+ {
+ if (!compiler.msl_options.supports_msl_version(3, 1))
+ {
+ auto *var = compiler.maybe_get_backing_variable(args[2]);
+ image_pointers_emulated[args[1]] = var ? var->self : ID(0);
+ }
+ break;
+ }
+
+ case OpImageWrite:
+ uses_image_write = true;
+ break;
+
+ case OpStore:
+ check_resource_write(args[0]);
+ break;
+
+ // Emulate texture2D atomic operations
+ case OpAtomicExchange:
+ case OpAtomicCompareExchange:
+ case OpAtomicCompareExchangeWeak:
+ case OpAtomicIIncrement:
+ case OpAtomicIDecrement:
+ case OpAtomicIAdd:
+ case OpAtomicFAddEXT:
+ case OpAtomicISub:
+ case OpAtomicSMin:
+ case OpAtomicUMin:
+ case OpAtomicSMax:
+ case OpAtomicUMax:
+ case OpAtomicAnd:
+ case OpAtomicOr:
+ case OpAtomicXor:
+ {
+ uses_atomics = true;
+ auto it = image_pointers_emulated.find(args[2]);
+ if (it != image_pointers_emulated.end())
+ {
+ uses_image_write = true;
+ compiler.atomic_image_vars_emulated.insert(it->second);
+ }
+ else
+ check_resource_write(args[2]);
+ break;
+ }
+
+ case OpAtomicStore:
+ {
+ uses_atomics = true;
+ auto it = image_pointers_emulated.find(args[0]);
+ if (it != image_pointers_emulated.end())
+ {
+ compiler.atomic_image_vars_emulated.insert(it->second);
+ uses_image_write = true;
+ }
+ else
+ check_resource_write(args[0]);
+ break;
+ }
+
+ case OpAtomicLoad:
+ {
+ uses_atomics = true;
+ auto it = image_pointers_emulated.find(args[2]);
+ if (it != image_pointers_emulated.end())
+ {
+ compiler.atomic_image_vars_emulated.insert(it->second);
+ }
+ break;
+ }
+
+ case OpGroupNonUniformInverseBallot:
+ needs_subgroup_invocation_id = true;
+ break;
+
+ case OpGroupNonUniformBallotFindLSB:
+ case OpGroupNonUniformBallotFindMSB:
+ needs_subgroup_size = true;
+ break;
+
+ case OpGroupNonUniformBallotBitCount:
+ if (args[3] == GroupOperationReduce)
+ needs_subgroup_size = true;
+ else
+ needs_subgroup_invocation_id = true;
+ break;
+
+ case OpArrayLength:
+ {
+ auto *var = compiler.maybe_get_backing_variable(args[2]);
+ if (var != nullptr)
+ {
+ if (!compiler.is_var_runtime_size_array(*var))
+ compiler.buffers_requiring_array_length.insert(var->self);
+ }
+ break;
+ }
+
+ case OpInBoundsAccessChain:
+ case OpAccessChain:
+ case OpPtrAccessChain:
+ {
+ // OpArrayLength might want to know if taking ArrayLength of an array of SSBOs.
+ uint32_t result_type = args[0];
+ uint32_t id = args[1];
+ uint32_t ptr = args[2];
+
+ compiler.set<SPIRExpression>(id, "", result_type, true);
+ compiler.register_read(id, ptr, true);
+ compiler.ir.ids[id].set_allow_type_rewrite();
+ break;
+ }
+
+ case OpExtInst:
+ {
+ uint32_t extension_set = args[2];
+ if (compiler.get<SPIRExtension>(extension_set).ext == SPIRExtension::GLSL)
+ {
+ auto op_450 = static_cast<GLSLstd450>(args[3]);
+ switch (op_450)
+ {
+ case GLSLstd450InterpolateAtCentroid:
+ case GLSLstd450InterpolateAtSample:
+ case GLSLstd450InterpolateAtOffset:
+ {
+ if (!compiler.msl_options.supports_msl_version(2, 3))
+ SPIRV_CROSS_THROW("Pull-model interpolation requires MSL 2.3.");
+ // Fragment varyings used with pull-model interpolation need special handling,
+ // due to the way pull-model interpolation works in Metal.
+ auto *var = compiler.maybe_get_backing_variable(args[4]);
+ if (var)
+ {
+ compiler.pull_model_inputs.insert(var->self);
+ auto &var_type = compiler.get_variable_element_type(*var);
+ // In addition, if this variable has a 'Sample' decoration, we need the sample ID
+ // in order to do default interpolation.
+ if (compiler.has_decoration(var->self, DecorationSample))
+ {
+ needs_sample_id = true;
+ }
+ else if (var_type.basetype == SPIRType::Struct)
+ {
+ // Now we need to check each member and see if it has this decoration.
+ for (uint32_t i = 0; i < var_type.member_types.size(); ++i)
+ {
+ if (compiler.has_member_decoration(var_type.self, i, DecorationSample))
+ {
+ needs_sample_id = true;
+ break;
+ }
+ }
+ }
+ }
+ break;
+ }
+ default:
+ break;
+ }
+ }
+ break;
+ }
+
+ case OpIsHelperInvocationEXT:
+ if (compiler.needs_manual_helper_invocation_updates())
+ needs_helper_invocation = true;
+ break;
+
+ default:
+ break;
+ }
+
+ // If it has one, keep track of the instruction's result type, mapped by ID
+ uint32_t result_type, result_id;
+ if (compiler.instruction_to_result_type(result_type, result_id, opcode, args, length))
+ result_types[result_id] = result_type;
+
+ return true;
+}
+
+// If the variable is a Uniform or StorageBuffer, mark that a resource has been written to.
+void CompilerMSL::OpCodePreprocessor::check_resource_write(uint32_t var_id)
+{
+ auto *p_var = compiler.maybe_get_backing_variable(var_id);
+ StorageClass sc = p_var ? p_var->storage : StorageClassMax;
+ if (sc == StorageClassUniform || sc == StorageClassStorageBuffer)
+ uses_buffer_write = true;
+}
+
+// Returns an enumeration of a SPIR-V function that needs to be output for certain Op codes.
+CompilerMSL::SPVFuncImpl CompilerMSL::OpCodePreprocessor::get_spv_func_impl(Op opcode, const uint32_t *args)
+{
+ switch (opcode)
+ {
+ case OpFMod:
+ return SPVFuncImplMod;
+
+ case OpFAdd:
+ case OpFSub:
+ if (compiler.msl_options.invariant_float_math ||
+ compiler.has_decoration(args[1], DecorationNoContraction))
+ {
+ return opcode == OpFAdd ? SPVFuncImplFAdd : SPVFuncImplFSub;
+ }
+ break;
+
+ case OpFMul:
+ case OpOuterProduct:
+ case OpMatrixTimesVector:
+ case OpVectorTimesMatrix:
+ case OpMatrixTimesMatrix:
+ if (compiler.msl_options.invariant_float_math ||
+ compiler.has_decoration(args[1], DecorationNoContraction))
+ {
+ return SPVFuncImplFMul;
+ }
+ break;
+
+ case OpQuantizeToF16:
+ return SPVFuncImplQuantizeToF16;
+
+ case OpTypeArray:
+ {
+ // Allow Metal to use the array<T> template to make arrays a value type
+ return SPVFuncImplUnsafeArray;
+ }
+
+ // Emulate texture2D atomic operations
+ case OpAtomicExchange:
+ case OpAtomicCompareExchange:
+ case OpAtomicCompareExchangeWeak:
+ case OpAtomicIIncrement:
+ case OpAtomicIDecrement:
+ case OpAtomicIAdd:
+ case OpAtomicFAddEXT:
+ case OpAtomicISub:
+ case OpAtomicSMin:
+ case OpAtomicUMin:
+ case OpAtomicSMax:
+ case OpAtomicUMax:
+ case OpAtomicAnd:
+ case OpAtomicOr:
+ case OpAtomicXor:
+ case OpAtomicLoad:
+ case OpAtomicStore:
+ {
+ auto it = image_pointers_emulated.find(args[opcode == OpAtomicStore ? 0 : 2]);
+ if (it != image_pointers_emulated.end())
+ {
+ uint32_t tid = compiler.get<SPIRVariable>(it->second).basetype;
+ if (tid && compiler.get<SPIRType>(tid).image.dim == Dim2D)
+ return SPVFuncImplImage2DAtomicCoords;
+ }
+ break;
+ }
+
+ case OpImageFetch:
+ case OpImageRead:
+ case OpImageWrite:
+ {
+ // Retrieve the image type, and if it's a Buffer, emit a texel coordinate function
+ uint32_t tid = result_types[args[opcode == OpImageWrite ? 0 : 2]];
+ if (tid && compiler.get<SPIRType>(tid).image.dim == DimBuffer && !compiler.msl_options.texture_buffer_native)
+ return SPVFuncImplTexelBufferCoords;
+ break;
+ }
+
+ case OpExtInst:
+ {
+ uint32_t extension_set = args[2];
+ if (compiler.get<SPIRExtension>(extension_set).ext == SPIRExtension::GLSL)
+ {
+ auto op_450 = static_cast<GLSLstd450>(args[3]);
+ switch (op_450)
+ {
+ case GLSLstd450Radians:
+ return SPVFuncImplRadians;
+ case GLSLstd450Degrees:
+ return SPVFuncImplDegrees;
+ case GLSLstd450FindILsb:
+ return SPVFuncImplFindILsb;
+ case GLSLstd450FindSMsb:
+ return SPVFuncImplFindSMsb;
+ case GLSLstd450FindUMsb:
+ return SPVFuncImplFindUMsb;
+ case GLSLstd450SSign:
+ return SPVFuncImplSSign;
+ case GLSLstd450Reflect:
+ {
+ auto &type = compiler.get<SPIRType>(args[0]);
+ if (type.vecsize == 1)
+ return SPVFuncImplReflectScalar;
+ break;
+ }
+ case GLSLstd450Refract:
+ {
+ auto &type = compiler.get<SPIRType>(args[0]);
+ if (type.vecsize == 1)
+ return SPVFuncImplRefractScalar;
+ break;
+ }
+ case GLSLstd450FaceForward:
+ {
+ auto &type = compiler.get<SPIRType>(args[0]);
+ if (type.vecsize == 1)
+ return SPVFuncImplFaceForwardScalar;
+ break;
+ }
+ case GLSLstd450MatrixInverse:
+ {
+ auto &mat_type = compiler.get<SPIRType>(args[0]);
+ switch (mat_type.columns)
+ {
+ case 2:
+ return SPVFuncImplInverse2x2;
+ case 3:
+ return SPVFuncImplInverse3x3;
+ case 4:
+ return SPVFuncImplInverse4x4;
+ default:
+ break;
+ }
+ break;
+ }
+ default:
+ break;
+ }
+ }
+ break;
+ }
+
+ case OpGroupNonUniformBroadcast:
+ case OpSubgroupReadInvocationKHR:
+ return SPVFuncImplSubgroupBroadcast;
+
+ case OpGroupNonUniformBroadcastFirst:
+ case OpSubgroupFirstInvocationKHR:
+ return SPVFuncImplSubgroupBroadcastFirst;
+
+ case OpGroupNonUniformBallot:
+ case OpSubgroupBallotKHR:
+ return SPVFuncImplSubgroupBallot;
+
+ case OpGroupNonUniformInverseBallot:
+ case OpGroupNonUniformBallotBitExtract:
+ return SPVFuncImplSubgroupBallotBitExtract;
+
+ case OpGroupNonUniformBallotFindLSB:
+ return SPVFuncImplSubgroupBallotFindLSB;
+
+ case OpGroupNonUniformBallotFindMSB:
+ return SPVFuncImplSubgroupBallotFindMSB;
+
+ case OpGroupNonUniformBallotBitCount:
+ return SPVFuncImplSubgroupBallotBitCount;
+
+ case OpGroupNonUniformAllEqual:
+ case OpSubgroupAllEqualKHR:
+ return SPVFuncImplSubgroupAllEqual;
+
+ case OpGroupNonUniformShuffle:
+ return SPVFuncImplSubgroupShuffle;
+
+ case OpGroupNonUniformShuffleXor:
+ return SPVFuncImplSubgroupShuffleXor;
+
+ case OpGroupNonUniformShuffleUp:
+ return SPVFuncImplSubgroupShuffleUp;
+
+ case OpGroupNonUniformShuffleDown:
+ return SPVFuncImplSubgroupShuffleDown;
+
+ case OpGroupNonUniformQuadBroadcast:
+ return SPVFuncImplQuadBroadcast;
+
+ case OpGroupNonUniformQuadSwap:
+ return SPVFuncImplQuadSwap;
+
+ case OpSDot:
+ case OpUDot:
+ case OpSUDot:
+ case OpSDotAccSat:
+ case OpUDotAccSat:
+ case OpSUDotAccSat:
+ return SPVFuncImplReduceAdd;
+
+ default:
+ break;
+ }
+ return SPVFuncImplNone;
+}
+
+// Sort both type and meta member content based on builtin status (put builtins at end),
+// then by the required sorting aspect.
+void CompilerMSL::MemberSorter::sort()
+{
+ // Create a temporary array of consecutive member indices and sort it based on how
+ // the members should be reordered, based on builtin and sorting aspect meta info.
+ size_t mbr_cnt = type.member_types.size();
+ SmallVector<uint32_t> mbr_idxs(mbr_cnt);
+ std::iota(mbr_idxs.begin(), mbr_idxs.end(), 0); // Fill with consecutive indices
+ std::stable_sort(mbr_idxs.begin(), mbr_idxs.end(), *this); // Sort member indices based on sorting aspect
+
+ bool sort_is_identity = true;
+ for (uint32_t mbr_idx = 0; mbr_idx < mbr_cnt; mbr_idx++)
+ {
+ if (mbr_idx != mbr_idxs[mbr_idx])
+ {
+ sort_is_identity = false;
+ break;
+ }
+ }
+
+ if (sort_is_identity)
+ return;
+
+ if (meta.members.size() < type.member_types.size())
+ {
+ // This should never trigger in normal circumstances, but to be safe.
+ meta.members.resize(type.member_types.size());
+ }
+
+ // Move type and meta member info to the order defined by the sorted member indices.
+ // This is done by creating temporary copies of both member types and meta, and then
+ // copying back to the original content at the sorted indices.
+ auto mbr_types_cpy = type.member_types;
+ auto mbr_meta_cpy = meta.members;
+ for (uint32_t mbr_idx = 0; mbr_idx < mbr_cnt; mbr_idx++)
+ {
+ type.member_types[mbr_idx] = mbr_types_cpy[mbr_idxs[mbr_idx]];
+ meta.members[mbr_idx] = mbr_meta_cpy[mbr_idxs[mbr_idx]];
+ }
+
+ // If we're sorting by Offset, this might affect user code which accesses a buffer block.
+ // We will need to redirect member indices from defined index to sorted index using reverse lookup.
+ if (sort_aspect == SortAspect::Offset)
+ {
+ type.member_type_index_redirection.resize(mbr_cnt);
+ for (uint32_t map_idx = 0; map_idx < mbr_cnt; map_idx++)
+ type.member_type_index_redirection[mbr_idxs[map_idx]] = map_idx;
+ }
+}
+
+bool CompilerMSL::MemberSorter::operator()(uint32_t mbr_idx1, uint32_t mbr_idx2)
+{
+ auto &mbr_meta1 = meta.members[mbr_idx1];
+ auto &mbr_meta2 = meta.members[mbr_idx2];
+
+ if (sort_aspect == LocationThenBuiltInType)
+ {
+ // Sort first by builtin status (put builtins at end), then by the sorting aspect.
+ if (mbr_meta1.builtin != mbr_meta2.builtin)
+ return mbr_meta2.builtin;
+ else if (mbr_meta1.builtin)
+ return mbr_meta1.builtin_type < mbr_meta2.builtin_type;
+ else if (mbr_meta1.location == mbr_meta2.location)
+ return mbr_meta1.component < mbr_meta2.component;
+ else
+ return mbr_meta1.location < mbr_meta2.location;
+ }
+ else
+ return mbr_meta1.offset < mbr_meta2.offset;
+}
+
+CompilerMSL::MemberSorter::MemberSorter(SPIRType &t, Meta &m, SortAspect sa)
+ : type(t)
+ , meta(m)
+ , sort_aspect(sa)
+{
+ // Ensure enough meta info is available
+ meta.members.resize(max(type.member_types.size(), meta.members.size()));
+}
+
+void CompilerMSL::remap_constexpr_sampler(VariableID id, const MSLConstexprSampler &sampler)
+{
+ auto &type = get<SPIRType>(get<SPIRVariable>(id).basetype);
+ if (type.basetype != SPIRType::SampledImage && type.basetype != SPIRType::Sampler)
+ SPIRV_CROSS_THROW("Can only remap SampledImage and Sampler type.");
+ if (!type.array.empty())
+ SPIRV_CROSS_THROW("Can not remap array of samplers.");
+ constexpr_samplers_by_id[id] = sampler;
+}
+
+void CompilerMSL::remap_constexpr_sampler_by_binding(uint32_t desc_set, uint32_t binding,
+ const MSLConstexprSampler &sampler)
+{
+ constexpr_samplers_by_binding[{ desc_set, binding }] = sampler;
+}
+
+void CompilerMSL::cast_from_variable_load(uint32_t source_id, std::string &expr, const SPIRType &expr_type)
+{
+ bool is_packed = has_extended_decoration(source_id, SPIRVCrossDecorationPhysicalTypePacked);
+ auto *source_expr = maybe_get<SPIRExpression>(source_id);
+ auto *var = maybe_get_backing_variable(source_id);
+ const SPIRType *var_type = nullptr, *phys_type = nullptr;
+
+ if (uint32_t phys_id = get_extended_decoration(source_id, SPIRVCrossDecorationPhysicalTypeID))
+ phys_type = &get<SPIRType>(phys_id);
+ else
+ phys_type = &expr_type;
+
+ if (var)
+ {
+ source_id = var->self;
+ var_type = &get_variable_data_type(*var);
+ }
+
+ bool rewrite_boolean_load =
+ expr_type.basetype == SPIRType::Boolean &&
+ (var && (var->storage == StorageClassWorkgroup || var_type->basetype == SPIRType::Struct));
+
+ // Type fixups for workgroup variables if they are booleans.
+ if (rewrite_boolean_load)
+ {
+ if (is_array(expr_type))
+ expr = to_rerolled_array_expression(expr_type, expr, expr_type);
+ else
+ expr = join(type_to_glsl(expr_type), "(", expr, ")");
+ }
+
+ // Type fixups for workgroup variables if they are matrices.
+ // Don't do fixup for packed types; those are handled specially.
+ // FIXME: Maybe use a type like spvStorageMatrix for packed matrices?
+ if (!msl_options.supports_msl_version(3, 0) && var &&
+ (var->storage == StorageClassWorkgroup ||
+ (var_type->basetype == SPIRType::Struct &&
+ has_extended_decoration(var_type->self, SPIRVCrossDecorationWorkgroupStruct) && !is_packed)) &&
+ expr_type.columns > 1)
+ {
+ SPIRType matrix_type = *phys_type;
+ if (source_expr && source_expr->need_transpose)
+ swap(matrix_type.vecsize, matrix_type.columns);
+ matrix_type.array.clear();
+ matrix_type.array_size_literal.clear();
+ expr = join(type_to_glsl(matrix_type), "(", expr, ")");
+ }
+
+ // Only interested in standalone builtin variables in the switch below.
+ if (!has_decoration(source_id, DecorationBuiltIn))
+ {
+ // If the backing variable does not match our expected sign, we can fix it up here.
+ // See ensure_correct_input_type().
+ if (var && var->storage == StorageClassInput)
+ {
+ auto &base_type = get<SPIRType>(var->basetype);
+ if (base_type.basetype != SPIRType::Struct && expr_type.basetype != base_type.basetype)
+ expr = join(type_to_glsl(expr_type), "(", expr, ")");
+ }
+ return;
+ }
+
+ auto builtin = static_cast<BuiltIn>(get_decoration(source_id, DecorationBuiltIn));
+ auto expected_type = expr_type.basetype;
+ auto expected_width = expr_type.width;
+ switch (builtin)
+ {
+ case BuiltInGlobalInvocationId:
+ case BuiltInLocalInvocationId:
+ case BuiltInWorkgroupId:
+ case BuiltInLocalInvocationIndex:
+ case BuiltInWorkgroupSize:
+ case BuiltInNumWorkgroups:
+ case BuiltInLayer:
+ case BuiltInViewportIndex:
+ case BuiltInFragStencilRefEXT:
+ case BuiltInPrimitiveId:
+ case BuiltInSubgroupSize:
+ case BuiltInSubgroupLocalInvocationId:
+ case BuiltInViewIndex:
+ case BuiltInVertexIndex:
+ case BuiltInInstanceIndex:
+ case BuiltInBaseInstance:
+ case BuiltInBaseVertex:
+ case BuiltInSampleMask:
+ expected_type = SPIRType::UInt;
+ expected_width = 32;
+ break;
+
+ case BuiltInTessLevelInner:
+ case BuiltInTessLevelOuter:
+ if (is_tesc_shader())
+ {
+ expected_type = SPIRType::Half;
+ expected_width = 16;
+ }
+ break;
+
+ default:
+ break;
+ }
+
+ if (is_array(expr_type) && builtin == BuiltInSampleMask)
+ {
+ // Needs special handling.
+ auto wrap_expr = join(type_to_glsl(expr_type), "({ ");
+ wrap_expr += join(type_to_glsl(get<SPIRType>(expr_type.parent_type)), "(", expr, ")");
+ wrap_expr += " })";
+ expr = std::move(wrap_expr);
+ }
+ else if (expected_type != expr_type.basetype)
+ {
+ if (is_array(expr_type) && (builtin == BuiltInTessLevelInner || builtin == BuiltInTessLevelOuter))
+ {
+ // Triggers when loading TessLevel directly as an array.
+ // Need explicit padding + cast.
+ auto wrap_expr = join(type_to_glsl(expr_type), "({ ");
+
+ uint32_t array_size = get_physical_tess_level_array_size(builtin);
+ for (uint32_t i = 0; i < array_size; i++)
+ {
+ if (array_size > 1)
+ wrap_expr += join("float(", expr, "[", i, "])");
+ else
+ wrap_expr += join("float(", expr, ")");
+ if (i + 1 < array_size)
+ wrap_expr += ", ";
+ }
+
+ if (is_tessellating_triangles())
+ wrap_expr += ", 0.0";
+
+ wrap_expr += " })";
+ expr = std::move(wrap_expr);
+ }
+ else
+ {
+ // These are of different widths, so we cannot do a straight bitcast.
+ if (expected_width != expr_type.width)
+ expr = join(type_to_glsl(expr_type), "(", expr, ")");
+ else
+ expr = bitcast_expression(expr_type, expected_type, expr);
+ }
+ }
+}
+
+void CompilerMSL::cast_to_variable_store(uint32_t target_id, std::string &expr, const SPIRType &expr_type)
+{
+ bool is_packed = has_extended_decoration(target_id, SPIRVCrossDecorationPhysicalTypePacked);
+ auto *target_expr = maybe_get<SPIRExpression>(target_id);
+ auto *var = maybe_get_backing_variable(target_id);
+ const SPIRType *var_type = nullptr, *phys_type = nullptr;
+
+ if (uint32_t phys_id = get_extended_decoration(target_id, SPIRVCrossDecorationPhysicalTypeID))
+ phys_type = &get<SPIRType>(phys_id);
+ else
+ phys_type = &expr_type;
+
+ if (var)
+ {
+ target_id = var->self;
+ var_type = &get_variable_data_type(*var);
+ }
+
+ bool rewrite_boolean_store =
+ expr_type.basetype == SPIRType::Boolean &&
+ (var && (var->storage == StorageClassWorkgroup || var_type->basetype == SPIRType::Struct));
+
+ // Type fixups for workgroup variables or struct members if they are booleans.
+ if (rewrite_boolean_store)
+ {
+ if (is_array(expr_type))
+ {
+ expr = to_rerolled_array_expression(*var_type, expr, expr_type);
+ }
+ else
+ {
+ auto short_type = expr_type;
+ short_type.basetype = SPIRType::Short;
+ expr = join(type_to_glsl(short_type), "(", expr, ")");
+ }
+ }
+
+ // Type fixups for workgroup variables if they are matrices.
+ // Don't do fixup for packed types; those are handled specially.
+ // FIXME: Maybe use a type like spvStorageMatrix for packed matrices?
+ if (!msl_options.supports_msl_version(3, 0) && var &&
+ (var->storage == StorageClassWorkgroup ||
+ (var_type->basetype == SPIRType::Struct &&
+ has_extended_decoration(var_type->self, SPIRVCrossDecorationWorkgroupStruct) && !is_packed)) &&
+ expr_type.columns > 1)
+ {
+ SPIRType matrix_type = *phys_type;
+ if (target_expr && target_expr->need_transpose)
+ swap(matrix_type.vecsize, matrix_type.columns);
+ expr = join("spvStorage_", type_to_glsl(matrix_type), "(", expr, ")");
+ }
+
+ // Only interested in standalone builtin variables.
+ if (!has_decoration(target_id, DecorationBuiltIn))
+ return;
+
+ auto builtin = static_cast<BuiltIn>(get_decoration(target_id, DecorationBuiltIn));
+ auto expected_type = expr_type.basetype;
+ auto expected_width = expr_type.width;
+ switch (builtin)
+ {
+ case BuiltInLayer:
+ case BuiltInViewportIndex:
+ case BuiltInFragStencilRefEXT:
+ case BuiltInPrimitiveId:
+ case BuiltInViewIndex:
+ expected_type = SPIRType::UInt;
+ expected_width = 32;
+ break;
+
+ case BuiltInTessLevelInner:
+ case BuiltInTessLevelOuter:
+ expected_type = SPIRType::Half;
+ expected_width = 16;
+ break;
+
+ default:
+ break;
+ }
+
+ if (expected_type != expr_type.basetype)
+ {
+ if (expected_width != expr_type.width)
+ {
+ // These are of different widths, so we cannot do a straight bitcast.
+ auto type = expr_type;
+ type.basetype = expected_type;
+ type.width = expected_width;
+ expr = join(type_to_glsl(type), "(", expr, ")");
+ }
+ else
+ {
+ auto type = expr_type;
+ type.basetype = expected_type;
+ expr = bitcast_expression(type, expr_type.basetype, expr);
+ }
+ }
+}
+
+string CompilerMSL::to_initializer_expression(const SPIRVariable &var)
+{
+ // We risk getting an array initializer here with MSL. If we have an array.
+ // FIXME: We cannot handle non-constant arrays being initialized.
+ // We will need to inject spvArrayCopy here somehow ...
+ auto &type = get<SPIRType>(var.basetype);
+ string expr;
+ if (ir.ids[var.initializer].get_type() == TypeConstant &&
+ (!type.array.empty() || type.basetype == SPIRType::Struct))
+ expr = constant_expression(get<SPIRConstant>(var.initializer));
+ else
+ expr = CompilerGLSL::to_initializer_expression(var);
+ // If the initializer has more vector components than the variable, add a swizzle.
+ // FIXME: This can't handle arrays or structs.
+ auto &init_type = expression_type(var.initializer);
+ if (type.array.empty() && type.basetype != SPIRType::Struct && init_type.vecsize > type.vecsize)
+ expr = enclose_expression(expr + vector_swizzle(type.vecsize, 0));
+ return expr;
+}
+
+string CompilerMSL::to_zero_initialized_expression(uint32_t)
+{
+ return "{}";
+}
+
+bool CompilerMSL::descriptor_set_is_argument_buffer(uint32_t desc_set) const
+{
+ if (!msl_options.argument_buffers)
+ return false;
+ if (desc_set >= kMaxArgumentBuffers)
+ return false;
+
+ return (argument_buffer_discrete_mask & (1u << desc_set)) == 0;
+}
+
+bool CompilerMSL::is_supported_argument_buffer_type(const SPIRType &type) const
+{
+ // iOS Tier 1 argument buffers do not support writable images.
+ // When the argument buffer is encoded, we don't know whether this image will have a
+ // NonWritable decoration, so just use discrete arguments for all storage images on iOS.
+ bool is_supported_type = !(type.basetype == SPIRType::Image &&
+ type.image.sampled == 2 &&
+ msl_options.is_ios() &&
+ msl_options.argument_buffers_tier <= Options::ArgumentBuffersTier::Tier1);
+ return is_supported_type && !type_is_msl_framebuffer_fetch(type);
+}
+
+void CompilerMSL::emit_argument_buffer_aliased_descriptor(const SPIRVariable &aliased_var,
+ const SPIRVariable &base_var)
+{
+ // To deal with buffer <-> image aliasing, we need to perform an unholy UB ritual.
+ // A texture type in Metal 3.0 is a pointer. However, we cannot simply cast a pointer to texture.
+ // What we *can* do is to cast pointer-to-pointer to pointer-to-texture.
+
+ // We need to explicitly reach into the descriptor buffer lvalue, not any spvDescriptorArray wrapper.
+ auto *var_meta = ir.find_meta(base_var.self);
+ bool old_explicit_qualifier = var_meta && var_meta->decoration.qualified_alias_explicit_override;
+ if (var_meta)
+ var_meta->decoration.qualified_alias_explicit_override = false;
+ auto unqualified_name = to_name(base_var.self, false);
+ if (var_meta)
+ var_meta->decoration.qualified_alias_explicit_override = old_explicit_qualifier;
+
+ // For non-arrayed buffers, we have already performed a de-reference.
+ // We need a proper lvalue to cast, so strip away the de-reference.
+ if (unqualified_name.size() > 2 && unqualified_name[0] == '(' && unqualified_name[1] == '*')
+ {
+ unqualified_name.erase(unqualified_name.begin(), unqualified_name.begin() + 2);
+ unqualified_name.pop_back();
+ }
+
+ string name;
+
+ auto &var_type = get<SPIRType>(aliased_var.basetype);
+ auto &data_type = get_variable_data_type(aliased_var);
+ string descriptor_storage = descriptor_address_space(aliased_var.self, aliased_var.storage, "");
+
+ if (aliased_var.storage == StorageClassUniformConstant)
+ {
+ if (is_var_runtime_size_array(aliased_var))
+ {
+ // This becomes a plain pointer to spvDescriptor.
+ name = join("reinterpret_cast<", descriptor_storage, " ",
+ type_to_glsl(get_variable_data_type(aliased_var), aliased_var.self, true), ">(&",
+ unqualified_name, ")");
+ }
+ else
+ {
+ name = join("reinterpret_cast<", descriptor_storage, " ",
+ type_to_glsl(get_variable_data_type(aliased_var), aliased_var.self, true), " &>(",
+ unqualified_name, ");");
+ }
+ }
+ else
+ {
+ // Buffer types.
+ bool old_is_using_builtin_array = is_using_builtin_array;
+ is_using_builtin_array = true;
+
+ bool needs_post_cast_deref = !is_array(data_type);
+ string ref_type = needs_post_cast_deref ? "&" : join("(&)", type_to_array_glsl(var_type, aliased_var.self));
+
+ if (is_var_runtime_size_array(aliased_var))
+ {
+ name = join("reinterpret_cast<",
+ type_to_glsl(var_type, aliased_var.self, true), " ", descriptor_storage, " *>(&",
+ unqualified_name, ")");
+ }
+ else
+ {
+ name = join(needs_post_cast_deref ? "*" : "", "reinterpret_cast<",
+ type_to_glsl(var_type, aliased_var.self, true), " ", descriptor_storage, " ",
+ ref_type,
+ ">(", unqualified_name, ");");
+ }
+
+ if (needs_post_cast_deref)
+ descriptor_storage = get_type_address_space(var_type, aliased_var.self, false);
+
+ // These kinds of ridiculous casts trigger warnings in compiler. Just ignore them.
+ if (!suppress_incompatible_pointer_types_discard_qualifiers)
+ {
+ suppress_incompatible_pointer_types_discard_qualifiers = true;
+ force_recompile_guarantee_forward_progress();
+ }
+
+ is_using_builtin_array = old_is_using_builtin_array;
+ }
+
+ if (!is_var_runtime_size_array(aliased_var))
+ {
+ // Lower to temporary, so drop the qualification.
+ set_qualified_name(aliased_var.self, "");
+ statement(descriptor_storage, " auto &", to_name(aliased_var.self), " = ", name);
+ }
+ else
+ {
+ // This alias may have already been used to emit an entry point declaration. If there is a mismatch, we need a recompile.
+ // Moving this code to be run earlier will also conflict,
+ // because we need the qualified alias for the base resource,
+ // so forcing recompile until things sync up is the least invasive method for now.
+ if (ir.meta[aliased_var.self].decoration.qualified_alias != name)
+ force_recompile();
+
+ // This will get wrapped in a separate temporary when a spvDescriptorArray wrapper is emitted.
+ set_qualified_name(aliased_var.self, name);
+ }
+}
+
+void CompilerMSL::analyze_argument_buffers()
+{
+ // Gather all used resources and sort them out into argument buffers.
+ // Each argument buffer corresponds to a descriptor set in SPIR-V.
+ // The [[id(N)]] values used correspond to the resource mapping we have for MSL.
+ // Otherwise, the binding number is used, but this is generally not safe some types like
+ // combined image samplers and arrays of resources. Metal needs different indices here,
+ // while SPIR-V can have one descriptor set binding. To use argument buffers in practice,
+ // you will need to use the remapping from the API.
+ for (auto &id : argument_buffer_ids)
+ id = 0;
+
+ // Output resources, sorted by resource index & type.
+ struct Resource
+ {
+ SPIRVariable *var;
+ string name;
+ SPIRType::BaseType basetype;
+ uint32_t index;
+ uint32_t plane_count;
+ uint32_t plane;
+ uint32_t overlapping_var_id;
+ };
+ SmallVector<Resource> resources_in_set[kMaxArgumentBuffers];
+ SmallVector<uint32_t> inline_block_vars;
+
+ bool set_needs_swizzle_buffer[kMaxArgumentBuffers] = {};
+ bool set_needs_buffer_sizes[kMaxArgumentBuffers] = {};
+ bool needs_buffer_sizes = false;
+
+ ir.for_each_typed_id<SPIRVariable>([&](uint32_t self, SPIRVariable &var) {
+ if ((var.storage == StorageClassUniform || var.storage == StorageClassUniformConstant ||
+ var.storage == StorageClassStorageBuffer) &&
+ !is_hidden_variable(var))
+ {
+ uint32_t desc_set = get_decoration(self, DecorationDescriptorSet);
+ // Ignore if it's part of a push descriptor set.
+ if (!descriptor_set_is_argument_buffer(desc_set))
+ return;
+
+ uint32_t var_id = var.self;
+ auto &type = get_variable_data_type(var);
+
+ if (desc_set >= kMaxArgumentBuffers)
+ SPIRV_CROSS_THROW("Descriptor set index is out of range.");
+
+ const MSLConstexprSampler *constexpr_sampler = nullptr;
+ if (type.basetype == SPIRType::SampledImage || type.basetype == SPIRType::Sampler)
+ {
+ constexpr_sampler = find_constexpr_sampler(var_id);
+ if (constexpr_sampler)
+ {
+ // Mark this ID as a constexpr sampler for later in case it came from set/bindings.
+ constexpr_samplers_by_id[var_id] = *constexpr_sampler;
+ }
+ }
+
+ uint32_t binding = get_decoration(var_id, DecorationBinding);
+ if (type.basetype == SPIRType::SampledImage)
+ {
+ add_resource_name(var_id);
+
+ uint32_t plane_count = 1;
+ if (constexpr_sampler && constexpr_sampler->ycbcr_conversion_enable)
+ plane_count = constexpr_sampler->planes;
+
+ for (uint32_t i = 0; i < plane_count; i++)
+ {
+ uint32_t image_resource_index = get_metal_resource_index(var, SPIRType::Image, i);
+ resources_in_set[desc_set].push_back(
+ { &var, to_name(var_id), SPIRType::Image, image_resource_index, plane_count, i, 0 });
+ }
+
+ if (type.image.dim != DimBuffer && !constexpr_sampler)
+ {
+ uint32_t sampler_resource_index = get_metal_resource_index(var, SPIRType::Sampler);
+ resources_in_set[desc_set].push_back(
+ { &var, to_sampler_expression(var_id), SPIRType::Sampler, sampler_resource_index, 1, 0, 0 });
+ }
+ }
+ else if (inline_uniform_blocks.count(SetBindingPair{ desc_set, binding }))
+ {
+ inline_block_vars.push_back(var_id);
+ }
+ else if (!constexpr_sampler && is_supported_argument_buffer_type(type))
+ {
+ // constexpr samplers are not declared as resources.
+ // Inline uniform blocks are always emitted at the end.
+ add_resource_name(var_id);
+
+ uint32_t resource_index = get_metal_resource_index(var, type.basetype);
+
+ resources_in_set[desc_set].push_back(
+ { &var, to_name(var_id), type.basetype, resource_index, 1, 0, 0 });
+
+ // Emulate texture2D atomic operations
+ if (atomic_image_vars_emulated.count(var.self))
+ {
+ uint32_t buffer_resource_index = get_metal_resource_index(var, SPIRType::AtomicCounter, 0);
+ resources_in_set[desc_set].push_back(
+ { &var, to_name(var_id) + "_atomic", SPIRType::Struct, buffer_resource_index, 1, 0, 0 });
+ }
+ }
+
+ // Check if this descriptor set needs a swizzle buffer.
+ if (needs_swizzle_buffer_def && is_sampled_image_type(type))
+ set_needs_swizzle_buffer[desc_set] = true;
+ else if (buffer_requires_array_length(var_id))
+ {
+ set_needs_buffer_sizes[desc_set] = true;
+ needs_buffer_sizes = true;
+ }
+ }
+ });
+
+ if (needs_swizzle_buffer_def || needs_buffer_sizes)
+ {
+ uint32_t uint_ptr_type_id = 0;
+
+ // We might have to add a swizzle buffer resource to the set.
+ for (uint32_t desc_set = 0; desc_set < kMaxArgumentBuffers; desc_set++)
+ {
+ if (!set_needs_swizzle_buffer[desc_set] && !set_needs_buffer_sizes[desc_set])
+ continue;
+
+ if (uint_ptr_type_id == 0)
+ {
+ uint_ptr_type_id = ir.increase_bound_by(1);
+
+ // Create a buffer to hold extra data, including the swizzle constants.
+ SPIRType uint_type_pointer = get_uint_type();
+ uint_type_pointer.op = OpTypePointer;
+ uint_type_pointer.pointer = true;
+ uint_type_pointer.pointer_depth++;
+ uint_type_pointer.parent_type = get_uint_type_id();
+ uint_type_pointer.storage = StorageClassUniform;
+ set<SPIRType>(uint_ptr_type_id, uint_type_pointer);
+ set_decoration(uint_ptr_type_id, DecorationArrayStride, 4);
+ }
+
+ if (set_needs_swizzle_buffer[desc_set])
+ {
+ uint32_t var_id = ir.increase_bound_by(1);
+ auto &var = set<SPIRVariable>(var_id, uint_ptr_type_id, StorageClassUniformConstant);
+ set_name(var_id, "spvSwizzleConstants");
+ set_decoration(var_id, DecorationDescriptorSet, desc_set);
+ set_decoration(var_id, DecorationBinding, kSwizzleBufferBinding);
+ resources_in_set[desc_set].push_back(
+ { &var, to_name(var_id), SPIRType::UInt, get_metal_resource_index(var, SPIRType::UInt), 1, 0, 0 });
+ }
+
+ if (set_needs_buffer_sizes[desc_set])
+ {
+ uint32_t var_id = ir.increase_bound_by(1);
+ auto &var = set<SPIRVariable>(var_id, uint_ptr_type_id, StorageClassUniformConstant);
+ set_name(var_id, "spvBufferSizeConstants");
+ set_decoration(var_id, DecorationDescriptorSet, desc_set);
+ set_decoration(var_id, DecorationBinding, kBufferSizeBufferBinding);
+ resources_in_set[desc_set].push_back(
+ { &var, to_name(var_id), SPIRType::UInt, get_metal_resource_index(var, SPIRType::UInt), 1, 0, 0 });
+ }
+ }
+ }
+
+ // Now add inline uniform blocks.
+ for (uint32_t var_id : inline_block_vars)
+ {
+ auto &var = get<SPIRVariable>(var_id);
+ uint32_t desc_set = get_decoration(var_id, DecorationDescriptorSet);
+ add_resource_name(var_id);
+ resources_in_set[desc_set].push_back(
+ { &var, to_name(var_id), SPIRType::Struct, get_metal_resource_index(var, SPIRType::Struct), 1, 0, 0 });
+ }
+
+ for (uint32_t desc_set = 0; desc_set < kMaxArgumentBuffers; desc_set++)
+ {
+ auto &resources = resources_in_set[desc_set];
+ if (resources.empty())
+ continue;
+
+ assert(descriptor_set_is_argument_buffer(desc_set));
+
+ uint32_t next_id = ir.increase_bound_by(3);
+ uint32_t type_id = next_id + 1;
+ uint32_t ptr_type_id = next_id + 2;
+ argument_buffer_ids[desc_set] = next_id;
+
+ auto &buffer_type = set<SPIRType>(type_id, OpTypeStruct);
+
+ buffer_type.basetype = SPIRType::Struct;
+
+ if ((argument_buffer_device_storage_mask & (1u << desc_set)) != 0)
+ {
+ buffer_type.storage = StorageClassStorageBuffer;
+ // Make sure the argument buffer gets marked as const device.
+ set_decoration(next_id, DecorationNonWritable);
+ // Need to mark the type as a Block to enable this.
+ set_decoration(type_id, DecorationBlock);
+ }
+ else
+ buffer_type.storage = StorageClassUniform;
+
+ auto buffer_type_name = join("spvDescriptorSetBuffer", desc_set);
+ set_name(type_id, buffer_type_name);
+
+ auto &ptr_type = set<SPIRType>(ptr_type_id, OpTypePointer);
+ ptr_type = buffer_type;
+ ptr_type.op = spv::OpTypePointer;
+ ptr_type.pointer = true;
+ ptr_type.pointer_depth++;
+ ptr_type.parent_type = type_id;
+
+ uint32_t buffer_variable_id = next_id;
+ auto &buffer_var = set<SPIRVariable>(buffer_variable_id, ptr_type_id, StorageClassUniform);
+ auto buffer_name = join("spvDescriptorSet", desc_set);
+ set_name(buffer_variable_id, buffer_name);
+
+ // Ids must be emitted in ID order.
+ stable_sort(begin(resources), end(resources), [&](const Resource &lhs, const Resource &rhs) -> bool {
+ return tie(lhs.index, lhs.basetype) < tie(rhs.index, rhs.basetype);
+ });
+
+ for (size_t i = 0; i < resources.size() - 1; i++)
+ {
+ auto &r1 = resources[i];
+ auto &r2 = resources[i + 1];
+
+ if (r1.index == r2.index)
+ {
+ if (r1.overlapping_var_id)
+ r2.overlapping_var_id = r1.overlapping_var_id;
+ else
+ r2.overlapping_var_id = r1.var->self;
+
+ set_extended_decoration(r2.var->self, SPIRVCrossDecorationOverlappingBinding, r2.overlapping_var_id);
+ }
+ }
+
+ uint32_t member_index = 0;
+ uint32_t next_arg_buff_index = 0;
+ for (auto &resource : resources)
+ {
+ auto &var = *resource.var;
+ auto &type = get_variable_data_type(var);
+
+ if (is_var_runtime_size_array(var) && (argument_buffer_device_storage_mask & (1u << desc_set)) == 0)
+ SPIRV_CROSS_THROW("Runtime sized variables must be in device storage argument buffers.");
+
+ // If needed, synthesize and add padding members.
+ // member_index and next_arg_buff_index are incremented when padding members are added.
+ if (msl_options.pad_argument_buffer_resources && resource.plane == 0 && resource.overlapping_var_id == 0)
+ {
+ auto rez_bind = get_argument_buffer_resource(desc_set, next_arg_buff_index);
+ while (resource.index > next_arg_buff_index)
+ {
+ switch (rez_bind.basetype)
+ {
+ case SPIRType::Void:
+ case SPIRType::Boolean:
+ case SPIRType::SByte:
+ case SPIRType::UByte:
+ case SPIRType::Short:
+ case SPIRType::UShort:
+ case SPIRType::Int:
+ case SPIRType::UInt:
+ case SPIRType::Int64:
+ case SPIRType::UInt64:
+ case SPIRType::AtomicCounter:
+ case SPIRType::Half:
+ case SPIRType::Float:
+ case SPIRType::Double:
+ add_argument_buffer_padding_buffer_type(buffer_type, member_index, next_arg_buff_index, rez_bind);
+ break;
+ case SPIRType::Image:
+ add_argument_buffer_padding_image_type(buffer_type, member_index, next_arg_buff_index, rez_bind);
+ break;
+ case SPIRType::Sampler:
+ add_argument_buffer_padding_sampler_type(buffer_type, member_index, next_arg_buff_index, rez_bind);
+ break;
+ case SPIRType::SampledImage:
+ if (next_arg_buff_index == rez_bind.msl_sampler)
+ add_argument_buffer_padding_sampler_type(buffer_type, member_index, next_arg_buff_index, rez_bind);
+ else
+ add_argument_buffer_padding_image_type(buffer_type, member_index, next_arg_buff_index, rez_bind);
+ break;
+ default:
+ break;
+ }
+
+ // After padding, retrieve the resource again. It will either be more padding, or the actual resource.
+ rez_bind = get_argument_buffer_resource(desc_set, next_arg_buff_index);
+ }
+
+ // Adjust the number of slots consumed by current member itself.
+ // Use the count value from the app, instead of the shader, in case the
+ // shader is only accessing part, or even one element, of the array.
+ next_arg_buff_index += resource.plane_count * rez_bind.count;
+ }
+
+ string mbr_name = ensure_valid_name(resource.name, "m");
+ if (resource.plane > 0)
+ mbr_name += join(plane_name_suffix, resource.plane);
+ set_member_name(buffer_type.self, member_index, mbr_name);
+
+ if (resource.basetype == SPIRType::Sampler && type.basetype != SPIRType::Sampler)
+ {
+ // Have to synthesize a sampler type here.
+
+ bool type_is_array = !type.array.empty();
+ uint32_t sampler_type_id = ir.increase_bound_by(type_is_array ? 2 : 1);
+ auto &new_sampler_type = set<SPIRType>(sampler_type_id, OpTypeSampler);
+ new_sampler_type.basetype = SPIRType::Sampler;
+ new_sampler_type.storage = StorageClassUniformConstant;
+
+ if (type_is_array)
+ {
+ uint32_t sampler_type_array_id = sampler_type_id + 1;
+ auto &sampler_type_array = set<SPIRType>(sampler_type_array_id, OpTypeArray);
+ sampler_type_array = new_sampler_type;
+ sampler_type_array.array = type.array;
+ sampler_type_array.array_size_literal = type.array_size_literal;
+ sampler_type_array.parent_type = sampler_type_id;
+ buffer_type.member_types.push_back(sampler_type_array_id);
+ }
+ else
+ buffer_type.member_types.push_back(sampler_type_id);
+ }
+ else
+ {
+ uint32_t binding = get_decoration(var.self, DecorationBinding);
+ SetBindingPair pair = { desc_set, binding };
+
+ if (resource.basetype == SPIRType::Image || resource.basetype == SPIRType::Sampler ||
+ resource.basetype == SPIRType::SampledImage)
+ {
+ // Drop pointer information when we emit the resources into a struct.
+ buffer_type.member_types.push_back(get_variable_data_type_id(var));
+ if (has_extended_decoration(var.self, SPIRVCrossDecorationOverlappingBinding))
+ {
+ if (!msl_options.supports_msl_version(3, 0))
+ SPIRV_CROSS_THROW("Full mutable aliasing of argument buffer descriptors only works on Metal 3+.");
+
+ auto &entry_func = get<SPIRFunction>(ir.default_entry_point);
+ entry_func.fixup_hooks_in.push_back([this, resource]() {
+ emit_argument_buffer_aliased_descriptor(*resource.var, this->get<SPIRVariable>(resource.overlapping_var_id));
+ });
+ }
+ else if (resource.plane == 0)
+ {
+ set_qualified_name(var.self, join(to_name(buffer_variable_id), ".", mbr_name));
+ }
+ }
+ else if (buffers_requiring_dynamic_offset.count(pair))
+ {
+ // Don't set the qualified name here; we'll define a variable holding the corrected buffer address later.
+ buffer_type.member_types.push_back(var.basetype);
+ buffers_requiring_dynamic_offset[pair].second = var.self;
+ }
+ else if (inline_uniform_blocks.count(pair))
+ {
+ // Put the buffer block itself into the argument buffer.
+ buffer_type.member_types.push_back(get_variable_data_type_id(var));
+ set_qualified_name(var.self, join(to_name(buffer_variable_id), ".", mbr_name));
+ }
+ else if (atomic_image_vars_emulated.count(var.self))
+ {
+ // Emulate texture2D atomic operations.
+ // Don't set the qualified name: it's already set for this variable,
+ // and the code that references the buffer manually appends "_atomic"
+ // to the name.
+ uint32_t offset = ir.increase_bound_by(2);
+ uint32_t atomic_type_id = offset;
+ uint32_t type_ptr_id = offset + 1;
+
+ SPIRType atomic_type { OpTypeInt };
+ atomic_type.basetype = SPIRType::AtomicCounter;
+ atomic_type.width = 32;
+ atomic_type.vecsize = 1;
+ set<SPIRType>(atomic_type_id, atomic_type);
+
+ atomic_type.op = OpTypePointer;
+ atomic_type.pointer = true;
+ atomic_type.pointer_depth++;
+ atomic_type.parent_type = atomic_type_id;
+ atomic_type.storage = StorageClassStorageBuffer;
+ auto &atomic_ptr_type = set<SPIRType>(type_ptr_id, atomic_type);
+ atomic_ptr_type.self = atomic_type_id;
+
+ buffer_type.member_types.push_back(type_ptr_id);
+ }
+ else
+ {
+ buffer_type.member_types.push_back(var.basetype);
+ if (has_extended_decoration(var.self, SPIRVCrossDecorationOverlappingBinding))
+ {
+ // Casting raw pointers is fine since their ABI is fixed, but anything opaque is deeply questionable on Metal 2.
+ if (get<SPIRVariable>(resource.overlapping_var_id).storage == StorageClassUniformConstant &&
+ !msl_options.supports_msl_version(3, 0))
+ {
+ SPIRV_CROSS_THROW("Full mutable aliasing of argument buffer descriptors only works on Metal 3+.");
+ }
+
+ auto &entry_func = get<SPIRFunction>(ir.default_entry_point);
+
+ entry_func.fixup_hooks_in.push_back([this, resource]() {
+ emit_argument_buffer_aliased_descriptor(*resource.var, this->get<SPIRVariable>(resource.overlapping_var_id));
+ });
+ }
+ else if (type.array.empty())
+ set_qualified_name(var.self, join("(*", to_name(buffer_variable_id), ".", mbr_name, ")"));
+ else
+ set_qualified_name(var.self, join(to_name(buffer_variable_id), ".", mbr_name));
+ }
+ }
+
+ set_extended_member_decoration(buffer_type.self, member_index, SPIRVCrossDecorationResourceIndexPrimary,
+ resource.index);
+ set_extended_member_decoration(buffer_type.self, member_index, SPIRVCrossDecorationInterfaceOrigID,
+ var.self);
+ if (has_extended_decoration(var.self, SPIRVCrossDecorationOverlappingBinding))
+ set_extended_member_decoration(buffer_type.self, member_index, SPIRVCrossDecorationOverlappingBinding);
+ member_index++;
+ }
+
+ if (msl_options.replace_recursive_inputs && type_contains_recursion(buffer_type))
+ {
+ recursive_inputs.insert(type_id);
+ auto &entry_func = this->get<SPIRFunction>(ir.default_entry_point);
+ auto addr_space = get_argument_address_space(buffer_var);
+ entry_func.fixup_hooks_in.push_back([this, addr_space, buffer_name, buffer_type_name]() {
+ statement(addr_space, " auto& ", buffer_name, " = *(", addr_space, " ", buffer_type_name, "*)", buffer_name, "_vp;");
+ });
+ }
+ }
+}
+
+// Return the resource type of the app-provided resources for the descriptor set,
+// that matches the resource index of the argument buffer index.
+// This is a two-step lookup, first lookup the resource binding number from the argument buffer index,
+// then lookup the resource binding using the binding number.
+const MSLResourceBinding &CompilerMSL::get_argument_buffer_resource(uint32_t desc_set, uint32_t arg_idx) const
+{
+ auto stage = get_entry_point().model;
+ StageSetBinding arg_idx_tuple = { stage, desc_set, arg_idx };
+ auto arg_itr = resource_arg_buff_idx_to_binding_number.find(arg_idx_tuple);
+ if (arg_itr != end(resource_arg_buff_idx_to_binding_number))
+ {
+ StageSetBinding bind_tuple = { stage, desc_set, arg_itr->second };
+ auto bind_itr = resource_bindings.find(bind_tuple);
+ if (bind_itr != end(resource_bindings))
+ return bind_itr->second.first;
+ }
+ SPIRV_CROSS_THROW("Argument buffer resource base type could not be determined. When padding argument buffer "
+ "elements, all descriptor set resources must be supplied with a base type by the app.");
+}
+
+// Adds an argument buffer padding argument buffer type as one or more members of the struct type at the member index.
+// Metal does not support arrays of buffers, so these are emitted as multiple struct members.
+void CompilerMSL::add_argument_buffer_padding_buffer_type(SPIRType &struct_type, uint32_t &mbr_idx,
+ uint32_t &arg_buff_index, MSLResourceBinding &rez_bind)
+{
+ if (!argument_buffer_padding_buffer_type_id)
+ {
+ uint32_t buff_type_id = ir.increase_bound_by(2);
+ auto &buff_type = set<SPIRType>(buff_type_id, OpNop);
+ buff_type.basetype = rez_bind.basetype;
+ buff_type.storage = StorageClassUniformConstant;
+
+ uint32_t ptr_type_id = buff_type_id + 1;
+ auto &ptr_type = set<SPIRType>(ptr_type_id, OpTypePointer);
+ ptr_type = buff_type;
+ ptr_type.op = spv::OpTypePointer;
+ ptr_type.pointer = true;
+ ptr_type.pointer_depth++;
+ ptr_type.parent_type = buff_type_id;
+
+ argument_buffer_padding_buffer_type_id = ptr_type_id;
+ }
+
+ add_argument_buffer_padding_type(argument_buffer_padding_buffer_type_id, struct_type, mbr_idx, arg_buff_index, rez_bind.count);
+}
+
+// Adds an argument buffer padding argument image type as a member of the struct type at the member index.
+void CompilerMSL::add_argument_buffer_padding_image_type(SPIRType &struct_type, uint32_t &mbr_idx,
+ uint32_t &arg_buff_index, MSLResourceBinding &rez_bind)
+{
+ if (!argument_buffer_padding_image_type_id)
+ {
+ uint32_t base_type_id = ir.increase_bound_by(2);
+ auto &base_type = set<SPIRType>(base_type_id, OpTypeFloat);
+ base_type.basetype = SPIRType::Float;
+ base_type.width = 32;
+
+ uint32_t img_type_id = base_type_id + 1;
+ auto &img_type = set<SPIRType>(img_type_id, OpTypeImage);
+ img_type.basetype = SPIRType::Image;
+ img_type.storage = StorageClassUniformConstant;
+
+ img_type.image.type = base_type_id;
+ img_type.image.dim = Dim2D;
+ img_type.image.depth = false;
+ img_type.image.arrayed = false;
+ img_type.image.ms = false;
+ img_type.image.sampled = 1;
+ img_type.image.format = ImageFormatUnknown;
+ img_type.image.access = AccessQualifierMax;
+
+ argument_buffer_padding_image_type_id = img_type_id;
+ }
+
+ add_argument_buffer_padding_type(argument_buffer_padding_image_type_id, struct_type, mbr_idx, arg_buff_index, rez_bind.count);
+}
+
+// Adds an argument buffer padding argument sampler type as a member of the struct type at the member index.
+void CompilerMSL::add_argument_buffer_padding_sampler_type(SPIRType &struct_type, uint32_t &mbr_idx,
+ uint32_t &arg_buff_index, MSLResourceBinding &rez_bind)
+{
+ if (!argument_buffer_padding_sampler_type_id)
+ {
+ uint32_t samp_type_id = ir.increase_bound_by(1);
+ auto &samp_type = set<SPIRType>(samp_type_id, OpTypeSampler);
+ samp_type.basetype = SPIRType::Sampler;
+ samp_type.storage = StorageClassUniformConstant;
+
+ argument_buffer_padding_sampler_type_id = samp_type_id;
+ }
+
+ add_argument_buffer_padding_type(argument_buffer_padding_sampler_type_id, struct_type, mbr_idx, arg_buff_index, rez_bind.count);
+}
+
+// Adds the argument buffer padding argument type as a member of the struct type at the member index.
+// Advances both arg_buff_index and mbr_idx to next argument slots.
+void CompilerMSL::add_argument_buffer_padding_type(uint32_t mbr_type_id, SPIRType &struct_type, uint32_t &mbr_idx,
+ uint32_t &arg_buff_index, uint32_t count)
+{
+ uint32_t type_id = mbr_type_id;
+ if (count > 1)
+ {
+ uint32_t ary_type_id = ir.increase_bound_by(1);
+ auto &ary_type = set<SPIRType>(ary_type_id, get<SPIRType>(type_id));
+ ary_type.op = OpTypeArray;
+ ary_type.array.push_back(count);
+ ary_type.array_size_literal.push_back(true);
+ ary_type.parent_type = type_id;
+ type_id = ary_type_id;
+ }
+
+ set_member_name(struct_type.self, mbr_idx, join("_m", arg_buff_index, "_pad"));
+ set_extended_member_decoration(struct_type.self, mbr_idx, SPIRVCrossDecorationResourceIndexPrimary, arg_buff_index);
+ struct_type.member_types.push_back(type_id);
+
+ arg_buff_index += count;
+ mbr_idx++;
+}
+
+void CompilerMSL::activate_argument_buffer_resources()
+{
+ // For ABI compatibility, force-enable all resources which are part of argument buffers.
+ ir.for_each_typed_id<SPIRVariable>([&](uint32_t self, const SPIRVariable &) {
+ if (!has_decoration(self, DecorationDescriptorSet))
+ return;
+
+ uint32_t desc_set = get_decoration(self, DecorationDescriptorSet);
+ if (descriptor_set_is_argument_buffer(desc_set))
+ add_active_interface_variable(self);
+ });
+}
+
+bool CompilerMSL::using_builtin_array() const
+{
+ return msl_options.force_native_arrays || is_using_builtin_array;
+}
+
+void CompilerMSL::set_combined_sampler_suffix(const char *suffix)
+{
+ sampler_name_suffix = suffix;
+}
+
+const char *CompilerMSL::get_combined_sampler_suffix() const
+{
+ return sampler_name_suffix.c_str();
+}
+
+void CompilerMSL::emit_block_hints(const SPIRBlock &)
+{
+}
+
+string CompilerMSL::additional_fixed_sample_mask_str() const
+{
+ char print_buffer[32];
+#ifdef _MSC_VER
+ // snprintf does not exist or is buggy on older MSVC versions, some of
+ // them being used by MinGW. Use sprintf instead and disable
+ // corresponding warning.
+#pragma warning(push)
+#pragma warning(disable : 4996)
+#endif
+#if _WIN32
+ sprintf(print_buffer, "0x%x", msl_options.additional_fixed_sample_mask);
+#else
+ snprintf(print_buffer, sizeof(print_buffer), "0x%x", msl_options.additional_fixed_sample_mask);
+#endif
+#ifdef _MSC_VER
+#pragma warning(pop)
+#endif
+ return print_buffer;
+}