/******************************************************************************* * Author : Angus Johnson * * Date : 28 November 2023 * * Website : http://www.angusj.com * * Copyright : Angus Johnson 2010-2023 * * Purpose : Path Offset (Inflate/Shrink) * * License : http://www.boost.org/LICENSE_1_0.txt * *******************************************************************************/ #include #include "clipper2/clipper.h" #include "clipper2/clipper.offset.h" namespace Clipper2Lib { const double default_arc_tolerance = 0.25; const double floating_point_tolerance = 1e-12; //------------------------------------------------------------------------------ // Miscellaneous methods //------------------------------------------------------------------------------ inline bool ToggleBoolIf(bool val, bool condition) { return condition ? !val : val; } void GetMultiBounds(const Paths64& paths, std::vector& recList) { recList.reserve(paths.size()); for (const Path64& path : paths) { if (path.size() < 1) { recList.push_back(InvalidRect64); continue; } int64_t x = path[0].x, y = path[0].y; Rect64 r = Rect64(x, y, x, y); for (const Point64& pt : path) { if (pt.y > r.bottom) r.bottom = pt.y; else if (pt.y < r.top) r.top = pt.y; if (pt.x > r.right) r.right = pt.x; else if (pt.x < r.left) r.left = pt.x; } recList.push_back(r); } } bool ValidateBounds(std::vector& recList, double delta) { int64_t int_delta = static_cast(delta); int64_t big = MAX_COORD - int_delta; int64_t small = MIN_COORD + int_delta; for (const Rect64& r : recList) { if (!r.IsValid()) continue; // ignore invalid paths else if (r.left < small || r.right > big || r.top < small || r.bottom > big) return false; } return true; } int GetLowestClosedPathIdx(std::vector& boundsList) { int i = -1, result = -1; Point64 botPt = Point64(INT64_MAX, INT64_MIN); for (const Rect64& r : boundsList) { ++i; if (!r.IsValid()) continue; // ignore invalid paths else if (r.bottom > botPt.y || (r.bottom == botPt.y && r.left < botPt.x)) { botPt = Point64(r.left, r.bottom); result = static_cast(i); } } return result; } PointD GetUnitNormal(const Point64& pt1, const Point64& pt2) { double dx, dy, inverse_hypot; if (pt1 == pt2) return PointD(0.0, 0.0); dx = static_cast(pt2.x - pt1.x); dy = static_cast(pt2.y - pt1.y); inverse_hypot = 1.0 / hypot(dx, dy); dx *= inverse_hypot; dy *= inverse_hypot; return PointD(dy, -dx); } inline bool AlmostZero(double value, double epsilon = 0.001) { return std::fabs(value) < epsilon; } inline double Hypot(double x, double y) { //see https://stackoverflow.com/a/32436148/359538 return std::sqrt(x * x + y * y); } inline PointD NormalizeVector(const PointD& vec) { double h = Hypot(vec.x, vec.y); if (AlmostZero(h)) return PointD(0,0); double inverseHypot = 1 / h; return PointD(vec.x * inverseHypot, vec.y * inverseHypot); } inline PointD GetAvgUnitVector(const PointD& vec1, const PointD& vec2) { return NormalizeVector(PointD(vec1.x + vec2.x, vec1.y + vec2.y)); } inline bool IsClosedPath(EndType et) { return et == EndType::Polygon || et == EndType::Joined; } inline Point64 GetPerpendic(const Point64& pt, const PointD& norm, double delta) { #ifdef USINGZ return Point64(pt.x + norm.x * delta, pt.y + norm.y * delta, pt.z); #else return Point64(pt.x + norm.x * delta, pt.y + norm.y * delta); #endif } inline PointD GetPerpendicD(const Point64& pt, const PointD& norm, double delta) { #ifdef USINGZ return PointD(pt.x + norm.x * delta, pt.y + norm.y * delta, pt.z); #else return PointD(pt.x + norm.x * delta, pt.y + norm.y * delta); #endif } inline void NegatePath(PathD& path) { for (PointD& pt : path) { pt.x = -pt.x; pt.y = -pt.y; #ifdef USINGZ pt.z = pt.z; #endif } } //------------------------------------------------------------------------------ // ClipperOffset::Group methods //------------------------------------------------------------------------------ ClipperOffset::Group::Group(const Paths64& _paths, JoinType _join_type, EndType _end_type): paths_in(_paths), join_type(_join_type), end_type(_end_type) { bool is_joined = (end_type == EndType::Polygon) || (end_type == EndType::Joined); for (Path64& p: paths_in) StripDuplicates(p, is_joined); // get bounds of each path --> bounds_list GetMultiBounds(paths_in, bounds_list); if (end_type == EndType::Polygon) { is_hole_list.reserve(paths_in.size()); for (const Path64& path : paths_in) is_hole_list.push_back(Area(path) < 0); lowest_path_idx = GetLowestClosedPathIdx(bounds_list); // the lowermost path must be an outer path, so if its orientation is negative, // then flag the whole group is 'reversed' (will negate delta etc.) // as this is much more efficient than reversing every path. is_reversed = (lowest_path_idx >= 0) && is_hole_list[lowest_path_idx]; if (is_reversed) is_hole_list.flip(); } else { lowest_path_idx = -1; is_reversed = false; is_hole_list.resize(paths_in.size()); } } //------------------------------------------------------------------------------ // ClipperOffset methods //------------------------------------------------------------------------------ void ClipperOffset::AddPath(const Path64& path, JoinType jt_, EndType et_) { Paths64 paths; paths.push_back(path); AddPaths(paths, jt_, et_); } void ClipperOffset::AddPaths(const Paths64 &paths, JoinType jt_, EndType et_) { if (paths.size() == 0) return; groups_.push_back(Group(paths, jt_, et_)); } void ClipperOffset::BuildNormals(const Path64& path) { norms.clear(); norms.reserve(path.size()); if (path.size() == 0) return; Path64::const_iterator path_iter, path_stop_iter = --path.cend(); for (path_iter = path.cbegin(); path_iter != path_stop_iter; ++path_iter) norms.push_back(GetUnitNormal(*path_iter,*(path_iter +1))); norms.push_back(GetUnitNormal(*path_stop_iter, *(path.cbegin()))); } inline PointD TranslatePoint(const PointD& pt, double dx, double dy) { #ifdef USINGZ return PointD(pt.x + dx, pt.y + dy, pt.z); #else return PointD(pt.x + dx, pt.y + dy); #endif } inline PointD ReflectPoint(const PointD& pt, const PointD& pivot) { #ifdef USINGZ return PointD(pivot.x + (pivot.x - pt.x), pivot.y + (pivot.y - pt.y), pt.z); #else return PointD(pivot.x + (pivot.x - pt.x), pivot.y + (pivot.y - pt.y)); #endif } PointD IntersectPoint(const PointD& pt1a, const PointD& pt1b, const PointD& pt2a, const PointD& pt2b) { if (pt1a.x == pt1b.x) //vertical { if (pt2a.x == pt2b.x) return PointD(0, 0); double m2 = (pt2b.y - pt2a.y) / (pt2b.x - pt2a.x); double b2 = pt2a.y - m2 * pt2a.x; return PointD(pt1a.x, m2 * pt1a.x + b2); } else if (pt2a.x == pt2b.x) //vertical { double m1 = (pt1b.y - pt1a.y) / (pt1b.x - pt1a.x); double b1 = pt1a.y - m1 * pt1a.x; return PointD(pt2a.x, m1 * pt2a.x + b1); } else { double m1 = (pt1b.y - pt1a.y) / (pt1b.x - pt1a.x); double b1 = pt1a.y - m1 * pt1a.x; double m2 = (pt2b.y - pt2a.y) / (pt2b.x - pt2a.x); double b2 = pt2a.y - m2 * pt2a.x; if (m1 == m2) return PointD(0, 0); double x = (b2 - b1) / (m1 - m2); return PointD(x, m1 * x + b1); } } void ClipperOffset::DoBevel(const Path64& path, size_t j, size_t k) { PointD pt1, pt2; if (j == k) { double abs_delta = std::abs(group_delta_); pt1 = PointD(path[j].x - abs_delta * norms[j].x, path[j].y - abs_delta * norms[j].y); pt2 = PointD(path[j].x + abs_delta * norms[j].x, path[j].y + abs_delta * norms[j].y); } else { pt1 = PointD(path[j].x + group_delta_ * norms[k].x, path[j].y + group_delta_ * norms[k].y); pt2 = PointD(path[j].x + group_delta_ * norms[j].x, path[j].y + group_delta_ * norms[j].y); } path_out.push_back(Point64(pt1)); path_out.push_back(Point64(pt2)); } void ClipperOffset::DoSquare(const Path64& path, size_t j, size_t k) { PointD vec; if (j == k) vec = PointD(norms[j].y, -norms[j].x); else vec = GetAvgUnitVector( PointD(-norms[k].y, norms[k].x), PointD(norms[j].y, -norms[j].x)); double abs_delta = std::abs(group_delta_); // now offset the original vertex delta units along unit vector PointD ptQ = PointD(path[j]); ptQ = TranslatePoint(ptQ, abs_delta * vec.x, abs_delta * vec.y); // get perpendicular vertices PointD pt1 = TranslatePoint(ptQ, group_delta_ * vec.y, group_delta_ * -vec.x); PointD pt2 = TranslatePoint(ptQ, group_delta_ * -vec.y, group_delta_ * vec.x); // get 2 vertices along one edge offset PointD pt3 = GetPerpendicD(path[k], norms[k], group_delta_); if (j == k) { PointD pt4 = PointD(pt3.x + vec.x * group_delta_, pt3.y + vec.y * group_delta_); PointD pt = IntersectPoint(pt1, pt2, pt3, pt4); #ifdef USINGZ pt.z = ptQ.z; #endif //get the second intersect point through reflecion path_out.push_back(Point64(ReflectPoint(pt, ptQ))); path_out.push_back(Point64(pt)); } else { PointD pt4 = GetPerpendicD(path[j], norms[k], group_delta_); PointD pt = IntersectPoint(pt1, pt2, pt3, pt4); #ifdef USINGZ pt.z = ptQ.z; #endif path_out.push_back(Point64(pt)); //get the second intersect point through reflecion path_out.push_back(Point64(ReflectPoint(pt, ptQ))); } } void ClipperOffset::DoMiter(const Path64& path, size_t j, size_t k, double cos_a) { double q = group_delta_ / (cos_a + 1); #ifdef USINGZ path_out.push_back(Point64( path[j].x + (norms[k].x + norms[j].x) * q, path[j].y + (norms[k].y + norms[j].y) * q, path[j].z)); #else path_out.push_back(Point64( path[j].x + (norms[k].x + norms[j].x) * q, path[j].y + (norms[k].y + norms[j].y) * q)); #endif } void ClipperOffset::DoRound(const Path64& path, size_t j, size_t k, double angle) { if (deltaCallback64_) { // when deltaCallback64_ is assigned, group_delta_ won't be constant, // so we'll need to do the following calculations for *every* vertex. double abs_delta = std::fabs(group_delta_); double arcTol = (arc_tolerance_ > floating_point_tolerance ? std::min(abs_delta, arc_tolerance_) : std::log10(2 + abs_delta) * default_arc_tolerance); double steps_per_360 = std::min(PI / std::acos(1 - arcTol / abs_delta), abs_delta * PI); step_sin_ = std::sin(2 * PI / steps_per_360); step_cos_ = std::cos(2 * PI / steps_per_360); if (group_delta_ < 0.0) step_sin_ = -step_sin_; steps_per_rad_ = steps_per_360 / (2 * PI); } Point64 pt = path[j]; PointD offsetVec = PointD(norms[k].x * group_delta_, norms[k].y * group_delta_); if (j == k) offsetVec.Negate(); #ifdef USINGZ path_out.push_back(Point64(pt.x + offsetVec.x, pt.y + offsetVec.y, pt.z)); #else path_out.push_back(Point64(pt.x + offsetVec.x, pt.y + offsetVec.y)); #endif int steps = static_cast(std::ceil(steps_per_rad_ * std::abs(angle))); // #448, #456 for (int i = 1; i < steps; ++i) // ie 1 less than steps { offsetVec = PointD(offsetVec.x * step_cos_ - step_sin_ * offsetVec.y, offsetVec.x * step_sin_ + offsetVec.y * step_cos_); #ifdef USINGZ path_out.push_back(Point64(pt.x + offsetVec.x, pt.y + offsetVec.y, pt.z)); #else path_out.push_back(Point64(pt.x + offsetVec.x, pt.y + offsetVec.y)); #endif } path_out.push_back(GetPerpendic(path[j], norms[j], group_delta_)); } void ClipperOffset::OffsetPoint(Group& group, const Path64& path, size_t j, size_t k) { // Let A = change in angle where edges join // A == 0: ie no change in angle (flat join) // A == PI: edges 'spike' // sin(A) < 0: right turning // cos(A) < 0: change in angle is more than 90 degree if (path[j] == path[k]) { k = j; return; } double sin_a = CrossProduct(norms[j], norms[k]); double cos_a = DotProduct(norms[j], norms[k]); if (sin_a > 1.0) sin_a = 1.0; else if (sin_a < -1.0) sin_a = -1.0; if (deltaCallback64_) { group_delta_ = deltaCallback64_(path, norms, j, k); if (group.is_reversed) group_delta_ = -group_delta_; } if (std::fabs(group_delta_) <= floating_point_tolerance) { path_out.push_back(path[j]); return; } if (cos_a > -0.99 && (sin_a * group_delta_ < 0)) // test for concavity first (#593) { // is concave path_out.push_back(GetPerpendic(path[j], norms[k], group_delta_)); // this extra point is the only (simple) way to ensure that // path reversals are fully cleaned with the trailing clipper path_out.push_back(path[j]); // (#405) path_out.push_back(GetPerpendic(path[j], norms[j], group_delta_)); } else if (cos_a > 0.999 && join_type_ != JoinType::Round) { // almost straight - less than 2.5 degree (#424, #482, #526 & #724) DoMiter(path, j, k, cos_a); } else if (join_type_ == JoinType::Miter) { // miter unless the angle is sufficiently acute to exceed ML if (cos_a > temp_lim_ - 1) DoMiter(path, j, k, cos_a); else DoSquare(path, j, k); } else if (join_type_ == JoinType::Round) DoRound(path, j, k, std::atan2(sin_a, cos_a)); else if ( join_type_ == JoinType::Bevel) DoBevel(path, j, k); else DoSquare(path, j, k); } void ClipperOffset::OffsetPolygon(Group& group, const Path64& path) { path_out.clear(); for (Path64::size_type j = 0, k = path.size() -1; j < path.size(); k = j, ++j) OffsetPoint(group, path, j, k); solution.push_back(path_out); } void ClipperOffset::OffsetOpenJoined(Group& group, const Path64& path) { OffsetPolygon(group, path); Path64 reverse_path(path); std::reverse(reverse_path.begin(), reverse_path.end()); //rebuild normals // BuildNormals(path); std::reverse(norms.begin(), norms.end()); norms.push_back(norms[0]); norms.erase(norms.begin()); NegatePath(norms); OffsetPolygon(group, reverse_path); } void ClipperOffset::OffsetOpenPath(Group& group, const Path64& path) { // do the line start cap if (deltaCallback64_) group_delta_ = deltaCallback64_(path, norms, 0, 0); if (std::fabs(group_delta_) <= floating_point_tolerance) path_out.push_back(path[0]); else { switch (end_type_) { case EndType::Butt: DoBevel(path, 0, 0); break; case EndType::Round: DoRound(path, 0, 0, PI); break; default: DoSquare(path, 0, 0); break; } } size_t highI = path.size() - 1; // offset the left side going forward for (Path64::size_type j = 1, k = 0; j < highI; k = j, ++j) OffsetPoint(group, path, j, k); // reverse normals for (size_t i = highI; i > 0; --i) norms[i] = PointD(-norms[i - 1].x, -norms[i - 1].y); norms[0] = norms[highI]; // do the line end cap if (deltaCallback64_) group_delta_ = deltaCallback64_(path, norms, highI, highI); if (std::fabs(group_delta_) <= floating_point_tolerance) path_out.push_back(path[highI]); else { switch (end_type_) { case EndType::Butt: DoBevel(path, highI, highI); break; case EndType::Round: DoRound(path, highI, highI, PI); break; default: DoSquare(path, highI, highI); break; } } for (size_t j = highI, k = 0; j > 0; k = j, --j) OffsetPoint(group, path, j, k); solution.push_back(path_out); } void ClipperOffset::DoGroupOffset(Group& group) { if (group.end_type == EndType::Polygon) { // a straight path (2 points) can now also be 'polygon' offset // where the ends will be treated as (180 deg.) joins if (group.lowest_path_idx < 0) delta_ = std::abs(delta_); group_delta_ = (group.is_reversed) ? -delta_ : delta_; } else group_delta_ = std::abs(delta_);// *0.5; double abs_delta = std::fabs(group_delta_); if (!ValidateBounds(group.bounds_list, abs_delta)) { DoError(range_error_i); error_code_ |= range_error_i; return; } join_type_ = group.join_type; end_type_ = group.end_type; if (group.join_type == JoinType::Round || group.end_type == EndType::Round) { // calculate a sensible number of steps (for 360 deg for the given offset) // arcTol - when arc_tolerance_ is undefined (0), the amount of // curve imprecision that's allowed is based on the size of the // offset (delta). Obviously very large offsets will almost always // require much less precision. See also offset_triginometry2.svg double arcTol = (arc_tolerance_ > floating_point_tolerance ? std::min(abs_delta, arc_tolerance_) : std::log10(2 + abs_delta) * default_arc_tolerance); double steps_per_360 = std::min(PI / std::acos(1 - arcTol / abs_delta), abs_delta * PI); step_sin_ = std::sin(2 * PI / steps_per_360); step_cos_ = std::cos(2 * PI / steps_per_360); if (group_delta_ < 0.0) step_sin_ = -step_sin_; steps_per_rad_ = steps_per_360 / (2 * PI); } std::vector::const_iterator path_rect_it = group.bounds_list.cbegin(); std::vector::const_iterator is_hole_it = group.is_hole_list.cbegin(); Paths64::const_iterator path_in_it = group.paths_in.cbegin(); for ( ; path_in_it != group.paths_in.cend(); ++path_in_it, ++path_rect_it, ++is_hole_it) { if (!path_rect_it->IsValid()) continue; Path64::size_type pathLen = path_in_it->size(); path_out.clear(); if (pathLen == 1) // single point { if (group_delta_ < 1) continue; const Point64& pt = (*path_in_it)[0]; //single vertex so build a circle or square ... if (group.join_type == JoinType::Round) { double radius = abs_delta; int steps = static_cast(std::ceil(steps_per_rad_ * 2 * PI)); //#617 path_out = Ellipse(pt, radius, radius, steps); #ifdef USINGZ for (auto& p : path_out) p.z = pt.z; #endif } else { int d = (int)std::ceil(abs_delta); Rect64 r = Rect64(pt.x - d, pt.y - d, pt.x + d, pt.y + d); path_out = r.AsPath(); #ifdef USINGZ for (auto& p : path_out) p.z = pt.z; #endif } solution.push_back(path_out); continue; } // end of offsetting a single point // when shrinking outer paths, make sure they can shrink this far (#593) // also when shrinking holes, make sure they too can shrink this far (#715) if ((group_delta_ > 0) == ToggleBoolIf(*is_hole_it, group.is_reversed) && (std::min(path_rect_it->Width(), path_rect_it->Height()) <= -group_delta_ * 2) ) continue; if ((pathLen == 2) && (group.end_type == EndType::Joined)) end_type_ = (group.join_type == JoinType::Round) ? EndType::Round : EndType::Square; BuildNormals(*path_in_it); if (end_type_ == EndType::Polygon) OffsetPolygon(group, *path_in_it); else if (end_type_ == EndType::Joined) OffsetOpenJoined(group, *path_in_it); else OffsetOpenPath(group, *path_in_it); } } size_t ClipperOffset::CalcSolutionCapacity() { size_t result = 0; for (const Group& g : groups_) result += (g.end_type == EndType::Joined) ? g.paths_in.size() * 2 : g.paths_in.size(); return result; } bool ClipperOffset::CheckReverseOrientation() { // nb: this assumes there's consistency in orientation between groups bool is_reversed_orientation = false; for (const Group& g : groups_) if (g.end_type == EndType::Polygon) { is_reversed_orientation = g.is_reversed; break; } return is_reversed_orientation; } void ClipperOffset::ExecuteInternal(double delta) { error_code_ = 0; solution.clear(); if (groups_.size() == 0) return; solution.reserve(CalcSolutionCapacity()); if (std::abs(delta) < 0.5) // ie: offset is insignificant { Paths64::size_type sol_size = 0; for (const Group& group : groups_) sol_size += group.paths_in.size(); solution.reserve(sol_size); for (const Group& group : groups_) copy(group.paths_in.begin(), group.paths_in.end(), back_inserter(solution)); return; } temp_lim_ = (miter_limit_ <= 1) ? 2.0 : 2.0 / (miter_limit_ * miter_limit_); delta_ = delta; std::vector::iterator git; for (git = groups_.begin(); git != groups_.end(); ++git) { DoGroupOffset(*git); if (!error_code_) continue; // all OK solution.clear(); } } void ClipperOffset::Execute(double delta, Paths64& paths) { paths.clear(); ExecuteInternal(delta); if (!solution.size()) return; bool paths_reversed = CheckReverseOrientation(); //clean up self-intersections ... Clipper64 c; c.PreserveCollinear(false); //the solution should retain the orientation of the input c.ReverseSolution(reverse_solution_ != paths_reversed); #ifdef USINGZ if (zCallback64_) { c.SetZCallback(zCallback64_); } #endif c.AddSubject(solution); if (paths_reversed) c.Execute(ClipType::Union, FillRule::Negative, paths); else c.Execute(ClipType::Union, FillRule::Positive, paths); } void ClipperOffset::Execute(double delta, PolyTree64& polytree) { polytree.Clear(); ExecuteInternal(delta); if (!solution.size()) return; bool paths_reversed = CheckReverseOrientation(); //clean up self-intersections ... Clipper64 c; c.PreserveCollinear(false); //the solution should retain the orientation of the input c.ReverseSolution (reverse_solution_ != paths_reversed); #ifdef USINGZ if (zCallback64_) { c.SetZCallback(zCallback64_); } #endif c.AddSubject(solution); if (paths_reversed) c.Execute(ClipType::Union, FillRule::Negative, polytree); else c.Execute(ClipType::Union, FillRule::Positive, polytree); } void ClipperOffset::Execute(DeltaCallback64 delta_cb, Paths64& paths) { deltaCallback64_ = delta_cb; Execute(1.0, paths); } } // namespace