summaryrefslogtreecommitdiffstats
path: root/thirdparty/thorvg/src/renderer/sw_engine/tvgSwRaster.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'thirdparty/thorvg/src/renderer/sw_engine/tvgSwRaster.cpp')
-rw-r--r--thirdparty/thorvg/src/renderer/sw_engine/tvgSwRaster.cpp2037
1 files changed, 2037 insertions, 0 deletions
diff --git a/thirdparty/thorvg/src/renderer/sw_engine/tvgSwRaster.cpp b/thirdparty/thorvg/src/renderer/sw_engine/tvgSwRaster.cpp
new file mode 100644
index 0000000000..4b1ba59100
--- /dev/null
+++ b/thirdparty/thorvg/src/renderer/sw_engine/tvgSwRaster.cpp
@@ -0,0 +1,2037 @@
+/*
+ * Copyright (c) 2020 - 2023 the ThorVG project. All rights reserved.
+
+ * Permission is hereby granted, free of charge, to any person obtaining a copy
+ * of this software and associated documentation files (the "Software"), to deal
+ * in the Software without restriction, including without limitation the rights
+ * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
+ * copies of the Software, and to permit persons to whom the Software is
+ * furnished to do so, subject to the following conditions:
+
+ * The above copyright notice and this permission notice shall be included in all
+ * copies or substantial portions of the Software.
+
+ * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
+ * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
+ * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
+ * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
+ * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
+ * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
+ * SOFTWARE.
+ */
+
+#ifdef _WIN32
+ #include <malloc.h>
+#elif defined(__linux__)
+ #include <alloca.h>
+#else
+ #include <stdlib.h>
+#endif
+
+#include "tvgMath.h"
+#include "tvgRender.h"
+#include "tvgSwCommon.h"
+
+/************************************************************************/
+/* Internal Class Implementation */
+/************************************************************************/
+constexpr auto DOWN_SCALE_TOLERANCE = 0.5f;
+
+struct FillLinear
+{
+ void operator()(const SwFill* fill, uint8_t* dst, uint32_t y, uint32_t x, uint32_t len, SwMask op, uint8_t a)
+ {
+ fillLinear(fill, dst, y, x, len, op, a);
+ }
+
+ void operator()(const SwFill* fill, uint8_t* dst, uint32_t y, uint32_t x, uint32_t len, uint8_t* cmp, SwMask op, uint8_t a)
+ {
+ fillLinear(fill, dst, y, x, len, cmp, op, a);
+ }
+
+ void operator()(const SwFill* fill, uint32_t* dst, uint32_t y, uint32_t x, uint32_t len, SwBlender op, uint8_t a)
+ {
+ fillLinear(fill, dst, y, x, len, op, a);
+ }
+
+ void operator()(const SwFill* fill, uint32_t* dst, uint32_t y, uint32_t x, uint32_t len, uint8_t* cmp, SwAlpha alpha, uint8_t csize, uint8_t opacity)
+ {
+ fillLinear(fill, dst, y, x, len, cmp, alpha, csize, opacity);
+ }
+
+ void operator()(const SwFill* fill, uint32_t* dst, uint32_t y, uint32_t x, uint32_t len, SwBlender op, SwBlender op2, uint8_t a)
+ {
+ fillLinear(fill, dst, y, x, len, op, op2, a);
+ }
+
+};
+
+struct FillRadial
+{
+ void operator()(const SwFill* fill, uint8_t* dst, uint32_t y, uint32_t x, uint32_t len, SwMask op, uint8_t a)
+ {
+ fillRadial(fill, dst, y, x, len, op, a);
+ }
+
+ void operator()(const SwFill* fill, uint8_t* dst, uint32_t y, uint32_t x, uint32_t len, uint8_t* cmp, SwMask op, uint8_t a)
+ {
+ fillRadial(fill, dst, y, x, len, cmp, op, a);
+ }
+
+ void operator()(const SwFill* fill, uint32_t* dst, uint32_t y, uint32_t x, uint32_t len, SwBlender op, uint8_t a)
+ {
+ fillRadial(fill, dst, y, x, len, op, a);
+ }
+
+ void operator()(const SwFill* fill, uint32_t* dst, uint32_t y, uint32_t x, uint32_t len, uint8_t* cmp, SwAlpha alpha, uint8_t csize, uint8_t opacity)
+ {
+ fillRadial(fill, dst, y, x, len, cmp, alpha, csize, opacity);
+ }
+
+ void operator()(const SwFill* fill, uint32_t* dst, uint32_t y, uint32_t x, uint32_t len, SwBlender op, SwBlender op2, uint8_t a)
+ {
+ fillRadial(fill, dst, y, x, len, op, op2, a);
+ }
+};
+
+
+static inline uint8_t _alpha(uint8_t* a)
+{
+ return *a;
+}
+
+
+static inline uint8_t _ialpha(uint8_t* a)
+{
+ return ~(*a);
+}
+
+
+static inline uint8_t _abgrLuma(uint8_t* c)
+{
+ auto v = *(uint32_t*)c;
+ return ((((v&0xff)*54) + (((v>>8)&0xff)*183) + (((v>>16)&0xff)*19))) >> 8; //0.2125*R + 0.7154*G + 0.0721*B
+}
+
+
+static inline uint8_t _argbLuma(uint8_t* c)
+{
+ auto v = *(uint32_t*)c;
+ return ((((v&0xff)*19) + (((v>>8)&0xff)*183) + (((v>>16)&0xff)*54))) >> 8; //0.0721*B + 0.7154*G + 0.2125*R
+}
+
+
+static inline uint8_t _abgrInvLuma(uint8_t* c)
+{
+ return ~_abgrLuma(c);
+}
+
+
+static inline uint8_t _argbInvLuma(uint8_t* c)
+{
+ return ~_argbLuma(c);
+}
+
+
+static inline uint32_t _abgrJoin(uint8_t r, uint8_t g, uint8_t b, uint8_t a)
+{
+ return (a << 24 | b << 16 | g << 8 | r);
+}
+
+
+static inline uint32_t _argbJoin(uint8_t r, uint8_t g, uint8_t b, uint8_t a)
+{
+ return (a << 24 | r << 16 | g << 8 | b);
+}
+
+static inline bool _blending(const SwSurface* surface)
+{
+ return (surface->blender) ? true : false;
+}
+
+
+/* OPTIMIZE_ME: Probably, we can separate masking(8bits) / composition(32bits)
+ This would help to enhance the performance by avoiding the unnecessary matting from the composition */
+static inline bool _compositing(const SwSurface* surface)
+{
+ if (!surface->compositor || (int)surface->compositor->method <= (int)CompositeMethod::ClipPath) return false;
+ return true;
+}
+
+
+static inline bool _matting(const SwSurface* surface)
+{
+ if ((int)surface->compositor->method < (int)CompositeMethod::AddMask) return true;
+ else return false;
+}
+
+static inline uint8_t _opMaskNone(uint8_t s, TVG_UNUSED uint8_t d, TVG_UNUSED uint8_t a)
+{
+ return s;
+}
+
+static inline uint8_t _opMaskAdd(uint8_t s, uint8_t d, uint8_t a)
+{
+ return s + MULTIPLY(d, a);
+}
+
+
+static inline uint8_t _opMaskSubtract(uint8_t s, uint8_t d, TVG_UNUSED uint8_t a)
+{
+ return MULTIPLY(s, 255 - d);
+}
+
+
+static inline uint8_t _opMaskIntersect(uint8_t s, uint8_t d, TVG_UNUSED uint8_t a)
+{
+ return MULTIPLY(s, d);
+}
+
+
+static inline uint8_t _opMaskDifference(uint8_t s, uint8_t d, uint8_t a)
+{
+ return MULTIPLY(s, 255 - d) + MULTIPLY(d, a);
+}
+
+
+static inline bool _direct(CompositeMethod method)
+{
+ //subtract & Intersect allows the direct composition
+ if (method == CompositeMethod::SubtractMask || method == CompositeMethod::IntersectMask) return true;
+ return false;
+}
+
+
+static inline SwMask _getMaskOp(CompositeMethod method)
+{
+ switch (method) {
+ case CompositeMethod::AddMask: return _opMaskAdd;
+ case CompositeMethod::SubtractMask: return _opMaskSubtract;
+ case CompositeMethod::DifferenceMask: return _opMaskDifference;
+ case CompositeMethod::IntersectMask: return _opMaskIntersect;
+ default: return nullptr;
+ }
+}
+
+
+static bool _compositeMaskImage(SwSurface* surface, const SwImage* image, const SwBBox& region)
+{
+ auto dbuffer = &surface->buf8[region.min.y * surface->stride + region.min.x];
+ auto sbuffer = image->buf8 + (region.min.y + image->oy) * image->stride + (region.min.x + image->ox);
+
+ for (auto y = region.min.y; y < region.max.y; ++y) {
+ auto dst = dbuffer;
+ auto src = sbuffer;
+ for (auto x = region.min.x; x < region.max.x; x++, dst++, src++) {
+ *dst = *src + MULTIPLY(*dst, ~*src);
+ }
+ dbuffer += surface->stride;
+ sbuffer += image->stride;
+ }
+ return true;
+}
+
+
+#include "tvgSwRasterTexmap.h"
+#include "tvgSwRasterC.h"
+#include "tvgSwRasterAvx.h"
+#include "tvgSwRasterNeon.h"
+
+
+static inline uint32_t _sampleSize(float scale)
+{
+ auto sampleSize = static_cast<uint32_t>(0.5f / scale);
+ if (sampleSize == 0) sampleSize = 1;
+ return sampleSize;
+}
+
+
+//Bilinear Interpolation
+//OPTIMIZE_ME: Skip the function pointer access
+static uint32_t _interpUpScaler(const uint32_t *img, TVG_UNUSED uint32_t stride, uint32_t w, uint32_t h, float sx, float sy, TVG_UNUSED uint32_t n, TVG_UNUSED uint32_t n2)
+{
+ auto rx = (uint32_t)(sx);
+ auto ry = (uint32_t)(sy);
+ auto rx2 = rx + 1;
+ if (rx2 >= w) rx2 = w - 1;
+ auto ry2 = ry + 1;
+ if (ry2 >= h) ry2 = h - 1;
+
+ auto dx = static_cast<uint32_t>((sx - rx) * 255.0f);
+ auto dy = static_cast<uint32_t>((sy - ry) * 255.0f);
+
+ auto c1 = img[rx + ry * w];
+ auto c2 = img[rx2 + ry * w];
+ auto c3 = img[rx2 + ry2 * w];
+ auto c4 = img[rx + ry2 * w];
+
+ return INTERPOLATE(INTERPOLATE(c3, c4, dx), INTERPOLATE(c2, c1, dx), dy);
+}
+
+
+//2n x 2n Mean Kernel
+//OPTIMIZE_ME: Skip the function pointer access
+static uint32_t _interpDownScaler(const uint32_t *img, uint32_t stride, uint32_t w, uint32_t h, float sx, float sy, uint32_t n, uint32_t n2)
+{
+ uint32_t rx = lroundf(sx);
+ uint32_t ry = lroundf(sy);
+ uint32_t c[4] = {0, 0, 0, 0};
+ auto src = img + rx - n + (ry - n) * stride;
+
+ for (auto y = ry - n; y < ry + n; ++y) {
+ if (y >= h) continue;
+ auto p = src;
+ for (auto x = rx - n; x < rx + n; ++x, ++p) {
+ if (x >= w) continue;
+ c[0] += *p >> 24;
+ c[1] += (*p >> 16) & 0xff;
+ c[2] += (*p >> 8) & 0xff;
+ c[3] += *p & 0xff;
+ }
+ src += stride;
+ }
+ for (auto i = 0; i < 4; ++i) {
+ c[i] = (c[i] >> 2) / n2;
+ }
+ return (c[0] << 24) | (c[1] << 16) | (c[2] << 8) | c[3];
+}
+
+
+/************************************************************************/
+/* Rect */
+/************************************************************************/
+
+static bool _rasterCompositeMaskedRect(SwSurface* surface, const SwBBox& region, SwMask maskOp, uint8_t r, uint8_t g, uint8_t b, uint8_t a)
+{
+ auto w = static_cast<uint32_t>(region.max.x - region.min.x);
+ auto h = static_cast<uint32_t>(region.max.y - region.min.y);
+ auto cstride = surface->compositor->image.stride;
+ auto cbuffer = surface->compositor->image.buf8 + (region.min.y * cstride + region.min.x); //compositor buffer
+ auto ialpha = 255 - a;
+
+ for (uint32_t y = 0; y < h; ++y) {
+ auto cmp = cbuffer;
+ for (uint32_t x = 0; x < w; ++x, ++cmp) {
+ *cmp = maskOp(a, *cmp, ialpha);
+ }
+ cbuffer += cstride;
+ }
+ return _compositeMaskImage(surface, &surface->compositor->image, surface->compositor->bbox);
+}
+
+
+static bool _rasterDirectMaskedRect(SwSurface* surface, const SwBBox& region, SwMask maskOp, uint8_t r, uint8_t g, uint8_t b, uint8_t a)
+{
+ auto w = static_cast<uint32_t>(region.max.x - region.min.x);
+ auto h = static_cast<uint32_t>(region.max.y - region.min.y);
+ auto cbuffer = surface->compositor->image.buf8 + (region.min.y * surface->compositor->image.stride + region.min.x); //compositor buffer
+ auto dbuffer = surface->buf8 + (region.min.y * surface->stride + region.min.x); //destination buffer
+
+ for (uint32_t y = 0; y < h; ++y) {
+ auto cmp = cbuffer;
+ auto dst = dbuffer;
+ for (uint32_t x = 0; x < w; ++x, ++cmp, ++dst) {
+ auto tmp = maskOp(a, *cmp, 0); //not use alpha.
+ *dst = tmp + MULTIPLY(*dst, ~tmp);
+ }
+ cbuffer += surface->compositor->image.stride;
+ dbuffer += surface->stride;
+ }
+ return true;
+}
+
+
+static bool _rasterMaskedRect(SwSurface* surface, const SwBBox& region, uint8_t r, uint8_t g, uint8_t b, uint8_t a)
+{
+ //8bit masking channels composition
+ if (surface->channelSize != sizeof(uint8_t)) return false;
+
+ TVGLOG("SW_ENGINE", "Masked(%d) Rect [Region: %lu %lu %lu %lu]", (int)surface->compositor->method, region.min.x, region.min.y, region.max.x - region.min.x, region.max.y - region.min.y);
+
+ auto maskOp = _getMaskOp(surface->compositor->method);
+ if (_direct(surface->compositor->method)) return _rasterDirectMaskedRect(surface, region, maskOp, r, g, b, a);
+ else return _rasterCompositeMaskedRect(surface, region, maskOp, r, g, b, a);
+ return false;
+}
+
+
+static bool _rasterMattedRect(SwSurface* surface, const SwBBox& region, uint8_t r, uint8_t g, uint8_t b, uint8_t a)
+{
+ auto w = static_cast<uint32_t>(region.max.x - region.min.x);
+ auto h = static_cast<uint32_t>(region.max.y - region.min.y);
+ auto csize = surface->compositor->image.channelSize;
+ auto cbuffer = surface->compositor->image.buf8 + ((region.min.y * surface->compositor->image.stride + region.min.x) * csize); //compositor buffer
+ auto alpha = surface->alpha(surface->compositor->method);
+
+ TVGLOG("SW_ENGINE", "Matted(%d) Rect [Region: %lu %lu %u %u]", (int)surface->compositor->method, region.min.x, region.min.y, w, h);
+
+ //32bits channels
+ if (surface->channelSize == sizeof(uint32_t)) {
+ auto color = surface->join(r, g, b, a);
+ auto buffer = surface->buf32 + (region.min.y * surface->stride) + region.min.x;
+ for (uint32_t y = 0; y < h; ++y) {
+ auto dst = &buffer[y * surface->stride];
+ auto cmp = &cbuffer[y * surface->compositor->image.stride * csize];
+ for (uint32_t x = 0; x < w; ++x, ++dst, cmp += csize) {
+ *dst = INTERPOLATE(color, *dst, alpha(cmp));
+ }
+ }
+ //8bits grayscale
+ } else if (surface->channelSize == sizeof(uint8_t)) {
+ auto buffer = surface->buf8 + (region.min.y * surface->stride) + region.min.x;
+ for (uint32_t y = 0; y < h; ++y) {
+ auto dst = &buffer[y * surface->stride];
+ auto cmp = &cbuffer[y * surface->compositor->image.stride * csize];
+ for (uint32_t x = 0; x < w; ++x, ++dst, cmp += csize) {
+ *dst = INTERPOLATE8(a, *dst, alpha(cmp));
+ }
+ }
+ }
+ return true;
+}
+
+
+static bool _rasterBlendingRect(SwSurface* surface, const SwBBox& region, uint8_t r, uint8_t g, uint8_t b, uint8_t a)
+{
+ if (surface->channelSize != sizeof(uint32_t)) return false;
+
+ auto w = static_cast<uint32_t>(region.max.x - region.min.x);
+ auto h = static_cast<uint32_t>(region.max.y - region.min.y);
+ auto color = surface->join(r, g, b, a);
+ auto buffer = surface->buf32 + (region.min.y * surface->stride) + region.min.x;
+ auto ialpha = 255 - a;
+
+ for (uint32_t y = 0; y < h; ++y) {
+ auto dst = &buffer[y * surface->stride];
+ for (uint32_t x = 0; x < w; ++x, ++dst) {
+ *dst = surface->blender(color, *dst, ialpha);
+ }
+ }
+ return true;
+}
+
+
+static bool _rasterTranslucentRect(SwSurface* surface, const SwBBox& region, uint8_t r, uint8_t g, uint8_t b, uint8_t a)
+{
+#if defined(THORVG_AVX_VECTOR_SUPPORT)
+ return avxRasterTranslucentRect(surface, region, r, g, b, a);
+#elif defined(THORVG_NEON_VECTOR_SUPPORT)
+ return neonRasterTranslucentRect(surface, region, r, g, b, a);
+#else
+ return cRasterTranslucentRect(surface, region, r, g, b, a);
+#endif
+}
+
+
+static bool _rasterSolidRect(SwSurface* surface, const SwBBox& region, uint8_t r, uint8_t g, uint8_t b)
+{
+ auto w = static_cast<uint32_t>(region.max.x - region.min.x);
+ auto h = static_cast<uint32_t>(region.max.y - region.min.y);
+
+ //32bits channels
+ if (surface->channelSize == sizeof(uint32_t)) {
+ auto color = surface->join(r, g, b, 255);
+ auto buffer = surface->buf32 + (region.min.y * surface->stride);
+ for (uint32_t y = 0; y < h; ++y) {
+ rasterPixel32(buffer + y * surface->stride, color, region.min.x, w);
+ }
+ return true;
+ }
+ //8bits grayscale
+ if (surface->channelSize == sizeof(uint8_t)) {
+ for (uint32_t y = 0; y < h; ++y) {
+ rasterGrayscale8(surface->buf8, 255, (y + region.min.y) * surface->stride + region.min.x, w);
+ }
+ return true;
+ }
+ return false;
+}
+
+
+static bool _rasterRect(SwSurface* surface, const SwBBox& region, uint8_t r, uint8_t g, uint8_t b, uint8_t a)
+{
+ if (_compositing(surface)) {
+ if (_matting(surface)) return _rasterMattedRect(surface, region, r, g, b, a);
+ else return _rasterMaskedRect(surface, region, r, g, b, a);
+ } else if (_blending(surface)) {
+ return _rasterBlendingRect(surface, region, r, g, b, a);
+ } else {
+ if (a == 255) return _rasterSolidRect(surface, region, r, g, b);
+ else return _rasterTranslucentRect(surface, region, r, g, b, a);
+ }
+ return false;
+}
+
+
+/************************************************************************/
+/* Rle */
+/************************************************************************/
+
+static bool _rasterCompositeMaskedRle(SwSurface* surface, SwRleData* rle, SwMask maskOp, uint8_t r, uint8_t g, uint8_t b, uint8_t a)
+{
+ auto span = rle->spans;
+ auto cbuffer = surface->compositor->image.buf8;
+ auto cstride = surface->compositor->image.stride;
+ uint8_t src;
+
+ for (uint32_t i = 0; i < rle->size; ++i, ++span) {
+ auto cmp = &cbuffer[span->y * cstride + span->x];
+ if (span->coverage == 255) src = a;
+ else src = MULTIPLY(a, span->coverage);
+ auto ialpha = 255 - src;
+ for (auto x = 0; x < span->len; ++x, ++cmp) {
+ *cmp = maskOp(src, *cmp, ialpha);
+ }
+ }
+ return _compositeMaskImage(surface, &surface->compositor->image, surface->compositor->bbox);
+}
+
+
+static bool _rasterDirectMaskedRle(SwSurface* surface, SwRleData* rle, SwMask maskOp, uint8_t r, uint8_t g, uint8_t b, uint8_t a)
+{
+ auto span = rle->spans;
+ auto cbuffer = surface->compositor->image.buf8;
+ auto cstride = surface->compositor->image.stride;
+ uint8_t src;
+
+ for (uint32_t i = 0; i < rle->size; ++i, ++span) {
+ auto cmp = &cbuffer[span->y * cstride + span->x];
+ auto dst = &surface->buf8[span->y * surface->stride + span->x];
+ if (span->coverage == 255) src = a;
+ else src = MULTIPLY(a, span->coverage);
+ for (auto x = 0; x < span->len; ++x, ++cmp, ++dst) {
+ auto tmp = maskOp(src, *cmp, 0); //not use alpha
+ *dst = tmp + MULTIPLY(*dst, ~tmp);
+ }
+ }
+ return true;
+}
+
+
+static bool _rasterMaskedRle(SwSurface* surface, SwRleData* rle, uint8_t r, uint8_t g, uint8_t b, uint8_t a)
+{
+ TVGLOG("SW_ENGINE", "Masked(%d) Rle", (int)surface->compositor->method);
+
+ //8bit masking channels composition
+ if (surface->channelSize != sizeof(uint8_t)) return false;
+
+ auto maskOp = _getMaskOp(surface->compositor->method);
+ if (_direct(surface->compositor->method)) return _rasterDirectMaskedRle(surface, rle, maskOp, r, g, b, a);
+ else return _rasterCompositeMaskedRle(surface, rle, maskOp, r, g, b, a);
+ return false;
+}
+
+
+static bool _rasterMattedRle(SwSurface* surface, SwRleData* rle, uint8_t r, uint8_t g, uint8_t b, uint8_t a)
+{
+ TVGLOG("SW_ENGINE", "Matted(%d) Rle", (int)surface->compositor->method);
+
+ auto span = rle->spans;
+ auto cbuffer = surface->compositor->image.buf8;
+ auto csize = surface->compositor->image.channelSize;
+ auto alpha = surface->alpha(surface->compositor->method);
+
+ //32bit channels
+ if (surface->channelSize == sizeof(uint32_t)) {
+ uint32_t src;
+ auto color = surface->join(r, g, b, a);
+ for (uint32_t i = 0; i < rle->size; ++i, ++span) {
+ auto dst = &surface->buf32[span->y * surface->stride + span->x];
+ auto cmp = &cbuffer[(span->y * surface->compositor->image.stride + span->x) * csize];
+ if (span->coverage == 255) src = color;
+ else src = ALPHA_BLEND(color, span->coverage);
+ for (uint32_t x = 0; x < span->len; ++x, ++dst, cmp += csize) {
+ auto tmp = ALPHA_BLEND(src, alpha(cmp));
+ *dst = tmp + ALPHA_BLEND(*dst, IA(tmp));
+ }
+ }
+ return true;
+ }
+ //8bit grayscale
+ if (surface->channelSize == sizeof(uint8_t)) {
+ uint8_t src;
+ for (uint32_t i = 0; i < rle->size; ++i, ++span) {
+ auto dst = &surface->buf8[span->y * surface->stride + span->x];
+ auto cmp = &cbuffer[(span->y * surface->compositor->image.stride + span->x) * csize];
+ if (span->coverage == 255) src = a;
+ else src = MULTIPLY(a, span->coverage);
+ for (uint32_t x = 0; x < span->len; ++x, ++dst, cmp += csize) {
+ *dst = INTERPOLATE8(src, *dst, alpha(cmp));
+ }
+ }
+ return true;
+ }
+ return false;
+}
+
+
+static bool _rasterBlendingRle(SwSurface* surface, const SwRleData* rle, uint8_t r, uint8_t g, uint8_t b, uint8_t a)
+{
+ if (surface->channelSize != sizeof(uint32_t)) return false;
+
+ auto span = rle->spans;
+ auto color = surface->join(r, g, b, a);
+ auto ialpha = 255 - a;
+
+ for (uint32_t i = 0; i < rle->size; ++i, ++span) {
+ auto dst = &surface->buf32[span->y * surface->stride + span->x];
+ if (span->coverage == 255) {
+ for (uint32_t x = 0; x < span->len; ++x, ++dst) {
+ *dst = surface->blender(color, *dst, ialpha);
+ }
+ } else {
+ for (uint32_t x = 0; x < span->len; ++x, ++dst) {
+ auto tmp = surface->blender(color, *dst, ialpha);
+ *dst = INTERPOLATE(tmp, *dst, span->coverage);
+ }
+ }
+ }
+ return true;
+}
+
+
+static bool _rasterTranslucentRle(SwSurface* surface, const SwRleData* rle, uint8_t r, uint8_t g, uint8_t b, uint8_t a)
+{
+#if defined(THORVG_AVX_VECTOR_SUPPORT)
+ return avxRasterTranslucentRle(surface, rle, r, g, b, a);
+#elif defined(THORVG_NEON_VECTOR_SUPPORT)
+ return neonRasterTranslucentRle(surface, rle, r, g, b, a);
+#else
+ return cRasterTranslucentRle(surface, rle, r, g, b, a);
+#endif
+}
+
+
+static bool _rasterSolidRle(SwSurface* surface, const SwRleData* rle, uint8_t r, uint8_t g, uint8_t b)
+{
+ auto span = rle->spans;
+
+ //32bit channels
+ if (surface->channelSize == sizeof(uint32_t)) {
+ auto color = surface->join(r, g, b, 255);
+ for (uint32_t i = 0; i < rle->size; ++i, ++span) {
+ if (span->coverage == 255) {
+ rasterPixel32(surface->buf32 + span->y * surface->stride, color, span->x, span->len);
+ } else {
+ auto dst = &surface->buf32[span->y * surface->stride + span->x];
+ auto src = ALPHA_BLEND(color, span->coverage);
+ auto ialpha = 255 - span->coverage;
+ for (uint32_t x = 0; x < span->len; ++x, ++dst) {
+ *dst = src + ALPHA_BLEND(*dst, ialpha);
+ }
+ }
+ }
+ //8bit grayscale
+ } else if (surface->channelSize == sizeof(uint8_t)) {
+ for (uint32_t i = 0; i < rle->size; ++i, ++span) {
+ if (span->coverage == 255) {
+ rasterGrayscale8(surface->buf8, span->coverage, span->y * surface->stride + span->x, span->len);
+ } else {
+ auto dst = &surface->buf8[span->y * surface->stride + span->x];
+ auto ialpha = 255 - span->coverage;
+ for (uint32_t x = 0; x < span->len; ++x, ++dst) {
+ *dst = span->coverage + MULTIPLY(*dst, ialpha);
+ }
+ }
+ }
+ }
+ return true;
+}
+
+
+static bool _rasterRle(SwSurface* surface, SwRleData* rle, uint8_t r, uint8_t g, uint8_t b, uint8_t a)
+{
+ if (!rle) return false;
+
+ if (_compositing(surface)) {
+ if (_matting(surface)) return _rasterMattedRle(surface, rle, r, g, b, a);
+ else return _rasterMaskedRle(surface, rle, r, g, b, a);
+ } else if (_blending(surface)) {
+ return _rasterBlendingRle(surface, rle, r, g, b, a);
+ } else {
+ if (a == 255) return _rasterSolidRle(surface, rle, r, g, b);
+ else return _rasterTranslucentRle(surface, rle, r, g, b, a);
+ }
+ return false;
+}
+
+
+/************************************************************************/
+/* RLE Scaled Image */
+/************************************************************************/
+
+#if 0 //Enable it when GRAYSCALE image is supported
+static bool _rasterCompositeScaledMaskedRleImage(SwSurface* surface, const SwImage* image, const Matrix* itransform, const SwBBox& region, SwMask maskOp, uint8_t opacity)
+{
+ auto scaleMethod = image->scale < DOWN_SCALE_TOLERANCE ? _interpDownScaler : _interpUpScaler;
+ auto sampleSize = _sampleSize(image->scale);
+ auto sampleSize2 = sampleSize * sampleSize;
+ auto span = image->rle->spans;
+
+ for (uint32_t i = 0; i < image->rle->size; ++i, ++span) {
+ auto sy = span->y * itransform->e22 + itransform->e23;
+ if ((uint32_t)sy >= image->h) continue;
+ auto cmp = &surface->compositor->image.buf8[span->y * surface->compositor->image.stride + span->x];
+ auto a = MULTIPLY(span->coverage, opacity);
+ if (a == 255) {
+ for (uint32_t x = static_cast<uint32_t>(span->x); x < static_cast<uint32_t>(span->x) + span->len; ++x, ++cmp) {
+ auto sx = x * itransform->e11 + itransform->e13;
+ if ((uint32_t)sx >= image->w) continue;
+ auto src = scaleMethod(image->buf8, image->stride, image->w, image->h, sx, sy, sampleSize, sampleSize2);
+ *cmp = maskOp(src, *cmp, ~src);
+ }
+ } else {
+ for (uint32_t x = static_cast<uint32_t>(span->x); x < static_cast<uint32_t>(span->x) + span->len; ++x, ++cmp) {
+ auto sx = x * itransform->e11 + itransform->e13;
+ if ((uint32_t)sx >= image->w) continue;
+ auto src = scaleMethod(image->buf8, image->stride, image->w, image->h, sx, sy, sampleSize, sampleSize2);
+ auto tmp = MULTIPLY(src, a);
+ *cmp = maskOp(tmp, *cmp, ~tmp);
+ }
+ }
+ }
+ return true;
+}
+
+
+static bool _rasterDirectScaledMaskedRleImage(SwSurface* surface, const SwImage* image, const Matrix* itransform, const SwBBox& region, SwMask maskOp, uint8_t opacity)
+{
+ auto scaleMethod = image->scale < DOWN_SCALE_TOLERANCE ? _interpDownScaler : _interpUpScaler;
+ auto sampleSize = _sampleSize(image->scale);
+ auto sampleSize2 = sampleSize * sampleSize;
+ auto span = image->rle->spans;
+
+ for (uint32_t i = 0; i < image->rle->size; ++i, ++span) {
+ auto sy = span->y * itransform->e22 + itransform->e23;
+ if ((uint32_t)sy >= image->h) continue;
+ auto cmp = &surface->compositor->image.buf8[span->y * surface->compositor->image.stride + span->x];
+ auto dst = &surface->buf8[span->y * surface->stride + span->x];
+ auto a = MULTIPLY(span->coverage, opacity);
+ if (a == 255) {
+ for (uint32_t x = static_cast<uint32_t>(span->x); x < static_cast<uint32_t>(span->x) + span->len; ++x, ++cmp, ++dst) {
+ auto sx = x * itransform->e11 + itransform->e13;
+ if ((uint32_t)sx >= image->w) continue;
+ auto src = scaleMethod(image->buf8, image->stride, image->w, image->h, sx, sy, sampleSize, sampleSize2);
+ auto tmp = maskOp(src, *cmp, 0); //not use alpha
+ *dst = tmp + MULTIPLY(*dst, ~tmp);
+ }
+ } else {
+ for (uint32_t x = static_cast<uint32_t>(span->x); x < static_cast<uint32_t>(span->x) + span->len; ++x, ++cmp, ++dst) {
+ auto sx = x * itransform->e11 + itransform->e13;
+ if ((uint32_t)sx >= image->w) continue;
+ auto src = scaleMethod(image->buf8, image->stride, image->w, image->h, sx, sy, sampleSize, sampleSize2);
+ auto tmp = maskOp(MULTIPLY(src, a), *cmp, 0); //not use alpha
+ *dst = tmp + MULTIPLY(*dst, ~tmp);
+ }
+ }
+ }
+ return _compositeMaskImage(surface, &surface->compositor->image, surface->compositor->bbox);
+}
+#endif
+
+static bool _rasterScaledMaskedRleImage(SwSurface* surface, const SwImage* image, const Matrix* itransform, const SwBBox& region, uint8_t opacity)
+{
+#if 0 //Enable it when GRAYSCALE image is supported
+ TVGLOG("SW_ENGINE", "Scaled Masked(%d) Rle Image", (int)surface->compositor->method);
+
+ //8bit masking channels composition
+ if (surface->channelSize != sizeof(uint8_t)) return false;
+
+ auto maskOp = _getMaskOp(surface->compositor->method);
+ if (_direct(surface->compositor->method)) return _rasterDirectScaledMaskedRleImage(surface, image, itransform, region, maskOp, opacity);
+ else return _rasterCompositeScaledMaskedRleImage(surface, image, itransform, region, maskOp, opacity);
+#endif
+ return false;
+}
+
+
+static bool _rasterScaledMattedRleImage(SwSurface* surface, const SwImage* image, const Matrix* itransform, const SwBBox& region, uint8_t opacity)
+{
+ TVGLOG("SW_ENGINE", "Scaled Matted(%d) Rle Image", (int)surface->compositor->method);
+
+ auto span = image->rle->spans;
+ auto csize = surface->compositor->image.channelSize;
+ auto alpha = surface->alpha(surface->compositor->method);
+
+ auto scaleMethod = image->scale < DOWN_SCALE_TOLERANCE ? _interpDownScaler : _interpUpScaler;
+ auto sampleSize = _sampleSize(image->scale);
+ auto sampleSize2 = sampleSize * sampleSize;
+
+ for (uint32_t i = 0; i < image->rle->size; ++i, ++span) {
+ auto sy = span->y * itransform->e22 + itransform->e23;
+ if ((uint32_t)sy >= image->h) continue;
+ auto dst = &surface->buf32[span->y * surface->stride + span->x];
+ auto cmp = &surface->compositor->image.buf8[(span->y * surface->compositor->image.stride + span->x) * csize];
+ auto a = MULTIPLY(span->coverage, opacity);
+ if (a == 255) {
+ for (uint32_t x = static_cast<uint32_t>(span->x); x < static_cast<uint32_t>(span->x) + span->len; ++x, ++dst, cmp += csize) {
+ auto sx = x * itransform->e11 + itransform->e13;
+ if ((uint32_t)sx >= image->w) continue;
+ auto tmp = ALPHA_BLEND(scaleMethod(image->buf32, image->stride, image->w, image->h, sx, sy, sampleSize, sampleSize2), alpha(cmp));
+ *dst = tmp + ALPHA_BLEND(*dst, IA(tmp));
+ }
+ } else {
+ for (uint32_t x = static_cast<uint32_t>(span->x); x < static_cast<uint32_t>(span->x) + span->len; ++x, ++dst, cmp += csize) {
+ auto sx = x * itransform->e11 + itransform->e13;
+ if ((uint32_t)sx >= image->w) continue;
+ auto src = scaleMethod(image->buf32, image->stride, image->w, image->h, sx, sy, sampleSize, sampleSize2);
+ auto tmp = ALPHA_BLEND(src, MULTIPLY(alpha(cmp), a));
+ *dst = tmp + ALPHA_BLEND(*dst, IA(tmp));
+ }
+ }
+ }
+
+ return true;
+}
+
+
+static bool _rasterScaledBlendingRleImage(SwSurface* surface, const SwImage* image, const Matrix* itransform, const SwBBox& region, uint8_t opacity)
+{
+ auto span = image->rle->spans;
+ auto scaleMethod = image->scale < DOWN_SCALE_TOLERANCE ? _interpDownScaler : _interpUpScaler;
+ auto sampleSize = _sampleSize(image->scale);
+ auto sampleSize2 = sampleSize * sampleSize;
+
+ for (uint32_t i = 0; i < image->rle->size; ++i, ++span) {
+ auto sy = span->y * itransform->e22 + itransform->e23;
+ if ((uint32_t)sy >= image->h) continue;
+ auto dst = &surface->buf32[span->y * surface->stride + span->x];
+ auto alpha = MULTIPLY(span->coverage, opacity);
+ if (alpha == 255) {
+ for (uint32_t x = static_cast<uint32_t>(span->x); x < static_cast<uint32_t>(span->x) + span->len; ++x, ++dst) {
+ auto sx = x * itransform->e11 + itransform->e13;
+ if ((uint32_t)sx >= image->w) continue;
+ auto src = scaleMethod(image->buf32, image->stride, image->w, image->h, sx, sy, sampleSize, sampleSize2);
+ auto tmp = surface->blender(src, *dst, 255);
+ *dst = INTERPOLATE(tmp, *dst, A(src));
+ }
+ } else if (opacity == 255) {
+ for (uint32_t x = static_cast<uint32_t>(span->x); x < static_cast<uint32_t>(span->x) + span->len; ++x, ++dst) {
+ auto sx = x * itransform->e11 + itransform->e13;
+ if ((uint32_t)sx >= image->w) continue;
+ auto src = scaleMethod(image->buf32, image->stride, image->w, image->h, sx, sy, sampleSize, sampleSize2);
+ auto tmp = surface->blender(src, *dst, 255);
+ *dst = INTERPOLATE(tmp, *dst, MULTIPLY(span->coverage, A(src)));
+ }
+ } else {
+ for (uint32_t x = static_cast<uint32_t>(span->x); x < static_cast<uint32_t>(span->x) + span->len; ++x, ++dst) {
+ auto sx = x * itransform->e11 + itransform->e13;
+ if ((uint32_t)sx >= image->w) continue;
+ auto src = ALPHA_BLEND(scaleMethod(image->buf32, image->stride, image->w, image->h, sx, sy, sampleSize, sampleSize2), opacity);
+ auto tmp = surface->blender(src, *dst, 255);
+ *dst = INTERPOLATE(tmp, *dst, MULTIPLY(span->coverage, A(src)));
+ }
+ }
+ }
+ return true;
+}
+
+
+static bool _rasterScaledRleImage(SwSurface* surface, const SwImage* image, const Matrix* itransform, const SwBBox& region, uint8_t opacity)
+{
+ auto span = image->rle->spans;
+ auto scaleMethod = image->scale < DOWN_SCALE_TOLERANCE ? _interpDownScaler : _interpUpScaler;
+ auto sampleSize = _sampleSize(image->scale);
+ auto sampleSize2 = sampleSize * sampleSize;
+
+ for (uint32_t i = 0; i < image->rle->size; ++i, ++span) {
+ auto sy = span->y * itransform->e22 + itransform->e23;
+ if ((uint32_t)sy >= image->h) continue;
+ auto dst = &surface->buf32[span->y * surface->stride + span->x];
+ auto alpha = MULTIPLY(span->coverage, opacity);
+ if (alpha == 255) {
+ for (uint32_t x = static_cast<uint32_t>(span->x); x < static_cast<uint32_t>(span->x) + span->len; ++x, ++dst) {
+ auto sx = x * itransform->e11 + itransform->e13;
+ if ((uint32_t)sx >= image->w) continue;
+ auto src = scaleMethod(image->buf32, image->stride, image->w, image->h, sx, sy, sampleSize, sampleSize2);
+ *dst = src + ALPHA_BLEND(*dst, IA(src));
+ }
+ } else {
+ for (uint32_t x = static_cast<uint32_t>(span->x); x < static_cast<uint32_t>(span->x) + span->len; ++x, ++dst) {
+ auto sx = x * itransform->e11 + itransform->e13;
+ if ((uint32_t)sx >= image->w) continue;
+ auto src = ALPHA_BLEND(scaleMethod(image->buf32, image->stride, image->w, image->h, sx, sy, sampleSize, sampleSize2), alpha);
+ *dst = src + ALPHA_BLEND(*dst, IA(src));
+ }
+ }
+ }
+ return true;
+}
+
+
+static bool _scaledRleImage(SwSurface* surface, const SwImage* image, const Matrix* transform, const SwBBox& region, uint8_t opacity)
+{
+ if (surface->channelSize == sizeof(uint8_t)) {
+ TVGERR("SW_ENGINE", "Not supported scaled rle image!");
+ return false;
+ }
+
+ Matrix itransform;
+
+ if (transform) {
+ if (!mathInverse(transform, &itransform)) return false;
+ } else mathIdentity(&itransform);
+
+ if (_compositing(surface)) {
+ if (_matting(surface)) return _rasterScaledMattedRleImage(surface, image, &itransform, region, opacity);
+ else return _rasterScaledMaskedRleImage(surface, image, &itransform, region, opacity);
+ } else if (_blending(surface)) {
+ return _rasterScaledBlendingRleImage(surface, image, &itransform, region, opacity);
+ } else {
+ return _rasterScaledRleImage(surface, image, &itransform, region, opacity);
+ }
+ return false;
+}
+
+
+/************************************************************************/
+/* RLE Direct Image */
+/************************************************************************/
+
+#if 0 //Enable it when GRAYSCALE image is supported
+static bool _rasterCompositeDirectMaskedRleImage(SwSurface* surface, const SwImage* image, SwMask maskOp, uint8_t opacity)
+{
+ auto span = image->rle->spans;
+ auto cbuffer = surface->compositor->image.buf8;
+ auto ctride = surface->compositor->image.stride;
+
+ for (uint32_t i = 0; i < image->rle->size; ++i, ++span) {
+ auto src = image->buf8 + (span->y + image->oy) * image->stride + (span->x + image->ox);
+ auto cmp = &cbuffer[span->y * ctride + span->x];
+ auto alpha = MULTIPLY(span->coverage, opacity);
+ if (alpha == 255) {
+ for (uint32_t x = 0; x < span->len; ++x, ++src, ++cmp) {
+ *cmp = maskOp(*src, *cmp, ~*src);
+ }
+ } else {
+ for (uint32_t x = 0; x < span->len; ++x, ++src, ++cmp) {
+ auto tmp = MULTIPLY(*src, alpha);
+ *cmp = maskOp(*src, *cmp, ~tmp);
+ }
+ }
+ }
+ return _compositeMaskImage(surface, &surface->compositor->image, surface->compositor->bbox);
+}
+
+
+static bool _rasterDirectDirectMaskedRleImage(SwSurface* surface, const SwImage* image, SwMask maskOp, uint8_t opacity)
+{
+ auto span = image->rle->spans;
+ auto cbuffer = surface->compositor->image.buf8;
+ auto ctride = surface->compositor->image.stride;
+
+ for (uint32_t i = 0; i < image->rle->size; ++i, ++span) {
+ auto src = image->buf8 + (span->y + image->oy) * image->stride + (span->x + image->ox);
+ auto cmp = &cbuffer[span->y * ctride + span->x];
+ auto dst = &surface->buf8[span->y * surface->stride + span->x];
+ auto alpha = MULTIPLY(span->coverage, opacity);
+ if (alpha == 255) {
+ for (uint32_t x = 0; x < span->len; ++x, ++src, ++cmp, ++dst) {
+ auto tmp = maskOp(*src, *cmp, 0); //not use alpha
+ *dst = INTERPOLATE8(tmp, *dst, (255 - tmp));
+ }
+ } else {
+ for (uint32_t x = 0; x < span->len; ++x, ++src, ++cmp, ++dst) {
+ auto tmp = maskOp(MULTIPLY(*src, alpha), *cmp, 0); //not use alpha
+ *dst = INTERPOLATE8(tmp, *dst, (255 - tmp));
+ }
+ }
+ }
+ return true;
+}
+#endif
+
+static bool _rasterDirectMaskedRleImage(SwSurface* surface, const SwImage* image, uint8_t opacity)
+{
+#if 0 //Enable it when GRAYSCALE image is supported
+ TVGLOG("SW_ENGINE", "Direct Masked(%d) Rle Image", (int)surface->compositor->method);
+
+ //8bit masking channels composition
+ if (surface->channelSize != sizeof(uint8_t)) return false;
+
+ auto maskOp = _getMaskOp(surface->compositor->method);
+ if (_direct(surface->compositor->method)) _rasterDirectDirectMaskedRleImage(surface, image, maskOp, opacity);
+ else return _rasterCompositeDirectMaskedRleImage(surface, image, maskOp, opacity);
+#endif
+ return false;
+}
+
+
+static bool _rasterDirectMattedRleImage(SwSurface* surface, const SwImage* image, uint8_t opacity)
+{
+ TVGLOG("SW_ENGINE", "Direct Matted(%d) Rle Image", (int)surface->compositor->method);
+
+ auto span = image->rle->spans;
+ auto csize = surface->compositor->image.channelSize;
+ auto cbuffer = surface->compositor->image.buf8;
+ auto alpha = surface->alpha(surface->compositor->method);
+
+ for (uint32_t i = 0; i < image->rle->size; ++i, ++span) {
+ auto dst = &surface->buf32[span->y * surface->stride + span->x];
+ auto cmp = &cbuffer[(span->y * surface->compositor->image.stride + span->x) * csize];
+ auto img = image->buf32 + (span->y + image->oy) * image->stride + (span->x + image->ox);
+ auto a = MULTIPLY(span->coverage, opacity);
+ if (a == 255) {
+ for (uint32_t x = 0; x < span->len; ++x, ++dst, ++img, cmp += csize) {
+ auto tmp = ALPHA_BLEND(*img, alpha(cmp));
+ *dst = tmp + ALPHA_BLEND(*dst, IA(tmp));
+ }
+ } else {
+ for (uint32_t x = 0; x < span->len; ++x, ++dst, ++img, cmp += csize) {
+ auto tmp = ALPHA_BLEND(*img, MULTIPLY(a, alpha(cmp)));
+ *dst = tmp + ALPHA_BLEND(*dst, IA(tmp));
+ }
+ }
+ }
+ return true;
+}
+
+
+static bool _rasterDirectBlendingRleImage(SwSurface* surface, const SwImage* image, uint8_t opacity)
+{
+ auto span = image->rle->spans;
+
+ for (uint32_t i = 0; i < image->rle->size; ++i, ++span) {
+ auto dst = &surface->buf32[span->y * surface->stride + span->x];
+ auto img = image->buf32 + (span->y + image->oy) * image->stride + (span->x + image->ox);
+ auto alpha = MULTIPLY(span->coverage, opacity);
+ if (alpha == 255) {
+ for (uint32_t x = 0; x < span->len; ++x, ++dst, ++img) {
+ *dst = surface->blender(*img, *dst, IA(*img));
+ }
+ } else if (opacity == 255) {
+ for (uint32_t x = 0; x < span->len; ++x, ++dst, ++img) {
+ auto tmp = surface->blender(*img, *dst, 255);
+ *dst = INTERPOLATE(tmp, *dst, MULTIPLY(span->coverage, A(*img)));
+ }
+ } else {
+ for (uint32_t x = 0; x < span->len; ++x, ++dst, ++img) {
+ auto src = ALPHA_BLEND(*img, opacity);
+ auto tmp = surface->blender(src, *dst, IA(src));
+ *dst = INTERPOLATE(tmp, *dst, MULTIPLY(span->coverage, A(src)));
+ }
+ }
+ }
+ return true;
+}
+
+
+static bool _rasterDirectRleImage(SwSurface* surface, const SwImage* image, uint8_t opacity)
+{
+ auto span = image->rle->spans;
+
+ for (uint32_t i = 0; i < image->rle->size; ++i, ++span) {
+ auto dst = &surface->buf32[span->y * surface->stride + span->x];
+ auto img = image->buf32 + (span->y + image->oy) * image->stride + (span->x + image->ox);
+ auto alpha = MULTIPLY(span->coverage, opacity);
+ if (alpha == 255) {
+ for (uint32_t x = 0; x < span->len; ++x, ++dst, ++img) {
+ *dst = *img + ALPHA_BLEND(*dst, IA(*img));
+ }
+ } else {
+ for (uint32_t x = 0; x < span->len; ++x, ++dst, ++img) {
+ auto src = ALPHA_BLEND(*img, alpha);
+ *dst = src + ALPHA_BLEND(*dst, IA(src));
+ }
+ }
+ }
+ return true;
+}
+
+
+static bool _directRleImage(SwSurface* surface, const SwImage* image, uint8_t opacity)
+{
+ if (surface->channelSize == sizeof(uint8_t)) {
+ TVGERR("SW_ENGINE", "Not supported grayscale rle image!");
+ return false;
+ }
+
+ if (_compositing(surface)) {
+ if (_matting(surface)) return _rasterDirectMattedRleImage(surface, image, opacity);
+ else return _rasterDirectMaskedRleImage(surface, image, opacity);
+ } else if (_blending(surface)) {
+ return _rasterDirectBlendingRleImage(surface, image, opacity);
+ } else {
+ return _rasterDirectRleImage(surface, image, opacity);
+ }
+ return false;
+}
+
+
+/************************************************************************/
+/*Scaled Image */
+/************************************************************************/
+
+#if 0 //Enable it when GRAYSCALE image is supported
+static bool _rasterCompositeScaledMaskedImage(SwSurface* surface, const SwImage* image, const Matrix* itransform, const SwBBox& region, SwMask maskOp, uint8_t opacity)
+{
+ auto scaleMethod = image->scale < DOWN_SCALE_TOLERANCE ? _interpDownScaler : _interpUpScaler;
+ auto sampleSize = _sampleSize(image->scale);
+ auto sampleSize2 = sampleSize * sampleSize;
+ auto cstride = surface->compositor->image.stride;
+ auto cbuffer = surface->compositor->image.buf8 + (region.min.y * cstride + region.min.x);
+
+ for (auto y = region.min.y; y < region.max.y; ++y) {
+ auto sy = y * itransform->e22 + itransform->e23;
+ if ((uint32_t)sy >= image->h) continue;
+ auto cmp = cbuffer;
+ if (opacity == 255) {
+ for (auto x = region.min.x; x < region.max.x; ++x, ++cmp) {
+ auto sx = x * itransform->e11 + itransform->e13;
+ if ((uint32_t)sx >= image->w) continue;
+ auto src = scaleMethod(image->buf8, image->stride, image->w, image->h, sx, sy, sampleSize, sampleSize2);
+ *cmp = maskOp(src, *cmp, ~src);
+ }
+ } else {
+ for (auto x = region.min.x; x < region.max.x; ++x, ++cmp) {
+ auto sx = x * itransform->e11 + itransform->e13;
+ if ((uint32_t)sx >= image->w) continue;
+ auto src = scaleMethod(image->buf8, image->stride, image->w, image->h, sx, sy, sampleSize, sampleSize2);
+ auto tmp = MULTIPLY(src, opacity);
+ *cmp = maskOp(tmp, *cmp, ~tmp);
+ }
+ }
+ cbuffer += cstride;
+ }
+ return _compositeMaskImage(surface, &surface->compositor->image, surface->compositor->bbox);
+}
+
+
+static bool _rasterDirectScaledMaskedImage(SwSurface* surface, const SwImage* image, const Matrix* itransform, const SwBBox& region, SwMask maskOp, uint8_t opacity)
+{
+ auto scaleMethod = image->scale < DOWN_SCALE_TOLERANCE ? _interpDownScaler : _interpUpScaler;
+ auto sampleSize = _sampleSize(image->scale);
+ auto sampleSize2 = sampleSize * sampleSize;
+ auto cstride = surface->compositor->image.stride;
+ auto cbuffer = surface->compositor->image.buf8 + (region.min.y * cstride + region.min.x);
+ auto dbuffer = surface->buf8 + (region.min.y * surface->stride + region.min.x);
+
+ for (auto y = region.min.y; y < region.max.y; ++y) {
+ auto sy = y * itransform->e22 + itransform->e23;
+ if ((uint32_t)sy >= image->h) continue;
+ auto cmp = cbuffer;
+ auto dst = dbuffer;
+ if (opacity == 255) {
+ for (auto x = region.min.x; x < region.max.x; ++x, ++cmp, ++dst) {
+ auto sx = x * itransform->e11 + itransform->e13;
+ if ((uint32_t)sx >= image->w) continue;
+ auto src = scaleMethod(image->buf8, image->stride, image->w, image->h, sx, sy, sampleSize, sampleSize2);
+ auto tmp = maskOp(src, *cmp, 0); //not use alpha
+ *dst = tmp + MULTIPLY(*dst, ~tmp);
+ }
+ } else {
+ for (auto x = region.min.x; x < region.max.x; ++x, ++cmp, ++dst) {
+ auto sx = x * itransform->e11 + itransform->e13;
+ if ((uint32_t)sx >= image->w) continue;
+ auto src = scaleMethod(image->buf8, image->stride, image->w, image->h, sx, sy, sampleSize, sampleSize2);
+ auto tmp = MULTIPLY(src, opacity);
+ auto tmp2 = maskOp(tmp, *cmp, 0); //not use alpha
+ *dst = tmp2 + MULTIPLY(*dst, ~tmp2);
+ }
+ }
+ cbuffer += cstride;
+ dbuffer += surface->stride;
+ }
+ return true;
+}
+#endif
+
+static bool _rasterScaledMaskedImage(SwSurface* surface, const SwImage* image, const Matrix* itransform, const SwBBox& region, uint8_t opacity)
+{
+#if 0 //Enable it when GRAYSCALE image is supported
+ TVGLOG("SW_ENGINE", "Scaled Masked(%d) Image [Region: %lu %lu %lu %lu]", (int)surface->compositor->method, region.min.x, region.min.y, region.max.x - region.min.x, region.max.y - region.min.y);
+
+ auto maskOp = _getMaskOp(surface->compositor->method);
+ if (_direct(surface->compositor->method)) return _rasterDirectScaledMaskedImage(surface, image, itransform, region, maskOp, opacity);
+ else return _rasterCompositeScaledMaskedImage(surface, image, itransform, region, maskOp, opacity);
+#endif
+ return false;
+}
+
+
+static bool _rasterScaledMattedImage(SwSurface* surface, const SwImage* image, const Matrix* itransform, const SwBBox& region, uint8_t opacity)
+{
+ auto dbuffer = surface->buf32 + (region.min.y * surface->stride + region.min.x);
+ auto csize = surface->compositor->image.channelSize;
+ auto cbuffer = surface->compositor->image.buf8 + (region.min.y * surface->compositor->image.stride + region.min.x) * csize;
+ auto alpha = surface->alpha(surface->compositor->method);
+
+ TVGLOG("SW_ENGINE", "Scaled Matted(%d) Image [Region: %lu %lu %lu %lu]", (int)surface->compositor->method, region.min.x, region.min.y, region.max.x - region.min.x, region.max.y - region.min.y);
+
+ auto scaleMethod = image->scale < DOWN_SCALE_TOLERANCE ? _interpDownScaler : _interpUpScaler;
+ auto sampleSize = _sampleSize(image->scale);
+ auto sampleSize2 = sampleSize * sampleSize;
+
+ for (auto y = region.min.y; y < region.max.y; ++y) {
+ auto sy = y * itransform->e22 + itransform->e23;
+ if ((uint32_t)sy >= image->h) continue;
+ auto dst = dbuffer;
+ auto cmp = cbuffer;
+ if (opacity == 255) {
+ for (auto x = region.min.x; x < region.max.x; ++x, ++dst, cmp += csize) {
+ auto sx = x * itransform->e11 + itransform->e13;
+ if ((uint32_t)sx >= image->w) continue;
+ auto src = scaleMethod(image->buf32, image->stride, image->w, image->h, sx, sy, sampleSize, sampleSize2);
+ auto temp = ALPHA_BLEND(src, alpha(cmp));
+ *dst = temp + ALPHA_BLEND(*dst, IA(temp));
+ }
+ } else {
+ for (auto x = region.min.x; x < region.max.x; ++x, ++dst, cmp += csize) {
+ auto sx = x * itransform->e11 + itransform->e13;
+ if ((uint32_t)sx >= image->w) continue;
+ auto src = scaleMethod(image->buf32, image->stride, image->w, image->h, sx, sy, sampleSize, sampleSize2);
+ auto temp = ALPHA_BLEND(src, MULTIPLY(opacity, alpha(cmp)));
+ *dst = temp + ALPHA_BLEND(*dst, IA(temp));
+ }
+ }
+ dbuffer += surface->stride;
+ cbuffer += surface->compositor->image.stride * csize;
+ }
+ return true;
+}
+
+
+static bool _rasterScaledBlendingImage(SwSurface* surface, const SwImage* image, const Matrix* itransform, const SwBBox& region, uint8_t opacity)
+{
+ auto dbuffer = surface->buf32 + (region.min.y * surface->stride + region.min.x);
+ auto scaleMethod = image->scale < DOWN_SCALE_TOLERANCE ? _interpDownScaler : _interpUpScaler;
+ auto sampleSize = _sampleSize(image->scale);
+ auto sampleSize2 = sampleSize * sampleSize;
+
+ for (auto y = region.min.y; y < region.max.y; ++y, dbuffer += surface->stride) {
+ auto sy = y * itransform->e22 + itransform->e23;
+ if ((uint32_t)sy >= image->h) continue;
+ auto dst = dbuffer;
+ if (opacity == 255) {
+ for (auto x = region.min.x; x < region.max.x; ++x, ++dst) {
+ auto sx = x * itransform->e11 + itransform->e13;
+ if ((uint32_t)sx >= image->w) continue;
+ auto src = scaleMethod(image->buf32, image->stride, image->w, image->h, sx, sy, sampleSize, sampleSize2);
+ auto tmp = surface->blender(src, *dst, 255);
+ *dst = INTERPOLATE(tmp, *dst, A(src));
+ }
+ } else {
+ for (auto x = region.min.x; x < region.max.x; ++x, ++dst) {
+ auto sx = x * itransform->e11 + itransform->e13;
+ if ((uint32_t)sx >= image->w) continue;
+ auto src = ALPHA_BLEND(scaleMethod(image->buf32, image->stride, image->w, image->h, sx, sy, sampleSize, sampleSize2), opacity);
+ auto tmp = surface->blender(src, *dst, 255);
+ *dst = INTERPOLATE(tmp, *dst, A(src));
+ }
+ }
+ }
+ return true;
+}
+
+
+static bool _rasterScaledImage(SwSurface* surface, const SwImage* image, const Matrix* itransform, const SwBBox& region, uint8_t opacity)
+{
+ auto dbuffer = surface->buf32 + (region.min.y * surface->stride + region.min.x);
+ auto scaleMethod = image->scale < DOWN_SCALE_TOLERANCE ? _interpDownScaler : _interpUpScaler;
+ auto sampleSize = _sampleSize(image->scale);
+ auto sampleSize2 = sampleSize * sampleSize;
+
+ for (auto y = region.min.y; y < region.max.y; ++y, dbuffer += surface->stride) {
+ auto sy = y * itransform->e22 + itransform->e23;
+ if ((uint32_t)sy >= image->h) continue;
+ auto dst = dbuffer;
+ if (opacity == 255) {
+ for (auto x = region.min.x; x < region.max.x; ++x, ++dst) {
+ auto sx = x * itransform->e11 + itransform->e13;
+ if ((uint32_t)sx >= image->w) continue;
+ auto src = scaleMethod(image->buf32, image->stride, image->w, image->h, sx, sy, sampleSize, sampleSize2);
+ *dst = src + ALPHA_BLEND(*dst, IA(src));
+ }
+ } else {
+ for (auto x = region.min.x; x < region.max.x; ++x, ++dst) {
+ auto sx = x * itransform->e11 + itransform->e13;
+ if ((uint32_t)sx >= image->w) continue;
+ auto src = ALPHA_BLEND(scaleMethod(image->buf32, image->stride, image->w, image->h, sx, sy, sampleSize, sampleSize2), opacity);
+ *dst = src + ALPHA_BLEND(*dst, IA(src));
+ }
+ }
+ }
+ return true;
+}
+
+
+static bool _scaledImage(SwSurface* surface, const SwImage* image, const Matrix* transform, const SwBBox& region, uint8_t opacity)
+{
+ if (surface->channelSize == sizeof(uint8_t)) {
+ TVGERR("SW_ENGINE", "Not supported grayscale Textmap polygon mesh!");
+ return false;
+ }
+
+ Matrix itransform;
+
+ if (transform) {
+ if (!mathInverse(transform, &itransform)) return false;
+ } else mathIdentity(&itransform);
+
+ if (_compositing(surface)) {
+ if (_matting(surface)) return _rasterScaledMattedImage(surface, image, &itransform, region, opacity);
+ else return _rasterScaledMaskedImage(surface, image, &itransform, region, opacity);
+ } else if (_blending(surface)) {
+ return _rasterScaledBlendingImage(surface, image, &itransform, region, opacity);
+ } else {
+ return _rasterScaledImage(surface, image, &itransform, region, opacity);
+ }
+ return false;
+}
+
+
+/************************************************************************/
+/* Direct Image */
+/************************************************************************/
+
+#if 0 //Enable it when GRAYSCALE image is supported
+static bool _rasterCompositeDirectMaskedImage(SwSurface* surface, const SwImage* image, const SwBBox& region, SwMask maskOp, uint8_t opacity)
+{
+ auto h = static_cast<uint32_t>(region.max.y - region.min.y);
+ auto w = static_cast<uint32_t>(region.max.x - region.min.x);
+ auto cstride = surface->compositor->image.stride;
+
+ auto cbuffer = surface->compositor->image.buf8 + (region.min.y * cstride + region.min.x); //compositor buffer
+ auto sbuffer = image->buf8 + (region.min.y + image->oy) * image->stride + (region.min.x + image->ox);
+
+ for (uint32_t y = 0; y < h; ++y) {
+ auto cmp = cbuffer;
+ auto src = sbuffer;
+ if (opacity == 255) {
+ for (uint32_t x = 0; x < w; ++x, ++src, ++cmp) {
+ *cmp = maskOp(*src, *cmp, ~*src);
+ }
+ } else {
+ for (uint32_t x = 0; x < w; ++x, ++src, ++cmp) {
+ auto tmp = MULTIPLY(*src, opacity);
+ *cmp = maskOp(tmp, *cmp, ~tmp);
+ }
+ }
+ cbuffer += cstride;
+ sbuffer += image->stride;
+ }
+ return _compositeMaskImage(surface, &surface->compositor->image, surface->compositor->bbox);
+}
+
+
+static bool _rasterDirectDirectMaskedImage(SwSurface* surface, const SwImage* image, const SwBBox& region, SwMask maskOp, uint8_t opacity)
+{
+ auto h = static_cast<uint32_t>(region.max.y - region.min.y);
+ auto w = static_cast<uint32_t>(region.max.x - region.min.x);
+ auto cstride = surface->compositor->image.stride;
+
+ auto cbuffer = surface->compositor->image.buf32 + (region.min.y * cstride + region.min.x); //compositor buffer
+ auto dbuffer = surface->buf8 + (region.min.y * surface->stride + region.min.x); //destination buffer
+ auto sbuffer = image->buf8 + (region.min.y + image->oy) * image->stride + (region.min.x + image->ox);
+
+ for (uint32_t y = 0; y < h; ++y) {
+ auto cmp = cbuffer;
+ auto dst = dbuffer;
+ auto src = sbuffer;
+ if (opacity == 255) {
+ for (uint32_t x = 0; x < w; ++x, ++src, ++cmp, ++dst) {
+ auto tmp = maskOp(*src, *cmp, 0); //not use alpha
+ *dst = tmp + MULTIPLY(*dst, ~tmp);
+ }
+ } else {
+ for (uint32_t x = 0; x < w; ++x, ++src, ++cmp, ++dst) {
+ auto tmp = maskOp(MULTIPLY(*src, opacity), *cmp, 0); //not use alpha
+ *dst = tmp + MULTIPLY(*dst, ~tmp);
+ }
+ }
+ cbuffer += cstride;
+ dbuffer += surface->stride;
+ sbuffer += image->stride;
+ }
+ return true;
+}
+#endif
+
+static bool _rasterDirectMaskedImage(SwSurface* surface, const SwImage* image, const SwBBox& region, uint8_t opacity)
+{
+ TVGERR("SW_ENGINE", "Not Supported: Direct Masked(%d) Image [Region: %lu %lu %lu %lu]", (int)surface->compositor->method, region.min.x, region.min.y, region.max.x - region.min.x, region.max.y - region.min.y);
+
+#if 0 //Enable it when GRAYSCALE image is supported
+ auto maskOp = _getMaskOp(surface->compositor->method);
+ if (_direct(surface->compositor->method)) return _rasterDirectDirectMaskedImage(surface, image, region, maskOp, opacity);
+ else return _rasterCompositeDirectMaskedImage(surface, image, region, maskOp, opacity);
+#endif
+ return false;
+}
+
+
+static bool _rasterDirectMattedImage(SwSurface* surface, const SwImage* image, const SwBBox& region, uint8_t opacity)
+{
+ auto h = static_cast<uint32_t>(region.max.y - region.min.y);
+ auto w = static_cast<uint32_t>(region.max.x - region.min.x);
+ auto csize = surface->compositor->image.channelSize;
+ auto alpha = surface->alpha(surface->compositor->method);
+ auto sbuffer = image->buf32 + (region.min.y + image->oy) * image->stride + (region.min.x + image->ox);
+ auto cbuffer = surface->compositor->image.buf8 + (region.min.y * surface->compositor->image.stride + region.min.x) * csize; //compositor buffer
+
+ TVGLOG("SW_ENGINE", "Direct Matted(%d) Image [Region: %lu %lu %u %u]", (int)surface->compositor->method, region.min.x, region.min.y, w, h);
+
+ //32 bits
+ if (surface->channelSize == sizeof(uint32_t)) {
+ auto buffer = surface->buf32 + (region.min.y * surface->stride) + region.min.x;
+ for (uint32_t y = 0; y < h; ++y) {
+ auto dst = buffer;
+ auto cmp = cbuffer;
+ auto src = sbuffer;
+ if (opacity == 255) {
+ for (uint32_t x = 0; x < w; ++x, ++dst, ++src, cmp += csize) {
+ auto tmp = ALPHA_BLEND(*src, alpha(cmp));
+ *dst = tmp + ALPHA_BLEND(*dst, IA(tmp));
+ }
+ } else {
+ for (uint32_t x = 0; x < w; ++x, ++dst, ++src, cmp += csize) {
+ auto tmp = ALPHA_BLEND(*src, MULTIPLY(opacity, alpha(cmp)));
+ *dst = tmp + ALPHA_BLEND(*dst, IA(tmp));
+ }
+ }
+ buffer += surface->stride;
+ cbuffer += surface->compositor->image.stride * csize;
+ sbuffer += image->stride;
+ }
+ //8 bits
+ } else if (surface->channelSize == sizeof(uint8_t)) {
+ auto buffer = surface->buf8 + (region.min.y * surface->stride) + region.min.x;
+ for (uint32_t y = 0; y < h; ++y) {
+ auto dst = buffer;
+ auto cmp = cbuffer;
+ auto src = sbuffer;
+ if (opacity == 255) {
+ for (uint32_t x = 0; x < w; ++x, ++dst, ++src, cmp += csize) {
+ *dst = MULTIPLY(A(*src), alpha(cmp));
+ }
+ } else {
+ for (uint32_t x = 0; x < w; ++x, ++dst, ++src, cmp += csize) {
+ *dst = MULTIPLY(A(*src), MULTIPLY(opacity, alpha(cmp)));
+ }
+ }
+ buffer += surface->stride;
+ cbuffer += surface->compositor->image.stride * csize;
+ sbuffer += image->stride;
+ }
+ }
+ return true;
+}
+
+
+static bool _rasterDirectBlendingImage(SwSurface* surface, const SwImage* image, const SwBBox& region, uint8_t opacity)
+{
+ if (surface->channelSize == sizeof(uint8_t)) {
+ TVGERR("SW_ENGINE", "Not supported grayscale image!");
+ return false;
+ }
+
+ auto dbuffer = &surface->buf32[region.min.y * surface->stride + region.min.x];
+ auto sbuffer = image->buf32 + (region.min.y + image->oy) * image->stride + (region.min.x + image->ox);
+
+ for (auto y = region.min.y; y < region.max.y; ++y) {
+ auto dst = dbuffer;
+ auto src = sbuffer;
+ if (opacity == 255) {
+ for (auto x = region.min.x; x < region.max.x; x++, dst++, src++) {
+ auto tmp = surface->blender(*src, *dst, 255);
+ *dst = INTERPOLATE(tmp, *dst, A(*src));
+ }
+ } else {
+ for (auto x = region.min.x; x < region.max.x; ++x, ++dst, ++src) {
+ auto tmp = ALPHA_BLEND(*src, opacity);
+ auto tmp2 = surface->blender(tmp, *dst, 255);
+ *dst = INTERPOLATE(tmp2, *dst, A(tmp));
+ }
+ }
+ dbuffer += surface->stride;
+ sbuffer += image->stride;
+ }
+ return true;
+}
+
+
+static bool _rasterDirectImage(SwSurface* surface, const SwImage* image, const SwBBox& region, uint8_t opacity)
+{
+ if (surface->channelSize == sizeof(uint8_t)) {
+ TVGERR("SW_ENGINE", "Not supported grayscale image!");
+ return false;
+ }
+
+ auto dbuffer = &surface->buf32[region.min.y * surface->stride + region.min.x];
+ auto sbuffer = image->buf32 + (region.min.y + image->oy) * image->stride + (region.min.x + image->ox);
+
+ for (auto y = region.min.y; y < region.max.y; ++y) {
+ auto dst = dbuffer;
+ auto src = sbuffer;
+ if (opacity == 255) {
+ for (auto x = region.min.x; x < region.max.x; x++, dst++, src++) {
+ *dst = *src + ALPHA_BLEND(*dst, IA(*src));
+ }
+ } else {
+ for (auto x = region.min.x; x < region.max.x; ++x, ++dst, ++src) {
+ auto tmp = ALPHA_BLEND(*src, opacity);
+ *dst = tmp + ALPHA_BLEND(*dst, IA(tmp));
+ }
+ }
+ dbuffer += surface->stride;
+ sbuffer += image->stride;
+ }
+ return true;
+}
+
+
+//Blenders for the following scenarios: [Composition / Non-Composition] * [Opaque / Translucent]
+static bool _directImage(SwSurface* surface, const SwImage* image, const SwBBox& region, uint8_t opacity)
+{
+ if (_compositing(surface)) {
+ if (_matting(surface)) return _rasterDirectMattedImage(surface, image, region, opacity);
+ else return _rasterDirectMaskedImage(surface, image, region, opacity);
+ } else if (_blending(surface)) {
+ return _rasterDirectBlendingImage(surface, image, region, opacity);
+ } else {
+ return _rasterDirectImage(surface, image, region, opacity);
+ }
+ return false;
+}
+
+
+//Blenders for the following scenarios: [RLE / Whole] * [Direct / Scaled / Transformed]
+static bool _rasterImage(SwSurface* surface, SwImage* image, const Matrix* transform, const SwBBox& region, uint8_t opacity)
+{
+ //RLE Image
+ if (image->rle) {
+ if (image->direct) return _directRleImage(surface, image, opacity);
+ else if (image->scaled) return _scaledRleImage(surface, image, transform, region, opacity);
+ else return _rasterTexmapPolygon(surface, image, transform, nullptr, opacity);
+ //Whole Image
+ } else {
+ if (image->direct) return _directImage(surface, image, region, opacity);
+ else if (image->scaled) return _scaledImage(surface, image, transform, region, opacity);
+ else return _rasterTexmapPolygon(surface, image, transform, &region, opacity);
+ }
+}
+
+
+/************************************************************************/
+/* Rect Gradient */
+/************************************************************************/
+
+template<typename fillMethod>
+static bool _rasterCompositeGradientMaskedRect(SwSurface* surface, const SwBBox& region, const SwFill* fill, SwMask maskOp)
+{
+ auto h = static_cast<uint32_t>(region.max.y - region.min.y);
+ auto w = static_cast<uint32_t>(region.max.x - region.min.x);
+ auto cstride = surface->compositor->image.stride;
+ auto cbuffer = surface->compositor->image.buf8 + (region.min.y * cstride + region.min.x);
+
+ for (uint32_t y = 0; y < h; ++y) {
+ fillMethod()(fill, cbuffer, region.min.y + y, region.min.x, w, maskOp, 255);
+ cbuffer += surface->stride;
+ }
+ return _compositeMaskImage(surface, &surface->compositor->image, surface->compositor->bbox);
+}
+
+
+template<typename fillMethod>
+static bool _rasterDirectGradientMaskedRect(SwSurface* surface, const SwBBox& region, const SwFill* fill, SwMask maskOp)
+{
+ auto h = static_cast<uint32_t>(region.max.y - region.min.y);
+ auto w = static_cast<uint32_t>(region.max.x - region.min.x);
+ auto cstride = surface->compositor->image.stride;
+ auto cbuffer = surface->compositor->image.buf8 + (region.min.y * cstride + region.min.x);
+ auto dbuffer = surface->buf8 + (region.min.y * surface->stride + region.min.x);
+
+ for (uint32_t y = 0; y < h; ++y) {
+ fillMethod()(fill, dbuffer, region.min.y + y, region.min.x, w, cbuffer, maskOp, 255);
+ cbuffer += cstride;
+ dbuffer += surface->stride;
+ }
+ return true;
+}
+
+
+template<typename fillMethod>
+static bool _rasterGradientMaskedRect(SwSurface* surface, const SwBBox& region, const SwFill* fill)
+{
+ auto method = surface->compositor->method;
+
+ TVGLOG("SW_ENGINE", "Masked(%d) Gradient [Region: %lu %lu %lu %lu]", (int)method, region.min.x, region.min.y, region.max.x - region.min.x, region.max.y - region.min.y);
+
+ auto maskOp = _getMaskOp(method);
+
+ if (_direct(method)) return _rasterDirectGradientMaskedRect<fillMethod>(surface, region, fill, maskOp);
+ else return _rasterCompositeGradientMaskedRect<fillMethod>(surface, region, fill, maskOp);
+
+ return false;
+}
+
+
+template<typename fillMethod>
+static bool _rasterGradientMattedRect(SwSurface* surface, const SwBBox& region, const SwFill* fill)
+{
+ auto buffer = surface->buf32 + (region.min.y * surface->stride) + region.min.x;
+ auto h = static_cast<uint32_t>(region.max.y - region.min.y);
+ auto w = static_cast<uint32_t>(region.max.x - region.min.x);
+ auto csize = surface->compositor->image.channelSize;
+ auto cbuffer = surface->compositor->image.buf8 + (region.min.y * surface->compositor->image.stride + region.min.x) * csize;
+ auto alpha = surface->alpha(surface->compositor->method);
+
+ TVGLOG("SW_ENGINE", "Matted(%d) Gradient [Region: %lu %lu %u %u]", (int)surface->compositor->method, region.min.x, region.min.y, w, h);
+
+ for (uint32_t y = 0; y < h; ++y) {
+ fillMethod()(fill, buffer, region.min.y + y, region.min.x, w, cbuffer, alpha, csize, 255);
+ buffer += surface->stride;
+ cbuffer += surface->stride * csize;
+ }
+ return true;
+}
+
+
+template<typename fillMethod>
+static bool _rasterBlendingGradientRect(SwSurface* surface, const SwBBox& region, const SwFill* fill)
+{
+ auto buffer = surface->buf32 + (region.min.y * surface->stride) + region.min.x;
+ auto w = static_cast<uint32_t>(region.max.x - region.min.x);
+ auto h = static_cast<uint32_t>(region.max.y - region.min.y);
+
+ if (fill->translucent) {
+ for (uint32_t y = 0; y < h; ++y) {
+ fillMethod()(fill, buffer + y * surface->stride, region.min.y + y, region.min.x, w, opBlendPreNormal, surface->blender, 255);
+ }
+ } else {
+ for (uint32_t y = 0; y < h; ++y) {
+ fillMethod()(fill, buffer + y * surface->stride, region.min.y + y, region.min.x, w, opBlendSrcOver, surface->blender, 255);
+ }
+ }
+ return true;
+}
+
+template<typename fillMethod>
+static bool _rasterTranslucentGradientRect(SwSurface* surface, const SwBBox& region, const SwFill* fill)
+{
+ auto buffer = surface->buf32 + (region.min.y * surface->stride) + region.min.x;
+ auto h = static_cast<uint32_t>(region.max.y - region.min.y);
+ auto w = static_cast<uint32_t>(region.max.x - region.min.x);
+
+ for (uint32_t y = 0; y < h; ++y) {
+ fillMethod()(fill, buffer, region.min.y + y, region.min.x, w, opBlendPreNormal, 255);
+ buffer += surface->stride;
+ }
+ return true;
+}
+
+
+template<typename fillMethod>
+static bool _rasterSolidGradientRect(SwSurface* surface, const SwBBox& region, const SwFill* fill)
+{
+ auto buffer = surface->buf32 + (region.min.y * surface->stride) + region.min.x;
+ auto w = static_cast<uint32_t>(region.max.x - region.min.x);
+ auto h = static_cast<uint32_t>(region.max.y - region.min.y);
+
+ for (uint32_t y = 0; y < h; ++y) {
+ fillMethod()(fill, buffer + y * surface->stride, region.min.y + y, region.min.x, w, opBlendSrcOver, 255);
+ }
+ return true;
+}
+
+
+static bool _rasterLinearGradientRect(SwSurface* surface, const SwBBox& region, const SwFill* fill)
+{
+ if (fill->linear.len < FLT_EPSILON) return false;
+
+ if (_compositing(surface)) {
+ if (_matting(surface)) return _rasterGradientMattedRect<FillLinear>(surface, region, fill);
+ else return _rasterGradientMaskedRect<FillLinear>(surface, region, fill);
+ } else if (_blending(surface)) {
+ return _rasterBlendingGradientRect<FillLinear>(surface, region, fill);
+ } else {
+ if (fill->translucent) return _rasterTranslucentGradientRect<FillLinear>(surface, region, fill);
+ else _rasterSolidGradientRect<FillLinear>(surface, region, fill);
+ }
+ return false;
+}
+
+
+static bool _rasterRadialGradientRect(SwSurface* surface, const SwBBox& region, const SwFill* fill)
+{
+ if (_compositing(surface)) {
+ if (_matting(surface)) return _rasterGradientMattedRect<FillRadial>(surface, region, fill);
+ else return _rasterGradientMaskedRect<FillRadial>(surface, region, fill);
+ } else if (_blending(surface)) {
+ return _rasterBlendingGradientRect<FillRadial>(surface, region, fill);
+ } else {
+ if (fill->translucent) return _rasterTranslucentGradientRect<FillRadial>(surface, region, fill);
+ else _rasterSolidGradientRect<FillRadial>(surface, region, fill);
+ }
+ return false;
+}
+
+
+/************************************************************************/
+/* Rle Gradient */
+/************************************************************************/
+
+template<typename fillMethod>
+static bool _rasterCompositeGradientMaskedRle(SwSurface* surface, const SwRleData* rle, const SwFill* fill, SwMask maskOp)
+{
+ auto span = rle->spans;
+ auto cstride = surface->compositor->image.stride;
+ auto cbuffer = surface->compositor->image.buf8;
+
+ for (uint32_t i = 0; i < rle->size; ++i, ++span) {
+ auto cmp = &cbuffer[span->y * cstride + span->x];
+ fillMethod()(fill, cmp, span->y, span->x, span->len, maskOp, span->coverage);
+ }
+ return _compositeMaskImage(surface, &surface->compositor->image, surface->compositor->bbox);
+}
+
+
+template<typename fillMethod>
+static bool _rasterDirectGradientMaskedRle(SwSurface* surface, const SwRleData* rle, const SwFill* fill, SwMask maskOp)
+{
+ auto span = rle->spans;
+ auto cstride = surface->compositor->image.stride;
+ auto cbuffer = surface->compositor->image.buf8;
+ auto dbuffer = surface->buf8;
+
+ for (uint32_t i = 0; i < rle->size; ++i, ++span) {
+ auto cmp = &cbuffer[span->y * cstride + span->x];
+ auto dst = &dbuffer[span->y * surface->stride + span->x];
+ fillMethod()(fill, dst, span->y, span->x, span->len, cmp, maskOp, span->coverage);
+ }
+ return true;
+}
+
+
+template<typename fillMethod>
+static bool _rasterGradientMaskedRle(SwSurface* surface, const SwRleData* rle, const SwFill* fill)
+{
+ auto method = surface->compositor->method;
+
+ TVGLOG("SW_ENGINE", "Masked(%d) Rle Linear Gradient", (int)method);
+
+ auto maskOp = _getMaskOp(method);
+
+ if (_direct(method)) return _rasterDirectGradientMaskedRle<fillMethod>(surface, rle, fill, maskOp);
+ else return _rasterCompositeGradientMaskedRle<fillMethod>(surface, rle, fill, maskOp);
+ return false;
+}
+
+
+template<typename fillMethod>
+static bool _rasterGradientMattedRle(SwSurface* surface, const SwRleData* rle, const SwFill* fill)
+{
+ TVGLOG("SW_ENGINE", "Matted(%d) Rle Linear Gradient", (int)surface->compositor->method);
+
+ auto span = rle->spans;
+ auto csize = surface->compositor->image.channelSize;
+ auto cbuffer = surface->compositor->image.buf8;
+ auto alpha = surface->alpha(surface->compositor->method);
+
+ for (uint32_t i = 0; i < rle->size; ++i, ++span) {
+ auto dst = &surface->buf32[span->y * surface->stride + span->x];
+ auto cmp = &cbuffer[(span->y * surface->compositor->image.stride + span->x) * csize];
+ fillMethod()(fill, dst, span->y, span->x, span->len, cmp, alpha, csize, span->coverage);
+ }
+ return true;
+}
+
+
+template<typename fillMethod>
+static bool _rasterBlendingGradientRle(SwSurface* surface, const SwRleData* rle, const SwFill* fill)
+{
+ auto span = rle->spans;
+
+ for (uint32_t i = 0; i < rle->size; ++i, ++span) {
+ auto dst = &surface->buf32[span->y * surface->stride + span->x];
+ fillMethod()(fill, dst, span->y, span->x, span->len, opBlendPreNormal, surface->blender, span->coverage);
+ }
+ return true;
+}
+
+
+template<typename fillMethod>
+static bool _rasterTranslucentGradientRle(SwSurface* surface, const SwRleData* rle, const SwFill* fill)
+{
+ auto span = rle->spans;
+
+ //32 bits
+ if (surface->channelSize == sizeof(uint32_t)) {
+ for (uint32_t i = 0; i < rle->size; ++i, ++span) {
+ auto dst = &surface->buf32[span->y * surface->stride + span->x];
+ if (span->coverage == 255) fillMethod()(fill, dst, span->y, span->x, span->len, opBlendPreNormal, 255);
+ else fillMethod()(fill, dst, span->y, span->x, span->len, opBlendNormal, span->coverage);
+ }
+ //8 bits
+ } else if (surface->channelSize == sizeof(uint8_t)) {
+ for (uint32_t i = 0; i < rle->size; ++i, ++span) {
+ auto dst = &surface->buf8[span->y * surface->stride + span->x];
+ fillMethod()(fill, dst, span->y, span->x, span->len, _opMaskAdd, 255);
+ }
+ }
+ return true;
+}
+
+
+template<typename fillMethod>
+static bool _rasterSolidGradientRle(SwSurface* surface, const SwRleData* rle, const SwFill* fill)
+{
+ auto span = rle->spans;
+
+ //32 bits
+ if (surface->channelSize == sizeof(uint32_t)) {
+ for (uint32_t i = 0; i < rle->size; ++i, ++span) {
+ auto dst = &surface->buf32[span->y * surface->stride + span->x];
+ if (span->coverage == 255) fillMethod()(fill, dst, span->y, span->x, span->len, opBlendSrcOver, 255);
+ else fillMethod()(fill, dst, span->y, span->x, span->len, opBlendInterp, span->coverage);
+ }
+ //8 bits
+ } else if (surface->channelSize == sizeof(uint8_t)) {
+ for (uint32_t i = 0; i < rle->size; ++i, ++span) {
+ auto dst = &surface->buf8[span->y * surface->stride + span->x];
+ if (span->coverage == 255) fillMethod()(fill, dst, span->y, span->x, span->len, _opMaskNone, 255);
+ else fillMethod()(fill, dst, span->y, span->x, span->len, _opMaskAdd, span->coverage);
+ }
+ }
+
+ return true;
+}
+
+
+static bool _rasterLinearGradientRle(SwSurface* surface, const SwRleData* rle, const SwFill* fill)
+{
+ if (!rle || fill->linear.len < FLT_EPSILON) return false;
+
+ if (_compositing(surface)) {
+ if (_matting(surface)) return _rasterGradientMattedRle<FillLinear>(surface, rle, fill);
+ else return _rasterGradientMaskedRle<FillLinear>(surface, rle, fill);
+ } else if (_blending(surface)) {
+ return _rasterBlendingGradientRle<FillLinear>(surface, rle, fill);
+ } else {
+ if (fill->translucent) return _rasterTranslucentGradientRle<FillLinear>(surface, rle, fill);
+ else return _rasterSolidGradientRle<FillLinear>(surface, rle, fill);
+ }
+ return false;
+}
+
+
+static bool _rasterRadialGradientRle(SwSurface* surface, const SwRleData* rle, const SwFill* fill)
+{
+ if (!rle) return false;
+
+ if (_compositing(surface)) {
+ if (_matting(surface)) return _rasterGradientMattedRle<FillRadial>(surface, rle, fill);
+ else return _rasterGradientMaskedRle<FillRadial>(surface, rle, fill);
+ } else if (_blending(surface)) {
+ _rasterBlendingGradientRle<FillRadial>(surface, rle, fill);
+ } else {
+ if (fill->translucent) _rasterTranslucentGradientRle<FillRadial>(surface, rle, fill);
+ else return _rasterSolidGradientRle<FillRadial>(surface, rle, fill);
+ }
+ return false;
+}
+
+
+/************************************************************************/
+/* External Class Implementation */
+/************************************************************************/
+
+
+void rasterGrayscale8(uint8_t *dst, uint8_t val, uint32_t offset, int32_t len)
+{
+ //OPTIMIZE_ME: Support SIMD
+ cRasterPixels(dst, val, offset, len);
+}
+
+
+void rasterPixel32(uint32_t *dst, uint32_t val, uint32_t offset, int32_t len)
+{
+#if defined(THORVG_AVX_VECTOR_SUPPORT)
+ avxRasterPixel32(dst, val, offset, len);
+#elif defined(THORVG_NEON_VECTOR_SUPPORT)
+ neonRasterPixel32(dst, val, offset, len);
+#else
+ cRasterPixels(dst, val, offset, len);
+#endif
+}
+
+
+bool rasterCompositor(SwSurface* surface)
+{
+ //See CompositeMethod, Alpha:3, InvAlpha:4, Luma:5, InvLuma:6
+ surface->alphas[0] = _alpha;
+ surface->alphas[1] = _ialpha;
+
+ if (surface->cs == ColorSpace::ABGR8888 || surface->cs == ColorSpace::ABGR8888S) {
+ surface->join = _abgrJoin;
+ surface->alphas[2] = _abgrLuma;
+ surface->alphas[3] = _abgrInvLuma;
+ } else if (surface->cs == ColorSpace::ARGB8888 || surface->cs == ColorSpace::ARGB8888S) {
+ surface->join = _argbJoin;
+ surface->alphas[2] = _argbLuma;
+ surface->alphas[3] = _argbInvLuma;
+ } else {
+ TVGERR("SW_ENGINE", "Unsupported Colorspace(%d) is expected!", surface->cs);
+ return false;
+ }
+ return true;
+}
+
+
+bool rasterClear(SwSurface* surface, uint32_t x, uint32_t y, uint32_t w, uint32_t h)
+{
+ if (!surface || !surface->buf32 || surface->stride == 0 || surface->w == 0 || surface->h == 0) return false;
+
+ //32 bits
+ if (surface->channelSize == sizeof(uint32_t)) {
+ //full clear
+ if (w == surface->stride) {
+ rasterPixel32(surface->buf32, 0x00000000, surface->stride * y, w * h);
+ //partial clear
+ } else {
+ for (uint32_t i = 0; i < h; i++) {
+ rasterPixel32(surface->buf32, 0x00000000, (surface->stride * y + x) + (surface->stride * i), w);
+ }
+ }
+ //8 bits
+ } else if (surface->channelSize == sizeof(uint8_t)) {
+ //full clear
+ if (w == surface->stride) {
+ rasterGrayscale8(surface->buf8, 0x00, surface->stride * y, w * h);
+ //partial clear
+ } else {
+ for (uint32_t i = 0; i < h; i++) {
+ rasterGrayscale8(surface->buf8, 0x00, (surface->stride * y + x) + (surface->stride * i), w);
+ }
+ }
+ }
+ return true;
+}
+
+
+void rasterUnpremultiply(Surface* surface)
+{
+ if (surface->channelSize != sizeof(uint32_t)) return;
+
+ TVGLOG("SW_ENGINE", "Unpremultiply [Size: %d x %d]", surface->w, surface->h);
+
+ //OPTIMIZE_ME: +SIMD
+ for (uint32_t y = 0; y < surface->h; y++) {
+ auto buffer = surface->buf32 + surface->stride * y;
+ for (uint32_t x = 0; x < surface->w; ++x) {
+ uint8_t a = buffer[x] >> 24;
+ if (a == 255) {
+ continue;
+ } else if (a == 0) {
+ buffer[x] = 0x00ffffff;
+ } else {
+ uint16_t r = ((buffer[x] >> 8) & 0xff00) / a;
+ uint16_t g = ((buffer[x]) & 0xff00) / a;
+ uint16_t b = ((buffer[x] << 8) & 0xff00) / a;
+ if (r > 0xff) r = 0xff;
+ if (g > 0xff) g = 0xff;
+ if (b > 0xff) b = 0xff;
+ buffer[x] = (a << 24) | (r << 16) | (g << 8) | (b);
+ }
+ }
+ }
+ surface->premultiplied = false;
+}
+
+
+void rasterPremultiply(Surface* surface)
+{
+ if (surface->channelSize != sizeof(uint32_t)) return;
+
+ TVGLOG("SW_ENGINE", "Premultiply [Size: %d x %d]", surface->w, surface->h);
+
+ //OPTIMIZE_ME: +SIMD
+ auto buffer = surface->buf32;
+ for (uint32_t y = 0; y < surface->h; ++y, buffer += surface->stride) {
+ auto dst = buffer;
+ for (uint32_t x = 0; x < surface->w; ++x, ++dst) {
+ auto c = *dst;
+ auto a = (c >> 24);
+ *dst = (c & 0xff000000) + ((((c >> 8) & 0xff) * a) & 0xff00) + ((((c & 0x00ff00ff) * a) >> 8) & 0x00ff00ff);
+ }
+ }
+ surface->premultiplied = true;
+}
+
+
+bool rasterGradientShape(SwSurface* surface, SwShape* shape, unsigned id)
+{
+ if (!shape->fill) return false;
+
+ if (shape->fastTrack) {
+ if (id == TVG_CLASS_ID_LINEAR) return _rasterLinearGradientRect(surface, shape->bbox, shape->fill);
+ else if (id == TVG_CLASS_ID_RADIAL)return _rasterRadialGradientRect(surface, shape->bbox, shape->fill);
+ } else {
+ if (id == TVG_CLASS_ID_LINEAR) return _rasterLinearGradientRle(surface, shape->rle, shape->fill);
+ else if (id == TVG_CLASS_ID_RADIAL) return _rasterRadialGradientRle(surface, shape->rle, shape->fill);
+ }
+ return false;
+}
+
+
+bool rasterGradientStroke(SwSurface* surface, SwShape* shape, unsigned id)
+{
+ if (!shape->stroke || !shape->stroke->fill || !shape->strokeRle) return false;
+
+ if (id == TVG_CLASS_ID_LINEAR) return _rasterLinearGradientRle(surface, shape->strokeRle, shape->stroke->fill);
+ else if (id == TVG_CLASS_ID_RADIAL) return _rasterRadialGradientRle(surface, shape->strokeRle, shape->stroke->fill);
+
+ return false;
+}
+
+
+bool rasterShape(SwSurface* surface, SwShape* shape, uint8_t r, uint8_t g, uint8_t b, uint8_t a)
+{
+ if (a < 255) {
+ r = MULTIPLY(r, a);
+ g = MULTIPLY(g, a);
+ b = MULTIPLY(b, a);
+ }
+ if (shape->fastTrack) return _rasterRect(surface, shape->bbox, r, g, b, a);
+ else return _rasterRle(surface, shape->rle, r, g, b, a);
+}
+
+
+bool rasterStroke(SwSurface* surface, SwShape* shape, uint8_t r, uint8_t g, uint8_t b, uint8_t a)
+{
+ if (a < 255) {
+ r = MULTIPLY(r, a);
+ g = MULTIPLY(g, a);
+ b = MULTIPLY(b, a);
+ }
+
+ return _rasterRle(surface, shape->strokeRle, r, g, b, a);
+}
+
+
+bool rasterImage(SwSurface* surface, SwImage* image, const RenderMesh* mesh, const Matrix* transform, const SwBBox& bbox, uint8_t opacity)
+{
+ //Verify Boundary
+ if (bbox.max.x < 0 || bbox.max.y < 0 || bbox.min.x >= static_cast<SwCoord>(surface->w) || bbox.min.y >= static_cast<SwCoord>(surface->h)) return false;
+
+ if (mesh && mesh->triangleCnt > 0) return _rasterTexmapPolygonMesh(surface, image, mesh, transform, &bbox, opacity);
+ else return _rasterImage(surface, image, transform, bbox, opacity);
+}
+
+
+bool rasterConvertCS(Surface* surface, ColorSpace to)
+{
+ //TOOD: Support SIMD accelerations
+ auto from = surface->cs;
+
+ if (((from == ColorSpace::ABGR8888) || (from == ColorSpace::ABGR8888S)) && ((to == ColorSpace::ARGB8888) || (to == ColorSpace::ARGB8888S))) {
+ surface->cs = to;
+ return cRasterABGRtoARGB(surface);
+ }
+ if (((from == ColorSpace::ARGB8888) || (from == ColorSpace::ARGB8888S)) && ((to == ColorSpace::ABGR8888) || (to == ColorSpace::ABGR8888S))) {
+ surface->cs = to;
+ return cRasterARGBtoABGR(surface);
+ }
+
+ return false;
+}