/* * Copyright (c) 2020 - 2024 the ThorVG project. All rights reserved. * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to deal * in the Software without restriction, including without limitation the rights * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell * copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * The above copyright notice and this permission notice shall be included in all * copies or substantial portions of the Software. * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE * SOFTWARE. */ #include "tvgMath.h" #include "tvgSwCommon.h" /************************************************************************/ /* Internal Class Implementation */ /************************************************************************/ static float TO_RADIAN(SwFixed angle) { return (float(angle) / 65536.0f) * (MATH_PI / 180.0f); } /************************************************************************/ /* External Class Implementation */ /************************************************************************/ SwFixed mathMean(SwFixed angle1, SwFixed angle2) { return angle1 + mathDiff(angle1, angle2) / 2; } bool mathSmallCubic(const SwPoint* base, SwFixed& angleIn, SwFixed& angleMid, SwFixed& angleOut) { auto d1 = base[2] - base[3]; auto d2 = base[1] - base[2]; auto d3 = base[0] - base[1]; if (d1.small()) { if (d2.small()) { if (d3.small()) { angleIn = angleMid = angleOut = 0; return true; } else { angleIn = angleMid = angleOut = mathAtan(d3); } } else { if (d3.small()) { angleIn = angleMid = angleOut = mathAtan(d2); } else { angleIn = angleMid = mathAtan(d2); angleOut = mathAtan(d3); } } } else { if (d2.small()) { if (d3.small()) { angleIn = angleMid = angleOut = mathAtan(d1); } else { angleIn = mathAtan(d1); angleOut = mathAtan(d3); angleMid = mathMean(angleIn, angleOut); } } else { if (d3.small()) { angleIn = mathAtan(d1); angleMid = angleOut = mathAtan(d2); } else { angleIn = mathAtan(d1); angleMid = mathAtan(d2); angleOut = mathAtan(d3); } } } auto theta1 = abs(mathDiff(angleIn, angleMid)); auto theta2 = abs(mathDiff(angleMid, angleOut)); if ((theta1 < (SW_ANGLE_PI / 8)) && (theta2 < (SW_ANGLE_PI / 8))) return true; return false; } int64_t mathMultiply(int64_t a, int64_t b) { int32_t s = 1; //move sign if (a < 0) { a = -a; s = -s; } if (b < 0) { b = -b; s = -s; } int64_t c = (a * b + 0x8000L) >> 16; return (s > 0) ? c : -c; } int64_t mathDivide(int64_t a, int64_t b) { int32_t s = 1; //move sign if (a < 0) { a = -a; s = -s; } if (b < 0) { b = -b; s = -s; } int64_t q = b > 0 ? ((a << 16) + (b >> 1)) / b : 0x7FFFFFFFL; return (s < 0 ? -q : q); } int64_t mathMulDiv(int64_t a, int64_t b, int64_t c) { int32_t s = 1; //move sign if (a < 0) { a = -a; s = -s; } if (b < 0) { b = -b; s = -s; } if (c < 0) { c = -c; s = -s; } int64_t d = c > 0 ? (a * b + (c >> 1)) / c : 0x7FFFFFFFL; return (s > 0 ? d : -d); } void mathRotate(SwPoint& pt, SwFixed angle) { if (angle == 0 || pt.zero()) return; Point v = pt.toPoint(); auto radian = TO_RADIAN(angle); auto cosv = cosf(radian); auto sinv = sinf(radian); pt.x = SwCoord(nearbyint((v.x * cosv - v.y * sinv) * 64.0f)); pt.y = SwCoord(nearbyint((v.x * sinv + v.y * cosv) * 64.0f)); } SwFixed mathTan(SwFixed angle) { if (angle == 0) return 0; return SwFixed(tanf(TO_RADIAN(angle)) * 65536.0f); } SwFixed mathAtan(const SwPoint& pt) { if (pt.zero()) return 0; return SwFixed(mathAtan2(TO_FLOAT(pt.y), TO_FLOAT(pt.x)) * (180.0f / MATH_PI) * 65536.0f); } SwFixed mathSin(SwFixed angle) { if (angle == 0) return 0; return mathCos(SW_ANGLE_PI2 - angle); } SwFixed mathCos(SwFixed angle) { return SwFixed(cosf(TO_RADIAN(angle)) * 65536.0f); } SwFixed mathLength(const SwPoint& pt) { if (pt.zero()) return 0; //trivial case if (pt.x == 0) return abs(pt.y); if (pt.y == 0) return abs(pt.x); auto v = pt.toPoint(); //return static_cast(sqrtf(v.x * v.x + v.y * v.y) * 65536.0f); /* approximate sqrt(x*x + y*y) using alpha max plus beta min algorithm. With alpha = 1, beta = 3/8, giving results with the largest error less than 7% compared to the exact value. */ if (v.x < 0) v.x = -v.x; if (v.y < 0) v.y = -v.y; return static_cast((v.x > v.y) ? (v.x + v.y * 0.375f) : (v.y + v.x * 0.375f)); } void mathSplitCubic(SwPoint* base) { SwCoord a, b, c, d; base[6].x = base[3].x; c = base[1].x; d = base[2].x; base[1].x = a = (base[0].x + c) >> 1; base[5].x = b = (base[3].x + d) >> 1; c = (c + d) >> 1; base[2].x = a = (a + c) >> 1; base[4].x = b = (b + c) >> 1; base[3].x = (a + b) >> 1; base[6].y = base[3].y; c = base[1].y; d = base[2].y; base[1].y = a = (base[0].y + c) >> 1; base[5].y = b = (base[3].y + d) >> 1; c = (c + d) >> 1; base[2].y = a = (a + c) >> 1; base[4].y = b = (b + c) >> 1; base[3].y = (a + b) >> 1; } SwFixed mathDiff(SwFixed angle1, SwFixed angle2) { auto delta = angle2 - angle1; delta %= SW_ANGLE_2PI; if (delta < 0) delta += SW_ANGLE_2PI; if (delta > SW_ANGLE_PI) delta -= SW_ANGLE_2PI; return delta; } SwPoint mathTransform(const Point* to, const Matrix& transform) { auto tx = to->x * transform.e11 + to->y * transform.e12 + transform.e13; auto ty = to->x * transform.e21 + to->y * transform.e22 + transform.e23; return {TO_SWCOORD(tx), TO_SWCOORD(ty)}; } bool mathClipBBox(const SwBBox& clipper, SwBBox& clipee) { clipee.max.x = (clipee.max.x < clipper.max.x) ? clipee.max.x : clipper.max.x; clipee.max.y = (clipee.max.y < clipper.max.y) ? clipee.max.y : clipper.max.y; clipee.min.x = (clipee.min.x > clipper.min.x) ? clipee.min.x : clipper.min.x; clipee.min.y = (clipee.min.y > clipper.min.y) ? clipee.min.y : clipper.min.y; //Check valid region if (clipee.max.x - clipee.min.x < 1 && clipee.max.y - clipee.min.y < 1) return false; //Check boundary if (clipee.min.x >= clipper.max.x || clipee.min.y >= clipper.max.y || clipee.max.x <= clipper.min.x || clipee.max.y <= clipper.min.y) return false; return true; } bool mathUpdateOutlineBBox(const SwOutline* outline, const SwBBox& clipRegion, SwBBox& renderRegion, bool fastTrack) { if (!outline) return false; if (outline->pts.empty() || outline->cntrs.empty()) { renderRegion.reset(); return false; } auto pt = outline->pts.begin(); auto xMin = pt->x; auto xMax = pt->x; auto yMin = pt->y; auto yMax = pt->y; for (++pt; pt < outline->pts.end(); ++pt) { if (xMin > pt->x) xMin = pt->x; if (xMax < pt->x) xMax = pt->x; if (yMin > pt->y) yMin = pt->y; if (yMax < pt->y) yMax = pt->y; } //Since no antialiasing is applied in the Fast Track case, //the rasterization region has to be rearranged. //https://github.com/Samsung/thorvg/issues/916 if (fastTrack) { renderRegion.min.x = static_cast(nearbyint(xMin / 64.0f)); renderRegion.max.x = static_cast(nearbyint(xMax / 64.0f)); renderRegion.min.y = static_cast(nearbyint(yMin / 64.0f)); renderRegion.max.y = static_cast(nearbyint(yMax / 64.0f)); } else { renderRegion.min.x = xMin >> 6; renderRegion.max.x = (xMax + 63) >> 6; renderRegion.min.y = yMin >> 6; renderRegion.max.y = (yMax + 63) >> 6; } return mathClipBBox(clipRegion, renderRegion); }