From cfcc8a20e862b758c32bd3f152186e6df0591a24 Mon Sep 17 00:00:00 2001
From: =?UTF-8?q?R=C3=A9mi=20Verschelde?= <rverschelde@gmail.com>
Date: Thu, 13 Oct 2016 19:40:40 +0200
Subject: theora: Move to a module and split thirdparty lib

Same rationale as the previous commits.
---
 thirdparty/libtheora/state.c | 1227 ++++++++++++++++++++++++++++++++++++++++++
 1 file changed, 1227 insertions(+)
 create mode 100644 thirdparty/libtheora/state.c

(limited to 'thirdparty/libtheora/state.c')

diff --git a/thirdparty/libtheora/state.c b/thirdparty/libtheora/state.c
new file mode 100644
index 0000000000..42ed33a9a3
--- /dev/null
+++ b/thirdparty/libtheora/state.c
@@ -0,0 +1,1227 @@
+/********************************************************************
+ *                                                                  *
+ * THIS FILE IS PART OF THE OggTheora SOFTWARE CODEC SOURCE CODE.   *
+ * USE, DISTRIBUTION AND REPRODUCTION OF THIS LIBRARY SOURCE IS     *
+ * GOVERNED BY A BSD-STYLE SOURCE LICENSE INCLUDED WITH THIS SOURCE *
+ * IN 'COPYING'. PLEASE READ THESE TERMS BEFORE DISTRIBUTING.       *
+ *                                                                  *
+ * THE Theora SOURCE CODE IS COPYRIGHT (C) 2002-2009                *
+ * by the Xiph.Org Foundation and contributors http://www.xiph.org/ *
+ *                                                                  *
+ ********************************************************************
+
+  function:
+    last mod: $Id: state.c 16503 2009-08-22 18:14:02Z giles $
+
+ ********************************************************************/
+
+#include <stdlib.h>
+#include <string.h>
+#include "internal.h"
+#if defined(OC_X86_ASM)
+#if defined(_MSC_VER)
+# include "x86_vc/x86int.h"
+#else
+# include "x86/x86int.h"
+#endif
+#endif
+#if defined(OC_DUMP_IMAGES)
+# include <stdio.h>
+# include "png.h"
+#endif
+
+/*Returns the fragment index of the top-left block in a macro block.
+  This can be used to test whether or not the whole macro block is valid.
+  _sb_map: The super block map.
+  _quadi:  The quadrant number.
+  Return: The index of the fragment of the upper left block in the macro
+   block, or -1 if the block lies outside the coded frame.*/
+static ptrdiff_t oc_sb_quad_top_left_frag(oc_sb_map_quad _sb_map[4],int _quadi){
+  /*It so happens that under the Hilbert curve ordering described below, the
+     upper-left block in each macro block is at index 0, except in macro block
+     3, where it is at index 2.*/
+  return _sb_map[_quadi][_quadi&_quadi<<1];
+}
+
+/*Fills in the mapping from block positions to fragment numbers for a single
+   color plane.
+  This function also fills in the "valid" flag of each quadrant in the super
+   block flags.
+  _sb_maps:  The array of super block maps for the color plane.
+  _sb_flags: The array of super block flags for the color plane.
+  _frag0:    The index of the first fragment in the plane.
+  _hfrags:   The number of horizontal fragments in a coded frame.
+  _vfrags:   The number of vertical fragments in a coded frame.*/
+static void oc_sb_create_plane_mapping(oc_sb_map _sb_maps[],
+ oc_sb_flags _sb_flags[],ptrdiff_t _frag0,int _hfrags,int _vfrags){
+  /*Contains the (macro_block,block) indices for a 4x4 grid of
+     fragments.
+    The pattern is a 4x4 Hilbert space-filling curve.
+    A Hilbert curve has the nice property that as the curve grows larger, its
+     fractal dimension approaches 2.
+    The intuition is that nearby blocks in the curve are also close spatially,
+     with the previous element always an immediate neighbor, so that runs of
+     blocks should be well correlated.*/
+  static const int SB_MAP[4][4][2]={
+    {{0,0},{0,1},{3,2},{3,3}},
+    {{0,3},{0,2},{3,1},{3,0}},
+    {{1,0},{1,3},{2,0},{2,3}},
+    {{1,1},{1,2},{2,1},{2,2}}
+  };
+  ptrdiff_t  yfrag;
+  unsigned   sbi;
+  int        y;
+  sbi=0;
+  yfrag=_frag0;
+  for(y=0;;y+=4){
+    int imax;
+    int x;
+    /*Figure out how many columns of blocks in this super block lie within the
+       image.*/
+    imax=_vfrags-y;
+    if(imax>4)imax=4;
+    else if(imax<=0)break;
+    for(x=0;;x+=4,sbi++){
+      ptrdiff_t xfrag;
+      int       jmax;
+      int       quadi;
+      int       i;
+      /*Figure out how many rows of blocks in this super block lie within the
+         image.*/
+      jmax=_hfrags-x;
+      if(jmax>4)jmax=4;
+      else if(jmax<=0)break;
+      /*By default, set all fragment indices to -1.*/
+      memset(_sb_maps[sbi][0],0xFF,sizeof(_sb_maps[sbi]));
+      /*Fill in the fragment map for this super block.*/
+      xfrag=yfrag+x;
+      for(i=0;i<imax;i++){
+        int j;
+        for(j=0;j<jmax;j++){
+          _sb_maps[sbi][SB_MAP[i][j][0]][SB_MAP[i][j][1]]=xfrag+j;
+        }
+        xfrag+=_hfrags;
+      }
+      /*Mark which quadrants of this super block lie within the image.*/
+      for(quadi=0;quadi<4;quadi++){
+        _sb_flags[sbi].quad_valid|=
+         (oc_sb_quad_top_left_frag(_sb_maps[sbi],quadi)>=0)<<quadi;
+      }
+    }
+    yfrag+=_hfrags<<2;
+  }
+}
+
+/*Fills in the Y plane fragment map for a macro block given the fragment
+   coordinates of its upper-left hand corner.
+  _mb_map:    The macro block map to fill.
+  _fplane: The description of the Y plane.
+  _xfrag0: The X location of the upper-left hand fragment in the luma plane.
+  _yfrag0: The Y location of the upper-left hand fragment in the luma plane.*/
+static void oc_mb_fill_ymapping(oc_mb_map_plane _mb_map[3],
+ const oc_fragment_plane *_fplane,int _xfrag0,int _yfrag0){
+  int i;
+  int j;
+  for(i=0;i<2;i++)for(j=0;j<2;j++){
+    _mb_map[0][i<<1|j]=(_yfrag0+i)*(ptrdiff_t)_fplane->nhfrags+_xfrag0+j;
+  }
+}
+
+/*Fills in the chroma plane fragment maps for a macro block.
+  This version is for use with chroma decimated in the X and Y directions
+   (4:2:0).
+  _mb_map:  The macro block map to fill.
+  _fplanes: The descriptions of the fragment planes.
+  _xfrag0:  The X location of the upper-left hand fragment in the luma plane.
+  _yfrag0:  The Y location of the upper-left hand fragment in the luma plane.*/
+static void oc_mb_fill_cmapping00(oc_mb_map_plane _mb_map[3],
+ const oc_fragment_plane _fplanes[3],int _xfrag0,int _yfrag0){
+  ptrdiff_t fragi;
+  _xfrag0>>=1;
+  _yfrag0>>=1;
+  fragi=_yfrag0*(ptrdiff_t)_fplanes[1].nhfrags+_xfrag0;
+  _mb_map[1][0]=fragi+_fplanes[1].froffset;
+  _mb_map[2][0]=fragi+_fplanes[2].froffset;
+}
+
+/*Fills in the chroma plane fragment maps for a macro block.
+  This version is for use with chroma decimated in the Y direction.
+  _mb_map:  The macro block map to fill.
+  _fplanes: The descriptions of the fragment planes.
+  _xfrag0:  The X location of the upper-left hand fragment in the luma plane.
+  _yfrag0:  The Y location of the upper-left hand fragment in the luma plane.*/
+static void oc_mb_fill_cmapping01(oc_mb_map_plane _mb_map[3],
+ const oc_fragment_plane _fplanes[3],int _xfrag0,int _yfrag0){
+  ptrdiff_t fragi;
+  int       j;
+  _yfrag0>>=1;
+  fragi=_yfrag0*(ptrdiff_t)_fplanes[1].nhfrags+_xfrag0;
+  for(j=0;j<2;j++){
+    _mb_map[1][j]=fragi+_fplanes[1].froffset;
+    _mb_map[2][j]=fragi+_fplanes[2].froffset;
+    fragi++;
+  }
+}
+
+/*Fills in the chroma plane fragment maps for a macro block.
+  This version is for use with chroma decimated in the X direction (4:2:2).
+  _mb_map:  The macro block map to fill.
+  _fplanes: The descriptions of the fragment planes.
+  _xfrag0:  The X location of the upper-left hand fragment in the luma plane.
+  _yfrag0:  The Y location of the upper-left hand fragment in the luma plane.*/
+static void oc_mb_fill_cmapping10(oc_mb_map_plane _mb_map[3],
+ const oc_fragment_plane _fplanes[3],int _xfrag0,int _yfrag0){
+  ptrdiff_t fragi;
+  int       i;
+  _xfrag0>>=1;
+  fragi=_yfrag0*(ptrdiff_t)_fplanes[1].nhfrags+_xfrag0;
+  for(i=0;i<2;i++){
+    _mb_map[1][i<<1]=fragi+_fplanes[1].froffset;
+    _mb_map[2][i<<1]=fragi+_fplanes[2].froffset;
+    fragi+=_fplanes[1].nhfrags;
+  }
+}
+
+/*Fills in the chroma plane fragment maps for a macro block.
+  This version is for use with no chroma decimation (4:4:4).
+  This uses the already filled-in luma plane values.
+  _mb_map:  The macro block map to fill.
+  _fplanes: The descriptions of the fragment planes.*/
+static void oc_mb_fill_cmapping11(oc_mb_map_plane _mb_map[3],
+ const oc_fragment_plane _fplanes[3]){
+  int k;
+  for(k=0;k<4;k++){
+    _mb_map[1][k]=_mb_map[0][k]+_fplanes[1].froffset;
+    _mb_map[2][k]=_mb_map[0][k]+_fplanes[2].froffset;
+  }
+}
+
+/*The function type used to fill in the chroma plane fragment maps for a
+   macro block.
+  _mb_map:  The macro block map to fill.
+  _fplanes: The descriptions of the fragment planes.
+  _xfrag0:  The X location of the upper-left hand fragment in the luma plane.
+  _yfrag0:  The Y location of the upper-left hand fragment in the luma plane.*/
+typedef void (*oc_mb_fill_cmapping_func)(oc_mb_map_plane _mb_map[3],
+ const oc_fragment_plane _fplanes[3],int _xfrag0,int _yfrag0);
+
+/*A table of functions used to fill in the chroma plane fragment maps for a
+   macro block for each type of chrominance decimation.*/
+static const oc_mb_fill_cmapping_func OC_MB_FILL_CMAPPING_TABLE[4]={
+  oc_mb_fill_cmapping00,
+  oc_mb_fill_cmapping01,
+  oc_mb_fill_cmapping10,
+  (oc_mb_fill_cmapping_func)oc_mb_fill_cmapping11
+};
+
+/*Fills in the mapping from macro blocks to their corresponding fragment
+   numbers in each plane.
+  _mb_maps:   The list of macro block maps.
+  _mb_modes:  The list of macro block modes; macro blocks completely outside
+               the coded region are marked invalid.
+  _fplanes:   The descriptions of the fragment planes.
+  _pixel_fmt: The chroma decimation type.*/
+static void oc_mb_create_mapping(oc_mb_map _mb_maps[],
+ signed char _mb_modes[],const oc_fragment_plane _fplanes[3],int _pixel_fmt){
+  oc_mb_fill_cmapping_func  mb_fill_cmapping;
+  unsigned                  sbi;
+  int                       y;
+  mb_fill_cmapping=OC_MB_FILL_CMAPPING_TABLE[_pixel_fmt];
+  /*Loop through the luma plane super blocks.*/
+  for(sbi=y=0;y<_fplanes[0].nvfrags;y+=4){
+    int x;
+    for(x=0;x<_fplanes[0].nhfrags;x+=4,sbi++){
+      int ymb;
+      /*Loop through the macro blocks in each super block in display order.*/
+      for(ymb=0;ymb<2;ymb++){
+        int xmb;
+        for(xmb=0;xmb<2;xmb++){
+          unsigned mbi;
+          int      mbx;
+          int      mby;
+          mbi=sbi<<2|OC_MB_MAP[ymb][xmb];
+          mbx=x|xmb<<1;
+          mby=y|ymb<<1;
+          /*Initialize fragment indices to -1.*/
+          memset(_mb_maps[mbi],0xFF,sizeof(_mb_maps[mbi]));
+          /*Make sure this macro block is within the encoded region.*/
+          if(mbx>=_fplanes[0].nhfrags||mby>=_fplanes[0].nvfrags){
+            _mb_modes[mbi]=OC_MODE_INVALID;
+            continue;
+          }
+          /*Fill in the fragment indices for the luma plane.*/
+          oc_mb_fill_ymapping(_mb_maps[mbi],_fplanes,mbx,mby);
+          /*Fill in the fragment indices for the chroma planes.*/
+          (*mb_fill_cmapping)(_mb_maps[mbi],_fplanes,mbx,mby);
+        }
+      }
+    }
+  }
+}
+
+/*Marks the fragments which fall all or partially outside the displayable
+   region of the frame.
+  _state: The Theora state containing the fragments to be marked.*/
+static void oc_state_border_init(oc_theora_state *_state){
+  oc_fragment       *frag;
+  oc_fragment       *yfrag_end;
+  oc_fragment       *xfrag_end;
+  oc_fragment_plane *fplane;
+  int                crop_x0;
+  int                crop_y0;
+  int                crop_xf;
+  int                crop_yf;
+  int                pli;
+  int                y;
+  int                x;
+  /*The method we use here is slow, but the code is dead simple and handles
+     all the special cases easily.
+    We only ever need to do it once.*/
+  /*Loop through the fragments, marking those completely outside the
+     displayable region and constructing a border mask for those that straddle
+     the border.*/
+  _state->nborders=0;
+  yfrag_end=frag=_state->frags;
+  for(pli=0;pli<3;pli++){
+    fplane=_state->fplanes+pli;
+    /*Set up the cropping rectangle for this plane.*/
+    crop_x0=_state->info.pic_x;
+    crop_xf=_state->info.pic_x+_state->info.pic_width;
+    crop_y0=_state->info.pic_y;
+    crop_yf=_state->info.pic_y+_state->info.pic_height;
+    if(pli>0){
+      if(!(_state->info.pixel_fmt&1)){
+        crop_x0=crop_x0>>1;
+        crop_xf=crop_xf+1>>1;
+      }
+      if(!(_state->info.pixel_fmt&2)){
+        crop_y0=crop_y0>>1;
+        crop_yf=crop_yf+1>>1;
+      }
+    }
+    y=0;
+    for(yfrag_end+=fplane->nfrags;frag<yfrag_end;y+=8){
+      x=0;
+      for(xfrag_end=frag+fplane->nhfrags;frag<xfrag_end;frag++,x+=8){
+        /*First check to see if this fragment is completely outside the
+           displayable region.*/
+        /*Note the special checks for an empty cropping rectangle.
+          This guarantees that if we count a fragment as straddling the
+           border below, at least one pixel in the fragment will be inside
+           the displayable region.*/
+        if(x+8<=crop_x0||crop_xf<=x||y+8<=crop_y0||crop_yf<=y||
+         crop_x0>=crop_xf||crop_y0>=crop_yf){
+          frag->invalid=1;
+        }
+        /*Otherwise, check to see if it straddles the border.*/
+        else if(x<crop_x0&&crop_x0<x+8||x<crop_xf&&crop_xf<x+8||
+         y<crop_y0&&crop_y0<y+8||y<crop_yf&&crop_yf<y+8){
+          ogg_int64_t mask;
+          int         npixels;
+          int         i;
+          mask=npixels=0;
+          for(i=0;i<8;i++){
+            int j;
+            for(j=0;j<8;j++){
+              if(x+j>=crop_x0&&x+j<crop_xf&&y+i>=crop_y0&&y+i<crop_yf){
+                mask|=(ogg_int64_t)1<<(i<<3|j);
+                npixels++;
+              }
+            }
+          }
+          /*Search the fragment array for border info with the same pattern.
+            In general, there will be at most 8 different patterns (per
+             plane).*/
+          for(i=0;;i++){
+            if(i>=_state->nborders){
+              _state->nborders++;
+              _state->borders[i].mask=mask;
+              _state->borders[i].npixels=npixels;
+            }
+            else if(_state->borders[i].mask!=mask)continue;
+            frag->borderi=i;
+            break;
+          }
+        }
+        else frag->borderi=-1;
+      }
+    }
+  }
+}
+
+static int oc_state_frarray_init(oc_theora_state *_state){
+  int       yhfrags;
+  int       yvfrags;
+  int       chfrags;
+  int       cvfrags;
+  ptrdiff_t yfrags;
+  ptrdiff_t cfrags;
+  ptrdiff_t nfrags;
+  unsigned  yhsbs;
+  unsigned  yvsbs;
+  unsigned  chsbs;
+  unsigned  cvsbs;
+  unsigned  ysbs;
+  unsigned  csbs;
+  unsigned  nsbs;
+  size_t    nmbs;
+  int       hdec;
+  int       vdec;
+  int       pli;
+  /*Figure out the number of fragments in each plane.*/
+  /*These parameters have already been validated to be multiples of 16.*/
+  yhfrags=_state->info.frame_width>>3;
+  yvfrags=_state->info.frame_height>>3;
+  hdec=!(_state->info.pixel_fmt&1);
+  vdec=!(_state->info.pixel_fmt&2);
+  chfrags=yhfrags+hdec>>hdec;
+  cvfrags=yvfrags+vdec>>vdec;
+  yfrags=yhfrags*(ptrdiff_t)yvfrags;
+  cfrags=chfrags*(ptrdiff_t)cvfrags;
+  nfrags=yfrags+2*cfrags;
+  /*Figure out the number of super blocks in each plane.*/
+  yhsbs=yhfrags+3>>2;
+  yvsbs=yvfrags+3>>2;
+  chsbs=chfrags+3>>2;
+  cvsbs=cvfrags+3>>2;
+  ysbs=yhsbs*yvsbs;
+  csbs=chsbs*cvsbs;
+  nsbs=ysbs+2*csbs;
+  nmbs=(size_t)ysbs<<2;
+  /*Check for overflow.
+    We support the ridiculous upper limits of the specification (1048560 by
+     1048560, or 3 TB frames) if the target architecture has 64-bit pointers,
+     but for those with 32-bit pointers (or smaller!) we have to check.
+    If the caller wants to prevent denial-of-service by imposing a more
+     reasonable upper limit on the size of attempted allocations, they must do
+     so themselves; we have no platform independent way to determine how much
+     system memory there is nor an application-independent way to decide what a
+     "reasonable" allocation is.*/
+  if(yfrags/yhfrags!=yvfrags||2*cfrags<cfrags||nfrags<yfrags||
+   ysbs/yhsbs!=yvsbs||2*csbs<csbs||nsbs<ysbs||nmbs>>2!=ysbs){
+    return TH_EIMPL;
+  }
+  /*Initialize the fragment array.*/
+  _state->fplanes[0].nhfrags=yhfrags;
+  _state->fplanes[0].nvfrags=yvfrags;
+  _state->fplanes[0].froffset=0;
+  _state->fplanes[0].nfrags=yfrags;
+  _state->fplanes[0].nhsbs=yhsbs;
+  _state->fplanes[0].nvsbs=yvsbs;
+  _state->fplanes[0].sboffset=0;
+  _state->fplanes[0].nsbs=ysbs;
+  _state->fplanes[1].nhfrags=_state->fplanes[2].nhfrags=chfrags;
+  _state->fplanes[1].nvfrags=_state->fplanes[2].nvfrags=cvfrags;
+  _state->fplanes[1].froffset=yfrags;
+  _state->fplanes[2].froffset=yfrags+cfrags;
+  _state->fplanes[1].nfrags=_state->fplanes[2].nfrags=cfrags;
+  _state->fplanes[1].nhsbs=_state->fplanes[2].nhsbs=chsbs;
+  _state->fplanes[1].nvsbs=_state->fplanes[2].nvsbs=cvsbs;
+  _state->fplanes[1].sboffset=ysbs;
+  _state->fplanes[2].sboffset=ysbs+csbs;
+  _state->fplanes[1].nsbs=_state->fplanes[2].nsbs=csbs;
+  _state->nfrags=nfrags;
+  _state->frags=_ogg_calloc(nfrags,sizeof(*_state->frags));
+  _state->frag_mvs=_ogg_malloc(nfrags*sizeof(*_state->frag_mvs));
+  _state->nsbs=nsbs;
+  _state->sb_maps=_ogg_malloc(nsbs*sizeof(*_state->sb_maps));
+  _state->sb_flags=_ogg_calloc(nsbs,sizeof(*_state->sb_flags));
+  _state->nhmbs=yhsbs<<1;
+  _state->nvmbs=yvsbs<<1;
+  _state->nmbs=nmbs;
+  _state->mb_maps=_ogg_calloc(nmbs,sizeof(*_state->mb_maps));
+  _state->mb_modes=_ogg_calloc(nmbs,sizeof(*_state->mb_modes));
+  _state->coded_fragis=_ogg_malloc(nfrags*sizeof(*_state->coded_fragis));
+  if(_state->frags==NULL||_state->frag_mvs==NULL||_state->sb_maps==NULL||
+   _state->sb_flags==NULL||_state->mb_maps==NULL||_state->mb_modes==NULL||
+   _state->coded_fragis==NULL){
+    return TH_EFAULT;
+  }
+  /*Create the mapping from super blocks to fragments.*/
+  for(pli=0;pli<3;pli++){
+    oc_fragment_plane *fplane;
+    fplane=_state->fplanes+pli;
+    oc_sb_create_plane_mapping(_state->sb_maps+fplane->sboffset,
+     _state->sb_flags+fplane->sboffset,fplane->froffset,
+     fplane->nhfrags,fplane->nvfrags);
+  }
+  /*Create the mapping from macro blocks to fragments.*/
+  oc_mb_create_mapping(_state->mb_maps,_state->mb_modes,
+   _state->fplanes,_state->info.pixel_fmt);
+  /*Initialize the invalid and borderi fields of each fragment.*/
+  oc_state_border_init(_state);
+  return 0;
+}
+
+static void oc_state_frarray_clear(oc_theora_state *_state){
+  _ogg_free(_state->coded_fragis);
+  _ogg_free(_state->mb_modes);
+  _ogg_free(_state->mb_maps);
+  _ogg_free(_state->sb_flags);
+  _ogg_free(_state->sb_maps);
+  _ogg_free(_state->frag_mvs);
+  _ogg_free(_state->frags);
+}
+
+
+/*Initializes the buffers used for reconstructed frames.
+  These buffers are padded with 16 extra pixels on each side, to allow
+   unrestricted motion vectors without special casing the boundary.
+  If chroma is decimated in either direction, the padding is reduced by a
+   factor of 2 on the appropriate sides.
+  _nrefs: The number of reference buffers to init; must be 3 or 4.*/
+static int oc_state_ref_bufs_init(oc_theora_state *_state,int _nrefs){
+  th_info       *info;
+  unsigned char *ref_frame_data;
+  size_t         ref_frame_data_sz;
+  size_t         ref_frame_sz;
+  size_t         yplane_sz;
+  size_t         cplane_sz;
+  int            yhstride;
+  int            yheight;
+  int            chstride;
+  int            cheight;
+  ptrdiff_t      yoffset;
+  ptrdiff_t      coffset;
+  ptrdiff_t     *frag_buf_offs;
+  ptrdiff_t      fragi;
+  int            hdec;
+  int            vdec;
+  int            rfi;
+  int            pli;
+  if(_nrefs<3||_nrefs>4)return TH_EINVAL;
+  info=&_state->info;
+  /*Compute the image buffer parameters for each plane.*/
+  hdec=!(info->pixel_fmt&1);
+  vdec=!(info->pixel_fmt&2);
+  yhstride=info->frame_width+2*OC_UMV_PADDING;
+  yheight=info->frame_height+2*OC_UMV_PADDING;
+  chstride=yhstride>>hdec;
+  cheight=yheight>>vdec;
+  yplane_sz=yhstride*(size_t)yheight;
+  cplane_sz=chstride*(size_t)cheight;
+  yoffset=OC_UMV_PADDING+OC_UMV_PADDING*(ptrdiff_t)yhstride;
+  coffset=(OC_UMV_PADDING>>hdec)+(OC_UMV_PADDING>>vdec)*(ptrdiff_t)chstride;
+  ref_frame_sz=yplane_sz+2*cplane_sz;
+  ref_frame_data_sz=_nrefs*ref_frame_sz;
+  /*Check for overflow.
+    The same caveats apply as for oc_state_frarray_init().*/
+  if(yplane_sz/yhstride!=yheight||2*cplane_sz<cplane_sz||
+   ref_frame_sz<yplane_sz||ref_frame_data_sz/_nrefs!=ref_frame_sz){
+    return TH_EIMPL;
+  }
+  ref_frame_data=_ogg_malloc(ref_frame_data_sz);
+  frag_buf_offs=_state->frag_buf_offs=
+   _ogg_malloc(_state->nfrags*sizeof(*frag_buf_offs));
+  if(ref_frame_data==NULL||frag_buf_offs==NULL){
+    _ogg_free(frag_buf_offs);
+    _ogg_free(ref_frame_data);
+    return TH_EFAULT;
+  }
+  /*Set up the width, height and stride for the image buffers.*/
+  _state->ref_frame_bufs[0][0].width=info->frame_width;
+  _state->ref_frame_bufs[0][0].height=info->frame_height;
+  _state->ref_frame_bufs[0][0].stride=yhstride;
+  _state->ref_frame_bufs[0][1].width=_state->ref_frame_bufs[0][2].width=
+   info->frame_width>>hdec;
+  _state->ref_frame_bufs[0][1].height=_state->ref_frame_bufs[0][2].height=
+   info->frame_height>>vdec;
+  _state->ref_frame_bufs[0][1].stride=_state->ref_frame_bufs[0][2].stride=
+   chstride;
+  for(rfi=1;rfi<_nrefs;rfi++){
+    memcpy(_state->ref_frame_bufs[rfi],_state->ref_frame_bufs[0],
+     sizeof(_state->ref_frame_bufs[0]));
+  }
+  /*Set up the data pointers for the image buffers.*/
+  for(rfi=0;rfi<_nrefs;rfi++){
+    _state->ref_frame_data[rfi]=ref_frame_data;
+    _state->ref_frame_bufs[rfi][0].data=ref_frame_data+yoffset;
+    ref_frame_data+=yplane_sz;
+    _state->ref_frame_bufs[rfi][1].data=ref_frame_data+coffset;
+    ref_frame_data+=cplane_sz;
+    _state->ref_frame_bufs[rfi][2].data=ref_frame_data+coffset;
+    ref_frame_data+=cplane_sz;
+    /*Flip the buffer upside down.
+      This allows us to decode Theora's bottom-up frames in their natural
+       order, yet return a top-down buffer with a positive stride to the user.*/
+    oc_ycbcr_buffer_flip(_state->ref_frame_bufs[rfi],
+     _state->ref_frame_bufs[rfi]);
+  }
+  _state->ref_ystride[0]=-yhstride;
+  _state->ref_ystride[1]=_state->ref_ystride[2]=-chstride;
+  /*Initialize the fragment buffer offsets.*/
+  ref_frame_data=_state->ref_frame_data[0];
+  fragi=0;
+  for(pli=0;pli<3;pli++){
+    th_img_plane      *iplane;
+    oc_fragment_plane *fplane;
+    unsigned char     *vpix;
+    ptrdiff_t          stride;
+    ptrdiff_t          vfragi_end;
+    int                nhfrags;
+    iplane=_state->ref_frame_bufs[0]+pli;
+    fplane=_state->fplanes+pli;
+    vpix=iplane->data;
+    vfragi_end=fplane->froffset+fplane->nfrags;
+    nhfrags=fplane->nhfrags;
+    stride=iplane->stride;
+    while(fragi<vfragi_end){
+      ptrdiff_t      hfragi_end;
+      unsigned char *hpix;
+      hpix=vpix;
+      for(hfragi_end=fragi+nhfrags;fragi<hfragi_end;fragi++){
+        frag_buf_offs[fragi]=hpix-ref_frame_data;
+        hpix+=8;
+      }
+      vpix+=stride<<3;
+    }
+  }
+  /*Initialize the reference frame indices.*/
+  _state->ref_frame_idx[OC_FRAME_GOLD]=
+   _state->ref_frame_idx[OC_FRAME_PREV]=
+   _state->ref_frame_idx[OC_FRAME_SELF]=-1;
+  _state->ref_frame_idx[OC_FRAME_IO]=_nrefs>3?3:-1;
+  return 0;
+}
+
+static void oc_state_ref_bufs_clear(oc_theora_state *_state){
+  _ogg_free(_state->frag_buf_offs);
+  _ogg_free(_state->ref_frame_data[0]);
+}
+
+
+void oc_state_vtable_init_c(oc_theora_state *_state){
+  _state->opt_vtable.frag_copy=oc_frag_copy_c;
+  _state->opt_vtable.frag_recon_intra=oc_frag_recon_intra_c;
+  _state->opt_vtable.frag_recon_inter=oc_frag_recon_inter_c;
+  _state->opt_vtable.frag_recon_inter2=oc_frag_recon_inter2_c;
+  _state->opt_vtable.idct8x8=oc_idct8x8_c;
+  _state->opt_vtable.state_frag_recon=oc_state_frag_recon_c;
+  _state->opt_vtable.state_frag_copy_list=oc_state_frag_copy_list_c;
+  _state->opt_vtable.state_loop_filter_frag_rows=
+   oc_state_loop_filter_frag_rows_c;
+  _state->opt_vtable.restore_fpu=oc_restore_fpu_c;
+  _state->opt_data.dct_fzig_zag=OC_FZIG_ZAG;
+}
+
+/*Initialize the accelerated function pointers.*/
+void oc_state_vtable_init(oc_theora_state *_state){
+#if defined(OC_X86_ASM)
+  oc_state_vtable_init_x86(_state);
+#else
+  oc_state_vtable_init_c(_state);
+#endif
+}
+
+
+int oc_state_init(oc_theora_state *_state,const th_info *_info,int _nrefs){
+  int ret;
+  /*First validate the parameters.*/
+  if(_info==NULL)return TH_EFAULT;
+  /*The width and height of the encoded frame must be multiples of 16.
+    They must also, when divided by 16, fit into a 16-bit unsigned integer.
+    The displayable frame offset coordinates must fit into an 8-bit unsigned
+     integer.
+    Note that the offset Y in the API is specified on the opposite side from
+     how it is specified in the bitstream, because the Y axis is flipped in
+     the bitstream.
+    The displayable frame must fit inside the encoded frame.
+    The color space must be one known by the encoder.*/
+  if((_info->frame_width&0xF)||(_info->frame_height&0xF)||
+   _info->frame_width<=0||_info->frame_width>=0x100000||
+   _info->frame_height<=0||_info->frame_height>=0x100000||
+   _info->pic_x+_info->pic_width>_info->frame_width||
+   _info->pic_y+_info->pic_height>_info->frame_height||
+   _info->pic_x>255||_info->frame_height-_info->pic_height-_info->pic_y>255||
+   /*Note: the following <0 comparisons may generate spurious warnings on
+      platforms where enums are unsigned.
+     We could cast them to unsigned and just use the following >= comparison,
+      but there are a number of compilers which will mis-optimize this.
+     It's better to live with the spurious warnings.*/
+   _info->colorspace<0||_info->colorspace>=TH_CS_NSPACES||
+   _info->pixel_fmt<0||_info->pixel_fmt>=TH_PF_NFORMATS){
+    return TH_EINVAL;
+  }
+  memset(_state,0,sizeof(*_state));
+  memcpy(&_state->info,_info,sizeof(*_info));
+  /*Invert the sense of pic_y to match Theora's right-handed coordinate
+     system.*/
+  _state->info.pic_y=_info->frame_height-_info->pic_height-_info->pic_y;
+  _state->frame_type=OC_UNKWN_FRAME;
+  oc_state_vtable_init(_state);
+  ret=oc_state_frarray_init(_state);
+  if(ret>=0)ret=oc_state_ref_bufs_init(_state,_nrefs);
+  if(ret<0){
+    oc_state_frarray_clear(_state);
+    return ret;
+  }
+  /*If the keyframe_granule_shift is out of range, use the maximum allowable
+     value.*/
+  if(_info->keyframe_granule_shift<0||_info->keyframe_granule_shift>31){
+    _state->info.keyframe_granule_shift=31;
+  }
+  _state->keyframe_num=0;
+  _state->curframe_num=-1;
+  /*3.2.0 streams mark the frame index instead of the frame count.
+    This was changed with stream version 3.2.1 to conform to other Ogg
+     codecs.
+    We add an extra bias when computing granule positions for new streams.*/
+  _state->granpos_bias=TH_VERSION_CHECK(_info,3,2,1);
+  return 0;
+}
+
+void oc_state_clear(oc_theora_state *_state){
+  oc_state_ref_bufs_clear(_state);
+  oc_state_frarray_clear(_state);
+}
+
+
+/*Duplicates the pixels on the border of the image plane out into the
+   surrounding padding for use by unrestricted motion vectors.
+  This function only adds the left and right borders, and only for the fragment
+   rows specified.
+  _refi: The index of the reference buffer to pad.
+  _pli:  The color plane.
+  _y0:   The Y coordinate of the first row to pad.
+  _yend: The Y coordinate of the row to stop padding at.*/
+void oc_state_borders_fill_rows(oc_theora_state *_state,int _refi,int _pli,
+ int _y0,int _yend){
+  th_img_plane  *iplane;
+  unsigned char *apix;
+  unsigned char *bpix;
+  unsigned char *epix;
+  int            stride;
+  int            hpadding;
+  hpadding=OC_UMV_PADDING>>(_pli!=0&&!(_state->info.pixel_fmt&1));
+  iplane=_state->ref_frame_bufs[_refi]+_pli;
+  stride=iplane->stride;
+  apix=iplane->data+_y0*(ptrdiff_t)stride;
+  bpix=apix+iplane->width-1;
+  epix=iplane->data+_yend*(ptrdiff_t)stride;
+  /*Note the use of != instead of <, which allows the stride to be negative.*/
+  while(apix!=epix){
+    memset(apix-hpadding,apix[0],hpadding);
+    memset(bpix+1,bpix[0],hpadding);
+    apix+=stride;
+    bpix+=stride;
+  }
+}
+
+/*Duplicates the pixels on the border of the image plane out into the
+   surrounding padding for use by unrestricted motion vectors.
+  This function only adds the top and bottom borders, and must be called after
+   the left and right borders are added.
+  _refi:      The index of the reference buffer to pad.
+  _pli:       The color plane.*/
+void oc_state_borders_fill_caps(oc_theora_state *_state,int _refi,int _pli){
+  th_img_plane  *iplane;
+  unsigned char *apix;
+  unsigned char *bpix;
+  unsigned char *epix;
+  int            stride;
+  int            hpadding;
+  int            vpadding;
+  int            fullw;
+  hpadding=OC_UMV_PADDING>>(_pli!=0&&!(_state->info.pixel_fmt&1));
+  vpadding=OC_UMV_PADDING>>(_pli!=0&&!(_state->info.pixel_fmt&2));
+  iplane=_state->ref_frame_bufs[_refi]+_pli;
+  stride=iplane->stride;
+  fullw=iplane->width+(hpadding<<1);
+  apix=iplane->data-hpadding;
+  bpix=iplane->data+(iplane->height-1)*(ptrdiff_t)stride-hpadding;
+  epix=apix-stride*(ptrdiff_t)vpadding;
+  while(apix!=epix){
+    memcpy(apix-stride,apix,fullw);
+    memcpy(bpix+stride,bpix,fullw);
+    apix-=stride;
+    bpix+=stride;
+  }
+}
+
+/*Duplicates the pixels on the border of the given reference image out into
+   the surrounding padding for use by unrestricted motion vectors.
+  _state: The context containing the reference buffers.
+  _refi:  The index of the reference buffer to pad.*/
+void oc_state_borders_fill(oc_theora_state *_state,int _refi){
+  int pli;
+  for(pli=0;pli<3;pli++){
+    oc_state_borders_fill_rows(_state,_refi,pli,0,
+     _state->ref_frame_bufs[_refi][pli].height);
+    oc_state_borders_fill_caps(_state,_refi,pli);
+  }
+}
+
+/*Determines the offsets in an image buffer to use for motion compensation.
+  _state:   The Theora state the offsets are to be computed with.
+  _offsets: Returns the offset for the buffer(s).
+            _offsets[0] is always set.
+            _offsets[1] is set if the motion vector has non-zero fractional
+             components.
+  _pli:     The color plane index.
+  _dx:      The X component of the motion vector.
+  _dy:      The Y component of the motion vector.
+  Return: The number of offsets returned: 1 or 2.*/
+int oc_state_get_mv_offsets(const oc_theora_state *_state,int _offsets[2],
+ int _pli,int _dx,int _dy){
+  /*Here is a brief description of how Theora handles motion vectors:
+    Motion vector components are specified to half-pixel accuracy in
+     undecimated directions of each plane, and quarter-pixel accuracy in
+     decimated directions.
+    Integer parts are extracted by dividing (not shifting) by the
+     appropriate amount, with truncation towards zero.
+    These integer values are used to calculate the first offset.
+
+    If either of the fractional parts are non-zero, then a second offset is
+     computed.
+    No third or fourth offsets are computed, even if both components have
+     non-zero fractional parts.
+    The second offset is computed by dividing (not shifting) by the
+     appropriate amount, always truncating _away_ from zero.*/
+#if 0
+  /*This version of the code doesn't use any tables, but is slower.*/
+  int ystride;
+  int xprec;
+  int yprec;
+  int xfrac;
+  int yfrac;
+  int offs;
+  ystride=_state->ref_ystride[_pli];
+  /*These two variables decide whether we are in half- or quarter-pixel
+     precision in each component.*/
+  xprec=1+(_pli!=0&&!(_state->info.pixel_fmt&1));
+  yprec=1+(_pli!=0&&!(_state->info.pixel_fmt&2));
+  /*These two variables are either 0 if all the fractional bits are zero or -1
+     if any of them are non-zero.*/
+  xfrac=OC_SIGNMASK(-(_dx&(xprec|1)));
+  yfrac=OC_SIGNMASK(-(_dy&(yprec|1)));
+  offs=(_dx>>xprec)+(_dy>>yprec)*ystride;
+  if(xfrac||yfrac){
+    int xmask;
+    int ymask;
+    xmask=OC_SIGNMASK(_dx);
+    ymask=OC_SIGNMASK(_dy);
+    yfrac&=ystride;
+    _offsets[0]=offs-(xfrac&xmask)+(yfrac&ymask);
+    _offsets[1]=offs-(xfrac&~xmask)+(yfrac&~ymask);
+    return 2;
+  }
+  else{
+    _offsets[0]=offs;
+    return 1;
+  }
+#else
+  /*Using tables simplifies the code, and there's enough arithmetic to hide the
+     latencies of the memory references.*/
+  static const signed char OC_MVMAP[2][64]={
+    {
+          -15,-15,-14,-14,-13,-13,-12,-12,-11,-11,-10,-10, -9, -9, -8,
+       -8, -7, -7, -6, -6, -5, -5, -4, -4, -3, -3, -2, -2, -1, -1,  0,
+        0,  0,  1,  1,  2,  2,  3,  3,  4,  4,  5,  5,  6,  6,  7,  7,
+        8,  8,  9,  9, 10, 10, 11, 11, 12, 12, 13, 13, 14, 14, 15, 15
+    },
+    {
+           -7, -7, -7, -7, -6, -6, -6, -6, -5, -5, -5, -5, -4, -4, -4,
+       -4, -3, -3, -3, -3, -2, -2, -2, -2, -1, -1, -1, -1,  0,  0,  0,
+        0,  0,  0,  0,  1,  1,  1,  1,  2,  2,  2,  2,  3,  3,  3,  3,
+        4,  4,  4,  4,  5,  5,  5,  5,  6,  6,  6,  6,  7,  7,  7,  7
+    }
+  };
+  static const signed char OC_MVMAP2[2][64]={
+    {
+        -1, 0,-1,  0,-1, 0,-1,  0,-1, 0,-1,  0,-1, 0,-1,
+      0,-1, 0,-1,  0,-1, 0,-1,  0,-1, 0,-1,  0,-1, 0,-1,
+      0, 1, 0, 1,  0, 1, 0, 1,  0, 1, 0, 1,  0, 1, 0, 1,
+      0, 1, 0, 1,  0, 1, 0, 1,  0, 1, 0, 1,  0, 1, 0, 1
+    },
+    {
+        -1,-1,-1,  0,-1,-1,-1,  0,-1,-1,-1,  0,-1,-1,-1,
+      0,-1,-1,-1,  0,-1,-1,-1,  0,-1,-1,-1,  0,-1,-1,-1,
+      0, 1, 1, 1,  0, 1, 1, 1,  0, 1, 1, 1,  0, 1, 1, 1,
+      0, 1, 1, 1,  0, 1, 1, 1,  0, 1, 1, 1,  0, 1, 1, 1
+    }
+  };
+  int ystride;
+  int qpx;
+  int qpy;
+  int mx;
+  int my;
+  int mx2;
+  int my2;
+  int offs;
+  ystride=_state->ref_ystride[_pli];
+  qpy=_pli!=0&&!(_state->info.pixel_fmt&2);
+  my=OC_MVMAP[qpy][_dy+31];
+  my2=OC_MVMAP2[qpy][_dy+31];
+  qpx=_pli!=0&&!(_state->info.pixel_fmt&1);
+  mx=OC_MVMAP[qpx][_dx+31];
+  mx2=OC_MVMAP2[qpx][_dx+31];
+  offs=my*ystride+mx;
+  if(mx2||my2){
+    _offsets[1]=offs+my2*ystride+mx2;
+    _offsets[0]=offs;
+    return 2;
+  }
+  _offsets[0]=offs;
+  return 1;
+#endif
+}
+
+void oc_state_frag_recon(const oc_theora_state *_state,ptrdiff_t _fragi,
+ int _pli,ogg_int16_t _dct_coeffs[64],int _last_zzi,ogg_uint16_t _dc_quant){
+  _state->opt_vtable.state_frag_recon(_state,_fragi,_pli,_dct_coeffs,
+   _last_zzi,_dc_quant);
+}
+
+void oc_state_frag_recon_c(const oc_theora_state *_state,ptrdiff_t _fragi,
+ int _pli,ogg_int16_t _dct_coeffs[64],int _last_zzi,ogg_uint16_t _dc_quant){
+  unsigned char *dst;
+  ptrdiff_t      frag_buf_off;
+  int            ystride;
+  int            mb_mode;
+  /*Apply the inverse transform.*/
+  /*Special case only having a DC component.*/
+  if(_last_zzi<2){
+    ogg_int16_t p;
+    int         ci;
+    /*We round this dequant product (and not any of the others) because there's
+       no iDCT rounding.*/
+    p=(ogg_int16_t)(_dct_coeffs[0]*(ogg_int32_t)_dc_quant+15>>5);
+    /*LOOP VECTORIZES.*/
+    for(ci=0;ci<64;ci++)_dct_coeffs[ci]=p;
+  }
+  else{
+    /*First, dequantize the DC coefficient.*/
+    _dct_coeffs[0]=(ogg_int16_t)(_dct_coeffs[0]*(int)_dc_quant);
+    oc_idct8x8(_state,_dct_coeffs,_last_zzi);
+  }
+  /*Fill in the target buffer.*/
+  frag_buf_off=_state->frag_buf_offs[_fragi];
+  mb_mode=_state->frags[_fragi].mb_mode;
+  ystride=_state->ref_ystride[_pli];
+  dst=_state->ref_frame_data[_state->ref_frame_idx[OC_FRAME_SELF]]+frag_buf_off;
+  if(mb_mode==OC_MODE_INTRA)oc_frag_recon_intra(_state,dst,ystride,_dct_coeffs);
+  else{
+    const unsigned char *ref;
+    int                  mvoffsets[2];
+    ref=
+     _state->ref_frame_data[_state->ref_frame_idx[OC_FRAME_FOR_MODE(mb_mode)]]
+     +frag_buf_off;
+    if(oc_state_get_mv_offsets(_state,mvoffsets,_pli,
+     _state->frag_mvs[_fragi][0],_state->frag_mvs[_fragi][1])>1){
+      oc_frag_recon_inter2(_state,
+       dst,ref+mvoffsets[0],ref+mvoffsets[1],ystride,_dct_coeffs);
+    }
+    else oc_frag_recon_inter(_state,dst,ref+mvoffsets[0],ystride,_dct_coeffs);
+  }
+}
+
+/*Copies the fragments specified by the lists of fragment indices from one
+   frame to another.
+  _fragis:    A pointer to a list of fragment indices.
+  _nfragis:   The number of fragment indices to copy.
+  _dst_frame: The reference frame to copy to.
+  _src_frame: The reference frame to copy from.
+  _pli:       The color plane the fragments lie in.*/
+void oc_state_frag_copy_list(const oc_theora_state *_state,
+ const ptrdiff_t *_fragis,ptrdiff_t _nfragis,
+ int _dst_frame,int _src_frame,int _pli){
+  _state->opt_vtable.state_frag_copy_list(_state,_fragis,_nfragis,_dst_frame,
+   _src_frame,_pli);
+}
+
+void oc_state_frag_copy_list_c(const oc_theora_state *_state,
+ const ptrdiff_t *_fragis,ptrdiff_t _nfragis,
+ int _dst_frame,int _src_frame,int _pli){
+  const ptrdiff_t     *frag_buf_offs;
+  const unsigned char *src_frame_data;
+  unsigned char       *dst_frame_data;
+  ptrdiff_t            fragii;
+  int                  ystride;
+  dst_frame_data=_state->ref_frame_data[_state->ref_frame_idx[_dst_frame]];
+  src_frame_data=_state->ref_frame_data[_state->ref_frame_idx[_src_frame]];
+  ystride=_state->ref_ystride[_pli];
+  frag_buf_offs=_state->frag_buf_offs;
+  for(fragii=0;fragii<_nfragis;fragii++){
+    ptrdiff_t frag_buf_off;
+    frag_buf_off=frag_buf_offs[_fragis[fragii]];
+    oc_frag_copy(_state,dst_frame_data+frag_buf_off,
+     src_frame_data+frag_buf_off,ystride);
+  }
+}
+
+static void loop_filter_h(unsigned char *_pix,int _ystride,int *_bv){
+  int y;
+  _pix-=2;
+  for(y=0;y<8;y++){
+    int f;
+    f=_pix[0]-_pix[3]+3*(_pix[2]-_pix[1]);
+    /*The _bv array is used to compute the function
+      f=OC_CLAMPI(OC_MINI(-_2flimit-f,0),f,OC_MAXI(_2flimit-f,0));
+      where _2flimit=_state->loop_filter_limits[_state->qis[0]]<<1;*/
+    f=*(_bv+(f+4>>3));
+    _pix[1]=OC_CLAMP255(_pix[1]+f);
+    _pix[2]=OC_CLAMP255(_pix[2]-f);
+    _pix+=_ystride;
+  }
+}
+
+static void loop_filter_v(unsigned char *_pix,int _ystride,int *_bv){
+  int x;
+  _pix-=_ystride*2;
+  for(x=0;x<8;x++){
+    int f;
+    f=_pix[x]-_pix[_ystride*3+x]+3*(_pix[_ystride*2+x]-_pix[_ystride+x]);
+    /*The _bv array is used to compute the function
+      f=OC_CLAMPI(OC_MINI(-_2flimit-f,0),f,OC_MAXI(_2flimit-f,0));
+      where _2flimit=_state->loop_filter_limits[_state->qis[0]]<<1;*/
+    f=*(_bv+(f+4>>3));
+    _pix[_ystride+x]=OC_CLAMP255(_pix[_ystride+x]+f);
+    _pix[_ystride*2+x]=OC_CLAMP255(_pix[_ystride*2+x]-f);
+  }
+}
+
+/*Initialize the bounding values array used by the loop filter.
+  _bv: Storage for the array.
+  Return: 0 on success, or a non-zero value if no filtering need be applied.*/
+int oc_state_loop_filter_init(oc_theora_state *_state,int _bv[256]){
+  int flimit;
+  int i;
+  flimit=_state->loop_filter_limits[_state->qis[0]];
+  if(flimit==0)return 1;
+  memset(_bv,0,sizeof(_bv[0])*256);
+  for(i=0;i<flimit;i++){
+    if(127-i-flimit>=0)_bv[127-i-flimit]=i-flimit;
+    _bv[127-i]=-i;
+    _bv[127+i]=i;
+    if(127+i+flimit<256)_bv[127+i+flimit]=flimit-i;
+  }
+  return 0;
+}
+
+/*Apply the loop filter to a given set of fragment rows in the given plane.
+  The filter may be run on the bottom edge, affecting pixels in the next row of
+   fragments, so this row also needs to be available.
+  _bv:        The bounding values array.
+  _refi:      The index of the frame buffer to filter.
+  _pli:       The color plane to filter.
+  _fragy0:    The Y coordinate of the first fragment row to filter.
+  _fragy_end: The Y coordinate of the fragment row to stop filtering at.*/
+void oc_state_loop_filter_frag_rows(const oc_theora_state *_state,int _bv[256],
+ int _refi,int _pli,int _fragy0,int _fragy_end){
+  _state->opt_vtable.state_loop_filter_frag_rows(_state,_bv,_refi,_pli,
+   _fragy0,_fragy_end);
+}
+
+void oc_state_loop_filter_frag_rows_c(const oc_theora_state *_state,int *_bv,
+ int _refi,int _pli,int _fragy0,int _fragy_end){
+  const oc_fragment_plane *fplane;
+  const oc_fragment       *frags;
+  const ptrdiff_t         *frag_buf_offs;
+  unsigned char           *ref_frame_data;
+  ptrdiff_t                fragi_top;
+  ptrdiff_t                fragi_bot;
+  ptrdiff_t                fragi0;
+  ptrdiff_t                fragi0_end;
+  int                      ystride;
+  int                      nhfrags;
+  _bv+=127;
+  fplane=_state->fplanes+_pli;
+  nhfrags=fplane->nhfrags;
+  fragi_top=fplane->froffset;
+  fragi_bot=fragi_top+fplane->nfrags;
+  fragi0=fragi_top+_fragy0*(ptrdiff_t)nhfrags;
+  fragi0_end=fragi0+(_fragy_end-_fragy0)*(ptrdiff_t)nhfrags;
+  ystride=_state->ref_ystride[_pli];
+  frags=_state->frags;
+  frag_buf_offs=_state->frag_buf_offs;
+  ref_frame_data=_state->ref_frame_data[_refi];
+  /*The following loops are constructed somewhat non-intuitively on purpose.
+    The main idea is: if a block boundary has at least one coded fragment on
+     it, the filter is applied to it.
+    However, the order that the filters are applied in matters, and VP3 chose
+     the somewhat strange ordering used below.*/
+  while(fragi0<fragi0_end){
+    ptrdiff_t fragi;
+    ptrdiff_t fragi_end;
+    fragi=fragi0;
+    fragi_end=fragi+nhfrags;
+    while(fragi<fragi_end){
+      if(frags[fragi].coded){
+        unsigned char *ref;
+        ref=ref_frame_data+frag_buf_offs[fragi];
+        if(fragi>fragi0)loop_filter_h(ref,ystride,_bv);
+        if(fragi0>fragi_top)loop_filter_v(ref,ystride,_bv);
+        if(fragi+1<fragi_end&&!frags[fragi+1].coded){
+          loop_filter_h(ref+8,ystride,_bv);
+        }
+        if(fragi+nhfrags<fragi_bot&&!frags[fragi+nhfrags].coded){
+          loop_filter_v(ref+(ystride<<3),ystride,_bv);
+        }
+      }
+      fragi++;
+    }
+    fragi0+=nhfrags;
+  }
+}
+
+#if defined(OC_DUMP_IMAGES)
+int oc_state_dump_frame(const oc_theora_state *_state,int _frame,
+ const char *_suf){
+  /*Dump a PNG of the reconstructed image.*/
+  png_structp    png;
+  png_infop      info;
+  png_bytep     *image;
+  FILE          *fp;
+  char           fname[16];
+  unsigned char *y_row;
+  unsigned char *u_row;
+  unsigned char *v_row;
+  unsigned char *y;
+  unsigned char *u;
+  unsigned char *v;
+  ogg_int64_t    iframe;
+  ogg_int64_t    pframe;
+  int            y_stride;
+  int            u_stride;
+  int            v_stride;
+  int            framei;
+  int            width;
+  int            height;
+  int            imgi;
+  int            imgj;
+  width=_state->info.frame_width;
+  height=_state->info.frame_height;
+  iframe=_state->granpos>>_state->info.keyframe_granule_shift;
+  pframe=_state->granpos-(iframe<<_state->info.keyframe_granule_shift);
+  sprintf(fname,"%08i%s.png",(int)(iframe+pframe),_suf);
+  fp=fopen(fname,"wb");
+  if(fp==NULL)return TH_EFAULT;
+  image=(png_bytep *)oc_malloc_2d(height,6*width,sizeof(**image));
+  if(image==NULL){
+    fclose(fp);
+    return TH_EFAULT;
+  }
+  png=png_create_write_struct(PNG_LIBPNG_VER_STRING,NULL,NULL,NULL);
+  if(png==NULL){
+    oc_free_2d(image);
+    fclose(fp);
+    return TH_EFAULT;
+  }
+  info=png_create_info_struct(png);
+  if(info==NULL){
+    png_destroy_write_struct(&png,NULL);
+    oc_free_2d(image);
+    fclose(fp);
+    return TH_EFAULT;
+  }
+  if(setjmp(png_jmpbuf(png))){
+    png_destroy_write_struct(&png,&info);
+    oc_free_2d(image);
+    fclose(fp);
+    return TH_EFAULT;
+  }
+  framei=_state->ref_frame_idx[_frame];
+  y_row=_state->ref_frame_bufs[framei][0].data;
+  u_row=_state->ref_frame_bufs[framei][1].data;
+  v_row=_state->ref_frame_bufs[framei][2].data;
+  y_stride=_state->ref_frame_bufs[framei][0].stride;
+  u_stride=_state->ref_frame_bufs[framei][1].stride;
+  v_stride=_state->ref_frame_bufs[framei][2].stride;
+  /*Chroma up-sampling is just done with a box filter.
+    This is very likely what will actually be used in practice on a real
+     display, and also removes one more layer to search in for the source of
+     artifacts.
+    As an added bonus, it's dead simple.*/
+  for(imgi=height;imgi-->0;){
+    int dc;
+    y=y_row;
+    u=u_row;
+    v=v_row;
+    for(imgj=0;imgj<6*width;){
+      float    yval;
+      float    uval;
+      float    vval;
+      unsigned rval;
+      unsigned gval;
+      unsigned bval;
+      /*This is intentionally slow and very accurate.*/
+      yval=(*y-16)*(1.0F/219);
+      uval=(*u-128)*(2*(1-0.114F)/224);
+      vval=(*v-128)*(2*(1-0.299F)/224);
+      rval=OC_CLAMPI(0,(int)(65535*(yval+vval)+0.5F),65535);
+      gval=OC_CLAMPI(0,(int)(65535*(
+       yval-uval*(0.114F/0.587F)-vval*(0.299F/0.587F))+0.5F),65535);
+      bval=OC_CLAMPI(0,(int)(65535*(yval+uval)+0.5F),65535);
+      image[imgi][imgj++]=(unsigned char)(rval>>8);
+      image[imgi][imgj++]=(unsigned char)(rval&0xFF);
+      image[imgi][imgj++]=(unsigned char)(gval>>8);
+      image[imgi][imgj++]=(unsigned char)(gval&0xFF);
+      image[imgi][imgj++]=(unsigned char)(bval>>8);
+      image[imgi][imgj++]=(unsigned char)(bval&0xFF);
+      dc=(y-y_row&1)|(_state->info.pixel_fmt&1);
+      y++;
+      u+=dc;
+      v+=dc;
+    }
+    dc=-((height-1-imgi&1)|_state->info.pixel_fmt>>1);
+    y_row+=y_stride;
+    u_row+=dc&u_stride;
+    v_row+=dc&v_stride;
+  }
+  png_init_io(png,fp);
+  png_set_compression_level(png,Z_BEST_COMPRESSION);
+  png_set_IHDR(png,info,width,height,16,PNG_COLOR_TYPE_RGB,
+   PNG_INTERLACE_NONE,PNG_COMPRESSION_TYPE_DEFAULT,PNG_FILTER_TYPE_DEFAULT);
+  switch(_state->info.colorspace){
+    case TH_CS_ITU_REC_470M:{
+      png_set_gAMA(png,info,2.2);
+      png_set_cHRM_fixed(png,info,31006,31616,
+       67000,32000,21000,71000,14000,8000);
+    }break;
+    case TH_CS_ITU_REC_470BG:{
+      png_set_gAMA(png,info,2.67);
+      png_set_cHRM_fixed(png,info,31271,32902,
+       64000,33000,29000,60000,15000,6000);
+    }break;
+    default:break;
+  }
+  png_set_pHYs(png,info,_state->info.aspect_numerator,
+   _state->info.aspect_denominator,0);
+  png_set_rows(png,info,image);
+  png_write_png(png,info,PNG_TRANSFORM_IDENTITY,NULL);
+  png_write_end(png,info);
+  png_destroy_write_struct(&png,&info);
+  oc_free_2d(image);
+  fclose(fp);
+  return 0;
+}
+#endif
+
+
+
+ogg_int64_t th_granule_frame(void *_encdec,ogg_int64_t _granpos){
+  oc_theora_state *state;
+  state=(oc_theora_state *)_encdec;
+  if(_granpos>=0){
+    ogg_int64_t iframe;
+    ogg_int64_t pframe;
+    iframe=_granpos>>state->info.keyframe_granule_shift;
+    pframe=_granpos-(iframe<<state->info.keyframe_granule_shift);
+    /*3.2.0 streams store the frame index in the granule position.
+      3.2.1 and later store the frame count.
+      We return the index, so adjust the value if we have a 3.2.1 or later
+       stream.*/
+    return iframe+pframe-TH_VERSION_CHECK(&state->info,3,2,1);
+  }
+  return -1;
+}
+
+double th_granule_time(void *_encdec,ogg_int64_t _granpos){
+  oc_theora_state *state;
+  state=(oc_theora_state *)_encdec;
+  if(_granpos>=0){
+    return (th_granule_frame(_encdec, _granpos)+1)*(
+     (double)state->info.fps_denominator/state->info.fps_numerator);
+  }
+  return -1;
+}
-- 
cgit v1.2.3