/**************************************************************************/ /* test_transform_2d.h */ /**************************************************************************/ /* This file is part of: */ /* REDOT ENGINE */ /* https://redotengine.org */ /**************************************************************************/ /* Copyright (c) 2024-present Redot Engine contributors */ /* (see REDOT_AUTHORS.md) */ /* Copyright (c) 2014-present Godot Engine contributors (see AUTHORS.md). */ /* Copyright (c) 2007-2014 Juan Linietsky, Ariel Manzur. */ /* */ /* Permission is hereby granted, free of charge, to any person obtaining */ /* a copy of this software and associated documentation files (the */ /* "Software"), to deal in the Software without restriction, including */ /* without limitation the rights to use, copy, modify, merge, publish, */ /* distribute, sublicense, and/or sell copies of the Software, and to */ /* permit persons to whom the Software is furnished to do so, subject to */ /* the following conditions: */ /* */ /* The above copyright notice and this permission notice shall be */ /* included in all copies or substantial portions of the Software. */ /* */ /* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, */ /* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF */ /* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. */ /* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY */ /* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, */ /* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE */ /* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */ /**************************************************************************/ #ifndef TEST_TRANSFORM_2D_H #define TEST_TRANSFORM_2D_H #include "core/math/transform_2d.h" #include "tests/test_macros.h" namespace TestTransform2D { Transform2D create_dummy_transform() { return Transform2D(Vector2(1, 2), Vector2(3, 4), Vector2(5, 6)); } Transform2D identity() { return Transform2D(); } TEST_CASE("[Transform2D] Default constructor") { Transform2D default_constructor = Transform2D(); CHECK(default_constructor == Transform2D(Vector2(1, 0), Vector2(0, 1), Vector2(0, 0))); } TEST_CASE("[Transform2D] Copy constructor") { Transform2D T = create_dummy_transform(); Transform2D copy_constructor = Transform2D(T); CHECK(T == copy_constructor); } TEST_CASE("[Transform2D] Constructor from angle and position") { constexpr float ROTATION = Math_PI / 4; const Vector2 TRANSLATION = Vector2(20, -20); const Transform2D test = Transform2D(ROTATION, TRANSLATION); const Transform2D expected = Transform2D().rotated(ROTATION).translated(TRANSLATION); CHECK(test == expected); } TEST_CASE("[Transform2D] Constructor from angle, scale, skew and position") { constexpr float ROTATION = Math_PI / 2; const Vector2 SCALE = Vector2(2, 0.5); constexpr float SKEW = Math_PI / 4; const Vector2 TRANSLATION = Vector2(30, 0); const Transform2D test = Transform2D(ROTATION, SCALE, SKEW, TRANSLATION); Transform2D expected = Transform2D().scaled(SCALE).rotated(ROTATION).translated(TRANSLATION); expected.set_skew(SKEW); CHECK(test.is_equal_approx(expected)); } TEST_CASE("[Transform2D] Constructor from raw values") { const Transform2D test = Transform2D(1, 2, 3, 4, 5, 6); const Transform2D expected = Transform2D(Vector2(1, 2), Vector2(3, 4), Vector2(5, 6)); CHECK(test == expected); } TEST_CASE("[Transform2D] xform") { const Vector2 v = Vector2(2, 3); const Transform2D T = Transform2D(Vector2(1, 2), Vector2(3, 4), Vector2(5, 6)); const Vector2 expected = Vector2(1 * 2 + 3 * 3 + 5 * 1, 2 * 2 + 4 * 3 + 6 * 1); CHECK(T.xform(v) == expected); } TEST_CASE("[Transform2D] Basis xform") { const Vector2 v = Vector2(2, 2); const Transform2D T1 = Transform2D(Vector2(1, 2), Vector2(3, 4), Vector2(0, 0)); // Both versions should be the same when the origin is (0,0). CHECK(T1.basis_xform(v) == T1.xform(v)); const Transform2D T2 = Transform2D(Vector2(1, 2), Vector2(3, 4), Vector2(5, 6)); // Each version should be different when the origin is not (0,0). CHECK_FALSE(T2.basis_xform(v) == T2.xform(v)); } TEST_CASE("[Transform2D] Affine inverse") { const Transform2D orig = create_dummy_transform(); const Transform2D affine_inverted = orig.affine_inverse(); const Transform2D affine_inverted_again = affine_inverted.affine_inverse(); CHECK(affine_inverted_again == orig); } TEST_CASE("[Transform2D] Orthonormalized") { const Transform2D T = create_dummy_transform(); const Transform2D orthonormalized_T = T.orthonormalized(); // Check each basis has length 1. CHECK(Math::is_equal_approx(orthonormalized_T[0].length_squared(), 1)); CHECK(Math::is_equal_approx(orthonormalized_T[1].length_squared(), 1)); const Vector2 vx = Vector2(orthonormalized_T[0].x, orthonormalized_T[1].x); const Vector2 vy = Vector2(orthonormalized_T[0].y, orthonormalized_T[1].y); // Check the basis are orthogonal. CHECK(Math::is_equal_approx(orthonormalized_T.tdotx(vx), 1)); CHECK(Math::is_equal_approx(orthonormalized_T.tdotx(vy), 0)); CHECK(Math::is_equal_approx(orthonormalized_T.tdoty(vx), 0)); CHECK(Math::is_equal_approx(orthonormalized_T.tdoty(vy), 1)); } TEST_CASE("[Transform2D] translation") { const Vector2 offset = Vector2(1, 2); // Both versions should give the same result applied to identity. CHECK(identity().translated(offset) == identity().translated_local(offset)); // Check both versions against left and right multiplications. const Transform2D orig = create_dummy_transform(); const Transform2D T = identity().translated(offset); CHECK(orig.translated(offset) == T * orig); CHECK(orig.translated_local(offset) == orig * T); } TEST_CASE("[Transform2D] scaling") { const Vector2 scaling = Vector2(1, 2); // Both versions should give the same result applied to identity. CHECK(identity().scaled(scaling) == identity().scaled_local(scaling)); // Check both versions against left and right multiplications. const Transform2D orig = create_dummy_transform(); const Transform2D S = identity().scaled(scaling); CHECK(orig.scaled(scaling) == S * orig); CHECK(orig.scaled_local(scaling) == orig * S); } TEST_CASE("[Transform2D] rotation") { constexpr real_t phi = 1.0; // Both versions should give the same result applied to identity. CHECK(identity().rotated(phi) == identity().rotated_local(phi)); // Check both versions against left and right multiplications. const Transform2D orig = create_dummy_transform(); const Transform2D R = identity().rotated(phi); CHECK(orig.rotated(phi) == R * orig); CHECK(orig.rotated_local(phi) == orig * R); } TEST_CASE("[Transform2D] Interpolation") { const Transform2D rotate_scale_skew_pos = Transform2D(Math::deg_to_rad(170.0), Vector2(3.6, 8.0), Math::deg_to_rad(20.0), Vector2(2.4, 6.8)); const Transform2D rotate_scale_skew_pos_halfway = Transform2D(Math::deg_to_rad(85.0), Vector2(2.3, 4.5), Math::deg_to_rad(10.0), Vector2(1.2, 3.4)); Transform2D interpolated = Transform2D().interpolate_with(rotate_scale_skew_pos, 0.5); CHECK(interpolated.get_origin().is_equal_approx(rotate_scale_skew_pos_halfway.get_origin())); CHECK(interpolated.get_rotation() == doctest::Approx(rotate_scale_skew_pos_halfway.get_rotation())); CHECK(interpolated.get_scale().is_equal_approx(rotate_scale_skew_pos_halfway.get_scale())); CHECK(interpolated.get_skew() == doctest::Approx(rotate_scale_skew_pos_halfway.get_skew())); CHECK(interpolated.is_equal_approx(rotate_scale_skew_pos_halfway)); interpolated = rotate_scale_skew_pos.interpolate_with(Transform2D(), 0.5); CHECK(interpolated.is_equal_approx(rotate_scale_skew_pos_halfway)); } TEST_CASE("[Transform2D] Finite number checks") { const Vector2 x = Vector2(0, 1); const Vector2 infinite = Vector2(NAN, NAN); CHECK_MESSAGE( Transform2D(x, x, x).is_finite(), "Transform2D with all components finite should be finite"); CHECK_FALSE_MESSAGE( Transform2D(infinite, x, x).is_finite(), "Transform2D with one component infinite should not be finite."); CHECK_FALSE_MESSAGE( Transform2D(x, infinite, x).is_finite(), "Transform2D with one component infinite should not be finite."); CHECK_FALSE_MESSAGE( Transform2D(x, x, infinite).is_finite(), "Transform2D with one component infinite should not be finite."); CHECK_FALSE_MESSAGE( Transform2D(infinite, infinite, x).is_finite(), "Transform2D with two components infinite should not be finite."); CHECK_FALSE_MESSAGE( Transform2D(infinite, x, infinite).is_finite(), "Transform2D with two components infinite should not be finite."); CHECK_FALSE_MESSAGE( Transform2D(x, infinite, infinite).is_finite(), "Transform2D with two components infinite should not be finite."); CHECK_FALSE_MESSAGE( Transform2D(infinite, infinite, infinite).is_finite(), "Transform2D with three components infinite should not be finite."); } TEST_CASE("[Transform2D] Is conformal checks") { CHECK_MESSAGE( Transform2D().is_conformal(), "Identity Transform2D should be conformal."); CHECK_MESSAGE( Transform2D(1.2, Vector2()).is_conformal(), "Transform2D with only rotation should be conformal."); CHECK_MESSAGE( Transform2D(Vector2(1, 0), Vector2(0, -1), Vector2()).is_conformal(), "Transform2D with only a flip should be conformal."); CHECK_MESSAGE( Transform2D(Vector2(1.2, 0), Vector2(0, 1.2), Vector2()).is_conformal(), "Transform2D with only uniform scale should be conformal."); CHECK_MESSAGE( Transform2D(Vector2(1.2, 3.4), Vector2(3.4, -1.2), Vector2()).is_conformal(), "Transform2D with a flip, rotation, and uniform scale should be conformal."); CHECK_FALSE_MESSAGE( Transform2D(Vector2(1.2, 0), Vector2(0, 3.4), Vector2()).is_conformal(), "Transform2D with non-uniform scale should not be conformal."); CHECK_FALSE_MESSAGE( Transform2D(Vector2(Math_SQRT12, Math_SQRT12), Vector2(0, 1), Vector2()).is_conformal(), "Transform2D with the X axis skewed 45 degrees should not be conformal."); } } // namespace TestTransform2D #endif // TEST_TRANSFORM_2D_H