/*************************************************************************/ /* material_storage.cpp */ /*************************************************************************/ /* This file is part of: */ /* GODOT ENGINE */ /* https://godotengine.org */ /*************************************************************************/ /* Copyright (c) 2007-2022 Juan Linietsky, Ariel Manzur. */ /* Copyright (c) 2014-2022 Godot Engine contributors (cf. AUTHORS.md). */ /* */ /* Permission is hereby granted, free of charge, to any person obtaining */ /* a copy of this software and associated documentation files (the */ /* "Software"), to deal in the Software without restriction, including */ /* without limitation the rights to use, copy, modify, merge, publish, */ /* distribute, sublicense, and/or sell copies of the Software, and to */ /* permit persons to whom the Software is furnished to do so, subject to */ /* the following conditions: */ /* */ /* The above copyright notice and this permission notice shall be */ /* included in all copies or substantial portions of the Software. */ /* */ /* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, */ /* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF */ /* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.*/ /* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY */ /* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, */ /* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE */ /* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */ /*************************************************************************/ #include "material_storage.h" #include "core/config/engine.h" #include "core/config/project_settings.h" #include "core/io/resource_loader.h" #include "texture_storage.h" using namespace RendererRD; /////////////////////////////////////////////////////////////////////////// // UBI helper functions _FORCE_INLINE_ static void _fill_std140_variant_ubo_value(ShaderLanguage::DataType type, int p_array_size, const Variant &value, uint8_t *data, bool p_linear_color) { switch (type) { case ShaderLanguage::TYPE_BOOL: { uint32_t *gui = (uint32_t *)data; if (p_array_size > 0) { const PackedInt32Array &ba = value; int s = ba.size(); const int *r = ba.ptr(); for (int i = 0, j = 0; i < p_array_size; i++, j += 4) { if (i < s) { gui[j] = (r[i] != 0) ? 1 : 0; } else { gui[j] = 0; } gui[j + 1] = 0; // ignored gui[j + 2] = 0; // ignored gui[j + 3] = 0; // ignored } } else { bool v = value; gui[0] = v ? 1 : 0; } } break; case ShaderLanguage::TYPE_BVEC2: { uint32_t *gui = (uint32_t *)data; if (p_array_size > 0) { const PackedInt32Array &ba = value; int s = ba.size(); const int *r = ba.ptr(); int count = 2 * p_array_size; for (int i = 0, j = 0; i < count; i += 2, j += 4) { if (i < s) { gui[j] = r[i] ? 1 : 0; gui[j + 1] = r[i + 1] ? 1 : 0; } else { gui[j] = 0; gui[j + 1] = 0; } gui[j + 2] = 0; // ignored gui[j + 3] = 0; // ignored } } else { int v = value; gui[0] = v & 1 ? 1 : 0; gui[1] = v & 2 ? 1 : 0; } } break; case ShaderLanguage::TYPE_BVEC3: { uint32_t *gui = (uint32_t *)data; if (p_array_size > 0) { const PackedInt32Array &ba = value; int s = ba.size(); const int *r = ba.ptr(); int count = 3 * p_array_size; for (int i = 0, j = 0; i < count; i += 3, j += 4) { if (i < s) { gui[j] = r[i] ? 1 : 0; gui[j + 1] = r[i + 1] ? 1 : 0; gui[j + 2] = r[i + 2] ? 1 : 0; } else { gui[j] = 0; gui[j + 1] = 0; gui[j + 2] = 0; } gui[j + 3] = 0; // ignored } } else { int v = value; gui[0] = (v & 1) ? 1 : 0; gui[1] = (v & 2) ? 1 : 0; gui[2] = (v & 4) ? 1 : 0; } } break; case ShaderLanguage::TYPE_BVEC4: { uint32_t *gui = (uint32_t *)data; if (p_array_size > 0) { const PackedInt32Array &ba = value; int s = ba.size(); const int *r = ba.ptr(); int count = 4 * p_array_size; for (int i = 0; i < count; i += 4) { if (i < s) { gui[i] = r[i] ? 1 : 0; gui[i + 1] = r[i + 1] ? 1 : 0; gui[i + 2] = r[i + 2] ? 1 : 0; gui[i + 3] = r[i + 3] ? 1 : 0; } else { gui[i] = 0; gui[i + 1] = 0; gui[i + 2] = 0; gui[i + 3] = 0; } } } else { int v = value; gui[0] = (v & 1) ? 1 : 0; gui[1] = (v & 2) ? 1 : 0; gui[2] = (v & 4) ? 1 : 0; gui[3] = (v & 8) ? 1 : 0; } } break; case ShaderLanguage::TYPE_INT: { int32_t *gui = (int32_t *)data; if (p_array_size > 0) { Vector iv = value; int s = iv.size(); const int *r = iv.ptr(); for (int i = 0, j = 0; i < p_array_size; i++, j += 4) { if (i < s) { gui[j] = r[i]; } else { gui[j] = 0; } gui[j + 1] = 0; // ignored gui[j + 2] = 0; // ignored gui[j + 3] = 0; // ignored } } else { int v = value; gui[0] = v; } } break; case ShaderLanguage::TYPE_IVEC2: { int32_t *gui = (int32_t *)data; if (p_array_size > 0) { Vector iv = value; int s = iv.size(); int count = 2 * p_array_size; const int *r = iv.ptr(); for (int i = 0, j = 0; i < count; i += 2, j += 4) { if (i < s) { gui[j] = r[i]; gui[j + 1] = r[i + 1]; } else { gui[j] = 0; gui[j + 1] = 0; } gui[j + 2] = 0; // ignored gui[j + 3] = 0; // ignored } } else { Vector2i v = value; gui[0] = v.x; gui[1] = v.y; } } break; case ShaderLanguage::TYPE_IVEC3: { int32_t *gui = (int32_t *)data; if (p_array_size > 0) { Vector iv = value; int s = iv.size(); int count = 3 * p_array_size; const int *r = iv.ptr(); for (int i = 0, j = 0; i < count; i += 3, j += 4) { if (i < s) { gui[j] = r[i]; gui[j + 1] = r[i + 1]; gui[j + 2] = r[i + 2]; } else { gui[j] = 0; gui[j + 1] = 0; gui[j + 2] = 0; } gui[j + 3] = 0; // ignored } } else { Vector3i v = value; gui[0] = v.x; gui[1] = v.y; gui[2] = v.z; } } break; case ShaderLanguage::TYPE_IVEC4: { int32_t *gui = (int32_t *)data; if (p_array_size > 0) { Vector iv = value; int s = iv.size(); int count = 4 * p_array_size; const int *r = iv.ptr(); for (int i = 0; i < count; i += 4) { if (i < s) { gui[i] = r[i]; gui[i + 1] = r[i + 1]; gui[i + 2] = r[i + 2]; gui[i + 3] = r[i + 3]; } else { gui[i] = 0; gui[i + 1] = 0; gui[i + 2] = 0; gui[i + 3] = 0; } } } else { Vector4i v = value; gui[0] = v.x; gui[1] = v.y; gui[2] = v.z; gui[3] = v.w; } } break; case ShaderLanguage::TYPE_UINT: { uint32_t *gui = (uint32_t *)data; if (p_array_size > 0) { Vector iv = value; int s = iv.size(); const int *r = iv.ptr(); for (int i = 0, j = 0; i < p_array_size; i++, j += 4) { if (i < s) { gui[j] = r[i]; } else { gui[j] = 0; } gui[j + 1] = 0; // ignored gui[j + 2] = 0; // ignored gui[j + 3] = 0; // ignored } } else { int v = value; gui[0] = v; } } break; case ShaderLanguage::TYPE_UVEC2: { uint32_t *gui = (uint32_t *)data; if (p_array_size > 0) { Vector iv = value; int s = iv.size(); int count = 2 * p_array_size; const int *r = iv.ptr(); for (int i = 0, j = 0; i < count; i += 2, j += 4) { if (i < s) { gui[j] = r[i]; gui[j + 1] = r[i + 1]; } else { gui[j] = 0; gui[j + 1] = 0; } gui[j + 2] = 0; // ignored gui[j + 3] = 0; // ignored } } else { Vector2i v = value; gui[0] = v.x; gui[1] = v.y; } } break; case ShaderLanguage::TYPE_UVEC3: { uint32_t *gui = (uint32_t *)data; if (p_array_size > 0) { Vector iv = value; int s = iv.size(); int count = 3 * p_array_size; const int *r = iv.ptr(); for (int i = 0, j = 0; i < count; i += 3, j += 4) { if (i < s) { gui[j] = r[i]; gui[j + 1] = r[i + 1]; gui[j + 2] = r[i + 2]; } else { gui[j] = 0; gui[j + 1] = 0; gui[j + 2] = 0; } gui[j + 3] = 0; // ignored } } else { Vector3i v = value; gui[0] = v.x; gui[1] = v.y; gui[2] = v.z; } } break; case ShaderLanguage::TYPE_UVEC4: { uint32_t *gui = (uint32_t *)data; if (p_array_size > 0) { Vector iv = value; int s = iv.size(); int count = 4 * p_array_size; const int *r = iv.ptr(); for (int i = 0; i < count; i++) { if (i < s) { gui[i] = r[i]; gui[i + 1] = r[i + 1]; gui[i + 2] = r[i + 2]; gui[i + 3] = r[i + 3]; } else { gui[i] = 0; gui[i + 1] = 0; gui[i + 2] = 0; gui[i + 3] = 0; } } } else { Vector4i v = value; gui[0] = v.x; gui[1] = v.y; gui[2] = v.z; gui[3] = v.w; } } break; case ShaderLanguage::TYPE_FLOAT: { float *gui = reinterpret_cast(data); if (p_array_size > 0) { const PackedFloat32Array &a = value; int s = a.size(); for (int i = 0, j = 0; i < p_array_size; i++, j += 4) { if (i < s) { gui[j] = a[i]; } else { gui[j] = 0; } gui[j + 1] = 0; // ignored gui[j + 2] = 0; // ignored gui[j + 3] = 0; // ignored } } else { float v = value; gui[0] = v; } } break; case ShaderLanguage::TYPE_VEC2: { float *gui = reinterpret_cast(data); if (p_array_size > 0) { const PackedVector2Array &a = value; int s = a.size(); for (int i = 0, j = 0; i < p_array_size; i++, j += 4) { if (i < s) { gui[j] = a[i].x; gui[j + 1] = a[i].y; } else { gui[j] = 0; gui[j + 1] = 0; } gui[j + 2] = 0; // ignored gui[j + 3] = 0; // ignored } } else { Vector2 v = value; gui[0] = v.x; gui[1] = v.y; } } break; case ShaderLanguage::TYPE_VEC3: { float *gui = reinterpret_cast(data); if (p_array_size > 0) { if (value.get_type() == Variant::PACKED_COLOR_ARRAY) { const PackedColorArray &a = value; int s = a.size(); for (int i = 0, j = 0; i < p_array_size; i++, j += 4) { if (i < s) { Color color = a[i]; if (p_linear_color) { color = color.srgb_to_linear(); } gui[j] = color.r; gui[j + 1] = color.g; gui[j + 2] = color.b; } else { gui[j] = 0; gui[j + 1] = 0; gui[j + 2] = 0; } gui[j + 3] = 0; // ignored } } else { const PackedVector3Array &a = value; int s = a.size(); for (int i = 0, j = 0; i < p_array_size; i++, j += 4) { if (i < s) { gui[j] = a[i].x; gui[j + 1] = a[i].y; gui[j + 2] = a[i].z; } else { gui[j] = 0; gui[j + 1] = 0; gui[j + 2] = 0; } gui[j + 3] = 0; // ignored } } } else { if (value.get_type() == Variant::COLOR) { Color v = value; if (p_linear_color) { v = v.srgb_to_linear(); } gui[0] = v.r; gui[1] = v.g; gui[2] = v.b; } else { Vector3 v = value; gui[0] = v.x; gui[1] = v.y; gui[2] = v.z; } } } break; case ShaderLanguage::TYPE_VEC4: { float *gui = reinterpret_cast(data); if (p_array_size > 0) { if (value.get_type() == Variant::PACKED_COLOR_ARRAY) { const PackedColorArray &a = value; int s = a.size(); for (int i = 0, j = 0; i < p_array_size; i++, j += 4) { if (i < s) { Color color = a[i]; if (p_linear_color) { color = color.srgb_to_linear(); } gui[j] = color.r; gui[j + 1] = color.g; gui[j + 2] = color.b; gui[j + 3] = color.a; } else { gui[j] = 0; gui[j + 1] = 0; gui[j + 2] = 0; gui[j + 3] = 0; } } } else { const PackedFloat32Array &a = value; int s = a.size(); int count = 4 * p_array_size; for (int i = 0; i < count; i += 4) { if (i + 3 < s) { gui[i] = a[i]; gui[i + 1] = a[i + 1]; gui[i + 2] = a[i + 2]; gui[i + 3] = a[i + 3]; } else { gui[i] = 0; gui[i + 1] = 0; gui[i + 2] = 0; gui[i + 3] = 0; } } } } else { if (value.get_type() == Variant::COLOR) { Color v = value; if (p_linear_color) { v = v.srgb_to_linear(); } gui[0] = v.r; gui[1] = v.g; gui[2] = v.b; gui[3] = v.a; } else if (value.get_type() == Variant::RECT2) { Rect2 v = value; gui[0] = v.position.x; gui[1] = v.position.y; gui[2] = v.size.x; gui[3] = v.size.y; } else if (value.get_type() == Variant::QUATERNION) { Quaternion v = value; gui[0] = v.x; gui[1] = v.y; gui[2] = v.z; gui[3] = v.w; } else if (value.get_type() == Variant::PLANE) { Plane v = value; gui[0] = v.normal.x; gui[1] = v.normal.y; gui[2] = v.normal.z; gui[3] = v.d; } else { Vector4 v = value; gui[0] = v.x; gui[1] = v.y; gui[2] = v.z; gui[3] = v.w; } } } break; case ShaderLanguage::TYPE_MAT2: { float *gui = reinterpret_cast(data); if (p_array_size > 0) { const PackedFloat32Array &a = value; int s = a.size(); for (int i = 0, j = 0; i < p_array_size * 4; i += 4, j += 8) { if (i + 3 < s) { gui[j] = a[i]; gui[j + 1] = a[i + 1]; gui[j + 4] = a[i + 2]; gui[j + 5] = a[i + 3]; } else { gui[j] = 1; gui[j + 1] = 0; gui[j + 4] = 0; gui[j + 5] = 1; } gui[j + 2] = 0; // ignored gui[j + 3] = 0; // ignored gui[j + 6] = 0; // ignored gui[j + 7] = 0; // ignored } } else { Transform2D v = value; //in std140 members of mat2 are treated as vec4s gui[0] = v.columns[0][0]; gui[1] = v.columns[0][1]; gui[2] = 0; // ignored gui[3] = 0; // ignored gui[4] = v.columns[1][0]; gui[5] = v.columns[1][1]; gui[6] = 0; // ignored gui[7] = 0; // ignored } } break; case ShaderLanguage::TYPE_MAT3: { float *gui = reinterpret_cast(data); if (p_array_size > 0) { const PackedFloat32Array &a = value; int s = a.size(); for (int i = 0, j = 0; i < p_array_size * 9; i += 9, j += 12) { if (i + 8 < s) { gui[j] = a[i]; gui[j + 1] = a[i + 1]; gui[j + 2] = a[i + 2]; gui[j + 4] = a[i + 3]; gui[j + 5] = a[i + 4]; gui[j + 6] = a[i + 5]; gui[j + 8] = a[i + 6]; gui[j + 9] = a[i + 7]; gui[j + 10] = a[i + 8]; } else { gui[j] = 1; gui[j + 1] = 0; gui[j + 2] = 0; gui[j + 4] = 0; gui[j + 5] = 1; gui[j + 6] = 0; gui[j + 8] = 0; gui[j + 9] = 0; gui[j + 10] = 1; } gui[j + 3] = 0; // ignored gui[j + 7] = 0; // ignored gui[j + 11] = 0; // ignored } } else { Basis v = value; gui[0] = v.rows[0][0]; gui[1] = v.rows[1][0]; gui[2] = v.rows[2][0]; gui[3] = 0; // ignored gui[4] = v.rows[0][1]; gui[5] = v.rows[1][1]; gui[6] = v.rows[2][1]; gui[7] = 0; // ignored gui[8] = v.rows[0][2]; gui[9] = v.rows[1][2]; gui[10] = v.rows[2][2]; gui[11] = 0; // ignored } } break; case ShaderLanguage::TYPE_MAT4: { float *gui = reinterpret_cast(data); if (p_array_size > 0) { const PackedFloat32Array &a = value; int s = a.size(); for (int i = 0; i < p_array_size * 16; i += 16) { if (i + 15 < s) { gui[i] = a[i]; gui[i + 1] = a[i + 1]; gui[i + 2] = a[i + 2]; gui[i + 3] = a[i + 3]; gui[i + 4] = a[i + 4]; gui[i + 5] = a[i + 5]; gui[i + 6] = a[i + 6]; gui[i + 7] = a[i + 7]; gui[i + 8] = a[i + 8]; gui[i + 9] = a[i + 9]; gui[i + 10] = a[i + 10]; gui[i + 11] = a[i + 11]; gui[i + 12] = a[i + 12]; gui[i + 13] = a[i + 13]; gui[i + 14] = a[i + 14]; gui[i + 15] = a[i + 15]; } else { gui[i] = 1; gui[i + 1] = 0; gui[i + 2] = 0; gui[i + 3] = 0; gui[i + 4] = 0; gui[i + 5] = 1; gui[i + 6] = 0; gui[i + 7] = 0; gui[i + 8] = 0; gui[i + 9] = 0; gui[i + 10] = 1; gui[i + 11] = 0; gui[i + 12] = 0; gui[i + 13] = 0; gui[i + 14] = 0; gui[i + 15] = 1; } } } else if (value.get_type() == Variant::TRANSFORM3D) { Transform3D v = value; gui[0] = v.basis.rows[0][0]; gui[1] = v.basis.rows[1][0]; gui[2] = v.basis.rows[2][0]; gui[3] = 0; gui[4] = v.basis.rows[0][1]; gui[5] = v.basis.rows[1][1]; gui[6] = v.basis.rows[2][1]; gui[7] = 0; gui[8] = v.basis.rows[0][2]; gui[9] = v.basis.rows[1][2]; gui[10] = v.basis.rows[2][2]; gui[11] = 0; gui[12] = v.origin.x; gui[13] = v.origin.y; gui[14] = v.origin.z; gui[15] = 1; } else { Projection v = value; for (int i = 0; i < 4; i++) { for (int j = 0; j < 4; j++) { gui[i * 4 + j] = v.matrix[i][j]; } } } } break; default: { } } } _FORCE_INLINE_ static void _fill_std140_ubo_value(ShaderLanguage::DataType type, const Vector &value, uint8_t *data) { switch (type) { case ShaderLanguage::TYPE_BOOL: { uint32_t *gui = (uint32_t *)data; *gui = value[0].boolean ? 1 : 0; } break; case ShaderLanguage::TYPE_BVEC2: { uint32_t *gui = (uint32_t *)data; gui[0] = value[0].boolean ? 1 : 0; gui[1] = value[1].boolean ? 1 : 0; } break; case ShaderLanguage::TYPE_BVEC3: { uint32_t *gui = (uint32_t *)data; gui[0] = value[0].boolean ? 1 : 0; gui[1] = value[1].boolean ? 1 : 0; gui[2] = value[2].boolean ? 1 : 0; } break; case ShaderLanguage::TYPE_BVEC4: { uint32_t *gui = (uint32_t *)data; gui[0] = value[0].boolean ? 1 : 0; gui[1] = value[1].boolean ? 1 : 0; gui[2] = value[2].boolean ? 1 : 0; gui[3] = value[3].boolean ? 1 : 0; } break; case ShaderLanguage::TYPE_INT: { int32_t *gui = (int32_t *)data; gui[0] = value[0].sint; } break; case ShaderLanguage::TYPE_IVEC2: { int32_t *gui = (int32_t *)data; for (int i = 0; i < 2; i++) { gui[i] = value[i].sint; } } break; case ShaderLanguage::TYPE_IVEC3: { int32_t *gui = (int32_t *)data; for (int i = 0; i < 3; i++) { gui[i] = value[i].sint; } } break; case ShaderLanguage::TYPE_IVEC4: { int32_t *gui = (int32_t *)data; for (int i = 0; i < 4; i++) { gui[i] = value[i].sint; } } break; case ShaderLanguage::TYPE_UINT: { uint32_t *gui = (uint32_t *)data; gui[0] = value[0].uint; } break; case ShaderLanguage::TYPE_UVEC2: { int32_t *gui = (int32_t *)data; for (int i = 0; i < 2; i++) { gui[i] = value[i].uint; } } break; case ShaderLanguage::TYPE_UVEC3: { int32_t *gui = (int32_t *)data; for (int i = 0; i < 3; i++) { gui[i] = value[i].uint; } } break; case ShaderLanguage::TYPE_UVEC4: { int32_t *gui = (int32_t *)data; for (int i = 0; i < 4; i++) { gui[i] = value[i].uint; } } break; case ShaderLanguage::TYPE_FLOAT: { float *gui = reinterpret_cast(data); gui[0] = value[0].real; } break; case ShaderLanguage::TYPE_VEC2: { float *gui = reinterpret_cast(data); for (int i = 0; i < 2; i++) { gui[i] = value[i].real; } } break; case ShaderLanguage::TYPE_VEC3: { float *gui = reinterpret_cast(data); for (int i = 0; i < 3; i++) { gui[i] = value[i].real; } } break; case ShaderLanguage::TYPE_VEC4: { float *gui = reinterpret_cast(data); for (int i = 0; i < 4; i++) { gui[i] = value[i].real; } } break; case ShaderLanguage::TYPE_MAT2: { float *gui = reinterpret_cast(data); //in std140 members of mat2 are treated as vec4s gui[0] = value[0].real; gui[1] = value[1].real; gui[2] = 0; gui[3] = 0; gui[4] = value[2].real; gui[5] = value[3].real; gui[6] = 0; gui[7] = 0; } break; case ShaderLanguage::TYPE_MAT3: { float *gui = reinterpret_cast(data); gui[0] = value[0].real; gui[1] = value[1].real; gui[2] = value[2].real; gui[3] = 0; gui[4] = value[3].real; gui[5] = value[4].real; gui[6] = value[5].real; gui[7] = 0; gui[8] = value[6].real; gui[9] = value[7].real; gui[10] = value[8].real; gui[11] = 0; } break; case ShaderLanguage::TYPE_MAT4: { float *gui = reinterpret_cast(data); for (int i = 0; i < 16; i++) { gui[i] = value[i].real; } } break; default: { } } } _FORCE_INLINE_ static void _fill_std140_ubo_empty(ShaderLanguage::DataType type, int p_array_size, uint8_t *data) { if (p_array_size <= 0) { p_array_size = 1; } switch (type) { case ShaderLanguage::TYPE_BOOL: case ShaderLanguage::TYPE_INT: case ShaderLanguage::TYPE_UINT: case ShaderLanguage::TYPE_FLOAT: { memset(data, 0, 4 * p_array_size); } break; case ShaderLanguage::TYPE_BVEC2: case ShaderLanguage::TYPE_IVEC2: case ShaderLanguage::TYPE_UVEC2: case ShaderLanguage::TYPE_VEC2: { memset(data, 0, 8 * p_array_size); } break; case ShaderLanguage::TYPE_BVEC3: case ShaderLanguage::TYPE_IVEC3: case ShaderLanguage::TYPE_UVEC3: case ShaderLanguage::TYPE_VEC3: case ShaderLanguage::TYPE_BVEC4: case ShaderLanguage::TYPE_IVEC4: case ShaderLanguage::TYPE_UVEC4: case ShaderLanguage::TYPE_VEC4: { memset(data, 0, 16 * p_array_size); } break; case ShaderLanguage::TYPE_MAT2: { memset(data, 0, 32 * p_array_size); } break; case ShaderLanguage::TYPE_MAT3: { memset(data, 0, 48 * p_array_size); } break; case ShaderLanguage::TYPE_MAT4: { memset(data, 0, 64 * p_array_size); } break; default: { } } } /////////////////////////////////////////////////////////////////////////// // MaterialStorage::MaterialData void MaterialStorage::MaterialData::update_uniform_buffer(const HashMap &p_uniforms, const uint32_t *p_uniform_offsets, const HashMap &p_parameters, uint8_t *p_buffer, uint32_t p_buffer_size, bool p_use_linear_color) { MaterialStorage *material_storage = MaterialStorage::get_singleton(); bool uses_global_buffer = false; for (const KeyValue &E : p_uniforms) { if (E.value.order < 0) { continue; // texture, does not go here } if (E.value.scope == ShaderLanguage::ShaderNode::Uniform::SCOPE_INSTANCE) { continue; //instance uniforms don't appear in the buffer } if (E.value.hint == ShaderLanguage::ShaderNode::Uniform::HINT_SCREEN_TEXTURE || E.value.hint == ShaderLanguage::ShaderNode::Uniform::HINT_NORMAL_ROUGHNESS_TEXTURE || E.value.hint == ShaderLanguage::ShaderNode::Uniform::HINT_DEPTH_TEXTURE) { continue; } if (E.value.scope == ShaderLanguage::ShaderNode::Uniform::SCOPE_GLOBAL) { //this is a global variable, get the index to it GlobalShaderUniforms::Variable *gv = material_storage->global_shader_uniforms.variables.getptr(E.key); uint32_t index = 0; if (gv) { index = gv->buffer_index; } else { WARN_PRINT("Shader uses global parameter '" + E.key + "', but it was removed at some point. Material will not display correctly."); } uint32_t offset = p_uniform_offsets[E.value.order]; uint32_t *intptr = (uint32_t *)&p_buffer[offset]; *intptr = index; uses_global_buffer = true; continue; } //regular uniform uint32_t offset = p_uniform_offsets[E.value.order]; #ifdef DEBUG_ENABLED uint32_t size = 0U; // The following code enforces a 16-byte alignment of uniform arrays. if (E.value.array_size > 0) { size = ShaderLanguage::get_datatype_size(E.value.type) * E.value.array_size; int m = (16 * E.value.array_size); if ((size % m) != 0U) { size += m - (size % m); } } else { size = ShaderLanguage::get_datatype_size(E.value.type); } ERR_CONTINUE(offset + size > p_buffer_size); #endif uint8_t *data = &p_buffer[offset]; HashMap::ConstIterator V = p_parameters.find(E.key); if (V) { //user provided _fill_std140_variant_ubo_value(E.value.type, E.value.array_size, V->value, data, p_use_linear_color); } else if (E.value.default_value.size()) { //default value _fill_std140_ubo_value(E.value.type, E.value.default_value, data); //value=E.value.default_value; } else { //zero because it was not provided if ((E.value.type == ShaderLanguage::TYPE_VEC3 || E.value.type == ShaderLanguage::TYPE_VEC4) && E.value.hint == ShaderLanguage::ShaderNode::Uniform::HINT_SOURCE_COLOR) { //colors must be set as black, with alpha as 1.0 _fill_std140_variant_ubo_value(E.value.type, E.value.array_size, Color(0, 0, 0, 1), data, p_use_linear_color); } else { //else just zero it out _fill_std140_ubo_empty(E.value.type, E.value.array_size, data); } } } if (uses_global_buffer != (global_buffer_E != nullptr)) { if (uses_global_buffer) { global_buffer_E = material_storage->global_shader_uniforms.materials_using_buffer.push_back(self); } else { material_storage->global_shader_uniforms.materials_using_buffer.erase(global_buffer_E); global_buffer_E = nullptr; } } } MaterialStorage::MaterialData::~MaterialData() { MaterialStorage *material_storage = MaterialStorage::get_singleton(); if (global_buffer_E) { //unregister global buffers material_storage->global_shader_uniforms.materials_using_buffer.erase(global_buffer_E); } if (global_texture_E) { //unregister global textures for (const KeyValue &E : used_global_textures) { GlobalShaderUniforms::Variable *v = material_storage->global_shader_uniforms.variables.getptr(E.key); if (v) { v->texture_materials.erase(self); } } //unregister material from those using global textures material_storage->global_shader_uniforms.materials_using_texture.erase(global_texture_E); } if (uniform_buffer.is_valid()) { RD::get_singleton()->free(uniform_buffer); } } void MaterialStorage::MaterialData::update_textures(const HashMap &p_parameters, const HashMap> &p_default_textures, const Vector &p_texture_uniforms, RID *p_textures, bool p_use_linear_color) { TextureStorage *texture_storage = TextureStorage::get_singleton(); MaterialStorage *material_storage = MaterialStorage::get_singleton(); #ifdef TOOLS_ENABLED TextureStorage::Texture *roughness_detect_texture = nullptr; RS::TextureDetectRoughnessChannel roughness_channel = RS::TEXTURE_DETECT_ROUGHNESS_R; TextureStorage::Texture *normal_detect_texture = nullptr; #endif bool uses_global_textures = false; global_textures_pass++; for (int i = 0, k = 0; i < p_texture_uniforms.size(); i++) { const StringName &uniform_name = p_texture_uniforms[i].name; int uniform_array_size = p_texture_uniforms[i].array_size; Vector textures; if (p_texture_uniforms[i].hint == ShaderLanguage::ShaderNode::Uniform::HINT_SCREEN_TEXTURE || p_texture_uniforms[i].hint == ShaderLanguage::ShaderNode::Uniform::HINT_NORMAL_ROUGHNESS_TEXTURE || p_texture_uniforms[i].hint == ShaderLanguage::ShaderNode::Uniform::HINT_DEPTH_TEXTURE) { continue; } if (p_texture_uniforms[i].global) { uses_global_textures = true; GlobalShaderUniforms::Variable *v = material_storage->global_shader_uniforms.variables.getptr(uniform_name); if (v) { if (v->buffer_index >= 0) { WARN_PRINT("Shader uses global parameter texture '" + String(uniform_name) + "', but it changed type and is no longer a texture!."); } else { HashMap::Iterator E = used_global_textures.find(uniform_name); if (!E) { E = used_global_textures.insert(uniform_name, global_textures_pass); v->texture_materials.insert(self); } else { E->value = global_textures_pass; } textures.push_back(v->override.get_type() != Variant::NIL ? v->override : v->value); } } else { WARN_PRINT("Shader uses global parameter texture '" + String(uniform_name) + "', but it was removed at some point. Material will not display correctly."); } } else { HashMap::ConstIterator V = p_parameters.find(uniform_name); if (V) { if (V->value.is_array()) { Array array = (Array)V->value; if (uniform_array_size > 0) { for (int j = 0; j < array.size(); j++) { textures.push_back(array[j]); } } else { if (array.size() > 0) { textures.push_back(array[0]); } } } else { textures.push_back(V->value); } } if (uniform_array_size > 0) { if (textures.size() < uniform_array_size) { HashMap>::ConstIterator W = p_default_textures.find(uniform_name); for (int j = textures.size(); j < uniform_array_size; j++) { if (W && W->value.has(j)) { textures.push_back(W->value[j]); } else { textures.push_back(RID()); } } } } else if (textures.is_empty()) { HashMap>::ConstIterator W = p_default_textures.find(uniform_name); if (W && W->value.has(0)) { textures.push_back(W->value[0]); } } } RID rd_texture; if (textures.is_empty()) { //check default usage switch (p_texture_uniforms[i].type) { case ShaderLanguage::TYPE_ISAMPLER2D: case ShaderLanguage::TYPE_USAMPLER2D: case ShaderLanguage::TYPE_SAMPLER2D: { switch (p_texture_uniforms[i].hint) { case ShaderLanguage::ShaderNode::Uniform::HINT_DEFAULT_BLACK: { rd_texture = texture_storage->texture_rd_get_default(TextureStorage::DEFAULT_RD_TEXTURE_BLACK); } break; case ShaderLanguage::ShaderNode::Uniform::HINT_DEFAULT_TRANSPARENT: { rd_texture = texture_storage->texture_rd_get_default(TextureStorage::DEFAULT_RD_TEXTURE_TRANSPARENT); } break; case ShaderLanguage::ShaderNode::Uniform::HINT_ANISOTROPY: { rd_texture = texture_storage->texture_rd_get_default(TextureStorage::DEFAULT_RD_TEXTURE_ANISO); } break; case ShaderLanguage::ShaderNode::Uniform::HINT_NORMAL: { rd_texture = texture_storage->texture_rd_get_default(TextureStorage::DEFAULT_RD_TEXTURE_NORMAL); } break; case ShaderLanguage::ShaderNode::Uniform::HINT_ROUGHNESS_NORMAL: { rd_texture = texture_storage->texture_rd_get_default(TextureStorage::DEFAULT_RD_TEXTURE_NORMAL); } break; default: { rd_texture = texture_storage->texture_rd_get_default(TextureStorage::DEFAULT_RD_TEXTURE_WHITE); } break; } } break; case ShaderLanguage::TYPE_SAMPLERCUBE: { switch (p_texture_uniforms[i].hint) { case ShaderLanguage::ShaderNode::Uniform::HINT_DEFAULT_BLACK: { rd_texture = texture_storage->texture_rd_get_default(TextureStorage::DEFAULT_RD_TEXTURE_CUBEMAP_BLACK); } break; default: { rd_texture = texture_storage->texture_rd_get_default(TextureStorage::DEFAULT_RD_TEXTURE_CUBEMAP_WHITE); } break; } } break; case ShaderLanguage::TYPE_SAMPLERCUBEARRAY: { rd_texture = texture_storage->texture_rd_get_default(TextureStorage::DEFAULT_RD_TEXTURE_CUBEMAP_ARRAY_BLACK); } break; case ShaderLanguage::TYPE_ISAMPLER3D: case ShaderLanguage::TYPE_USAMPLER3D: case ShaderLanguage::TYPE_SAMPLER3D: { rd_texture = texture_storage->texture_rd_get_default(TextureStorage::DEFAULT_RD_TEXTURE_3D_WHITE); } break; case ShaderLanguage::TYPE_ISAMPLER2DARRAY: case ShaderLanguage::TYPE_USAMPLER2DARRAY: case ShaderLanguage::TYPE_SAMPLER2DARRAY: { rd_texture = texture_storage->texture_rd_get_default(TextureStorage::DEFAULT_RD_TEXTURE_2D_ARRAY_WHITE); } break; default: { } } #ifdef TOOLS_ENABLED if (roughness_detect_texture && normal_detect_texture && !normal_detect_texture->path.is_empty()) { roughness_detect_texture->detect_roughness_callback(roughness_detect_texture->detect_roughness_callback_ud, normal_detect_texture->path, roughness_channel); } #endif if (uniform_array_size > 0) { for (int j = 0; j < uniform_array_size; j++) { p_textures[k++] = rd_texture; } } else { p_textures[k++] = rd_texture; } } else { bool srgb = p_use_linear_color && p_texture_uniforms[i].use_color; for (int j = 0; j < textures.size(); j++) { TextureStorage::Texture *tex = TextureStorage::get_singleton()->get_texture(textures[j]); if (tex) { rd_texture = (srgb && tex->rd_texture_srgb.is_valid()) ? tex->rd_texture_srgb : tex->rd_texture; #ifdef TOOLS_ENABLED if (tex->detect_3d_callback && p_use_linear_color) { tex->detect_3d_callback(tex->detect_3d_callback_ud); } if (tex->detect_normal_callback && (p_texture_uniforms[i].hint == ShaderLanguage::ShaderNode::Uniform::HINT_NORMAL || p_texture_uniforms[i].hint == ShaderLanguage::ShaderNode::Uniform::HINT_ROUGHNESS_NORMAL)) { if (p_texture_uniforms[i].hint == ShaderLanguage::ShaderNode::Uniform::HINT_ROUGHNESS_NORMAL) { normal_detect_texture = tex; } tex->detect_normal_callback(tex->detect_normal_callback_ud); } if (tex->detect_roughness_callback && (p_texture_uniforms[i].hint >= ShaderLanguage::ShaderNode::Uniform::HINT_ROUGHNESS_R || p_texture_uniforms[i].hint <= ShaderLanguage::ShaderNode::Uniform::HINT_ROUGHNESS_GRAY)) { //find the normal texture roughness_detect_texture = tex; roughness_channel = RS::TextureDetectRoughnessChannel(p_texture_uniforms[i].hint - ShaderLanguage::ShaderNode::Uniform::HINT_ROUGHNESS_R); } #endif } if (rd_texture.is_null()) { rd_texture = texture_storage->texture_rd_get_default(TextureStorage::DEFAULT_RD_TEXTURE_WHITE); } #ifdef TOOLS_ENABLED if (roughness_detect_texture && normal_detect_texture && !normal_detect_texture->path.is_empty()) { roughness_detect_texture->detect_roughness_callback(roughness_detect_texture->detect_roughness_callback_ud, normal_detect_texture->path, roughness_channel); } #endif p_textures[k++] = rd_texture; } } } { //for textures no longer used, unregister them List to_delete; for (KeyValue &E : used_global_textures) { if (E.value != global_textures_pass) { to_delete.push_back(E.key); GlobalShaderUniforms::Variable *v = material_storage->global_shader_uniforms.variables.getptr(E.key); if (v) { v->texture_materials.erase(self); } } } while (to_delete.front()) { used_global_textures.erase(to_delete.front()->get()); to_delete.pop_front(); } //handle registering/unregistering global textures if (uses_global_textures != (global_texture_E != nullptr)) { if (uses_global_textures) { global_texture_E = material_storage->global_shader_uniforms.materials_using_texture.push_back(self); } else { material_storage->global_shader_uniforms.materials_using_texture.erase(global_texture_E); global_texture_E = nullptr; } } } } void MaterialStorage::MaterialData::free_parameters_uniform_set(RID p_uniform_set) { if (p_uniform_set.is_valid() && RD::get_singleton()->uniform_set_is_valid(p_uniform_set)) { RD::get_singleton()->uniform_set_set_invalidation_callback(p_uniform_set, nullptr, nullptr); RD::get_singleton()->free(p_uniform_set); } } bool MaterialStorage::MaterialData::update_parameters_uniform_set(const HashMap &p_parameters, bool p_uniform_dirty, bool p_textures_dirty, const HashMap &p_uniforms, const uint32_t *p_uniform_offsets, const Vector &p_texture_uniforms, const HashMap> &p_default_texture_params, uint32_t p_ubo_size, RID &uniform_set, RID p_shader, uint32_t p_shader_uniform_set, uint32_t p_barrier) { if ((uint32_t)ubo_data.size() != p_ubo_size) { p_uniform_dirty = true; if (uniform_buffer.is_valid()) { RD::get_singleton()->free(uniform_buffer); uniform_buffer = RID(); } ubo_data.resize(p_ubo_size); if (ubo_data.size()) { uniform_buffer = RD::get_singleton()->uniform_buffer_create(ubo_data.size()); memset(ubo_data.ptrw(), 0, ubo_data.size()); //clear } //clear previous uniform set if (uniform_set.is_valid() && RD::get_singleton()->uniform_set_is_valid(uniform_set)) { RD::get_singleton()->uniform_set_set_invalidation_callback(uniform_set, nullptr, nullptr); RD::get_singleton()->free(uniform_set); uniform_set = RID(); } } //check whether buffer changed if (p_uniform_dirty && ubo_data.size()) { update_uniform_buffer(p_uniforms, p_uniform_offsets, p_parameters, ubo_data.ptrw(), ubo_data.size(), true); RD::get_singleton()->buffer_update(uniform_buffer, 0, ubo_data.size(), ubo_data.ptrw(), p_barrier); } uint32_t tex_uniform_count = 0U; for (int i = 0; i < p_texture_uniforms.size(); i++) { tex_uniform_count += uint32_t(p_texture_uniforms[i].array_size > 0 ? p_texture_uniforms[i].array_size : 1); } if ((uint32_t)texture_cache.size() != tex_uniform_count || p_textures_dirty) { texture_cache.resize(tex_uniform_count); p_textures_dirty = true; //clear previous uniform set if (uniform_set.is_valid() && RD::get_singleton()->uniform_set_is_valid(uniform_set)) { RD::get_singleton()->uniform_set_set_invalidation_callback(uniform_set, nullptr, nullptr); RD::get_singleton()->free(uniform_set); uniform_set = RID(); } } if (p_textures_dirty && tex_uniform_count) { update_textures(p_parameters, p_default_texture_params, p_texture_uniforms, texture_cache.ptrw(), true); } if (p_ubo_size == 0 && (p_texture_uniforms.size() == 0)) { // This material does not require an uniform set, so don't create it. return false; } if (!p_textures_dirty && uniform_set.is_valid() && RD::get_singleton()->uniform_set_is_valid(uniform_set)) { //no reason to update uniform set, only UBO (or nothing) was needed to update return false; } Vector uniforms; { if (p_ubo_size) { RD::Uniform u; u.uniform_type = RD::UNIFORM_TYPE_UNIFORM_BUFFER; u.binding = 0; u.append_id(uniform_buffer); uniforms.push_back(u); } const RID *textures = texture_cache.ptrw(); for (int i = 0, k = 0; i < p_texture_uniforms.size(); i++) { const int array_size = p_texture_uniforms[i].array_size; RD::Uniform u; u.uniform_type = RD::UNIFORM_TYPE_TEXTURE; u.binding = 1 + k; if (array_size > 0) { for (int j = 0; j < array_size; j++) { u.append_id(textures[k++]); } } else { u.append_id(textures[k++]); } uniforms.push_back(u); } } uniform_set = RD::get_singleton()->uniform_set_create(uniforms, p_shader, p_shader_uniform_set); RD::get_singleton()->uniform_set_set_invalidation_callback(uniform_set, MaterialStorage::_material_uniform_set_erased, &self); return true; } /////////////////////////////////////////////////////////////////////////// // MaterialStorage MaterialStorage *MaterialStorage::singleton = nullptr; MaterialStorage *MaterialStorage::get_singleton() { return singleton; } MaterialStorage::MaterialStorage() { singleton = this; //default samplers for (int i = 1; i < RS::CANVAS_ITEM_TEXTURE_FILTER_MAX; i++) { for (int j = 1; j < RS::CANVAS_ITEM_TEXTURE_REPEAT_MAX; j++) { RD::SamplerState sampler_state; switch (i) { case RS::CANVAS_ITEM_TEXTURE_FILTER_NEAREST: { sampler_state.mag_filter = RD::SAMPLER_FILTER_NEAREST; sampler_state.min_filter = RD::SAMPLER_FILTER_NEAREST; sampler_state.max_lod = 0; } break; case RS::CANVAS_ITEM_TEXTURE_FILTER_LINEAR: { sampler_state.mag_filter = RD::SAMPLER_FILTER_LINEAR; sampler_state.min_filter = RD::SAMPLER_FILTER_LINEAR; sampler_state.max_lod = 0; } break; case RS::CANVAS_ITEM_TEXTURE_FILTER_NEAREST_WITH_MIPMAPS: { sampler_state.mag_filter = RD::SAMPLER_FILTER_NEAREST; sampler_state.min_filter = RD::SAMPLER_FILTER_NEAREST; if (GLOBAL_GET("rendering/textures/default_filters/use_nearest_mipmap_filter")) { sampler_state.mip_filter = RD::SAMPLER_FILTER_NEAREST; } else { sampler_state.mip_filter = RD::SAMPLER_FILTER_LINEAR; } } break; case RS::CANVAS_ITEM_TEXTURE_FILTER_LINEAR_WITH_MIPMAPS: { sampler_state.mag_filter = RD::SAMPLER_FILTER_LINEAR; sampler_state.min_filter = RD::SAMPLER_FILTER_LINEAR; if (GLOBAL_GET("rendering/textures/default_filters/use_nearest_mipmap_filter")) { sampler_state.mip_filter = RD::SAMPLER_FILTER_NEAREST; } else { sampler_state.mip_filter = RD::SAMPLER_FILTER_LINEAR; } } break; case RS::CANVAS_ITEM_TEXTURE_FILTER_NEAREST_WITH_MIPMAPS_ANISOTROPIC: { sampler_state.mag_filter = RD::SAMPLER_FILTER_NEAREST; sampler_state.min_filter = RD::SAMPLER_FILTER_NEAREST; if (GLOBAL_GET("rendering/textures/default_filters/use_nearest_mipmap_filter")) { sampler_state.mip_filter = RD::SAMPLER_FILTER_NEAREST; } else { sampler_state.mip_filter = RD::SAMPLER_FILTER_LINEAR; } sampler_state.use_anisotropy = true; sampler_state.anisotropy_max = 1 << int(GLOBAL_GET("rendering/textures/default_filters/anisotropic_filtering_level")); } break; case RS::CANVAS_ITEM_TEXTURE_FILTER_LINEAR_WITH_MIPMAPS_ANISOTROPIC: { sampler_state.mag_filter = RD::SAMPLER_FILTER_LINEAR; sampler_state.min_filter = RD::SAMPLER_FILTER_LINEAR; if (GLOBAL_GET("rendering/textures/default_filters/use_nearest_mipmap_filter")) { sampler_state.mip_filter = RD::SAMPLER_FILTER_NEAREST; } else { sampler_state.mip_filter = RD::SAMPLER_FILTER_LINEAR; } sampler_state.use_anisotropy = true; sampler_state.anisotropy_max = 1 << int(GLOBAL_GET("rendering/textures/default_filters/anisotropic_filtering_level")); } break; default: { } } switch (j) { case RS::CANVAS_ITEM_TEXTURE_REPEAT_DISABLED: { sampler_state.repeat_u = RD::SAMPLER_REPEAT_MODE_CLAMP_TO_EDGE; sampler_state.repeat_v = RD::SAMPLER_REPEAT_MODE_CLAMP_TO_EDGE; sampler_state.repeat_w = RD::SAMPLER_REPEAT_MODE_CLAMP_TO_EDGE; } break; case RS::CANVAS_ITEM_TEXTURE_REPEAT_ENABLED: { sampler_state.repeat_u = RD::SAMPLER_REPEAT_MODE_REPEAT; sampler_state.repeat_v = RD::SAMPLER_REPEAT_MODE_REPEAT; sampler_state.repeat_w = RD::SAMPLER_REPEAT_MODE_REPEAT; } break; case RS::CANVAS_ITEM_TEXTURE_REPEAT_MIRROR: { sampler_state.repeat_u = RD::SAMPLER_REPEAT_MODE_MIRRORED_REPEAT; sampler_state.repeat_v = RD::SAMPLER_REPEAT_MODE_MIRRORED_REPEAT; sampler_state.repeat_w = RD::SAMPLER_REPEAT_MODE_MIRRORED_REPEAT; } break; default: { } } default_rd_samplers[i][j] = RD::get_singleton()->sampler_create(sampler_state); } } //custom sampler sampler_rd_configure_custom(0.0f); // buffers { //create index array for copy shaders Vector pv; pv.resize(6 * 4); { uint8_t *w = pv.ptrw(); int *p32 = (int *)w; p32[0] = 0; p32[1] = 1; p32[2] = 2; p32[3] = 0; p32[4] = 2; p32[5] = 3; } quad_index_buffer = RD::get_singleton()->index_buffer_create(6, RenderingDevice::INDEX_BUFFER_FORMAT_UINT32, pv); quad_index_array = RD::get_singleton()->index_array_create(quad_index_buffer, 0, 6); } // Shaders for (int i = 0; i < SHADER_TYPE_MAX; i++) { shader_data_request_func[i] = nullptr; } static_assert(sizeof(GlobalShaderUniforms::Value) == 16); global_shader_uniforms.buffer_size = MAX(4096, (int)GLOBAL_GET("rendering/limits/global_shader_variables/buffer_size")); global_shader_uniforms.buffer_values = memnew_arr(GlobalShaderUniforms::Value, global_shader_uniforms.buffer_size); memset(global_shader_uniforms.buffer_values, 0, sizeof(GlobalShaderUniforms::Value) * global_shader_uniforms.buffer_size); global_shader_uniforms.buffer_usage = memnew_arr(GlobalShaderUniforms::ValueUsage, global_shader_uniforms.buffer_size); global_shader_uniforms.buffer_dirty_regions = memnew_arr(bool, global_shader_uniforms.buffer_size / GlobalShaderUniforms::BUFFER_DIRTY_REGION_SIZE); memset(global_shader_uniforms.buffer_dirty_regions, 0, sizeof(bool) * global_shader_uniforms.buffer_size / GlobalShaderUniforms::BUFFER_DIRTY_REGION_SIZE); global_shader_uniforms.buffer = RD::get_singleton()->storage_buffer_create(sizeof(GlobalShaderUniforms::Value) * global_shader_uniforms.buffer_size); } MaterialStorage::~MaterialStorage() { memdelete_arr(global_shader_uniforms.buffer_values); memdelete_arr(global_shader_uniforms.buffer_usage); memdelete_arr(global_shader_uniforms.buffer_dirty_regions); RD::get_singleton()->free(global_shader_uniforms.buffer); // buffers RD::get_singleton()->free(quad_index_buffer); //array gets freed as dependency //def samplers for (int i = 1; i < RS::CANVAS_ITEM_TEXTURE_FILTER_MAX; i++) { for (int j = 1; j < RS::CANVAS_ITEM_TEXTURE_REPEAT_MAX; j++) { RD::get_singleton()->free(default_rd_samplers[i][j]); } } //custom samplers for (int i = 1; i < RS::CANVAS_ITEM_TEXTURE_FILTER_MAX; i++) { for (int j = 0; j < RS::CANVAS_ITEM_TEXTURE_REPEAT_MAX; j++) { if (custom_rd_samplers[i][j].is_valid()) { RD::get_singleton()->free(custom_rd_samplers[i][j]); } } } singleton = nullptr; } /* Samplers */ void MaterialStorage::sampler_rd_configure_custom(float p_mipmap_bias) { for (int i = 1; i < RS::CANVAS_ITEM_TEXTURE_FILTER_MAX; i++) { for (int j = 1; j < RS::CANVAS_ITEM_TEXTURE_REPEAT_MAX; j++) { RD::SamplerState sampler_state; switch (i) { case RS::CANVAS_ITEM_TEXTURE_FILTER_NEAREST: { sampler_state.mag_filter = RD::SAMPLER_FILTER_NEAREST; sampler_state.min_filter = RD::SAMPLER_FILTER_NEAREST; sampler_state.max_lod = 0; } break; case RS::CANVAS_ITEM_TEXTURE_FILTER_LINEAR: { sampler_state.mag_filter = RD::SAMPLER_FILTER_LINEAR; sampler_state.min_filter = RD::SAMPLER_FILTER_LINEAR; sampler_state.max_lod = 0; } break; case RS::CANVAS_ITEM_TEXTURE_FILTER_NEAREST_WITH_MIPMAPS: { sampler_state.mag_filter = RD::SAMPLER_FILTER_NEAREST; sampler_state.min_filter = RD::SAMPLER_FILTER_NEAREST; if (GLOBAL_GET("rendering/textures/default_filters/use_nearest_mipmap_filter")) { sampler_state.mip_filter = RD::SAMPLER_FILTER_NEAREST; } else { sampler_state.mip_filter = RD::SAMPLER_FILTER_LINEAR; } sampler_state.lod_bias = p_mipmap_bias; } break; case RS::CANVAS_ITEM_TEXTURE_FILTER_LINEAR_WITH_MIPMAPS: { sampler_state.mag_filter = RD::SAMPLER_FILTER_LINEAR; sampler_state.min_filter = RD::SAMPLER_FILTER_LINEAR; if (GLOBAL_GET("rendering/textures/default_filters/use_nearest_mipmap_filter")) { sampler_state.mip_filter = RD::SAMPLER_FILTER_NEAREST; } else { sampler_state.mip_filter = RD::SAMPLER_FILTER_LINEAR; } sampler_state.lod_bias = p_mipmap_bias; } break; case RS::CANVAS_ITEM_TEXTURE_FILTER_NEAREST_WITH_MIPMAPS_ANISOTROPIC: { sampler_state.mag_filter = RD::SAMPLER_FILTER_NEAREST; sampler_state.min_filter = RD::SAMPLER_FILTER_NEAREST; if (GLOBAL_GET("rendering/textures/default_filters/use_nearest_mipmap_filter")) { sampler_state.mip_filter = RD::SAMPLER_FILTER_NEAREST; } else { sampler_state.mip_filter = RD::SAMPLER_FILTER_LINEAR; } sampler_state.lod_bias = p_mipmap_bias; sampler_state.use_anisotropy = true; sampler_state.anisotropy_max = 1 << int(GLOBAL_GET("rendering/textures/default_filters/anisotropic_filtering_level")); } break; case RS::CANVAS_ITEM_TEXTURE_FILTER_LINEAR_WITH_MIPMAPS_ANISOTROPIC: { sampler_state.mag_filter = RD::SAMPLER_FILTER_LINEAR; sampler_state.min_filter = RD::SAMPLER_FILTER_LINEAR; if (GLOBAL_GET("rendering/textures/default_filters/use_nearest_mipmap_filter")) { sampler_state.mip_filter = RD::SAMPLER_FILTER_NEAREST; } else { sampler_state.mip_filter = RD::SAMPLER_FILTER_LINEAR; } sampler_state.lod_bias = p_mipmap_bias; sampler_state.use_anisotropy = true; sampler_state.anisotropy_max = 1 << int(GLOBAL_GET("rendering/textures/default_filters/anisotropic_filtering_level")); } break; default: { } } switch (j) { case RS::CANVAS_ITEM_TEXTURE_REPEAT_DISABLED: { sampler_state.repeat_u = RD::SAMPLER_REPEAT_MODE_CLAMP_TO_EDGE; sampler_state.repeat_v = RD::SAMPLER_REPEAT_MODE_CLAMP_TO_EDGE; sampler_state.repeat_w = RD::SAMPLER_REPEAT_MODE_CLAMP_TO_EDGE; } break; case RS::CANVAS_ITEM_TEXTURE_REPEAT_ENABLED: { sampler_state.repeat_u = RD::SAMPLER_REPEAT_MODE_REPEAT; sampler_state.repeat_v = RD::SAMPLER_REPEAT_MODE_REPEAT; sampler_state.repeat_w = RD::SAMPLER_REPEAT_MODE_REPEAT; } break; case RS::CANVAS_ITEM_TEXTURE_REPEAT_MIRROR: { sampler_state.repeat_u = RD::SAMPLER_REPEAT_MODE_MIRRORED_REPEAT; sampler_state.repeat_v = RD::SAMPLER_REPEAT_MODE_MIRRORED_REPEAT; sampler_state.repeat_w = RD::SAMPLER_REPEAT_MODE_MIRRORED_REPEAT; } break; default: { } } if (custom_rd_samplers[i][j].is_valid()) { RD::get_singleton()->free(custom_rd_samplers[i][j]); } custom_rd_samplers[i][j] = RD::get_singleton()->sampler_create(sampler_state); } } } /* GLOBAL SHADER UNIFORM API */ int32_t MaterialStorage::_global_shader_uniform_allocate(uint32_t p_elements) { int32_t idx = 0; while (idx + p_elements <= global_shader_uniforms.buffer_size) { if (global_shader_uniforms.buffer_usage[idx].elements == 0) { bool valid = true; for (uint32_t i = 1; i < p_elements; i++) { if (global_shader_uniforms.buffer_usage[idx + i].elements > 0) { valid = false; idx += i + global_shader_uniforms.buffer_usage[idx + i].elements; break; } } if (!valid) { continue; //if not valid, idx is in new position } return idx; } else { idx += global_shader_uniforms.buffer_usage[idx].elements; } } return -1; } void MaterialStorage::_global_shader_uniform_store_in_buffer(int32_t p_index, RS::GlobalShaderParameterType p_type, const Variant &p_value) { switch (p_type) { case RS::GLOBAL_VAR_TYPE_BOOL: { GlobalShaderUniforms::Value &bv = global_shader_uniforms.buffer_values[p_index]; bool b = p_value; bv.x = b ? 1.0 : 0.0; bv.y = 0.0; bv.z = 0.0; bv.w = 0.0; } break; case RS::GLOBAL_VAR_TYPE_BVEC2: { GlobalShaderUniforms::Value &bv = global_shader_uniforms.buffer_values[p_index]; uint32_t bvec = p_value; bv.x = (bvec & 1) ? 1.0 : 0.0; bv.y = (bvec & 2) ? 1.0 : 0.0; bv.z = 0.0; bv.w = 0.0; } break; case RS::GLOBAL_VAR_TYPE_BVEC3: { GlobalShaderUniforms::Value &bv = global_shader_uniforms.buffer_values[p_index]; uint32_t bvec = p_value; bv.x = (bvec & 1) ? 1.0 : 0.0; bv.y = (bvec & 2) ? 1.0 : 0.0; bv.z = (bvec & 4) ? 1.0 : 0.0; bv.w = 0.0; } break; case RS::GLOBAL_VAR_TYPE_BVEC4: { GlobalShaderUniforms::Value &bv = global_shader_uniforms.buffer_values[p_index]; uint32_t bvec = p_value; bv.x = (bvec & 1) ? 1.0 : 0.0; bv.y = (bvec & 2) ? 1.0 : 0.0; bv.z = (bvec & 4) ? 1.0 : 0.0; bv.w = (bvec & 8) ? 1.0 : 0.0; } break; case RS::GLOBAL_VAR_TYPE_INT: { GlobalShaderUniforms::ValueInt &bv = *(GlobalShaderUniforms::ValueInt *)&global_shader_uniforms.buffer_values[p_index]; int32_t v = p_value; bv.x = v; bv.y = 0; bv.z = 0; bv.w = 0; } break; case RS::GLOBAL_VAR_TYPE_IVEC2: { GlobalShaderUniforms::ValueInt &bv = *(GlobalShaderUniforms::ValueInt *)&global_shader_uniforms.buffer_values[p_index]; Vector2i v = p_value; bv.x = v.x; bv.y = v.y; bv.z = 0; bv.w = 0; } break; case RS::GLOBAL_VAR_TYPE_IVEC3: { GlobalShaderUniforms::ValueInt &bv = *(GlobalShaderUniforms::ValueInt *)&global_shader_uniforms.buffer_values[p_index]; Vector3i v = p_value; bv.x = v.x; bv.y = v.y; bv.z = v.z; bv.w = 0; } break; case RS::GLOBAL_VAR_TYPE_IVEC4: { GlobalShaderUniforms::ValueInt &bv = *(GlobalShaderUniforms::ValueInt *)&global_shader_uniforms.buffer_values[p_index]; Vector v = p_value; bv.x = v.size() >= 1 ? v[0] : 0; bv.y = v.size() >= 2 ? v[1] : 0; bv.z = v.size() >= 3 ? v[2] : 0; bv.w = v.size() >= 4 ? v[3] : 0; } break; case RS::GLOBAL_VAR_TYPE_RECT2I: { GlobalShaderUniforms::ValueInt &bv = *(GlobalShaderUniforms::ValueInt *)&global_shader_uniforms.buffer_values[p_index]; Rect2i v = p_value; bv.x = v.position.x; bv.y = v.position.y; bv.z = v.size.x; bv.w = v.size.y; } break; case RS::GLOBAL_VAR_TYPE_UINT: { GlobalShaderUniforms::ValueUInt &bv = *(GlobalShaderUniforms::ValueUInt *)&global_shader_uniforms.buffer_values[p_index]; uint32_t v = p_value; bv.x = v; bv.y = 0; bv.z = 0; bv.w = 0; } break; case RS::GLOBAL_VAR_TYPE_UVEC2: { GlobalShaderUniforms::ValueUInt &bv = *(GlobalShaderUniforms::ValueUInt *)&global_shader_uniforms.buffer_values[p_index]; Vector2i v = p_value; bv.x = v.x; bv.y = v.y; bv.z = 0; bv.w = 0; } break; case RS::GLOBAL_VAR_TYPE_UVEC3: { GlobalShaderUniforms::ValueUInt &bv = *(GlobalShaderUniforms::ValueUInt *)&global_shader_uniforms.buffer_values[p_index]; Vector3i v = p_value; bv.x = v.x; bv.y = v.y; bv.z = v.z; bv.w = 0; } break; case RS::GLOBAL_VAR_TYPE_UVEC4: { GlobalShaderUniforms::ValueUInt &bv = *(GlobalShaderUniforms::ValueUInt *)&global_shader_uniforms.buffer_values[p_index]; Vector v = p_value; bv.x = v.size() >= 1 ? v[0] : 0; bv.y = v.size() >= 2 ? v[1] : 0; bv.z = v.size() >= 3 ? v[2] : 0; bv.w = v.size() >= 4 ? v[3] : 0; } break; case RS::GLOBAL_VAR_TYPE_FLOAT: { GlobalShaderUniforms::Value &bv = global_shader_uniforms.buffer_values[p_index]; float v = p_value; bv.x = v; bv.y = 0; bv.z = 0; bv.w = 0; } break; case RS::GLOBAL_VAR_TYPE_VEC2: { GlobalShaderUniforms::Value &bv = global_shader_uniforms.buffer_values[p_index]; Vector2 v = p_value; bv.x = v.x; bv.y = v.y; bv.z = 0; bv.w = 0; } break; case RS::GLOBAL_VAR_TYPE_VEC3: { GlobalShaderUniforms::Value &bv = global_shader_uniforms.buffer_values[p_index]; Vector3 v = p_value; bv.x = v.x; bv.y = v.y; bv.z = v.z; bv.w = 0; } break; case RS::GLOBAL_VAR_TYPE_VEC4: { GlobalShaderUniforms::Value &bv = global_shader_uniforms.buffer_values[p_index]; Plane v = p_value; bv.x = v.normal.x; bv.y = v.normal.y; bv.z = v.normal.z; bv.w = v.d; } break; case RS::GLOBAL_VAR_TYPE_COLOR: { GlobalShaderUniforms::Value &bv = global_shader_uniforms.buffer_values[p_index]; Color v = p_value; bv.x = v.r; bv.y = v.g; bv.z = v.b; bv.w = v.a; GlobalShaderUniforms::Value &bv_linear = global_shader_uniforms.buffer_values[p_index + 1]; v = v.srgb_to_linear(); bv_linear.x = v.r; bv_linear.y = v.g; bv_linear.z = v.b; bv_linear.w = v.a; } break; case RS::GLOBAL_VAR_TYPE_RECT2: { GlobalShaderUniforms::Value &bv = global_shader_uniforms.buffer_values[p_index]; Rect2 v = p_value; bv.x = v.position.x; bv.y = v.position.y; bv.z = v.size.x; bv.w = v.size.y; } break; case RS::GLOBAL_VAR_TYPE_MAT2: { GlobalShaderUniforms::Value *bv = &global_shader_uniforms.buffer_values[p_index]; Vector m2 = p_value; if (m2.size() < 4) { m2.resize(4); } bv[0].x = m2[0]; bv[0].y = m2[1]; bv[0].z = 0; bv[0].w = 0; bv[1].x = m2[2]; bv[1].y = m2[3]; bv[1].z = 0; bv[1].w = 0; } break; case RS::GLOBAL_VAR_TYPE_MAT3: { GlobalShaderUniforms::Value *bv = &global_shader_uniforms.buffer_values[p_index]; Basis v = p_value; bv[0].x = v.rows[0][0]; bv[0].y = v.rows[1][0]; bv[0].z = v.rows[2][0]; bv[0].w = 0; bv[1].x = v.rows[0][1]; bv[1].y = v.rows[1][1]; bv[1].z = v.rows[2][1]; bv[1].w = 0; bv[2].x = v.rows[0][2]; bv[2].y = v.rows[1][2]; bv[2].z = v.rows[2][2]; bv[2].w = 0; } break; case RS::GLOBAL_VAR_TYPE_MAT4: { GlobalShaderUniforms::Value *bv = &global_shader_uniforms.buffer_values[p_index]; Vector m2 = p_value; if (m2.size() < 16) { m2.resize(16); } bv[0].x = m2[0]; bv[0].y = m2[1]; bv[0].z = m2[2]; bv[0].w = m2[3]; bv[1].x = m2[4]; bv[1].y = m2[5]; bv[1].z = m2[6]; bv[1].w = m2[7]; bv[2].x = m2[8]; bv[2].y = m2[9]; bv[2].z = m2[10]; bv[2].w = m2[11]; bv[3].x = m2[12]; bv[3].y = m2[13]; bv[3].z = m2[14]; bv[3].w = m2[15]; } break; case RS::GLOBAL_VAR_TYPE_TRANSFORM_2D: { GlobalShaderUniforms::Value *bv = &global_shader_uniforms.buffer_values[p_index]; Transform2D v = p_value; bv[0].x = v.columns[0][0]; bv[0].y = v.columns[0][1]; bv[0].z = 0; bv[0].w = 0; bv[1].x = v.columns[1][0]; bv[1].y = v.columns[1][1]; bv[1].z = 0; bv[1].w = 0; bv[2].x = v.columns[2][0]; bv[2].y = v.columns[2][1]; bv[2].z = 1; bv[2].w = 0; } break; case RS::GLOBAL_VAR_TYPE_TRANSFORM: { GlobalShaderUniforms::Value *bv = &global_shader_uniforms.buffer_values[p_index]; Transform3D v = p_value; bv[0].x = v.basis.rows[0][0]; bv[0].y = v.basis.rows[1][0]; bv[0].z = v.basis.rows[2][0]; bv[0].w = 0; bv[1].x = v.basis.rows[0][1]; bv[1].y = v.basis.rows[1][1]; bv[1].z = v.basis.rows[2][1]; bv[1].w = 0; bv[2].x = v.basis.rows[0][2]; bv[2].y = v.basis.rows[1][2]; bv[2].z = v.basis.rows[2][2]; bv[2].w = 0; bv[3].x = v.origin.x; bv[3].y = v.origin.y; bv[3].z = v.origin.z; bv[3].w = 1; } break; default: { ERR_FAIL(); } } } void MaterialStorage::_global_shader_uniform_mark_buffer_dirty(int32_t p_index, int32_t p_elements) { int32_t prev_chunk = -1; for (int32_t i = 0; i < p_elements; i++) { int32_t chunk = (p_index + i) / GlobalShaderUniforms::BUFFER_DIRTY_REGION_SIZE; if (chunk != prev_chunk) { if (!global_shader_uniforms.buffer_dirty_regions[chunk]) { global_shader_uniforms.buffer_dirty_regions[chunk] = true; global_shader_uniforms.buffer_dirty_region_count++; } } prev_chunk = chunk; } } void MaterialStorage::global_shader_parameter_add(const StringName &p_name, RS::GlobalShaderParameterType p_type, const Variant &p_value) { ERR_FAIL_COND(global_shader_uniforms.variables.has(p_name)); GlobalShaderUniforms::Variable gv; gv.type = p_type; gv.value = p_value; gv.buffer_index = -1; if (p_type >= RS::GLOBAL_VAR_TYPE_SAMPLER2D) { //is texture global_shader_uniforms.must_update_texture_materials = true; //normally there are none } else { gv.buffer_elements = 1; if (p_type == RS::GLOBAL_VAR_TYPE_COLOR || p_type == RS::GLOBAL_VAR_TYPE_MAT2) { //color needs to elements to store srgb and linear gv.buffer_elements = 2; } if (p_type == RS::GLOBAL_VAR_TYPE_MAT3 || p_type == RS::GLOBAL_VAR_TYPE_TRANSFORM_2D) { //color needs to elements to store srgb and linear gv.buffer_elements = 3; } if (p_type == RS::GLOBAL_VAR_TYPE_MAT4 || p_type == RS::GLOBAL_VAR_TYPE_TRANSFORM) { //color needs to elements to store srgb and linear gv.buffer_elements = 4; } //is vector, allocate in buffer and update index gv.buffer_index = _global_shader_uniform_allocate(gv.buffer_elements); ERR_FAIL_COND_MSG(gv.buffer_index < 0, vformat("Failed allocating global variable '%s' out of buffer memory. Consider increasing it in the Project Settings.", String(p_name))); global_shader_uniforms.buffer_usage[gv.buffer_index].elements = gv.buffer_elements; _global_shader_uniform_store_in_buffer(gv.buffer_index, gv.type, gv.value); _global_shader_uniform_mark_buffer_dirty(gv.buffer_index, gv.buffer_elements); global_shader_uniforms.must_update_buffer_materials = true; //normally there are none } global_shader_uniforms.variables[p_name] = gv; } void MaterialStorage::global_shader_parameter_remove(const StringName &p_name) { if (!global_shader_uniforms.variables.has(p_name)) { return; } const GlobalShaderUniforms::Variable &gv = global_shader_uniforms.variables[p_name]; if (gv.buffer_index >= 0) { global_shader_uniforms.buffer_usage[gv.buffer_index].elements = 0; global_shader_uniforms.must_update_buffer_materials = true; } else { global_shader_uniforms.must_update_texture_materials = true; } global_shader_uniforms.variables.erase(p_name); } Vector MaterialStorage::global_shader_parameter_get_list() const { if (!Engine::get_singleton()->is_editor_hint()) { ERR_FAIL_V_MSG(Vector(), "This function should never be used outside the editor, it can severely damage performance."); } Vector names; for (const KeyValue &E : global_shader_uniforms.variables) { names.push_back(E.key); } names.sort_custom(); return names; } void MaterialStorage::global_shader_parameter_set(const StringName &p_name, const Variant &p_value) { ERR_FAIL_COND(!global_shader_uniforms.variables.has(p_name)); GlobalShaderUniforms::Variable &gv = global_shader_uniforms.variables[p_name]; gv.value = p_value; if (gv.override.get_type() == Variant::NIL) { if (gv.buffer_index >= 0) { //buffer _global_shader_uniform_store_in_buffer(gv.buffer_index, gv.type, gv.value); _global_shader_uniform_mark_buffer_dirty(gv.buffer_index, gv.buffer_elements); } else { //texture MaterialStorage *material_storage = MaterialStorage::get_singleton(); for (const RID &E : gv.texture_materials) { Material *material = material_storage->get_material(E); ERR_CONTINUE(!material); material_storage->_material_queue_update(material, false, true); } } } } void MaterialStorage::global_shader_parameter_set_override(const StringName &p_name, const Variant &p_value) { if (!global_shader_uniforms.variables.has(p_name)) { return; //variable may not exist } ERR_FAIL_COND(p_value.get_type() == Variant::OBJECT); GlobalShaderUniforms::Variable &gv = global_shader_uniforms.variables[p_name]; gv.override = p_value; if (gv.buffer_index >= 0) { //buffer if (gv.override.get_type() == Variant::NIL) { _global_shader_uniform_store_in_buffer(gv.buffer_index, gv.type, gv.value); } else { _global_shader_uniform_store_in_buffer(gv.buffer_index, gv.type, gv.override); } _global_shader_uniform_mark_buffer_dirty(gv.buffer_index, gv.buffer_elements); } else { //texture MaterialStorage *material_storage = MaterialStorage::get_singleton(); for (const RID &E : gv.texture_materials) { Material *material = material_storage->get_material(E); ERR_CONTINUE(!material); material_storage->_material_queue_update(material, false, true); } } } Variant MaterialStorage::global_shader_parameter_get(const StringName &p_name) const { if (!Engine::get_singleton()->is_editor_hint()) { ERR_FAIL_V_MSG(Variant(), "This function should never be used outside the editor, it can severely damage performance."); } if (!global_shader_uniforms.variables.has(p_name)) { return Variant(); } return global_shader_uniforms.variables[p_name].value; } RS::GlobalShaderParameterType MaterialStorage::global_shader_parameter_get_type_internal(const StringName &p_name) const { if (!global_shader_uniforms.variables.has(p_name)) { return RS::GLOBAL_VAR_TYPE_MAX; } return global_shader_uniforms.variables[p_name].type; } RS::GlobalShaderParameterType MaterialStorage::global_shader_parameter_get_type(const StringName &p_name) const { if (!Engine::get_singleton()->is_editor_hint()) { ERR_FAIL_V_MSG(RS::GLOBAL_VAR_TYPE_MAX, "This function should never be used outside the editor, it can severely damage performance."); } return global_shader_parameter_get_type_internal(p_name); } void MaterialStorage::global_shader_parameters_load_settings(bool p_load_textures) { List settings; ProjectSettings::get_singleton()->get_property_list(&settings); for (const PropertyInfo &E : settings) { if (E.name.begins_with("shader_globals/")) { StringName name = E.name.get_slice("/", 1); Dictionary d = ProjectSettings::get_singleton()->get(E.name); ERR_CONTINUE(!d.has("type")); ERR_CONTINUE(!d.has("value")); String type = d["type"]; static const char *global_var_type_names[RS::GLOBAL_VAR_TYPE_MAX] = { "bool", "bvec2", "bvec3", "bvec4", "int", "ivec2", "ivec3", "ivec4", "rect2i", "uint", "uvec2", "uvec3", "uvec4", "float", "vec2", "vec3", "vec4", "color", "rect2", "mat2", "mat3", "mat4", "transform_2d", "transform", "sampler2D", "sampler2DArray", "sampler3D", "samplerCube", }; RS::GlobalShaderParameterType gvtype = RS::GLOBAL_VAR_TYPE_MAX; for (int i = 0; i < RS::GLOBAL_VAR_TYPE_MAX; i++) { if (global_var_type_names[i] == type) { gvtype = RS::GlobalShaderParameterType(i); break; } } ERR_CONTINUE(gvtype == RS::GLOBAL_VAR_TYPE_MAX); //type invalid Variant value = d["value"]; if (gvtype >= RS::GLOBAL_VAR_TYPE_SAMPLER2D) { //textire if (!p_load_textures) { value = RID(); continue; } String path = value; Ref resource = ResourceLoader::load(path); ERR_CONTINUE(resource.is_null()); value = resource; } if (global_shader_uniforms.variables.has(name)) { //has it, update it global_shader_parameter_set(name, value); } else { global_shader_parameter_add(name, gvtype, value); } } } } void MaterialStorage::global_shader_parameters_clear() { global_shader_uniforms.variables.clear(); //not right but for now enough } RID MaterialStorage::global_shader_uniforms_get_storage_buffer() const { return global_shader_uniforms.buffer; } int32_t MaterialStorage::global_shader_parameters_instance_allocate(RID p_instance) { ERR_FAIL_COND_V(global_shader_uniforms.instance_buffer_pos.has(p_instance), -1); int32_t pos = _global_shader_uniform_allocate(ShaderLanguage::MAX_INSTANCE_UNIFORM_INDICES); global_shader_uniforms.instance_buffer_pos[p_instance] = pos; //save anyway ERR_FAIL_COND_V_MSG(pos < 0, -1, "Too many instances using shader instance variables. Increase buffer size in Project Settings."); global_shader_uniforms.buffer_usage[pos].elements = ShaderLanguage::MAX_INSTANCE_UNIFORM_INDICES; return pos; } void MaterialStorage::global_shader_parameters_instance_free(RID p_instance) { ERR_FAIL_COND(!global_shader_uniforms.instance_buffer_pos.has(p_instance)); int32_t pos = global_shader_uniforms.instance_buffer_pos[p_instance]; if (pos >= 0) { global_shader_uniforms.buffer_usage[pos].elements = 0; } global_shader_uniforms.instance_buffer_pos.erase(p_instance); } void MaterialStorage::global_shader_parameters_instance_update(RID p_instance, int p_index, const Variant &p_value) { if (!global_shader_uniforms.instance_buffer_pos.has(p_instance)) { return; //just not allocated, ignore } int32_t pos = global_shader_uniforms.instance_buffer_pos[p_instance]; if (pos < 0) { return; //again, not allocated, ignore } ERR_FAIL_INDEX(p_index, ShaderLanguage::MAX_INSTANCE_UNIFORM_INDICES); ERR_FAIL_COND_MSG(p_value.get_type() > Variant::COLOR, "Unsupported variant type for instance parameter: " + Variant::get_type_name(p_value.get_type())); //anything greater not supported const ShaderLanguage::DataType datatype_from_value[Variant::COLOR + 1] = { ShaderLanguage::TYPE_MAX, //nil ShaderLanguage::TYPE_BOOL, //bool ShaderLanguage::TYPE_INT, //int ShaderLanguage::TYPE_FLOAT, //float ShaderLanguage::TYPE_MAX, //string ShaderLanguage::TYPE_VEC2, //vec2 ShaderLanguage::TYPE_IVEC2, //vec2i ShaderLanguage::TYPE_VEC4, //rect2 ShaderLanguage::TYPE_IVEC4, //rect2i ShaderLanguage::TYPE_VEC3, // vec3 ShaderLanguage::TYPE_IVEC3, //vec3i ShaderLanguage::TYPE_MAX, //xform2d not supported here ShaderLanguage::TYPE_VEC4, //vec4 ShaderLanguage::TYPE_IVEC4, //vec4i ShaderLanguage::TYPE_VEC4, //plane ShaderLanguage::TYPE_VEC4, //quat ShaderLanguage::TYPE_MAX, //aabb not supported here ShaderLanguage::TYPE_MAX, //basis not supported here ShaderLanguage::TYPE_MAX, //xform not supported here ShaderLanguage::TYPE_MAX, //projection not supported here ShaderLanguage::TYPE_VEC4 //color }; ShaderLanguage::DataType datatype = datatype_from_value[p_value.get_type()]; ERR_FAIL_COND_MSG(datatype == ShaderLanguage::TYPE_MAX, "Unsupported variant type for instance parameter: " + Variant::get_type_name(p_value.get_type())); //anything greater not supported pos += p_index; _fill_std140_variant_ubo_value(datatype, 0, p_value, (uint8_t *)&global_shader_uniforms.buffer_values[pos], true); //instances always use linear color in this renderer _global_shader_uniform_mark_buffer_dirty(pos, 1); } void MaterialStorage::_update_global_shader_uniforms() { MaterialStorage *material_storage = MaterialStorage::get_singleton(); if (global_shader_uniforms.buffer_dirty_region_count > 0) { uint32_t total_regions = global_shader_uniforms.buffer_size / GlobalShaderUniforms::BUFFER_DIRTY_REGION_SIZE; if (total_regions / global_shader_uniforms.buffer_dirty_region_count <= 4) { // 25% of regions dirty, just update all buffer RD::get_singleton()->buffer_update(global_shader_uniforms.buffer, 0, sizeof(GlobalShaderUniforms::Value) * global_shader_uniforms.buffer_size, global_shader_uniforms.buffer_values); memset(global_shader_uniforms.buffer_dirty_regions, 0, sizeof(bool) * total_regions); } else { uint32_t region_byte_size = sizeof(GlobalShaderUniforms::Value) * GlobalShaderUniforms::BUFFER_DIRTY_REGION_SIZE; for (uint32_t i = 0; i < total_regions; i++) { if (global_shader_uniforms.buffer_dirty_regions[i]) { RD::get_singleton()->buffer_update(global_shader_uniforms.buffer, i * region_byte_size, region_byte_size, &global_shader_uniforms.buffer_values[i * GlobalShaderUniforms::BUFFER_DIRTY_REGION_SIZE]); global_shader_uniforms.buffer_dirty_regions[i] = false; } } } global_shader_uniforms.buffer_dirty_region_count = 0; } if (global_shader_uniforms.must_update_buffer_materials) { // only happens in the case of a buffer variable added or removed, // so not often. for (const RID &E : global_shader_uniforms.materials_using_buffer) { Material *material = material_storage->get_material(E); ERR_CONTINUE(!material); //wtf material_storage->_material_queue_update(material, true, false); } global_shader_uniforms.must_update_buffer_materials = false; } if (global_shader_uniforms.must_update_texture_materials) { // only happens in the case of a buffer variable added or removed, // so not often. for (const RID &E : global_shader_uniforms.materials_using_texture) { Material *material = material_storage->get_material(E); ERR_CONTINUE(!material); //wtf material_storage->_material_queue_update(material, false, true); } global_shader_uniforms.must_update_texture_materials = false; } } /* SHADER API */ RID MaterialStorage::shader_allocate() { return shader_owner.allocate_rid(); } void MaterialStorage::shader_initialize(RID p_rid) { Shader shader; shader.data = nullptr; shader.type = SHADER_TYPE_MAX; shader_owner.initialize_rid(p_rid, shader); } void MaterialStorage::shader_free(RID p_rid) { Shader *shader = shader_owner.get_or_null(p_rid); ERR_FAIL_COND(!shader); //make material unreference this while (shader->owners.size()) { material_set_shader((*shader->owners.begin())->self, RID()); } //clear data if exists if (shader->data) { memdelete(shader->data); } shader_owner.free(p_rid); } void MaterialStorage::shader_set_code(RID p_shader, const String &p_code) { Shader *shader = shader_owner.get_or_null(p_shader); ERR_FAIL_COND(!shader); shader->code = p_code; String mode_string = ShaderLanguage::get_shader_type(p_code); ShaderType new_type; if (mode_string == "canvas_item") { new_type = SHADER_TYPE_2D; } else if (mode_string == "particles") { new_type = SHADER_TYPE_PARTICLES; } else if (mode_string == "spatial") { new_type = SHADER_TYPE_3D; } else if (mode_string == "sky") { new_type = SHADER_TYPE_SKY; } else if (mode_string == "fog") { new_type = SHADER_TYPE_FOG; } else { new_type = SHADER_TYPE_MAX; } if (new_type != shader->type) { if (shader->data) { memdelete(shader->data); shader->data = nullptr; } for (Material *E : shader->owners) { Material *material = E; material->shader_type = new_type; if (material->data) { memdelete(material->data); material->data = nullptr; } } shader->type = new_type; if (new_type < SHADER_TYPE_MAX && shader_data_request_func[new_type]) { shader->data = shader_data_request_func[new_type](); } else { shader->type = SHADER_TYPE_MAX; //invalid } for (Material *E : shader->owners) { Material *material = E; if (shader->data) { material->data = material_get_data_request_function(new_type)(shader->data); material->data->self = material->self; material->data->set_next_pass(material->next_pass); material->data->set_render_priority(material->priority); } material->shader_type = new_type; } if (shader->data) { for (const KeyValue> &E : shader->default_texture_parameter) { for (const KeyValue &E2 : E.value) { shader->data->set_default_texture_parameter(E.key, E2.value, E2.key); } } } } if (shader->data) { shader->data->set_path_hint(shader->path_hint); shader->data->set_code(p_code); } for (Material *E : shader->owners) { Material *material = E; material->dependency.changed_notify(Dependency::DEPENDENCY_CHANGED_MATERIAL); _material_queue_update(material, true, true); } } void MaterialStorage::shader_set_path_hint(RID p_shader, const String &p_path) { Shader *shader = shader_owner.get_or_null(p_shader); ERR_FAIL_COND(!shader); shader->path_hint = p_path; if (shader->data) { shader->data->set_path_hint(p_path); } } String MaterialStorage::shader_get_code(RID p_shader) const { Shader *shader = shader_owner.get_or_null(p_shader); ERR_FAIL_COND_V(!shader, String()); return shader->code; } void MaterialStorage::get_shader_parameter_list(RID p_shader, List *p_param_list) const { Shader *shader = shader_owner.get_or_null(p_shader); ERR_FAIL_COND(!shader); if (shader->data) { return shader->data->get_shader_uniform_list(p_param_list); } } void MaterialStorage::shader_set_default_texture_parameter(RID p_shader, const StringName &p_name, RID p_texture, int p_index) { Shader *shader = shader_owner.get_or_null(p_shader); ERR_FAIL_COND(!shader); if (p_texture.is_valid() && TextureStorage::get_singleton()->owns_texture(p_texture)) { if (!shader->default_texture_parameter.has(p_name)) { shader->default_texture_parameter[p_name] = HashMap(); } shader->default_texture_parameter[p_name][p_index] = p_texture; } else { if (shader->default_texture_parameter.has(p_name) && shader->default_texture_parameter[p_name].has(p_index)) { shader->default_texture_parameter[p_name].erase(p_index); if (shader->default_texture_parameter[p_name].is_empty()) { shader->default_texture_parameter.erase(p_name); } } } if (shader->data) { shader->data->set_default_texture_parameter(p_name, p_texture, p_index); } for (Material *E : shader->owners) { Material *material = E; _material_queue_update(material, false, true); } } RID MaterialStorage::shader_get_default_texture_parameter(RID p_shader, const StringName &p_name, int p_index) const { Shader *shader = shader_owner.get_or_null(p_shader); ERR_FAIL_COND_V(!shader, RID()); if (shader->default_texture_parameter.has(p_name) && shader->default_texture_parameter[p_name].has(p_index)) { return shader->default_texture_parameter[p_name][p_index]; } return RID(); } Variant MaterialStorage::shader_get_parameter_default(RID p_shader, const StringName &p_param) const { Shader *shader = shader_owner.get_or_null(p_shader); ERR_FAIL_COND_V(!shader, Variant()); if (shader->data) { return shader->data->get_default_parameter(p_param); } return Variant(); } void MaterialStorage::shader_set_data_request_function(ShaderType p_shader_type, ShaderDataRequestFunction p_function) { ERR_FAIL_INDEX(p_shader_type, SHADER_TYPE_MAX); shader_data_request_func[p_shader_type] = p_function; } RS::ShaderNativeSourceCode MaterialStorage::shader_get_native_source_code(RID p_shader) const { Shader *shader = shader_owner.get_or_null(p_shader); ERR_FAIL_COND_V(!shader, RS::ShaderNativeSourceCode()); if (shader->data) { return shader->data->get_native_source_code(); } return RS::ShaderNativeSourceCode(); } /* MATERIAL API */ void MaterialStorage::_material_uniform_set_erased(void *p_material) { RID rid = *(RID *)p_material; Material *material = MaterialStorage::get_singleton()->get_material(rid); if (material) { if (material->data) { // Uniform set may be gone because a dependency was erased. This happens // if a texture is deleted, so re-create it. MaterialStorage::get_singleton()->_material_queue_update(material, false, true); } material->dependency.changed_notify(Dependency::DEPENDENCY_CHANGED_MATERIAL); } } void MaterialStorage::_material_queue_update(Material *material, bool p_uniform, bool p_texture) { material->uniform_dirty = material->uniform_dirty || p_uniform; material->texture_dirty = material->texture_dirty || p_texture; if (material->update_element.in_list()) { return; } material_update_list.add(&material->update_element); } void MaterialStorage::_update_queued_materials() { while (material_update_list.first()) { Material *material = material_update_list.first()->self(); bool uniforms_changed = false; if (material->data) { uniforms_changed = material->data->update_parameters(material->params, material->uniform_dirty, material->texture_dirty); } material->texture_dirty = false; material->uniform_dirty = false; material_update_list.remove(&material->update_element); if (uniforms_changed) { //some implementations such as 3D renderer cache the matreial uniform set, so update is required material->dependency.changed_notify(Dependency::DEPENDENCY_CHANGED_MATERIAL); } } } RID MaterialStorage::material_allocate() { return material_owner.allocate_rid(); } void MaterialStorage::material_initialize(RID p_rid) { material_owner.initialize_rid(p_rid); Material *material = material_owner.get_or_null(p_rid); material->self = p_rid; } void MaterialStorage::material_free(RID p_rid) { Material *material = material_owner.get_or_null(p_rid); ERR_FAIL_COND(!material); material_set_shader(p_rid, RID()); //clean up shader material->dependency.deleted_notify(p_rid); material_owner.free(p_rid); } void MaterialStorage::material_set_shader(RID p_material, RID p_shader) { Material *material = material_owner.get_or_null(p_material); ERR_FAIL_COND(!material); if (material->data) { memdelete(material->data); material->data = nullptr; } if (material->shader) { material->shader->owners.erase(material); material->shader = nullptr; material->shader_type = SHADER_TYPE_MAX; } if (p_shader.is_null()) { material->dependency.changed_notify(Dependency::DEPENDENCY_CHANGED_MATERIAL); material->shader_id = 0; return; } Shader *shader = get_shader(p_shader); ERR_FAIL_COND(!shader); material->shader = shader; material->shader_type = shader->type; material->shader_id = p_shader.get_local_index(); shader->owners.insert(material); if (shader->type == SHADER_TYPE_MAX) { return; } ERR_FAIL_COND(shader->data == nullptr); material->data = material_data_request_func[shader->type](shader->data); material->data->self = p_material; material->data->set_next_pass(material->next_pass); material->data->set_render_priority(material->priority); //updating happens later material->dependency.changed_notify(Dependency::DEPENDENCY_CHANGED_MATERIAL); _material_queue_update(material, true, true); } MaterialStorage::ShaderData *MaterialStorage::material_get_shader_data(RID p_material) { const MaterialStorage::Material *material = MaterialStorage::get_singleton()->get_material(p_material); if (material && material->shader && material->shader->data) { return material->shader->data; } return nullptr; } void MaterialStorage::material_set_param(RID p_material, const StringName &p_param, const Variant &p_value) { Material *material = material_owner.get_or_null(p_material); ERR_FAIL_COND(!material); if (p_value.get_type() == Variant::NIL) { material->params.erase(p_param); } else { ERR_FAIL_COND(p_value.get_type() == Variant::OBJECT); //object not allowed material->params[p_param] = p_value; } if (material->shader && material->shader->data) { //shader is valid bool is_texture = material->shader->data->is_parameter_texture(p_param); _material_queue_update(material, !is_texture, is_texture); } else { _material_queue_update(material, true, true); } } Variant MaterialStorage::material_get_param(RID p_material, const StringName &p_param) const { Material *material = material_owner.get_or_null(p_material); ERR_FAIL_COND_V(!material, Variant()); if (material->params.has(p_param)) { return material->params[p_param]; } else { return Variant(); } } void MaterialStorage::material_set_next_pass(RID p_material, RID p_next_material) { Material *material = material_owner.get_or_null(p_material); ERR_FAIL_COND(!material); if (material->next_pass == p_next_material) { return; } material->next_pass = p_next_material; if (material->data) { material->data->set_next_pass(p_next_material); } material->dependency.changed_notify(Dependency::DEPENDENCY_CHANGED_MATERIAL); } void MaterialStorage::material_set_render_priority(RID p_material, int priority) { Material *material = material_owner.get_or_null(p_material); ERR_FAIL_COND(!material); material->priority = priority; if (material->data) { material->data->set_render_priority(priority); } } bool MaterialStorage::material_is_animated(RID p_material) { Material *material = material_owner.get_or_null(p_material); ERR_FAIL_COND_V(!material, false); if (material->shader && material->shader->data) { if (material->shader->data->is_animated()) { return true; } else if (material->next_pass.is_valid()) { return material_is_animated(material->next_pass); } } return false; //by default nothing is animated } bool MaterialStorage::material_casts_shadows(RID p_material) { Material *material = material_owner.get_or_null(p_material); ERR_FAIL_COND_V(!material, true); if (material->shader && material->shader->data) { if (material->shader->data->casts_shadows()) { return true; } else if (material->next_pass.is_valid()) { return material_casts_shadows(material->next_pass); } } return true; //by default everything casts shadows } void MaterialStorage::material_get_instance_shader_parameters(RID p_material, List *r_parameters) { Material *material = material_owner.get_or_null(p_material); ERR_FAIL_COND(!material); if (material->shader && material->shader->data) { material->shader->data->get_instance_param_list(r_parameters); if (material->next_pass.is_valid()) { material_get_instance_shader_parameters(material->next_pass, r_parameters); } } } void MaterialStorage::material_update_dependency(RID p_material, DependencyTracker *p_instance) { Material *material = material_owner.get_or_null(p_material); ERR_FAIL_COND(!material); p_instance->update_dependency(&material->dependency); if (material->next_pass.is_valid()) { material_update_dependency(material->next_pass, p_instance); } } void MaterialStorage::material_set_data_request_function(ShaderType p_shader_type, MaterialStorage::MaterialDataRequestFunction p_function) { ERR_FAIL_INDEX(p_shader_type, SHADER_TYPE_MAX); material_data_request_func[p_shader_type] = p_function; } MaterialStorage::MaterialDataRequestFunction MaterialStorage::material_get_data_request_function(ShaderType p_shader_type) { ERR_FAIL_INDEX_V(p_shader_type, SHADER_TYPE_MAX, nullptr); return material_data_request_func[p_shader_type]; }