/* * Copyright (c) 2021 - 2024 the ThorVG project. All rights reserved. * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to deal * in the Software without restriction, including without limitation the rights * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell * copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * The above copyright notice and this permission notice shall be included in all * copies or substantial portions of the Software. * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE * SOFTWARE. */ #include "tvgMath.h" //see: https://en.wikipedia.org/wiki/Remez_algorithm float mathAtan2(float y, float x) { if (y == 0.0f && x == 0.0f) return 0.0f; auto a = std::min(fabsf(x), fabsf(y)) / std::max(fabsf(x), fabsf(y)); auto s = a * a; auto r = ((-0.0464964749f * s + 0.15931422f) * s - 0.327622764f) * s * a + a; if (fabsf(y) > fabsf(x)) r = 1.57079637f - r; if (x < 0) r = 3.14159274f - r; if (y < 0) return -r; return r; } bool mathInverse(const Matrix* m, Matrix* out) { auto det = m->e11 * (m->e22 * m->e33 - m->e32 * m->e23) - m->e12 * (m->e21 * m->e33 - m->e23 * m->e31) + m->e13 * (m->e21 * m->e32 - m->e22 * m->e31); auto invDet = 1.0f / det; if (std::isinf(invDet)) return false; out->e11 = (m->e22 * m->e33 - m->e32 * m->e23) * invDet; out->e12 = (m->e13 * m->e32 - m->e12 * m->e33) * invDet; out->e13 = (m->e12 * m->e23 - m->e13 * m->e22) * invDet; out->e21 = (m->e23 * m->e31 - m->e21 * m->e33) * invDet; out->e22 = (m->e11 * m->e33 - m->e13 * m->e31) * invDet; out->e23 = (m->e21 * m->e13 - m->e11 * m->e23) * invDet; out->e31 = (m->e21 * m->e32 - m->e31 * m->e22) * invDet; out->e32 = (m->e31 * m->e12 - m->e11 * m->e32) * invDet; out->e33 = (m->e11 * m->e22 - m->e21 * m->e12) * invDet; return true; } bool mathIdentity(const Matrix* m) { if (m->e11 != 1.0f || m->e12 != 0.0f || m->e13 != 0.0f || m->e21 != 0.0f || m->e22 != 1.0f || m->e23 != 0.0f || m->e31 != 0.0f || m->e32 != 0.0f || m->e33 != 1.0f) { return false; } return true; } void mathRotate(Matrix* m, float degree) { if (degree == 0.0f) return; auto radian = degree / 180.0f * MATH_PI; auto cosVal = cosf(radian); auto sinVal = sinf(radian); m->e12 = m->e11 * -sinVal; m->e11 *= cosVal; m->e21 = m->e22 * sinVal; m->e22 *= cosVal; } Matrix operator*(const Matrix& lhs, const Matrix& rhs) { Matrix m; m.e11 = lhs.e11 * rhs.e11 + lhs.e12 * rhs.e21 + lhs.e13 * rhs.e31; m.e12 = lhs.e11 * rhs.e12 + lhs.e12 * rhs.e22 + lhs.e13 * rhs.e32; m.e13 = lhs.e11 * rhs.e13 + lhs.e12 * rhs.e23 + lhs.e13 * rhs.e33; m.e21 = lhs.e21 * rhs.e11 + lhs.e22 * rhs.e21 + lhs.e23 * rhs.e31; m.e22 = lhs.e21 * rhs.e12 + lhs.e22 * rhs.e22 + lhs.e23 * rhs.e32; m.e23 = lhs.e21 * rhs.e13 + lhs.e22 * rhs.e23 + lhs.e23 * rhs.e33; m.e31 = lhs.e31 * rhs.e11 + lhs.e32 * rhs.e21 + lhs.e33 * rhs.e31; m.e32 = lhs.e31 * rhs.e12 + lhs.e32 * rhs.e22 + lhs.e33 * rhs.e32; m.e33 = lhs.e31 * rhs.e13 + lhs.e32 * rhs.e23 + lhs.e33 * rhs.e33; return m; } bool operator==(const Matrix& lhs, const Matrix& rhs) { if (!mathEqual(lhs.e11, rhs.e11) || !mathEqual(lhs.e12, rhs.e12) || !mathEqual(lhs.e13, rhs.e13) || !mathEqual(lhs.e21, rhs.e21) || !mathEqual(lhs.e22, rhs.e22) || !mathEqual(lhs.e23, rhs.e23) || !mathEqual(lhs.e31, rhs.e31) || !mathEqual(lhs.e32, rhs.e32) || !mathEqual(lhs.e33, rhs.e33)) { return false; } return true; } void operator*=(Point& pt, const Matrix& m) { auto tx = pt.x * m.e11 + pt.y * m.e12 + m.e13; auto ty = pt.x * m.e21 + pt.y * m.e22 + m.e23; pt.x = tx; pt.y = ty; } Point operator*(const Point& pt, const Matrix& m) { auto tx = pt.x * m.e11 + pt.y * m.e12 + m.e13; auto ty = pt.x * m.e21 + pt.y * m.e22 + m.e23; return {tx, ty}; } uint8_t mathLerp(const uint8_t &start, const uint8_t &end, float t) { auto result = static_cast(start + (end - start) * t); mathClamp(result, 0, 255); return static_cast(result); }