// basisu_astc_hdr_enc.cpp #include "basisu_astc_hdr_enc.h" #include "../transcoder/basisu_transcoder.h" using namespace basist; namespace basisu { const float DEF_R_ERROR_SCALE = 2.0f; const float DEF_G_ERROR_SCALE = 3.0f; static inline uint32_t get_max_qlog(uint32_t bits) { switch (bits) { case 7: return MAX_QLOG7; case 8: return MAX_QLOG8; case 9: return MAX_QLOG9; case 10: return MAX_QLOG10; case 11: return MAX_QLOG11; case 12: return MAX_QLOG12; case 16: return MAX_QLOG16; default: assert(0); break; } return 0; } #if 0 static inline float get_max_qlog_val(uint32_t bits) { switch (bits) { case 7: return MAX_QLOG7_VAL; case 8: return MAX_QLOG8_VAL; case 9: return MAX_QLOG9_VAL; case 10: return MAX_QLOG10_VAL; case 11: return MAX_QLOG11_VAL; case 12: return MAX_QLOG12_VAL; case 16: return MAX_QLOG16_VAL; default: assert(0); break; } return 0; } #endif static inline int get_bit( int src_val, int src_bit) { assert(src_bit >= 0 && src_bit <= 31); int bit = (src_val >> src_bit) & 1; return bit; } static inline void pack_bit( int& dst, int dst_bit, int src_val, int src_bit = 0) { assert(dst_bit >= 0 && dst_bit <= 31); int bit = get_bit(src_val, src_bit); dst |= (bit << dst_bit); } //-------------------------------------------------------------------------------------------------------------------------- astc_hdr_codec_options::astc_hdr_codec_options() { init(); } void astc_hdr_codec_options::init() { m_bc6h_err_weight = .85f; m_r_err_scale = DEF_R_ERROR_SCALE; m_g_err_scale = DEF_G_ERROR_SCALE; // Disabling by default to avoid transcoding outliers (try kodim26). The quality lost is very low. TODO: Could include the uber result in the output. m_allow_uber_mode = false; // Must set best quality level first to set defaults. set_quality_best(); set_quality_level(cDefaultLevel); } void astc_hdr_codec_options::set_quality_best() { m_mode11_direct_only = false; // highest achievable quality m_use_solid = true; m_use_mode11 = true; m_mode11_uber_mode = true; m_first_mode11_weight_ise_range = MODE11_FIRST_ISE_RANGE; m_last_mode11_weight_ise_range = MODE11_LAST_ISE_RANGE; m_first_mode11_submode = -1; m_last_mode11_submode = 7; m_use_mode7_part1 = true; m_first_mode7_part1_weight_ise_range = MODE7_PART1_FIRST_ISE_RANGE; m_last_mode7_part1_weight_ise_range = MODE7_PART1_LAST_ISE_RANGE; m_use_mode7_part2 = true; m_mode7_part2_part_masks = UINT32_MAX; m_first_mode7_part2_weight_ise_range = MODE7_PART2_FIRST_ISE_RANGE; m_last_mode7_part2_weight_ise_range = MODE7_PART2_LAST_ISE_RANGE; m_use_mode11_part2 = true; m_mode11_part2_part_masks = UINT32_MAX; m_first_mode11_part2_weight_ise_range = MODE11_PART2_FIRST_ISE_RANGE; m_last_mode11_part2_weight_ise_range = MODE11_PART2_LAST_ISE_RANGE; m_refine_weights = true; m_use_estimated_partitions = false; m_max_estimated_partitions = 0; } void astc_hdr_codec_options::set_quality_normal() { m_use_solid = true; // We'll allow uber mode in normal if the user allows it. m_use_mode11 = true; m_mode11_uber_mode = true; m_first_mode11_weight_ise_range = 6; m_last_mode11_weight_ise_range = MODE11_LAST_ISE_RANGE; m_use_mode7_part1 = true; m_first_mode7_part1_weight_ise_range = MODE7_PART1_LAST_ISE_RANGE; m_last_mode7_part1_weight_ise_range = MODE7_PART1_LAST_ISE_RANGE; m_use_mode7_part2 = true; m_mode7_part2_part_masks = UINT32_MAX; m_first_mode7_part2_weight_ise_range = MODE7_PART2_LAST_ISE_RANGE; m_last_mode7_part2_weight_ise_range = MODE7_PART2_LAST_ISE_RANGE; m_use_mode11_part2 = true; m_mode11_part2_part_masks = UINT32_MAX; m_first_mode11_part2_weight_ise_range = MODE11_PART2_LAST_ISE_RANGE; m_last_mode11_part2_weight_ise_range = MODE11_PART2_LAST_ISE_RANGE; m_refine_weights = true; } void astc_hdr_codec_options::set_quality_fastest() { m_use_solid = true; m_use_mode11 = true; m_mode11_uber_mode = false; m_first_mode11_weight_ise_range = MODE11_LAST_ISE_RANGE; m_last_mode11_weight_ise_range = MODE11_LAST_ISE_RANGE; m_use_mode7_part1 = false; m_use_mode7_part2 = false; m_use_mode11_part2 = false; m_refine_weights = false; } //-------------------------------------------------------------------------------------------------------------------------- void astc_hdr_codec_options::set_quality_level(int level) { level = clamp(level, cMinLevel, cMaxLevel); m_level = level; switch (level) { case 0: { set_quality_fastest(); break; } case 1: { set_quality_normal(); m_first_mode11_weight_ise_range = MODE11_LAST_ISE_RANGE - 1; m_last_mode11_weight_ise_range = MODE11_LAST_ISE_RANGE; m_use_mode7_part1 = false; m_use_mode7_part2 = false; m_use_estimated_partitions = true; m_max_estimated_partitions = 1; m_mode11_part2_part_masks = 1 | 2; m_mode7_part2_part_masks = 1 | 2; break; } case 2: { set_quality_normal(); m_use_estimated_partitions = true; m_max_estimated_partitions = 2; m_mode11_part2_part_masks = 1 | 2; m_mode7_part2_part_masks = 1 | 2; break; } case 3: { set_quality_best(); m_use_estimated_partitions = true; m_max_estimated_partitions = 2; m_mode11_part2_part_masks = 1 | 2 | 4 | 8; m_mode7_part2_part_masks = 1 | 2 | 4 | 8; break; } case 4: { set_quality_best(); break; } } } //-------------------------------------------------------------------------------------------------------------------------- #if 0 static inline half_float qlog12_to_half_slow(uint32_t qlog12) { return qlog_to_half_slow(qlog12, 12); } #endif // max usable qlog8 value is 247, 248=inf, >=249 is nan // max usable qlog7 value is 123, 124=inf, >=125 is nan // To go from a smaller qlog to an larger one, shift left by X bits. //const uint32_t TOTAL_USABLE_QLOG8 = 248; // 0-247 are usable, 0=0, 247=60416.0, 246=55296.0 // for qlog7's shift left by 1 //half_float g_qlog8_to_half[256]; //float g_qlog8_to_float[256]; //half_float g_qlog12_to_half[4096]; //float g_qlog12_to_float[4096]; static half_float g_qlog16_to_half[65536]; inline half_float qlog_to_half(uint32_t val, uint32_t bits) { assert((bits >= 5) && (bits <= 16)); assert(val < (1U << bits)); return g_qlog16_to_half[val << (16 - bits)]; } // nearest values given a positive half float value (only) static uint16_t g_half_to_qlog7[32768], g_half_to_qlog8[32768], g_half_to_qlog9[32768], g_half_to_qlog10[32768], g_half_to_qlog11[32768], g_half_to_qlog12[32768]; const uint32_t HALF_TO_QLOG_TABS_BASE = 7; static uint16_t* g_pHalf_to_qlog_tabs[8] = { g_half_to_qlog7, g_half_to_qlog8, g_half_to_qlog9, g_half_to_qlog10, g_half_to_qlog11, g_half_to_qlog12 }; static inline uint32_t half_to_qlog7_12(half_float h, uint32_t bits) { assert((bits >= HALF_TO_QLOG_TABS_BASE) && (bits <= 12)); assert(h < 32768); return g_pHalf_to_qlog_tabs[bits - HALF_TO_QLOG_TABS_BASE][h]; } #if 0 // Input is the low 11 bits of the qlog // Returns the 10-bit mantissa of the half float value static int qlog11_to_half_float_mantissa(int M) { assert(M <= 0x7FF); int Mt; if (M < 512) Mt = 3 * M; else if (M >= 1536) Mt = 5 * M - 2048; else Mt = 4 * M - 512; return (Mt >> 3); } #endif // Input is the 10-bit mantissa of the half float value // Output is the 11-bit qlog value // Inverse of qlog11_to_half_float_mantissa() static inline int half_float_mantissa_to_qlog11(int hf) { int q0 = (hf * 8 + 2) / 3; int q1 = (hf * 8 + 2048 + 4) / 5; if (q0 < 512) return q0; else if (q1 >= 1536) return q1; int q2 = (hf * 8 + 512 + 2) / 4; return q2; } static inline int half_to_qlog16(int hf) { // extract 5 bits exponent, which is carried through to qlog16 unchanged const int exp = (hf >> 10) & 0x1F; // extract and invert the 10 bit mantissa to nearest qlog11 (should be lossless) const int mantissa = half_float_mantissa_to_qlog11(hf & 0x3FF); assert(mantissa <= 0x7FF); // Now combine to qlog16, which is what ASTC HDR interpolates using the [0-64] weights. uint32_t qlog16 = (exp << 11) | mantissa; // should be a lossless operation assert(qlog16_to_half_slow(qlog16) == hf); return qlog16; } static inline uint32_t quant_qlog16(uint32_t q16, uint32_t desired_bits) { assert((desired_bits >= 7) && (desired_bits <= 12)); assert(q16 <= 65535); const uint32_t shift = 16 - desired_bits; uint32_t e = (q16 + (1U << (shift - 1U)) - 1U) >> shift; uint32_t max_val = (1U << desired_bits) - 1U; e = minimum(e, max_val); return e; } static void compute_half_to_qlog_table(uint32_t bits, uint16_t* pTable, const basisu::vector &qlog16_to_float) { assert(bits >= 5 && bits <= 12); const uint32_t max_val = (1 << bits) - 1; // For all positive half-floats for (uint32_t h = 0; h < 32768; h++) { // Skip invalid values if (is_half_inf_or_nan((half_float)h)) continue; const float desired_val = half_to_float((half_float)h); float best_err = 1e+30f; uint32_t best_qlog = 0; // For all possible qlog's for (uint32_t i = 0; i <= max_val; i++) { // Skip invalid values float v = qlog16_to_float[i << (16 - bits)]; if (std::isnan(v)) continue; // Compute error float err = fabs(v - desired_val); // Find best if (err < best_err) { best_err = err; best_qlog = i; } } pTable[h] = (uint16_t)best_qlog; } #if 0 uint32_t t = 0; const uint32_t nb = 12; int nb_shift = 16 - nb; for (uint32_t q16 = 0; q16 < 65536; q16++) { half_float h = qlog16_to_half_slow(q16); if (is_half_inf_or_nan(h)) continue; int q7 = half_to_qlog7_12(h, nb); uint32_t best_err = UINT32_MAX, best_l = 0; for (int l = 0; l < (1 << nb); l++) { int dec_q16 = l << nb_shift; int err = iabs(dec_q16 - q16); if (err < best_err) { best_err = err; best_l = l; } } //int e = (q16 + 253) >> 9; // 345 int e = (q16 + (1 << (nb_shift - 1)) - 1) >> nb_shift; // 285 if (best_l != e) //if (q7 != best_l) { printf("q16=%u, h=%u, q7=%u, e=%u, best_l=%u\n", q16, h, q7, e, best_l); t++; } } printf("Mismatches: %u\n", t); exit(0); #endif } static void init_qlog_tables() { basisu::vector qlog16_to_float(65536); // for all possible qlog16, compute the corresponding half float for (uint32_t i = 0; i <= 65535; i++) { half_float h = qlog16_to_half_slow(i); g_qlog16_to_half[i] = h; qlog16_to_float[i] = half_to_float(h); } // for all possible half floats, find the nearest qlog5-12 float for (uint32_t bits = HALF_TO_QLOG_TABS_BASE; bits <= 12; bits++) { compute_half_to_qlog_table(bits, g_pHalf_to_qlog_tabs[bits - HALF_TO_QLOG_TABS_BASE], qlog16_to_float); } } // [ise_range][0] = # levels // [ise_range][1...] = lerp value [0,64] // in ASTC order // Supported ISE weight ranges: 0 to 10, 11 total const uint32_t MIN_SUPPORTED_ISE_WEIGHT_INDEX = 1; // ISE 1=3 levels const uint32_t MAX_SUPPORTED_ISE_WEIGHT_INDEX = 10; // ISE 10=24 levels static const uint8_t g_ise_weight_lerps[MAX_SUPPORTED_ISE_WEIGHT_INDEX + 1][32] = { { 0 }, // ise range=0 is invalid for 4x4 block sizes (<24 weight bits in the block) { 3, 0, 32, 64 }, // 1 { 4, 0, 21, 43, 64 }, // 2 { 5, 0, 16, 32, 48, 64 }, // 3 { 6, 0, 64, 12, 52, 25, 39 }, // 4 { 8, 0, 9, 18, 27, 37, 46, 55, 64 }, // 5 { 10, 0, 64, 7, 57, 14, 50, 21, 43, 28, 36 }, // 6 { 12, 0, 64, 17, 47, 5, 59, 23, 41, 11, 53, 28, 36 }, // 7 { 16, 0, 4, 8, 12, 17, 21, 25, 29, 35, 39, 43, 47, 52, 56, 60, 64 }, // 8 { 20, 0, 64, 16, 48, 3, 61, 19, 45, 6, 58, 23, 41, 9, 55, 26, 38, 13, 51, 29, 35 }, // 9 { 24, 0, 64, 8, 56, 16, 48, 24, 40, 2, 62, 11, 53, 19, 45, 27, 37, 5, 59, 13, 51, 22, 42, 30, 34 } // 10 }; //{ 12, 0, 64, 17, 47, 5, 59, 23, 41, 11, 53, 28, 36 }, // 7 //static const uint8_t g_weight_order_7[12] = { 0, 4, 8, 2, 6, 10, 11, 7, 3, 9, 5, 1 }; static vec3F calc_mean(uint32_t num_pixels, const vec4F* pPixels) { vec3F mean(0.0f); for (uint32_t i = 0; i < num_pixels; i++) { const vec4F& p = pPixels[i]; mean[0] += p[0]; mean[1] += p[1]; mean[2] += p[2]; } return mean / static_cast(num_pixels); } static vec3F calc_rgb_pca(uint32_t num_pixels, const vec4F* pPixels, const vec3F& mean_color) { float cov[6] = { 0, 0, 0, 0, 0, 0 }; for (uint32_t i = 0; i < num_pixels; i++) { const vec4F& v = pPixels[i]; float r = v[0] - mean_color[0]; float g = v[1] - mean_color[1]; float b = v[2] - mean_color[2]; cov[0] += r * r; cov[1] += r * g; cov[2] += r * b; cov[3] += g * g; cov[4] += g * b; cov[5] += b * b; } float xr = .9f, xg = 1.0f, xb = .7f; for (uint32_t iter = 0; iter < 3; iter++) { float r = xr * cov[0] + xg * cov[1] + xb * cov[2]; float g = xr * cov[1] + xg * cov[3] + xb * cov[4]; float b = xr * cov[2] + xg * cov[4] + xb * cov[5]; float m = maximumf(maximumf(fabsf(r), fabsf(g)), fabsf(b)); if (m > 1e-10f) { m = 1.0f / m; r *= m; g *= m; b *= m; } xr = r; xg = g; xb = b; } float len = xr * xr + xg * xg + xb * xb; vec3F axis; if (len < 1e-10f) axis.set(0.0f); else { len = 1.0f / sqrtf(len); xr *= len; xg *= len; xb *= len; axis.set(xr, xg, xb, 0); } if (axis.dot(axis) < .5f) { axis.set(1.0f, 1.0f, 1.0f, 0.0f); axis.normalize_in_place(); } return axis; } static vec3F interp_color(const vec3F& mean, const vec3F& dir, float df, const aabb3F& colorspace_box, const aabb3F& input_box, bool* pInside = nullptr) { #if 0 assert(mean[0] >= input_box[0][0]); assert(mean[1] >= input_box[0][1]); assert(mean[2] >= input_box[0][2]); assert(mean[0] <= input_box[1][0]); assert(mean[1] <= input_box[1][1]); assert(mean[2] <= input_box[1][2]); #endif if (pInside) *pInside = false; vec3F k(mean + dir * df); if (colorspace_box.contains(k)) { if (pInside) *pInside = true; return k; } // starts inside vec3F s(mean); // ends outside vec3F e(mean + dir * df); // a ray guaranteed to go from the outside to inside ray3F r(e, (s - e).normalize_in_place()); vec3F c; float t = 0.0f; intersection::result res = intersection::ray_aabb(c, t, r, input_box); if (res != intersection::cSuccess) c = k; return c; } // all in Q16 space, 0-65535 static bool compute_least_squares_endpoints_rgb( uint32_t N, const uint8_t* pSelectors, const vec4F* pSelector_weights, vec3F* pXl, vec3F* pXh, const vec4F* pColors, const aabb3F& input_box) { // Least squares using normal equations: http://www.cs.cornell.edu/~bindel/class/cs3220-s12/notes/lec10.pdf // https://web.archive.org/web/20150319232457/http://www.cs.cornell.edu/~bindel/class/cs3220-s12/notes/lec10.pdf // I did this in matrix form first, expanded out all the ops, then optimized it a bit. float z00 = 0.0f, z01 = 0.0f, z10 = 0.0f, z11 = 0.0f; float q00_r = 0.0f, q10_r = 0.0f, t_r = 0.0f; float q00_g = 0.0f, q10_g = 0.0f, t_g = 0.0f; float q00_b = 0.0f, q10_b = 0.0f, t_b = 0.0f; for (uint32_t i = 0; i < N; i++) { const uint32_t sel = pSelectors[i]; z00 += pSelector_weights[sel][0]; z10 += pSelector_weights[sel][1]; z11 += pSelector_weights[sel][2]; float w = pSelector_weights[sel][3]; q00_r += w * pColors[i][0]; t_r += pColors[i][0]; q00_g += w * pColors[i][1]; t_g += pColors[i][1]; q00_b += w * pColors[i][2]; t_b += pColors[i][2]; } q10_r = t_r - q00_r; q10_g = t_g - q00_g; q10_b = t_b - q00_b; z01 = z10; float det = z00 * z11 - z01 * z10; if (det == 0.0f) return false; det = 1.0f / det; float iz00, iz01, iz10, iz11; iz00 = z11 * det; iz01 = -z01 * det; iz10 = -z10 * det; iz11 = z00 * det; (*pXl)[0] = (float)(iz00 * q00_r + iz01 * q10_r); (*pXh)[0] = (float)(iz10 * q00_r + iz11 * q10_r); (*pXl)[1] = (float)(iz00 * q00_g + iz01 * q10_g); (*pXh)[1] = (float)(iz10 * q00_g + iz11 * q10_g); (*pXl)[2] = (float)(iz00 * q00_b + iz01 * q10_b); (*pXh)[2] = (float)(iz10 * q00_b + iz11 * q10_b); for (uint32_t c = 0; c < 3; c++) { float l = (*pXl)[c], h = (*pXh)[c]; if (input_box.get_dim(c) < .0000125f) { l = input_box[0][c]; h = input_box[1][c]; } (*pXl)[c] = l; (*pXh)[c] = h; } vec3F mean((*pXl + *pXh) * .5f); vec3F dir(*pXh - *pXl); float ln = dir.length(); if (ln) { dir /= ln; float ld = (*pXl - mean).dot(dir); float hd = (*pXh - mean).dot(dir); aabb3F colorspace_box(vec3F(0.0f), vec3F(MAX_QLOG16_VAL)); bool was_inside1 = false; vec3F l = interp_color(mean, dir, ld, colorspace_box, input_box, &was_inside1); if (!was_inside1) *pXl = l; bool was_inside2 = false; vec3F h = interp_color(mean, dir, hd, colorspace_box, input_box, &was_inside2); if (!was_inside2) *pXh = h; } pXl->clamp(0.0f, MAX_QLOG16_VAL); pXh->clamp(0.0f, MAX_QLOG16_VAL); return true; } static vec4F g_astc_ls_weights_ise[MAX_SUPPORTED_ISE_WEIGHT_INDEX + 1][24]; static uint8_t g_map_astc_to_linear_order[MAX_SUPPORTED_ISE_WEIGHT_INDEX + 1][24]; // [ise_range][astc_index] -> linear index static uint8_t g_map_linear_to_astc_order[MAX_SUPPORTED_ISE_WEIGHT_INDEX + 1][24]; // [ise_range][linear_index] -> astc_index static void encode_astc_hdr_init() { // Precomputed weight constants used during least fit determination. For each entry: w * w, (1.0f - w) * w, (1.0f - w) * (1.0f - w), w for (uint32_t range = MIN_SUPPORTED_ISE_WEIGHT_INDEX; range <= MAX_SUPPORTED_ISE_WEIGHT_INDEX; range++) { const uint32_t num_levels = g_ise_weight_lerps[range][0]; assert((num_levels >= 3) && (num_levels <= 24)); for (uint32_t i = 0; i < num_levels; i++) { float w = g_ise_weight_lerps[range][1 + i] * (1.0f / 64.0f); g_astc_ls_weights_ise[range][i].set(w * w, (1.0f - w) * w, (1.0f - w) * (1.0f - w), w); } } for (uint32_t ise_range = MIN_SUPPORTED_ISE_WEIGHT_INDEX; ise_range <= MAX_SUPPORTED_ISE_WEIGHT_INDEX; ise_range++) { const uint32_t num_levels = g_ise_weight_lerps[ise_range][0]; assert((num_levels >= 3) && (num_levels <= 24)); uint32_t s[32]; for (uint32_t i = 0; i < num_levels; i++) s[i] = (g_ise_weight_lerps[ise_range][1 + i] << 8) + i; std::sort(s, s + num_levels); for (uint32_t i = 0; i < num_levels; i++) g_map_linear_to_astc_order[ise_range][i] = (uint8_t)(s[i] & 0xFF); for (uint32_t i = 0; i < num_levels; i++) g_map_astc_to_linear_order[ise_range][g_map_linear_to_astc_order[ise_range][i]] = (uint8_t)i; } } void interpolate_qlog12_colors( const int e[2][3], half_float* pDecoded_half, vec3F* pDecoded_float, uint32_t n, uint32_t ise_weight_range) { assert((ise_weight_range >= MIN_SUPPORTED_ISE_WEIGHT_INDEX) && (ise_weight_range <= MAX_SUPPORTED_ISE_WEIGHT_INDEX)); for (uint32_t i = 0; i < 2; i++) { for (uint32_t j = 0; j < 3; j++) { assert(in_range(e[i][j], 0, 0xFFF)); } } for (uint32_t i = 0; i < n; i++) { const int c = g_ise_weight_lerps[ise_weight_range][1 + i]; assert(c == (int)astc_helpers::dequant_bise_weight(i, ise_weight_range)); half_float rf, gf, bf; { uint32_t r0 = e[0][0] << 4; uint32_t r1 = e[1][0] << 4; int ri = (r0 * (64 - c) + r1 * c + 32) / 64; rf = qlog16_to_half_slow(ri); } { uint32_t g0 = e[0][1] << 4; uint32_t g1 = e[1][1] << 4; int gi = (g0 * (64 - c) + g1 * c + 32) / 64; gf = qlog16_to_half_slow(gi); } { uint32_t b0 = e[0][2] << 4; uint32_t b1 = e[1][2] << 4; int bi = (b0 * (64 - c) + b1 * c + 32) / 64; bf = qlog16_to_half_slow(bi); } if (pDecoded_half) { pDecoded_half[i * 3 + 0] = rf; pDecoded_half[i * 3 + 1] = gf; pDecoded_half[i * 3 + 2] = bf; } if (pDecoded_float) { pDecoded_float[i][0] = half_to_float(rf); pDecoded_float[i][1] = half_to_float(gf); pDecoded_float[i][2] = half_to_float(bf); } } } // decoded in ASTC order, not linear order // return false if the ISE endpoint quantization leads to non-valid endpoints being decoded bool get_astc_hdr_mode_11_block_colors( const uint8_t* pEndpoints, half_float* pDecoded_half, vec3F* pDecoded_float, uint32_t n, uint32_t ise_weight_range, uint32_t ise_endpoint_range) { assert((ise_weight_range >= 1) && (ise_weight_range <= MAX_SUPPORTED_ISE_WEIGHT_INDEX)); int e[2][3]; if (!decode_mode11_to_qlog12(pEndpoints, e, ise_endpoint_range)) return false; interpolate_qlog12_colors(e, pDecoded_half, pDecoded_float, n, ise_weight_range); return true; } // decoded in ASTC order, not linear order // return false if the ISE endpoint quantization leads to non-valid endpoints being decoded bool get_astc_hdr_mode_7_block_colors( const uint8_t* pEndpoints, half_float* pDecoded_half, vec3F* pDecoded_float, uint32_t n, uint32_t ise_weight_range, uint32_t ise_endpoint_range) { assert((ise_weight_range >= 1) && (ise_weight_range <= MAX_SUPPORTED_ISE_WEIGHT_INDEX)); int e[2][3]; if (!decode_mode7_to_qlog12(pEndpoints, e, nullptr, ise_endpoint_range)) return false; interpolate_qlog12_colors(e, pDecoded_half, pDecoded_float, n, ise_weight_range); return true; } // Fast high precision piecewise linear approximation of log2(bias+x). // Half may be zero, positive or denormal. No NaN/Inf/negative. static inline double q(half_float x) { union { float f; int32_t i; uint32_t u; } fi; fi.f = fast_half_to_float_pos_not_inf_or_nan(x); assert(fi.f >= 0.0f); fi.f += .125f; return (double)fi.u; // approx log2f(fi.f), need to return double for the precision } double eval_selectors( uint32_t num_pixels, uint8_t* pWeights, const half_float* pBlock_pixels_half, uint32_t num_weight_levels, const half_float* pDecoded_half, const astc_hdr_codec_options& coptions, uint32_t usable_selector_bitmask) { assert((num_pixels >= 1) && (num_pixels <= 16)); assert(usable_selector_bitmask); const float R_WEIGHT = coptions.m_r_err_scale; const float G_WEIGHT = coptions.m_g_err_scale; double total_error = 0; #ifdef _DEBUG for (uint32_t i = 0; i < num_weight_levels; i++) { assert(!is_half_inf_or_nan(pDecoded_half[i * 3 + 0])); assert(!is_half_inf_or_nan(pDecoded_half[i * 3 + 1])); assert(!is_half_inf_or_nan(pDecoded_half[i * 3 + 2])); } #endif for (uint32_t p = 0; p < num_pixels; p++) { const half_float* pDesired_half = &pBlock_pixels_half[p * 3]; double lowest_e = 1e+30f; // this is an approximation of MSLE for (uint32_t i = 0; i < num_weight_levels; i++) { if (((1 << i) & usable_selector_bitmask) == 0) continue; // compute piecewise linear approximation of log2(a+eps)-log2(b+eps), for each component, then MSLE double rd = q(pDecoded_half[i * 3 + 0]) - q(pDesired_half[0]); double gd = q(pDecoded_half[i * 3 + 1]) - q(pDesired_half[1]); double bd = q(pDecoded_half[i * 3 + 2]) - q(pDesired_half[2]); double e = R_WEIGHT * (rd * rd) + G_WEIGHT * (gd * gd) + bd * bd; if (e < lowest_e) { lowest_e = e; pWeights[p] = (uint8_t)i; } } total_error += lowest_e; } // p return total_error; } //-------------------------------------------------------------------------------------------------------------------------- double compute_block_error(const half_float* pOrig_block, const half_float* pPacked_block, const astc_hdr_codec_options& coptions) { const float R_WEIGHT = coptions.m_r_err_scale; const float G_WEIGHT = coptions.m_g_err_scale; double total_error = 0; for (uint32_t p = 0; p < 16; p++) { double rd = q(pOrig_block[p * 3 + 0]) - q(pPacked_block[p * 3 + 0]); double gd = q(pOrig_block[p * 3 + 1]) - q(pPacked_block[p * 3 + 1]); double bd = q(pOrig_block[p * 3 + 2]) - q(pPacked_block[p * 3 + 2]); double e = R_WEIGHT * (rd * rd) + G_WEIGHT * (gd * gd) + bd * bd; total_error += e; } return total_error; } //-------------------------------------------------------------------------------------------------------------------------- static inline int compute_clamped_val(int v, int l, int h, bool& did_clamp, int& max_clamp_mag) { assert(l < h); if (v < l) { max_clamp_mag = basisu::maximum(max_clamp_mag, l - v); v = l; did_clamp = true; } else if (v > h) { max_clamp_mag = basisu::maximum(max_clamp_mag, v - h); v = h; did_clamp = true; } return v; } static bool pack_astc_mode11_submode(uint32_t submode, uint8_t* pEndpoints, const vec3F& low_q16, const vec3F& high_q16, int& max_clamp_mag) { assert(submode <= 7); const uint8_t s_b_bits[8] = { 7, 8, 6, 7, 8, 6, 7, 6 }; const uint8_t s_c_bits[8] = { 6, 6, 7, 7, 6, 7, 7, 7 }; const uint8_t s_d_bits[8] = { 7, 6, 7, 6, 5, 6, 5, 6 }; const uint32_t a_bits = 9 + (submode >> 1); const uint32_t b_bits = s_b_bits[submode]; const uint32_t c_bits = s_c_bits[submode]; const uint32_t d_bits = s_d_bits[submode]; const int max_a_val = (1 << a_bits) - 1; const int max_b_val = (1 << b_bits) - 1; const int max_c_val = (1 << c_bits) - 1; // The maximum usable value before it turns to NaN/Inf const int max_a_qlog = get_max_qlog(a_bits); const int min_d_val = -(1 << (d_bits - 1)); const int max_d_val = -min_d_val - 1; assert((max_d_val - min_d_val + 1) == (1 << d_bits)); int val_q[2][3]; for (uint32_t c = 0; c < 3; c++) { #if 1 // this is better const half_float l = qlog16_to_half_slow((uint32_t)std::round(low_q16[c])); val_q[0][c] = half_to_qlog7_12(l, a_bits); const half_float h = qlog16_to_half_slow((uint32_t)std::round(high_q16[c])); val_q[1][c] = half_to_qlog7_12(h, a_bits); #else val_q[0][c] = quant_qlog16((uint32_t)std::round(low_q16[c]), a_bits); val_q[1][c] = quant_qlog16((uint32_t)std::round(high_q16[c]), a_bits); #endif #if 1 if (val_q[0][c] == val_q[1][c]) { #if 0 if (l <= h) #else if (low_q16[c] < high_q16[c]) #endif { if (val_q[0][c]) val_q[0][c]--; if (val_q[1][c] != max_a_val) val_q[1][c]++; } else { if (val_q[0][c] != max_a_val) val_q[0][c]++; if (val_q[1][c]) val_q[1][c]--; } } #endif val_q[0][c] = minimum(val_q[0][c], max_a_qlog); val_q[1][c] = minimum(val_q[1][c], max_a_qlog); } int highest_q = -1, highest_val = 0, highest_comp = 0; for (uint32_t v = 0; v < 2; v++) { for (uint32_t c = 0; c < 3; c++) { assert(val_q[v][c] >= 0 && val_q[v][c] <= max_a_val); if (val_q[v][c] > highest_q) { highest_q = val_q[v][c]; highest_val = v; highest_comp = c; } } } const bool had_tie = (val_q[highest_val ^ 1][highest_comp] == highest_q); if (highest_val != 1) { for (uint32_t c = 0; c < 3; c++) { std::swap(val_q[0][c], val_q[1][c]); } } if (highest_comp) { std::swap(val_q[0][0], val_q[0][highest_comp]); std::swap(val_q[1][0], val_q[1][highest_comp]); } int orig_q[2][3]; memcpy(orig_q, val_q, sizeof(val_q)); // val[1][0] is now guaranteed to be highest int best_va = 0, best_vb0 = 0, best_vb1 = 0, best_vc = 0, best_vd0 = 0, best_vd1 = 0; int best_max_clamp_mag = 0; bool best_did_clamp = false; int best_q[2][3] = { { 0, 0, 0}, { 0, 0, 0 } }; BASISU_NOTE_UNUSED(best_q); uint32_t best_dist = UINT_MAX; for (uint32_t pass = 0; pass < 2; pass++) { int trial_va = val_q[1][0]; assert(trial_va <= max_a_val); assert(trial_va >= val_q[1][1]); assert(trial_va >= val_q[1][2]); assert(trial_va >= val_q[0][0]); assert(trial_va >= val_q[0][1]); assert(trial_va >= val_q[0][2]); bool did_clamp = false; int trial_max_clamp_mag = 0; int trial_vb0 = compute_clamped_val(trial_va - val_q[1][1], 0, max_b_val, did_clamp, trial_max_clamp_mag); int trial_vb1 = compute_clamped_val(trial_va - val_q[1][2], 0, max_b_val, did_clamp, trial_max_clamp_mag); int trial_vc = compute_clamped_val(trial_va - val_q[0][0], 0, max_c_val, did_clamp, trial_max_clamp_mag); int trial_vd0 = compute_clamped_val((trial_va - trial_vb0 - trial_vc) - val_q[0][1], min_d_val, max_d_val, did_clamp, trial_max_clamp_mag); int trial_vd1 = compute_clamped_val((trial_va - trial_vb1 - trial_vc) - val_q[0][2], min_d_val, max_d_val, did_clamp, trial_max_clamp_mag); if (!did_clamp) { // Make sure decoder gets the expected values assert(trial_va == val_q[1][0]); assert(trial_va - trial_vb0 == val_q[1][1]); assert(trial_va - trial_vb1 == val_q[1][2]); assert((trial_va - trial_vc) == val_q[0][0]); assert((trial_va - trial_vb0 - trial_vc - trial_vd0) == val_q[0][1]); assert((trial_va - trial_vb1 - trial_vc - trial_vd1) == val_q[0][2]); } const int r_e0 = clamp(trial_va, 0, max_a_val); const int r_e1 = clamp(trial_va - trial_vb0, 0, max_a_val); const int r_e2 = clamp(trial_va - trial_vb1, 0, max_a_val); const int r_f0 = clamp(trial_va - trial_vc, 0, max_a_val); const int r_f1 = clamp(trial_va - trial_vb0 - trial_vc - trial_vd0, 0, max_a_val); const int r_f2 = clamp(trial_va - trial_vb1 - trial_vc - trial_vd1, 0, max_a_val); assert(r_e0 <= max_a_qlog); assert(r_e1 <= max_a_qlog); assert(r_e2 <= max_a_qlog); assert(r_f0 <= max_a_qlog); assert(r_f1 <= max_a_qlog); assert(r_f2 <= max_a_qlog); if ((!did_clamp) || (!had_tie)) { best_va = trial_va; best_vb0 = trial_vb0; best_vb1 = trial_vb1; best_vc = trial_vc; best_vd0 = trial_vd0; best_vd1 = trial_vd1; best_max_clamp_mag = trial_max_clamp_mag; best_did_clamp = did_clamp; best_q[1][0] = r_e0; best_q[1][1] = r_e1; best_q[1][2] = r_e2; best_q[0][0] = r_f0; best_q[0][1] = r_f1; best_q[0][2] = r_f2; break; } // we had a tie and it did clamp, try swapping L/H for a potential slight gain const uint32_t r_dist1 = basisu::square(r_e0 - val_q[1][0]) + basisu::square(r_e1 - val_q[1][1]) + basisu::square(r_e2 - val_q[1][2]); const uint32_t r_dist0 = basisu::square(r_f0 - val_q[0][0]) + basisu::square(r_f1 - val_q[0][1]) + basisu::square(r_f2 - val_q[0][2]); const uint32_t total_dist = r_dist1 + r_dist0; if (total_dist < best_dist) { best_dist = total_dist; best_va = trial_va; best_vb0 = trial_vb0; best_vb1 = trial_vb1; best_vc = trial_vc; best_vd0 = trial_vd0; best_vd1 = trial_vd1; best_did_clamp = did_clamp; best_q[1][0] = r_e0; best_q[1][1] = r_e1; best_q[1][2] = r_e2; best_q[0][0] = r_f0; best_q[0][1] = r_f1; best_q[0][2] = r_f2; } for (uint32_t c = 0; c < 3; c++) std::swap(val_q[0][c], val_q[1][c]); } // pack bits now int v0 = 0, v1 = 0, v2 = 0, v3 = 0, v4 = 0, v5 = 0; int x0 = 0, x1 = 0, x2 = 0, x3 = 0, x4 = 0, x5 = 0; switch (submode) { case 0: x0 = get_bit(best_vb0, 6); x1 = get_bit(best_vb1, 6); x2 = get_bit(best_vd0, 6); x3 = get_bit(best_vd1, 6); x4 = get_bit(best_vd0, 5); x5 = get_bit(best_vd1, 5); break; case 1: x0 = get_bit(best_vb0, 6); x1 = get_bit(best_vb1, 6); x2 = get_bit(best_vb0, 7); x3 = get_bit(best_vb1, 7); x4 = get_bit(best_vd0, 5); x5 = get_bit(best_vd1, 5); break; case 2: x0 = get_bit(best_va, 9); x1 = get_bit(best_vc, 6); x2 = get_bit(best_vd0, 6); x3 = get_bit(best_vd1, 6); x4 = get_bit(best_vd0, 5); x5 = get_bit(best_vd1, 5); break; case 3: x0 = get_bit(best_vb0, 6); x1 = get_bit(best_vb1, 6); x2 = get_bit(best_va, 9); x3 = get_bit(best_vc, 6); x4 = get_bit(best_vd0, 5); x5 = get_bit(best_vd1, 5); break; case 4: x0 = get_bit(best_vb0, 6); x1 = get_bit(best_vb1, 6); x2 = get_bit(best_vb0, 7); x3 = get_bit(best_vb1, 7); x4 = get_bit(best_va, 9); x5 = get_bit(best_va, 10); break; case 5: x0 = get_bit(best_va, 9); x1 = get_bit(best_va, 10); x2 = get_bit(best_vc, 7); x3 = get_bit(best_vc, 6); x4 = get_bit(best_vd0, 5); x5 = get_bit(best_vd1, 5); break; case 6: x0 = get_bit(best_vb0, 6); x1 = get_bit(best_vb1, 6); x2 = get_bit(best_va, 11); x3 = get_bit(best_vc, 6); x4 = get_bit(best_va, 9); x5 = get_bit(best_va, 10); break; case 7: x0 = get_bit(best_va, 9); x1 = get_bit(best_va, 10); x2 = get_bit(best_va, 11); x3 = get_bit(best_vc, 6); x4 = get_bit(best_vd0, 5); x5 = get_bit(best_vd1, 5); break; default: break; } // write mode pack_bit(v1, 7, submode, 0); pack_bit(v2, 7, submode, 1); pack_bit(v3, 7, submode, 2); // highest component pack_bit(v4, 7, highest_comp, 0); pack_bit(v5, 7, highest_comp, 1); // write bit 8 of va pack_bit(v1, 6, best_va, 8); // extra bits pack_bit(v2, 6, x0); pack_bit(v3, 6, x1); pack_bit(v4, 6, x2); pack_bit(v5, 6, x3); pack_bit(v4, 5, x4); pack_bit(v5, 5, x5); v0 = best_va & 0xFF; v1 |= (best_vc & 63); v2 |= (best_vb0 & 63); v3 |= (best_vb1 & 63); v4 |= (best_vd0 & 31); v5 |= (best_vd1 & 31); assert(in_range(v0, 0, 255) && in_range(v1, 0, 255) && in_range(v2, 0, 255) && in_range(v3, 0, 255) && in_range(v4, 0, 255) && in_range(v5, 0, 255)); pEndpoints[0] = (uint8_t)v0; pEndpoints[1] = (uint8_t)v1; pEndpoints[2] = (uint8_t)v2; pEndpoints[3] = (uint8_t)v3; pEndpoints[4] = (uint8_t)v4; pEndpoints[5] = (uint8_t)v5; #ifdef _DEBUG // Test for valid pack by unpacking { if (highest_comp) { std::swap(best_q[0][0], best_q[0][highest_comp]); std::swap(best_q[1][0], best_q[1][highest_comp]); std::swap(orig_q[0][0], orig_q[0][highest_comp]); std::swap(orig_q[1][0], orig_q[1][highest_comp]); } int test_e[2][3]; decode_mode11_to_qlog12(pEndpoints, test_e, astc_helpers::BISE_256_LEVELS); for (uint32_t i = 0; i < 2; i++) { for (uint32_t j = 0; j < 3; j++) { assert(best_q[i][j] == test_e[i][j] >> (12 - a_bits)); if (!best_did_clamp) { assert((orig_q[i][j] == test_e[i][j] >> (12 - a_bits)) || (orig_q[1 - i][j] == test_e[i][j] >> (12 - a_bits))); } } } } #endif max_clamp_mag = best_max_clamp_mag; return best_did_clamp; } //-------------------------------------------------------------------------------------------------------------------------- static void pack_astc_mode11_direct(uint8_t* pEndpoints, const vec3F& l_q16, const vec3F& h_q16) { for (uint32_t i = 0; i < 3; i++) { // TODO: This goes from QLOG16->HALF->QLOG8/7 half_float l_half = qlog16_to_half_slow(clamp((int)std::round(l_q16[i]), 0, 65535)); half_float h_half = qlog16_to_half_slow(clamp((int)std::round(h_q16[i]), 0, 65535)); int l_q, h_q; if (i == 2) { l_q = g_half_to_qlog7[bounds_check((uint32_t)l_half, 0U, 32768U)]; h_q = g_half_to_qlog7[bounds_check((uint32_t)h_half, 0U, 32768U)]; l_q = minimum(l_q, MAX_QLOG7); h_q = minimum(h_q, MAX_QLOG7); } else { l_q = g_half_to_qlog8[bounds_check((uint32_t)l_half, 0U, 32768U)]; h_q = g_half_to_qlog8[bounds_check((uint32_t)h_half, 0U, 32768U)]; l_q = minimum(l_q, MAX_QLOG8); h_q = minimum(h_q, MAX_QLOG8); } #if 1 if (l_q == h_q) { const int m = (i == 2) ? MAX_QLOG7 : MAX_QLOG8; if (l_q16[i] <= h_q16[i]) { if (l_q) l_q--; if (h_q != m) h_q++; } else { if (h_q) h_q--; if (l_q != m) l_q++; } } #endif if (i == 2) { assert(l_q <= (int)MAX_QLOG7 && h_q <= (int)MAX_QLOG7); l_q |= 128; h_q |= 128; } else { assert(l_q <= (int)MAX_QLOG8 && h_q <= (int)MAX_QLOG8); } pEndpoints[2 * i + 0] = (uint8_t)l_q; pEndpoints[2 * i + 1] = (uint8_t)h_q; } } //-------------------------------------------------------------------------------------------------------------------------- static bool pack_astc_mode7_submode(uint32_t submode, uint8_t* pEndpoints, const vec3F& rgb_q16, float s_q16, int& max_clamp_mag, uint32_t ise_weight_range) { assert((ise_weight_range >= 1) && (ise_weight_range <= MAX_SUPPORTED_ISE_WEIGHT_INDEX)); assert(submode <= 5); max_clamp_mag = 0; static const uint8_t s_r_bits[6] = { 11, 11, 10, 9, 8, 7 }; static const uint8_t s_g_b_bits[6] = { 5, 6, 5, 6, 7, 7 }; static const uint8_t s_s_bits[6] = { 7, 5, 8, 7, 6, 7 }; // The precision of the components const uint32_t prec_bits = s_r_bits[submode]; int qlog[4], pack_bits[4]; for (uint32_t i = 0; i < 4; i++) { const float f = (i == 3) ? s_q16 : rgb_q16[i]; // The # of bits the component is packed into if (i == 0) pack_bits[i] = s_r_bits[submode]; else if (i == 3) pack_bits[i] = s_s_bits[submode]; else pack_bits[i] = s_g_b_bits[submode]; #if 0 // this is slightly worse // TODO: going from qlog16 to half loses some precision. Then going from half to qlog 7-12 will have extra error. half_float h = qlog_to_half(clamp((int)std::round(f), 0, MAX_QLOG16), 16); qlog[i] = half_to_qlog7_12((half_float)bounds_check((uint32_t)h, 0U, 32768U), prec_bits); #else qlog[i] = quant_qlog16(clamp((int)std::round(f), 0, MAX_QLOG16), prec_bits); // Only bias if there are enough texel weights, 4=6 weights if (ise_weight_range >= 4) { // Explictly bias the high color, and the scale up, to better exploit the weights. // The quantized range also then encompases the complete input range. const uint32_t max_val = (1 << prec_bits) - 1; const uint32_t K = 3; if (i == 3) { qlog[i] = minimum(qlog[i] + K * 2, max_val); } else { qlog[i] = minimum(qlog[i] + K, max_val); } } #endif if (i != 3) qlog[i] = minimum(qlog[i], get_max_qlog(prec_bits)); // If S=0, we lose freedom for the texel weights to add any value. if ((i == 3) && (qlog[i] == 0)) qlog[i] = 1; } uint32_t maj_index = 0; bool did_clamp = false; if (submode != 5) { int largest_qlog = 0; for (uint32_t i = 0; i < 3; i++) { if (qlog[i] > largest_qlog) { largest_qlog = qlog[i]; maj_index = i; } } if (maj_index) { std::swap(qlog[0], qlog[maj_index]); } assert(qlog[0] >= qlog[1]); assert(qlog[0] >= qlog[2]); qlog[1] = qlog[0] - qlog[1]; qlog[2] = qlog[0] - qlog[2]; for (uint32_t i = 1; i < 4; i++) { const int max_val = (1 << pack_bits[i]) - 1; if (qlog[i] > max_val) { max_clamp_mag = maximum(max_clamp_mag, qlog[i] - max_val); qlog[i] = max_val; did_clamp = true; } } } for (uint32_t i = 0; i < 4; i++) { const int max_val = (1 << pack_bits[i]) - 1; (void)max_val; assert(qlog[i] <= max_val); } int mode = 0; int r = qlog[0] & 63; // 6-bits int g = qlog[1] & 31; // 5-bits int b = qlog[2] & 31; // 5-bits int s = qlog[3] & 31; // 5-bits int x0 = 0, x1 = 0, x2 = 0, x3 = 0, x4 = 0, x5 = 0, x6 = 0; switch (submode) { case 0: { mode = (maj_index << 2) | 0; assert((mode & 0xC) != 0xC); x0 = get_bit(qlog[0], 9); // R9 x1 = get_bit(qlog[0], 8); // R8 x2 = get_bit(qlog[0], 7); // R7 x3 = get_bit(qlog[0], 10); // R10 x4 = get_bit(qlog[0], 6); // R6 x5 = get_bit(qlog[3], 6); // S6 x6 = get_bit(qlog[3], 5); // S5 break; } case 1: { mode = (maj_index << 2) | 1; assert((mode & 0xC) != 0xC); x0 = get_bit(qlog[0], 8); // R8 x1 = get_bit(qlog[1], 5); // G5 x2 = get_bit(qlog[0], 7); // R7 x3 = get_bit(qlog[2], 5); // B5 x4 = get_bit(qlog[0], 6); // R6 x5 = get_bit(qlog[0], 10); // R10 x6 = get_bit(qlog[0], 9); // R9 break; } case 2: { mode = (maj_index << 2) | 2; assert((mode & 0xC) != 0xC); x0 = get_bit(qlog[0], 9); // R9 x1 = get_bit(qlog[0], 8); // R8 x2 = get_bit(qlog[0], 7); // R7 x3 = get_bit(qlog[0], 6); // R6 x4 = get_bit(qlog[3], 7); // S7 x5 = get_bit(qlog[3], 6); // S6 x6 = get_bit(qlog[3], 5); // S5 break; } case 3: { mode = (maj_index << 2) | 3; assert((mode & 0xC) != 0xC); x0 = get_bit(qlog[0], 8); // R8 x1 = get_bit(qlog[1], 5); // G5 x2 = get_bit(qlog[0], 7); // R7 x3 = get_bit(qlog[2], 5); // B5 x4 = get_bit(qlog[0], 6); // R6 x5 = get_bit(qlog[3], 6); // S6 x6 = get_bit(qlog[3], 5); // S5 break; } case 4: { mode = maj_index | 0xC; // 0b1100 assert((mode & 0xC) == 0xC); assert(mode != 0xF); x0 = get_bit(qlog[1], 6); // G6 x1 = get_bit(qlog[1], 5); // G5 x2 = get_bit(qlog[2], 6); // B6 x3 = get_bit(qlog[2], 5); // B5 x4 = get_bit(qlog[0], 6); // R6 x5 = get_bit(qlog[0], 7); // R7 x6 = get_bit(qlog[3], 5); // S5 break; } case 5: { mode = 0xF; x0 = get_bit(qlog[1], 6); // G6 x1 = get_bit(qlog[1], 5); // G5 x2 = get_bit(qlog[2], 6); // B6 x3 = get_bit(qlog[2], 5); // B5 x4 = get_bit(qlog[0], 6); // R6 x5 = get_bit(qlog[3], 6); // S6 x6 = get_bit(qlog[3], 5); // S5 break; } default: { assert(0); break; } } pEndpoints[0] = (uint8_t)((get_bit(mode, 1) << 7) | (get_bit(mode, 0) << 6) | r); pEndpoints[1] = (uint8_t)((get_bit(mode, 2) << 7) | (x0 << 6) | (x1 << 5) | g); pEndpoints[2] = (uint8_t)((get_bit(mode, 3) << 7) | (x2 << 6) | (x3 << 5) | b); pEndpoints[3] = (uint8_t)((x4 << 7) | (x5 << 6) | (x6 << 5) | s); #ifdef _DEBUG // Test for valid pack by unpacking { const int inv_shift = 12 - prec_bits; int unpacked_e[2][3]; if (submode != 5) { unpacked_e[1][0] = left_shift32(qlog[0], inv_shift); unpacked_e[1][1] = clamp(left_shift32((qlog[0] - qlog[1]), inv_shift), 0, 0xFFF); unpacked_e[1][2] = clamp(left_shift32((qlog[0] - qlog[2]), inv_shift), 0, 0xFFF); unpacked_e[0][0] = clamp(left_shift32((qlog[0] - qlog[3]), inv_shift), 0, 0xFFF); unpacked_e[0][1] = clamp(left_shift32(((qlog[0] - qlog[1]) - qlog[3]), inv_shift), 0, 0xFFF); unpacked_e[0][2] = clamp(left_shift32(((qlog[0] - qlog[2]) - qlog[3]), inv_shift), 0, 0xFFF); } else { unpacked_e[1][0] = left_shift32(qlog[0], inv_shift); unpacked_e[1][1] = left_shift32(qlog[1], inv_shift); unpacked_e[1][2] = left_shift32(qlog[2], inv_shift); unpacked_e[0][0] = clamp(left_shift32((qlog[0] - qlog[3]), inv_shift), 0, 0xFFF); unpacked_e[0][1] = clamp(left_shift32((qlog[1] - qlog[3]), inv_shift), 0, 0xFFF); unpacked_e[0][2] = clamp(left_shift32((qlog[2] - qlog[3]), inv_shift), 0, 0xFFF); } if (maj_index) { std::swap(unpacked_e[0][0], unpacked_e[0][maj_index]); std::swap(unpacked_e[1][0], unpacked_e[1][maj_index]); } int e[2][3]; decode_mode7_to_qlog12_ise20(pEndpoints, e, nullptr); for (uint32_t i = 0; i < 3; i++) { assert(unpacked_e[0][i] == e[0][i]); assert(unpacked_e[1][i] == e[1][i]); } } #endif return did_clamp; } //-------------------------------------------------------------------------------------------------------------------------- static void quantize_ise_endpoints(uint32_t ise_endpoint_range, const uint8_t* pSrc_endpoints, uint8_t *pDst_endpoints, uint32_t n) { assert((ise_endpoint_range >= astc_helpers::FIRST_VALID_ENDPOINT_ISE_RANGE) && (ise_endpoint_range <= astc_helpers::LAST_VALID_ENDPOINT_ISE_RANGE)); if (ise_endpoint_range == astc_helpers::BISE_256_LEVELS) { memcpy(pDst_endpoints, pSrc_endpoints, n); } else { for (uint32_t i = 0; i < n; i++) { uint32_t v = pSrc_endpoints[i]; assert(v <= 255); pDst_endpoints[i] = astc_helpers::g_dequant_tables.get_endpoint_tab(ise_endpoint_range).m_val_to_ise[v]; } } } //-------------------------------------------------------------------------------------------------------------------------- // Note this could fail to find any valid solution if use_endpoint_range!=20. // Returns true if improved. static bool try_mode11(uint32_t num_pixels, uint8_t* pEndpoints, uint8_t* pWeights, double& cur_block_error, uint32_t& submode_used, vec3F& low_color_q16, const vec3F& high_color_q16, half_float block_pixels_half[16][3], uint32_t num_weight_levels, uint32_t ise_weight_range, const astc_hdr_codec_options& coptions, bool direct_only, uint32_t ise_endpoint_range, bool constrain_ise_weight8_selectors, int32_t first_submode, int32_t last_submode) // -1, 7 { assert((ise_weight_range >= 1) && (ise_weight_range <= MAX_SUPPORTED_ISE_WEIGHT_INDEX)); assert((num_weight_levels >= 3) && (num_weight_levels <= 32)); assert((num_pixels >= 1) && (num_pixels <= 16)); bool improved_flag = false; half_float decoded_half[32][3]; vec3F decoded_float[32]; uint8_t orig_trial_endpoints[NUM_MODE11_ENDPOINTS], trial_endpoints[NUM_MODE11_ENDPOINTS], trial_weights[16]; if (direct_only) { first_submode = -1; last_submode = -1; } assert(first_submode <= last_submode); assert((first_submode >= -1) && (first_submode <= 7)); assert((last_submode >= -1) && (last_submode <= 7)); // TODO: First determine if a submode doesn't clamp first. If one is found, encode to that and we're done. for (int submode = last_submode; submode >= first_submode; submode--) { bool did_clamp = false; int max_clamp_mag = 0; if (submode == -1) { // If it had to clamp with one of the submodes, try direct which can't clamp, but has low precision. pack_astc_mode11_direct(orig_trial_endpoints, low_color_q16, high_color_q16); } else { did_clamp = pack_astc_mode11_submode(submode, orig_trial_endpoints, low_color_q16, high_color_q16, max_clamp_mag); // If it had to clamp and the clamp was too high, it'll distort the endpoint colors too much, which could lead to noticeable artifacts. const int MAX_CLAMP_MAG_ACCEPT_THRESH = 4; if ((did_clamp) && (max_clamp_mag > MAX_CLAMP_MAG_ACCEPT_THRESH)) continue; } // This will distort the endpoints if the ISE endpoint range isn't 256 levels (20). // It could massively distort the endpoints, but still result in a valid encoding. quantize_ise_endpoints(ise_endpoint_range, orig_trial_endpoints, trial_endpoints, NUM_MODE11_ENDPOINTS); if (!get_astc_hdr_mode_11_block_colors(trial_endpoints, &decoded_half[0][0], decoded_float, num_weight_levels, ise_weight_range, ise_endpoint_range)) continue; uint32_t usable_selector_bitmask = UINT32_MAX; if ((constrain_ise_weight8_selectors) && (ise_weight_range == astc_helpers::BISE_16_LEVELS)) usable_selector_bitmask = (1 << 0) | (1 << 1) | (1 << 4) | (1 << 5) | (1 << 10) | (1 << 11) | (1 << 14) | (1 << 15); double trial_blk_error = eval_selectors(num_pixels, trial_weights, &block_pixels_half[0][0], num_weight_levels, &decoded_half[0][0], coptions, usable_selector_bitmask); if (trial_blk_error < cur_block_error) { cur_block_error = trial_blk_error; memcpy(pEndpoints, trial_endpoints, NUM_MODE11_ENDPOINTS); memcpy(pWeights, trial_weights, num_pixels); submode_used = submode + 1; improved_flag = true; } // If it didn't clamp it was a lossless encode at this precision, so we can stop early as there's probably no use trying lower precision submodes. // (Although it may be, because a lower precision pack could try nearby voxel coords.) // However, at lower levels quantization may cause the decoded endpoints to be very distorted, so we need to evaluate up to direct. if (ise_endpoint_range == astc_helpers::BISE_256_LEVELS) { if (!did_clamp) break; } } return improved_flag; } //-------------------------------------------------------------------------------------------------------------------------- static bool try_mode7( uint32_t num_pixels, uint8_t* pEndpoints, uint8_t* pWeights, double& cur_block_error, uint32_t& submode_used, vec3F& high_color_q16, const float s_q16, half_float block_pixels_half[16][3], uint32_t num_weight_levels, uint32_t ise_weight_range, const astc_hdr_codec_options& coptions, uint32_t ise_endpoint_range) { assert((ise_weight_range >= 1) && (ise_weight_range <= MAX_SUPPORTED_ISE_WEIGHT_INDEX)); assert((num_pixels >= 1) && (num_pixels <= 16)); bool improved_flag = false; half_float decoded_half[24][3]; vec3F decoded_float[24]; uint8_t orig_trial_endpoints[NUM_MODE7_ENDPOINTS], trial_endpoints[NUM_MODE7_ENDPOINTS], trial_weights[16]; // TODO: First determine if a submode doesn't clamp first. If one is found, encode to that and we're done. for (int submode = 0; submode <= 5; submode++) { int max_clamp_mag = 0; const bool did_clamp = pack_astc_mode7_submode(submode, orig_trial_endpoints, high_color_q16, s_q16, max_clamp_mag, ise_weight_range); if (submode < 5) { const int MAX_CLAMP_MAG_ACCEPT_THRESH = 4; if ((did_clamp) && (max_clamp_mag > MAX_CLAMP_MAG_ACCEPT_THRESH)) continue; } // This will distort the endpoints if the ISE endpoint range isn't 256 levels (20). // It could massively distort the endpoints, but still result in a valid encoding. quantize_ise_endpoints(ise_endpoint_range, orig_trial_endpoints, trial_endpoints, NUM_MODE7_ENDPOINTS); if (!get_astc_hdr_mode_7_block_colors(trial_endpoints, &decoded_half[0][0], decoded_float, num_weight_levels, ise_weight_range, ise_endpoint_range)) continue; double trial_blk_error = eval_selectors(num_pixels, trial_weights, &block_pixels_half[0][0], num_weight_levels, &decoded_half[0][0], coptions); if (trial_blk_error < cur_block_error) { cur_block_error = trial_blk_error; memcpy(pEndpoints, trial_endpoints, NUM_MODE7_ENDPOINTS); memcpy(pWeights, trial_weights, num_pixels); submode_used = submode; improved_flag = true; } if (ise_endpoint_range == astc_helpers::BISE_256_LEVELS) { if (!did_clamp) break; } } return improved_flag; } //-------------------------------------------------------------------------------------------------------------------------- static double encode_astc_hdr_block_mode_11( uint32_t num_pixels, const vec4F* pBlock_pixels, uint32_t ise_weight_range, uint32_t& best_submode, double cur_block_error, uint8_t* blk_endpoints, uint8_t* blk_weights, const astc_hdr_codec_options& coptions, bool direct_only, uint32_t ise_endpoint_range, bool uber_mode, bool constrain_ise_weight8_selectors, int32_t first_submode, int32_t last_submode) { assert((ise_weight_range >= 1) && (ise_weight_range <= MAX_SUPPORTED_ISE_WEIGHT_INDEX)); assert((ise_endpoint_range >= astc_helpers::FIRST_VALID_ENDPOINT_ISE_RANGE) && (ise_endpoint_range <= astc_helpers::LAST_VALID_ENDPOINT_ISE_RANGE)); assert((num_pixels >= 1) && (num_pixels <= 16)); best_submode = 0; half_float block_pixels_half[16][3]; vec4F block_pixels_q16[16]; // TODO: This is done redundantly. for (uint32_t i = 0; i < num_pixels; i++) { block_pixels_half[i][0] = float_to_half_non_neg_no_nan_inf(pBlock_pixels[i][0]); block_pixels_q16[i][0] = (float)half_to_qlog16(block_pixels_half[i][0]); block_pixels_half[i][1] = float_to_half_non_neg_no_nan_inf(pBlock_pixels[i][1]); block_pixels_q16[i][1] = (float)half_to_qlog16(block_pixels_half[i][1]); block_pixels_half[i][2] = float_to_half_non_neg_no_nan_inf(pBlock_pixels[i][2]); block_pixels_q16[i][2] = (float)half_to_qlog16(block_pixels_half[i][2]); block_pixels_q16[i][3] = 0.0f; } const uint32_t num_weight_levels = astc_helpers::get_ise_levels(ise_weight_range); // TODO: should match MAX_SUPPORTED_ISE_WEIGHT_INDEX const uint32_t MAX_WEIGHT_LEVELS = 32; (void)MAX_WEIGHT_LEVELS; assert(num_weight_levels <= MAX_WEIGHT_LEVELS); vec3F block_mean_color_q16(calc_mean(num_pixels, block_pixels_q16)); vec3F block_axis_q16(calc_rgb_pca(num_pixels, block_pixels_q16, block_mean_color_q16)); aabb3F color_box_q16(cInitExpand); float l = 1e+30f, h = -1e+30f; vec3F low_color_q16, high_color_q16; for (uint32_t i = 0; i < num_pixels; i++) { color_box_q16.expand(block_pixels_q16[i]); vec3F k(vec3F(block_pixels_q16[i]) - block_mean_color_q16); float kd = k.dot(block_axis_q16); if (kd < l) { l = kd; low_color_q16 = block_pixels_q16[i]; } if (kd > h) { h = kd; high_color_q16 = block_pixels_q16[i]; } } vec3F old_low_color_q16(low_color_q16), old_high_color_q16(high_color_q16); for (uint32_t i = 0; i < 3; i++) { low_color_q16[i] = lerp(old_low_color_q16[i], old_high_color_q16[i], 1.0f / 64.0f); high_color_q16[i] = lerp(old_low_color_q16[i], old_high_color_q16[i], 63.0f / 64.0f); } uint8_t trial_blk_endpoints[NUM_MODE11_ENDPOINTS]; uint8_t trial_blk_weights[16]; uint32_t trial_best_submode = 0; clear_obj(trial_blk_endpoints); clear_obj(trial_blk_weights); double trial_blk_error = 1e+30f; bool did_improve = try_mode11(num_pixels, trial_blk_endpoints, trial_blk_weights, trial_blk_error, trial_best_submode, low_color_q16, high_color_q16, block_pixels_half, num_weight_levels, ise_weight_range, coptions, direct_only, ise_endpoint_range, constrain_ise_weight8_selectors, first_submode, last_submode); // If we couldn't find ANY usable solution due to endpoint quantization, just return. There's nothing we can do. if (!did_improve) return cur_block_error; // Did the solution improve? if (trial_blk_error < cur_block_error) { cur_block_error = trial_blk_error; memcpy(blk_endpoints, trial_blk_endpoints, NUM_MODE11_ENDPOINTS); memcpy(blk_weights, trial_blk_weights, num_pixels); best_submode = trial_best_submode; } #define USE_LEAST_SQUARES (1) #if USE_LEAST_SQUARES // least squares on the most promising trial weight indices found const uint32_t NUM_LS_PASSES = 3; for (uint32_t pass = 0; pass < NUM_LS_PASSES; pass++) { vec3F l_q16, h_q16; if (!compute_least_squares_endpoints_rgb(num_pixels, trial_blk_weights, &g_astc_ls_weights_ise[ise_weight_range][0], &l_q16, &h_q16, block_pixels_q16, color_box_q16)) break; bool was_improved = try_mode11(num_pixels, blk_endpoints, blk_weights, cur_block_error, best_submode, l_q16, h_q16, block_pixels_half, num_weight_levels, ise_weight_range, coptions, direct_only, ise_endpoint_range, constrain_ise_weight8_selectors, first_submode, last_submode); if (!was_improved) break; // It's improved, so let's take the new weight indices. memcpy(trial_blk_weights, blk_weights, num_pixels); } // pass #endif if (uber_mode) { // Try varying the current best weight indices. This can be expanded/improved, but at potentially great cost. uint8_t temp_astc_weights[16]; memcpy(temp_astc_weights, trial_blk_weights, num_pixels); uint32_t min_lin_sel = 256, max_lin_sel = 0; for (uint32_t i = 0; i < num_pixels; i++) { const uint32_t astc_sel = temp_astc_weights[i]; const uint32_t lin_sel = g_map_astc_to_linear_order[ise_weight_range][astc_sel]; assert(lin_sel < num_weight_levels); min_lin_sel = minimumu(min_lin_sel, lin_sel); max_lin_sel = maximumu(max_lin_sel, lin_sel); } bool was_improved = false; (void)was_improved; { bool weights_changed = false; uint8_t trial_weights[16]; for (uint32_t i = 0; i < num_pixels; i++) { uint32_t astc_sel = temp_astc_weights[i]; uint32_t lin_sel = g_map_astc_to_linear_order[ise_weight_range][astc_sel]; if ((lin_sel == min_lin_sel) && (lin_sel < (num_weight_levels - 1))) { lin_sel++; weights_changed = true; } trial_weights[i] = g_map_linear_to_astc_order[ise_weight_range][lin_sel]; } if (weights_changed) { vec3F l_q16, h_q16; if (compute_least_squares_endpoints_rgb(num_pixels, trial_weights, &g_astc_ls_weights_ise[ise_weight_range][0], &l_q16, &h_q16, block_pixels_q16, color_box_q16)) { if (try_mode11(num_pixels, blk_endpoints, blk_weights, cur_block_error, best_submode, l_q16, h_q16, block_pixels_half, num_weight_levels, ise_weight_range, coptions, direct_only, ise_endpoint_range, constrain_ise_weight8_selectors, first_submode, last_submode)) { was_improved = true; } } } } { bool weights_changed = false; uint8_t trial_weights[16]; for (uint32_t i = 0; i < num_pixels; i++) { uint32_t astc_sel = temp_astc_weights[i]; uint32_t lin_sel = g_map_astc_to_linear_order[ise_weight_range][astc_sel]; if ((lin_sel == max_lin_sel) && (lin_sel > 0)) { lin_sel--; weights_changed = true; } trial_weights[i] = g_map_linear_to_astc_order[ise_weight_range][lin_sel]; } if (weights_changed) { vec3F l_q16, h_q16; if (compute_least_squares_endpoints_rgb(num_pixels, trial_weights, &g_astc_ls_weights_ise[ise_weight_range][0], &l_q16, &h_q16, block_pixels_q16, color_box_q16)) { if (try_mode11(num_pixels, blk_endpoints, blk_weights, cur_block_error, best_submode, l_q16, h_q16, block_pixels_half, num_weight_levels, ise_weight_range, coptions, direct_only, ise_endpoint_range, constrain_ise_weight8_selectors, first_submode, last_submode)) { was_improved = true; } } } } { bool weights_changed = false; uint8_t trial_weights[16]; for (uint32_t i = 0; i < num_pixels; i++) { uint32_t astc_sel = temp_astc_weights[i]; uint32_t lin_sel = g_map_astc_to_linear_order[ise_weight_range][astc_sel]; if ((lin_sel == max_lin_sel) && (lin_sel > 0)) { lin_sel--; weights_changed = true; } else if ((lin_sel == min_lin_sel) && (lin_sel < (num_weight_levels - 1))) { lin_sel++; weights_changed = true; } trial_weights[i] = g_map_linear_to_astc_order[ise_weight_range][lin_sel]; } if (weights_changed) { vec3F l_q16, h_q16; if (compute_least_squares_endpoints_rgb(num_pixels, trial_weights, &g_astc_ls_weights_ise[ise_weight_range][0], &l_q16, &h_q16, block_pixels_q16, color_box_q16)) { if (try_mode11(num_pixels, blk_endpoints, blk_weights, cur_block_error, best_submode, l_q16, h_q16, block_pixels_half, num_weight_levels, ise_weight_range, coptions, direct_only, ise_endpoint_range, constrain_ise_weight8_selectors, first_submode, last_submode)) { was_improved = true; } } } } } // uber_mode return cur_block_error; } //-------------------------------------------------------------------------------------------------------------------------- static double encode_astc_hdr_block_mode_7( uint32_t num_pixels, const vec4F* pBlock_pixels, uint32_t ise_weight_range, uint32_t& best_submode, double cur_block_error, uint8_t* blk_endpoints, //[4] uint8_t* blk_weights, // [num_pixels] const astc_hdr_codec_options& coptions, uint32_t ise_endpoint_range) { assert((num_pixels >= 1) && (num_pixels <= 16)); assert((ise_weight_range >= 1) && (ise_weight_range <= 10)); assert((ise_endpoint_range >= astc_helpers::FIRST_VALID_ENDPOINT_ISE_RANGE) && (ise_endpoint_range <= astc_helpers::LAST_VALID_ENDPOINT_ISE_RANGE)); const uint32_t num_weight_levels = astc_helpers::get_ise_levels(ise_weight_range); const uint32_t MAX_WEIGHT_LEVELS = 24; assert(num_weight_levels <= MAX_WEIGHT_LEVELS); BASISU_NOTE_UNUSED(MAX_WEIGHT_LEVELS); best_submode = 0; half_float block_pixels_half[16][3]; vec4F block_pixels_q16[16]; for (uint32_t i = 0; i < num_pixels; i++) { block_pixels_half[i][0] = float_to_half_non_neg_no_nan_inf(pBlock_pixels[i][0]); block_pixels_q16[i][0] = (float)half_to_qlog16(block_pixels_half[i][0]); block_pixels_half[i][1] = float_to_half_non_neg_no_nan_inf(pBlock_pixels[i][1]); block_pixels_q16[i][1] = (float)half_to_qlog16(block_pixels_half[i][1]); block_pixels_half[i][2] = float_to_half_non_neg_no_nan_inf(pBlock_pixels[i][2]); block_pixels_q16[i][2] = (float)half_to_qlog16(block_pixels_half[i][2]); block_pixels_q16[i][3] = 0.0f; } vec3F block_mean_color_q16(calc_mean(num_pixels, block_pixels_q16)); vec3F block_axis_q16(0.577350259f); aabb3F color_box_q16(cInitExpand); float l = 1e+30f, h = -1e+30f; for (uint32_t i = 0; i < num_pixels; i++) { color_box_q16.expand(block_pixels_q16[i]); vec3F k(vec3F(block_pixels_q16[i]) - block_mean_color_q16); float kd = k.dot(block_axis_q16); l = basisu::minimum(l, kd); h = basisu::maximum(h, kd); } vec3F low_color_q16(interp_color(block_mean_color_q16, block_axis_q16, l, color_box_q16, color_box_q16)); vec3F high_color_q16(interp_color(block_mean_color_q16, block_axis_q16, h, color_box_q16, color_box_q16)); low_color_q16.clamp(0.0f, MAX_QLOG16_VAL); high_color_q16.clamp(0.0f, MAX_QLOG16_VAL); vec3F diff(high_color_q16 - low_color_q16); float s_q16 = diff.dot(block_axis_q16) * block_axis_q16[0]; uint8_t trial_blk_endpoints[NUM_MODE7_ENDPOINTS]; uint8_t trial_blk_weights[16]; uint32_t trial_best_submode = 0; clear_obj(trial_blk_endpoints); clear_obj(trial_blk_weights); double trial_blk_error = 1e+30f; bool did_improve = try_mode7(num_pixels, trial_blk_endpoints, trial_blk_weights, trial_blk_error, trial_best_submode, high_color_q16, ceilf(s_q16), block_pixels_half, num_weight_levels, ise_weight_range, coptions, ise_endpoint_range); // If we couldn't find ANY usable solution due to endpoint quantization, just return. There's nothing we can do. if (!did_improve) { return cur_block_error; } // Did the solution improve? if (trial_blk_error < cur_block_error) { cur_block_error = trial_blk_error; memcpy(blk_endpoints, trial_blk_endpoints, NUM_MODE7_ENDPOINTS); memcpy(blk_weights, trial_blk_weights, num_pixels); best_submode = trial_best_submode; } const float one_over_num_pixels = 1.0f / (float)num_pixels; const uint32_t NUM_TRIALS = 2; for (uint32_t trial = 0; trial < NUM_TRIALS; trial++) { // Given a set of selectors and S, try to compute a better high color vec3F new_high_color_q16(block_mean_color_q16); int e[2][3]; int cur_s = 0; if (!decode_mode7_to_qlog12(trial_blk_endpoints, e, &cur_s, ise_endpoint_range)) break; cur_s <<= 4; for (uint32_t i = 0; i < num_pixels; i++) { uint32_t astc_sel = trial_blk_weights[i]; float lerp = g_ise_weight_lerps[ise_weight_range][astc_sel + 1] * (1.0f / 64.0f); float k = (float)cur_s * (1.0f - lerp) * one_over_num_pixels; new_high_color_q16[0] += k; new_high_color_q16[1] += k; new_high_color_q16[2] += k; } bool improved = try_mode7(num_pixels, blk_endpoints, blk_weights, cur_block_error, best_submode, new_high_color_q16, (float)cur_s, block_pixels_half, num_weight_levels, ise_weight_range, coptions, ise_endpoint_range); if (improved) { memcpy(trial_blk_endpoints, blk_endpoints, NUM_MODE7_ENDPOINTS); memcpy(trial_blk_weights, blk_weights, num_pixels); } // Given a set of selectors and a high color, try to compute a better S. float t = 0.0f; for (uint32_t i = 0; i < num_pixels; i++) { uint32_t astc_sel = trial_blk_weights[i]; float lerp = g_ise_weight_lerps[ise_weight_range][astc_sel + 1] * (1.0f / 64.0f); t += (1.0f) - lerp; } t *= one_over_num_pixels; //int e[2][3]; if (!decode_mode7_to_qlog12(trial_blk_endpoints, e, nullptr, ise_endpoint_range)) break; vec3F cur_h_q16((float)(e[1][0] << 4), (float)(e[1][1] << 4), (float)(e[1][2] << 4)); if (fabs(t) > .0000125f) { float s_r = (cur_h_q16[0] - block_mean_color_q16[0]) / t; float s_g = (cur_h_q16[1] - block_mean_color_q16[1]) / t; float s_b = (cur_h_q16[2] - block_mean_color_q16[2]) / t; // TODO: gather statistics on these if (try_mode7(num_pixels, blk_endpoints, blk_weights, cur_block_error, best_submode, cur_h_q16, ceilf(s_r), block_pixels_half, num_weight_levels, ise_weight_range, coptions, ise_endpoint_range)) { improved = true; } if (try_mode7(num_pixels, blk_endpoints, blk_weights, cur_block_error, best_submode, cur_h_q16, ceilf(s_g), block_pixels_half, num_weight_levels, ise_weight_range, coptions, ise_endpoint_range)) { improved = true; } if (try_mode7(num_pixels, blk_endpoints, blk_weights, cur_block_error, best_submode, cur_h_q16, ceilf(s_b), block_pixels_half, num_weight_levels, ise_weight_range, coptions, ise_endpoint_range)) { improved = true; } if (try_mode7(num_pixels, blk_endpoints, blk_weights, cur_block_error, best_submode, cur_h_q16, ceilf((s_r + s_g + s_b) / 3.0f), block_pixels_half, num_weight_levels, ise_weight_range, coptions, ise_endpoint_range)) { improved = true; } } if (!improved) break; memcpy(trial_blk_endpoints, blk_endpoints, NUM_MODE7_ENDPOINTS); memcpy(trial_blk_weights, blk_weights, num_pixels); } // trial return cur_block_error; } //-------------------------------------------------------------------------------------------------------------------------- static bool pack_solid(const vec4F* pBlock_linear_colors, basisu::vector& all_results, const astc_hdr_codec_options& coptions) { float r = 0.0f, g = 0.0f, b = 0.0f; const float LOG_BIAS = .125f; bool solid_block = true; for (uint32_t i = 0; i < 16; i++) { if ((pBlock_linear_colors[0][0] != pBlock_linear_colors[i][0]) || (pBlock_linear_colors[0][1] != pBlock_linear_colors[i][1]) || (pBlock_linear_colors[0][2] != pBlock_linear_colors[i][2])) { solid_block = false; } r += log2f(pBlock_linear_colors[i][0] + LOG_BIAS); g += log2f(pBlock_linear_colors[i][1] + LOG_BIAS); b += log2f(pBlock_linear_colors[i][2] + LOG_BIAS); } if (solid_block) { r = pBlock_linear_colors[0][0]; g = pBlock_linear_colors[0][1]; b = pBlock_linear_colors[0][2]; } else { r = maximum(0.0f, powf(2.0f, r * (1.0f / 16.0f)) - LOG_BIAS); g = maximum(0.0f, powf(2.0f, g * (1.0f / 16.0f)) - LOG_BIAS); b = maximum(0.0f, powf(2.0f, b * (1.0f / 16.0f)) - LOG_BIAS); // for safety r = minimum(r, MAX_HALF_FLOAT); g = minimum(g, MAX_HALF_FLOAT); b = minimum(b, MAX_HALF_FLOAT); } half_float rh = float_to_half_non_neg_no_nan_inf(r), gh = float_to_half_non_neg_no_nan_inf(g), bh = float_to_half_non_neg_no_nan_inf(b), ah = float_to_half_non_neg_no_nan_inf(1.0f); astc_hdr_pack_results results; results.clear(); uint8_t* packed_blk = (uint8_t*)&results.m_solid_blk; results.m_is_solid = true; packed_blk[0] = 0b11111100; packed_blk[1] = 255; packed_blk[2] = 255; packed_blk[3] = 255; packed_blk[4] = 255; packed_blk[5] = 255; packed_blk[6] = 255; packed_blk[7] = 255; packed_blk[8] = (uint8_t)rh; packed_blk[9] = (uint8_t)(rh >> 8); packed_blk[10] = (uint8_t)gh; packed_blk[11] = (uint8_t)(gh >> 8); packed_blk[12] = (uint8_t)bh; packed_blk[13] = (uint8_t)(bh >> 8); packed_blk[14] = (uint8_t)ah; packed_blk[15] = (uint8_t)(ah >> 8); results.m_best_block_error = 0; if (!solid_block) { const float R_WEIGHT = coptions.m_r_err_scale; const float G_WEIGHT = coptions.m_g_err_scale; // This MUST match how errors are computed in eval_selectors(). for (uint32_t i = 0; i < 16; i++) { half_float dr = float_to_half_non_neg_no_nan_inf(pBlock_linear_colors[i][0]), dg = float_to_half_non_neg_no_nan_inf(pBlock_linear_colors[i][1]), db = float_to_half_non_neg_no_nan_inf(pBlock_linear_colors[i][2]); double rd = q(rh) - q(dr); double gd = q(gh) - q(dg); double bd = q(bh) - q(db); double e = R_WEIGHT * (rd * rd) + G_WEIGHT * (gd * gd) + bd * bd; results.m_best_block_error += e; } } const half_float hc[3] = { rh, gh, bh }; bc6h_enc_block_solid_color(&results.m_bc6h_block, hc); all_results.push_back(results); return solid_block; } //-------------------------------------------------------------------------------------------------------------------------- static void pack_mode11( const vec4F* pBlock_linear_colors, basisu::vector& all_results, const astc_hdr_codec_options& coptions, uint32_t first_weight_ise_range, uint32_t last_weight_ise_range, bool constrain_ise_weight8_selectors) { uint8_t trial_endpoints[NUM_MODE11_ENDPOINTS], trial_weights[16]; uint32_t trial_submode11 = 0; clear_obj(trial_endpoints); clear_obj(trial_weights); for (uint32_t weight_ise_range = first_weight_ise_range; weight_ise_range <= last_weight_ise_range; weight_ise_range++) { const bool direct_only = coptions.m_mode11_direct_only; uint32_t endpoint_ise_range = astc_helpers::BISE_256_LEVELS; if (weight_ise_range == astc_helpers::BISE_16_LEVELS) endpoint_ise_range = astc_helpers::BISE_192_LEVELS; else { assert(weight_ise_range < astc_helpers::BISE_16_LEVELS); } double trial_error = encode_astc_hdr_block_mode_11(16, pBlock_linear_colors, weight_ise_range, trial_submode11, 1e+30f, trial_endpoints, trial_weights, coptions, direct_only, endpoint_ise_range, coptions.m_mode11_uber_mode && (weight_ise_range >= astc_helpers::BISE_4_LEVELS) && coptions.m_allow_uber_mode, constrain_ise_weight8_selectors, coptions.m_first_mode11_submode, coptions.m_last_mode11_submode); if (trial_error < 1e+30f) { astc_hdr_pack_results results; results.clear(); results.m_best_block_error = trial_error; results.m_best_submodes[0] = trial_submode11; results.m_constrained_weights = constrain_ise_weight8_selectors; results.m_best_blk.m_num_partitions = 1; results.m_best_blk.m_color_endpoint_modes[0] = 11; results.m_best_blk.m_weight_ise_range = weight_ise_range; results.m_best_blk.m_endpoint_ise_range = endpoint_ise_range; memcpy(results.m_best_blk.m_endpoints, trial_endpoints, NUM_MODE11_ENDPOINTS); memcpy(results.m_best_blk.m_weights, trial_weights, 16); #ifdef _DEBUG { half_float block_pixels_half[16][3]; vec4F block_pixels_q16[16]; for (uint32_t i = 0; i < 16; i++) { block_pixels_half[i][0] = float_to_half_non_neg_no_nan_inf(pBlock_linear_colors[i][0]); block_pixels_half[i][1] = float_to_half_non_neg_no_nan_inf(pBlock_linear_colors[i][1]); block_pixels_half[i][2] = float_to_half_non_neg_no_nan_inf(pBlock_linear_colors[i][2]); } half_float unpacked_astc_blk_rgba[4][4][4]; bool res = astc_helpers::decode_block(results.m_best_blk, unpacked_astc_blk_rgba, 4, 4, astc_helpers::cDecodeModeHDR16); assert(res); half_float unpacked_astc_blk_rgb[4][4][3]; for (uint32_t y = 0; y < 4; y++) for (uint32_t x = 0; x < 4; x++) for (uint32_t c = 0; c < 3; c++) unpacked_astc_blk_rgb[y][x][c] = unpacked_astc_blk_rgba[y][x][c]; double cmp_err = compute_block_error(&block_pixels_half[0][0], &unpacked_astc_blk_rgb[0][0][0], coptions); assert(results.m_best_block_error == cmp_err); } #endif // transcode to BC6H assert(results.m_best_blk.m_color_endpoint_modes[0] == 11); // Get qlog12 endpoints int e[2][3]; bool success = decode_mode11_to_qlog12(results.m_best_blk.m_endpoints, e, results.m_best_blk.m_endpoint_ise_range); assert(success); BASISU_NOTE_UNUSED(success); // Transform endpoints to half float half_float h_e[3][2] = { { qlog_to_half(e[0][0], 12), qlog_to_half(e[1][0], 12) }, { qlog_to_half(e[0][1], 12), qlog_to_half(e[1][1], 12) }, { qlog_to_half(e[0][2], 12), qlog_to_half(e[1][2], 12) } }; // Transcode to bc6h success = transcode_bc6h_1subset(h_e, results.m_best_blk, results.m_bc6h_block); assert(success); all_results.push_back(results); } } } //-------------------------------------------------------------------------------------------------------------------------- static void pack_mode7_single_part(const vec4F* pBlock_linear_colors, basisu::vector& all_results, const astc_hdr_codec_options& coptions) { uint8_t trial_endpoints[NUM_MODE7_ENDPOINTS], trial_weights[16]; uint32_t trial_submode7 = 0; clear_obj(trial_endpoints); clear_obj(trial_weights); for (uint32_t weight_ise_range = coptions.m_first_mode7_part1_weight_ise_range; weight_ise_range <= coptions.m_last_mode7_part1_weight_ise_range; weight_ise_range++) { const uint32_t ise_endpoint_range = astc_helpers::BISE_256_LEVELS; double trial_error = encode_astc_hdr_block_mode_7(16, pBlock_linear_colors, weight_ise_range, trial_submode7, 1e+30f, trial_endpoints, trial_weights, coptions, ise_endpoint_range); if (trial_error < 1e+30f) { astc_hdr_pack_results results; results.clear(); results.m_best_block_error = trial_error; results.m_best_submodes[0] = trial_submode7; results.m_best_blk.m_num_partitions = 1; results.m_best_blk.m_color_endpoint_modes[0] = 7; results.m_best_blk.m_weight_ise_range = weight_ise_range; results.m_best_blk.m_endpoint_ise_range = ise_endpoint_range; memcpy(results.m_best_blk.m_endpoints, trial_endpoints, NUM_MODE7_ENDPOINTS); memcpy(results.m_best_blk.m_weights, trial_weights, 16); // transcode to BC6H assert(results.m_best_blk.m_color_endpoint_modes[0] == 7); // Get qlog12 endpoints int e[2][3]; if (!decode_mode7_to_qlog12(results.m_best_blk.m_endpoints, e, nullptr, results.m_best_blk.m_endpoint_ise_range)) continue; // Transform endpoints to half float half_float h_e[3][2] = { { qlog_to_half(e[0][0], 12), qlog_to_half(e[1][0], 12) }, { qlog_to_half(e[0][1], 12), qlog_to_half(e[1][1], 12) }, { qlog_to_half(e[0][2], 12), qlog_to_half(e[1][2], 12) } }; // Transcode to bc6h bool status = transcode_bc6h_1subset(h_e, results.m_best_blk, results.m_bc6h_block); assert(status); (void)status; all_results.push_back(results); } } } //-------------------------------------------------------------------------------------------------------------------------- static bool estimate_partition2(const vec4F* pBlock_pixels, int* pBest_parts, uint32_t num_best_parts) { assert(num_best_parts <= basist::TOTAL_ASTC_BC6H_COMMON_PARTITIONS2); vec3F training_vecs[16], mean(0.0f); for (uint32_t i = 0; i < 16; i++) { vec3F& v = training_vecs[i]; v[0] = (float)float_to_half_non_neg_no_nan_inf(pBlock_pixels[i][0]); v[1] = (float)float_to_half_non_neg_no_nan_inf(pBlock_pixels[i][1]); v[2] = (float)float_to_half_non_neg_no_nan_inf(pBlock_pixels[i][2]); mean += v; } mean *= (1.0f / 16.0f); vec3F cluster_centroids[2] = { mean - vec3F(.1f), mean + vec3F(.1f) }; uint32_t cluster_pixels[2][16]; uint32_t num_cluster_pixels[2]; vec3F new_cluster_means[2]; for (uint32_t s = 0; s < 4; s++) { num_cluster_pixels[0] = 0; num_cluster_pixels[1] = 0; new_cluster_means[0].clear(); new_cluster_means[1].clear(); for (uint32_t i = 0; i < 16; i++) { float d0 = training_vecs[i].squared_distance(cluster_centroids[0]); float d1 = training_vecs[i].squared_distance(cluster_centroids[1]); if (d0 < d1) { cluster_pixels[0][num_cluster_pixels[0]] = i; new_cluster_means[0] += training_vecs[i]; num_cluster_pixels[0]++; } else { cluster_pixels[1][num_cluster_pixels[1]] = i; new_cluster_means[1] += training_vecs[i]; num_cluster_pixels[1]++; } } if (!num_cluster_pixels[0] || !num_cluster_pixels[1]) return false; cluster_centroids[0] = new_cluster_means[0] / (float)num_cluster_pixels[0]; cluster_centroids[1] = new_cluster_means[1] / (float)num_cluster_pixels[1]; } int desired_parts[4][4]; // [y][x] for (uint32_t p = 0; p < 2; p++) { for (uint32_t i = 0; i < num_cluster_pixels[p]; i++) { const uint32_t pix_index = cluster_pixels[p][i]; desired_parts[pix_index >> 2][pix_index & 3] = p; } } uint32_t part_similarity[basist::TOTAL_ASTC_BC6H_COMMON_PARTITIONS2]; for (uint32_t part_index = 0; part_index < basist::TOTAL_ASTC_BC6H_COMMON_PARTITIONS2; part_index++) { const uint32_t bc7_pattern = basist::g_astc_bc7_common_partitions2[part_index].m_bc7; int total_sim_non_inv = 0; int total_sim_inv = 0; for (uint32_t y = 0; y < 4; y++) { for (uint32_t x = 0; x < 4; x++) { int part = basist::g_bc7_partition2[16 * bc7_pattern + x + y * 4]; if (part == desired_parts[y][x]) total_sim_non_inv++; if ((part ^ 1) == desired_parts[y][x]) total_sim_inv++; } } int total_sim = maximum(total_sim_non_inv, total_sim_inv); part_similarity[part_index] = (total_sim << 8) | part_index; } // part_index; std::sort(part_similarity, part_similarity + basist::TOTAL_ASTC_BC6H_COMMON_PARTITIONS2); for (uint32_t i = 0; i < num_best_parts; i++) pBest_parts[i] = part_similarity[(basist::TOTAL_ASTC_BC6H_COMMON_PARTITIONS2 - 1) - i] & 0xFF; return true; } //-------------------------------------------------------------------------------------------------------------------------- static void pack_mode7_2part(const vec4F* pBlock_linear_colors, basisu::vector& all_results, const astc_hdr_codec_options& coptions, int num_estimated_partitions, const int *pEstimated_partitions, uint32_t first_weight_ise_range, uint32_t last_weight_ise_range) { assert(coptions.m_mode7_part2_part_masks); astc_helpers::log_astc_block trial_blk; clear_obj(trial_blk); trial_blk.m_grid_width = 4; trial_blk.m_grid_height = 4; trial_blk.m_num_partitions = 2; trial_blk.m_color_endpoint_modes[0] = 7; trial_blk.m_color_endpoint_modes[1] = 7; uint32_t first_part_index = 0, last_part_index = basist::TOTAL_ASTC_BC6H_COMMON_PARTITIONS2; if (num_estimated_partitions) { first_part_index = 0; last_part_index = num_estimated_partitions; } for (uint32_t part_index_iter = first_part_index; part_index_iter < last_part_index; ++part_index_iter) { uint32_t part_index; if (num_estimated_partitions) { part_index = pEstimated_partitions[part_index_iter]; assert(part_index < basist::TOTAL_ASTC_BC6H_COMMON_PARTITIONS2); } else { part_index = part_index_iter; if (((1U << part_index) & coptions.m_mode7_part2_part_masks) == 0) continue; } const uint32_t astc_pattern = basist::g_astc_bc7_common_partitions2[part_index].m_astc; const uint32_t bc7_pattern = basist::g_astc_bc7_common_partitions2[part_index].m_bc7; const bool invert_flag = basist::g_astc_bc7_common_partitions2[part_index].m_invert; vec4F part_pixels[2][16]; uint32_t pixel_part_index[4][4]; // [y][x] uint32_t num_part_pixels[2] = { 0, 0 }; // Extract each subset's texels for this partition pattern for (uint32_t y = 0; y < 4; y++) { for (uint32_t x = 0; x < 4; x++) { uint32_t part = basist::g_bc7_partition2[16 * bc7_pattern + x + y * 4]; if (invert_flag) part = 1 - part; pixel_part_index[y][x] = part; part_pixels[part][num_part_pixels[part]] = pBlock_linear_colors[x + y * 4]; num_part_pixels[part]++; } } trial_blk.m_partition_id = astc_pattern; for (uint32_t weight_ise_range = first_weight_ise_range; weight_ise_range <= last_weight_ise_range; weight_ise_range++) { assert(weight_ise_range <= astc_helpers::BISE_8_LEVELS); uint32_t ise_endpoint_range = astc_helpers::BISE_256_LEVELS; if (weight_ise_range == astc_helpers::BISE_5_LEVELS) ise_endpoint_range = astc_helpers::BISE_192_LEVELS; else if (weight_ise_range == astc_helpers::BISE_6_LEVELS) ise_endpoint_range = astc_helpers::BISE_128_LEVELS; else if (weight_ise_range == astc_helpers::BISE_8_LEVELS) ise_endpoint_range = astc_helpers::BISE_80_LEVELS; uint8_t trial_endpoints[2][NUM_MODE7_ENDPOINTS], trial_weights[2][16]; uint32_t trial_submode7[2]; clear_obj(trial_endpoints); clear_obj(trial_weights); clear_obj(trial_submode7); double total_trial_err = 0; for (uint32_t pack_part_index = 0; pack_part_index < 2; pack_part_index++) { total_trial_err += encode_astc_hdr_block_mode_7( num_part_pixels[pack_part_index], &part_pixels[pack_part_index][0], weight_ise_range, trial_submode7[pack_part_index], 1e+30f, &trial_endpoints[pack_part_index][0], &trial_weights[pack_part_index][0], coptions, ise_endpoint_range); } // pack_part_index if (total_trial_err < 1e+30f) { trial_blk.m_weight_ise_range = weight_ise_range; trial_blk.m_endpoint_ise_range = ise_endpoint_range; for (uint32_t pack_part_index = 0; pack_part_index < 2; pack_part_index++) memcpy(&trial_blk.m_endpoints[pack_part_index * NUM_MODE7_ENDPOINTS], &trial_endpoints[pack_part_index][0], NUM_MODE7_ENDPOINTS); uint32_t src_pixel_index[2] = { 0, 0 }; for (uint32_t y = 0; y < 4; y++) { for (uint32_t x = 0; x < 4; x++) { uint32_t p = pixel_part_index[y][x]; trial_blk.m_weights[x + y * 4] = trial_weights[p][src_pixel_index[p]++]; } } astc_hdr_pack_results results; results.clear(); results.m_best_block_error = total_trial_err; results.m_best_submodes[0] = trial_submode7[0]; results.m_best_submodes[1] = trial_submode7[1]; results.m_best_pat_index = part_index; results.m_best_blk = trial_blk; bool status = transcode_bc6h_2subsets(part_index, results.m_best_blk, results.m_bc6h_block); assert(status); BASISU_NOTE_UNUSED(status); all_results.push_back(results); } } // weight_ise_range } // part_index } //-------------------------------------------------------------------------------------------------------------------------- static void pack_mode11_2part(const vec4F* pBlock_linear_colors, basisu::vector& all_results, const astc_hdr_codec_options& coptions, int num_estimated_partitions, const int* pEstimated_partitions) { assert(coptions.m_mode11_part2_part_masks); astc_helpers::log_astc_block trial_blk; clear_obj(trial_blk); trial_blk.m_grid_width = 4; trial_blk.m_grid_height = 4; trial_blk.m_num_partitions = 2; trial_blk.m_color_endpoint_modes[0] = 11; trial_blk.m_color_endpoint_modes[1] = 11; uint32_t first_part_index = 0, last_part_index = basist::TOTAL_ASTC_BC6H_COMMON_PARTITIONS2; if (num_estimated_partitions) { first_part_index = 0; last_part_index = num_estimated_partitions; } for (uint32_t part_index_iter = first_part_index; part_index_iter < last_part_index; ++part_index_iter) { uint32_t part_index; if (num_estimated_partitions) { part_index = pEstimated_partitions[part_index_iter]; assert(part_index < basist::TOTAL_ASTC_BC6H_COMMON_PARTITIONS2); } else { part_index = part_index_iter; if (((1U << part_index) & coptions.m_mode11_part2_part_masks) == 0) continue; } const uint32_t astc_pattern = basist::g_astc_bc7_common_partitions2[part_index].m_astc; const uint32_t bc7_pattern = basist::g_astc_bc7_common_partitions2[part_index].m_bc7; const bool invert_flag = basist::g_astc_bc7_common_partitions2[part_index].m_invert; vec4F part_pixels[2][16]; uint32_t pixel_part_index[4][4]; // [y][x] uint32_t num_part_pixels[2] = { 0, 0 }; // Extract each subset's texels for this partition pattern for (uint32_t y = 0; y < 4; y++) { for (uint32_t x = 0; x < 4; x++) { uint32_t part = basist::g_bc7_partition2[16 * bc7_pattern + x + y * 4]; if (invert_flag) part = 1 - part; pixel_part_index[y][x] = part; part_pixels[part][num_part_pixels[part]] = pBlock_linear_colors[x + y * 4]; num_part_pixels[part]++; } } trial_blk.m_partition_id = astc_pattern; for (uint32_t weight_ise_range = coptions.m_first_mode11_part2_weight_ise_range; weight_ise_range <= coptions.m_last_mode11_part2_weight_ise_range; weight_ise_range++) { bool direct_only = false; uint32_t ise_endpoint_range = astc_helpers::BISE_64_LEVELS; if (weight_ise_range == astc_helpers::BISE_4_LEVELS) ise_endpoint_range = astc_helpers::BISE_40_LEVELS; uint8_t trial_endpoints[2][NUM_MODE11_ENDPOINTS], trial_weights[2][16]; uint32_t trial_submode11[2]; clear_obj(trial_endpoints); clear_obj(trial_weights); clear_obj(trial_submode11); double total_trial_err = 0; for (uint32_t pack_part_index = 0; pack_part_index < 2; pack_part_index++) { total_trial_err += encode_astc_hdr_block_mode_11( num_part_pixels[pack_part_index], &part_pixels[pack_part_index][0], weight_ise_range, trial_submode11[pack_part_index], 1e+30f, &trial_endpoints[pack_part_index][0], &trial_weights[pack_part_index][0], coptions, direct_only, ise_endpoint_range, coptions.m_mode11_uber_mode && (weight_ise_range >= astc_helpers::BISE_4_LEVELS) && coptions.m_allow_uber_mode, false, coptions.m_first_mode11_submode, coptions.m_last_mode11_submode); } // pack_part_index if (total_trial_err < 1e+30f) { trial_blk.m_weight_ise_range = weight_ise_range; trial_blk.m_endpoint_ise_range = ise_endpoint_range; for (uint32_t pack_part_index = 0; pack_part_index < 2; pack_part_index++) memcpy(&trial_blk.m_endpoints[pack_part_index * NUM_MODE11_ENDPOINTS], &trial_endpoints[pack_part_index][0], NUM_MODE11_ENDPOINTS); uint32_t src_pixel_index[2] = { 0, 0 }; for (uint32_t y = 0; y < 4; y++) { for (uint32_t x = 0; x < 4; x++) { uint32_t p = pixel_part_index[y][x]; trial_blk.m_weights[x + y * 4] = trial_weights[p][src_pixel_index[p]++]; } } astc_hdr_pack_results results; results.clear(); results.m_best_block_error = total_trial_err; results.m_best_submodes[0] = trial_submode11[0]; results.m_best_submodes[1] = trial_submode11[1]; results.m_best_pat_index = part_index; results.m_best_blk = trial_blk; bool status = transcode_bc6h_2subsets(part_index, results.m_best_blk, results.m_bc6h_block); assert(status); BASISU_NOTE_UNUSED(status); all_results.push_back(results); } } // weight_ise_range } // part_index } //-------------------------------------------------------------------------------------------------------------------------- bool g_astc_hdr_enc_initialized; void astc_hdr_enc_init() { if (g_astc_hdr_enc_initialized) return; astc_hdr_core_init(); astc_helpers::init_tables(true); init_qlog_tables(); encode_astc_hdr_init(); g_astc_hdr_enc_initialized = true; } bool astc_hdr_enc_block( const float* pRGBPixels, const astc_hdr_codec_options& coptions, basisu::vector& all_results) { assert(g_astc_hdr_enc_initialized); if (!g_astc_hdr_enc_initialized) { // astc_hdr_enc_init() MUST be called first. assert(0); return false; } all_results.resize(0); vec4F block_linear_colors[16]; // Sanity check the input block. for (uint32_t i = 0; i < 16; i++) { for (uint32_t j = 0; j < 3; j++) { float v = pRGBPixels[i * 3 + j]; if (std::isinf(v) || std::isnan(v)) { // Input pixels cannot be NaN or +-Inf. assert(0); return false; } if (v < 0.0f) { // Input pixels cannot be signed. assert(0); return false; } if (v > MAX_HALF_FLOAT) { // Too large for half float. assert(0); return false; } block_linear_colors[i][j] = v; } block_linear_colors[i][3] = 1.0f; } assert(coptions.m_use_solid || coptions.m_use_mode11 || coptions.m_use_mode7_part2 || coptions.m_use_mode7_part1 || coptions.m_use_mode11_part2); bool is_solid = false; if (coptions.m_use_solid) is_solid = pack_solid(block_linear_colors, all_results, coptions); if (!is_solid) { if (coptions.m_use_mode11) { const size_t cur_num_results = all_results.size(); pack_mode11(block_linear_colors, all_results, coptions, coptions.m_first_mode11_weight_ise_range, coptions.m_last_mode11_weight_ise_range, false); if (coptions.m_last_mode11_weight_ise_range == astc_helpers::BISE_16_LEVELS) { pack_mode11(block_linear_colors, all_results, coptions, astc_helpers::BISE_16_LEVELS, astc_helpers::BISE_16_LEVELS, true); } // If we couldn't get any mode 11 results at all, and we were restricted to just trying weight ISE range 8 (which required endpoint quantization) then // fall back to weight ISE range 7 (which doesn't need any endpoint quantization). // This is to guarantee we always get at least 1 non-solid result. if (all_results.size() == cur_num_results) { if (coptions.m_first_mode11_weight_ise_range == astc_helpers::BISE_16_LEVELS) { pack_mode11(block_linear_colors, all_results, coptions, astc_helpers::BISE_12_LEVELS, astc_helpers::BISE_12_LEVELS, false); } } } if (coptions.m_use_mode7_part1) { // Mode 7 1-subset never requires endpoint quantization, so it cannot fail to find at least one usable solution. pack_mode7_single_part(block_linear_colors, all_results, coptions); } bool have_est = false; int best_parts[basist::TOTAL_ASTC_BC6H_COMMON_PARTITIONS2]; if ((coptions.m_use_mode7_part2) || (coptions.m_use_mode11_part2)) { if (coptions.m_use_estimated_partitions) have_est = estimate_partition2(block_linear_colors, best_parts, coptions.m_max_estimated_partitions); } if (coptions.m_use_mode7_part2) { const size_t cur_num_results = all_results.size(); pack_mode7_2part(block_linear_colors, all_results, coptions, have_est ? coptions.m_max_estimated_partitions : 0, best_parts, coptions.m_first_mode7_part2_weight_ise_range, coptions.m_last_mode7_part2_weight_ise_range); // If we couldn't find any packable 2-subset mode 7 results at weight levels >= 5 levels (which always requires endpoint quant), then try falling back to // 5 levels which doesn't require endpoint quantization. if (all_results.size() == cur_num_results) { if (coptions.m_first_mode7_part2_weight_ise_range >= astc_helpers::BISE_5_LEVELS) { pack_mode7_2part(block_linear_colors, all_results, coptions, have_est ? coptions.m_max_estimated_partitions : 0, best_parts, astc_helpers::BISE_4_LEVELS, astc_helpers::BISE_4_LEVELS); } } } if (coptions.m_use_mode11_part2) { // This always requires endpoint quant, so it could fail to find any usable solutions. pack_mode11_2part(block_linear_colors, all_results, coptions, have_est ? coptions.m_max_estimated_partitions : 0, best_parts); } } if (coptions.m_refine_weights) { // TODO: Move this above, do it once only. basist::half_float rgb_pixels_half[16 * 3]; for (uint32_t i = 0; i < 16; i++) { rgb_pixels_half[i * 3 + 0] = float_to_half_non_neg_no_nan_inf(pRGBPixels[i * 3 + 0]); rgb_pixels_half[i * 3 + 1] = float_to_half_non_neg_no_nan_inf(pRGBPixels[i * 3 + 1]); rgb_pixels_half[i * 3 + 2] = float_to_half_non_neg_no_nan_inf(pRGBPixels[i * 3 + 2]); } for (uint32_t i = 0; i < all_results.size(); i++) { bool status = astc_hdr_refine_weights(rgb_pixels_half, all_results[i], coptions, coptions.m_bc6h_err_weight, &all_results[i].m_improved_via_refinement_flag); assert(status); BASISU_NOTE_UNUSED(status); } } return true; } bool astc_hdr_pack_results_to_block(astc_blk& dst_blk, const astc_hdr_pack_results& results) { assert(g_astc_hdr_enc_initialized); if (!g_astc_hdr_enc_initialized) return false; if (results.m_is_solid) { memcpy(&dst_blk, &results.m_solid_blk, sizeof(results.m_solid_blk)); } else { bool status = astc_helpers::pack_astc_block((astc_helpers::astc_block&)dst_blk, results.m_best_blk); if (!status) { assert(0); return false; } } return true; } // Refines a block's chosen weight indices, balancing BC6H and ASTC HDR error. bool astc_hdr_refine_weights(const half_float *pSource_block, astc_hdr_pack_results& cur_results, const astc_hdr_codec_options& coptions, float bc6h_weight, bool *pImproved_flag) { if (pImproved_flag) *pImproved_flag = false; if (cur_results.m_is_solid) return true; const uint32_t total_weights = astc_helpers::get_ise_levels(cur_results.m_best_blk.m_weight_ise_range); assert((total_weights >= 3) && (total_weights <= 16)); double best_err[4][4]; uint8_t best_weight[4][4]; for (uint32_t y = 0; y < 4; y++) { for (uint32_t x = 0; x < 4; x++) { best_err[y][x] = 1e+30f; best_weight[y][x] = 0; } } astc_hdr_pack_results temp_results; const float c_weights[3] = { coptions.m_r_err_scale, coptions.m_g_err_scale, 1.0f }; for (uint32_t weight_index = 0; weight_index < total_weights; weight_index++) { temp_results = cur_results; for (uint32_t i = 0; i < 16; i++) temp_results.m_best_blk.m_weights[i] = (uint8_t)weight_index; half_float unpacked_astc_blk_rgba[4][4][4]; bool res = astc_helpers::decode_block(temp_results.m_best_blk, unpacked_astc_blk_rgba, 4, 4, astc_helpers::cDecodeModeHDR16); assert(res); basist::bc6h_block trial_bc6h_blk; res = basist::astc_hdr_transcode_to_bc6h(temp_results.m_best_blk, trial_bc6h_blk); assert(res); half_float unpacked_bc6h_blk[4][4][3]; res = unpack_bc6h(&trial_bc6h_blk, unpacked_bc6h_blk, false); assert(res); BASISU_NOTE_UNUSED(res); for (uint32_t y = 0; y < 4; y++) { for (uint32_t x = 0; x < 4; x++) { double total_err = 0.0f; for (uint32_t c = 0; c < 3; c++) { const half_float orig_c = pSource_block[(x + y * 4) * 3 + c]; const double orig_c_q = q(orig_c); const half_float astc_c = unpacked_astc_blk_rgba[y][x][c]; const double astc_c_q = q(astc_c); const double astc_e = square(astc_c_q - orig_c_q) * c_weights[c]; const half_float bc6h_c = unpacked_bc6h_blk[y][x][c]; const double bc6h_c_q = q(bc6h_c); const double bc6h_e = square(bc6h_c_q - orig_c_q) * c_weights[c]; const double overall_err = astc_e * (1.0f - bc6h_weight) + bc6h_e * bc6h_weight; total_err += overall_err; } // c if (total_err < best_err[y][x]) { best_err[y][x] = total_err; best_weight[y][x] = (uint8_t)weight_index; } } // x } // y } // weight_index bool any_changed = false; for (uint32_t i = 0; i < 16; i++) { if (cur_results.m_best_blk.m_weights[i] != best_weight[i >> 2][i & 3]) { any_changed = true; break; } } if (any_changed) { memcpy(cur_results.m_best_blk.m_weights, best_weight, 16); { bool res = basist::astc_hdr_transcode_to_bc6h(cur_results.m_best_blk, cur_results.m_bc6h_block); assert(res); BASISU_NOTE_UNUSED(res); half_float unpacked_astc_blk_rgba[4][4][4]; res = astc_helpers::decode_block(cur_results.m_best_blk, unpacked_astc_blk_rgba, 4, 4, astc_helpers::cDecodeModeHDR16); assert(res); half_float unpacked_astc_blk_rgb[4][4][3]; for (uint32_t y = 0; y < 4; y++) for (uint32_t x = 0; x < 4; x++) for (uint32_t c = 0; c < 3; c++) unpacked_astc_blk_rgb[y][x][c] = unpacked_astc_blk_rgba[y][x][c]; cur_results.m_best_block_error = compute_block_error(pSource_block, &unpacked_astc_blk_rgb[0][0][0], coptions); } if (pImproved_flag) *pImproved_flag = true; } return true; } void astc_hdr_block_stats::update(const astc_hdr_pack_results& log_blk) { std::lock_guard lck(m_mutex); m_total_blocks++; if (log_blk.m_improved_via_refinement_flag) m_total_refined++; if (log_blk.m_is_solid) { m_total_solid++; } else { int best_weight_range = log_blk.m_best_blk.m_weight_ise_range; if (log_blk.m_best_blk.m_color_endpoint_modes[0] == 7) { m_mode7_submode_hist[bounds_check(log_blk.m_best_submodes[0], 0U, 6U)]++; if (log_blk.m_best_blk.m_num_partitions == 2) { m_total_mode7_2part++; m_mode7_submode_hist[bounds_check(log_blk.m_best_submodes[1], 0U, 6U)]++; m_total_2part++; m_weight_range_hist_7_2part[bounds_check(best_weight_range, 0, 11)]++; m_part_hist[bounds_check(log_blk.m_best_pat_index, 0U, 32U)]++; } else { m_total_mode7_1part++; m_weight_range_hist_7[bounds_check(best_weight_range, 0, 11)]++; } } else { m_mode11_submode_hist[bounds_check(log_blk.m_best_submodes[0], 0U, 9U)]++; if (log_blk.m_constrained_weights) m_total_mode11_1part_constrained_weights++; if (log_blk.m_best_blk.m_num_partitions == 2) { m_total_mode11_2part++; m_mode11_submode_hist[bounds_check(log_blk.m_best_submodes[1], 0U, 9U)]++; m_total_2part++; m_weight_range_hist_11_2part[bounds_check(best_weight_range, 0, 11)]++; m_part_hist[bounds_check(log_blk.m_best_pat_index, 0U, 32U)]++; } else { m_total_mode11_1part++; m_weight_range_hist_11[bounds_check(best_weight_range, 0, 11)]++; } } } } void astc_hdr_block_stats::print() { std::lock_guard lck(m_mutex); assert(m_total_blocks); if (!m_total_blocks) return; printf("\nLow-level ASTC Encoder Statistics:\n"); printf("Total blocks: %u\n", m_total_blocks); printf("Total solid: %u %3.2f%%\n", m_total_solid, (m_total_solid * 100.0f) / m_total_blocks); printf("Total refined: %u %3.2f%%\n", m_total_refined, (m_total_refined * 100.0f) / m_total_blocks); printf("Total mode 11, 1 partition: %u %3.2f%%\n", m_total_mode11_1part, (m_total_mode11_1part * 100.0f) / m_total_blocks); printf("Total mode 11, 1 partition, constrained weights: %u %3.2f%%\n", m_total_mode11_1part_constrained_weights, (m_total_mode11_1part_constrained_weights * 100.0f) / m_total_blocks); printf("Total mode 11, 2 partition: %u %3.2f%%\n", m_total_mode11_2part, (m_total_mode11_2part * 100.0f) / m_total_blocks); printf("Total mode 7, 1 partition: %u %3.2f%%\n", m_total_mode7_1part, (m_total_mode7_1part * 100.0f) / m_total_blocks); printf("Total mode 7, 2 partition: %u %3.2f%%\n", m_total_mode7_2part, (m_total_mode7_2part * 100.0f) / m_total_blocks); printf("Total 2 partitions: %u %3.2f%%\n", m_total_2part, (m_total_2part * 100.0f) / m_total_blocks); printf("\n"); printf("ISE texel weight range histogram mode 11:\n"); for (uint32_t i = 1; i <= MODE11_LAST_ISE_RANGE; i++) printf("%u %u\n", i, m_weight_range_hist_11[i]); printf("\n"); printf("ISE texel weight range histogram mode 11, 2 partition:\n"); for (uint32_t i = 1; i <= MODE11_PART2_LAST_ISE_RANGE; i++) printf("%u %u\n", i, m_weight_range_hist_11_2part[i]); printf("\n"); printf("ISE texel weight range histogram mode 7:\n"); for (uint32_t i = 1; i <= MODE7_PART1_LAST_ISE_RANGE; i++) printf("%u %u\n", i, m_weight_range_hist_7[i]); printf("\n"); printf("ISE texel weight range histogram mode 7, 2 partition:\n"); for (uint32_t i = 1; i <= MODE7_PART2_LAST_ISE_RANGE; i++) printf("%u %u\n", i, m_weight_range_hist_7_2part[i]); printf("\n"); printf("Mode 11 submode histogram:\n"); for (uint32_t i = 0; i <= MODE11_TOTAL_SUBMODES; i++) // +1 because of the extra direct encoding printf("%u %u\n", i, m_mode11_submode_hist[i]); printf("\n"); printf("Mode 7 submode histogram:\n"); for (uint32_t i = 0; i < MODE7_TOTAL_SUBMODES; i++) printf("%u %u\n", i, m_mode7_submode_hist[i]); printf("\n"); printf("Partition pattern table usage histogram:\n"); for (uint32_t i = 0; i < basist::TOTAL_ASTC_BC7_COMMON_PARTITIONS2; i++) printf("%u:%u ", i, m_part_hist[i]); printf("\n\n"); } } // namespace basisu