/* * Copyright (c) 2020 - 2023 the ThorVG project. All rights reserved. * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to deal * in the Software without restriction, including without limitation the rights * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell * copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * The above copyright notice and this permission notice shall be included in all * copies or substantial portions of the Software. * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE * SOFTWARE. */ #include "tvgSwCommon.h" #include "tvgMath.h" #include "tvgBezier.h" /************************************************************************/ /* Internal Class Implementation */ /************************************************************************/ struct Line { Point pt1; Point pt2; }; static float _lineLength(const Point& pt1, const Point& pt2) { /* approximate sqrt(x*x + y*y) using alpha max plus beta min algorithm. With alpha = 1, beta = 3/8, giving results with the largest error less than 7% compared to the exact value. */ Point diff = {pt2.x - pt1.x, pt2.y - pt1.y}; if (diff.x < 0) diff.x = -diff.x; if (diff.y < 0) diff.y = -diff.y; return (diff.x > diff.y) ? (diff.x + diff.y * 0.375f) : (diff.y + diff.x * 0.375f); } static void _lineSplitAt(const Line& cur, float at, Line& left, Line& right) { auto len = _lineLength(cur.pt1, cur.pt2); auto dx = ((cur.pt2.x - cur.pt1.x) / len) * at; auto dy = ((cur.pt2.y - cur.pt1.y) / len) * at; left.pt1 = cur.pt1; left.pt2.x = left.pt1.x + dx; left.pt2.y = left.pt1.y + dy; right.pt1 = left.pt2; right.pt2 = cur.pt2; } static void _outlineEnd(SwOutline& outline) { if (outline.pts.empty()) return; outline.cntrs.push(outline.pts.count - 1); } static void _outlineMoveTo(SwOutline& outline, const Point* to, const Matrix* transform) { if (outline.pts.count > 0) outline.cntrs.push(outline.pts.count - 1); outline.pts.push(mathTransform(to, transform)); outline.types.push(SW_CURVE_TYPE_POINT); } static void _outlineLineTo(SwOutline& outline, const Point* to, const Matrix* transform) { outline.pts.push(mathTransform(to, transform)); outline.types.push(SW_CURVE_TYPE_POINT); } static void _outlineCubicTo(SwOutline& outline, const Point* ctrl1, const Point* ctrl2, const Point* to, const Matrix* transform) { outline.pts.push(mathTransform(ctrl1, transform)); outline.types.push(SW_CURVE_TYPE_CUBIC); outline.pts.push(mathTransform(ctrl2, transform)); outline.types.push(SW_CURVE_TYPE_CUBIC); outline.pts.push(mathTransform(to, transform)); outline.types.push(SW_CURVE_TYPE_POINT); } static void _outlineClose(SwOutline& outline) { uint32_t i = 0; if (outline.cntrs.count > 0) i = outline.cntrs.last() + 1; else i = 0; //First Path //Make sure there is at least one point in the current path if (outline.pts.count == i) return; //Close the path outline.pts.push(outline.pts[i]); outline.types.push(SW_CURVE_TYPE_POINT); outline.closed.push(true); } static void _dashLineTo(SwDashStroke& dash, const Point* to, const Matrix* transform) { Line cur = {dash.ptCur, *to}; auto len = _lineLength(cur.pt1, cur.pt2); if (len < dash.curLen) { dash.curLen -= len; if (!dash.curOpGap) { _outlineMoveTo(*dash.outline, &dash.ptCur, transform); _outlineLineTo(*dash.outline, to, transform); } } else { while (len > dash.curLen) { Line left, right; if (dash.curLen > 0) { len -= dash.curLen; _lineSplitAt(cur, dash.curLen, left, right); if (!dash.curOpGap) { _outlineMoveTo(*dash.outline, &left.pt1, transform); _outlineLineTo(*dash.outline, &left.pt2, transform); } } else { right = cur; } dash.curIdx = (dash.curIdx + 1) % dash.cnt; dash.curLen = dash.pattern[dash.curIdx]; dash.curOpGap = !dash.curOpGap; cur = right; dash.ptCur = cur.pt1; } //leftovers dash.curLen -= len; if (!dash.curOpGap) { _outlineMoveTo(*dash.outline, &cur.pt1, transform); _outlineLineTo(*dash.outline, &cur.pt2, transform); } if (dash.curLen < 1 && TO_SWCOORD(len) > 1) { //move to next dash dash.curIdx = (dash.curIdx + 1) % dash.cnt; dash.curLen = dash.pattern[dash.curIdx]; dash.curOpGap = !dash.curOpGap; } } dash.ptCur = *to; } static void _dashCubicTo(SwDashStroke& dash, const Point* ctrl1, const Point* ctrl2, const Point* to, const Matrix* transform) { Bezier cur = {dash.ptCur, *ctrl1, *ctrl2, *to}; auto len = bezLength(cur); if (len < dash.curLen) { dash.curLen -= len; if (!dash.curOpGap) { _outlineMoveTo(*dash.outline, &dash.ptCur, transform); _outlineCubicTo(*dash.outline, ctrl1, ctrl2, to, transform); } } else { bool begin = true; //starting with move_to while (len > dash.curLen) { Bezier left, right; if (dash.curLen > 0) { len -= dash.curLen; bezSplitAt(cur, dash.curLen, left, right); if (!dash.curOpGap) { // leftovers from a previous command don't require moveTo if (begin || dash.pattern[dash.curIdx] - dash.curLen < FLT_EPSILON) { _outlineMoveTo(*dash.outline, &left.start, transform); begin = false; } _outlineCubicTo(*dash.outline, &left.ctrl1, &left.ctrl2, &left.end, transform); } } else { right = cur; } dash.curIdx = (dash.curIdx + 1) % dash.cnt; dash.curLen = dash.pattern[dash.curIdx]; dash.curOpGap = !dash.curOpGap; cur = right; dash.ptCur = right.start; } //leftovers dash.curLen -= len; if (!dash.curOpGap) { _outlineMoveTo(*dash.outline, &cur.start, transform); _outlineCubicTo(*dash.outline, &cur.ctrl1, &cur.ctrl2, &cur.end, transform); } if (dash.curLen < 1 && TO_SWCOORD(len) > 1) { //move to next dash dash.curIdx = (dash.curIdx + 1) % dash.cnt; dash.curLen = dash.pattern[dash.curIdx]; dash.curOpGap = !dash.curOpGap; } } dash.ptCur = *to; } static SwOutline* _genDashOutline(const RenderShape* rshape, const Matrix* transform, float length) { const PathCommand* cmds = rshape->path.cmds.data; auto cmdCnt = rshape->path.cmds.count; const Point* pts = rshape->path.pts.data; auto ptsCnt = rshape->path.pts.count; //No actual shape data if (cmdCnt == 0 || ptsCnt == 0) return nullptr; SwDashStroke dash; auto offset = 0.0f; auto trimmed = false; dash.cnt = rshape->strokeDash((const float**)&dash.pattern, &offset); //dash by trimming. if (length > 0.0f && dash.cnt == 0) { auto begin = length * rshape->stroke->trim.begin; auto end = length * rshape->stroke->trim.end; //TODO: mix trimming + dash style //default if (end > begin) { if (begin > 0) dash.cnt += 4; else dash.cnt += 2; //looping } else dash.cnt += 3; dash.pattern = (float*)malloc(sizeof(float) * dash.cnt); if (dash.cnt == 2) { dash.pattern[0] = end - begin; dash.pattern[1] = length - (end - begin); } else if (dash.cnt == 3) { dash.pattern[0] = end; dash.pattern[1] = (begin - end); dash.pattern[2] = length - begin; } else { dash.pattern[0] = 0; //zero dash to start with a space. dash.pattern[1] = begin; dash.pattern[2] = end - begin; dash.pattern[3] = length - (end - begin); } trimmed = true; //just a dasy style. } else { if (dash.cnt == 0) return nullptr; } //offset? auto patternLength = 0.0f; uint32_t offIdx = 0; if (!mathZero(offset)) { for (size_t i = 0; i < dash.cnt; ++i) patternLength += dash.pattern[i]; bool isOdd = dash.cnt % 2; if (isOdd) patternLength *= 2; offset = fmod(offset, patternLength); if (offset < 0) offset += patternLength; for (size_t i = 0; i < dash.cnt * (1 + (size_t)isOdd); ++i, ++offIdx) { auto curPattern = dash.pattern[i % dash.cnt]; if (offset < curPattern) break; offset -= curPattern; } } //OPTMIZE ME: Use mempool??? dash.outline = static_cast(calloc(1, sizeof(SwOutline))); //smart reservation auto closeCnt = 0; auto moveCnt = 0; for (auto cmd = rshape->path.cmds.data; cmd < rshape->path.cmds.end(); ++cmd) { if (*cmd == PathCommand::Close) ++closeCnt; else if (*cmd == PathCommand::MoveTo) ++moveCnt; } //No idea exact count.... Reserve Approximitely 20x... //OPTIMIZE: we can directly copy the path points when the close is occupied with a point. dash.outline->pts.grow(20 * (closeCnt + ptsCnt + 1)); dash.outline->types.grow(20 * (closeCnt + ptsCnt + 1)); dash.outline->cntrs.grow(20 * (moveCnt + 1)); while (cmdCnt-- > 0) { switch (*cmds) { case PathCommand::Close: { _dashLineTo(dash, &dash.ptStart, transform); break; } case PathCommand::MoveTo: { //reset the dash dash.curIdx = offIdx % dash.cnt; dash.curLen = dash.pattern[dash.curIdx] - offset; dash.curOpGap = offIdx % 2; dash.ptStart = dash.ptCur = *pts; ++pts; break; } case PathCommand::LineTo: { _dashLineTo(dash, pts, transform); ++pts; break; } case PathCommand::CubicTo: { _dashCubicTo(dash, pts, pts + 1, pts + 2, transform); pts += 3; break; } } ++cmds; } _outlineEnd(*dash.outline); if (trimmed) free(dash.pattern); return dash.outline; } static float _outlineLength(const RenderShape* rshape) { const PathCommand* cmds = rshape->path.cmds.data; auto cmdCnt = rshape->path.cmds.count; const Point* pts = rshape->path.pts.data; auto ptsCnt = rshape->path.pts.count; //No actual shape data if (cmdCnt == 0 || ptsCnt == 0) return 0.0f; const Point* close = nullptr; auto length = 0.0f; //Compute the whole length while (cmdCnt-- > 0) { switch (*cmds) { case PathCommand::Close: { length += mathLength(pts - 1, close); ++pts; break; } case PathCommand::MoveTo: { close = pts; ++pts; break; } case PathCommand::LineTo: { length += mathLength(pts - 1, pts); ++pts; break; } case PathCommand::CubicTo: { length += bezLength({*(pts - 1), *pts, *(pts + 1), *(pts + 2)}); pts += 3; break; } } ++cmds; } return length; } static bool _axisAlignedRect(const SwOutline* outline) { //Fast Track: axis-aligned rectangle? if (outline->pts.count != 5) return false; auto pt1 = outline->pts.data + 0; auto pt2 = outline->pts.data + 1; auto pt3 = outline->pts.data + 2; auto pt4 = outline->pts.data + 3; auto a = SwPoint{pt1->x, pt3->y}; auto b = SwPoint{pt3->x, pt1->y}; if ((*pt2 == a && *pt4 == b) || (*pt2 == b && *pt4 == a)) return true; return false; } static bool _genOutline(SwShape* shape, const RenderShape* rshape, const Matrix* transform, SwMpool* mpool, unsigned tid, bool hasComposite) { const PathCommand* cmds = rshape->path.cmds.data; auto cmdCnt = rshape->path.cmds.count; const Point* pts = rshape->path.pts.data; auto ptsCnt = rshape->path.pts.count; //No actual shape data if (cmdCnt == 0 || ptsCnt == 0) return false; //smart reservation auto moveCnt = 0; auto closeCnt = 0; for (auto cmd = rshape->path.cmds.data; cmd < rshape->path.cmds.end(); ++cmd) { if (*cmd == PathCommand::Close) ++closeCnt; else if (*cmd == PathCommand::MoveTo) ++moveCnt; } shape->outline = mpoolReqOutline(mpool, tid); auto outline = shape->outline; //OPTIMIZE: we can directly copy the path points when the close is occupied with a point. outline->pts.grow(ptsCnt + closeCnt + 1); outline->types.grow(ptsCnt + closeCnt + 1); outline->cntrs.grow(moveCnt + 1); //Dash outlines are always opened. //Only normal outlines use this information, it sholud be same to their contour counts. outline->closed.reserve(outline->cntrs.reserved); memset(outline->closed.data, 0x0, sizeof(bool) * outline->closed.reserved); //Generate Outlines while (cmdCnt-- > 0) { switch (*cmds) { case PathCommand::Close: { _outlineClose(*outline); break; } case PathCommand::MoveTo: { _outlineMoveTo(*outline, pts, transform); ++pts; break; } case PathCommand::LineTo: { _outlineLineTo(*outline, pts, transform); ++pts; break; } case PathCommand::CubicTo: { _outlineCubicTo(*outline, pts, pts + 1, pts + 2, transform); pts += 3; break; } } ++cmds; } _outlineEnd(*outline); outline->fillRule = rshape->rule; shape->outline = outline; shape->fastTrack = (!hasComposite && _axisAlignedRect(shape->outline)); return true; } /************************************************************************/ /* External Class Implementation */ /************************************************************************/ bool shapePrepare(SwShape* shape, const RenderShape* rshape, const Matrix* transform, const SwBBox& clipRegion, SwBBox& renderRegion, SwMpool* mpool, unsigned tid, bool hasComposite) { if (!_genOutline(shape, rshape, transform, mpool, tid, hasComposite)) return false; if (!mathUpdateOutlineBBox(shape->outline, clipRegion, renderRegion, shape->fastTrack)) return false; //Keep it for Rasterization Region shape->bbox = renderRegion; //Check valid region if (renderRegion.max.x - renderRegion.min.x < 1 && renderRegion.max.y - renderRegion.min.y < 1) return false; //Check boundary if (renderRegion.min.x >= clipRegion.max.x || renderRegion.min.y >= clipRegion.max.y || renderRegion.max.x <= clipRegion.min.x || renderRegion.max.y <= clipRegion.min.y) return false; return true; } bool shapePrepared(const SwShape* shape) { return shape->rle ? true : false; } bool shapeGenRle(SwShape* shape, TVG_UNUSED const RenderShape* rshape, bool antiAlias) { //FIXME: Should we draw it? //Case: Stroke Line //if (shape.outline->opened) return true; //Case A: Fast Track Rectangle Drawing if (shape->fastTrack) return true; //Case B: Normal Shape RLE Drawing if ((shape->rle = rleRender(shape->rle, shape->outline, shape->bbox, antiAlias))) return true; return false; } void shapeDelOutline(SwShape* shape, SwMpool* mpool, uint32_t tid) { mpoolRetOutline(mpool, tid); shape->outline = nullptr; } void shapeReset(SwShape* shape) { rleReset(shape->rle); rleReset(shape->strokeRle); shape->fastTrack = false; shape->bbox.reset(); } void shapeFree(SwShape* shape) { rleFree(shape->rle); shapeDelFill(shape); if (shape->stroke) { rleFree(shape->strokeRle); strokeFree(shape->stroke); } } void shapeDelStroke(SwShape* shape) { if (!shape->stroke) return; rleFree(shape->strokeRle); shape->strokeRle = nullptr; strokeFree(shape->stroke); shape->stroke = nullptr; } void shapeResetStroke(SwShape* shape, const RenderShape* rshape, const Matrix* transform) { if (!shape->stroke) shape->stroke = static_cast(calloc(1, sizeof(SwStroke))); auto stroke = shape->stroke; if (!stroke) return; strokeReset(stroke, rshape, transform); rleReset(shape->strokeRle); } bool shapeGenStrokeRle(SwShape* shape, const RenderShape* rshape, const Matrix* transform, const SwBBox& clipRegion, SwBBox& renderRegion, SwMpool* mpool, unsigned tid) { SwOutline* shapeOutline = nullptr; SwOutline* strokeOutline = nullptr; bool freeOutline = false; bool ret = true; auto length = rshape->strokeTrim() ? _outlineLength(rshape) : 0.0f; //Dash style (+trimming) if (rshape->stroke->dashCnt > 0 || length > 0) { shapeOutline = _genDashOutline(rshape, transform, length); if (!shapeOutline) return false; freeOutline = true; //Normal style } else { if (!shape->outline) { if (!_genOutline(shape, rshape, transform, mpool, tid, false)) return false; } shapeOutline = shape->outline; } if (!strokeParseOutline(shape->stroke, *shapeOutline)) { ret = false; goto fail; } strokeOutline = strokeExportOutline(shape->stroke, mpool, tid); if (!mathUpdateOutlineBBox(strokeOutline, clipRegion, renderRegion, false)) { ret = false; goto fail; } shape->strokeRle = rleRender(shape->strokeRle, strokeOutline, renderRegion, true); fail: if (freeOutline) { free(shapeOutline->cntrs.data); free(shapeOutline->pts.data); free(shapeOutline->types.data); free(shapeOutline->closed.data); free(shapeOutline); } mpoolRetStrokeOutline(mpool, tid); return ret; } bool shapeGenFillColors(SwShape* shape, const Fill* fill, const Matrix* transform, SwSurface* surface, uint8_t opacity, bool ctable) { return fillGenColorTable(shape->fill, fill, transform, surface, opacity, ctable); } bool shapeGenStrokeFillColors(SwShape* shape, const Fill* fill, const Matrix* transform, SwSurface* surface, uint8_t opacity, bool ctable) { return fillGenColorTable(shape->stroke->fill, fill, transform, surface, opacity, ctable); } void shapeResetFill(SwShape* shape) { if (!shape->fill) { shape->fill = static_cast(calloc(1, sizeof(SwFill))); if (!shape->fill) return; } fillReset(shape->fill); } void shapeResetStrokeFill(SwShape* shape) { if (!shape->stroke->fill) { shape->stroke->fill = static_cast(calloc(1, sizeof(SwFill))); if (!shape->stroke->fill) return; } fillReset(shape->stroke->fill); } void shapeDelFill(SwShape* shape) { if (!shape->fill) return; fillFree(shape->fill); shape->fill = nullptr; } void shapeDelStrokeFill(SwShape* shape) { if (!shape->stroke->fill) return; fillFree(shape->stroke->fill); shape->stroke->fill = nullptr; }