// basisu_enc.cpp // Copyright (C) 2019-2024 Binomial LLC. All Rights Reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #include "basisu_enc.h" #include "basisu_resampler.h" #include "basisu_resampler_filters.h" #include "basisu_etc.h" #include "../transcoder/basisu_transcoder.h" #include "basisu_bc7enc.h" #include "jpgd.h" #include "pvpngreader.h" #include "basisu_opencl.h" #include "basisu_astc_hdr_enc.h" #include #ifndef TINYEXR_USE_ZFP #define TINYEXR_USE_ZFP (1) #endif #include #ifndef MINIZ_HEADER_FILE_ONLY #define MINIZ_HEADER_FILE_ONLY #endif #ifndef MINIZ_NO_ZLIB_COMPATIBLE_NAMES #define MINIZ_NO_ZLIB_COMPATIBLE_NAMES #endif #include "basisu_miniz.h" #if defined(_WIN32) // For QueryPerformanceCounter/QueryPerformanceFrequency #define WIN32_LEAN_AND_MEAN #include #endif namespace basisu { uint64_t interval_timer::g_init_ticks, interval_timer::g_freq; double interval_timer::g_timer_freq; #if BASISU_SUPPORT_SSE bool g_cpu_supports_sse41; #endif uint8_t g_hamming_dist[256] = { 0, 1, 1, 2, 1, 2, 2, 3, 1, 2, 2, 3, 2, 3, 3, 4, 1, 2, 2, 3, 2, 3, 3, 4, 2, 3, 3, 4, 3, 4, 4, 5, 1, 2, 2, 3, 2, 3, 3, 4, 2, 3, 3, 4, 3, 4, 4, 5, 2, 3, 3, 4, 3, 4, 4, 5, 3, 4, 4, 5, 4, 5, 5, 6, 1, 2, 2, 3, 2, 3, 3, 4, 2, 3, 3, 4, 3, 4, 4, 5, 2, 3, 3, 4, 3, 4, 4, 5, 3, 4, 4, 5, 4, 5, 5, 6, 2, 3, 3, 4, 3, 4, 4, 5, 3, 4, 4, 5, 4, 5, 5, 6, 3, 4, 4, 5, 4, 5, 5, 6, 4, 5, 5, 6, 5, 6, 6, 7, 1, 2, 2, 3, 2, 3, 3, 4, 2, 3, 3, 4, 3, 4, 4, 5, 2, 3, 3, 4, 3, 4, 4, 5, 3, 4, 4, 5, 4, 5, 5, 6, 2, 3, 3, 4, 3, 4, 4, 5, 3, 4, 4, 5, 4, 5, 5, 6, 3, 4, 4, 5, 4, 5, 5, 6, 4, 5, 5, 6, 5, 6, 6, 7, 2, 3, 3, 4, 3, 4, 4, 5, 3, 4, 4, 5, 4, 5, 5, 6, 3, 4, 4, 5, 4, 5, 5, 6, 4, 5, 5, 6, 5, 6, 6, 7, 3, 4, 4, 5, 4, 5, 5, 6, 4, 5, 5, 6, 5, 6, 6, 7, 4, 5, 5, 6, 5, 6, 6, 7, 5, 6, 6, 7, 6, 7, 7, 8 }; // This is a Public Domain 8x8 font from here: // https://github.com/dhepper/font8x8/blob/master/font8x8_basic.h const uint8_t g_debug_font8x8_basic[127 - 32 + 1][8] = { { 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00}, // U+0020 ( ) { 0x18, 0x3C, 0x3C, 0x18, 0x18, 0x00, 0x18, 0x00}, // U+0021 (!) { 0x36, 0x36, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00}, // U+0022 (") { 0x36, 0x36, 0x7F, 0x36, 0x7F, 0x36, 0x36, 0x00}, // U+0023 (#) { 0x0C, 0x3E, 0x03, 0x1E, 0x30, 0x1F, 0x0C, 0x00}, // U+0024 ($) { 0x00, 0x63, 0x33, 0x18, 0x0C, 0x66, 0x63, 0x00}, // U+0025 (%) { 0x1C, 0x36, 0x1C, 0x6E, 0x3B, 0x33, 0x6E, 0x00}, // U+0026 (&) { 0x06, 0x06, 0x03, 0x00, 0x00, 0x00, 0x00, 0x00}, // U+0027 (') { 0x18, 0x0C, 0x06, 0x06, 0x06, 0x0C, 0x18, 0x00}, // U+0028 (() { 0x06, 0x0C, 0x18, 0x18, 0x18, 0x0C, 0x06, 0x00}, // U+0029 ()) { 0x00, 0x66, 0x3C, 0xFF, 0x3C, 0x66, 0x00, 0x00}, // U+002A (*) { 0x00, 0x0C, 0x0C, 0x3F, 0x0C, 0x0C, 0x00, 0x00}, // U+002B (+) { 0x00, 0x00, 0x00, 0x00, 0x00, 0x0C, 0x0C, 0x06}, // U+002C (,) { 0x00, 0x00, 0x00, 0x3F, 0x00, 0x00, 0x00, 0x00}, // U+002D (-) { 0x00, 0x00, 0x00, 0x00, 0x00, 0x0C, 0x0C, 0x00}, // U+002E (.) { 0x60, 0x30, 0x18, 0x0C, 0x06, 0x03, 0x01, 0x00}, // U+002F (/) { 0x3E, 0x63, 0x73, 0x7B, 0x6F, 0x67, 0x3E, 0x00}, // U+0030 (0) { 0x0C, 0x0E, 0x0C, 0x0C, 0x0C, 0x0C, 0x3F, 0x00}, // U+0031 (1) { 0x1E, 0x33, 0x30, 0x1C, 0x06, 0x33, 0x3F, 0x00}, // U+0032 (2) { 0x1E, 0x33, 0x30, 0x1C, 0x30, 0x33, 0x1E, 0x00}, // U+0033 (3) { 0x38, 0x3C, 0x36, 0x33, 0x7F, 0x30, 0x78, 0x00}, // U+0034 (4) { 0x3F, 0x03, 0x1F, 0x30, 0x30, 0x33, 0x1E, 0x00}, // U+0035 (5) { 0x1C, 0x06, 0x03, 0x1F, 0x33, 0x33, 0x1E, 0x00}, // U+0036 (6) { 0x3F, 0x33, 0x30, 0x18, 0x0C, 0x0C, 0x0C, 0x00}, // U+0037 (7) { 0x1E, 0x33, 0x33, 0x1E, 0x33, 0x33, 0x1E, 0x00}, // U+0038 (8) { 0x1E, 0x33, 0x33, 0x3E, 0x30, 0x18, 0x0E, 0x00}, // U+0039 (9) { 0x00, 0x0C, 0x0C, 0x00, 0x00, 0x0C, 0x0C, 0x00}, // U+003A (:) { 0x00, 0x0C, 0x0C, 0x00, 0x00, 0x0C, 0x0C, 0x06}, // U+003B (;) { 0x18, 0x0C, 0x06, 0x03, 0x06, 0x0C, 0x18, 0x00}, // U+003C (<) { 0x00, 0x00, 0x3F, 0x00, 0x00, 0x3F, 0x00, 0x00}, // U+003D (=) { 0x06, 0x0C, 0x18, 0x30, 0x18, 0x0C, 0x06, 0x00}, // U+003E (>) { 0x1E, 0x33, 0x30, 0x18, 0x0C, 0x00, 0x0C, 0x00}, // U+003F (?) { 0x3E, 0x63, 0x7B, 0x7B, 0x7B, 0x03, 0x1E, 0x00}, // U+0040 (@) { 0x0C, 0x1E, 0x33, 0x33, 0x3F, 0x33, 0x33, 0x00}, // U+0041 (A) { 0x3F, 0x66, 0x66, 0x3E, 0x66, 0x66, 0x3F, 0x00}, // U+0042 (B) { 0x3C, 0x66, 0x03, 0x03, 0x03, 0x66, 0x3C, 0x00}, // U+0043 (C) { 0x1F, 0x36, 0x66, 0x66, 0x66, 0x36, 0x1F, 0x00}, // U+0044 (D) { 0x7F, 0x46, 0x16, 0x1E, 0x16, 0x46, 0x7F, 0x00}, // U+0045 (E) { 0x7F, 0x46, 0x16, 0x1E, 0x16, 0x06, 0x0F, 0x00}, // U+0046 (F) { 0x3C, 0x66, 0x03, 0x03, 0x73, 0x66, 0x7C, 0x00}, // U+0047 (G) { 0x33, 0x33, 0x33, 0x3F, 0x33, 0x33, 0x33, 0x00}, // U+0048 (H) { 0x1E, 0x0C, 0x0C, 0x0C, 0x0C, 0x0C, 0x1E, 0x00}, // U+0049 (I) { 0x78, 0x30, 0x30, 0x30, 0x33, 0x33, 0x1E, 0x00}, // U+004A (J) { 0x67, 0x66, 0x36, 0x1E, 0x36, 0x66, 0x67, 0x00}, // U+004B (K) { 0x0F, 0x06, 0x06, 0x06, 0x46, 0x66, 0x7F, 0x00}, // U+004C (L) { 0x63, 0x77, 0x7F, 0x7F, 0x6B, 0x63, 0x63, 0x00}, // U+004D (M) { 0x63, 0x67, 0x6F, 0x7B, 0x73, 0x63, 0x63, 0x00}, // U+004E (N) { 0x1C, 0x36, 0x63, 0x63, 0x63, 0x36, 0x1C, 0x00}, // U+004F (O) { 0x3F, 0x66, 0x66, 0x3E, 0x06, 0x06, 0x0F, 0x00}, // U+0050 (P) { 0x1E, 0x33, 0x33, 0x33, 0x3B, 0x1E, 0x38, 0x00}, // U+0051 (Q) { 0x3F, 0x66, 0x66, 0x3E, 0x36, 0x66, 0x67, 0x00}, // U+0052 (R) { 0x1E, 0x33, 0x07, 0x0E, 0x38, 0x33, 0x1E, 0x00}, // U+0053 (S) { 0x3F, 0x2D, 0x0C, 0x0C, 0x0C, 0x0C, 0x1E, 0x00}, // U+0054 (T) { 0x33, 0x33, 0x33, 0x33, 0x33, 0x33, 0x3F, 0x00}, // U+0055 (U) { 0x33, 0x33, 0x33, 0x33, 0x33, 0x1E, 0x0C, 0x00}, // U+0056 (V) { 0x63, 0x63, 0x63, 0x6B, 0x7F, 0x77, 0x63, 0x00}, // U+0057 (W) { 0x63, 0x63, 0x36, 0x1C, 0x1C, 0x36, 0x63, 0x00}, // U+0058 (X) { 0x33, 0x33, 0x33, 0x1E, 0x0C, 0x0C, 0x1E, 0x00}, // U+0059 (Y) { 0x7F, 0x63, 0x31, 0x18, 0x4C, 0x66, 0x7F, 0x00}, // U+005A (Z) { 0x1E, 0x06, 0x06, 0x06, 0x06, 0x06, 0x1E, 0x00}, // U+005B ([) { 0x03, 0x06, 0x0C, 0x18, 0x30, 0x60, 0x40, 0x00}, // U+005C (\) { 0x1E, 0x18, 0x18, 0x18, 0x18, 0x18, 0x1E, 0x00}, // U+005D (]) { 0x08, 0x1C, 0x36, 0x63, 0x00, 0x00, 0x00, 0x00}, // U+005E (^) { 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0xFF}, // U+005F (_) { 0x0C, 0x0C, 0x18, 0x00, 0x00, 0x00, 0x00, 0x00}, // U+0060 (`) { 0x00, 0x00, 0x1E, 0x30, 0x3E, 0x33, 0x6E, 0x00}, // U+0061 (a) { 0x07, 0x06, 0x06, 0x3E, 0x66, 0x66, 0x3B, 0x00}, // U+0062 (b) { 0x00, 0x00, 0x1E, 0x33, 0x03, 0x33, 0x1E, 0x00}, // U+0063 (c) { 0x38, 0x30, 0x30, 0x3e, 0x33, 0x33, 0x6E, 0x00}, // U+0064 (d) { 0x00, 0x00, 0x1E, 0x33, 0x3f, 0x03, 0x1E, 0x00}, // U+0065 (e) { 0x1C, 0x36, 0x06, 0x0f, 0x06, 0x06, 0x0F, 0x00}, // U+0066 (f) { 0x00, 0x00, 0x6E, 0x33, 0x33, 0x3E, 0x30, 0x1F}, // U+0067 (g) { 0x07, 0x06, 0x36, 0x6E, 0x66, 0x66, 0x67, 0x00}, // U+0068 (h) { 0x0C, 0x00, 0x0E, 0x0C, 0x0C, 0x0C, 0x1E, 0x00}, // U+0069 (i) { 0x30, 0x00, 0x30, 0x30, 0x30, 0x33, 0x33, 0x1E}, // U+006A (j) { 0x07, 0x06, 0x66, 0x36, 0x1E, 0x36, 0x67, 0x00}, // U+006B (k) { 0x0E, 0x0C, 0x0C, 0x0C, 0x0C, 0x0C, 0x1E, 0x00}, // U+006C (l) { 0x00, 0x00, 0x33, 0x7F, 0x7F, 0x6B, 0x63, 0x00}, // U+006D (m) { 0x00, 0x00, 0x1F, 0x33, 0x33, 0x33, 0x33, 0x00}, // U+006E (n) { 0x00, 0x00, 0x1E, 0x33, 0x33, 0x33, 0x1E, 0x00}, // U+006F (o) { 0x00, 0x00, 0x3B, 0x66, 0x66, 0x3E, 0x06, 0x0F}, // U+0070 (p) { 0x00, 0x00, 0x6E, 0x33, 0x33, 0x3E, 0x30, 0x78}, // U+0071 (q) { 0x00, 0x00, 0x3B, 0x6E, 0x66, 0x06, 0x0F, 0x00}, // U+0072 (r) { 0x00, 0x00, 0x3E, 0x03, 0x1E, 0x30, 0x1F, 0x00}, // U+0073 (s) { 0x08, 0x0C, 0x3E, 0x0C, 0x0C, 0x2C, 0x18, 0x00}, // U+0074 (t) { 0x00, 0x00, 0x33, 0x33, 0x33, 0x33, 0x6E, 0x00}, // U+0075 (u) { 0x00, 0x00, 0x33, 0x33, 0x33, 0x1E, 0x0C, 0x00}, // U+0076 (v) { 0x00, 0x00, 0x63, 0x6B, 0x7F, 0x7F, 0x36, 0x00}, // U+0077 (w) { 0x00, 0x00, 0x63, 0x36, 0x1C, 0x36, 0x63, 0x00}, // U+0078 (x) { 0x00, 0x00, 0x33, 0x33, 0x33, 0x3E, 0x30, 0x1F}, // U+0079 (y) { 0x00, 0x00, 0x3F, 0x19, 0x0C, 0x26, 0x3F, 0x00}, // U+007A (z) { 0x38, 0x0C, 0x0C, 0x07, 0x0C, 0x0C, 0x38, 0x00}, // U+007B ({) { 0x18, 0x18, 0x18, 0x00, 0x18, 0x18, 0x18, 0x00}, // U+007C (|) { 0x07, 0x0C, 0x0C, 0x38, 0x0C, 0x0C, 0x07, 0x00}, // U+007D (}) { 0x6E, 0x3B, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00}, // U+007E (~) { 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00} // U+007F }; bool g_library_initialized; std::mutex g_encoder_init_mutex; // Encoder library initialization (just call once at startup) bool basisu_encoder_init(bool use_opencl, bool opencl_force_serialization) { std::lock_guard lock(g_encoder_init_mutex); if (g_library_initialized) return true; detect_sse41(); basist::basisu_transcoder_init(); pack_etc1_solid_color_init(); //uastc_init(); bc7enc_compress_block_init(); // must be after uastc_init() // Don't bother initializing the OpenCL module at all if it's been completely disabled. if (use_opencl) { opencl_init(opencl_force_serialization); } interval_timer::init(); // make sure interval_timer globals are initialized from main thread to avoid TSAN reports astc_hdr_enc_init(); basist::bc6h_enc_init(); g_library_initialized = true; return true; } void basisu_encoder_deinit() { opencl_deinit(); g_library_initialized = false; } void error_vprintf(const char* pFmt, va_list args) { char buf[8192]; #ifdef _WIN32 vsprintf_s(buf, sizeof(buf), pFmt, args); #else vsnprintf(buf, sizeof(buf), pFmt, args); #endif fprintf(stderr, "ERROR: %s", buf); } void error_printf(const char *pFmt, ...) { va_list args; va_start(args, pFmt); error_vprintf(pFmt, args); va_end(args); } #if defined(_WIN32) inline void query_counter(timer_ticks* pTicks) { QueryPerformanceCounter(reinterpret_cast(pTicks)); } inline void query_counter_frequency(timer_ticks* pTicks) { QueryPerformanceFrequency(reinterpret_cast(pTicks)); } #elif defined(__APPLE__) || defined(__FreeBSD__) || defined(__OpenBSD__) || defined(__EMSCRIPTEN__) #include inline void query_counter(timer_ticks* pTicks) { struct timeval cur_time; gettimeofday(&cur_time, NULL); *pTicks = static_cast(cur_time.tv_sec) * 1000000ULL + static_cast(cur_time.tv_usec); } inline void query_counter_frequency(timer_ticks* pTicks) { *pTicks = 1000000; } #elif defined(__GNUC__) #include inline void query_counter(timer_ticks* pTicks) { struct timeval cur_time; gettimeofday(&cur_time, NULL); *pTicks = static_cast(cur_time.tv_sec) * 1000000ULL + static_cast(cur_time.tv_usec); } inline void query_counter_frequency(timer_ticks* pTicks) { *pTicks = 1000000; } #else #error TODO #endif interval_timer::interval_timer() : m_start_time(0), m_stop_time(0), m_started(false), m_stopped(false) { if (!g_timer_freq) init(); } void interval_timer::start() { query_counter(&m_start_time); m_started = true; m_stopped = false; } void interval_timer::stop() { assert(m_started); query_counter(&m_stop_time); m_stopped = true; } double interval_timer::get_elapsed_secs() const { assert(m_started); if (!m_started) return 0; timer_ticks stop_time = m_stop_time; if (!m_stopped) query_counter(&stop_time); timer_ticks delta = stop_time - m_start_time; return delta * g_timer_freq; } void interval_timer::init() { if (!g_timer_freq) { query_counter_frequency(&g_freq); g_timer_freq = 1.0f / g_freq; query_counter(&g_init_ticks); } } timer_ticks interval_timer::get_ticks() { if (!g_timer_freq) init(); timer_ticks ticks; query_counter(&ticks); return ticks - g_init_ticks; } double interval_timer::ticks_to_secs(timer_ticks ticks) { if (!g_timer_freq) init(); return ticks * g_timer_freq; } float linear_to_srgb(float l) { assert(l >= 0.0f && l <= 1.0f); if (l < .0031308f) return saturate(l * 12.92f); else return saturate(1.055f * powf(l, 1.0f / 2.4f) - .055f); } float srgb_to_linear(float s) { assert(s >= 0.0f && s <= 1.0f); if (s < .04045f) return saturate(s * (1.0f / 12.92f)); else return saturate(powf((s + .055f) * (1.0f / 1.055f), 2.4f)); } const uint32_t MAX_32BIT_ALLOC_SIZE = 250000000; bool load_tga(const char* pFilename, image& img) { int w = 0, h = 0, n_chans = 0; uint8_t* pImage_data = read_tga(pFilename, w, h, n_chans); if ((!pImage_data) || (!w) || (!h) || ((n_chans != 3) && (n_chans != 4))) { error_printf("Failed loading .TGA image \"%s\"!\n", pFilename); if (pImage_data) free(pImage_data); return false; } if (sizeof(void *) == sizeof(uint32_t)) { if (((uint64_t)w * h * n_chans) > MAX_32BIT_ALLOC_SIZE) { error_printf("Image \"%s\" is too large (%ux%u) to process in a 32-bit build!\n", pFilename, w, h); if (pImage_data) free(pImage_data); return false; } } img.resize(w, h); const uint8_t *pSrc = pImage_data; for (int y = 0; y < h; y++) { color_rgba *pDst = &img(0, y); for (int x = 0; x < w; x++) { pDst->r = pSrc[0]; pDst->g = pSrc[1]; pDst->b = pSrc[2]; pDst->a = (n_chans == 3) ? 255 : pSrc[3]; pSrc += n_chans; ++pDst; } } free(pImage_data); return true; } bool load_qoi(const char* pFilename, image& img) { return false; } bool load_png(const uint8_t *pBuf, size_t buf_size, image &img, const char *pFilename) { interval_timer tm; tm.start(); if (!buf_size) return false; uint32_t width = 0, height = 0, num_chans = 0; void* pImage = pv_png::load_png(pBuf, buf_size, 4, width, height, num_chans); if (!pBuf) { error_printf("pv_png::load_png failed while loading image \"%s\"\n", pFilename); return false; } img.grant_ownership(reinterpret_cast(pImage), width, height); //debug_printf("Total load_png() time: %3.3f secs\n", tm.get_elapsed_secs()); return true; } bool load_png(const char* pFilename, image& img) { uint8_vec buffer; if (!read_file_to_vec(pFilename, buffer)) { error_printf("load_png: Failed reading file \"%s\"!\n", pFilename); return false; } return load_png(buffer.data(), buffer.size(), img, pFilename); } bool load_jpg(const char *pFilename, image& img) { int width = 0, height = 0, actual_comps = 0; uint8_t *pImage_data = jpgd::decompress_jpeg_image_from_file(pFilename, &width, &height, &actual_comps, 4, jpgd::jpeg_decoder::cFlagBoxChromaFiltering); if (!pImage_data) return false; img.init(pImage_data, width, height, 4); free(pImage_data); return true; } bool load_image(const char* pFilename, image& img) { std::string ext(string_get_extension(std::string(pFilename))); if (ext.length() == 0) return false; const char *pExt = ext.c_str(); if (strcasecmp(pExt, "png") == 0) return load_png(pFilename, img); if (strcasecmp(pExt, "tga") == 0) return load_tga(pFilename, img); if (strcasecmp(pExt, "qoi") == 0) return load_qoi(pFilename, img); if ( (strcasecmp(pExt, "jpg") == 0) || (strcasecmp(pExt, "jfif") == 0) || (strcasecmp(pExt, "jpeg") == 0) ) return load_jpg(pFilename, img); return false; } static void convert_ldr_to_hdr_image(imagef &img, const image &ldr_img, bool ldr_srgb_to_linear) { img.resize(ldr_img.get_width(), ldr_img.get_height()); for (uint32_t y = 0; y < ldr_img.get_height(); y++) { for (uint32_t x = 0; x < ldr_img.get_width(); x++) { const color_rgba& c = ldr_img(x, y); vec4F& d = img(x, y); if (ldr_srgb_to_linear) { // TODO: Multiply by 100-200 nits? d[0] = srgb_to_linear(c[0] * (1.0f / 255.0f)); d[1] = srgb_to_linear(c[1] * (1.0f / 255.0f)); d[2] = srgb_to_linear(c[2] * (1.0f / 255.0f)); } else { d[0] = c[0] * (1.0f / 255.0f); d[1] = c[1] * (1.0f / 255.0f); d[2] = c[2] * (1.0f / 255.0f); } d[3] = c[3] * (1.0f / 255.0f); } } } bool load_image_hdr(const void* pMem, size_t mem_size, imagef& img, uint32_t width, uint32_t height, hdr_image_type img_type, bool ldr_srgb_to_linear) { if ((!pMem) || (!mem_size)) { assert(0); return false; } switch (img_type) { case hdr_image_type::cHITRGBAHalfFloat: { if (mem_size != width * height * sizeof(basist::half_float) * 4) { assert(0); return false; } if ((!width) || (!height)) { assert(0); return false; } const basist::half_float* pSrc_image_h = static_cast(pMem); img.resize(width, height); for (uint32_t y = 0; y < height; y++) { for (uint32_t x = 0; x < width; x++) { const basist::half_float* pSrc_pixel = &pSrc_image_h[x * 4]; vec4F& dst = img(x, y); dst[0] = basist::half_to_float(pSrc_pixel[0]); dst[1] = basist::half_to_float(pSrc_pixel[1]); dst[2] = basist::half_to_float(pSrc_pixel[2]); dst[3] = basist::half_to_float(pSrc_pixel[3]); } pSrc_image_h += (width * 4); } break; } case hdr_image_type::cHITRGBAFloat: { if (mem_size != width * height * sizeof(float) * 4) { assert(0); return false; } if ((!width) || (!height)) { assert(0); return false; } img.resize(width, height); memcpy(img.get_ptr(), pMem, width * height * sizeof(float) * 4); break; } case hdr_image_type::cHITPNGImage: { image ldr_img; if (!load_png(static_cast(pMem), mem_size, ldr_img)) return false; convert_ldr_to_hdr_image(img, ldr_img, ldr_srgb_to_linear); break; } case hdr_image_type::cHITEXRImage: { if (!read_exr(pMem, mem_size, img)) return false; break; } case hdr_image_type::cHITHDRImage: { uint8_vec buf(mem_size); memcpy(buf.get_ptr(), pMem, mem_size); rgbe_header_info hdr; if (!read_rgbe(buf, img, hdr)) return false; break; } default: assert(0); return false; } return true; } bool load_image_hdr(const char* pFilename, imagef& img, bool ldr_srgb_to_linear) { std::string ext(string_get_extension(std::string(pFilename))); if (ext.length() == 0) return false; const char* pExt = ext.c_str(); if (strcasecmp(pExt, "hdr") == 0) { rgbe_header_info rgbe_info; if (!read_rgbe(pFilename, img, rgbe_info)) return false; return true; } if (strcasecmp(pExt, "exr") == 0) { int n_chans = 0; if (!read_exr(pFilename, img, n_chans)) return false; return true; } // Try loading image as LDR, then optionally convert to linear light. { image ldr_img; if (!load_image(pFilename, ldr_img)) return false; convert_ldr_to_hdr_image(img, ldr_img, ldr_srgb_to_linear); } return true; } bool save_png(const char* pFilename, const image &img, uint32_t image_save_flags, uint32_t grayscale_comp) { if (!img.get_total_pixels()) return false; void* pPNG_data = nullptr; size_t PNG_data_size = 0; if (image_save_flags & cImageSaveGrayscale) { uint8_vec g_pixels(img.get_total_pixels()); uint8_t* pDst = &g_pixels[0]; for (uint32_t y = 0; y < img.get_height(); y++) for (uint32_t x = 0; x < img.get_width(); x++) *pDst++ = img(x, y)[grayscale_comp]; pPNG_data = buminiz::tdefl_write_image_to_png_file_in_memory_ex(g_pixels.data(), img.get_width(), img.get_height(), 1, &PNG_data_size, 1, false); } else { bool has_alpha = false; if ((image_save_flags & cImageSaveIgnoreAlpha) == 0) has_alpha = img.has_alpha(); if (!has_alpha) { uint8_vec rgb_pixels(img.get_total_pixels() * 3); uint8_t* pDst = &rgb_pixels[0]; for (uint32_t y = 0; y < img.get_height(); y++) { const color_rgba* pSrc = &img(0, y); for (uint32_t x = 0; x < img.get_width(); x++) { pDst[0] = pSrc->r; pDst[1] = pSrc->g; pDst[2] = pSrc->b; pSrc++; pDst += 3; } } pPNG_data = buminiz::tdefl_write_image_to_png_file_in_memory_ex(rgb_pixels.data(), img.get_width(), img.get_height(), 3, &PNG_data_size, 1, false); } else { pPNG_data = buminiz::tdefl_write_image_to_png_file_in_memory_ex(img.get_ptr(), img.get_width(), img.get_height(), 4, &PNG_data_size, 1, false); } } if (!pPNG_data) return false; bool status = write_data_to_file(pFilename, pPNG_data, PNG_data_size); if (!status) { error_printf("save_png: Failed writing to filename \"%s\"!\n", pFilename); } free(pPNG_data); return status; } bool read_file_to_vec(const char* pFilename, uint8_vec& data) { FILE* pFile = nullptr; #ifdef _WIN32 fopen_s(&pFile, pFilename, "rb"); #else pFile = fopen(pFilename, "rb"); #endif if (!pFile) return false; fseek(pFile, 0, SEEK_END); #ifdef _WIN32 int64_t filesize = _ftelli64(pFile); #else int64_t filesize = ftello(pFile); #endif if (filesize < 0) { fclose(pFile); return false; } fseek(pFile, 0, SEEK_SET); if (sizeof(size_t) == sizeof(uint32_t)) { if (filesize > 0x70000000) { // File might be too big to load safely in one alloc fclose(pFile); return false; } } if (!data.try_resize((size_t)filesize)) { fclose(pFile); return false; } if (filesize) { if (fread(&data[0], 1, (size_t)filesize, pFile) != (size_t)filesize) { fclose(pFile); return false; } } fclose(pFile); return true; } bool read_file_to_data(const char* pFilename, void *pData, size_t len) { assert(pData && len); if ((!pData) || (!len)) return false; FILE* pFile = nullptr; #ifdef _WIN32 fopen_s(&pFile, pFilename, "rb"); #else pFile = fopen(pFilename, "rb"); #endif if (!pFile) return false; fseek(pFile, 0, SEEK_END); #ifdef _WIN32 int64_t filesize = _ftelli64(pFile); #else int64_t filesize = ftello(pFile); #endif if ((filesize < 0) || ((size_t)filesize < len)) { fclose(pFile); return false; } fseek(pFile, 0, SEEK_SET); if (fread(pData, 1, (size_t)len, pFile) != (size_t)len) { fclose(pFile); return false; } fclose(pFile); return true; } bool write_data_to_file(const char* pFilename, const void* pData, size_t len) { FILE* pFile = nullptr; #ifdef _WIN32 fopen_s(&pFile, pFilename, "wb"); #else pFile = fopen(pFilename, "wb"); #endif if (!pFile) return false; if (len) { if (fwrite(pData, 1, len, pFile) != len) { fclose(pFile); return false; } } return fclose(pFile) != EOF; } bool image_resample(const image &src, image &dst, bool srgb, const char *pFilter, float filter_scale, bool wrapping, uint32_t first_comp, uint32_t num_comps) { assert((first_comp + num_comps) <= 4); const int cMaxComps = 4; const uint32_t src_w = src.get_width(), src_h = src.get_height(); const uint32_t dst_w = dst.get_width(), dst_h = dst.get_height(); if (maximum(src_w, src_h) > BASISU_RESAMPLER_MAX_DIMENSION) { printf("Image is too large!\n"); return false; } if (!src_w || !src_h || !dst_w || !dst_h) return false; if ((num_comps < 1) || (num_comps > cMaxComps)) return false; if ((minimum(dst_w, dst_h) < 1) || (maximum(dst_w, dst_h) > BASISU_RESAMPLER_MAX_DIMENSION)) { printf("Image is too large!\n"); return false; } if ((src_w == dst_w) && (src_h == dst_h)) { dst = src; return true; } float srgb_to_linear_table[256]; if (srgb) { for (int i = 0; i < 256; ++i) srgb_to_linear_table[i] = srgb_to_linear((float)i * (1.0f/255.0f)); } const int LINEAR_TO_SRGB_TABLE_SIZE = 8192; uint8_t linear_to_srgb_table[LINEAR_TO_SRGB_TABLE_SIZE]; if (srgb) { for (int i = 0; i < LINEAR_TO_SRGB_TABLE_SIZE; ++i) linear_to_srgb_table[i] = (uint8_t)clamp((int)(255.0f * linear_to_srgb((float)i * (1.0f / (LINEAR_TO_SRGB_TABLE_SIZE - 1))) + .5f), 0, 255); } std::vector samples[cMaxComps]; Resampler *resamplers[cMaxComps]; resamplers[0] = new Resampler(src_w, src_h, dst_w, dst_h, wrapping ? Resampler::BOUNDARY_WRAP : Resampler::BOUNDARY_CLAMP, 0.0f, 1.0f, pFilter, nullptr, nullptr, filter_scale, filter_scale, 0, 0); samples[0].resize(src_w); for (uint32_t i = 1; i < num_comps; ++i) { resamplers[i] = new Resampler(src_w, src_h, dst_w, dst_h, wrapping ? Resampler::BOUNDARY_WRAP : Resampler::BOUNDARY_CLAMP, 0.0f, 1.0f, pFilter, resamplers[0]->get_clist_x(), resamplers[0]->get_clist_y(), filter_scale, filter_scale, 0, 0); samples[i].resize(src_w); } uint32_t dst_y = 0; for (uint32_t src_y = 0; src_y < src_h; ++src_y) { const color_rgba *pSrc = &src(0, src_y); // Put source lines into resampler(s) for (uint32_t x = 0; x < src_w; ++x) { for (uint32_t c = 0; c < num_comps; ++c) { const uint32_t comp_index = first_comp + c; const uint32_t v = (*pSrc)[comp_index]; if (!srgb || (comp_index == 3)) samples[c][x] = v * (1.0f / 255.0f); else samples[c][x] = srgb_to_linear_table[v]; } pSrc++; } for (uint32_t c = 0; c < num_comps; ++c) { if (!resamplers[c]->put_line(&samples[c][0])) { for (uint32_t i = 0; i < num_comps; i++) delete resamplers[i]; return false; } } // Now retrieve any output lines for (;;) { uint32_t c; for (c = 0; c < num_comps; ++c) { const uint32_t comp_index = first_comp + c; const float *pOutput_samples = resamplers[c]->get_line(); if (!pOutput_samples) break; const bool linear_flag = !srgb || (comp_index == 3); color_rgba *pDst = &dst(0, dst_y); for (uint32_t x = 0; x < dst_w; x++) { // TODO: Add dithering if (linear_flag) { int j = (int)(255.0f * pOutput_samples[x] + .5f); (*pDst)[comp_index] = (uint8_t)clamp(j, 0, 255); } else { int j = (int)((LINEAR_TO_SRGB_TABLE_SIZE - 1) * pOutput_samples[x] + .5f); (*pDst)[comp_index] = linear_to_srgb_table[clamp(j, 0, LINEAR_TO_SRGB_TABLE_SIZE - 1)]; } pDst++; } } if (c < num_comps) break; ++dst_y; } } for (uint32_t i = 0; i < num_comps; ++i) delete resamplers[i]; return true; } bool image_resample(const imagef& src, imagef& dst, const char* pFilter, float filter_scale, bool wrapping, uint32_t first_comp, uint32_t num_comps) { assert((first_comp + num_comps) <= 4); const int cMaxComps = 4; const uint32_t src_w = src.get_width(), src_h = src.get_height(); const uint32_t dst_w = dst.get_width(), dst_h = dst.get_height(); if (maximum(src_w, src_h) > BASISU_RESAMPLER_MAX_DIMENSION) { printf("Image is too large!\n"); return false; } if (!src_w || !src_h || !dst_w || !dst_h) return false; if ((num_comps < 1) || (num_comps > cMaxComps)) return false; if ((minimum(dst_w, dst_h) < 1) || (maximum(dst_w, dst_h) > BASISU_RESAMPLER_MAX_DIMENSION)) { printf("Image is too large!\n"); return false; } if ((src_w == dst_w) && (src_h == dst_h)) { dst = src; return true; } std::vector samples[cMaxComps]; Resampler* resamplers[cMaxComps]; resamplers[0] = new Resampler(src_w, src_h, dst_w, dst_h, wrapping ? Resampler::BOUNDARY_WRAP : Resampler::BOUNDARY_CLAMP, 1.0f, 0.0f, // no clamping pFilter, nullptr, nullptr, filter_scale, filter_scale, 0, 0); samples[0].resize(src_w); for (uint32_t i = 1; i < num_comps; ++i) { resamplers[i] = new Resampler(src_w, src_h, dst_w, dst_h, wrapping ? Resampler::BOUNDARY_WRAP : Resampler::BOUNDARY_CLAMP, 1.0f, 0.0f, // no clamping pFilter, resamplers[0]->get_clist_x(), resamplers[0]->get_clist_y(), filter_scale, filter_scale, 0, 0); samples[i].resize(src_w); } uint32_t dst_y = 0; for (uint32_t src_y = 0; src_y < src_h; ++src_y) { const vec4F* pSrc = &src(0, src_y); // Put source lines into resampler(s) for (uint32_t x = 0; x < src_w; ++x) { for (uint32_t c = 0; c < num_comps; ++c) { const uint32_t comp_index = first_comp + c; const float v = (*pSrc)[comp_index]; samples[c][x] = v; } pSrc++; } for (uint32_t c = 0; c < num_comps; ++c) { if (!resamplers[c]->put_line(&samples[c][0])) { for (uint32_t i = 0; i < num_comps; i++) delete resamplers[i]; return false; } } // Now retrieve any output lines for (;;) { uint32_t c; for (c = 0; c < num_comps; ++c) { const uint32_t comp_index = first_comp + c; const float* pOutput_samples = resamplers[c]->get_line(); if (!pOutput_samples) break; vec4F* pDst = &dst(0, dst_y); for (uint32_t x = 0; x < dst_w; x++) { (*pDst)[comp_index] = pOutput_samples[x]; pDst++; } } if (c < num_comps) break; ++dst_y; } } for (uint32_t i = 0; i < num_comps; ++i) delete resamplers[i]; return true; } void canonical_huffman_calculate_minimum_redundancy(sym_freq *A, int num_syms) { // See the paper "In-Place Calculation of Minimum Redundancy Codes" by Moffat and Katajainen if (!num_syms) return; if (1 == num_syms) { A[0].m_key = 1; return; } A[0].m_key += A[1].m_key; int s = 2, r = 0, next; for (next = 1; next < (num_syms - 1); ++next) { if ((s >= num_syms) || (A[r].m_key < A[s].m_key)) { A[next].m_key = A[r].m_key; A[r].m_key = next; ++r; } else { A[next].m_key = A[s].m_key; ++s; } if ((s >= num_syms) || ((r < next) && A[r].m_key < A[s].m_key)) { A[next].m_key = A[next].m_key + A[r].m_key; A[r].m_key = next; ++r; } else { A[next].m_key = A[next].m_key + A[s].m_key; ++s; } } A[num_syms - 2].m_key = 0; for (next = num_syms - 3; next >= 0; --next) { A[next].m_key = 1 + A[A[next].m_key].m_key; } int num_avail = 1, num_used = 0, depth = 0; r = num_syms - 2; next = num_syms - 1; while (num_avail > 0) { for ( ; (r >= 0) && ((int)A[r].m_key == depth); ++num_used, --r ) ; for ( ; num_avail > num_used; --next, --num_avail) A[next].m_key = depth; num_avail = 2 * num_used; num_used = 0; ++depth; } } void canonical_huffman_enforce_max_code_size(int *pNum_codes, int code_list_len, int max_code_size) { int i; uint32_t total = 0; if (code_list_len <= 1) return; for (i = max_code_size + 1; i <= cHuffmanMaxSupportedInternalCodeSize; i++) pNum_codes[max_code_size] += pNum_codes[i]; for (i = max_code_size; i > 0; i--) total += (((uint32_t)pNum_codes[i]) << (max_code_size - i)); while (total != (1UL << max_code_size)) { pNum_codes[max_code_size]--; for (i = max_code_size - 1; i > 0; i--) { if (pNum_codes[i]) { pNum_codes[i]--; pNum_codes[i + 1] += 2; break; } } total--; } } sym_freq *canonical_huffman_radix_sort_syms(uint32_t num_syms, sym_freq *pSyms0, sym_freq *pSyms1) { uint32_t total_passes = 2, pass_shift, pass, i, hist[256 * 2]; sym_freq *pCur_syms = pSyms0, *pNew_syms = pSyms1; clear_obj(hist); for (i = 0; i < num_syms; i++) { uint32_t freq = pSyms0[i].m_key; // We scale all input frequencies to 16-bits. assert(freq <= UINT16_MAX); hist[freq & 0xFF]++; hist[256 + ((freq >> 8) & 0xFF)]++; } while ((total_passes > 1) && (num_syms == hist[(total_passes - 1) * 256])) total_passes--; for (pass_shift = 0, pass = 0; pass < total_passes; pass++, pass_shift += 8) { const uint32_t *pHist = &hist[pass << 8]; uint32_t offsets[256], cur_ofs = 0; for (i = 0; i < 256; i++) { offsets[i] = cur_ofs; cur_ofs += pHist[i]; } for (i = 0; i < num_syms; i++) pNew_syms[offsets[(pCur_syms[i].m_key >> pass_shift) & 0xFF]++] = pCur_syms[i]; sym_freq *t = pCur_syms; pCur_syms = pNew_syms; pNew_syms = t; } return pCur_syms; } bool huffman_encoding_table::init(uint32_t num_syms, const uint16_t *pFreq, uint32_t max_code_size) { if (max_code_size > cHuffmanMaxSupportedCodeSize) return false; if ((!num_syms) || (num_syms > cHuffmanMaxSyms)) return false; uint32_t total_used_syms = 0; for (uint32_t i = 0; i < num_syms; i++) if (pFreq[i]) total_used_syms++; if (!total_used_syms) return false; std::vector sym_freq0(total_used_syms), sym_freq1(total_used_syms); for (uint32_t i = 0, j = 0; i < num_syms; i++) { if (pFreq[i]) { sym_freq0[j].m_key = pFreq[i]; sym_freq0[j++].m_sym_index = static_cast(i); } } sym_freq *pSym_freq = canonical_huffman_radix_sort_syms(total_used_syms, &sym_freq0[0], &sym_freq1[0]); canonical_huffman_calculate_minimum_redundancy(pSym_freq, total_used_syms); int num_codes[cHuffmanMaxSupportedInternalCodeSize + 1]; clear_obj(num_codes); for (uint32_t i = 0; i < total_used_syms; i++) { if (pSym_freq[i].m_key > cHuffmanMaxSupportedInternalCodeSize) return false; num_codes[pSym_freq[i].m_key]++; } canonical_huffman_enforce_max_code_size(num_codes, total_used_syms, max_code_size); m_code_sizes.resize(0); m_code_sizes.resize(num_syms); m_codes.resize(0); m_codes.resize(num_syms); for (uint32_t i = 1, j = total_used_syms; i <= max_code_size; i++) for (uint32_t l = num_codes[i]; l > 0; l--) m_code_sizes[pSym_freq[--j].m_sym_index] = static_cast(i); uint32_t next_code[cHuffmanMaxSupportedInternalCodeSize + 1]; next_code[1] = 0; for (uint32_t j = 0, i = 2; i <= max_code_size; i++) next_code[i] = j = ((j + num_codes[i - 1]) << 1); for (uint32_t i = 0; i < num_syms; i++) { uint32_t rev_code = 0, code, code_size; if ((code_size = m_code_sizes[i]) == 0) continue; if (code_size > cHuffmanMaxSupportedInternalCodeSize) return false; code = next_code[code_size]++; for (uint32_t l = code_size; l > 0; l--, code >>= 1) rev_code = (rev_code << 1) | (code & 1); m_codes[i] = static_cast(rev_code); } return true; } bool huffman_encoding_table::init(uint32_t num_syms, const uint32_t *pSym_freq, uint32_t max_code_size) { if ((!num_syms) || (num_syms > cHuffmanMaxSyms)) return false; uint16_vec sym_freq(num_syms); uint32_t max_freq = 0; for (uint32_t i = 0; i < num_syms; i++) max_freq = maximum(max_freq, pSym_freq[i]); if (max_freq < UINT16_MAX) { for (uint32_t i = 0; i < num_syms; i++) sym_freq[i] = static_cast(pSym_freq[i]); } else { for (uint32_t i = 0; i < num_syms; i++) { if (pSym_freq[i]) { uint32_t f = static_cast((static_cast(pSym_freq[i]) * 65534U + (max_freq >> 1)) / max_freq); sym_freq[i] = static_cast(clamp(f, 1, 65534)); } } } return init(num_syms, &sym_freq[0], max_code_size); } void bitwise_coder::end_nonzero_run(uint16_vec &syms, uint32_t &run_size, uint32_t len) { if (run_size) { if (run_size < cHuffmanSmallRepeatSizeMin) { while (run_size--) syms.push_back(static_cast(len)); } else if (run_size <= cHuffmanSmallRepeatSizeMax) { syms.push_back(static_cast(cHuffmanSmallRepeatCode | ((run_size - cHuffmanSmallRepeatSizeMin) << 6))); } else { assert((run_size >= cHuffmanBigRepeatSizeMin) && (run_size <= cHuffmanBigRepeatSizeMax)); syms.push_back(static_cast(cHuffmanBigRepeatCode | ((run_size - cHuffmanBigRepeatSizeMin) << 6))); } } run_size = 0; } void bitwise_coder::end_zero_run(uint16_vec &syms, uint32_t &run_size) { if (run_size) { if (run_size < cHuffmanSmallZeroRunSizeMin) { while (run_size--) syms.push_back(0); } else if (run_size <= cHuffmanSmallZeroRunSizeMax) { syms.push_back(static_cast(cHuffmanSmallZeroRunCode | ((run_size - cHuffmanSmallZeroRunSizeMin) << 6))); } else { assert((run_size >= cHuffmanBigZeroRunSizeMin) && (run_size <= cHuffmanBigZeroRunSizeMax)); syms.push_back(static_cast(cHuffmanBigZeroRunCode | ((run_size - cHuffmanBigZeroRunSizeMin) << 6))); } } run_size = 0; } uint32_t bitwise_coder::emit_huffman_table(const huffman_encoding_table &tab) { const uint64_t start_bits = m_total_bits; const uint8_vec &code_sizes = tab.get_code_sizes(); uint32_t total_used = tab.get_total_used_codes(); put_bits(total_used, cHuffmanMaxSymsLog2); if (!total_used) return 0; uint16_vec syms; syms.reserve(total_used + 16); uint32_t prev_code_len = UINT_MAX, zero_run_size = 0, nonzero_run_size = 0; for (uint32_t i = 0; i <= total_used; ++i) { const uint32_t code_len = (i == total_used) ? 0xFF : code_sizes[i]; assert((code_len == 0xFF) || (code_len <= 16)); if (code_len) { end_zero_run(syms, zero_run_size); if (code_len != prev_code_len) { end_nonzero_run(syms, nonzero_run_size, prev_code_len); if (code_len != 0xFF) syms.push_back(static_cast(code_len)); } else if (++nonzero_run_size == cHuffmanBigRepeatSizeMax) end_nonzero_run(syms, nonzero_run_size, prev_code_len); } else { end_nonzero_run(syms, nonzero_run_size, prev_code_len); if (++zero_run_size == cHuffmanBigZeroRunSizeMax) end_zero_run(syms, zero_run_size); } prev_code_len = code_len; } histogram h(cHuffmanTotalCodelengthCodes); for (uint32_t i = 0; i < syms.size(); i++) h.inc(syms[i] & 63); huffman_encoding_table ct; if (!ct.init(h, 7)) return 0; assert(cHuffmanTotalSortedCodelengthCodes == cHuffmanTotalCodelengthCodes); uint32_t total_codelength_codes; for (total_codelength_codes = cHuffmanTotalSortedCodelengthCodes; total_codelength_codes > 0; total_codelength_codes--) if (ct.get_code_sizes()[g_huffman_sorted_codelength_codes[total_codelength_codes - 1]]) break; assert(total_codelength_codes); put_bits(total_codelength_codes, 5); for (uint32_t i = 0; i < total_codelength_codes; i++) put_bits(ct.get_code_sizes()[g_huffman_sorted_codelength_codes[i]], 3); for (uint32_t i = 0; i < syms.size(); ++i) { const uint32_t l = syms[i] & 63, e = syms[i] >> 6; put_code(l, ct); if (l == cHuffmanSmallZeroRunCode) put_bits(e, cHuffmanSmallZeroRunExtraBits); else if (l == cHuffmanBigZeroRunCode) put_bits(e, cHuffmanBigZeroRunExtraBits); else if (l == cHuffmanSmallRepeatCode) put_bits(e, cHuffmanSmallRepeatExtraBits); else if (l == cHuffmanBigRepeatCode) put_bits(e, cHuffmanBigRepeatExtraBits); } return (uint32_t)(m_total_bits - start_bits); } bool huffman_test(int rand_seed) { histogram h(19); // Feed in a fibonacci sequence to force large codesizes h[0] += 1; h[1] += 1; h[2] += 2; h[3] += 3; h[4] += 5; h[5] += 8; h[6] += 13; h[7] += 21; h[8] += 34; h[9] += 55; h[10] += 89; h[11] += 144; h[12] += 233; h[13] += 377; h[14] += 610; h[15] += 987; h[16] += 1597; h[17] += 2584; h[18] += 4181; huffman_encoding_table etab; etab.init(h, 16); { bitwise_coder c; c.init(1024); c.emit_huffman_table(etab); for (int i = 0; i < 19; i++) c.put_code(i, etab); c.flush(); basist::bitwise_decoder d; d.init(&c.get_bytes()[0], static_cast(c.get_bytes().size())); basist::huffman_decoding_table dtab; bool success = d.read_huffman_table(dtab); if (!success) { assert(0); printf("Failure 5\n"); return false; } for (uint32_t i = 0; i < 19; i++) { uint32_t s = d.decode_huffman(dtab); if (s != i) { assert(0); printf("Failure 5\n"); return false; } } } basisu::rand r; r.seed(rand_seed); for (int iter = 0; iter < 500000; iter++) { printf("%u\n", iter); uint32_t max_sym = r.irand(0, 8193); uint32_t num_codes = r.irand(1, 10000); uint_vec syms(num_codes); for (uint32_t i = 0; i < num_codes; i++) { if (r.bit()) syms[i] = r.irand(0, max_sym); else { int s = (int)(r.gaussian((float)max_sym / 2, (float)maximum(1, max_sym / 2)) + .5f); s = basisu::clamp(s, 0, max_sym); syms[i] = s; } } histogram h1(max_sym + 1); for (uint32_t i = 0; i < num_codes; i++) h1[syms[i]]++; huffman_encoding_table etab2; if (!etab2.init(h1, 16)) { assert(0); printf("Failed 0\n"); return false; } bitwise_coder c; c.init(1024); c.emit_huffman_table(etab2); for (uint32_t i = 0; i < num_codes; i++) c.put_code(syms[i], etab2); c.flush(); basist::bitwise_decoder d; d.init(&c.get_bytes()[0], (uint32_t)c.get_bytes().size()); basist::huffman_decoding_table dtab; bool success = d.read_huffman_table(dtab); if (!success) { assert(0); printf("Failed 2\n"); return false; } for (uint32_t i = 0; i < num_codes; i++) { uint32_t s = d.decode_huffman(dtab); if (s != syms[i]) { assert(0); printf("Failed 4\n"); return false; } } } return true; } void palette_index_reorderer::init(uint32_t num_indices, const uint32_t *pIndices, uint32_t num_syms, pEntry_dist_func pDist_func, void *pCtx, float dist_func_weight) { assert((num_syms > 0) && (num_indices > 0)); assert((dist_func_weight >= 0.0f) && (dist_func_weight <= 1.0f)); clear(); m_remap_table.resize(num_syms); m_entries_picked.reserve(num_syms); m_total_count_to_picked.resize(num_syms); if (num_indices <= 1) return; prepare_hist(num_syms, num_indices, pIndices); find_initial(num_syms); while (m_entries_to_do.size()) { // Find the best entry to move into the picked list. uint32_t best_entry; double best_count; find_next_entry(best_entry, best_count, pDist_func, pCtx, dist_func_weight); // We now have chosen an entry to place in the picked list, now determine which side it goes on. const uint32_t entry_to_move = m_entries_to_do[best_entry]; float side = pick_side(num_syms, entry_to_move, pDist_func, pCtx, dist_func_weight); // Put entry_to_move either on the "left" or "right" side of the picked entries if (side <= 0) m_entries_picked.push_back(entry_to_move); else m_entries_picked.insert(m_entries_picked.begin(), entry_to_move); // Erase best_entry from the todo list m_entries_to_do.erase(m_entries_to_do.begin() + best_entry); // We've just moved best_entry to the picked list, so now we need to update m_total_count_to_picked[] to factor the additional count to best_entry for (uint32_t i = 0; i < m_entries_to_do.size(); i++) m_total_count_to_picked[m_entries_to_do[i]] += get_hist(m_entries_to_do[i], entry_to_move, num_syms); } for (uint32_t i = 0; i < num_syms; i++) m_remap_table[m_entries_picked[i]] = i; } void palette_index_reorderer::prepare_hist(uint32_t num_syms, uint32_t num_indices, const uint32_t *pIndices) { m_hist.resize(0); m_hist.resize(num_syms * num_syms); for (uint32_t i = 0; i < num_indices; i++) { const uint32_t idx = pIndices[i]; inc_hist(idx, (i < (num_indices - 1)) ? pIndices[i + 1] : -1, num_syms); inc_hist(idx, (i > 0) ? pIndices[i - 1] : -1, num_syms); } } void palette_index_reorderer::find_initial(uint32_t num_syms) { uint32_t max_count = 0, max_index = 0; for (uint32_t i = 0; i < num_syms * num_syms; i++) if (m_hist[i] > max_count) max_count = m_hist[i], max_index = i; uint32_t a = max_index / num_syms, b = max_index % num_syms; const uint32_t ofs = m_entries_picked.size(); m_entries_picked.push_back(a); m_entries_picked.push_back(b); for (uint32_t i = 0; i < num_syms; i++) if ((i != m_entries_picked[ofs + 1]) && (i != m_entries_picked[ofs])) m_entries_to_do.push_back(i); for (uint32_t i = 0; i < m_entries_to_do.size(); i++) for (uint32_t j = 0; j < m_entries_picked.size(); j++) m_total_count_to_picked[m_entries_to_do[i]] += get_hist(m_entries_to_do[i], m_entries_picked[j], num_syms); } void palette_index_reorderer::find_next_entry(uint32_t &best_entry, double &best_count, pEntry_dist_func pDist_func, void *pCtx, float dist_func_weight) { best_entry = 0; best_count = 0; for (uint32_t i = 0; i < m_entries_to_do.size(); i++) { const uint32_t u = m_entries_to_do[i]; double total_count = m_total_count_to_picked[u]; if (pDist_func) { float w = maximum((*pDist_func)(u, m_entries_picked.front(), pCtx), (*pDist_func)(u, m_entries_picked.back(), pCtx)); assert((w >= 0.0f) && (w <= 1.0f)); total_count = (total_count + 1.0f) * lerp(1.0f - dist_func_weight, 1.0f + dist_func_weight, w); } if (total_count <= best_count) continue; best_entry = i; best_count = total_count; } } float palette_index_reorderer::pick_side(uint32_t num_syms, uint32_t entry_to_move, pEntry_dist_func pDist_func, void *pCtx, float dist_func_weight) { float which_side = 0; int l_count = 0, r_count = 0; for (uint32_t j = 0; j < m_entries_picked.size(); j++) { const int count = get_hist(entry_to_move, m_entries_picked[j], num_syms), r = ((int)m_entries_picked.size() + 1 - 2 * (j + 1)); which_side += static_cast(r * count); if (r >= 0) l_count += r * count; else r_count += -r * count; } if (pDist_func) { float w_left = lerp(1.0f - dist_func_weight, 1.0f + dist_func_weight, (*pDist_func)(entry_to_move, m_entries_picked.front(), pCtx)); float w_right = lerp(1.0f - dist_func_weight, 1.0f + dist_func_weight, (*pDist_func)(entry_to_move, m_entries_picked.back(), pCtx)); which_side = w_left * l_count - w_right * r_count; } return which_side; } void image_metrics::calc(const imagef& a, const imagef& b, uint32_t first_chan, uint32_t total_chans, bool avg_comp_error, bool log) { assert((first_chan < 4U) && (first_chan + total_chans <= 4U)); const uint32_t width = basisu::minimum(a.get_width(), b.get_width()); const uint32_t height = basisu::minimum(a.get_height(), b.get_height()); double max_e = -1e+30f; double sum = 0.0f, sum_sqr = 0.0f; m_has_neg = false; m_any_abnormal = false; m_hf_mag_overflow = false; for (uint32_t y = 0; y < height; y++) { for (uint32_t x = 0; x < width; x++) { const vec4F& ca = a(x, y), &cb = b(x, y); if (total_chans) { for (uint32_t c = 0; c < total_chans; c++) { float fa = ca[first_chan + c], fb = cb[first_chan + c]; if ((fabs(fa) > basist::MAX_HALF_FLOAT) || (fabs(fb) > basist::MAX_HALF_FLOAT)) m_hf_mag_overflow = true; if ((fa < 0.0f) || (fb < 0.0f)) m_has_neg = true; if (std::isinf(fa) || std::isinf(fb) || std::isnan(fa) || std::isnan(fb)) m_any_abnormal = true; const double delta = fabs(fa - fb); max_e = basisu::maximum(max_e, delta); if (log) { double log2_delta = log2f(basisu::maximum(0.0f, fa) + 1.0f) - log2f(basisu::maximum(0.0f, fb) + 1.0f); sum += fabs(log2_delta); sum_sqr += log2_delta * log2_delta; } else { sum += fabs(delta); sum_sqr += delta * delta; } } } else { for (uint32_t c = 0; c < 3; c++) { float fa = ca[c], fb = cb[c]; if ((fabs(fa) > basist::MAX_HALF_FLOAT) || (fabs(fb) > basist::MAX_HALF_FLOAT)) m_hf_mag_overflow = true; if ((fa < 0.0f) || (fb < 0.0f)) m_has_neg = true; if (std::isinf(fa) || std::isinf(fb) || std::isnan(fa) || std::isnan(fb)) m_any_abnormal = true; } double ca_l = get_luminance(ca), cb_l = get_luminance(cb); double delta = fabs(ca_l - cb_l); max_e = basisu::maximum(max_e, delta); if (log) { double log2_delta = log2(basisu::maximum(0.0f, ca_l) + 1.0f) - log2(basisu::maximum(0.0f, cb_l) + 1.0f); sum += fabs(log2_delta); sum_sqr += log2_delta * log2_delta; } else { sum += delta; sum_sqr += delta * delta; } } } } m_max = (double)(max_e); double total_values = (double)width * (double)height; if (avg_comp_error) total_values *= (double)clamp(total_chans, 1, 4); m_mean = (float)(sum / total_values); m_mean_squared = (float)(sum_sqr / total_values); m_rms = (float)sqrt(sum_sqr / total_values); const double max_val = 1.0f; m_psnr = m_rms ? (float)clamp(log10(max_val / m_rms) * 20.0f, 0.0f, 1000.0f) : 1000.0f; } void image_metrics::calc_half(const imagef& a, const imagef& b, uint32_t first_chan, uint32_t total_chans, bool avg_comp_error) { assert(total_chans); assert((first_chan < 4U) && (first_chan + total_chans <= 4U)); const uint32_t width = basisu::minimum(a.get_width(), b.get_width()); const uint32_t height = basisu::minimum(a.get_height(), b.get_height()); m_has_neg = false; m_hf_mag_overflow = false; m_any_abnormal = false; uint_vec hist(65536); for (uint32_t y = 0; y < height; y++) { for (uint32_t x = 0; x < width; x++) { const vec4F& ca = a(x, y), &cb = b(x, y); for (uint32_t i = 0; i < 4; i++) { if ((ca[i] < 0.0f) || (cb[i] < 0.0f)) m_has_neg = true; if ((fabs(ca[i]) > basist::MAX_HALF_FLOAT) || (fabs(cb[i]) > basist::MAX_HALF_FLOAT)) m_hf_mag_overflow = true; if (std::isnan(ca[i]) || std::isnan(cb[i]) || std::isinf(ca[i]) || std::isinf(cb[i])) m_any_abnormal = true; } int cah[4] = { basist::float_to_half(ca[0]), basist::float_to_half(ca[1]), basist::float_to_half(ca[2]), basist::float_to_half(ca[3]) }; int cbh[4] = { basist::float_to_half(cb[0]), basist::float_to_half(cb[1]), basist::float_to_half(cb[2]), basist::float_to_half(cb[3]) }; for (uint32_t c = 0; c < total_chans; c++) hist[iabs(cah[first_chan + c] - cbh[first_chan + c]) & 65535]++; } // x } // y m_max = 0; double sum = 0.0f, sum2 = 0.0f; for (uint32_t i = 0; i < 65536; i++) { if (hist[i]) { m_max = basisu::maximum(m_max, (double)i); double v = (double)i * (double)hist[i]; sum += v; sum2 += (double)i * v; } } double total_values = (double)width * (double)height; if (avg_comp_error) total_values *= (double)clamp(total_chans, 1, 4); const float max_val = 65535.0f; m_mean = (float)clamp(sum / total_values, 0.0f, max_val); m_mean_squared = (float)clamp(sum2 / total_values, 0.0f, max_val * max_val); m_rms = (float)sqrt(m_mean_squared); m_psnr = m_rms ? (float)clamp(log10(max_val / m_rms) * 20.0f, 0.0f, 1000.0f) : 1000.0f; } // Alt. variant, same as calc_half(), for validation. void image_metrics::calc_half2(const imagef& a, const imagef& b, uint32_t first_chan, uint32_t total_chans, bool avg_comp_error) { assert(total_chans); assert((first_chan < 4U) && (first_chan + total_chans <= 4U)); const uint32_t width = basisu::minimum(a.get_width(), b.get_width()); const uint32_t height = basisu::minimum(a.get_height(), b.get_height()); m_has_neg = false; m_hf_mag_overflow = false; m_any_abnormal = false; double sum = 0.0f, sum2 = 0.0f; m_max = 0; for (uint32_t y = 0; y < height; y++) { for (uint32_t x = 0; x < width; x++) { const vec4F& ca = a(x, y), & cb = b(x, y); for (uint32_t i = 0; i < 4; i++) { if ((ca[i] < 0.0f) || (cb[i] < 0.0f)) m_has_neg = true; if ((fabs(ca[i]) > basist::MAX_HALF_FLOAT) || (fabs(cb[i]) > basist::MAX_HALF_FLOAT)) m_hf_mag_overflow = true; if (std::isnan(ca[i]) || std::isnan(cb[i]) || std::isinf(ca[i]) || std::isinf(cb[i])) m_any_abnormal = true; } int cah[4] = { basist::float_to_half(ca[0]), basist::float_to_half(ca[1]), basist::float_to_half(ca[2]), basist::float_to_half(ca[3]) }; int cbh[4] = { basist::float_to_half(cb[0]), basist::float_to_half(cb[1]), basist::float_to_half(cb[2]), basist::float_to_half(cb[3]) }; for (uint32_t c = 0; c < total_chans; c++) { int diff = iabs(cah[first_chan + c] - cbh[first_chan + c]); if (diff) m_max = std::max(m_max, (double)diff); sum += diff; sum2 += squarei(cah[first_chan + c] - cbh[first_chan + c]); } } // x } // y double total_values = (double)width * (double)height; if (avg_comp_error) total_values *= (double)clamp(total_chans, 1, 4); const float max_val = 65535.0f; m_mean = (float)clamp(sum / total_values, 0.0f, max_val); m_mean_squared = (float)clamp(sum2 / total_values, 0.0f, max_val * max_val); m_rms = (float)sqrt(m_mean_squared); m_psnr = m_rms ? (float)clamp(log10(max_val / m_rms) * 20.0f, 0.0f, 1000.0f) : 1000.0f; } void image_metrics::calc(const image &a, const image &b, uint32_t first_chan, uint32_t total_chans, bool avg_comp_error, bool use_601_luma) { assert((first_chan < 4U) && (first_chan + total_chans <= 4U)); const uint32_t width = basisu::minimum(a.get_width(), b.get_width()); const uint32_t height = basisu::minimum(a.get_height(), b.get_height()); double hist[256]; clear_obj(hist); m_has_neg = false; m_any_abnormal = false; m_hf_mag_overflow = false; for (uint32_t y = 0; y < height; y++) { for (uint32_t x = 0; x < width; x++) { const color_rgba &ca = a(x, y), &cb = b(x, y); if (total_chans) { for (uint32_t c = 0; c < total_chans; c++) hist[iabs(ca[first_chan + c] - cb[first_chan + c])]++; } else { if (use_601_luma) hist[iabs(ca.get_601_luma() - cb.get_601_luma())]++; else hist[iabs(ca.get_709_luma() - cb.get_709_luma())]++; } } } m_max = 0; double sum = 0.0f, sum2 = 0.0f; for (uint32_t i = 0; i < 256; i++) { if (hist[i]) { m_max = basisu::maximum(m_max, (double)i); double v = i * hist[i]; sum += v; sum2 += i * v; } } double total_values = (double)width * (double)height; if (avg_comp_error) total_values *= (double)clamp(total_chans, 1, 4); m_mean = (float)clamp(sum / total_values, 0.0f, 255.0); m_mean_squared = (float)clamp(sum2 / total_values, 0.0f, 255.0f * 255.0f); m_rms = (float)sqrt(m_mean_squared); m_psnr = m_rms ? (float)clamp(log10(255.0 / m_rms) * 20.0f, 0.0f, 100.0f) : 100.0f; } void fill_buffer_with_random_bytes(void *pBuf, size_t size, uint32_t seed) { rand r(seed); uint8_t *pDst = static_cast(pBuf); while (size >= sizeof(uint32_t)) { *(uint32_t *)pDst = r.urand32(); pDst += sizeof(uint32_t); size -= sizeof(uint32_t); } while (size) { *pDst++ = r.byte(); size--; } } uint32_t hash_hsieh(const uint8_t *pBuf, size_t len) { if (!pBuf || !len) return 0; uint32_t h = static_cast(len); const uint32_t bytes_left = len & 3; len >>= 2; while (len--) { const uint16_t *pWords = reinterpret_cast(pBuf); h += pWords[0]; const uint32_t t = (pWords[1] << 11) ^ h; h = (h << 16) ^ t; pBuf += sizeof(uint32_t); h += h >> 11; } switch (bytes_left) { case 1: h += *reinterpret_cast(pBuf); h ^= h << 10; h += h >> 1; break; case 2: h += *reinterpret_cast(pBuf); h ^= h << 11; h += h >> 17; break; case 3: h += *reinterpret_cast(pBuf); h ^= h << 16; h ^= (static_cast(pBuf[sizeof(uint16_t)])) << 18; h += h >> 11; break; default: break; } h ^= h << 3; h += h >> 5; h ^= h << 4; h += h >> 17; h ^= h << 25; h += h >> 6; return h; } job_pool::job_pool(uint32_t num_threads) : m_num_active_jobs(0), m_kill_flag(false) { assert(num_threads >= 1U); debug_printf("job_pool::job_pool: %u total threads\n", num_threads); if (num_threads > 1) { m_threads.resize(num_threads - 1); for (int i = 0; i < ((int)num_threads - 1); i++) m_threads[i] = std::thread([this, i] { job_thread(i); }); } } job_pool::~job_pool() { debug_printf("job_pool::~job_pool\n"); // Notify all workers that they need to die right now. m_kill_flag = true; m_has_work.notify_all(); // Wait for all workers to die. for (uint32_t i = 0; i < m_threads.size(); i++) m_threads[i].join(); } void job_pool::add_job(const std::function& job) { std::unique_lock lock(m_mutex); m_queue.emplace_back(job); const size_t queue_size = m_queue.size(); lock.unlock(); if (queue_size > 1) m_has_work.notify_one(); } void job_pool::add_job(std::function&& job) { std::unique_lock lock(m_mutex); m_queue.emplace_back(std::move(job)); const size_t queue_size = m_queue.size(); lock.unlock(); if (queue_size > 1) { m_has_work.notify_one(); } } void job_pool::wait_for_all() { std::unique_lock lock(m_mutex); // Drain the job queue on the calling thread. while (!m_queue.empty()) { std::function job(m_queue.back()); m_queue.pop_back(); lock.unlock(); job(); lock.lock(); } // The queue is empty, now wait for all active jobs to finish up. m_no_more_jobs.wait(lock, [this]{ return !m_num_active_jobs; } ); } void job_pool::job_thread(uint32_t index) { BASISU_NOTE_UNUSED(index); //debug_printf("job_pool::job_thread: starting %u\n", index); while (true) { std::unique_lock lock(m_mutex); // Wait for any jobs to be issued. m_has_work.wait(lock, [this] { return m_kill_flag || m_queue.size(); } ); // Check to see if we're supposed to exit. if (m_kill_flag) break; // Get the job and execute it. std::function job(m_queue.back()); m_queue.pop_back(); ++m_num_active_jobs; lock.unlock(); job(); lock.lock(); --m_num_active_jobs; // Now check if there are no more jobs remaining. const bool all_done = m_queue.empty() && !m_num_active_jobs; lock.unlock(); if (all_done) m_no_more_jobs.notify_all(); } //debug_printf("job_pool::job_thread: exiting\n"); } // .TGA image loading #pragma pack(push) #pragma pack(1) struct tga_header { uint8_t m_id_len; uint8_t m_cmap; uint8_t m_type; packed_uint<2> m_cmap_first; packed_uint<2> m_cmap_len; uint8_t m_cmap_bpp; packed_uint<2> m_x_org; packed_uint<2> m_y_org; packed_uint<2> m_width; packed_uint<2> m_height; uint8_t m_depth; uint8_t m_desc; }; #pragma pack(pop) const uint32_t MAX_TGA_IMAGE_SIZE = 16384; enum tga_image_type { cITPalettized = 1, cITRGB = 2, cITGrayscale = 3 }; uint8_t *read_tga(const uint8_t *pBuf, uint32_t buf_size, int &width, int &height, int &n_chans) { width = 0; height = 0; n_chans = 0; if (buf_size <= sizeof(tga_header)) return nullptr; const tga_header &hdr = *reinterpret_cast(pBuf); if ((!hdr.m_width) || (!hdr.m_height) || (hdr.m_width > MAX_TGA_IMAGE_SIZE) || (hdr.m_height > MAX_TGA_IMAGE_SIZE)) return nullptr; if (hdr.m_desc >> 6) return nullptr; // Simple validation if ((hdr.m_cmap != 0) && (hdr.m_cmap != 1)) return nullptr; if (hdr.m_cmap) { if ((hdr.m_cmap_bpp == 0) || (hdr.m_cmap_bpp > 32)) return nullptr; // Nobody implements CMapFirst correctly, so we're not supporting it. Never seen it used, either. if (hdr.m_cmap_first != 0) return nullptr; } const bool x_flipped = (hdr.m_desc & 0x10) != 0; const bool y_flipped = (hdr.m_desc & 0x20) == 0; bool rle_flag = false; int file_image_type = hdr.m_type; if (file_image_type > 8) { file_image_type -= 8; rle_flag = true; } const tga_image_type image_type = static_cast(file_image_type); switch (file_image_type) { case cITRGB: if (hdr.m_depth == 8) return nullptr; break; case cITPalettized: if ((hdr.m_depth != 8) || (hdr.m_cmap != 1) || (hdr.m_cmap_len == 0)) return nullptr; break; case cITGrayscale: if ((hdr.m_cmap != 0) || (hdr.m_cmap_len != 0)) return nullptr; if ((hdr.m_depth != 8) && (hdr.m_depth != 16)) return nullptr; break; default: return nullptr; } uint32_t tga_bytes_per_pixel = 0; switch (hdr.m_depth) { case 32: tga_bytes_per_pixel = 4; n_chans = 4; break; case 24: tga_bytes_per_pixel = 3; n_chans = 3; break; case 16: case 15: tga_bytes_per_pixel = 2; // For compatibility with stb_image_write.h n_chans = ((file_image_type == cITGrayscale) && (hdr.m_depth == 16)) ? 4 : 3; break; case 8: tga_bytes_per_pixel = 1; // For palettized RGBA support, which both FreeImage and stb_image support. n_chans = ((file_image_type == cITPalettized) && (hdr.m_cmap_bpp == 32)) ? 4 : 3; break; default: return nullptr; } //const uint32_t bytes_per_line = hdr.m_width * tga_bytes_per_pixel; const uint8_t *pSrc = pBuf + sizeof(tga_header); uint32_t bytes_remaining = buf_size - sizeof(tga_header); if (hdr.m_id_len) { if (bytes_remaining < hdr.m_id_len) return nullptr; pSrc += hdr.m_id_len; bytes_remaining += hdr.m_id_len; } color_rgba pal[256]; for (uint32_t i = 0; i < 256; i++) pal[i].set(0, 0, 0, 255); if ((hdr.m_cmap) && (hdr.m_cmap_len)) { if (image_type == cITPalettized) { // Note I cannot find any files using 32bpp palettes in the wild (never seen any in ~30 years). if ( ((hdr.m_cmap_bpp != 32) && (hdr.m_cmap_bpp != 24) && (hdr.m_cmap_bpp != 15) && (hdr.m_cmap_bpp != 16)) || (hdr.m_cmap_len > 256) ) return nullptr; if (hdr.m_cmap_bpp == 32) { const uint32_t pal_size = hdr.m_cmap_len * 4; if (bytes_remaining < pal_size) return nullptr; for (uint32_t i = 0; i < hdr.m_cmap_len; i++) { pal[i].r = pSrc[i * 4 + 2]; pal[i].g = pSrc[i * 4 + 1]; pal[i].b = pSrc[i * 4 + 0]; pal[i].a = pSrc[i * 4 + 3]; } bytes_remaining -= pal_size; pSrc += pal_size; } else if (hdr.m_cmap_bpp == 24) { const uint32_t pal_size = hdr.m_cmap_len * 3; if (bytes_remaining < pal_size) return nullptr; for (uint32_t i = 0; i < hdr.m_cmap_len; i++) { pal[i].r = pSrc[i * 3 + 2]; pal[i].g = pSrc[i * 3 + 1]; pal[i].b = pSrc[i * 3 + 0]; pal[i].a = 255; } bytes_remaining -= pal_size; pSrc += pal_size; } else { const uint32_t pal_size = hdr.m_cmap_len * 2; if (bytes_remaining < pal_size) return nullptr; for (uint32_t i = 0; i < hdr.m_cmap_len; i++) { const uint32_t v = pSrc[i * 2 + 0] | (pSrc[i * 2 + 1] << 8); pal[i].r = (((v >> 10) & 31) * 255 + 15) / 31; pal[i].g = (((v >> 5) & 31) * 255 + 15) / 31; pal[i].b = ((v & 31) * 255 + 15) / 31; pal[i].a = 255; } bytes_remaining -= pal_size; pSrc += pal_size; } } else { const uint32_t bytes_to_skip = (hdr.m_cmap_bpp >> 3) * hdr.m_cmap_len; if (bytes_remaining < bytes_to_skip) return nullptr; pSrc += bytes_to_skip; bytes_remaining += bytes_to_skip; } } width = hdr.m_width; height = hdr.m_height; const uint32_t source_pitch = width * tga_bytes_per_pixel; const uint32_t dest_pitch = width * n_chans; uint8_t *pImage = (uint8_t *)malloc(dest_pitch * height); if (!pImage) return nullptr; std::vector input_line_buf; if (rle_flag) input_line_buf.resize(source_pitch); int run_type = 0, run_remaining = 0; uint8_t run_pixel[4]; memset(run_pixel, 0, sizeof(run_pixel)); for (int y = 0; y < height; y++) { const uint8_t *pLine_data; if (rle_flag) { int pixels_remaining = width; uint8_t *pDst = &input_line_buf[0]; do { if (!run_remaining) { if (bytes_remaining < 1) { free(pImage); return nullptr; } int v = *pSrc++; bytes_remaining--; run_type = v & 0x80; run_remaining = (v & 0x7F) + 1; if (run_type) { if (bytes_remaining < tga_bytes_per_pixel) { free(pImage); return nullptr; } memcpy(run_pixel, pSrc, tga_bytes_per_pixel); pSrc += tga_bytes_per_pixel; bytes_remaining -= tga_bytes_per_pixel; } } const uint32_t n = basisu::minimum(pixels_remaining, run_remaining); pixels_remaining -= n; run_remaining -= n; if (run_type) { for (uint32_t i = 0; i < n; i++) for (uint32_t j = 0; j < tga_bytes_per_pixel; j++) *pDst++ = run_pixel[j]; } else { const uint32_t bytes_wanted = n * tga_bytes_per_pixel; if (bytes_remaining < bytes_wanted) { free(pImage); return nullptr; } memcpy(pDst, pSrc, bytes_wanted); pDst += bytes_wanted; pSrc += bytes_wanted; bytes_remaining -= bytes_wanted; } } while (pixels_remaining); assert((pDst - &input_line_buf[0]) == (int)(width * tga_bytes_per_pixel)); pLine_data = &input_line_buf[0]; } else { if (bytes_remaining < source_pitch) { free(pImage); return nullptr; } pLine_data = pSrc; bytes_remaining -= source_pitch; pSrc += source_pitch; } // Convert to 24bpp RGB or 32bpp RGBA. uint8_t *pDst = pImage + (y_flipped ? (height - 1 - y) : y) * dest_pitch + (x_flipped ? (width - 1) * n_chans : 0); const int dst_stride = x_flipped ? -((int)n_chans) : n_chans; switch (hdr.m_depth) { case 32: assert(tga_bytes_per_pixel == 4 && n_chans == 4); for (int i = 0; i < width; i++, pLine_data += 4, pDst += dst_stride) { pDst[0] = pLine_data[2]; pDst[1] = pLine_data[1]; pDst[2] = pLine_data[0]; pDst[3] = pLine_data[3]; } break; case 24: assert(tga_bytes_per_pixel == 3 && n_chans == 3); for (int i = 0; i < width; i++, pLine_data += 3, pDst += dst_stride) { pDst[0] = pLine_data[2]; pDst[1] = pLine_data[1]; pDst[2] = pLine_data[0]; } break; case 16: case 15: if (image_type == cITRGB) { assert(tga_bytes_per_pixel == 2 && n_chans == 3); for (int i = 0; i < width; i++, pLine_data += 2, pDst += dst_stride) { const uint32_t v = pLine_data[0] | (pLine_data[1] << 8); pDst[0] = (((v >> 10) & 31) * 255 + 15) / 31; pDst[1] = (((v >> 5) & 31) * 255 + 15) / 31; pDst[2] = ((v & 31) * 255 + 15) / 31; } } else { assert(image_type == cITGrayscale && tga_bytes_per_pixel == 2 && n_chans == 4); for (int i = 0; i < width; i++, pLine_data += 2, pDst += dst_stride) { pDst[0] = pLine_data[0]; pDst[1] = pLine_data[0]; pDst[2] = pLine_data[0]; pDst[3] = pLine_data[1]; } } break; case 8: assert(tga_bytes_per_pixel == 1); if (image_type == cITPalettized) { if (hdr.m_cmap_bpp == 32) { assert(n_chans == 4); for (int i = 0; i < width; i++, pLine_data++, pDst += dst_stride) { const uint32_t c = *pLine_data; pDst[0] = pal[c].r; pDst[1] = pal[c].g; pDst[2] = pal[c].b; pDst[3] = pal[c].a; } } else { assert(n_chans == 3); for (int i = 0; i < width; i++, pLine_data++, pDst += dst_stride) { const uint32_t c = *pLine_data; pDst[0] = pal[c].r; pDst[1] = pal[c].g; pDst[2] = pal[c].b; } } } else { assert(n_chans == 3); for (int i = 0; i < width; i++, pLine_data++, pDst += dst_stride) { const uint8_t c = *pLine_data; pDst[0] = c; pDst[1] = c; pDst[2] = c; } } break; default: assert(0); break; } } // y return pImage; } uint8_t *read_tga(const char *pFilename, int &width, int &height, int &n_chans) { width = height = n_chans = 0; uint8_vec filedata; if (!read_file_to_vec(pFilename, filedata)) return nullptr; if (!filedata.size() || (filedata.size() > UINT32_MAX)) return nullptr; return read_tga(&filedata[0], (uint32_t)filedata.size(), width, height, n_chans); } static inline void hdr_convert(const color_rgba& rgbe, vec4F& c) { if (rgbe[3] != 0) { float scale = ldexp(1.0f, rgbe[3] - 128 - 8); c.set((float)rgbe[0] * scale, (float)rgbe[1] * scale, (float)rgbe[2] * scale, 1.0f); } else { c.set(0.0f, 0.0f, 0.0f, 1.0f); } } bool string_begins_with(const std::string& str, const char* pPhrase) { const size_t str_len = str.size(); const size_t phrase_len = strlen(pPhrase); assert(phrase_len); if (str_len >= phrase_len) { #ifdef _MSC_VER if (_strnicmp(pPhrase, str.c_str(), phrase_len) == 0) #else if (strncasecmp(pPhrase, str.c_str(), phrase_len) == 0) #endif return true; } return false; } // Radiance RGBE (.HDR) image reading. // This code tries to preserve the original logic in Radiance's ray/src/common/color.c code: // https://www.radiance-online.org/cgi-bin/viewcvs.cgi/ray/src/common/color.c?revision=2.26&view=markup&sortby=log // Also see: https://flipcode.com/archives/HDR_Image_Reader.shtml. // https://github.com/LuminanceHDR/LuminanceHDR/blob/master/src/Libpfs/io/rgbereader.cpp. // https://radsite.lbl.gov/radiance/refer/filefmts.pdf // Buggy readers: // stb_image.h: appears to be a clone of rgbe.c, but with goto's (doesn't support old format files, doesn't support mixture of RLE/non-RLE scanlines) // http://www.graphics.cornell.edu/~bjw/rgbe.html - rgbe.c/h // http://www.graphics.cornell.edu/online/formats/rgbe/ - rgbe.c/.h - buggy bool read_rgbe(const uint8_vec &filedata, imagef& img, rgbe_header_info& hdr_info) { hdr_info.clear(); const uint32_t MAX_SUPPORTED_DIM = 65536; if (filedata.size() < 4) return false; // stb_image.h checks for the string "#?RADIANCE" or "#?RGBE" in the header. // The original Radiance header code doesn't care about the specific string. // opencv's reader only checks for "#?", so that's what we're going to do. if ((filedata[0] != '#') || (filedata[1] != '?')) return false; //uint32_t width = 0, height = 0; bool is_rgbe = false; size_t cur_ofs = 0; // Parse the lines until we encounter a blank line. std::string cur_line; for (; ; ) { if (cur_ofs >= filedata.size()) return false; const uint32_t HEADER_TOO_BIG_SIZE = 4096; if (cur_ofs >= HEADER_TOO_BIG_SIZE) { // Header seems too large - something is likely wrong. Return failure. return false; } uint8_t c = filedata[cur_ofs++]; if (c == '\n') { if (!cur_line.size()) break; if ((cur_line[0] == '#') && (!string_begins_with(cur_line, "#?")) && (!hdr_info.m_program.size())) { cur_line.erase(0, 1); while (cur_line.size() && (cur_line[0] == ' ')) cur_line.erase(0, 1); hdr_info.m_program = cur_line; } else if (string_begins_with(cur_line, "EXPOSURE=") && (cur_line.size() > 9)) { hdr_info.m_exposure = atof(cur_line.c_str() + 9); hdr_info.m_has_exposure = true; } else if (string_begins_with(cur_line, "GAMMA=") && (cur_line.size() > 6)) { hdr_info.m_exposure = atof(cur_line.c_str() + 6); hdr_info.m_has_gamma = true; } else if (cur_line == "FORMAT=32-bit_rle_rgbe") { is_rgbe = true; } cur_line.resize(0); } else cur_line.push_back((char)c); } if (!is_rgbe) return false; // Assume and require the final line to have the image's dimensions. We're not supporting flipping. for (; ; ) { if (cur_ofs >= filedata.size()) return false; uint8_t c = filedata[cur_ofs++]; if (c == '\n') break; cur_line.push_back((char)c); } int comp[2] = { 1, 0 }; // y, x (major, minor) int dir[2] = { -1, 1 }; // -1, 1, (major, minor), for y -1=up uint32_t major_dim = 0, minor_dim = 0; // Parse the dimension string, normally it'll be "-Y # +X #" (major, minor), rarely it differs for (uint32_t d = 0; d < 2; d++) // 0=major, 1=minor { const bool is_neg_x = (strncmp(&cur_line[0], "-X ", 3) == 0); const bool is_pos_x = (strncmp(&cur_line[0], "+X ", 3) == 0); const bool is_x = is_neg_x || is_pos_x; const bool is_neg_y = (strncmp(&cur_line[0], "-Y ", 3) == 0); const bool is_pos_y = (strncmp(&cur_line[0], "+Y ", 3) == 0); const bool is_y = is_neg_y || is_pos_y; if (cur_line.size() < 3) return false; if (!is_x && !is_y) return false; comp[d] = is_x ? 0 : 1; dir[d] = (is_neg_x || is_neg_y) ? -1 : 1; uint32_t& dim = d ? minor_dim : major_dim; cur_line.erase(0, 3); while (cur_line.size()) { char c = cur_line[0]; if (c != ' ') break; cur_line.erase(0, 1); } bool has_digits = false; while (cur_line.size()) { char c = cur_line[0]; cur_line.erase(0, 1); if (c == ' ') break; if ((c < '0') || (c > '9')) return false; const uint32_t prev_dim = dim; dim = dim * 10 + (c - '0'); if (dim < prev_dim) return false; has_digits = true; } if (!has_digits) return false; if ((dim < 1) || (dim > MAX_SUPPORTED_DIM)) return false; } // temp image: width=minor, height=major img.resize(minor_dim, major_dim); std::vector temp_scanline(minor_dim); // Read the scanlines. for (uint32_t y = 0; y < major_dim; y++) { vec4F* pDst = &img(0, y); if ((filedata.size() - cur_ofs) < 4) return false; // Determine if the line uses the new or old format. See the logic in color.c. bool old_decrunch = false; if ((minor_dim < 8) || (minor_dim > 0x7FFF)) { // Line is too short or long; must be old format. old_decrunch = true; } else if (filedata[cur_ofs] != 2) { // R is not 2, must be old format old_decrunch = true; } else { // c[0]/red is 2.Check GB and E for validity. color_rgba c; memcpy(&c, &filedata[cur_ofs], 4); if ((c[1] != 2) || (c[2] & 0x80)) { // G isn't 2, or the high bit of B is set which is impossible (image's > 0x7FFF pixels can't get here). Use old format. old_decrunch = true; } else { // Check B and E. If this isn't the minor_dim in network order, something is wrong. The pixel would also be denormalized, and invalid. uint32_t w = (c[2] << 8) | c[3]; if (w != minor_dim) return false; cur_ofs += 4; } } if (old_decrunch) { uint32_t rshift = 0, x = 0; while (x < minor_dim) { if ((filedata.size() - cur_ofs) < 4) return false; color_rgba c; memcpy(&c, &filedata[cur_ofs], 4); cur_ofs += 4; if ((c[0] == 1) && (c[1] == 1) && (c[2] == 1)) { // We'll allow RLE matches to cross scanlines, but not on the very first pixel. if ((!x) && (!y)) return false; const uint32_t run_len = c[3] << rshift; const vec4F run_color(pDst[-1]); if ((x + run_len) > minor_dim) return false; for (uint32_t i = 0; i < run_len; i++) *pDst++ = run_color; rshift += 8; x += run_len; } else { rshift = 0; hdr_convert(c, *pDst); pDst++; x++; } } continue; } // New format for (uint32_t s = 0; s < 4; s++) { uint32_t x_ofs = 0; while (x_ofs < minor_dim) { uint32_t num_remaining = minor_dim - x_ofs; if (cur_ofs >= filedata.size()) return false; uint8_t count = filedata[cur_ofs++]; if (count > 128) { count -= 128; if (count > num_remaining) return false; if (cur_ofs >= filedata.size()) return false; const uint8_t val = filedata[cur_ofs++]; for (uint32_t i = 0; i < count; i++) temp_scanline[x_ofs + i][s] = val; x_ofs += count; } else { if ((!count) || (count > num_remaining)) return false; for (uint32_t i = 0; i < count; i++) { if (cur_ofs >= filedata.size()) return false; const uint8_t val = filedata[cur_ofs++]; temp_scanline[x_ofs + i][s] = val; } x_ofs += count; } } // while (x_ofs < minor_dim) } // c // Convert all the RGBE pixels to float now for (uint32_t x = 0; x < minor_dim; x++, pDst++) hdr_convert(temp_scanline[x], *pDst); assert((pDst - &img(0, y)) == (int)minor_dim); } // y // at here: // img(width,height)=image pixels as read from file, x=minor axis, y=major axis // width=minor axis dimension // height=major axis dimension // in file, pixels are emitted in minor order, them major (so major=scanlines in the file) imagef final_img; if (comp[0] == 0) // if major axis is X final_img.resize(major_dim, minor_dim); else // major axis is Y, minor is X final_img.resize(minor_dim, major_dim); // TODO: optimize the identity case for (uint32_t major_iter = 0; major_iter < major_dim; major_iter++) { for (uint32_t minor_iter = 0; minor_iter < minor_dim; minor_iter++) { const vec4F& p = img(minor_iter, major_iter); uint32_t dst_x = 0, dst_y = 0; // is the minor dim output x? if (comp[1] == 0) { // minor axis is x, major is y // is minor axis (which is output x) flipped? if (dir[1] < 0) dst_x = minor_dim - 1 - minor_iter; else dst_x = minor_iter; // is major axis (which is output y) flipped? -1=down in raster order, 1=up if (dir[0] < 0) dst_y = major_iter; else dst_y = major_dim - 1 - major_iter; } else { // minor axis is output y, major is output x // is minor axis (which is output y) flipped? if (dir[1] < 0) dst_y = minor_iter; else dst_y = minor_dim - 1 - minor_iter; // is major axis (which is output x) flipped? if (dir[0] < 0) dst_x = major_dim - 1 - major_iter; else dst_x = major_iter; } final_img(dst_x, dst_y) = p; } } final_img.swap(img); return true; } bool read_rgbe(const char* pFilename, imagef& img, rgbe_header_info& hdr_info) { uint8_vec filedata; if (!read_file_to_vec(pFilename, filedata)) return false; return read_rgbe(filedata, img, hdr_info); } static uint8_vec& append_string(uint8_vec& buf, const char* pStr) { const size_t str_len = strlen(pStr); if (!str_len) return buf; const size_t ofs = buf.size(); buf.resize(ofs + str_len); memcpy(&buf[ofs], pStr, str_len); return buf; } static uint8_vec& append_string(uint8_vec& buf, const std::string& str) { if (!str.size()) return buf; return append_string(buf, str.c_str()); } static inline void float2rgbe(color_rgba &rgbe, const vec4F &c) { const float red = c[0], green = c[1], blue = c[2]; assert(red >= 0.0f && green >= 0.0f && blue >= 0.0f); const float max_v = basisu::maximumf(basisu::maximumf(red, green), blue); if (max_v < 1e-32f) rgbe.clear(); else { int e; const float scale = frexp(max_v, &e) * 256.0f / max_v; rgbe[0] = (uint8_t)(clamp((int)(red * scale), 0, 255)); rgbe[1] = (uint8_t)(clamp((int)(green * scale), 0, 255)); rgbe[2] = (uint8_t)(clamp((int)(blue * scale), 0, 255)); rgbe[3] = (uint8_t)(e + 128); } } const bool RGBE_FORCE_RAW = false; const bool RGBE_FORCE_OLD_CRUNCH = false; // note must readers (particularly stb_image.h's) don't properly support this, when they should bool write_rgbe(uint8_vec &file_data, imagef& img, rgbe_header_info& hdr_info) { if (!img.get_width() || !img.get_height()) return false; const uint32_t width = img.get_width(), height = img.get_height(); file_data.resize(0); file_data.reserve(1024 + img.get_width() * img.get_height() * 4); append_string(file_data, "#?RADIANCE\n"); if (hdr_info.m_has_exposure) append_string(file_data, string_format("EXPOSURE=%g\n", hdr_info.m_exposure)); if (hdr_info.m_has_gamma) append_string(file_data, string_format("GAMMA=%g\n", hdr_info.m_gamma)); append_string(file_data, "FORMAT=32-bit_rle_rgbe\n\n"); append_string(file_data, string_format("-Y %u +X %u\n", height, width)); if (((width < 8) || (width > 0x7FFF)) || (RGBE_FORCE_RAW)) { for (uint32_t y = 0; y < height; y++) { for (uint32_t x = 0; x < width; x++) { color_rgba rgbe; float2rgbe(rgbe, img(x, y)); append_vector(file_data, (const uint8_t *)&rgbe, sizeof(rgbe)); } } } else if (RGBE_FORCE_OLD_CRUNCH) { for (uint32_t y = 0; y < height; y++) { int prev_r = -1, prev_g = -1, prev_b = -1, prev_e = -1; uint32_t cur_run_len = 0; for (uint32_t x = 0; x < width; x++) { color_rgba rgbe; float2rgbe(rgbe, img(x, y)); if ((rgbe[0] == prev_r) && (rgbe[1] == prev_g) && (rgbe[2] == prev_b) && (rgbe[3] == prev_e)) { if (++cur_run_len == 255) { // this ensures rshift stays 0, it's lame but this path is only for testing readers color_rgba f(1, 1, 1, cur_run_len - 1); append_vector(file_data, (const uint8_t*)&f, sizeof(f)); append_vector(file_data, (const uint8_t*)&rgbe, sizeof(rgbe)); cur_run_len = 0; } } else { if (cur_run_len > 0) { color_rgba f(1, 1, 1, cur_run_len); append_vector(file_data, (const uint8_t*)&f, sizeof(f)); cur_run_len = 0; } append_vector(file_data, (const uint8_t*)&rgbe, sizeof(rgbe)); prev_r = rgbe[0]; prev_g = rgbe[1]; prev_b = rgbe[2]; prev_e = rgbe[3]; } } // x if (cur_run_len > 0) { color_rgba f(1, 1, 1, cur_run_len); append_vector(file_data, (const uint8_t*)&f, sizeof(f)); } } // y } else { uint8_vec temp[4]; for (uint32_t c = 0; c < 4; c++) temp[c].resize(width); for (uint32_t y = 0; y < height; y++) { color_rgba rgbe(2, 2, width >> 8, width & 0xFF); append_vector(file_data, (const uint8_t*)&rgbe, sizeof(rgbe)); for (uint32_t x = 0; x < width; x++) { float2rgbe(rgbe, img(x, y)); for (uint32_t c = 0; c < 4; c++) temp[c][x] = rgbe[c]; } for (uint32_t c = 0; c < 4; c++) { int raw_ofs = -1; uint32_t x = 0; while (x < width) { const uint32_t num_bytes_remaining = width - x; const uint32_t max_run_len = basisu::minimum(num_bytes_remaining, 127); const uint8_t cur_byte = temp[c][x]; uint32_t run_len = 1; while (run_len < max_run_len) { if (temp[c][x + run_len] != cur_byte) break; run_len++; } const uint32_t cost_to_keep_raw = ((raw_ofs != -1) ? 0 : 1) + run_len; // 0 or 1 bytes to start a raw run, then the repeated bytes issued as raw const uint32_t cost_to_take_run = 2 + 1; // 2 bytes to issue the RLE, then 1 bytes to start whatever follows it (raw or RLE) if ((run_len >= 3) && (cost_to_take_run < cost_to_keep_raw)) { file_data.push_back((uint8_t)(128 + run_len)); file_data.push_back(cur_byte); x += run_len; raw_ofs = -1; } else { if (raw_ofs < 0) { raw_ofs = (int)file_data.size(); file_data.push_back(0); } if (++file_data[raw_ofs] == 128) raw_ofs = -1; file_data.push_back(cur_byte); x++; } } // x } // c } // y } return true; } bool write_rgbe(const char* pFilename, imagef& img, rgbe_header_info& hdr_info) { uint8_vec file_data; if (!write_rgbe(file_data, img, hdr_info)) return false; return write_vec_to_file(pFilename, file_data); } bool read_exr(const char* pFilename, imagef& img, int& n_chans) { n_chans = 0; int width = 0, height = 0; float* out_rgba = nullptr; const char* err = nullptr; int status = LoadEXRWithLayer(&out_rgba, &width, &height, pFilename, nullptr, &err); n_chans = 4; if (status != 0) { error_printf("Failed loading .EXR image \"%s\"! (TinyEXR error: %s)\n", pFilename, err ? err : "?"); FreeEXRErrorMessage(err); free(out_rgba); return false; } const uint32_t MAX_SUPPORTED_DIM = 65536; if ((width < 1) || (height < 1) || (width > (int)MAX_SUPPORTED_DIM) || (height > (int)MAX_SUPPORTED_DIM)) { error_printf("Invalid dimensions of .EXR image \"%s\"!\n", pFilename); free(out_rgba); return false; } img.resize(width, height); if (n_chans == 1) { const float* pSrc = out_rgba; vec4F* pDst = img.get_ptr(); for (int y = 0; y < height; y++) { for (int x = 0; x < width; x++) { (*pDst)[0] = pSrc[0]; (*pDst)[1] = pSrc[1]; (*pDst)[2] = pSrc[2]; (*pDst)[3] = 1.0f; pSrc += 4; ++pDst; } } } else { memcpy(img.get_ptr(), out_rgba, sizeof(float) * 4 * img.get_total_pixels()); } free(out_rgba); return true; } bool read_exr(const void* pMem, size_t mem_size, imagef& img) { float* out_rgba = nullptr; int width = 0, height = 0; const char* pErr = nullptr; int res = LoadEXRFromMemory(&out_rgba, &width, &height, (const uint8_t*)pMem, mem_size, &pErr); if (res < 0) { error_printf("Failed loading .EXR image from memory! (TinyEXR error: %s)\n", pErr ? pErr : "?"); FreeEXRErrorMessage(pErr); free(out_rgba); return false; } img.resize(width, height); memcpy(img.get_ptr(), out_rgba, width * height * sizeof(float) * 4); free(out_rgba); return true; } bool write_exr(const char* pFilename, imagef& img, uint32_t n_chans, uint32_t flags) { assert((n_chans == 1) || (n_chans == 3) || (n_chans == 4)); const bool linear_hint = (flags & WRITE_EXR_LINEAR_HINT) != 0, store_float = (flags & WRITE_EXR_STORE_FLOATS) != 0, no_compression = (flags & WRITE_EXR_NO_COMPRESSION) != 0; const uint32_t width = img.get_width(), height = img.get_height(); assert(width && height); if (!width || !height) return false; float_vec layers[4]; float* image_ptrs[4]; for (uint32_t c = 0; c < n_chans; c++) { layers[c].resize(width * height); image_ptrs[c] = layers[c].get_ptr(); } // ABGR int chan_order[4] = { 3, 2, 1, 0 }; if (n_chans == 1) { // Y chan_order[0] = 0; } else if (n_chans == 3) { // BGR chan_order[0] = 2; chan_order[1] = 1; chan_order[2] = 0; } else if (n_chans != 4) { assert(0); return false; } for (uint32_t y = 0; y < height; y++) { for (uint32_t x = 0; x < width; x++) { const vec4F& p = img(x, y); for (uint32_t c = 0; c < n_chans; c++) layers[c][x + y * width] = p[chan_order[c]]; } // x } // y EXRHeader header; InitEXRHeader(&header); EXRImage image; InitEXRImage(&image); image.num_channels = n_chans; image.images = (unsigned char**)image_ptrs; image.width = width; image.height = height; header.num_channels = n_chans; header.channels = (EXRChannelInfo*)calloc(header.num_channels, sizeof(EXRChannelInfo)); // Must be (A)BGR order, since most of EXR viewers expect this channel order. for (uint32_t i = 0; i < n_chans; i++) { char c = 'Y'; if (n_chans == 3) c = "BGR"[i]; else if (n_chans == 4) c = "ABGR"[i]; header.channels[i].name[0] = c; header.channels[i].name[1] = '\0'; header.channels[i].p_linear = linear_hint; } header.pixel_types = (int*)calloc(header.num_channels, sizeof(int)); header.requested_pixel_types = (int*)calloc(header.num_channels, sizeof(int)); if (!no_compression) header.compression_type = TINYEXR_COMPRESSIONTYPE_ZIP; for (int i = 0; i < header.num_channels; i++) { // pixel type of input image header.pixel_types[i] = TINYEXR_PIXELTYPE_FLOAT; // pixel type of output image to be stored in .EXR header.requested_pixel_types[i] = store_float ? TINYEXR_PIXELTYPE_FLOAT : TINYEXR_PIXELTYPE_HALF; } const char* pErr_msg = nullptr; int ret = SaveEXRImageToFile(&image, &header, pFilename, &pErr_msg); if (ret != TINYEXR_SUCCESS) { error_printf("Save EXR err: %s\n", pErr_msg); FreeEXRErrorMessage(pErr_msg); } free(header.channels); free(header.pixel_types); free(header.requested_pixel_types); return (ret == TINYEXR_SUCCESS); } void image::debug_text(uint32_t x_ofs, uint32_t y_ofs, uint32_t scale_x, uint32_t scale_y, const color_rgba& fg, const color_rgba* pBG, bool alpha_only, const char* pFmt, ...) { char buf[2048]; va_list args; va_start(args, pFmt); #ifdef _WIN32 vsprintf_s(buf, sizeof(buf), pFmt, args); #else vsnprintf(buf, sizeof(buf), pFmt, args); #endif va_end(args); const char* p = buf; const uint32_t orig_x_ofs = x_ofs; while (*p) { uint8_t c = *p++; if ((c < 32) || (c > 127)) c = '.'; const uint8_t* pGlpyh = &g_debug_font8x8_basic[c - 32][0]; for (uint32_t y = 0; y < 8; y++) { uint32_t row_bits = pGlpyh[y]; for (uint32_t x = 0; x < 8; x++) { const uint32_t q = row_bits & (1 << x); const color_rgba* pColor = q ? &fg : pBG; if (!pColor) continue; if (alpha_only) fill_box_alpha(x_ofs + x * scale_x, y_ofs + y * scale_y, scale_x, scale_y, *pColor); else fill_box(x_ofs + x * scale_x, y_ofs + y * scale_y, scale_x, scale_y, *pColor); } } x_ofs += 8 * scale_x; if ((x_ofs + 8 * scale_x) > m_width) { x_ofs = orig_x_ofs; y_ofs += 8 * scale_y; } } } // Very basic global Reinhard tone mapping, output converted to sRGB with no dithering, alpha is carried through unchanged. // Only used for debugging/development. void tonemap_image_reinhard(image &ldr_img, const imagef &hdr_img, float exposure) { uint32_t width = hdr_img.get_width(), height = hdr_img.get_height(); ldr_img.resize(width, height); for (uint32_t y = 0; y < height; y++) { for (uint32_t x = 0; x < width; x++) { vec4F c(hdr_img(x, y)); for (uint32_t t = 0; t < 3; t++) { if (c[t] <= 0.0f) { c[t] = 0.0f; } else { c[t] *= exposure; c[t] = c[t] / (1.0f + c[t]); } } c.clamp(0.0f, 1.0f); c[0] = linear_to_srgb(c[0]) * 255.0f; c[1] = linear_to_srgb(c[1]) * 255.0f; c[2] = linear_to_srgb(c[2]) * 255.0f; c[3] = c[3] * 255.0f; color_rgba& o = ldr_img(x, y); o[0] = (uint8_t)std::round(c[0]); o[1] = (uint8_t)std::round(c[1]); o[2] = (uint8_t)std::round(c[2]); o[3] = (uint8_t)std::round(c[3]); } } } bool tonemap_image_compressive(image& dst_img, const imagef& hdr_test_img) { const uint32_t width = hdr_test_img.get_width(); const uint32_t height = hdr_test_img.get_height(); uint16_vec orig_half_img(width * 3 * height); uint16_vec half_img(width * 3 * height); int max_shift = 32; for (uint32_t y = 0; y < height; y++) { for (uint32_t x = 0; x < width; x++) { const vec4F& p = hdr_test_img(x, y); for (uint32_t i = 0; i < 3; i++) { if (p[i] < 0.0f) return false; if (p[i] > basist::MAX_HALF_FLOAT) return false; uint32_t h = basist::float_to_half(p[i]); //uint32_t orig_h = h; orig_half_img[(x + y * width) * 3 + i] = (uint16_t)h; // Rotate sign bit into LSB //h = rot_left16((uint16_t)h, 1); //assert(rot_right16((uint16_t)h, 1) == orig_h); h <<= 1; half_img[(x + y * width) * 3 + i] = (uint16_t)h; // Determine # of leading zero bits, ignoring the sign bit if (h) { int lz = clz(h) - 16; assert(lz >= 0 && lz <= 16); assert((h << lz) <= 0xFFFF); max_shift = basisu::minimum(max_shift, lz); } } // i } // x } // y //printf("tonemap_image_compressive: Max leading zeros: %i\n", max_shift); uint32_t high_hist[256]; clear_obj(high_hist); for (uint32_t y = 0; y < height; y++) { for (uint32_t x = 0; x < width; x++) { for (uint32_t i = 0; i < 3; i++) { uint16_t& hf = half_img[(x + y * width) * 3 + i]; assert(((uint32_t)hf << max_shift) <= 65535); hf <<= max_shift; uint32_t h = (uint8_t)(hf >> 8); high_hist[h]++; } } // x } // y uint32_t total_vals_used = 0; int remap_old_to_new[256]; for (uint32_t i = 0; i < 256; i++) remap_old_to_new[i] = -1; for (uint32_t i = 0; i < 256; i++) { if (high_hist[i] != 0) { remap_old_to_new[i] = total_vals_used; total_vals_used++; } } assert(total_vals_used >= 1); //printf("tonemap_image_compressive: Total used high byte values: %u, unused: %u\n", total_vals_used, 256 - total_vals_used); bool val_used[256]; clear_obj(val_used); int remap_new_to_old[256]; for (uint32_t i = 0; i < 256; i++) remap_new_to_old[i] = -1; BASISU_NOTE_UNUSED(remap_new_to_old); int prev_c = -1; BASISU_NOTE_UNUSED(prev_c); for (uint32_t i = 0; i < 256; i++) { if (remap_old_to_new[i] >= 0) { int c; if (total_vals_used <= 1) c = remap_old_to_new[i]; else { c = (remap_old_to_new[i] * 255 + ((total_vals_used - 1) / 2)) / (total_vals_used - 1); assert(c > prev_c); } assert(!val_used[c]); remap_new_to_old[c] = i; remap_old_to_new[i] = c; prev_c = c; //printf("%u ", c); val_used[c] = true; } } // i //printf("\n"); dst_img.resize(width, height); for (uint32_t y = 0; y < height; y++) { for (uint32_t x = 0; x < width; x++) { for (uint32_t c = 0; c < 3; c++) { uint16_t& v16 = half_img[(x + y * width) * 3 + c]; uint32_t hb = v16 >> 8; //uint32_t lb = v16 & 0xFF; assert(remap_old_to_new[hb] != -1); assert(remap_old_to_new[hb] <= 255); assert(remap_new_to_old[remap_old_to_new[hb]] == (int)hb); hb = remap_old_to_new[hb]; //v16 = (uint16_t)((hb << 8) | lb); dst_img(x, y)[c] = (uint8_t)hb; } } // x } // y return true; } } // namespace basisu