diff options
Diffstat (limited to 'thirdparty/thorvg/src/renderer/sw_engine/tvgSwRaster.cpp')
-rw-r--r-- | thirdparty/thorvg/src/renderer/sw_engine/tvgSwRaster.cpp | 2037 |
1 files changed, 2037 insertions, 0 deletions
diff --git a/thirdparty/thorvg/src/renderer/sw_engine/tvgSwRaster.cpp b/thirdparty/thorvg/src/renderer/sw_engine/tvgSwRaster.cpp new file mode 100644 index 0000000000..4b1ba59100 --- /dev/null +++ b/thirdparty/thorvg/src/renderer/sw_engine/tvgSwRaster.cpp @@ -0,0 +1,2037 @@ +/* + * Copyright (c) 2020 - 2023 the ThorVG project. All rights reserved. + + * Permission is hereby granted, free of charge, to any person obtaining a copy + * of this software and associated documentation files (the "Software"), to deal + * in the Software without restriction, including without limitation the rights + * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell + * copies of the Software, and to permit persons to whom the Software is + * furnished to do so, subject to the following conditions: + + * The above copyright notice and this permission notice shall be included in all + * copies or substantial portions of the Software. + + * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR + * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, + * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE + * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER + * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, + * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE + * SOFTWARE. + */ + +#ifdef _WIN32 + #include <malloc.h> +#elif defined(__linux__) + #include <alloca.h> +#else + #include <stdlib.h> +#endif + +#include "tvgMath.h" +#include "tvgRender.h" +#include "tvgSwCommon.h" + +/************************************************************************/ +/* Internal Class Implementation */ +/************************************************************************/ +constexpr auto DOWN_SCALE_TOLERANCE = 0.5f; + +struct FillLinear +{ + void operator()(const SwFill* fill, uint8_t* dst, uint32_t y, uint32_t x, uint32_t len, SwMask op, uint8_t a) + { + fillLinear(fill, dst, y, x, len, op, a); + } + + void operator()(const SwFill* fill, uint8_t* dst, uint32_t y, uint32_t x, uint32_t len, uint8_t* cmp, SwMask op, uint8_t a) + { + fillLinear(fill, dst, y, x, len, cmp, op, a); + } + + void operator()(const SwFill* fill, uint32_t* dst, uint32_t y, uint32_t x, uint32_t len, SwBlender op, uint8_t a) + { + fillLinear(fill, dst, y, x, len, op, a); + } + + void operator()(const SwFill* fill, uint32_t* dst, uint32_t y, uint32_t x, uint32_t len, uint8_t* cmp, SwAlpha alpha, uint8_t csize, uint8_t opacity) + { + fillLinear(fill, dst, y, x, len, cmp, alpha, csize, opacity); + } + + void operator()(const SwFill* fill, uint32_t* dst, uint32_t y, uint32_t x, uint32_t len, SwBlender op, SwBlender op2, uint8_t a) + { + fillLinear(fill, dst, y, x, len, op, op2, a); + } + +}; + +struct FillRadial +{ + void operator()(const SwFill* fill, uint8_t* dst, uint32_t y, uint32_t x, uint32_t len, SwMask op, uint8_t a) + { + fillRadial(fill, dst, y, x, len, op, a); + } + + void operator()(const SwFill* fill, uint8_t* dst, uint32_t y, uint32_t x, uint32_t len, uint8_t* cmp, SwMask op, uint8_t a) + { + fillRadial(fill, dst, y, x, len, cmp, op, a); + } + + void operator()(const SwFill* fill, uint32_t* dst, uint32_t y, uint32_t x, uint32_t len, SwBlender op, uint8_t a) + { + fillRadial(fill, dst, y, x, len, op, a); + } + + void operator()(const SwFill* fill, uint32_t* dst, uint32_t y, uint32_t x, uint32_t len, uint8_t* cmp, SwAlpha alpha, uint8_t csize, uint8_t opacity) + { + fillRadial(fill, dst, y, x, len, cmp, alpha, csize, opacity); + } + + void operator()(const SwFill* fill, uint32_t* dst, uint32_t y, uint32_t x, uint32_t len, SwBlender op, SwBlender op2, uint8_t a) + { + fillRadial(fill, dst, y, x, len, op, op2, a); + } +}; + + +static inline uint8_t _alpha(uint8_t* a) +{ + return *a; +} + + +static inline uint8_t _ialpha(uint8_t* a) +{ + return ~(*a); +} + + +static inline uint8_t _abgrLuma(uint8_t* c) +{ + auto v = *(uint32_t*)c; + return ((((v&0xff)*54) + (((v>>8)&0xff)*183) + (((v>>16)&0xff)*19))) >> 8; //0.2125*R + 0.7154*G + 0.0721*B +} + + +static inline uint8_t _argbLuma(uint8_t* c) +{ + auto v = *(uint32_t*)c; + return ((((v&0xff)*19) + (((v>>8)&0xff)*183) + (((v>>16)&0xff)*54))) >> 8; //0.0721*B + 0.7154*G + 0.2125*R +} + + +static inline uint8_t _abgrInvLuma(uint8_t* c) +{ + return ~_abgrLuma(c); +} + + +static inline uint8_t _argbInvLuma(uint8_t* c) +{ + return ~_argbLuma(c); +} + + +static inline uint32_t _abgrJoin(uint8_t r, uint8_t g, uint8_t b, uint8_t a) +{ + return (a << 24 | b << 16 | g << 8 | r); +} + + +static inline uint32_t _argbJoin(uint8_t r, uint8_t g, uint8_t b, uint8_t a) +{ + return (a << 24 | r << 16 | g << 8 | b); +} + +static inline bool _blending(const SwSurface* surface) +{ + return (surface->blender) ? true : false; +} + + +/* OPTIMIZE_ME: Probably, we can separate masking(8bits) / composition(32bits) + This would help to enhance the performance by avoiding the unnecessary matting from the composition */ +static inline bool _compositing(const SwSurface* surface) +{ + if (!surface->compositor || (int)surface->compositor->method <= (int)CompositeMethod::ClipPath) return false; + return true; +} + + +static inline bool _matting(const SwSurface* surface) +{ + if ((int)surface->compositor->method < (int)CompositeMethod::AddMask) return true; + else return false; +} + +static inline uint8_t _opMaskNone(uint8_t s, TVG_UNUSED uint8_t d, TVG_UNUSED uint8_t a) +{ + return s; +} + +static inline uint8_t _opMaskAdd(uint8_t s, uint8_t d, uint8_t a) +{ + return s + MULTIPLY(d, a); +} + + +static inline uint8_t _opMaskSubtract(uint8_t s, uint8_t d, TVG_UNUSED uint8_t a) +{ + return MULTIPLY(s, 255 - d); +} + + +static inline uint8_t _opMaskIntersect(uint8_t s, uint8_t d, TVG_UNUSED uint8_t a) +{ + return MULTIPLY(s, d); +} + + +static inline uint8_t _opMaskDifference(uint8_t s, uint8_t d, uint8_t a) +{ + return MULTIPLY(s, 255 - d) + MULTIPLY(d, a); +} + + +static inline bool _direct(CompositeMethod method) +{ + //subtract & Intersect allows the direct composition + if (method == CompositeMethod::SubtractMask || method == CompositeMethod::IntersectMask) return true; + return false; +} + + +static inline SwMask _getMaskOp(CompositeMethod method) +{ + switch (method) { + case CompositeMethod::AddMask: return _opMaskAdd; + case CompositeMethod::SubtractMask: return _opMaskSubtract; + case CompositeMethod::DifferenceMask: return _opMaskDifference; + case CompositeMethod::IntersectMask: return _opMaskIntersect; + default: return nullptr; + } +} + + +static bool _compositeMaskImage(SwSurface* surface, const SwImage* image, const SwBBox& region) +{ + auto dbuffer = &surface->buf8[region.min.y * surface->stride + region.min.x]; + auto sbuffer = image->buf8 + (region.min.y + image->oy) * image->stride + (region.min.x + image->ox); + + for (auto y = region.min.y; y < region.max.y; ++y) { + auto dst = dbuffer; + auto src = sbuffer; + for (auto x = region.min.x; x < region.max.x; x++, dst++, src++) { + *dst = *src + MULTIPLY(*dst, ~*src); + } + dbuffer += surface->stride; + sbuffer += image->stride; + } + return true; +} + + +#include "tvgSwRasterTexmap.h" +#include "tvgSwRasterC.h" +#include "tvgSwRasterAvx.h" +#include "tvgSwRasterNeon.h" + + +static inline uint32_t _sampleSize(float scale) +{ + auto sampleSize = static_cast<uint32_t>(0.5f / scale); + if (sampleSize == 0) sampleSize = 1; + return sampleSize; +} + + +//Bilinear Interpolation +//OPTIMIZE_ME: Skip the function pointer access +static uint32_t _interpUpScaler(const uint32_t *img, TVG_UNUSED uint32_t stride, uint32_t w, uint32_t h, float sx, float sy, TVG_UNUSED uint32_t n, TVG_UNUSED uint32_t n2) +{ + auto rx = (uint32_t)(sx); + auto ry = (uint32_t)(sy); + auto rx2 = rx + 1; + if (rx2 >= w) rx2 = w - 1; + auto ry2 = ry + 1; + if (ry2 >= h) ry2 = h - 1; + + auto dx = static_cast<uint32_t>((sx - rx) * 255.0f); + auto dy = static_cast<uint32_t>((sy - ry) * 255.0f); + + auto c1 = img[rx + ry * w]; + auto c2 = img[rx2 + ry * w]; + auto c3 = img[rx2 + ry2 * w]; + auto c4 = img[rx + ry2 * w]; + + return INTERPOLATE(INTERPOLATE(c3, c4, dx), INTERPOLATE(c2, c1, dx), dy); +} + + +//2n x 2n Mean Kernel +//OPTIMIZE_ME: Skip the function pointer access +static uint32_t _interpDownScaler(const uint32_t *img, uint32_t stride, uint32_t w, uint32_t h, float sx, float sy, uint32_t n, uint32_t n2) +{ + uint32_t rx = lroundf(sx); + uint32_t ry = lroundf(sy); + uint32_t c[4] = {0, 0, 0, 0}; + auto src = img + rx - n + (ry - n) * stride; + + for (auto y = ry - n; y < ry + n; ++y) { + if (y >= h) continue; + auto p = src; + for (auto x = rx - n; x < rx + n; ++x, ++p) { + if (x >= w) continue; + c[0] += *p >> 24; + c[1] += (*p >> 16) & 0xff; + c[2] += (*p >> 8) & 0xff; + c[3] += *p & 0xff; + } + src += stride; + } + for (auto i = 0; i < 4; ++i) { + c[i] = (c[i] >> 2) / n2; + } + return (c[0] << 24) | (c[1] << 16) | (c[2] << 8) | c[3]; +} + + +/************************************************************************/ +/* Rect */ +/************************************************************************/ + +static bool _rasterCompositeMaskedRect(SwSurface* surface, const SwBBox& region, SwMask maskOp, uint8_t r, uint8_t g, uint8_t b, uint8_t a) +{ + auto w = static_cast<uint32_t>(region.max.x - region.min.x); + auto h = static_cast<uint32_t>(region.max.y - region.min.y); + auto cstride = surface->compositor->image.stride; + auto cbuffer = surface->compositor->image.buf8 + (region.min.y * cstride + region.min.x); //compositor buffer + auto ialpha = 255 - a; + + for (uint32_t y = 0; y < h; ++y) { + auto cmp = cbuffer; + for (uint32_t x = 0; x < w; ++x, ++cmp) { + *cmp = maskOp(a, *cmp, ialpha); + } + cbuffer += cstride; + } + return _compositeMaskImage(surface, &surface->compositor->image, surface->compositor->bbox); +} + + +static bool _rasterDirectMaskedRect(SwSurface* surface, const SwBBox& region, SwMask maskOp, uint8_t r, uint8_t g, uint8_t b, uint8_t a) +{ + auto w = static_cast<uint32_t>(region.max.x - region.min.x); + auto h = static_cast<uint32_t>(region.max.y - region.min.y); + auto cbuffer = surface->compositor->image.buf8 + (region.min.y * surface->compositor->image.stride + region.min.x); //compositor buffer + auto dbuffer = surface->buf8 + (region.min.y * surface->stride + region.min.x); //destination buffer + + for (uint32_t y = 0; y < h; ++y) { + auto cmp = cbuffer; + auto dst = dbuffer; + for (uint32_t x = 0; x < w; ++x, ++cmp, ++dst) { + auto tmp = maskOp(a, *cmp, 0); //not use alpha. + *dst = tmp + MULTIPLY(*dst, ~tmp); + } + cbuffer += surface->compositor->image.stride; + dbuffer += surface->stride; + } + return true; +} + + +static bool _rasterMaskedRect(SwSurface* surface, const SwBBox& region, uint8_t r, uint8_t g, uint8_t b, uint8_t a) +{ + //8bit masking channels composition + if (surface->channelSize != sizeof(uint8_t)) return false; + + TVGLOG("SW_ENGINE", "Masked(%d) Rect [Region: %lu %lu %lu %lu]", (int)surface->compositor->method, region.min.x, region.min.y, region.max.x - region.min.x, region.max.y - region.min.y); + + auto maskOp = _getMaskOp(surface->compositor->method); + if (_direct(surface->compositor->method)) return _rasterDirectMaskedRect(surface, region, maskOp, r, g, b, a); + else return _rasterCompositeMaskedRect(surface, region, maskOp, r, g, b, a); + return false; +} + + +static bool _rasterMattedRect(SwSurface* surface, const SwBBox& region, uint8_t r, uint8_t g, uint8_t b, uint8_t a) +{ + auto w = static_cast<uint32_t>(region.max.x - region.min.x); + auto h = static_cast<uint32_t>(region.max.y - region.min.y); + auto csize = surface->compositor->image.channelSize; + auto cbuffer = surface->compositor->image.buf8 + ((region.min.y * surface->compositor->image.stride + region.min.x) * csize); //compositor buffer + auto alpha = surface->alpha(surface->compositor->method); + + TVGLOG("SW_ENGINE", "Matted(%d) Rect [Region: %lu %lu %u %u]", (int)surface->compositor->method, region.min.x, region.min.y, w, h); + + //32bits channels + if (surface->channelSize == sizeof(uint32_t)) { + auto color = surface->join(r, g, b, a); + auto buffer = surface->buf32 + (region.min.y * surface->stride) + region.min.x; + for (uint32_t y = 0; y < h; ++y) { + auto dst = &buffer[y * surface->stride]; + auto cmp = &cbuffer[y * surface->compositor->image.stride * csize]; + for (uint32_t x = 0; x < w; ++x, ++dst, cmp += csize) { + *dst = INTERPOLATE(color, *dst, alpha(cmp)); + } + } + //8bits grayscale + } else if (surface->channelSize == sizeof(uint8_t)) { + auto buffer = surface->buf8 + (region.min.y * surface->stride) + region.min.x; + for (uint32_t y = 0; y < h; ++y) { + auto dst = &buffer[y * surface->stride]; + auto cmp = &cbuffer[y * surface->compositor->image.stride * csize]; + for (uint32_t x = 0; x < w; ++x, ++dst, cmp += csize) { + *dst = INTERPOLATE8(a, *dst, alpha(cmp)); + } + } + } + return true; +} + + +static bool _rasterBlendingRect(SwSurface* surface, const SwBBox& region, uint8_t r, uint8_t g, uint8_t b, uint8_t a) +{ + if (surface->channelSize != sizeof(uint32_t)) return false; + + auto w = static_cast<uint32_t>(region.max.x - region.min.x); + auto h = static_cast<uint32_t>(region.max.y - region.min.y); + auto color = surface->join(r, g, b, a); + auto buffer = surface->buf32 + (region.min.y * surface->stride) + region.min.x; + auto ialpha = 255 - a; + + for (uint32_t y = 0; y < h; ++y) { + auto dst = &buffer[y * surface->stride]; + for (uint32_t x = 0; x < w; ++x, ++dst) { + *dst = surface->blender(color, *dst, ialpha); + } + } + return true; +} + + +static bool _rasterTranslucentRect(SwSurface* surface, const SwBBox& region, uint8_t r, uint8_t g, uint8_t b, uint8_t a) +{ +#if defined(THORVG_AVX_VECTOR_SUPPORT) + return avxRasterTranslucentRect(surface, region, r, g, b, a); +#elif defined(THORVG_NEON_VECTOR_SUPPORT) + return neonRasterTranslucentRect(surface, region, r, g, b, a); +#else + return cRasterTranslucentRect(surface, region, r, g, b, a); +#endif +} + + +static bool _rasterSolidRect(SwSurface* surface, const SwBBox& region, uint8_t r, uint8_t g, uint8_t b) +{ + auto w = static_cast<uint32_t>(region.max.x - region.min.x); + auto h = static_cast<uint32_t>(region.max.y - region.min.y); + + //32bits channels + if (surface->channelSize == sizeof(uint32_t)) { + auto color = surface->join(r, g, b, 255); + auto buffer = surface->buf32 + (region.min.y * surface->stride); + for (uint32_t y = 0; y < h; ++y) { + rasterPixel32(buffer + y * surface->stride, color, region.min.x, w); + } + return true; + } + //8bits grayscale + if (surface->channelSize == sizeof(uint8_t)) { + for (uint32_t y = 0; y < h; ++y) { + rasterGrayscale8(surface->buf8, 255, (y + region.min.y) * surface->stride + region.min.x, w); + } + return true; + } + return false; +} + + +static bool _rasterRect(SwSurface* surface, const SwBBox& region, uint8_t r, uint8_t g, uint8_t b, uint8_t a) +{ + if (_compositing(surface)) { + if (_matting(surface)) return _rasterMattedRect(surface, region, r, g, b, a); + else return _rasterMaskedRect(surface, region, r, g, b, a); + } else if (_blending(surface)) { + return _rasterBlendingRect(surface, region, r, g, b, a); + } else { + if (a == 255) return _rasterSolidRect(surface, region, r, g, b); + else return _rasterTranslucentRect(surface, region, r, g, b, a); + } + return false; +} + + +/************************************************************************/ +/* Rle */ +/************************************************************************/ + +static bool _rasterCompositeMaskedRle(SwSurface* surface, SwRleData* rle, SwMask maskOp, uint8_t r, uint8_t g, uint8_t b, uint8_t a) +{ + auto span = rle->spans; + auto cbuffer = surface->compositor->image.buf8; + auto cstride = surface->compositor->image.stride; + uint8_t src; + + for (uint32_t i = 0; i < rle->size; ++i, ++span) { + auto cmp = &cbuffer[span->y * cstride + span->x]; + if (span->coverage == 255) src = a; + else src = MULTIPLY(a, span->coverage); + auto ialpha = 255 - src; + for (auto x = 0; x < span->len; ++x, ++cmp) { + *cmp = maskOp(src, *cmp, ialpha); + } + } + return _compositeMaskImage(surface, &surface->compositor->image, surface->compositor->bbox); +} + + +static bool _rasterDirectMaskedRle(SwSurface* surface, SwRleData* rle, SwMask maskOp, uint8_t r, uint8_t g, uint8_t b, uint8_t a) +{ + auto span = rle->spans; + auto cbuffer = surface->compositor->image.buf8; + auto cstride = surface->compositor->image.stride; + uint8_t src; + + for (uint32_t i = 0; i < rle->size; ++i, ++span) { + auto cmp = &cbuffer[span->y * cstride + span->x]; + auto dst = &surface->buf8[span->y * surface->stride + span->x]; + if (span->coverage == 255) src = a; + else src = MULTIPLY(a, span->coverage); + for (auto x = 0; x < span->len; ++x, ++cmp, ++dst) { + auto tmp = maskOp(src, *cmp, 0); //not use alpha + *dst = tmp + MULTIPLY(*dst, ~tmp); + } + } + return true; +} + + +static bool _rasterMaskedRle(SwSurface* surface, SwRleData* rle, uint8_t r, uint8_t g, uint8_t b, uint8_t a) +{ + TVGLOG("SW_ENGINE", "Masked(%d) Rle", (int)surface->compositor->method); + + //8bit masking channels composition + if (surface->channelSize != sizeof(uint8_t)) return false; + + auto maskOp = _getMaskOp(surface->compositor->method); + if (_direct(surface->compositor->method)) return _rasterDirectMaskedRle(surface, rle, maskOp, r, g, b, a); + else return _rasterCompositeMaskedRle(surface, rle, maskOp, r, g, b, a); + return false; +} + + +static bool _rasterMattedRle(SwSurface* surface, SwRleData* rle, uint8_t r, uint8_t g, uint8_t b, uint8_t a) +{ + TVGLOG("SW_ENGINE", "Matted(%d) Rle", (int)surface->compositor->method); + + auto span = rle->spans; + auto cbuffer = surface->compositor->image.buf8; + auto csize = surface->compositor->image.channelSize; + auto alpha = surface->alpha(surface->compositor->method); + + //32bit channels + if (surface->channelSize == sizeof(uint32_t)) { + uint32_t src; + auto color = surface->join(r, g, b, a); + for (uint32_t i = 0; i < rle->size; ++i, ++span) { + auto dst = &surface->buf32[span->y * surface->stride + span->x]; + auto cmp = &cbuffer[(span->y * surface->compositor->image.stride + span->x) * csize]; + if (span->coverage == 255) src = color; + else src = ALPHA_BLEND(color, span->coverage); + for (uint32_t x = 0; x < span->len; ++x, ++dst, cmp += csize) { + auto tmp = ALPHA_BLEND(src, alpha(cmp)); + *dst = tmp + ALPHA_BLEND(*dst, IA(tmp)); + } + } + return true; + } + //8bit grayscale + if (surface->channelSize == sizeof(uint8_t)) { + uint8_t src; + for (uint32_t i = 0; i < rle->size; ++i, ++span) { + auto dst = &surface->buf8[span->y * surface->stride + span->x]; + auto cmp = &cbuffer[(span->y * surface->compositor->image.stride + span->x) * csize]; + if (span->coverage == 255) src = a; + else src = MULTIPLY(a, span->coverage); + for (uint32_t x = 0; x < span->len; ++x, ++dst, cmp += csize) { + *dst = INTERPOLATE8(src, *dst, alpha(cmp)); + } + } + return true; + } + return false; +} + + +static bool _rasterBlendingRle(SwSurface* surface, const SwRleData* rle, uint8_t r, uint8_t g, uint8_t b, uint8_t a) +{ + if (surface->channelSize != sizeof(uint32_t)) return false; + + auto span = rle->spans; + auto color = surface->join(r, g, b, a); + auto ialpha = 255 - a; + + for (uint32_t i = 0; i < rle->size; ++i, ++span) { + auto dst = &surface->buf32[span->y * surface->stride + span->x]; + if (span->coverage == 255) { + for (uint32_t x = 0; x < span->len; ++x, ++dst) { + *dst = surface->blender(color, *dst, ialpha); + } + } else { + for (uint32_t x = 0; x < span->len; ++x, ++dst) { + auto tmp = surface->blender(color, *dst, ialpha); + *dst = INTERPOLATE(tmp, *dst, span->coverage); + } + } + } + return true; +} + + +static bool _rasterTranslucentRle(SwSurface* surface, const SwRleData* rle, uint8_t r, uint8_t g, uint8_t b, uint8_t a) +{ +#if defined(THORVG_AVX_VECTOR_SUPPORT) + return avxRasterTranslucentRle(surface, rle, r, g, b, a); +#elif defined(THORVG_NEON_VECTOR_SUPPORT) + return neonRasterTranslucentRle(surface, rle, r, g, b, a); +#else + return cRasterTranslucentRle(surface, rle, r, g, b, a); +#endif +} + + +static bool _rasterSolidRle(SwSurface* surface, const SwRleData* rle, uint8_t r, uint8_t g, uint8_t b) +{ + auto span = rle->spans; + + //32bit channels + if (surface->channelSize == sizeof(uint32_t)) { + auto color = surface->join(r, g, b, 255); + for (uint32_t i = 0; i < rle->size; ++i, ++span) { + if (span->coverage == 255) { + rasterPixel32(surface->buf32 + span->y * surface->stride, color, span->x, span->len); + } else { + auto dst = &surface->buf32[span->y * surface->stride + span->x]; + auto src = ALPHA_BLEND(color, span->coverage); + auto ialpha = 255 - span->coverage; + for (uint32_t x = 0; x < span->len; ++x, ++dst) { + *dst = src + ALPHA_BLEND(*dst, ialpha); + } + } + } + //8bit grayscale + } else if (surface->channelSize == sizeof(uint8_t)) { + for (uint32_t i = 0; i < rle->size; ++i, ++span) { + if (span->coverage == 255) { + rasterGrayscale8(surface->buf8, span->coverage, span->y * surface->stride + span->x, span->len); + } else { + auto dst = &surface->buf8[span->y * surface->stride + span->x]; + auto ialpha = 255 - span->coverage; + for (uint32_t x = 0; x < span->len; ++x, ++dst) { + *dst = span->coverage + MULTIPLY(*dst, ialpha); + } + } + } + } + return true; +} + + +static bool _rasterRle(SwSurface* surface, SwRleData* rle, uint8_t r, uint8_t g, uint8_t b, uint8_t a) +{ + if (!rle) return false; + + if (_compositing(surface)) { + if (_matting(surface)) return _rasterMattedRle(surface, rle, r, g, b, a); + else return _rasterMaskedRle(surface, rle, r, g, b, a); + } else if (_blending(surface)) { + return _rasterBlendingRle(surface, rle, r, g, b, a); + } else { + if (a == 255) return _rasterSolidRle(surface, rle, r, g, b); + else return _rasterTranslucentRle(surface, rle, r, g, b, a); + } + return false; +} + + +/************************************************************************/ +/* RLE Scaled Image */ +/************************************************************************/ + +#if 0 //Enable it when GRAYSCALE image is supported +static bool _rasterCompositeScaledMaskedRleImage(SwSurface* surface, const SwImage* image, const Matrix* itransform, const SwBBox& region, SwMask maskOp, uint8_t opacity) +{ + auto scaleMethod = image->scale < DOWN_SCALE_TOLERANCE ? _interpDownScaler : _interpUpScaler; + auto sampleSize = _sampleSize(image->scale); + auto sampleSize2 = sampleSize * sampleSize; + auto span = image->rle->spans; + + for (uint32_t i = 0; i < image->rle->size; ++i, ++span) { + auto sy = span->y * itransform->e22 + itransform->e23; + if ((uint32_t)sy >= image->h) continue; + auto cmp = &surface->compositor->image.buf8[span->y * surface->compositor->image.stride + span->x]; + auto a = MULTIPLY(span->coverage, opacity); + if (a == 255) { + for (uint32_t x = static_cast<uint32_t>(span->x); x < static_cast<uint32_t>(span->x) + span->len; ++x, ++cmp) { + auto sx = x * itransform->e11 + itransform->e13; + if ((uint32_t)sx >= image->w) continue; + auto src = scaleMethod(image->buf8, image->stride, image->w, image->h, sx, sy, sampleSize, sampleSize2); + *cmp = maskOp(src, *cmp, ~src); + } + } else { + for (uint32_t x = static_cast<uint32_t>(span->x); x < static_cast<uint32_t>(span->x) + span->len; ++x, ++cmp) { + auto sx = x * itransform->e11 + itransform->e13; + if ((uint32_t)sx >= image->w) continue; + auto src = scaleMethod(image->buf8, image->stride, image->w, image->h, sx, sy, sampleSize, sampleSize2); + auto tmp = MULTIPLY(src, a); + *cmp = maskOp(tmp, *cmp, ~tmp); + } + } + } + return true; +} + + +static bool _rasterDirectScaledMaskedRleImage(SwSurface* surface, const SwImage* image, const Matrix* itransform, const SwBBox& region, SwMask maskOp, uint8_t opacity) +{ + auto scaleMethod = image->scale < DOWN_SCALE_TOLERANCE ? _interpDownScaler : _interpUpScaler; + auto sampleSize = _sampleSize(image->scale); + auto sampleSize2 = sampleSize * sampleSize; + auto span = image->rle->spans; + + for (uint32_t i = 0; i < image->rle->size; ++i, ++span) { + auto sy = span->y * itransform->e22 + itransform->e23; + if ((uint32_t)sy >= image->h) continue; + auto cmp = &surface->compositor->image.buf8[span->y * surface->compositor->image.stride + span->x]; + auto dst = &surface->buf8[span->y * surface->stride + span->x]; + auto a = MULTIPLY(span->coverage, opacity); + if (a == 255) { + for (uint32_t x = static_cast<uint32_t>(span->x); x < static_cast<uint32_t>(span->x) + span->len; ++x, ++cmp, ++dst) { + auto sx = x * itransform->e11 + itransform->e13; + if ((uint32_t)sx >= image->w) continue; + auto src = scaleMethod(image->buf8, image->stride, image->w, image->h, sx, sy, sampleSize, sampleSize2); + auto tmp = maskOp(src, *cmp, 0); //not use alpha + *dst = tmp + MULTIPLY(*dst, ~tmp); + } + } else { + for (uint32_t x = static_cast<uint32_t>(span->x); x < static_cast<uint32_t>(span->x) + span->len; ++x, ++cmp, ++dst) { + auto sx = x * itransform->e11 + itransform->e13; + if ((uint32_t)sx >= image->w) continue; + auto src = scaleMethod(image->buf8, image->stride, image->w, image->h, sx, sy, sampleSize, sampleSize2); + auto tmp = maskOp(MULTIPLY(src, a), *cmp, 0); //not use alpha + *dst = tmp + MULTIPLY(*dst, ~tmp); + } + } + } + return _compositeMaskImage(surface, &surface->compositor->image, surface->compositor->bbox); +} +#endif + +static bool _rasterScaledMaskedRleImage(SwSurface* surface, const SwImage* image, const Matrix* itransform, const SwBBox& region, uint8_t opacity) +{ +#if 0 //Enable it when GRAYSCALE image is supported + TVGLOG("SW_ENGINE", "Scaled Masked(%d) Rle Image", (int)surface->compositor->method); + + //8bit masking channels composition + if (surface->channelSize != sizeof(uint8_t)) return false; + + auto maskOp = _getMaskOp(surface->compositor->method); + if (_direct(surface->compositor->method)) return _rasterDirectScaledMaskedRleImage(surface, image, itransform, region, maskOp, opacity); + else return _rasterCompositeScaledMaskedRleImage(surface, image, itransform, region, maskOp, opacity); +#endif + return false; +} + + +static bool _rasterScaledMattedRleImage(SwSurface* surface, const SwImage* image, const Matrix* itransform, const SwBBox& region, uint8_t opacity) +{ + TVGLOG("SW_ENGINE", "Scaled Matted(%d) Rle Image", (int)surface->compositor->method); + + auto span = image->rle->spans; + auto csize = surface->compositor->image.channelSize; + auto alpha = surface->alpha(surface->compositor->method); + + auto scaleMethod = image->scale < DOWN_SCALE_TOLERANCE ? _interpDownScaler : _interpUpScaler; + auto sampleSize = _sampleSize(image->scale); + auto sampleSize2 = sampleSize * sampleSize; + + for (uint32_t i = 0; i < image->rle->size; ++i, ++span) { + auto sy = span->y * itransform->e22 + itransform->e23; + if ((uint32_t)sy >= image->h) continue; + auto dst = &surface->buf32[span->y * surface->stride + span->x]; + auto cmp = &surface->compositor->image.buf8[(span->y * surface->compositor->image.stride + span->x) * csize]; + auto a = MULTIPLY(span->coverage, opacity); + if (a == 255) { + for (uint32_t x = static_cast<uint32_t>(span->x); x < static_cast<uint32_t>(span->x) + span->len; ++x, ++dst, cmp += csize) { + auto sx = x * itransform->e11 + itransform->e13; + if ((uint32_t)sx >= image->w) continue; + auto tmp = ALPHA_BLEND(scaleMethod(image->buf32, image->stride, image->w, image->h, sx, sy, sampleSize, sampleSize2), alpha(cmp)); + *dst = tmp + ALPHA_BLEND(*dst, IA(tmp)); + } + } else { + for (uint32_t x = static_cast<uint32_t>(span->x); x < static_cast<uint32_t>(span->x) + span->len; ++x, ++dst, cmp += csize) { + auto sx = x * itransform->e11 + itransform->e13; + if ((uint32_t)sx >= image->w) continue; + auto src = scaleMethod(image->buf32, image->stride, image->w, image->h, sx, sy, sampleSize, sampleSize2); + auto tmp = ALPHA_BLEND(src, MULTIPLY(alpha(cmp), a)); + *dst = tmp + ALPHA_BLEND(*dst, IA(tmp)); + } + } + } + + return true; +} + + +static bool _rasterScaledBlendingRleImage(SwSurface* surface, const SwImage* image, const Matrix* itransform, const SwBBox& region, uint8_t opacity) +{ + auto span = image->rle->spans; + auto scaleMethod = image->scale < DOWN_SCALE_TOLERANCE ? _interpDownScaler : _interpUpScaler; + auto sampleSize = _sampleSize(image->scale); + auto sampleSize2 = sampleSize * sampleSize; + + for (uint32_t i = 0; i < image->rle->size; ++i, ++span) { + auto sy = span->y * itransform->e22 + itransform->e23; + if ((uint32_t)sy >= image->h) continue; + auto dst = &surface->buf32[span->y * surface->stride + span->x]; + auto alpha = MULTIPLY(span->coverage, opacity); + if (alpha == 255) { + for (uint32_t x = static_cast<uint32_t>(span->x); x < static_cast<uint32_t>(span->x) + span->len; ++x, ++dst) { + auto sx = x * itransform->e11 + itransform->e13; + if ((uint32_t)sx >= image->w) continue; + auto src = scaleMethod(image->buf32, image->stride, image->w, image->h, sx, sy, sampleSize, sampleSize2); + auto tmp = surface->blender(src, *dst, 255); + *dst = INTERPOLATE(tmp, *dst, A(src)); + } + } else if (opacity == 255) { + for (uint32_t x = static_cast<uint32_t>(span->x); x < static_cast<uint32_t>(span->x) + span->len; ++x, ++dst) { + auto sx = x * itransform->e11 + itransform->e13; + if ((uint32_t)sx >= image->w) continue; + auto src = scaleMethod(image->buf32, image->stride, image->w, image->h, sx, sy, sampleSize, sampleSize2); + auto tmp = surface->blender(src, *dst, 255); + *dst = INTERPOLATE(tmp, *dst, MULTIPLY(span->coverage, A(src))); + } + } else { + for (uint32_t x = static_cast<uint32_t>(span->x); x < static_cast<uint32_t>(span->x) + span->len; ++x, ++dst) { + auto sx = x * itransform->e11 + itransform->e13; + if ((uint32_t)sx >= image->w) continue; + auto src = ALPHA_BLEND(scaleMethod(image->buf32, image->stride, image->w, image->h, sx, sy, sampleSize, sampleSize2), opacity); + auto tmp = surface->blender(src, *dst, 255); + *dst = INTERPOLATE(tmp, *dst, MULTIPLY(span->coverage, A(src))); + } + } + } + return true; +} + + +static bool _rasterScaledRleImage(SwSurface* surface, const SwImage* image, const Matrix* itransform, const SwBBox& region, uint8_t opacity) +{ + auto span = image->rle->spans; + auto scaleMethod = image->scale < DOWN_SCALE_TOLERANCE ? _interpDownScaler : _interpUpScaler; + auto sampleSize = _sampleSize(image->scale); + auto sampleSize2 = sampleSize * sampleSize; + + for (uint32_t i = 0; i < image->rle->size; ++i, ++span) { + auto sy = span->y * itransform->e22 + itransform->e23; + if ((uint32_t)sy >= image->h) continue; + auto dst = &surface->buf32[span->y * surface->stride + span->x]; + auto alpha = MULTIPLY(span->coverage, opacity); + if (alpha == 255) { + for (uint32_t x = static_cast<uint32_t>(span->x); x < static_cast<uint32_t>(span->x) + span->len; ++x, ++dst) { + auto sx = x * itransform->e11 + itransform->e13; + if ((uint32_t)sx >= image->w) continue; + auto src = scaleMethod(image->buf32, image->stride, image->w, image->h, sx, sy, sampleSize, sampleSize2); + *dst = src + ALPHA_BLEND(*dst, IA(src)); + } + } else { + for (uint32_t x = static_cast<uint32_t>(span->x); x < static_cast<uint32_t>(span->x) + span->len; ++x, ++dst) { + auto sx = x * itransform->e11 + itransform->e13; + if ((uint32_t)sx >= image->w) continue; + auto src = ALPHA_BLEND(scaleMethod(image->buf32, image->stride, image->w, image->h, sx, sy, sampleSize, sampleSize2), alpha); + *dst = src + ALPHA_BLEND(*dst, IA(src)); + } + } + } + return true; +} + + +static bool _scaledRleImage(SwSurface* surface, const SwImage* image, const Matrix* transform, const SwBBox& region, uint8_t opacity) +{ + if (surface->channelSize == sizeof(uint8_t)) { + TVGERR("SW_ENGINE", "Not supported scaled rle image!"); + return false; + } + + Matrix itransform; + + if (transform) { + if (!mathInverse(transform, &itransform)) return false; + } else mathIdentity(&itransform); + + if (_compositing(surface)) { + if (_matting(surface)) return _rasterScaledMattedRleImage(surface, image, &itransform, region, opacity); + else return _rasterScaledMaskedRleImage(surface, image, &itransform, region, opacity); + } else if (_blending(surface)) { + return _rasterScaledBlendingRleImage(surface, image, &itransform, region, opacity); + } else { + return _rasterScaledRleImage(surface, image, &itransform, region, opacity); + } + return false; +} + + +/************************************************************************/ +/* RLE Direct Image */ +/************************************************************************/ + +#if 0 //Enable it when GRAYSCALE image is supported +static bool _rasterCompositeDirectMaskedRleImage(SwSurface* surface, const SwImage* image, SwMask maskOp, uint8_t opacity) +{ + auto span = image->rle->spans; + auto cbuffer = surface->compositor->image.buf8; + auto ctride = surface->compositor->image.stride; + + for (uint32_t i = 0; i < image->rle->size; ++i, ++span) { + auto src = image->buf8 + (span->y + image->oy) * image->stride + (span->x + image->ox); + auto cmp = &cbuffer[span->y * ctride + span->x]; + auto alpha = MULTIPLY(span->coverage, opacity); + if (alpha == 255) { + for (uint32_t x = 0; x < span->len; ++x, ++src, ++cmp) { + *cmp = maskOp(*src, *cmp, ~*src); + } + } else { + for (uint32_t x = 0; x < span->len; ++x, ++src, ++cmp) { + auto tmp = MULTIPLY(*src, alpha); + *cmp = maskOp(*src, *cmp, ~tmp); + } + } + } + return _compositeMaskImage(surface, &surface->compositor->image, surface->compositor->bbox); +} + + +static bool _rasterDirectDirectMaskedRleImage(SwSurface* surface, const SwImage* image, SwMask maskOp, uint8_t opacity) +{ + auto span = image->rle->spans; + auto cbuffer = surface->compositor->image.buf8; + auto ctride = surface->compositor->image.stride; + + for (uint32_t i = 0; i < image->rle->size; ++i, ++span) { + auto src = image->buf8 + (span->y + image->oy) * image->stride + (span->x + image->ox); + auto cmp = &cbuffer[span->y * ctride + span->x]; + auto dst = &surface->buf8[span->y * surface->stride + span->x]; + auto alpha = MULTIPLY(span->coverage, opacity); + if (alpha == 255) { + for (uint32_t x = 0; x < span->len; ++x, ++src, ++cmp, ++dst) { + auto tmp = maskOp(*src, *cmp, 0); //not use alpha + *dst = INTERPOLATE8(tmp, *dst, (255 - tmp)); + } + } else { + for (uint32_t x = 0; x < span->len; ++x, ++src, ++cmp, ++dst) { + auto tmp = maskOp(MULTIPLY(*src, alpha), *cmp, 0); //not use alpha + *dst = INTERPOLATE8(tmp, *dst, (255 - tmp)); + } + } + } + return true; +} +#endif + +static bool _rasterDirectMaskedRleImage(SwSurface* surface, const SwImage* image, uint8_t opacity) +{ +#if 0 //Enable it when GRAYSCALE image is supported + TVGLOG("SW_ENGINE", "Direct Masked(%d) Rle Image", (int)surface->compositor->method); + + //8bit masking channels composition + if (surface->channelSize != sizeof(uint8_t)) return false; + + auto maskOp = _getMaskOp(surface->compositor->method); + if (_direct(surface->compositor->method)) _rasterDirectDirectMaskedRleImage(surface, image, maskOp, opacity); + else return _rasterCompositeDirectMaskedRleImage(surface, image, maskOp, opacity); +#endif + return false; +} + + +static bool _rasterDirectMattedRleImage(SwSurface* surface, const SwImage* image, uint8_t opacity) +{ + TVGLOG("SW_ENGINE", "Direct Matted(%d) Rle Image", (int)surface->compositor->method); + + auto span = image->rle->spans; + auto csize = surface->compositor->image.channelSize; + auto cbuffer = surface->compositor->image.buf8; + auto alpha = surface->alpha(surface->compositor->method); + + for (uint32_t i = 0; i < image->rle->size; ++i, ++span) { + auto dst = &surface->buf32[span->y * surface->stride + span->x]; + auto cmp = &cbuffer[(span->y * surface->compositor->image.stride + span->x) * csize]; + auto img = image->buf32 + (span->y + image->oy) * image->stride + (span->x + image->ox); + auto a = MULTIPLY(span->coverage, opacity); + if (a == 255) { + for (uint32_t x = 0; x < span->len; ++x, ++dst, ++img, cmp += csize) { + auto tmp = ALPHA_BLEND(*img, alpha(cmp)); + *dst = tmp + ALPHA_BLEND(*dst, IA(tmp)); + } + } else { + for (uint32_t x = 0; x < span->len; ++x, ++dst, ++img, cmp += csize) { + auto tmp = ALPHA_BLEND(*img, MULTIPLY(a, alpha(cmp))); + *dst = tmp + ALPHA_BLEND(*dst, IA(tmp)); + } + } + } + return true; +} + + +static bool _rasterDirectBlendingRleImage(SwSurface* surface, const SwImage* image, uint8_t opacity) +{ + auto span = image->rle->spans; + + for (uint32_t i = 0; i < image->rle->size; ++i, ++span) { + auto dst = &surface->buf32[span->y * surface->stride + span->x]; + auto img = image->buf32 + (span->y + image->oy) * image->stride + (span->x + image->ox); + auto alpha = MULTIPLY(span->coverage, opacity); + if (alpha == 255) { + for (uint32_t x = 0; x < span->len; ++x, ++dst, ++img) { + *dst = surface->blender(*img, *dst, IA(*img)); + } + } else if (opacity == 255) { + for (uint32_t x = 0; x < span->len; ++x, ++dst, ++img) { + auto tmp = surface->blender(*img, *dst, 255); + *dst = INTERPOLATE(tmp, *dst, MULTIPLY(span->coverage, A(*img))); + } + } else { + for (uint32_t x = 0; x < span->len; ++x, ++dst, ++img) { + auto src = ALPHA_BLEND(*img, opacity); + auto tmp = surface->blender(src, *dst, IA(src)); + *dst = INTERPOLATE(tmp, *dst, MULTIPLY(span->coverage, A(src))); + } + } + } + return true; +} + + +static bool _rasterDirectRleImage(SwSurface* surface, const SwImage* image, uint8_t opacity) +{ + auto span = image->rle->spans; + + for (uint32_t i = 0; i < image->rle->size; ++i, ++span) { + auto dst = &surface->buf32[span->y * surface->stride + span->x]; + auto img = image->buf32 + (span->y + image->oy) * image->stride + (span->x + image->ox); + auto alpha = MULTIPLY(span->coverage, opacity); + if (alpha == 255) { + for (uint32_t x = 0; x < span->len; ++x, ++dst, ++img) { + *dst = *img + ALPHA_BLEND(*dst, IA(*img)); + } + } else { + for (uint32_t x = 0; x < span->len; ++x, ++dst, ++img) { + auto src = ALPHA_BLEND(*img, alpha); + *dst = src + ALPHA_BLEND(*dst, IA(src)); + } + } + } + return true; +} + + +static bool _directRleImage(SwSurface* surface, const SwImage* image, uint8_t opacity) +{ + if (surface->channelSize == sizeof(uint8_t)) { + TVGERR("SW_ENGINE", "Not supported grayscale rle image!"); + return false; + } + + if (_compositing(surface)) { + if (_matting(surface)) return _rasterDirectMattedRleImage(surface, image, opacity); + else return _rasterDirectMaskedRleImage(surface, image, opacity); + } else if (_blending(surface)) { + return _rasterDirectBlendingRleImage(surface, image, opacity); + } else { + return _rasterDirectRleImage(surface, image, opacity); + } + return false; +} + + +/************************************************************************/ +/*Scaled Image */ +/************************************************************************/ + +#if 0 //Enable it when GRAYSCALE image is supported +static bool _rasterCompositeScaledMaskedImage(SwSurface* surface, const SwImage* image, const Matrix* itransform, const SwBBox& region, SwMask maskOp, uint8_t opacity) +{ + auto scaleMethod = image->scale < DOWN_SCALE_TOLERANCE ? _interpDownScaler : _interpUpScaler; + auto sampleSize = _sampleSize(image->scale); + auto sampleSize2 = sampleSize * sampleSize; + auto cstride = surface->compositor->image.stride; + auto cbuffer = surface->compositor->image.buf8 + (region.min.y * cstride + region.min.x); + + for (auto y = region.min.y; y < region.max.y; ++y) { + auto sy = y * itransform->e22 + itransform->e23; + if ((uint32_t)sy >= image->h) continue; + auto cmp = cbuffer; + if (opacity == 255) { + for (auto x = region.min.x; x < region.max.x; ++x, ++cmp) { + auto sx = x * itransform->e11 + itransform->e13; + if ((uint32_t)sx >= image->w) continue; + auto src = scaleMethod(image->buf8, image->stride, image->w, image->h, sx, sy, sampleSize, sampleSize2); + *cmp = maskOp(src, *cmp, ~src); + } + } else { + for (auto x = region.min.x; x < region.max.x; ++x, ++cmp) { + auto sx = x * itransform->e11 + itransform->e13; + if ((uint32_t)sx >= image->w) continue; + auto src = scaleMethod(image->buf8, image->stride, image->w, image->h, sx, sy, sampleSize, sampleSize2); + auto tmp = MULTIPLY(src, opacity); + *cmp = maskOp(tmp, *cmp, ~tmp); + } + } + cbuffer += cstride; + } + return _compositeMaskImage(surface, &surface->compositor->image, surface->compositor->bbox); +} + + +static bool _rasterDirectScaledMaskedImage(SwSurface* surface, const SwImage* image, const Matrix* itransform, const SwBBox& region, SwMask maskOp, uint8_t opacity) +{ + auto scaleMethod = image->scale < DOWN_SCALE_TOLERANCE ? _interpDownScaler : _interpUpScaler; + auto sampleSize = _sampleSize(image->scale); + auto sampleSize2 = sampleSize * sampleSize; + auto cstride = surface->compositor->image.stride; + auto cbuffer = surface->compositor->image.buf8 + (region.min.y * cstride + region.min.x); + auto dbuffer = surface->buf8 + (region.min.y * surface->stride + region.min.x); + + for (auto y = region.min.y; y < region.max.y; ++y) { + auto sy = y * itransform->e22 + itransform->e23; + if ((uint32_t)sy >= image->h) continue; + auto cmp = cbuffer; + auto dst = dbuffer; + if (opacity == 255) { + for (auto x = region.min.x; x < region.max.x; ++x, ++cmp, ++dst) { + auto sx = x * itransform->e11 + itransform->e13; + if ((uint32_t)sx >= image->w) continue; + auto src = scaleMethod(image->buf8, image->stride, image->w, image->h, sx, sy, sampleSize, sampleSize2); + auto tmp = maskOp(src, *cmp, 0); //not use alpha + *dst = tmp + MULTIPLY(*dst, ~tmp); + } + } else { + for (auto x = region.min.x; x < region.max.x; ++x, ++cmp, ++dst) { + auto sx = x * itransform->e11 + itransform->e13; + if ((uint32_t)sx >= image->w) continue; + auto src = scaleMethod(image->buf8, image->stride, image->w, image->h, sx, sy, sampleSize, sampleSize2); + auto tmp = MULTIPLY(src, opacity); + auto tmp2 = maskOp(tmp, *cmp, 0); //not use alpha + *dst = tmp2 + MULTIPLY(*dst, ~tmp2); + } + } + cbuffer += cstride; + dbuffer += surface->stride; + } + return true; +} +#endif + +static bool _rasterScaledMaskedImage(SwSurface* surface, const SwImage* image, const Matrix* itransform, const SwBBox& region, uint8_t opacity) +{ +#if 0 //Enable it when GRAYSCALE image is supported + TVGLOG("SW_ENGINE", "Scaled Masked(%d) Image [Region: %lu %lu %lu %lu]", (int)surface->compositor->method, region.min.x, region.min.y, region.max.x - region.min.x, region.max.y - region.min.y); + + auto maskOp = _getMaskOp(surface->compositor->method); + if (_direct(surface->compositor->method)) return _rasterDirectScaledMaskedImage(surface, image, itransform, region, maskOp, opacity); + else return _rasterCompositeScaledMaskedImage(surface, image, itransform, region, maskOp, opacity); +#endif + return false; +} + + +static bool _rasterScaledMattedImage(SwSurface* surface, const SwImage* image, const Matrix* itransform, const SwBBox& region, uint8_t opacity) +{ + auto dbuffer = surface->buf32 + (region.min.y * surface->stride + region.min.x); + auto csize = surface->compositor->image.channelSize; + auto cbuffer = surface->compositor->image.buf8 + (region.min.y * surface->compositor->image.stride + region.min.x) * csize; + auto alpha = surface->alpha(surface->compositor->method); + + TVGLOG("SW_ENGINE", "Scaled Matted(%d) Image [Region: %lu %lu %lu %lu]", (int)surface->compositor->method, region.min.x, region.min.y, region.max.x - region.min.x, region.max.y - region.min.y); + + auto scaleMethod = image->scale < DOWN_SCALE_TOLERANCE ? _interpDownScaler : _interpUpScaler; + auto sampleSize = _sampleSize(image->scale); + auto sampleSize2 = sampleSize * sampleSize; + + for (auto y = region.min.y; y < region.max.y; ++y) { + auto sy = y * itransform->e22 + itransform->e23; + if ((uint32_t)sy >= image->h) continue; + auto dst = dbuffer; + auto cmp = cbuffer; + if (opacity == 255) { + for (auto x = region.min.x; x < region.max.x; ++x, ++dst, cmp += csize) { + auto sx = x * itransform->e11 + itransform->e13; + if ((uint32_t)sx >= image->w) continue; + auto src = scaleMethod(image->buf32, image->stride, image->w, image->h, sx, sy, sampleSize, sampleSize2); + auto temp = ALPHA_BLEND(src, alpha(cmp)); + *dst = temp + ALPHA_BLEND(*dst, IA(temp)); + } + } else { + for (auto x = region.min.x; x < region.max.x; ++x, ++dst, cmp += csize) { + auto sx = x * itransform->e11 + itransform->e13; + if ((uint32_t)sx >= image->w) continue; + auto src = scaleMethod(image->buf32, image->stride, image->w, image->h, sx, sy, sampleSize, sampleSize2); + auto temp = ALPHA_BLEND(src, MULTIPLY(opacity, alpha(cmp))); + *dst = temp + ALPHA_BLEND(*dst, IA(temp)); + } + } + dbuffer += surface->stride; + cbuffer += surface->compositor->image.stride * csize; + } + return true; +} + + +static bool _rasterScaledBlendingImage(SwSurface* surface, const SwImage* image, const Matrix* itransform, const SwBBox& region, uint8_t opacity) +{ + auto dbuffer = surface->buf32 + (region.min.y * surface->stride + region.min.x); + auto scaleMethod = image->scale < DOWN_SCALE_TOLERANCE ? _interpDownScaler : _interpUpScaler; + auto sampleSize = _sampleSize(image->scale); + auto sampleSize2 = sampleSize * sampleSize; + + for (auto y = region.min.y; y < region.max.y; ++y, dbuffer += surface->stride) { + auto sy = y * itransform->e22 + itransform->e23; + if ((uint32_t)sy >= image->h) continue; + auto dst = dbuffer; + if (opacity == 255) { + for (auto x = region.min.x; x < region.max.x; ++x, ++dst) { + auto sx = x * itransform->e11 + itransform->e13; + if ((uint32_t)sx >= image->w) continue; + auto src = scaleMethod(image->buf32, image->stride, image->w, image->h, sx, sy, sampleSize, sampleSize2); + auto tmp = surface->blender(src, *dst, 255); + *dst = INTERPOLATE(tmp, *dst, A(src)); + } + } else { + for (auto x = region.min.x; x < region.max.x; ++x, ++dst) { + auto sx = x * itransform->e11 + itransform->e13; + if ((uint32_t)sx >= image->w) continue; + auto src = ALPHA_BLEND(scaleMethod(image->buf32, image->stride, image->w, image->h, sx, sy, sampleSize, sampleSize2), opacity); + auto tmp = surface->blender(src, *dst, 255); + *dst = INTERPOLATE(tmp, *dst, A(src)); + } + } + } + return true; +} + + +static bool _rasterScaledImage(SwSurface* surface, const SwImage* image, const Matrix* itransform, const SwBBox& region, uint8_t opacity) +{ + auto dbuffer = surface->buf32 + (region.min.y * surface->stride + region.min.x); + auto scaleMethod = image->scale < DOWN_SCALE_TOLERANCE ? _interpDownScaler : _interpUpScaler; + auto sampleSize = _sampleSize(image->scale); + auto sampleSize2 = sampleSize * sampleSize; + + for (auto y = region.min.y; y < region.max.y; ++y, dbuffer += surface->stride) { + auto sy = y * itransform->e22 + itransform->e23; + if ((uint32_t)sy >= image->h) continue; + auto dst = dbuffer; + if (opacity == 255) { + for (auto x = region.min.x; x < region.max.x; ++x, ++dst) { + auto sx = x * itransform->e11 + itransform->e13; + if ((uint32_t)sx >= image->w) continue; + auto src = scaleMethod(image->buf32, image->stride, image->w, image->h, sx, sy, sampleSize, sampleSize2); + *dst = src + ALPHA_BLEND(*dst, IA(src)); + } + } else { + for (auto x = region.min.x; x < region.max.x; ++x, ++dst) { + auto sx = x * itransform->e11 + itransform->e13; + if ((uint32_t)sx >= image->w) continue; + auto src = ALPHA_BLEND(scaleMethod(image->buf32, image->stride, image->w, image->h, sx, sy, sampleSize, sampleSize2), opacity); + *dst = src + ALPHA_BLEND(*dst, IA(src)); + } + } + } + return true; +} + + +static bool _scaledImage(SwSurface* surface, const SwImage* image, const Matrix* transform, const SwBBox& region, uint8_t opacity) +{ + if (surface->channelSize == sizeof(uint8_t)) { + TVGERR("SW_ENGINE", "Not supported grayscale Textmap polygon mesh!"); + return false; + } + + Matrix itransform; + + if (transform) { + if (!mathInverse(transform, &itransform)) return false; + } else mathIdentity(&itransform); + + if (_compositing(surface)) { + if (_matting(surface)) return _rasterScaledMattedImage(surface, image, &itransform, region, opacity); + else return _rasterScaledMaskedImage(surface, image, &itransform, region, opacity); + } else if (_blending(surface)) { + return _rasterScaledBlendingImage(surface, image, &itransform, region, opacity); + } else { + return _rasterScaledImage(surface, image, &itransform, region, opacity); + } + return false; +} + + +/************************************************************************/ +/* Direct Image */ +/************************************************************************/ + +#if 0 //Enable it when GRAYSCALE image is supported +static bool _rasterCompositeDirectMaskedImage(SwSurface* surface, const SwImage* image, const SwBBox& region, SwMask maskOp, uint8_t opacity) +{ + auto h = static_cast<uint32_t>(region.max.y - region.min.y); + auto w = static_cast<uint32_t>(region.max.x - region.min.x); + auto cstride = surface->compositor->image.stride; + + auto cbuffer = surface->compositor->image.buf8 + (region.min.y * cstride + region.min.x); //compositor buffer + auto sbuffer = image->buf8 + (region.min.y + image->oy) * image->stride + (region.min.x + image->ox); + + for (uint32_t y = 0; y < h; ++y) { + auto cmp = cbuffer; + auto src = sbuffer; + if (opacity == 255) { + for (uint32_t x = 0; x < w; ++x, ++src, ++cmp) { + *cmp = maskOp(*src, *cmp, ~*src); + } + } else { + for (uint32_t x = 0; x < w; ++x, ++src, ++cmp) { + auto tmp = MULTIPLY(*src, opacity); + *cmp = maskOp(tmp, *cmp, ~tmp); + } + } + cbuffer += cstride; + sbuffer += image->stride; + } + return _compositeMaskImage(surface, &surface->compositor->image, surface->compositor->bbox); +} + + +static bool _rasterDirectDirectMaskedImage(SwSurface* surface, const SwImage* image, const SwBBox& region, SwMask maskOp, uint8_t opacity) +{ + auto h = static_cast<uint32_t>(region.max.y - region.min.y); + auto w = static_cast<uint32_t>(region.max.x - region.min.x); + auto cstride = surface->compositor->image.stride; + + auto cbuffer = surface->compositor->image.buf32 + (region.min.y * cstride + region.min.x); //compositor buffer + auto dbuffer = surface->buf8 + (region.min.y * surface->stride + region.min.x); //destination buffer + auto sbuffer = image->buf8 + (region.min.y + image->oy) * image->stride + (region.min.x + image->ox); + + for (uint32_t y = 0; y < h; ++y) { + auto cmp = cbuffer; + auto dst = dbuffer; + auto src = sbuffer; + if (opacity == 255) { + for (uint32_t x = 0; x < w; ++x, ++src, ++cmp, ++dst) { + auto tmp = maskOp(*src, *cmp, 0); //not use alpha + *dst = tmp + MULTIPLY(*dst, ~tmp); + } + } else { + for (uint32_t x = 0; x < w; ++x, ++src, ++cmp, ++dst) { + auto tmp = maskOp(MULTIPLY(*src, opacity), *cmp, 0); //not use alpha + *dst = tmp + MULTIPLY(*dst, ~tmp); + } + } + cbuffer += cstride; + dbuffer += surface->stride; + sbuffer += image->stride; + } + return true; +} +#endif + +static bool _rasterDirectMaskedImage(SwSurface* surface, const SwImage* image, const SwBBox& region, uint8_t opacity) +{ + TVGERR("SW_ENGINE", "Not Supported: Direct Masked(%d) Image [Region: %lu %lu %lu %lu]", (int)surface->compositor->method, region.min.x, region.min.y, region.max.x - region.min.x, region.max.y - region.min.y); + +#if 0 //Enable it when GRAYSCALE image is supported + auto maskOp = _getMaskOp(surface->compositor->method); + if (_direct(surface->compositor->method)) return _rasterDirectDirectMaskedImage(surface, image, region, maskOp, opacity); + else return _rasterCompositeDirectMaskedImage(surface, image, region, maskOp, opacity); +#endif + return false; +} + + +static bool _rasterDirectMattedImage(SwSurface* surface, const SwImage* image, const SwBBox& region, uint8_t opacity) +{ + auto h = static_cast<uint32_t>(region.max.y - region.min.y); + auto w = static_cast<uint32_t>(region.max.x - region.min.x); + auto csize = surface->compositor->image.channelSize; + auto alpha = surface->alpha(surface->compositor->method); + auto sbuffer = image->buf32 + (region.min.y + image->oy) * image->stride + (region.min.x + image->ox); + auto cbuffer = surface->compositor->image.buf8 + (region.min.y * surface->compositor->image.stride + region.min.x) * csize; //compositor buffer + + TVGLOG("SW_ENGINE", "Direct Matted(%d) Image [Region: %lu %lu %u %u]", (int)surface->compositor->method, region.min.x, region.min.y, w, h); + + //32 bits + if (surface->channelSize == sizeof(uint32_t)) { + auto buffer = surface->buf32 + (region.min.y * surface->stride) + region.min.x; + for (uint32_t y = 0; y < h; ++y) { + auto dst = buffer; + auto cmp = cbuffer; + auto src = sbuffer; + if (opacity == 255) { + for (uint32_t x = 0; x < w; ++x, ++dst, ++src, cmp += csize) { + auto tmp = ALPHA_BLEND(*src, alpha(cmp)); + *dst = tmp + ALPHA_BLEND(*dst, IA(tmp)); + } + } else { + for (uint32_t x = 0; x < w; ++x, ++dst, ++src, cmp += csize) { + auto tmp = ALPHA_BLEND(*src, MULTIPLY(opacity, alpha(cmp))); + *dst = tmp + ALPHA_BLEND(*dst, IA(tmp)); + } + } + buffer += surface->stride; + cbuffer += surface->compositor->image.stride * csize; + sbuffer += image->stride; + } + //8 bits + } else if (surface->channelSize == sizeof(uint8_t)) { + auto buffer = surface->buf8 + (region.min.y * surface->stride) + region.min.x; + for (uint32_t y = 0; y < h; ++y) { + auto dst = buffer; + auto cmp = cbuffer; + auto src = sbuffer; + if (opacity == 255) { + for (uint32_t x = 0; x < w; ++x, ++dst, ++src, cmp += csize) { + *dst = MULTIPLY(A(*src), alpha(cmp)); + } + } else { + for (uint32_t x = 0; x < w; ++x, ++dst, ++src, cmp += csize) { + *dst = MULTIPLY(A(*src), MULTIPLY(opacity, alpha(cmp))); + } + } + buffer += surface->stride; + cbuffer += surface->compositor->image.stride * csize; + sbuffer += image->stride; + } + } + return true; +} + + +static bool _rasterDirectBlendingImage(SwSurface* surface, const SwImage* image, const SwBBox& region, uint8_t opacity) +{ + if (surface->channelSize == sizeof(uint8_t)) { + TVGERR("SW_ENGINE", "Not supported grayscale image!"); + return false; + } + + auto dbuffer = &surface->buf32[region.min.y * surface->stride + region.min.x]; + auto sbuffer = image->buf32 + (region.min.y + image->oy) * image->stride + (region.min.x + image->ox); + + for (auto y = region.min.y; y < region.max.y; ++y) { + auto dst = dbuffer; + auto src = sbuffer; + if (opacity == 255) { + for (auto x = region.min.x; x < region.max.x; x++, dst++, src++) { + auto tmp = surface->blender(*src, *dst, 255); + *dst = INTERPOLATE(tmp, *dst, A(*src)); + } + } else { + for (auto x = region.min.x; x < region.max.x; ++x, ++dst, ++src) { + auto tmp = ALPHA_BLEND(*src, opacity); + auto tmp2 = surface->blender(tmp, *dst, 255); + *dst = INTERPOLATE(tmp2, *dst, A(tmp)); + } + } + dbuffer += surface->stride; + sbuffer += image->stride; + } + return true; +} + + +static bool _rasterDirectImage(SwSurface* surface, const SwImage* image, const SwBBox& region, uint8_t opacity) +{ + if (surface->channelSize == sizeof(uint8_t)) { + TVGERR("SW_ENGINE", "Not supported grayscale image!"); + return false; + } + + auto dbuffer = &surface->buf32[region.min.y * surface->stride + region.min.x]; + auto sbuffer = image->buf32 + (region.min.y + image->oy) * image->stride + (region.min.x + image->ox); + + for (auto y = region.min.y; y < region.max.y; ++y) { + auto dst = dbuffer; + auto src = sbuffer; + if (opacity == 255) { + for (auto x = region.min.x; x < region.max.x; x++, dst++, src++) { + *dst = *src + ALPHA_BLEND(*dst, IA(*src)); + } + } else { + for (auto x = region.min.x; x < region.max.x; ++x, ++dst, ++src) { + auto tmp = ALPHA_BLEND(*src, opacity); + *dst = tmp + ALPHA_BLEND(*dst, IA(tmp)); + } + } + dbuffer += surface->stride; + sbuffer += image->stride; + } + return true; +} + + +//Blenders for the following scenarios: [Composition / Non-Composition] * [Opaque / Translucent] +static bool _directImage(SwSurface* surface, const SwImage* image, const SwBBox& region, uint8_t opacity) +{ + if (_compositing(surface)) { + if (_matting(surface)) return _rasterDirectMattedImage(surface, image, region, opacity); + else return _rasterDirectMaskedImage(surface, image, region, opacity); + } else if (_blending(surface)) { + return _rasterDirectBlendingImage(surface, image, region, opacity); + } else { + return _rasterDirectImage(surface, image, region, opacity); + } + return false; +} + + +//Blenders for the following scenarios: [RLE / Whole] * [Direct / Scaled / Transformed] +static bool _rasterImage(SwSurface* surface, SwImage* image, const Matrix* transform, const SwBBox& region, uint8_t opacity) +{ + //RLE Image + if (image->rle) { + if (image->direct) return _directRleImage(surface, image, opacity); + else if (image->scaled) return _scaledRleImage(surface, image, transform, region, opacity); + else return _rasterTexmapPolygon(surface, image, transform, nullptr, opacity); + //Whole Image + } else { + if (image->direct) return _directImage(surface, image, region, opacity); + else if (image->scaled) return _scaledImage(surface, image, transform, region, opacity); + else return _rasterTexmapPolygon(surface, image, transform, ®ion, opacity); + } +} + + +/************************************************************************/ +/* Rect Gradient */ +/************************************************************************/ + +template<typename fillMethod> +static bool _rasterCompositeGradientMaskedRect(SwSurface* surface, const SwBBox& region, const SwFill* fill, SwMask maskOp) +{ + auto h = static_cast<uint32_t>(region.max.y - region.min.y); + auto w = static_cast<uint32_t>(region.max.x - region.min.x); + auto cstride = surface->compositor->image.stride; + auto cbuffer = surface->compositor->image.buf8 + (region.min.y * cstride + region.min.x); + + for (uint32_t y = 0; y < h; ++y) { + fillMethod()(fill, cbuffer, region.min.y + y, region.min.x, w, maskOp, 255); + cbuffer += surface->stride; + } + return _compositeMaskImage(surface, &surface->compositor->image, surface->compositor->bbox); +} + + +template<typename fillMethod> +static bool _rasterDirectGradientMaskedRect(SwSurface* surface, const SwBBox& region, const SwFill* fill, SwMask maskOp) +{ + auto h = static_cast<uint32_t>(region.max.y - region.min.y); + auto w = static_cast<uint32_t>(region.max.x - region.min.x); + auto cstride = surface->compositor->image.stride; + auto cbuffer = surface->compositor->image.buf8 + (region.min.y * cstride + region.min.x); + auto dbuffer = surface->buf8 + (region.min.y * surface->stride + region.min.x); + + for (uint32_t y = 0; y < h; ++y) { + fillMethod()(fill, dbuffer, region.min.y + y, region.min.x, w, cbuffer, maskOp, 255); + cbuffer += cstride; + dbuffer += surface->stride; + } + return true; +} + + +template<typename fillMethod> +static bool _rasterGradientMaskedRect(SwSurface* surface, const SwBBox& region, const SwFill* fill) +{ + auto method = surface->compositor->method; + + TVGLOG("SW_ENGINE", "Masked(%d) Gradient [Region: %lu %lu %lu %lu]", (int)method, region.min.x, region.min.y, region.max.x - region.min.x, region.max.y - region.min.y); + + auto maskOp = _getMaskOp(method); + + if (_direct(method)) return _rasterDirectGradientMaskedRect<fillMethod>(surface, region, fill, maskOp); + else return _rasterCompositeGradientMaskedRect<fillMethod>(surface, region, fill, maskOp); + + return false; +} + + +template<typename fillMethod> +static bool _rasterGradientMattedRect(SwSurface* surface, const SwBBox& region, const SwFill* fill) +{ + auto buffer = surface->buf32 + (region.min.y * surface->stride) + region.min.x; + auto h = static_cast<uint32_t>(region.max.y - region.min.y); + auto w = static_cast<uint32_t>(region.max.x - region.min.x); + auto csize = surface->compositor->image.channelSize; + auto cbuffer = surface->compositor->image.buf8 + (region.min.y * surface->compositor->image.stride + region.min.x) * csize; + auto alpha = surface->alpha(surface->compositor->method); + + TVGLOG("SW_ENGINE", "Matted(%d) Gradient [Region: %lu %lu %u %u]", (int)surface->compositor->method, region.min.x, region.min.y, w, h); + + for (uint32_t y = 0; y < h; ++y) { + fillMethod()(fill, buffer, region.min.y + y, region.min.x, w, cbuffer, alpha, csize, 255); + buffer += surface->stride; + cbuffer += surface->stride * csize; + } + return true; +} + + +template<typename fillMethod> +static bool _rasterBlendingGradientRect(SwSurface* surface, const SwBBox& region, const SwFill* fill) +{ + auto buffer = surface->buf32 + (region.min.y * surface->stride) + region.min.x; + auto w = static_cast<uint32_t>(region.max.x - region.min.x); + auto h = static_cast<uint32_t>(region.max.y - region.min.y); + + if (fill->translucent) { + for (uint32_t y = 0; y < h; ++y) { + fillMethod()(fill, buffer + y * surface->stride, region.min.y + y, region.min.x, w, opBlendPreNormal, surface->blender, 255); + } + } else { + for (uint32_t y = 0; y < h; ++y) { + fillMethod()(fill, buffer + y * surface->stride, region.min.y + y, region.min.x, w, opBlendSrcOver, surface->blender, 255); + } + } + return true; +} + +template<typename fillMethod> +static bool _rasterTranslucentGradientRect(SwSurface* surface, const SwBBox& region, const SwFill* fill) +{ + auto buffer = surface->buf32 + (region.min.y * surface->stride) + region.min.x; + auto h = static_cast<uint32_t>(region.max.y - region.min.y); + auto w = static_cast<uint32_t>(region.max.x - region.min.x); + + for (uint32_t y = 0; y < h; ++y) { + fillMethod()(fill, buffer, region.min.y + y, region.min.x, w, opBlendPreNormal, 255); + buffer += surface->stride; + } + return true; +} + + +template<typename fillMethod> +static bool _rasterSolidGradientRect(SwSurface* surface, const SwBBox& region, const SwFill* fill) +{ + auto buffer = surface->buf32 + (region.min.y * surface->stride) + region.min.x; + auto w = static_cast<uint32_t>(region.max.x - region.min.x); + auto h = static_cast<uint32_t>(region.max.y - region.min.y); + + for (uint32_t y = 0; y < h; ++y) { + fillMethod()(fill, buffer + y * surface->stride, region.min.y + y, region.min.x, w, opBlendSrcOver, 255); + } + return true; +} + + +static bool _rasterLinearGradientRect(SwSurface* surface, const SwBBox& region, const SwFill* fill) +{ + if (fill->linear.len < FLT_EPSILON) return false; + + if (_compositing(surface)) { + if (_matting(surface)) return _rasterGradientMattedRect<FillLinear>(surface, region, fill); + else return _rasterGradientMaskedRect<FillLinear>(surface, region, fill); + } else if (_blending(surface)) { + return _rasterBlendingGradientRect<FillLinear>(surface, region, fill); + } else { + if (fill->translucent) return _rasterTranslucentGradientRect<FillLinear>(surface, region, fill); + else _rasterSolidGradientRect<FillLinear>(surface, region, fill); + } + return false; +} + + +static bool _rasterRadialGradientRect(SwSurface* surface, const SwBBox& region, const SwFill* fill) +{ + if (_compositing(surface)) { + if (_matting(surface)) return _rasterGradientMattedRect<FillRadial>(surface, region, fill); + else return _rasterGradientMaskedRect<FillRadial>(surface, region, fill); + } else if (_blending(surface)) { + return _rasterBlendingGradientRect<FillRadial>(surface, region, fill); + } else { + if (fill->translucent) return _rasterTranslucentGradientRect<FillRadial>(surface, region, fill); + else _rasterSolidGradientRect<FillRadial>(surface, region, fill); + } + return false; +} + + +/************************************************************************/ +/* Rle Gradient */ +/************************************************************************/ + +template<typename fillMethod> +static bool _rasterCompositeGradientMaskedRle(SwSurface* surface, const SwRleData* rle, const SwFill* fill, SwMask maskOp) +{ + auto span = rle->spans; + auto cstride = surface->compositor->image.stride; + auto cbuffer = surface->compositor->image.buf8; + + for (uint32_t i = 0; i < rle->size; ++i, ++span) { + auto cmp = &cbuffer[span->y * cstride + span->x]; + fillMethod()(fill, cmp, span->y, span->x, span->len, maskOp, span->coverage); + } + return _compositeMaskImage(surface, &surface->compositor->image, surface->compositor->bbox); +} + + +template<typename fillMethod> +static bool _rasterDirectGradientMaskedRle(SwSurface* surface, const SwRleData* rle, const SwFill* fill, SwMask maskOp) +{ + auto span = rle->spans; + auto cstride = surface->compositor->image.stride; + auto cbuffer = surface->compositor->image.buf8; + auto dbuffer = surface->buf8; + + for (uint32_t i = 0; i < rle->size; ++i, ++span) { + auto cmp = &cbuffer[span->y * cstride + span->x]; + auto dst = &dbuffer[span->y * surface->stride + span->x]; + fillMethod()(fill, dst, span->y, span->x, span->len, cmp, maskOp, span->coverage); + } + return true; +} + + +template<typename fillMethod> +static bool _rasterGradientMaskedRle(SwSurface* surface, const SwRleData* rle, const SwFill* fill) +{ + auto method = surface->compositor->method; + + TVGLOG("SW_ENGINE", "Masked(%d) Rle Linear Gradient", (int)method); + + auto maskOp = _getMaskOp(method); + + if (_direct(method)) return _rasterDirectGradientMaskedRle<fillMethod>(surface, rle, fill, maskOp); + else return _rasterCompositeGradientMaskedRle<fillMethod>(surface, rle, fill, maskOp); + return false; +} + + +template<typename fillMethod> +static bool _rasterGradientMattedRle(SwSurface* surface, const SwRleData* rle, const SwFill* fill) +{ + TVGLOG("SW_ENGINE", "Matted(%d) Rle Linear Gradient", (int)surface->compositor->method); + + auto span = rle->spans; + auto csize = surface->compositor->image.channelSize; + auto cbuffer = surface->compositor->image.buf8; + auto alpha = surface->alpha(surface->compositor->method); + + for (uint32_t i = 0; i < rle->size; ++i, ++span) { + auto dst = &surface->buf32[span->y * surface->stride + span->x]; + auto cmp = &cbuffer[(span->y * surface->compositor->image.stride + span->x) * csize]; + fillMethod()(fill, dst, span->y, span->x, span->len, cmp, alpha, csize, span->coverage); + } + return true; +} + + +template<typename fillMethod> +static bool _rasterBlendingGradientRle(SwSurface* surface, const SwRleData* rle, const SwFill* fill) +{ + auto span = rle->spans; + + for (uint32_t i = 0; i < rle->size; ++i, ++span) { + auto dst = &surface->buf32[span->y * surface->stride + span->x]; + fillMethod()(fill, dst, span->y, span->x, span->len, opBlendPreNormal, surface->blender, span->coverage); + } + return true; +} + + +template<typename fillMethod> +static bool _rasterTranslucentGradientRle(SwSurface* surface, const SwRleData* rle, const SwFill* fill) +{ + auto span = rle->spans; + + //32 bits + if (surface->channelSize == sizeof(uint32_t)) { + for (uint32_t i = 0; i < rle->size; ++i, ++span) { + auto dst = &surface->buf32[span->y * surface->stride + span->x]; + if (span->coverage == 255) fillMethod()(fill, dst, span->y, span->x, span->len, opBlendPreNormal, 255); + else fillMethod()(fill, dst, span->y, span->x, span->len, opBlendNormal, span->coverage); + } + //8 bits + } else if (surface->channelSize == sizeof(uint8_t)) { + for (uint32_t i = 0; i < rle->size; ++i, ++span) { + auto dst = &surface->buf8[span->y * surface->stride + span->x]; + fillMethod()(fill, dst, span->y, span->x, span->len, _opMaskAdd, 255); + } + } + return true; +} + + +template<typename fillMethod> +static bool _rasterSolidGradientRle(SwSurface* surface, const SwRleData* rle, const SwFill* fill) +{ + auto span = rle->spans; + + //32 bits + if (surface->channelSize == sizeof(uint32_t)) { + for (uint32_t i = 0; i < rle->size; ++i, ++span) { + auto dst = &surface->buf32[span->y * surface->stride + span->x]; + if (span->coverage == 255) fillMethod()(fill, dst, span->y, span->x, span->len, opBlendSrcOver, 255); + else fillMethod()(fill, dst, span->y, span->x, span->len, opBlendInterp, span->coverage); + } + //8 bits + } else if (surface->channelSize == sizeof(uint8_t)) { + for (uint32_t i = 0; i < rle->size; ++i, ++span) { + auto dst = &surface->buf8[span->y * surface->stride + span->x]; + if (span->coverage == 255) fillMethod()(fill, dst, span->y, span->x, span->len, _opMaskNone, 255); + else fillMethod()(fill, dst, span->y, span->x, span->len, _opMaskAdd, span->coverage); + } + } + + return true; +} + + +static bool _rasterLinearGradientRle(SwSurface* surface, const SwRleData* rle, const SwFill* fill) +{ + if (!rle || fill->linear.len < FLT_EPSILON) return false; + + if (_compositing(surface)) { + if (_matting(surface)) return _rasterGradientMattedRle<FillLinear>(surface, rle, fill); + else return _rasterGradientMaskedRle<FillLinear>(surface, rle, fill); + } else if (_blending(surface)) { + return _rasterBlendingGradientRle<FillLinear>(surface, rle, fill); + } else { + if (fill->translucent) return _rasterTranslucentGradientRle<FillLinear>(surface, rle, fill); + else return _rasterSolidGradientRle<FillLinear>(surface, rle, fill); + } + return false; +} + + +static bool _rasterRadialGradientRle(SwSurface* surface, const SwRleData* rle, const SwFill* fill) +{ + if (!rle) return false; + + if (_compositing(surface)) { + if (_matting(surface)) return _rasterGradientMattedRle<FillRadial>(surface, rle, fill); + else return _rasterGradientMaskedRle<FillRadial>(surface, rle, fill); + } else if (_blending(surface)) { + _rasterBlendingGradientRle<FillRadial>(surface, rle, fill); + } else { + if (fill->translucent) _rasterTranslucentGradientRle<FillRadial>(surface, rle, fill); + else return _rasterSolidGradientRle<FillRadial>(surface, rle, fill); + } + return false; +} + + +/************************************************************************/ +/* External Class Implementation */ +/************************************************************************/ + + +void rasterGrayscale8(uint8_t *dst, uint8_t val, uint32_t offset, int32_t len) +{ + //OPTIMIZE_ME: Support SIMD + cRasterPixels(dst, val, offset, len); +} + + +void rasterPixel32(uint32_t *dst, uint32_t val, uint32_t offset, int32_t len) +{ +#if defined(THORVG_AVX_VECTOR_SUPPORT) + avxRasterPixel32(dst, val, offset, len); +#elif defined(THORVG_NEON_VECTOR_SUPPORT) + neonRasterPixel32(dst, val, offset, len); +#else + cRasterPixels(dst, val, offset, len); +#endif +} + + +bool rasterCompositor(SwSurface* surface) +{ + //See CompositeMethod, Alpha:3, InvAlpha:4, Luma:5, InvLuma:6 + surface->alphas[0] = _alpha; + surface->alphas[1] = _ialpha; + + if (surface->cs == ColorSpace::ABGR8888 || surface->cs == ColorSpace::ABGR8888S) { + surface->join = _abgrJoin; + surface->alphas[2] = _abgrLuma; + surface->alphas[3] = _abgrInvLuma; + } else if (surface->cs == ColorSpace::ARGB8888 || surface->cs == ColorSpace::ARGB8888S) { + surface->join = _argbJoin; + surface->alphas[2] = _argbLuma; + surface->alphas[3] = _argbInvLuma; + } else { + TVGERR("SW_ENGINE", "Unsupported Colorspace(%d) is expected!", surface->cs); + return false; + } + return true; +} + + +bool rasterClear(SwSurface* surface, uint32_t x, uint32_t y, uint32_t w, uint32_t h) +{ + if (!surface || !surface->buf32 || surface->stride == 0 || surface->w == 0 || surface->h == 0) return false; + + //32 bits + if (surface->channelSize == sizeof(uint32_t)) { + //full clear + if (w == surface->stride) { + rasterPixel32(surface->buf32, 0x00000000, surface->stride * y, w * h); + //partial clear + } else { + for (uint32_t i = 0; i < h; i++) { + rasterPixel32(surface->buf32, 0x00000000, (surface->stride * y + x) + (surface->stride * i), w); + } + } + //8 bits + } else if (surface->channelSize == sizeof(uint8_t)) { + //full clear + if (w == surface->stride) { + rasterGrayscale8(surface->buf8, 0x00, surface->stride * y, w * h); + //partial clear + } else { + for (uint32_t i = 0; i < h; i++) { + rasterGrayscale8(surface->buf8, 0x00, (surface->stride * y + x) + (surface->stride * i), w); + } + } + } + return true; +} + + +void rasterUnpremultiply(Surface* surface) +{ + if (surface->channelSize != sizeof(uint32_t)) return; + + TVGLOG("SW_ENGINE", "Unpremultiply [Size: %d x %d]", surface->w, surface->h); + + //OPTIMIZE_ME: +SIMD + for (uint32_t y = 0; y < surface->h; y++) { + auto buffer = surface->buf32 + surface->stride * y; + for (uint32_t x = 0; x < surface->w; ++x) { + uint8_t a = buffer[x] >> 24; + if (a == 255) { + continue; + } else if (a == 0) { + buffer[x] = 0x00ffffff; + } else { + uint16_t r = ((buffer[x] >> 8) & 0xff00) / a; + uint16_t g = ((buffer[x]) & 0xff00) / a; + uint16_t b = ((buffer[x] << 8) & 0xff00) / a; + if (r > 0xff) r = 0xff; + if (g > 0xff) g = 0xff; + if (b > 0xff) b = 0xff; + buffer[x] = (a << 24) | (r << 16) | (g << 8) | (b); + } + } + } + surface->premultiplied = false; +} + + +void rasterPremultiply(Surface* surface) +{ + if (surface->channelSize != sizeof(uint32_t)) return; + + TVGLOG("SW_ENGINE", "Premultiply [Size: %d x %d]", surface->w, surface->h); + + //OPTIMIZE_ME: +SIMD + auto buffer = surface->buf32; + for (uint32_t y = 0; y < surface->h; ++y, buffer += surface->stride) { + auto dst = buffer; + for (uint32_t x = 0; x < surface->w; ++x, ++dst) { + auto c = *dst; + auto a = (c >> 24); + *dst = (c & 0xff000000) + ((((c >> 8) & 0xff) * a) & 0xff00) + ((((c & 0x00ff00ff) * a) >> 8) & 0x00ff00ff); + } + } + surface->premultiplied = true; +} + + +bool rasterGradientShape(SwSurface* surface, SwShape* shape, unsigned id) +{ + if (!shape->fill) return false; + + if (shape->fastTrack) { + if (id == TVG_CLASS_ID_LINEAR) return _rasterLinearGradientRect(surface, shape->bbox, shape->fill); + else if (id == TVG_CLASS_ID_RADIAL)return _rasterRadialGradientRect(surface, shape->bbox, shape->fill); + } else { + if (id == TVG_CLASS_ID_LINEAR) return _rasterLinearGradientRle(surface, shape->rle, shape->fill); + else if (id == TVG_CLASS_ID_RADIAL) return _rasterRadialGradientRle(surface, shape->rle, shape->fill); + } + return false; +} + + +bool rasterGradientStroke(SwSurface* surface, SwShape* shape, unsigned id) +{ + if (!shape->stroke || !shape->stroke->fill || !shape->strokeRle) return false; + + if (id == TVG_CLASS_ID_LINEAR) return _rasterLinearGradientRle(surface, shape->strokeRle, shape->stroke->fill); + else if (id == TVG_CLASS_ID_RADIAL) return _rasterRadialGradientRle(surface, shape->strokeRle, shape->stroke->fill); + + return false; +} + + +bool rasterShape(SwSurface* surface, SwShape* shape, uint8_t r, uint8_t g, uint8_t b, uint8_t a) +{ + if (a < 255) { + r = MULTIPLY(r, a); + g = MULTIPLY(g, a); + b = MULTIPLY(b, a); + } + if (shape->fastTrack) return _rasterRect(surface, shape->bbox, r, g, b, a); + else return _rasterRle(surface, shape->rle, r, g, b, a); +} + + +bool rasterStroke(SwSurface* surface, SwShape* shape, uint8_t r, uint8_t g, uint8_t b, uint8_t a) +{ + if (a < 255) { + r = MULTIPLY(r, a); + g = MULTIPLY(g, a); + b = MULTIPLY(b, a); + } + + return _rasterRle(surface, shape->strokeRle, r, g, b, a); +} + + +bool rasterImage(SwSurface* surface, SwImage* image, const RenderMesh* mesh, const Matrix* transform, const SwBBox& bbox, uint8_t opacity) +{ + //Verify Boundary + if (bbox.max.x < 0 || bbox.max.y < 0 || bbox.min.x >= static_cast<SwCoord>(surface->w) || bbox.min.y >= static_cast<SwCoord>(surface->h)) return false; + + if (mesh && mesh->triangleCnt > 0) return _rasterTexmapPolygonMesh(surface, image, mesh, transform, &bbox, opacity); + else return _rasterImage(surface, image, transform, bbox, opacity); +} + + +bool rasterConvertCS(Surface* surface, ColorSpace to) +{ + //TOOD: Support SIMD accelerations + auto from = surface->cs; + + if (((from == ColorSpace::ABGR8888) || (from == ColorSpace::ABGR8888S)) && ((to == ColorSpace::ARGB8888) || (to == ColorSpace::ARGB8888S))) { + surface->cs = to; + return cRasterABGRtoARGB(surface); + } + if (((from == ColorSpace::ARGB8888) || (from == ColorSpace::ARGB8888S)) && ((to == ColorSpace::ABGR8888) || (to == ColorSpace::ABGR8888S))) { + surface->cs = to; + return cRasterARGBtoABGR(surface); + } + + return false; +} |