/**************************************************************************/ /* gltf_document_extension_physics.cpp */ /**************************************************************************/ /* This file is part of: */ /* REDOT ENGINE */ /* https://redotengine.org */ /**************************************************************************/ /* Copyright (c) 2024-present Redot Engine contributors */ /* (see REDOT_AUTHORS.md) */ /* Copyright (c) 2014-present Godot Engine contributors (see AUTHORS.md). */ /* Copyright (c) 2007-2014 Juan Linietsky, Ariel Manzur. */ /* */ /* Permission is hereby granted, free of charge, to any person obtaining */ /* a copy of this software and associated documentation files (the */ /* "Software"), to deal in the Software without restriction, including */ /* without limitation the rights to use, copy, modify, merge, publish, */ /* distribute, sublicense, and/or sell copies of the Software, and to */ /* permit persons to whom the Software is furnished to do so, subject to */ /* the following conditions: */ /* */ /* The above copyright notice and this permission notice shall be */ /* included in all copies or substantial portions of the Software. */ /* */ /* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, */ /* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF */ /* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. */ /* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY */ /* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, */ /* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE */ /* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */ /**************************************************************************/ #include "gltf_document_extension_physics.h" #include "scene/3d/physics/area_3d.h" #include "scene/3d/physics/rigid_body_3d.h" #include "scene/3d/physics/static_body_3d.h" using GLTFShapeIndex = int64_t; // Import process. Error GLTFDocumentExtensionPhysics::import_preflight(Ref p_state, Vector p_extensions) { if (!p_extensions.has("OMI_collider") && !p_extensions.has("OMI_physics_body") && !p_extensions.has("OMI_physics_shape")) { return ERR_SKIP; } Dictionary state_json = p_state->get_json(); if (state_json.has("extensions")) { Dictionary state_extensions = state_json["extensions"]; if (state_extensions.has("OMI_physics_shape")) { Dictionary omi_physics_shape_ext = state_extensions["OMI_physics_shape"]; if (omi_physics_shape_ext.has("shapes")) { Array state_shape_dicts = omi_physics_shape_ext["shapes"]; if (state_shape_dicts.size() > 0) { Array state_shapes; for (int i = 0; i < state_shape_dicts.size(); i++) { state_shapes.push_back(GLTFPhysicsShape::from_dictionary(state_shape_dicts[i])); } p_state->set_additional_data(StringName("GLTFPhysicsShapes"), state_shapes); } } #ifndef DISABLE_DEPRECATED } else if (state_extensions.has("OMI_collider")) { Dictionary omi_collider_ext = state_extensions["OMI_collider"]; if (omi_collider_ext.has("colliders")) { Array state_collider_dicts = omi_collider_ext["colliders"]; if (state_collider_dicts.size() > 0) { Array state_colliders; for (int i = 0; i < state_collider_dicts.size(); i++) { state_colliders.push_back(GLTFPhysicsShape::from_dictionary(state_collider_dicts[i])); } p_state->set_additional_data(StringName("GLTFPhysicsShapes"), state_colliders); } } #endif // DISABLE_DEPRECATED } } return OK; } Vector GLTFDocumentExtensionPhysics::get_supported_extensions() { Vector ret; ret.push_back("OMI_collider"); ret.push_back("OMI_physics_body"); ret.push_back("OMI_physics_shape"); return ret; } Error GLTFDocumentExtensionPhysics::parse_node_extensions(Ref p_state, Ref p_gltf_node, Dictionary &p_extensions) { #ifndef DISABLE_DEPRECATED if (p_extensions.has("OMI_collider")) { Dictionary node_collider_ext = p_extensions["OMI_collider"]; if (node_collider_ext.has("collider")) { // "collider" is the index of the collider in the state colliders array. int node_collider_index = node_collider_ext["collider"]; Array state_colliders = p_state->get_additional_data(StringName("GLTFPhysicsShapes")); ERR_FAIL_INDEX_V_MSG(node_collider_index, state_colliders.size(), Error::ERR_FILE_CORRUPT, "glTF Physics: On node " + p_gltf_node->get_name() + ", the collider index " + itos(node_collider_index) + " is not in the state colliders (size: " + itos(state_colliders.size()) + ")."); p_gltf_node->set_additional_data(StringName("GLTFPhysicsShape"), state_colliders[node_collider_index]); } else { p_gltf_node->set_additional_data(StringName("GLTFPhysicsShape"), GLTFPhysicsShape::from_dictionary(node_collider_ext)); } } #endif // DISABLE_DEPRECATED if (p_extensions.has("OMI_physics_body")) { Dictionary physics_body_ext = p_extensions["OMI_physics_body"]; if (physics_body_ext.has("collider")) { Dictionary node_collider = physics_body_ext["collider"]; // "shape" is the index of the shape in the state shapes array. int node_shape_index = node_collider.get("shape", -1); if (node_shape_index != -1) { Array state_shapes = p_state->get_additional_data(StringName("GLTFPhysicsShapes")); ERR_FAIL_INDEX_V_MSG(node_shape_index, state_shapes.size(), Error::ERR_FILE_CORRUPT, "glTF Physics: On node " + p_gltf_node->get_name() + ", the shape index " + itos(node_shape_index) + " is not in the state shapes (size: " + itos(state_shapes.size()) + ")."); p_gltf_node->set_additional_data(StringName("GLTFPhysicsColliderShape"), state_shapes[node_shape_index]); p_gltf_node->set_additional_data(StringName("GLTFPhysicsColliderShapeIndex"), node_shape_index); } else { // If this node is a collider but does not have a collider // shape, then it only serves to combine together shapes. p_gltf_node->set_additional_data(StringName("GLTFPhysicsCompoundCollider"), true); } } if (physics_body_ext.has("trigger")) { Dictionary node_trigger = physics_body_ext["trigger"]; // "shape" is the index of the shape in the state shapes array. int node_shape_index = node_trigger.get("shape", -1); if (node_shape_index != -1) { Array state_shapes = p_state->get_additional_data(StringName("GLTFPhysicsShapes")); ERR_FAIL_INDEX_V_MSG(node_shape_index, state_shapes.size(), Error::ERR_FILE_CORRUPT, "glTF Physics: On node " + p_gltf_node->get_name() + ", the shape index " + itos(node_shape_index) + " is not in the state shapes (size: " + itos(state_shapes.size()) + ")."); p_gltf_node->set_additional_data(StringName("GLTFPhysicsTriggerShape"), state_shapes[node_shape_index]); p_gltf_node->set_additional_data(StringName("GLTFPhysicsTriggerShapeIndex"), node_shape_index); } else { // If this node is a trigger but does not have a trigger shape, // then it's a trigger body, what Godot calls an Area3D node. Ref trigger_body; trigger_body.instantiate(); trigger_body->set_body_type("trigger"); p_gltf_node->set_additional_data(StringName("GLTFPhysicsBody"), trigger_body); } // If this node defines explicit member shape nodes, save this information. if (node_trigger.has("nodes")) { Array compound_trigger_nodes = node_trigger["nodes"]; p_gltf_node->set_additional_data(StringName("GLTFPhysicsCompoundTriggerNodes"), compound_trigger_nodes); } } if (physics_body_ext.has("motion") || physics_body_ext.has("type")) { p_gltf_node->set_additional_data(StringName("GLTFPhysicsBody"), GLTFPhysicsBody::from_dictionary(physics_body_ext)); } } return OK; } bool _will_gltf_shape_become_subnode(Ref p_state, const Ref p_gltf_node, GLTFNodeIndex p_gltf_node_index) { if (p_gltf_node->has_additional_data(StringName("GLTFPhysicsBody"))) { return true; } const TypedArray state_gltf_nodes = p_state->get_nodes(); const GLTFNodeIndex parent_index = p_gltf_node->get_parent(); if (parent_index == -1 || parent_index >= state_gltf_nodes.size()) { return true; } const Ref parent_gltf_node = state_gltf_nodes[parent_index]; const Variant parent_body_maybe = parent_gltf_node->get_additional_data(StringName("GLTFPhysicsBody")); if (parent_body_maybe.get_type() != Variant::NIL) { Ref parent_body = parent_body_maybe; // If the parent matches the triggerness, then this node will be generated as a shape (CollisionShape3D). // Otherwise, if there is a mismatch, a body will be generated for this node, and a subnode will also be generated for the shape. if (parent_body->get_body_type() == "trigger") { return p_gltf_node->has_additional_data(StringName("GLTFPhysicsColliderShape")); } else { return p_gltf_node->has_additional_data(StringName("GLTFPhysicsTriggerShape")); } } if (parent_gltf_node->has_additional_data(StringName("GLTFPhysicsColliderShape"))) { return false; } if (parent_gltf_node->has_additional_data(StringName("GLTFPhysicsTriggerShape"))) { return false; } Variant compound_trigger_maybe = parent_gltf_node->has_additional_data(StringName("GLTFPhysicsCompoundTriggerNodes")); if (compound_trigger_maybe.get_type() != Variant::NIL) { Array compound_trigger_nodes = compound_trigger_maybe; // Remember, JSON only has numbers, not integers, so must cast to double. return !compound_trigger_nodes.has((double)p_gltf_node_index); } return true; } NodePath _get_scene_node_path_for_shape_index(Ref p_state, const GLTFNodeIndex p_shape_index) { TypedArray state_gltf_nodes = p_state->get_nodes(); for (GLTFNodeIndex node_index = 0; node_index < state_gltf_nodes.size(); node_index++) { const Ref gltf_node = state_gltf_nodes[node_index]; ERR_CONTINUE(gltf_node.is_null()); // Check if this node has a shape index and if it matches the one we are looking for. Variant shape_index_maybe = gltf_node->get_additional_data(StringName("GLTFPhysicsColliderShapeIndex")); if (shape_index_maybe.get_type() != Variant::INT) { shape_index_maybe = gltf_node->get_additional_data(StringName("GLTFPhysicsTriggerShapeIndex")); if (shape_index_maybe.get_type() != Variant::INT) { continue; } } const GLTFShapeIndex shape_index = shape_index_maybe; if (shape_index != p_shape_index) { continue; } NodePath node_path = gltf_node->get_scene_node_path(p_state); // At this point, we have found a node with the shape index we were looking for. if (_will_gltf_shape_become_subnode(p_state, gltf_node, node_index)) { Vector sname_path = node_path.get_names(); sname_path.append(gltf_node->get_name() + "Shape"); node_path = NodePath(sname_path, false); } return node_path; } return NodePath(); } Ref GLTFDocumentExtensionPhysics::import_object_model_property(Ref p_state, const PackedStringArray &p_split_json_pointer, const TypedArray &p_partial_paths) { Ref ret; if (p_split_json_pointer.size() != 6) { // The only properties this class cares about are exactly 6 levels deep. return ret; } ret.instantiate(); const String &prop_name = p_split_json_pointer[5]; if (p_split_json_pointer[0] == "extensions" && p_split_json_pointer[2] == "shapes") { if (p_split_json_pointer[1] == "OMI_physics_shape" || p_split_json_pointer[1] == "KHR_collision_shapes") { const GLTFNodeIndex shape_index = p_split_json_pointer[3].to_int(); NodePath node_path = _get_scene_node_path_for_shape_index(p_state, shape_index); if (node_path.is_empty()) { return ret; } String godot_prop_name = prop_name; if (prop_name == "size") { ret->set_types(Variant::VECTOR3, GLTFObjectModelProperty::GLTF_OBJECT_MODEL_TYPE_FLOAT3); } else if (prop_name == "height" || prop_name == "radius") { ret->set_types(Variant::FLOAT, GLTFObjectModelProperty::GLTF_OBJECT_MODEL_TYPE_FLOAT); } else if (prop_name == "radiusBottom" || prop_name == "radiusTop") { godot_prop_name = "radius"; ret->set_types(Variant::FLOAT, GLTFObjectModelProperty::GLTF_OBJECT_MODEL_TYPE_FLOAT); } else { // Not something we handle, return without appending a NodePath. return ret; } // Example: `A/B/C/CollisionShape3D:shape:radius`. Vector subnames; subnames.append("shape"); subnames.append(godot_prop_name); node_path = NodePath(node_path.get_names(), subnames, false); ret->append_node_path(node_path); } } else if (p_split_json_pointer[0] == "nodes" && p_split_json_pointer[2] == "extensions" && p_split_json_pointer[4] == "motion") { if (p_split_json_pointer[3] == "OMI_physics_body" || p_split_json_pointer[3] == "KHR_physics_rigid_bodies") { const GLTFNodeIndex node_index = p_split_json_pointer[1].to_int(); const TypedArray all_gltf_nodes = p_state->get_nodes(); ERR_FAIL_INDEX_V_MSG(node_index, all_gltf_nodes.size(), ret, "GLTF Physics: The node index " + itos(node_index) + " is not in the state nodes (size: " + itos(all_gltf_nodes.size()) + ")."); const Ref gltf_node = all_gltf_nodes[node_index]; NodePath node_path; if (p_partial_paths.is_empty()) { node_path = gltf_node->get_scene_node_path(p_state); } else { // The path is already computed for us, just grab it. node_path = p_partial_paths[0]; } if (prop_name == "mass") { ret->append_path_to_property(node_path, "mass"); ret->set_types(Variant::FLOAT, GLTFObjectModelProperty::GLTF_OBJECT_MODEL_TYPE_FLOAT); } else if (prop_name == "linearVelocity") { ret->append_path_to_property(node_path, "linear_velocity"); ret->set_types(Variant::VECTOR3, GLTFObjectModelProperty::GLTF_OBJECT_MODEL_TYPE_FLOAT3); } else if (prop_name == "angularVelocity") { ret->append_path_to_property(node_path, "angular_velocity"); ret->set_types(Variant::VECTOR3, GLTFObjectModelProperty::GLTF_OBJECT_MODEL_TYPE_FLOAT3); } else if (prop_name == "centerOfMass") { ret->append_path_to_property(node_path, "center_of_mass"); ret->set_types(Variant::VECTOR3, GLTFObjectModelProperty::GLTF_OBJECT_MODEL_TYPE_FLOAT3); } else if (prop_name == "inertiaDiagonal") { ret->append_path_to_property(node_path, "inertia"); ret->set_types(Variant::VECTOR3, GLTFObjectModelProperty::GLTF_OBJECT_MODEL_TYPE_FLOAT3); } else if (prop_name == "inertiaOrientation") { WARN_PRINT("GLTF Physics: The 'inertiaOrientation' property is not supported by Godot."); } else { // Not something we handle, return without appending a NodePath. return ret; } } } return ret; } void _setup_shape_mesh_resource_from_index_if_needed(Ref p_state, Ref p_gltf_shape) { GLTFMeshIndex shape_mesh_index = p_gltf_shape->get_mesh_index(); if (shape_mesh_index == -1) { return; // No mesh for this shape. } Ref importer_mesh = p_gltf_shape->get_importer_mesh(); if (importer_mesh.is_valid()) { return; // The mesh resource is already set up. } TypedArray state_meshes = p_state->get_meshes(); ERR_FAIL_INDEX_MSG(shape_mesh_index, state_meshes.size(), "glTF Physics: When importing '" + p_state->get_scene_name() + "', the shape mesh index " + itos(shape_mesh_index) + " is not in the state meshes (size: " + itos(state_meshes.size()) + ")."); Ref gltf_mesh = state_meshes[shape_mesh_index]; ERR_FAIL_COND(gltf_mesh.is_null()); importer_mesh = gltf_mesh->get_mesh(); ERR_FAIL_COND(importer_mesh.is_null()); p_gltf_shape->set_importer_mesh(importer_mesh); } #ifndef DISABLE_DEPRECATED CollisionObject3D *_generate_shape_with_body(Ref p_state, Ref p_gltf_node, Ref p_physics_shape, Ref p_physics_body) { print_verbose("glTF: Creating shape with body for: " + p_gltf_node->get_name()); bool is_trigger = p_physics_shape->get_is_trigger(); // This method is used for the case where we must generate a parent body. // This is can happen for multiple reasons. One possibility is that this // glTF file is using OMI_collider but not OMI_physics_body, or at least // this particular node is not using it. Another possibility is that the // physics body information is set up on the same glTF node, not a parent. CollisionObject3D *body; if (p_physics_body.is_valid()) { // This code is run when the physics body is on the same glTF node. body = p_physics_body->to_node(); if (is_trigger && (p_physics_body->get_body_type() != "trigger")) { // Edge case: If the body's trigger and the collider's trigger // are in disagreement, we need to create another new body. CollisionObject3D *child = _generate_shape_with_body(p_state, p_gltf_node, p_physics_shape, nullptr); child->set_name(p_gltf_node->get_name() + (is_trigger ? String("Trigger") : String("Solid"))); body->add_child(child); return body; } } else if (is_trigger) { body = memnew(Area3D); } else { body = memnew(StaticBody3D); } CollisionShape3D *shape = p_physics_shape->to_node(); shape->set_name(p_gltf_node->get_name() + "Shape"); body->add_child(shape); return body; } #endif // DISABLE_DEPRECATED CollisionObject3D *_get_ancestor_collision_object(Node *p_scene_parent) { // Note: Despite the name of the method, at the moment this only checks // the direct parent. Only check more later if Godot adds support for it. if (p_scene_parent) { CollisionObject3D *co = Object::cast_to(p_scene_parent); if (likely(co)) { return co; } } return nullptr; } Node3D *_generate_shape_node_and_body_if_needed(Ref p_state, Ref p_gltf_node, Ref p_physics_shape, CollisionObject3D *p_col_object, bool p_is_trigger) { // If we need to generate a body node, do so. CollisionObject3D *body_node = nullptr; if (p_is_trigger || p_physics_shape->get_is_trigger()) { // If the shape wants to be a trigger but it doesn't // have an Area3D parent, we need to make one. if (!Object::cast_to(p_col_object)) { body_node = memnew(Area3D); } } else { if (!Object::cast_to(p_col_object)) { body_node = memnew(StaticBody3D); } } // Generate the shape node. _setup_shape_mesh_resource_from_index_if_needed(p_state, p_physics_shape); CollisionShape3D *shape_node = p_physics_shape->to_node(true); if (body_node) { shape_node->set_name(p_gltf_node->get_name() + "Shape"); body_node->add_child(shape_node); return body_node; } return shape_node; } // Either add the child to the parent, or return the child if there is no parent. Node3D *_add_physics_node_to_given_node(Node3D *p_current_node, Node3D *p_child, Ref p_gltf_node) { if (!p_current_node) { return p_child; } String suffix; if (Object::cast_to(p_child)) { suffix = "Shape"; } else if (Object::cast_to(p_child)) { suffix = "Trigger"; } else { suffix = "Collider"; } p_child->set_name(p_gltf_node->get_name() + suffix); p_current_node->add_child(p_child); return p_current_node; } Array _get_ancestor_compound_trigger_nodes(Ref p_state, TypedArray p_state_nodes, CollisionObject3D *p_ancestor_col_obj) { GLTFNodeIndex ancestor_index = p_state->get_node_index(p_ancestor_col_obj); ERR_FAIL_INDEX_V(ancestor_index, p_state_nodes.size(), Array()); Ref ancestor_gltf_node = p_state_nodes[ancestor_index]; Variant compound_trigger_nodes = ancestor_gltf_node->get_additional_data(StringName("GLTFPhysicsCompoundTriggerNodes")); if (compound_trigger_nodes.is_array()) { return compound_trigger_nodes; } Array ret; ancestor_gltf_node->set_additional_data(StringName("GLTFPhysicsCompoundTriggerNodes"), ret); return ret; } Node3D *GLTFDocumentExtensionPhysics::generate_scene_node(Ref p_state, Ref p_gltf_node, Node *p_scene_parent) { Ref gltf_physics_body = p_gltf_node->get_additional_data(StringName("GLTFPhysicsBody")); #ifndef DISABLE_DEPRECATED // This deprecated code handles OMI_collider (which we internally name "GLTFPhysicsShape"). Ref gltf_physics_shape = p_gltf_node->get_additional_data(StringName("GLTFPhysicsShape")); if (gltf_physics_shape.is_valid()) { _setup_shape_mesh_resource_from_index_if_needed(p_state, gltf_physics_shape); // If this glTF node specifies both a shape and a body, generate both. if (gltf_physics_body.is_valid()) { return _generate_shape_with_body(p_state, p_gltf_node, gltf_physics_shape, gltf_physics_body); } CollisionObject3D *ancestor_col_obj = _get_ancestor_collision_object(p_scene_parent); if (gltf_physics_shape->get_is_trigger()) { // If the shape wants to be a trigger and it already has a // trigger parent, we only need to make the shape node. if (Object::cast_to(ancestor_col_obj)) { return gltf_physics_shape->to_node(true); } } else if (ancestor_col_obj != nullptr) { // If the shape has a valid parent, only make the shape node. return gltf_physics_shape->to_node(true); } // Otherwise, we need to create a new body. return _generate_shape_with_body(p_state, p_gltf_node, gltf_physics_shape, nullptr); } #endif // DISABLE_DEPRECATED Node3D *ret = nullptr; CollisionObject3D *ancestor_col_obj = nullptr; Ref gltf_physics_collider_shape = p_gltf_node->get_additional_data(StringName("GLTFPhysicsColliderShape")); Ref gltf_physics_trigger_shape = p_gltf_node->get_additional_data(StringName("GLTFPhysicsTriggerShape")); if (gltf_physics_body.is_valid()) { ancestor_col_obj = gltf_physics_body->to_node(); ret = ancestor_col_obj; } else { ancestor_col_obj = _get_ancestor_collision_object(p_scene_parent); if (Object::cast_to(ancestor_col_obj) && gltf_physics_trigger_shape.is_valid()) { // At this point, we found an ancestor Area3D node. But do we want to use it for this trigger shape? TypedArray state_nodes = p_state->get_nodes(); GLTFNodeIndex self_index = state_nodes.find(p_gltf_node); Array compound_trigger_nodes = _get_ancestor_compound_trigger_nodes(p_state, state_nodes, ancestor_col_obj); // Check if the ancestor specifies compound trigger nodes, and if this node is in there. // Remember that JSON does not have integers, only "number", aka double-precision floats. if (compound_trigger_nodes.size() > 0 && !compound_trigger_nodes.has(double(self_index))) { // If the compound trigger we found is not the intended user of // this shape node, then we need to create a new Area3D node. ancestor_col_obj = memnew(Area3D); ret = ancestor_col_obj; } } else if (!Object::cast_to(ancestor_col_obj)) { if (p_gltf_node->get_additional_data(StringName("GLTFPhysicsCompoundCollider"))) { // If the glTF file wants this node to group solid shapes together, // and there is no parent body, we need to create a static body. ancestor_col_obj = memnew(StaticBody3D); ret = ancestor_col_obj; } } } // Add the shapes to the tree. When an ancestor body is present, use it. // If an explicit body was specified, it has already been generated and // set above. If there is no ancestor body, we will either generate an // Area3D or StaticBody3D implicitly, so prefer an Area3D as the base // node for best compatibility with signal connections to this node. bool is_ancestor_col_obj_solid = Object::cast_to(ancestor_col_obj); if (is_ancestor_col_obj_solid && gltf_physics_collider_shape.is_valid()) { Node3D *child = _generate_shape_node_and_body_if_needed(p_state, p_gltf_node, gltf_physics_collider_shape, ancestor_col_obj, false); ret = _add_physics_node_to_given_node(ret, child, p_gltf_node); } if (gltf_physics_trigger_shape.is_valid()) { Node3D *child = _generate_shape_node_and_body_if_needed(p_state, p_gltf_node, gltf_physics_trigger_shape, ancestor_col_obj, true); ret = _add_physics_node_to_given_node(ret, child, p_gltf_node); } if (!is_ancestor_col_obj_solid && gltf_physics_collider_shape.is_valid()) { Node3D *child = _generate_shape_node_and_body_if_needed(p_state, p_gltf_node, gltf_physics_collider_shape, ancestor_col_obj, false); ret = _add_physics_node_to_given_node(ret, child, p_gltf_node); } return ret; } // Export process. bool _are_all_faces_equal(const Vector &p_a, const Vector &p_b) { if (p_a.size() != p_b.size()) { return false; } for (int i = 0; i < p_a.size(); i++) { const Vector3 *a_vertices = p_a[i].vertex; const Vector3 *b_vertices = p_b[i].vertex; for (int j = 0; j < 3; j++) { if (!a_vertices[j].is_equal_approx(b_vertices[j])) { return false; } } } return true; } GLTFMeshIndex _get_or_insert_mesh_in_state(Ref p_state, Ref p_mesh) { ERR_FAIL_COND_V(p_mesh.is_null(), -1); TypedArray state_meshes = p_state->get_meshes(); Vector mesh_faces = p_mesh->get_faces(); // De-duplication: If the state already has the mesh we need, use that one. for (GLTFMeshIndex i = 0; i < state_meshes.size(); i++) { Ref state_gltf_mesh = state_meshes[i]; ERR_CONTINUE(state_gltf_mesh.is_null()); Ref state_importer_mesh = state_gltf_mesh->get_mesh(); ERR_CONTINUE(state_importer_mesh.is_null()); if (state_importer_mesh == p_mesh) { return i; } if (_are_all_faces_equal(state_importer_mesh->get_faces(), mesh_faces)) { return i; } } // After the loop, we have checked that the mesh is not equal to any of the // meshes in the state. So we insert a new mesh into the state mesh array. Ref gltf_mesh; gltf_mesh.instantiate(); gltf_mesh->set_mesh(p_mesh); GLTFMeshIndex mesh_index = state_meshes.size(); state_meshes.push_back(gltf_mesh); p_state->set_meshes(state_meshes); return mesh_index; } void GLTFDocumentExtensionPhysics::convert_scene_node(Ref p_state, Ref p_gltf_node, Node *p_scene_node) { if (cast_to(p_scene_node)) { CollisionShape3D *godot_shape = Object::cast_to(p_scene_node); Ref gltf_shape = GLTFPhysicsShape::from_node(godot_shape); ERR_FAIL_COND_MSG(gltf_shape.is_null(), "glTF Physics: Could not convert CollisionShape3D to GLTFPhysicsShape. Does it have a valid Shape3D?"); { Ref importer_mesh = gltf_shape->get_importer_mesh(); if (importer_mesh.is_valid()) { gltf_shape->set_mesh_index(_get_or_insert_mesh_in_state(p_state, importer_mesh)); } } CollisionObject3D *ancestor_col_obj = _get_ancestor_collision_object(p_scene_node->get_parent()); if (cast_to(ancestor_col_obj)) { p_gltf_node->set_additional_data(StringName("GLTFPhysicsTriggerShape"), gltf_shape); // Write explicit member shape nodes to the ancestor compound trigger node. TypedArray state_nodes = p_state->get_nodes(); GLTFNodeIndex self_index = state_nodes.size(); // The current p_gltf_node will be inserted next. Array compound_trigger_nodes = _get_ancestor_compound_trigger_nodes(p_state, p_state->get_nodes(), ancestor_col_obj); compound_trigger_nodes.push_back(double(self_index)); } else { p_gltf_node->set_additional_data(StringName("GLTFPhysicsColliderShape"), gltf_shape); } } else if (cast_to(p_scene_node)) { CollisionObject3D *godot_body = Object::cast_to(p_scene_node); p_gltf_node->set_additional_data(StringName("GLTFPhysicsBody"), GLTFPhysicsBody::from_node(godot_body)); } } Array _get_or_create_state_shapes_in_state(Ref p_state) { Dictionary state_json = p_state->get_json(); Dictionary state_extensions; if (state_json.has("extensions")) { state_extensions = state_json["extensions"]; } else { state_json["extensions"] = state_extensions; } Dictionary omi_physics_shape_ext; if (state_extensions.has("OMI_physics_shape")) { omi_physics_shape_ext = state_extensions["OMI_physics_shape"]; } else { state_extensions["OMI_physics_shape"] = omi_physics_shape_ext; p_state->add_used_extension("OMI_physics_shape"); } Array state_shapes; if (omi_physics_shape_ext.has("shapes")) { state_shapes = omi_physics_shape_ext["shapes"]; } else { omi_physics_shape_ext["shapes"] = state_shapes; } return state_shapes; } GLTFShapeIndex _export_node_shape(Ref p_state, Ref p_physics_shape) { Array state_shapes = _get_or_create_state_shapes_in_state(p_state); GLTFShapeIndex size = state_shapes.size(); Dictionary shape_property; Dictionary shape_dict = p_physics_shape->to_dictionary(); for (GLTFShapeIndex i = 0; i < size; i++) { Dictionary other = state_shapes[i]; if (other == shape_dict) { // De-duplication: If we already have an identical shape, // set the shape index to the existing one and return. return i; } } // If we don't have an identical shape, add it to the array. state_shapes.push_back(shape_dict); return size; } Error GLTFDocumentExtensionPhysics::export_preserialize(Ref p_state) { // Note: Need to do _export_node_shape before exporting animations, so export_node is too late. TypedArray state_gltf_nodes = p_state->get_nodes(); for (Ref gltf_node : state_gltf_nodes) { Ref collider_shape = gltf_node->get_additional_data(StringName("GLTFPhysicsColliderShape")); if (collider_shape.is_valid()) { GLTFShapeIndex collider_shape_index = _export_node_shape(p_state, collider_shape); gltf_node->set_additional_data(StringName("GLTFPhysicsColliderShapeIndex"), collider_shape_index); } Ref trigger_shape = gltf_node->get_additional_data(StringName("GLTFPhysicsTriggerShape")); if (trigger_shape.is_valid()) { GLTFShapeIndex trigger_shape_index = _export_node_shape(p_state, trigger_shape); gltf_node->set_additional_data(StringName("GLTFPhysicsTriggerShapeIndex"), trigger_shape_index); } } return OK; } Ref GLTFDocumentExtensionPhysics::export_object_model_property(Ref p_state, const NodePath &p_node_path, const Node *p_godot_node, GLTFNodeIndex p_gltf_node_index, const Object *p_target_object, int p_target_depth) { Ref ret; const Vector &path_subnames = p_node_path.get_subnames(); if (path_subnames.is_empty()) { return ret; } ret.instantiate(); const StringName &node_prop = path_subnames[0]; if (Object::cast_to(p_target_object)) { if (path_subnames.size() != 1) { return ret; } // Example: `/nodes/0/extensions/OMI_physics_body/motion/mass` PackedStringArray split_json_pointer; split_json_pointer.append("nodes"); split_json_pointer.append(itos(p_gltf_node_index)); split_json_pointer.append("extensions"); split_json_pointer.append("OMI_physics_body"); split_json_pointer.append("motion"); if (node_prop == StringName("mass")) { split_json_pointer.append("mass"); ret->set_types(Variant::FLOAT, GLTFObjectModelProperty::GLTF_OBJECT_MODEL_TYPE_FLOAT); } else if (node_prop == StringName("linear_velocity")) { split_json_pointer.append("linearVelocity"); ret->set_types(Variant::VECTOR3, GLTFObjectModelProperty::GLTF_OBJECT_MODEL_TYPE_FLOAT3); } else if (node_prop == StringName("angular_velocity")) { split_json_pointer.append("angularVelocity"); ret->set_types(Variant::VECTOR3, GLTFObjectModelProperty::GLTF_OBJECT_MODEL_TYPE_FLOAT3); } else if (node_prop == StringName("center_of_mass")) { split_json_pointer.append("centerOfMass"); ret->set_types(Variant::VECTOR3, GLTFObjectModelProperty::GLTF_OBJECT_MODEL_TYPE_FLOAT3); } else if (node_prop == StringName("inertia")) { split_json_pointer.append("inertiaDiagonal"); ret->set_types(Variant::VECTOR3, GLTFObjectModelProperty::GLTF_OBJECT_MODEL_TYPE_FLOAT3); } else { // Not something we handle, return without setting the JSON pointer. return ret; } ret->set_json_pointers({ split_json_pointer }); } else if (Object::cast_to(p_godot_node)) { if (path_subnames.size() != 2) { return ret; } // Example: `/extensions/OMI_physics_shape/shapes/0/box/size` PackedStringArray split_json_pointer; split_json_pointer.append("extensions"); split_json_pointer.append("OMI_physics_shape"); split_json_pointer.append("shapes"); TypedArray state_gltf_nodes = p_state->get_nodes(); ERR_FAIL_INDEX_V(p_gltf_node_index, state_gltf_nodes.size(), ret); Ref gltf_node = state_gltf_nodes[p_gltf_node_index]; Variant shape_index_maybe = gltf_node->get_additional_data(StringName("GLTFPhysicsColliderShapeIndex")); String shape_type; if (shape_index_maybe.get_type() == Variant::INT) { Ref collider_shape = gltf_node->get_additional_data(StringName("GLTFPhysicsColliderShape")); shape_type = collider_shape->get_shape_type(); } else { shape_index_maybe = gltf_node->get_additional_data(StringName("GLTFPhysicsTriggerShapeIndex")); if (shape_index_maybe.get_type() == Variant::INT) { Ref trigger_shape = gltf_node->get_additional_data(StringName("GLTFPhysicsTriggerShape")); shape_type = trigger_shape->get_shape_type(); } } ERR_FAIL_COND_V(shape_index_maybe.get_type() != Variant::INT, ret); GLTFShapeIndex shape_index = shape_index_maybe; split_json_pointer.append(itos(shape_index)); split_json_pointer.append(shape_type); const StringName &shape_prop = path_subnames[1]; if (shape_prop == StringName("size")) { split_json_pointer.append("size"); ret->set_types(Variant::VECTOR3, GLTFObjectModelProperty::GLTF_OBJECT_MODEL_TYPE_FLOAT3); } else if (shape_prop == StringName("radius")) { split_json_pointer.append("radius"); ret->set_types(Variant::FLOAT, GLTFObjectModelProperty::GLTF_OBJECT_MODEL_TYPE_FLOAT); } else if (shape_prop == StringName("height")) { split_json_pointer.append("height"); ret->set_types(Variant::FLOAT, GLTFObjectModelProperty::GLTF_OBJECT_MODEL_TYPE_FLOAT); } else { // Not something we handle, return without setting the JSON pointer. return ret; } ret->set_json_pointers({ split_json_pointer }); } return ret; } Error GLTFDocumentExtensionPhysics::export_node(Ref p_state, Ref p_gltf_node, Dictionary &r_node_json, Node *p_node) { Dictionary physics_body_ext; Ref physics_body = p_gltf_node->get_additional_data(StringName("GLTFPhysicsBody")); if (physics_body.is_valid()) { physics_body_ext = physics_body->to_dictionary(); Variant compound_trigger_nodes = p_gltf_node->get_additional_data(StringName("GLTFPhysicsCompoundTriggerNodes")); if (compound_trigger_nodes.is_array()) { Dictionary trigger_property = physics_body_ext.get_or_add("trigger", {}); trigger_property["nodes"] = compound_trigger_nodes; } } Variant collider_shape_index = p_gltf_node->get_additional_data(StringName("GLTFPhysicsColliderShapeIndex")); if (collider_shape_index.get_type() == Variant::INT) { Dictionary collider_dict; collider_dict["shape"] = collider_shape_index; physics_body_ext["collider"] = collider_dict; } Variant trigger_shape_index = p_gltf_node->get_additional_data(StringName("GLTFPhysicsTriggerShapeIndex")); if (trigger_shape_index.get_type() == Variant::INT) { Dictionary trigger_dict = physics_body_ext.get_or_add("trigger", {}); trigger_dict["shape"] = trigger_shape_index; } if (!physics_body_ext.is_empty()) { Dictionary node_extensions = r_node_json["extensions"]; node_extensions["OMI_physics_body"] = physics_body_ext; p_state->add_used_extension("OMI_physics_body"); } return OK; }