/* * Copyright (c) 2020 - 2024 the ThorVG project. All rights reserved. * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to deal * in the Software without restriction, including without limitation the rights * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell * copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * The above copyright notice and this permission notice shall be included in all * copies or substantial portions of the Software. * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE * SOFTWARE. */ #ifdef _WIN32 #include #elif defined(__linux__) #include #else #include #endif #include "tvgMath.h" #include "tvgRender.h" #include "tvgSwCommon.h" /************************************************************************/ /* Internal Class Implementation */ /************************************************************************/ constexpr auto DOWN_SCALE_TOLERANCE = 0.5f; struct FillLinear { void operator()(const SwFill* fill, uint8_t* dst, uint32_t y, uint32_t x, uint32_t len, SwMask op, uint8_t a) { fillLinear(fill, dst, y, x, len, op, a); } void operator()(const SwFill* fill, uint8_t* dst, uint32_t y, uint32_t x, uint32_t len, uint8_t* cmp, SwMask op, uint8_t a) { fillLinear(fill, dst, y, x, len, cmp, op, a); } void operator()(const SwFill* fill, uint32_t* dst, uint32_t y, uint32_t x, uint32_t len, SwBlender op, uint8_t a) { fillLinear(fill, dst, y, x, len, op, a); } void operator()(const SwFill* fill, uint32_t* dst, uint32_t y, uint32_t x, uint32_t len, uint8_t* cmp, SwAlpha alpha, uint8_t csize, uint8_t opacity) { fillLinear(fill, dst, y, x, len, cmp, alpha, csize, opacity); } void operator()(const SwFill* fill, uint32_t* dst, uint32_t y, uint32_t x, uint32_t len, SwBlender op, SwBlender op2, uint8_t a) { fillLinear(fill, dst, y, x, len, op, op2, a); } }; struct FillRadial { void operator()(const SwFill* fill, uint8_t* dst, uint32_t y, uint32_t x, uint32_t len, SwMask op, uint8_t a) { fillRadial(fill, dst, y, x, len, op, a); } void operator()(const SwFill* fill, uint8_t* dst, uint32_t y, uint32_t x, uint32_t len, uint8_t* cmp, SwMask op, uint8_t a) { fillRadial(fill, dst, y, x, len, cmp, op, a); } void operator()(const SwFill* fill, uint32_t* dst, uint32_t y, uint32_t x, uint32_t len, SwBlender op, uint8_t a) { fillRadial(fill, dst, y, x, len, op, a); } void operator()(const SwFill* fill, uint32_t* dst, uint32_t y, uint32_t x, uint32_t len, uint8_t* cmp, SwAlpha alpha, uint8_t csize, uint8_t opacity) { fillRadial(fill, dst, y, x, len, cmp, alpha, csize, opacity); } void operator()(const SwFill* fill, uint32_t* dst, uint32_t y, uint32_t x, uint32_t len, SwBlender op, SwBlender op2, uint8_t a) { fillRadial(fill, dst, y, x, len, op, op2, a); } }; static inline uint8_t _alpha(uint8_t* a) { return *a; } static inline uint8_t _ialpha(uint8_t* a) { return ~(*a); } static inline uint8_t _abgrLuma(uint8_t* c) { auto v = *(uint32_t*)c; return ((((v&0xff)*54) + (((v>>8)&0xff)*183) + (((v>>16)&0xff)*19))) >> 8; //0.2125*R + 0.7154*G + 0.0721*B } static inline uint8_t _argbLuma(uint8_t* c) { auto v = *(uint32_t*)c; return ((((v&0xff)*19) + (((v>>8)&0xff)*183) + (((v>>16)&0xff)*54))) >> 8; //0.0721*B + 0.7154*G + 0.2125*R } static inline uint8_t _abgrInvLuma(uint8_t* c) { return ~_abgrLuma(c); } static inline uint8_t _argbInvLuma(uint8_t* c) { return ~_argbLuma(c); } static inline uint32_t _abgrJoin(uint8_t r, uint8_t g, uint8_t b, uint8_t a) { return (a << 24 | b << 16 | g << 8 | r); } static inline uint32_t _argbJoin(uint8_t r, uint8_t g, uint8_t b, uint8_t a) { return (a << 24 | r << 16 | g << 8 | b); } static inline bool _blending(const SwSurface* surface) { return (surface->blender) ? true : false; } /* OPTIMIZE_ME: Probably, we can separate masking(8bits) / composition(32bits) This would help to enhance the performance by avoiding the unnecessary matting from the composition */ static inline bool _compositing(const SwSurface* surface) { if (!surface->compositor || (int)surface->compositor->method <= (int)CompositeMethod::ClipPath) return false; return true; } static inline bool _matting(const SwSurface* surface) { if ((int)surface->compositor->method < (int)CompositeMethod::AddMask) return true; else return false; } static inline uint8_t _opMaskNone(uint8_t s, TVG_UNUSED uint8_t d, TVG_UNUSED uint8_t a) { return s; } static inline uint8_t _opMaskAdd(uint8_t s, uint8_t d, uint8_t a) { return s + MULTIPLY(d, a); } static inline uint8_t _opMaskSubtract(uint8_t s, uint8_t d, TVG_UNUSED uint8_t a) { return MULTIPLY(s, 255 - d); } static inline uint8_t _opMaskIntersect(uint8_t s, uint8_t d, TVG_UNUSED uint8_t a) { return MULTIPLY(s, d); } static inline uint8_t _opMaskDifference(uint8_t s, uint8_t d, uint8_t a) { return MULTIPLY(s, 255 - d) + MULTIPLY(d, a); } static inline uint8_t _opMaskLighten(uint8_t s, uint8_t d, uint8_t a) { return (s > d) ? s : d; } static inline uint8_t _opMaskDarken(uint8_t s, uint8_t d, uint8_t a) { return (s < d) ? s : d; } static inline bool _direct(CompositeMethod method) { if (method == CompositeMethod::SubtractMask || method == CompositeMethod::IntersectMask || method == CompositeMethod::DarkenMask) return true; return false; } static inline SwMask _getMaskOp(CompositeMethod method) { switch (method) { case CompositeMethod::AddMask: return _opMaskAdd; case CompositeMethod::SubtractMask: return _opMaskSubtract; case CompositeMethod::DifferenceMask: return _opMaskDifference; case CompositeMethod::IntersectMask: return _opMaskIntersect; case CompositeMethod::LightenMask: return _opMaskLighten; case CompositeMethod::DarkenMask: return _opMaskDarken; default: return nullptr; } } static bool _compositeMaskImage(SwSurface* surface, const SwImage* image, const SwBBox& region) { auto dbuffer = &surface->buf8[region.min.y * surface->stride + region.min.x]; auto sbuffer = image->buf8 + (region.min.y + image->oy) * image->stride + (region.min.x + image->ox); for (auto y = region.min.y; y < region.max.y; ++y) { auto dst = dbuffer; auto src = sbuffer; for (auto x = region.min.x; x < region.max.x; x++, dst++, src++) { *dst = *src + MULTIPLY(*dst, ~*src); } dbuffer += surface->stride; sbuffer += image->stride; } return true; } #include "tvgSwRasterTexmap.h" #include "tvgSwRasterC.h" #include "tvgSwRasterAvx.h" #include "tvgSwRasterNeon.h" static inline uint32_t _sampleSize(float scale) { auto sampleSize = static_cast(0.5f / scale); if (sampleSize == 0) sampleSize = 1; return sampleSize; } //Bilinear Interpolation //OPTIMIZE_ME: Skip the function pointer access static uint32_t _interpUpScaler(const uint32_t *img, TVG_UNUSED uint32_t stride, uint32_t w, uint32_t h, float sx, float sy, TVG_UNUSED int32_t miny, TVG_UNUSED int32_t maxy, TVG_UNUSED int32_t n) { auto rx = (size_t)(sx); auto ry = (size_t)(sy); auto rx2 = rx + 1; if (rx2 >= w) rx2 = w - 1; auto ry2 = ry + 1; if (ry2 >= h) ry2 = h - 1; auto dx = (sx > 0.0f) ? static_cast((sx - rx) * 255.0f) : 0; auto dy = (sy > 0.0f) ? static_cast((sy - ry) * 255.0f) : 0; auto c1 = img[rx + ry * w]; auto c2 = img[rx2 + ry * w]; auto c3 = img[rx + ry2 * w]; auto c4 = img[rx2 + ry2 * w]; return INTERPOLATE(INTERPOLATE(c4, c3, dx), INTERPOLATE(c2, c1, dx), dy); } //2n x 2n Mean Kernel //OPTIMIZE_ME: Skip the function pointer access static uint32_t _interpDownScaler(const uint32_t *img, uint32_t stride, uint32_t w, uint32_t h, float sx, TVG_UNUSED float sy, int32_t miny, int32_t maxy, int32_t n) { size_t c[4] = {0, 0, 0, 0}; int32_t minx = (int32_t)sx - n; if (minx < 0) minx = 0; int32_t maxx = (int32_t)sx + n; if (maxx >= (int32_t)w) maxx = w; int32_t inc = (n / 2) + 1; n = 0; auto src = img + minx + miny * stride; for (auto y = miny; y < maxy; y += inc) { auto p = src; for (auto x = minx; x < maxx; x += inc, p += inc) { c[0] += A(*p); c[1] += C1(*p); c[2] += C2(*p); c[3] += C3(*p); ++n; } src += (stride * inc); } c[0] /= n; c[1] /= n; c[2] /= n; c[3] /= n; return (c[0] << 24) | (c[1] << 16) | (c[2] << 8) | c[3]; } /************************************************************************/ /* Rect */ /************************************************************************/ static bool _rasterCompositeMaskedRect(SwSurface* surface, const SwBBox& region, SwMask maskOp, uint8_t r, uint8_t g, uint8_t b, uint8_t a) { auto w = static_cast(region.max.x - region.min.x); auto h = static_cast(region.max.y - region.min.y); auto cstride = surface->compositor->image.stride; auto cbuffer = surface->compositor->image.buf8 + (region.min.y * cstride + region.min.x); //compositor buffer auto ialpha = 255 - a; for (uint32_t y = 0; y < h; ++y) { auto cmp = cbuffer; for (uint32_t x = 0; x < w; ++x, ++cmp) { *cmp = maskOp(a, *cmp, ialpha); } cbuffer += cstride; } return _compositeMaskImage(surface, &surface->compositor->image, surface->compositor->bbox); } static bool _rasterDirectMaskedRect(SwSurface* surface, const SwBBox& region, SwMask maskOp, uint8_t r, uint8_t g, uint8_t b, uint8_t a) { auto w = static_cast(region.max.x - region.min.x); auto h = static_cast(region.max.y - region.min.y); auto cbuffer = surface->compositor->image.buf8 + (region.min.y * surface->compositor->image.stride + region.min.x); //compositor buffer auto dbuffer = surface->buf8 + (region.min.y * surface->stride + region.min.x); //destination buffer for (uint32_t y = 0; y < h; ++y) { auto cmp = cbuffer; auto dst = dbuffer; for (uint32_t x = 0; x < w; ++x, ++cmp, ++dst) { auto tmp = maskOp(a, *cmp, 0); //not use alpha. *dst = tmp + MULTIPLY(*dst, ~tmp); } cbuffer += surface->compositor->image.stride; dbuffer += surface->stride; } return true; } static bool _rasterMaskedRect(SwSurface* surface, const SwBBox& region, uint8_t r, uint8_t g, uint8_t b, uint8_t a) { //8bit masking channels composition if (surface->channelSize != sizeof(uint8_t)) return false; TVGLOG("SW_ENGINE", "Masked(%d) Rect [Region: %lu %lu %lu %lu]", (int)surface->compositor->method, region.min.x, region.min.y, region.max.x - region.min.x, region.max.y - region.min.y); auto maskOp = _getMaskOp(surface->compositor->method); if (_direct(surface->compositor->method)) return _rasterDirectMaskedRect(surface, region, maskOp, r, g, b, a); else return _rasterCompositeMaskedRect(surface, region, maskOp, r, g, b, a); return false; } static bool _rasterMattedRect(SwSurface* surface, const SwBBox& region, uint8_t r, uint8_t g, uint8_t b, uint8_t a) { auto w = static_cast(region.max.x - region.min.x); auto h = static_cast(region.max.y - region.min.y); auto csize = surface->compositor->image.channelSize; auto cbuffer = surface->compositor->image.buf8 + ((region.min.y * surface->compositor->image.stride + region.min.x) * csize); //compositor buffer auto alpha = surface->alpha(surface->compositor->method); TVGLOG("SW_ENGINE", "Matted(%d) Rect [Region: %lu %lu %u %u]", (int)surface->compositor->method, region.min.x, region.min.y, w, h); //32bits channels if (surface->channelSize == sizeof(uint32_t)) { auto color = surface->join(r, g, b, a); auto buffer = surface->buf32 + (region.min.y * surface->stride) + region.min.x; for (uint32_t y = 0; y < h; ++y) { auto dst = &buffer[y * surface->stride]; auto cmp = &cbuffer[y * surface->compositor->image.stride * csize]; for (uint32_t x = 0; x < w; ++x, ++dst, cmp += csize) { auto tmp = ALPHA_BLEND(color, alpha(cmp)); *dst = tmp + ALPHA_BLEND(*dst, IA(tmp)); } } //8bits grayscale } else if (surface->channelSize == sizeof(uint8_t)) { auto buffer = surface->buf8 + (region.min.y * surface->stride) + region.min.x; for (uint32_t y = 0; y < h; ++y) { auto dst = &buffer[y * surface->stride]; auto cmp = &cbuffer[y * surface->compositor->image.stride * csize]; for (uint32_t x = 0; x < w; ++x, ++dst, cmp += csize) { *dst = INTERPOLATE8(a, *dst, alpha(cmp)); } } } return true; } static bool _rasterBlendingRect(SwSurface* surface, const SwBBox& region, uint8_t r, uint8_t g, uint8_t b, uint8_t a) { if (surface->channelSize != sizeof(uint32_t)) return false; auto w = static_cast(region.max.x - region.min.x); auto h = static_cast(region.max.y - region.min.y); auto color = surface->join(r, g, b, a); auto buffer = surface->buf32 + (region.min.y * surface->stride) + region.min.x; for (uint32_t y = 0; y < h; ++y) { auto dst = &buffer[y * surface->stride]; for (uint32_t x = 0; x < w; ++x, ++dst) { *dst = surface->blender(color, *dst, 255); } } return true; } static bool _rasterTranslucentRect(SwSurface* surface, const SwBBox& region, uint8_t r, uint8_t g, uint8_t b, uint8_t a) { #if defined(THORVG_AVX_VECTOR_SUPPORT) return avxRasterTranslucentRect(surface, region, r, g, b, a); #elif defined(THORVG_NEON_VECTOR_SUPPORT) return neonRasterTranslucentRect(surface, region, r, g, b, a); #else return cRasterTranslucentRect(surface, region, r, g, b, a); #endif } static bool _rasterSolidRect(SwSurface* surface, const SwBBox& region, uint8_t r, uint8_t g, uint8_t b) { auto w = static_cast(region.max.x - region.min.x); auto h = static_cast(region.max.y - region.min.y); //32bits channels if (surface->channelSize == sizeof(uint32_t)) { auto color = surface->join(r, g, b, 255); auto buffer = surface->buf32 + (region.min.y * surface->stride); for (uint32_t y = 0; y < h; ++y) { rasterPixel32(buffer + y * surface->stride, color, region.min.x, w); } return true; } //8bits grayscale if (surface->channelSize == sizeof(uint8_t)) { for (uint32_t y = 0; y < h; ++y) { rasterGrayscale8(surface->buf8, 255, (y + region.min.y) * surface->stride + region.min.x, w); } return true; } return false; } static bool _rasterRect(SwSurface* surface, const SwBBox& region, uint8_t r, uint8_t g, uint8_t b, uint8_t a) { if (_compositing(surface)) { if (_matting(surface)) return _rasterMattedRect(surface, region, r, g, b, a); else return _rasterMaskedRect(surface, region, r, g, b, a); } else if (_blending(surface)) { return _rasterBlendingRect(surface, region, r, g, b, a); } else { if (a == 255) return _rasterSolidRect(surface, region, r, g, b); else return _rasterTranslucentRect(surface, region, r, g, b, a); } return false; } /************************************************************************/ /* Rle */ /************************************************************************/ static bool _rasterCompositeMaskedRle(SwSurface* surface, SwRleData* rle, SwMask maskOp, uint8_t r, uint8_t g, uint8_t b, uint8_t a) { auto span = rle->spans; auto cbuffer = surface->compositor->image.buf8; auto cstride = surface->compositor->image.stride; uint8_t src; for (uint32_t i = 0; i < rle->size; ++i, ++span) { auto cmp = &cbuffer[span->y * cstride + span->x]; if (span->coverage == 255) src = a; else src = MULTIPLY(a, span->coverage); auto ialpha = 255 - src; for (auto x = 0; x < span->len; ++x, ++cmp) { *cmp = maskOp(src, *cmp, ialpha); } } return _compositeMaskImage(surface, &surface->compositor->image, surface->compositor->bbox); } static bool _rasterDirectMaskedRle(SwSurface* surface, SwRleData* rle, SwMask maskOp, uint8_t r, uint8_t g, uint8_t b, uint8_t a) { auto span = rle->spans; auto cbuffer = surface->compositor->image.buf8; auto cstride = surface->compositor->image.stride; uint8_t src; for (uint32_t i = 0; i < rle->size; ++i, ++span) { auto cmp = &cbuffer[span->y * cstride + span->x]; auto dst = &surface->buf8[span->y * surface->stride + span->x]; if (span->coverage == 255) src = a; else src = MULTIPLY(a, span->coverage); for (auto x = 0; x < span->len; ++x, ++cmp, ++dst) { auto tmp = maskOp(src, *cmp, 0); //not use alpha *dst = tmp + MULTIPLY(*dst, ~tmp); } } return true; } static bool _rasterMaskedRle(SwSurface* surface, SwRleData* rle, uint8_t r, uint8_t g, uint8_t b, uint8_t a) { TVGLOG("SW_ENGINE", "Masked(%d) Rle", (int)surface->compositor->method); //8bit masking channels composition if (surface->channelSize != sizeof(uint8_t)) return false; auto maskOp = _getMaskOp(surface->compositor->method); if (_direct(surface->compositor->method)) return _rasterDirectMaskedRle(surface, rle, maskOp, r, g, b, a); else return _rasterCompositeMaskedRle(surface, rle, maskOp, r, g, b, a); return false; } static bool _rasterMattedRle(SwSurface* surface, SwRleData* rle, uint8_t r, uint8_t g, uint8_t b, uint8_t a) { TVGLOG("SW_ENGINE", "Matted(%d) Rle", (int)surface->compositor->method); auto span = rle->spans; auto cbuffer = surface->compositor->image.buf8; auto csize = surface->compositor->image.channelSize; auto alpha = surface->alpha(surface->compositor->method); //32bit channels if (surface->channelSize == sizeof(uint32_t)) { uint32_t src; auto color = surface->join(r, g, b, a); for (uint32_t i = 0; i < rle->size; ++i, ++span) { auto dst = &surface->buf32[span->y * surface->stride + span->x]; auto cmp = &cbuffer[(span->y * surface->compositor->image.stride + span->x) * csize]; if (span->coverage == 255) src = color; else src = ALPHA_BLEND(color, span->coverage); for (uint32_t x = 0; x < span->len; ++x, ++dst, cmp += csize) { auto tmp = ALPHA_BLEND(src, alpha(cmp)); *dst = tmp + ALPHA_BLEND(*dst, IA(tmp)); } } return true; } //8bit grayscale if (surface->channelSize == sizeof(uint8_t)) { uint8_t src; for (uint32_t i = 0; i < rle->size; ++i, ++span) { auto dst = &surface->buf8[span->y * surface->stride + span->x]; auto cmp = &cbuffer[(span->y * surface->compositor->image.stride + span->x) * csize]; if (span->coverage == 255) src = a; else src = MULTIPLY(a, span->coverage); for (uint32_t x = 0; x < span->len; ++x, ++dst, cmp += csize) { *dst = INTERPOLATE8(src, *dst, alpha(cmp)); } } return true; } return false; } static bool _rasterBlendingRle(SwSurface* surface, const SwRleData* rle, uint8_t r, uint8_t g, uint8_t b, uint8_t a) { if (surface->channelSize != sizeof(uint32_t)) return false; auto span = rle->spans; auto color = surface->join(r, g, b, a); for (uint32_t i = 0; i < rle->size; ++i, ++span) { auto dst = &surface->buf32[span->y * surface->stride + span->x]; if (span->coverage == 255) { for (uint32_t x = 0; x < span->len; ++x, ++dst) { *dst = surface->blender(color, *dst, 255); } } else { for (uint32_t x = 0; x < span->len; ++x, ++dst) { auto tmp = surface->blender(color, *dst, 255); *dst = INTERPOLATE(tmp, *dst, span->coverage); } } } return true; } static bool _rasterTranslucentRle(SwSurface* surface, const SwRleData* rle, uint8_t r, uint8_t g, uint8_t b, uint8_t a) { #if defined(THORVG_AVX_VECTOR_SUPPORT) return avxRasterTranslucentRle(surface, rle, r, g, b, a); #elif defined(THORVG_NEON_VECTOR_SUPPORT) return neonRasterTranslucentRle(surface, rle, r, g, b, a); #else return cRasterTranslucentRle(surface, rle, r, g, b, a); #endif } static bool _rasterSolidRle(SwSurface* surface, const SwRleData* rle, uint8_t r, uint8_t g, uint8_t b) { auto span = rle->spans; //32bit channels if (surface->channelSize == sizeof(uint32_t)) { auto color = surface->join(r, g, b, 255); for (uint32_t i = 0; i < rle->size; ++i, ++span) { if (span->coverage == 255) { rasterPixel32(surface->buf32 + span->y * surface->stride, color, span->x, span->len); } else { auto dst = &surface->buf32[span->y * surface->stride + span->x]; auto src = ALPHA_BLEND(color, span->coverage); auto ialpha = 255 - span->coverage; for (uint32_t x = 0; x < span->len; ++x, ++dst) { *dst = src + ALPHA_BLEND(*dst, ialpha); } } } //8bit grayscale } else if (surface->channelSize == sizeof(uint8_t)) { for (uint32_t i = 0; i < rle->size; ++i, ++span) { if (span->coverage == 255) { rasterGrayscale8(surface->buf8, span->coverage, span->y * surface->stride + span->x, span->len); } else { auto dst = &surface->buf8[span->y * surface->stride + span->x]; auto ialpha = 255 - span->coverage; for (uint32_t x = 0; x < span->len; ++x, ++dst) { *dst = span->coverage + MULTIPLY(*dst, ialpha); } } } } return true; } static bool _rasterRle(SwSurface* surface, SwRleData* rle, uint8_t r, uint8_t g, uint8_t b, uint8_t a) { if (!rle) return false; if (_compositing(surface)) { if (_matting(surface)) return _rasterMattedRle(surface, rle, r, g, b, a); else return _rasterMaskedRle(surface, rle, r, g, b, a); } else if (_blending(surface)) { return _rasterBlendingRle(surface, rle, r, g, b, a); } else { if (a == 255) return _rasterSolidRle(surface, rle, r, g, b); else return _rasterTranslucentRle(surface, rle, r, g, b, a); } return false; } /************************************************************************/ /* RLE Scaled Image */ /************************************************************************/ #define SCALED_IMAGE_RANGE_Y(y) \ auto sy = (y) * itransform->e22 + itransform->e23 - 0.49f; \ if (sy <= -0.5f || (uint32_t)(sy + 0.5f) >= image->h) continue; \ if (scaleMethod == _interpDownScaler) { \ auto my = (int32_t)nearbyint(sy); \ miny = my - (int32_t)sampleSize; \ if (miny < 0) miny = 0; \ maxy = my + (int32_t)sampleSize; \ if (maxy >= (int32_t)image->h) maxy = (int32_t)image->h; \ } #define SCALED_IMAGE_RANGE_X \ auto sx = (x) * itransform->e11 + itransform->e13 - 0.49f; \ if (sx <= -0.5f || (uint32_t)(sx + 0.5f) >= image->w) continue; \ #if 0 //Enable it when GRAYSCALE image is supported static bool _rasterCompositeScaledMaskedRleImage(SwSurface* surface, const SwImage* image, const Matrix* itransform, const SwBBox& region, SwMask maskOp, uint8_t opacity) { auto scaleMethod = image->scale < DOWN_SCALE_TOLERANCE ? _interpDownScaler : _interpUpScaler; auto sampleSize = _sampleSize(image->scale); auto span = image->rle->spans; int32_t miny = 0, maxy = 0; for (uint32_t i = 0; i < image->rle->size; ++i, ++span) { SCALED_IMAGE_RANGE_Y(span->y) auto cmp = &surface->compositor->image.buf8[span->y * surface->compositor->image.stride + span->x]; auto a = MULTIPLY(span->coverage, opacity); for (uint32_t x = static_cast(span->x); x < static_cast(span->x) + span->len; ++x, ++cmp) { SCALED_IMAGE_RANGE_X auto src = scaleMethod(image->buf8, image->stride, image->w, image->h, sx, sy, miny, maxy, sampleSize); if (a < 255) src = MULTIPLY(src, a); *cmp = maskOp(src, *cmp, ~src); } } return true; } static bool _rasterDirectScaledMaskedRleImage(SwSurface* surface, const SwImage* image, const Matrix* itransform, const SwBBox& region, SwMask maskOp, uint8_t opacity) { auto scaleMethod = image->scale < DOWN_SCALE_TOLERANCE ? _interpDownScaler : _interpUpScaler; auto sampleSize = _sampleSize(image->scale); auto span = image->rle->spans; int32_t miny = 0, maxy = 0; for (uint32_t i = 0; i < image->rle->size; ++i, ++span) { SCALED_IMAGE_RANGE_Y(span->y) auto cmp = &surface->compositor->image.buf8[span->y * surface->compositor->image.stride + span->x]; auto dst = &surface->buf8[span->y * surface->stride + span->x]; auto a = MULTIPLY(span->coverage, opacity); for (uint32_t x = static_cast(span->x); x < static_cast(span->x) + span->len; ++x, ++cmp, ++dst) { SCALED_IMAGE_RANGE_X auto src = scaleMethod(image->buf8, image->stride, image->w, image->h, sx, sy, miny, maxy, sampleSize); if (a < 255) src = MULTIPLY(src, a); src = maskOp(src, *cmp, 0); //not use alpha *dst = src + MULTIPLY(*dst, ~src); } } return _compositeMaskImage(surface, &surface->compositor->image, surface->compositor->bbox); } #endif static bool _rasterScaledMaskedRleImage(SwSurface* surface, const SwImage* image, const Matrix* itransform, const SwBBox& region, uint8_t opacity) { #if 0 //Enable it when GRAYSCALE image is supported TVGLOG("SW_ENGINE", "Scaled Masked(%d) Rle Image", (int)surface->compositor->method); //8bit masking channels composition if (surface->channelSize != sizeof(uint8_t)) return false; auto maskOp = _getMaskOp(surface->compositor->method); if (_direct(surface->compositor->method)) return _rasterDirectScaledMaskedRleImage(surface, image, itransform, region, maskOp, opacity); else return _rasterCompositeScaledMaskedRleImage(surface, image, itransform, region, maskOp, opacity); #endif return false; } static bool _rasterScaledMattedRleImage(SwSurface* surface, const SwImage* image, const Matrix* itransform, const SwBBox& region, uint8_t opacity) { TVGLOG("SW_ENGINE", "Scaled Matted(%d) Rle Image", (int)surface->compositor->method); auto span = image->rle->spans; auto csize = surface->compositor->image.channelSize; auto alpha = surface->alpha(surface->compositor->method); auto scaleMethod = image->scale < DOWN_SCALE_TOLERANCE ? _interpDownScaler : _interpUpScaler; auto sampleSize = _sampleSize(image->scale); int32_t miny = 0, maxy = 0; for (uint32_t i = 0; i < image->rle->size; ++i, ++span) { SCALED_IMAGE_RANGE_Y(span->y) auto dst = &surface->buf32[span->y * surface->stride + span->x]; auto cmp = &surface->compositor->image.buf8[(span->y * surface->compositor->image.stride + span->x) * csize]; auto a = MULTIPLY(span->coverage, opacity); for (uint32_t x = static_cast(span->x); x < static_cast(span->x) + span->len; ++x, ++dst, cmp += csize) { SCALED_IMAGE_RANGE_X auto src = scaleMethod(image->buf32, image->stride, image->w, image->h, sx, sy, miny, maxy, sampleSize); src = ALPHA_BLEND(src, (a == 255) ? alpha(cmp) : MULTIPLY(alpha(cmp), a)); *dst = src + ALPHA_BLEND(*dst, IA(src)); } } return true; } static bool _rasterScaledBlendingRleImage(SwSurface* surface, const SwImage* image, const Matrix* itransform, const SwBBox& region, uint8_t opacity) { auto span = image->rle->spans; auto scaleMethod = image->scale < DOWN_SCALE_TOLERANCE ? _interpDownScaler : _interpUpScaler; auto sampleSize = _sampleSize(image->scale); int32_t miny = 0, maxy = 0; for (uint32_t i = 0; i < image->rle->size; ++i, ++span) { SCALED_IMAGE_RANGE_Y(span->y) auto dst = &surface->buf32[span->y * surface->stride + span->x]; auto alpha = MULTIPLY(span->coverage, opacity); if (alpha == 255) { for (uint32_t x = static_cast(span->x); x < static_cast(span->x) + span->len; ++x, ++dst) { SCALED_IMAGE_RANGE_X auto src = scaleMethod(image->buf32, image->stride, image->w, image->h, sx, sy, miny, maxy, sampleSize); auto tmp = surface->blender(src, *dst, 255); *dst = INTERPOLATE(tmp, *dst, A(src)); } } else { for (uint32_t x = static_cast(span->x); x < static_cast(span->x) + span->len; ++x, ++dst) { SCALED_IMAGE_RANGE_X auto src = scaleMethod(image->buf32, image->stride, image->w, image->h, sx, sy, miny, maxy, sampleSize); auto tmp = surface->blender(src, *dst, 255); *dst = INTERPOLATE(tmp, *dst, MULTIPLY(alpha, A(src))); } } } return true; } static bool _rasterScaledRleImage(SwSurface* surface, const SwImage* image, const Matrix* itransform, const SwBBox& region, uint8_t opacity) { auto span = image->rle->spans; auto scaleMethod = image->scale < DOWN_SCALE_TOLERANCE ? _interpDownScaler : _interpUpScaler; auto sampleSize = _sampleSize(image->scale); int32_t miny = 0, maxy = 0; for (uint32_t i = 0; i < image->rle->size; ++i, ++span) { SCALED_IMAGE_RANGE_Y(span->y) auto dst = &surface->buf32[span->y * surface->stride + span->x]; auto alpha = MULTIPLY(span->coverage, opacity); for (uint32_t x = static_cast(span->x); x < static_cast(span->x) + span->len; ++x, ++dst) { SCALED_IMAGE_RANGE_X auto src = scaleMethod(image->buf32, image->stride, image->w, image->h, sx, sy, miny, maxy, sampleSize); if (alpha < 255) src = ALPHA_BLEND(src, alpha); *dst = src + ALPHA_BLEND(*dst, IA(src)); } } return true; } static bool _scaledRleImage(SwSurface* surface, const SwImage* image, const Matrix& transform, const SwBBox& region, uint8_t opacity) { if (surface->channelSize == sizeof(uint8_t)) { TVGERR("SW_ENGINE", "Not supported scaled rle image!"); return false; } Matrix itransform; if (!mathInverse(&transform, &itransform)) return true; if (_compositing(surface)) { if (_matting(surface)) return _rasterScaledMattedRleImage(surface, image, &itransform, region, opacity); else return _rasterScaledMaskedRleImage(surface, image, &itransform, region, opacity); } else if (_blending(surface)) { return _rasterScaledBlendingRleImage(surface, image, &itransform, region, opacity); } else { return _rasterScaledRleImage(surface, image, &itransform, region, opacity); } return false; } /************************************************************************/ /* RLE Direct Image */ /************************************************************************/ #if 0 //Enable it when GRAYSCALE image is supported static bool _rasterCompositeDirectMaskedRleImage(SwSurface* surface, const SwImage* image, SwMask maskOp, uint8_t opacity) { auto span = image->rle->spans; auto cbuffer = surface->compositor->image.buf8; auto ctride = surface->compositor->image.stride; for (uint32_t i = 0; i < image->rle->size; ++i, ++span) { auto src = image->buf8 + (span->y + image->oy) * image->stride + (span->x + image->ox); auto cmp = &cbuffer[span->y * ctride + span->x]; auto alpha = MULTIPLY(span->coverage, opacity); if (alpha == 255) { for (uint32_t x = 0; x < span->len; ++x, ++src, ++cmp) { *cmp = maskOp(*src, *cmp, ~*src); } } else { for (uint32_t x = 0; x < span->len; ++x, ++src, ++cmp) { auto tmp = MULTIPLY(*src, alpha); *cmp = maskOp(*src, *cmp, ~tmp); } } } return _compositeMaskImage(surface, &surface->compositor->image, surface->compositor->bbox); } static bool _rasterDirectDirectMaskedRleImage(SwSurface* surface, const SwImage* image, SwMask maskOp, uint8_t opacity) { auto span = image->rle->spans; auto cbuffer = surface->compositor->image.buf8; auto ctride = surface->compositor->image.stride; for (uint32_t i = 0; i < image->rle->size; ++i, ++span) { auto src = image->buf8 + (span->y + image->oy) * image->stride + (span->x + image->ox); auto cmp = &cbuffer[span->y * ctride + span->x]; auto dst = &surface->buf8[span->y * surface->stride + span->x]; auto alpha = MULTIPLY(span->coverage, opacity); if (alpha == 255) { for (uint32_t x = 0; x < span->len; ++x, ++src, ++cmp, ++dst) { auto tmp = maskOp(*src, *cmp, 0); //not use alpha *dst = INTERPOLATE8(tmp, *dst, (255 - tmp)); } } else { for (uint32_t x = 0; x < span->len; ++x, ++src, ++cmp, ++dst) { auto tmp = maskOp(MULTIPLY(*src, alpha), *cmp, 0); //not use alpha *dst = INTERPOLATE8(tmp, *dst, (255 - tmp)); } } } return true; } #endif static bool _rasterDirectMaskedRleImage(SwSurface* surface, const SwImage* image, uint8_t opacity) { #if 0 //Enable it when GRAYSCALE image is supported TVGLOG("SW_ENGINE", "Direct Masked(%d) Rle Image", (int)surface->compositor->method); //8bit masking channels composition if (surface->channelSize != sizeof(uint8_t)) return false; auto maskOp = _getMaskOp(surface->compositor->method); if (_direct(surface->compositor->method)) _rasterDirectDirectMaskedRleImage(surface, image, maskOp, opacity); else return _rasterCompositeDirectMaskedRleImage(surface, image, maskOp, opacity); #endif return false; } static bool _rasterDirectMattedRleImage(SwSurface* surface, const SwImage* image, uint8_t opacity) { TVGLOG("SW_ENGINE", "Direct Matted(%d) Rle Image", (int)surface->compositor->method); auto span = image->rle->spans; auto csize = surface->compositor->image.channelSize; auto cbuffer = surface->compositor->image.buf8; auto alpha = surface->alpha(surface->compositor->method); for (uint32_t i = 0; i < image->rle->size; ++i, ++span) { auto dst = &surface->buf32[span->y * surface->stride + span->x]; auto cmp = &cbuffer[(span->y * surface->compositor->image.stride + span->x) * csize]; auto img = image->buf32 + (span->y + image->oy) * image->stride + (span->x + image->ox); auto a = MULTIPLY(span->coverage, opacity); if (a == 255) { for (uint32_t x = 0; x < span->len; ++x, ++dst, ++img, cmp += csize) { auto tmp = ALPHA_BLEND(*img, alpha(cmp)); *dst = tmp + ALPHA_BLEND(*dst, IA(tmp)); } } else { for (uint32_t x = 0; x < span->len; ++x, ++dst, ++img, cmp += csize) { auto tmp = ALPHA_BLEND(*img, MULTIPLY(a, alpha(cmp))); *dst = tmp + ALPHA_BLEND(*dst, IA(tmp)); } } } return true; } static bool _rasterDirectBlendingRleImage(SwSurface* surface, const SwImage* image, uint8_t opacity) { auto span = image->rle->spans; for (uint32_t i = 0; i < image->rle->size; ++i, ++span) { auto dst = &surface->buf32[span->y * surface->stride + span->x]; auto img = image->buf32 + (span->y + image->oy) * image->stride + (span->x + image->ox); auto alpha = MULTIPLY(span->coverage, opacity); if (alpha == 255) { for (uint32_t x = 0; x < span->len; ++x, ++dst, ++img) { *dst = surface->blender(*img, *dst, 255); } } else { for (uint32_t x = 0; x < span->len; ++x, ++dst, ++img) { auto tmp = surface->blender(*img, *dst, 255); *dst = INTERPOLATE(tmp, *dst, MULTIPLY(alpha, A(*img))); } } } return true; } static bool _rasterDirectRleImage(SwSurface* surface, const SwImage* image, uint8_t opacity) { auto span = image->rle->spans; for (uint32_t i = 0; i < image->rle->size; ++i, ++span) { auto dst = &surface->buf32[span->y * surface->stride + span->x]; auto img = image->buf32 + (span->y + image->oy) * image->stride + (span->x + image->ox); auto alpha = MULTIPLY(span->coverage, opacity); if (alpha == 255) { for (uint32_t x = 0; x < span->len; ++x, ++dst, ++img) { *dst = *img + ALPHA_BLEND(*dst, IA(*img)); } } else { for (uint32_t x = 0; x < span->len; ++x, ++dst, ++img) { auto src = ALPHA_BLEND(*img, alpha); *dst = src + ALPHA_BLEND(*dst, IA(src)); } } } return true; } static bool _directRleImage(SwSurface* surface, const SwImage* image, uint8_t opacity) { if (surface->channelSize == sizeof(uint8_t)) { TVGERR("SW_ENGINE", "Not supported grayscale rle image!"); return false; } if (_compositing(surface)) { if (_matting(surface)) return _rasterDirectMattedRleImage(surface, image, opacity); else return _rasterDirectMaskedRleImage(surface, image, opacity); } else if (_blending(surface)) { return _rasterDirectBlendingRleImage(surface, image, opacity); } else { return _rasterDirectRleImage(surface, image, opacity); } return false; } /************************************************************************/ /*Scaled Image */ /************************************************************************/ #if 0 //Enable it when GRAYSCALE image is supported static bool _rasterCompositeScaledMaskedImage(SwSurface* surface, const SwImage* image, const Matrix* itransform, const SwBBox& region, SwMask maskOp, uint8_t opacity) { auto scaleMethod = image->scale < DOWN_SCALE_TOLERANCE ? _interpDownScaler : _interpUpScaler; auto sampleSize = _sampleSize(image->scale); auto cstride = surface->compositor->image.stride; auto cbuffer = surface->compositor->image.buf8 + (region.min.y * cstride + region.min.x); int32_t miny = 0, maxy = 0; for (auto y = region.min.y; y < region.max.y; ++y) { SCALED_IMAGE_RANGE_Y(y) auto cmp = cbuffer; for (auto x = region.min.x; x < region.max.x; ++x, ++cmp) { SCALED_IMAGE_RANGE_X auto src = scaleMethod(image->buf8, image->stride, image->w, image->h, sx, sy, miny, maxy, sampleSize); if (opacity < 255) src = MULTIPLY(src, opacity); *cmp = maskOp(src, *cmp, ~src); } cbuffer += cstride; } return _compositeMaskImage(surface, &surface->compositor->image, surface->compositor->bbox); } static bool _rasterDirectScaledMaskedImage(SwSurface* surface, const SwImage* image, const Matrix* itransform, const SwBBox& region, SwMask maskOp, uint8_t opacity) { auto scaleMethod = image->scale < DOWN_SCALE_TOLERANCE ? _interpDownScaler : _interpUpScaler; auto sampleSize = _sampleSize(image->scale); auto cstride = surface->compositor->image.stride; auto cbuffer = surface->compositor->image.buf8 + (region.min.y * cstride + region.min.x); auto dbuffer = surface->buf8 + (region.min.y * surface->stride + region.min.x); int32_t miny = 0, maxy = 0; for (auto y = region.min.y; y < region.max.y; ++y) { SCALED_IMAGE_RANGE_Y(y) auto cmp = cbuffer; auto dst = dbuffer; for (auto x = region.min.x; x < region.max.x; ++x, ++cmp, ++dst) { SCALED_IMAGE_RANGE_X auto src = scaleMethod(image->buf8, image->stride, image->w, image->h, sx, sy, miny, maxy, sampleSize); if (opacity < 255) src = MULTIPLY(src, opacity); src = maskOp(src, *cmp, 0); //not use alpha *dst = src + MULTIPLY(*dst, ~src); } cbuffer += cstride; dbuffer += surface->stride; } return true; } #endif static bool _rasterScaledMaskedImage(SwSurface* surface, const SwImage* image, const Matrix* itransform, const SwBBox& region, uint8_t opacity) { TVGERR("SW_ENGINE", "Not supported ScaledMaskedImage!"); #if 0 //Enable it when GRAYSCALE image is supported TVGLOG("SW_ENGINE", "Scaled Masked(%d) Image [Region: %lu %lu %lu %lu]", (int)surface->compositor->method, region.min.x, region.min.y, region.max.x - region.min.x, region.max.y - region.min.y); auto maskOp = _getMaskOp(surface->compositor->method); if (_direct(surface->compositor->method)) return _rasterDirectScaledMaskedImage(surface, image, itransform, region, maskOp, opacity); else return _rasterCompositeScaledMaskedImage(surface, image, itransform, region, maskOp, opacity); #endif return false; } static bool _rasterScaledMattedImage(SwSurface* surface, const SwImage* image, const Matrix* itransform, const SwBBox& region, uint8_t opacity) { if (surface->channelSize == sizeof(uint8_t)) { TVGERR("SW_ENGINE", "Not supported grayscale scaled matted image!"); return false; } auto dbuffer = surface->buf32 + (region.min.y * surface->stride + region.min.x); auto csize = surface->compositor->image.channelSize; auto cbuffer = surface->compositor->image.buf8 + (region.min.y * surface->compositor->image.stride + region.min.x) * csize; auto alpha = surface->alpha(surface->compositor->method); TVGLOG("SW_ENGINE", "Scaled Matted(%d) Image [Region: %lu %lu %lu %lu]", (int)surface->compositor->method, region.min.x, region.min.y, region.max.x - region.min.x, region.max.y - region.min.y); auto scaleMethod = image->scale < DOWN_SCALE_TOLERANCE ? _interpDownScaler : _interpUpScaler; auto sampleSize = _sampleSize(image->scale); int32_t miny = 0, maxy = 0; for (auto y = region.min.y; y < region.max.y; ++y) { SCALED_IMAGE_RANGE_Y(y) auto dst = dbuffer; auto cmp = cbuffer; for (auto x = region.min.x; x < region.max.x; ++x, ++dst, cmp += csize) { SCALED_IMAGE_RANGE_X auto src = scaleMethod(image->buf32, image->stride, image->w, image->h, sx, sy, miny, maxy, sampleSize); auto tmp = ALPHA_BLEND(src, opacity == 255 ? alpha(cmp) : MULTIPLY(opacity, alpha(cmp))); *dst = tmp + ALPHA_BLEND(*dst, IA(tmp)); } dbuffer += surface->stride; cbuffer += surface->compositor->image.stride * csize; } return true; } static bool _rasterScaledBlendingImage(SwSurface* surface, const SwImage* image, const Matrix* itransform, const SwBBox& region, uint8_t opacity) { if (surface->channelSize == sizeof(uint8_t)) { TVGERR("SW_ENGINE", "Not supported grayscale scaled blending image!"); return false; } auto dbuffer = surface->buf32 + (region.min.y * surface->stride + region.min.x); auto scaleMethod = image->scale < DOWN_SCALE_TOLERANCE ? _interpDownScaler : _interpUpScaler; auto sampleSize = _sampleSize(image->scale); int32_t miny = 0, maxy = 0; for (auto y = region.min.y; y < region.max.y; ++y, dbuffer += surface->stride) { SCALED_IMAGE_RANGE_Y(y) auto dst = dbuffer; for (auto x = region.min.x; x < region.max.x; ++x, ++dst) { SCALED_IMAGE_RANGE_X auto src = scaleMethod(image->buf32, image->stride, image->w, image->h, sx, sy, miny, maxy, sampleSize); auto tmp = surface->blender(src, *dst, 255); *dst = INTERPOLATE(tmp, *dst, MULTIPLY(opacity, A(src))); } } return true; } static bool _rasterScaledImage(SwSurface* surface, const SwImage* image, const Matrix* itransform, const SwBBox& region, uint8_t opacity) { auto scaleMethod = image->scale < DOWN_SCALE_TOLERANCE ? _interpDownScaler : _interpUpScaler; auto sampleSize = _sampleSize(image->scale); int32_t miny = 0, maxy = 0; //32bits channels if (surface->channelSize == sizeof(uint32_t)) { auto buffer = surface->buf32 + (region.min.y * surface->stride + region.min.x); for (auto y = region.min.y; y < region.max.y; ++y, buffer += surface->stride) { SCALED_IMAGE_RANGE_Y(y) auto dst = buffer; for (auto x = region.min.x; x < region.max.x; ++x, ++dst) { SCALED_IMAGE_RANGE_X auto src = scaleMethod(image->buf32, image->stride, image->w, image->h, sx, sy, miny, maxy, sampleSize); if (opacity < 255) src = ALPHA_BLEND(src, opacity); *dst = src + ALPHA_BLEND(*dst, IA(src)); } } } else if (surface->channelSize == sizeof(uint8_t)) { auto buffer = surface->buf8 + (region.min.y * surface->stride + region.min.x); for (auto y = region.min.y; y < region.max.y; ++y, buffer += surface->stride) { SCALED_IMAGE_RANGE_Y(y) auto dst = buffer; for (auto x = region.min.x; x < region.max.x; ++x, ++dst) { SCALED_IMAGE_RANGE_X auto src = scaleMethod(image->buf32, image->stride, image->w, image->h, sx, sy, miny, maxy, sampleSize); *dst = MULTIPLY(A(src), opacity); } } } return true; } static bool _scaledImage(SwSurface* surface, const SwImage* image, const Matrix& transform, const SwBBox& region, uint8_t opacity) { Matrix itransform; if (!mathInverse(&transform, &itransform)) return true; if (_compositing(surface)) { if (_matting(surface)) return _rasterScaledMattedImage(surface, image, &itransform, region, opacity); else return _rasterScaledMaskedImage(surface, image, &itransform, region, opacity); } else if (_blending(surface)) { return _rasterScaledBlendingImage(surface, image, &itransform, region, opacity); } else { return _rasterScaledImage(surface, image, &itransform, region, opacity); } return false; } /************************************************************************/ /* Direct Image */ /************************************************************************/ #if 0 //Enable it when GRAYSCALE image is supported static bool _rasterCompositeDirectMaskedImage(SwSurface* surface, const SwImage* image, const SwBBox& region, SwMask maskOp, uint8_t opacity) { auto h = static_cast(region.max.y - region.min.y); auto w = static_cast(region.max.x - region.min.x); auto cstride = surface->compositor->image.stride; auto cbuffer = surface->compositor->image.buf8 + (region.min.y * cstride + region.min.x); //compositor buffer auto sbuffer = image->buf8 + (region.min.y + image->oy) * image->stride + (region.min.x + image->ox); for (uint32_t y = 0; y < h; ++y) { auto cmp = cbuffer; auto src = sbuffer; if (opacity == 255) { for (uint32_t x = 0; x < w; ++x, ++src, ++cmp) { *cmp = maskOp(*src, *cmp, ~*src); } } else { for (uint32_t x = 0; x < w; ++x, ++src, ++cmp) { auto tmp = MULTIPLY(*src, opacity); *cmp = maskOp(tmp, *cmp, ~tmp); } } cbuffer += cstride; sbuffer += image->stride; } return _compositeMaskImage(surface, &surface->compositor->image, surface->compositor->bbox); } static bool _rasterDirectDirectMaskedImage(SwSurface* surface, const SwImage* image, const SwBBox& region, SwMask maskOp, uint8_t opacity) { auto h = static_cast(region.max.y - region.min.y); auto w = static_cast(region.max.x - region.min.x); auto cstride = surface->compositor->image.stride; auto cbuffer = surface->compositor->image.buf32 + (region.min.y * cstride + region.min.x); //compositor buffer auto dbuffer = surface->buf8 + (region.min.y * surface->stride + region.min.x); //destination buffer auto sbuffer = image->buf8 + (region.min.y + image->oy) * image->stride + (region.min.x + image->ox); for (uint32_t y = 0; y < h; ++y) { auto cmp = cbuffer; auto dst = dbuffer; auto src = sbuffer; if (opacity == 255) { for (uint32_t x = 0; x < w; ++x, ++src, ++cmp, ++dst) { auto tmp = maskOp(*src, *cmp, 0); //not use alpha *dst = tmp + MULTIPLY(*dst, ~tmp); } } else { for (uint32_t x = 0; x < w; ++x, ++src, ++cmp, ++dst) { auto tmp = maskOp(MULTIPLY(*src, opacity), *cmp, 0); //not use alpha *dst = tmp + MULTIPLY(*dst, ~tmp); } } cbuffer += cstride; dbuffer += surface->stride; sbuffer += image->stride; } return true; } #endif static bool _rasterDirectMaskedImage(SwSurface* surface, const SwImage* image, const SwBBox& region, uint8_t opacity) { TVGERR("SW_ENGINE", "Not Supported: Direct Masked(%d) Image [Region: %lu %lu %lu %lu]", (int)surface->compositor->method, region.min.x, region.min.y, region.max.x - region.min.x, region.max.y - region.min.y); #if 0 //Enable it when GRAYSCALE image is supported auto maskOp = _getMaskOp(surface->compositor->method); if (_direct(surface->compositor->method)) return _rasterDirectDirectMaskedImage(surface, image, region, maskOp, opacity); else return _rasterCompositeDirectMaskedImage(surface, image, region, maskOp, opacity); #endif return false; } static bool _rasterDirectMattedImage(SwSurface* surface, const SwImage* image, const SwBBox& region, uint8_t opacity) { auto h = static_cast(region.max.y - region.min.y); auto w = static_cast(region.max.x - region.min.x); auto csize = surface->compositor->image.channelSize; auto alpha = surface->alpha(surface->compositor->method); auto sbuffer = image->buf32 + (region.min.y + image->oy) * image->stride + (region.min.x + image->ox); auto cbuffer = surface->compositor->image.buf8 + (region.min.y * surface->compositor->image.stride + region.min.x) * csize; //compositor buffer TVGLOG("SW_ENGINE", "Direct Matted(%d) Image [Region: %lu %lu %u %u]", (int)surface->compositor->method, region.min.x, region.min.y, w, h); //32 bits if (surface->channelSize == sizeof(uint32_t)) { auto buffer = surface->buf32 + (region.min.y * surface->stride) + region.min.x; for (uint32_t y = 0; y < h; ++y) { auto dst = buffer; auto cmp = cbuffer; auto src = sbuffer; if (opacity == 255) { for (uint32_t x = 0; x < w; ++x, ++dst, ++src, cmp += csize) { auto tmp = ALPHA_BLEND(*src, alpha(cmp)); *dst = tmp + ALPHA_BLEND(*dst, IA(tmp)); } } else { for (uint32_t x = 0; x < w; ++x, ++dst, ++src, cmp += csize) { auto tmp = ALPHA_BLEND(*src, MULTIPLY(opacity, alpha(cmp))); *dst = tmp + ALPHA_BLEND(*dst, IA(tmp)); } } buffer += surface->stride; cbuffer += surface->compositor->image.stride * csize; sbuffer += image->stride; } //8 bits } else if (surface->channelSize == sizeof(uint8_t)) { auto buffer = surface->buf8 + (region.min.y * surface->stride) + region.min.x; for (uint32_t y = 0; y < h; ++y) { auto dst = buffer; auto cmp = cbuffer; auto src = sbuffer; if (opacity == 255) { for (uint32_t x = 0; x < w; ++x, ++dst, ++src, cmp += csize) { auto tmp = MULTIPLY(A(*src), alpha(cmp)); *dst = tmp + MULTIPLY(*dst, 255 - tmp); } } else { for (uint32_t x = 0; x < w; ++x, ++dst, ++src, cmp += csize) { auto tmp = MULTIPLY(A(*src), MULTIPLY(opacity, alpha(cmp))); *dst = tmp + MULTIPLY(*dst, 255 - tmp); } } buffer += surface->stride; cbuffer += surface->compositor->image.stride * csize; sbuffer += image->stride; } } return true; } static bool _rasterDirectBlendingImage(SwSurface* surface, const SwImage* image, const SwBBox& region, uint8_t opacity) { if (surface->channelSize == sizeof(uint8_t)) { TVGERR("SW_ENGINE", "Not supported grayscale image!"); return false; } auto dbuffer = &surface->buf32[region.min.y * surface->stride + region.min.x]; auto sbuffer = image->buf32 + (region.min.y + image->oy) * image->stride + (region.min.x + image->ox); for (auto y = region.min.y; y < region.max.y; ++y) { auto dst = dbuffer; auto src = sbuffer; if (opacity == 255) { for (auto x = region.min.x; x < region.max.x; x++, dst++, src++) { auto tmp = surface->blender(*src, *dst, 255); *dst = INTERPOLATE(tmp, *dst, A(*src)); } } else { for (auto x = region.min.x; x < region.max.x; x++, dst++, src++) { auto tmp = surface->blender(*src, *dst, 255); *dst = INTERPOLATE(tmp, *dst, MULTIPLY(opacity, A(*src))); } } dbuffer += surface->stride; sbuffer += image->stride; } return true; } static bool _rasterDirectImage(SwSurface* surface, const SwImage* image, const SwBBox& region, uint8_t opacity) { auto sbuffer = image->buf32 + (region.min.y + image->oy) * image->stride + (region.min.x + image->ox); //32bits channels if (surface->channelSize == sizeof(uint32_t)) { auto dbuffer = &surface->buf32[region.min.y * surface->stride + region.min.x]; for (auto y = region.min.y; y < region.max.y; ++y) { auto dst = dbuffer; auto src = sbuffer; if (opacity == 255) { for (auto x = region.min.x; x < region.max.x; x++, dst++, src++) { *dst = *src + ALPHA_BLEND(*dst, IA(*src)); } } else { for (auto x = region.min.x; x < region.max.x; ++x, ++dst, ++src) { auto tmp = ALPHA_BLEND(*src, opacity); *dst = tmp + ALPHA_BLEND(*dst, IA(tmp)); } } dbuffer += surface->stride; sbuffer += image->stride; } //8bits grayscale } else if (surface->channelSize == sizeof(uint8_t)) { auto dbuffer = &surface->buf8[region.min.y * surface->stride + region.min.x]; for (auto y = region.min.y; y < region.max.y; ++y, dbuffer += surface->stride, sbuffer += image->stride) { auto dst = dbuffer; auto src = sbuffer; if (opacity == 255) { for (auto x = region.min.x; x < region.max.x; ++x, ++dst, ++src) { *dst = *src + MULTIPLY(*dst, ~*src); } } else { for (auto x = region.min.x; x < region.max.x; ++x, ++dst, ++src) { *dst = INTERPOLATE8(*src, *dst, opacity); } } } } return true; } static bool _rasterDirectMattedBlendingImage(SwSurface* surface, const SwImage* image, const SwBBox& region, uint8_t opacity) { if (surface->channelSize == sizeof(uint8_t)) { TVGERR("SW_ENGINE", "Not supported grayscale image!"); return false; } auto h = static_cast(region.max.y - region.min.y); auto w = static_cast(region.max.x - region.min.x); auto csize = surface->compositor->image.channelSize; auto alpha = surface->alpha(surface->compositor->method); auto sbuffer = image->buf32 + (region.min.y + image->oy) * image->stride + (region.min.x + image->ox); auto cbuffer = surface->compositor->image.buf8 + (region.min.y * surface->compositor->image.stride + region.min.x) * csize; //compositor buffer auto buffer = surface->buf32 + (region.min.y * surface->stride) + region.min.x; for (uint32_t y = 0; y < h; ++y) { auto dst = buffer; auto cmp = cbuffer; auto src = sbuffer; if (opacity == 255) { for (uint32_t x = 0; x < w; ++x, ++dst, ++src, cmp += csize) { auto tmp = ALPHA_BLEND(*src, alpha(cmp)); *dst = INTERPOLATE(surface->blender(tmp, *dst, 255), *dst, A(tmp)); } } else { for (uint32_t x = 0; x < w; ++x, ++dst, ++src, cmp += csize) { auto tmp = ALPHA_BLEND(*src, alpha(cmp)); *dst = INTERPOLATE(surface->blender(tmp, *dst, 255), *dst, MULTIPLY(opacity, A(tmp))); } } buffer += surface->stride; cbuffer += surface->compositor->image.stride * csize; sbuffer += image->stride; } return true; } //Blenders for the following scenarios: [Composition / Non-Composition] * [Opaque / Translucent] static bool _directImage(SwSurface* surface, const SwImage* image, const SwBBox& region, uint8_t opacity) { if (_compositing(surface)) { if (_matting(surface)) { if (_blending(surface)) return _rasterDirectMattedBlendingImage(surface, image, region, opacity); else return _rasterDirectMattedImage(surface, image, region, opacity); } else return _rasterDirectMaskedImage(surface, image, region, opacity); } else if (_blending(surface)) { return _rasterDirectBlendingImage(surface, image, region, opacity); } else { return _rasterDirectImage(surface, image, region, opacity); } return false; } //Blenders for the following scenarios: [RLE / Whole] * [Direct / Scaled / Transformed] static bool _rasterImage(SwSurface* surface, SwImage* image, const Matrix& transform, const SwBBox& region, uint8_t opacity) { //RLE Image if (image->rle) { if (image->direct) return _directRleImage(surface, image, opacity); else if (image->scaled) return _scaledRleImage(surface, image, transform, region, opacity); else return _rasterTexmapPolygon(surface, image, transform, nullptr, opacity); //Whole Image } else { if (image->direct) return _directImage(surface, image, region, opacity); else if (image->scaled) return _scaledImage(surface, image, transform, region, opacity); else return _rasterTexmapPolygon(surface, image, transform, ®ion, opacity); } } /************************************************************************/ /* Rect Gradient */ /************************************************************************/ template static bool _rasterCompositeGradientMaskedRect(SwSurface* surface, const SwBBox& region, const SwFill* fill, SwMask maskOp) { auto h = static_cast(region.max.y - region.min.y); auto w = static_cast(region.max.x - region.min.x); auto cstride = surface->compositor->image.stride; auto cbuffer = surface->compositor->image.buf8 + (region.min.y * cstride + region.min.x); for (uint32_t y = 0; y < h; ++y) { fillMethod()(fill, cbuffer, region.min.y + y, region.min.x, w, maskOp, 255); cbuffer += surface->stride; } return _compositeMaskImage(surface, &surface->compositor->image, surface->compositor->bbox); } template static bool _rasterDirectGradientMaskedRect(SwSurface* surface, const SwBBox& region, const SwFill* fill, SwMask maskOp) { auto h = static_cast(region.max.y - region.min.y); auto w = static_cast(region.max.x - region.min.x); auto cstride = surface->compositor->image.stride; auto cbuffer = surface->compositor->image.buf8 + (region.min.y * cstride + region.min.x); auto dbuffer = surface->buf8 + (region.min.y * surface->stride + region.min.x); for (uint32_t y = 0; y < h; ++y) { fillMethod()(fill, dbuffer, region.min.y + y, region.min.x, w, cbuffer, maskOp, 255); cbuffer += cstride; dbuffer += surface->stride; } return true; } template static bool _rasterGradientMaskedRect(SwSurface* surface, const SwBBox& region, const SwFill* fill) { auto method = surface->compositor->method; TVGLOG("SW_ENGINE", "Masked(%d) Gradient [Region: %lu %lu %lu %lu]", (int)method, region.min.x, region.min.y, region.max.x - region.min.x, region.max.y - region.min.y); auto maskOp = _getMaskOp(method); if (_direct(method)) return _rasterDirectGradientMaskedRect(surface, region, fill, maskOp); else return _rasterCompositeGradientMaskedRect(surface, region, fill, maskOp); return false; } template static bool _rasterGradientMattedRect(SwSurface* surface, const SwBBox& region, const SwFill* fill) { auto buffer = surface->buf32 + (region.min.y * surface->stride) + region.min.x; auto h = static_cast(region.max.y - region.min.y); auto w = static_cast(region.max.x - region.min.x); auto csize = surface->compositor->image.channelSize; auto cbuffer = surface->compositor->image.buf8 + (region.min.y * surface->compositor->image.stride + region.min.x) * csize; auto alpha = surface->alpha(surface->compositor->method); TVGLOG("SW_ENGINE", "Matted(%d) Gradient [Region: %lu %lu %u %u]", (int)surface->compositor->method, region.min.x, region.min.y, w, h); for (uint32_t y = 0; y < h; ++y) { fillMethod()(fill, buffer, region.min.y + y, region.min.x, w, cbuffer, alpha, csize, 255); buffer += surface->stride; cbuffer += surface->stride * csize; } return true; } template static bool _rasterBlendingGradientRect(SwSurface* surface, const SwBBox& region, const SwFill* fill) { auto buffer = surface->buf32 + (region.min.y * surface->stride) + region.min.x; auto w = static_cast(region.max.x - region.min.x); auto h = static_cast(region.max.y - region.min.y); if (fill->translucent) { for (uint32_t y = 0; y < h; ++y) { fillMethod()(fill, buffer + y * surface->stride, region.min.y + y, region.min.x, w, opBlendPreNormal, surface->blender, 255); } } else { for (uint32_t y = 0; y < h; ++y) { fillMethod()(fill, buffer + y * surface->stride, region.min.y + y, region.min.x, w, opBlendSrcOver, surface->blender, 255); } } return true; } template static bool _rasterTranslucentGradientRect(SwSurface* surface, const SwBBox& region, const SwFill* fill) { auto buffer = surface->buf32 + (region.min.y * surface->stride) + region.min.x; auto h = static_cast(region.max.y - region.min.y); auto w = static_cast(region.max.x - region.min.x); for (uint32_t y = 0; y < h; ++y) { fillMethod()(fill, buffer, region.min.y + y, region.min.x, w, opBlendPreNormal, 255); buffer += surface->stride; } return true; } template static bool _rasterSolidGradientRect(SwSurface* surface, const SwBBox& region, const SwFill* fill) { auto buffer = surface->buf32 + (region.min.y * surface->stride) + region.min.x; auto w = static_cast(region.max.x - region.min.x); auto h = static_cast(region.max.y - region.min.y); for (uint32_t y = 0; y < h; ++y) { fillMethod()(fill, buffer + y * surface->stride, region.min.y + y, region.min.x, w, opBlendSrcOver, 255); } return true; } static bool _rasterLinearGradientRect(SwSurface* surface, const SwBBox& region, const SwFill* fill) { if (_compositing(surface)) { if (_matting(surface)) return _rasterGradientMattedRect(surface, region, fill); else return _rasterGradientMaskedRect(surface, region, fill); } else if (_blending(surface)) { return _rasterBlendingGradientRect(surface, region, fill); } else { if (fill->translucent) return _rasterTranslucentGradientRect(surface, region, fill); else _rasterSolidGradientRect(surface, region, fill); } return false; } static bool _rasterRadialGradientRect(SwSurface* surface, const SwBBox& region, const SwFill* fill) { if (_compositing(surface)) { if (_matting(surface)) return _rasterGradientMattedRect(surface, region, fill); else return _rasterGradientMaskedRect(surface, region, fill); } else if (_blending(surface)) { return _rasterBlendingGradientRect(surface, region, fill); } else { if (fill->translucent) return _rasterTranslucentGradientRect(surface, region, fill); else _rasterSolidGradientRect(surface, region, fill); } return false; } /************************************************************************/ /* Rle Gradient */ /************************************************************************/ template static bool _rasterCompositeGradientMaskedRle(SwSurface* surface, const SwRleData* rle, const SwFill* fill, SwMask maskOp) { auto span = rle->spans; auto cstride = surface->compositor->image.stride; auto cbuffer = surface->compositor->image.buf8; for (uint32_t i = 0; i < rle->size; ++i, ++span) { auto cmp = &cbuffer[span->y * cstride + span->x]; fillMethod()(fill, cmp, span->y, span->x, span->len, maskOp, span->coverage); } return _compositeMaskImage(surface, &surface->compositor->image, surface->compositor->bbox); } template static bool _rasterDirectGradientMaskedRle(SwSurface* surface, const SwRleData* rle, const SwFill* fill, SwMask maskOp) { auto span = rle->spans; auto cstride = surface->compositor->image.stride; auto cbuffer = surface->compositor->image.buf8; auto dbuffer = surface->buf8; for (uint32_t i = 0; i < rle->size; ++i, ++span) { auto cmp = &cbuffer[span->y * cstride + span->x]; auto dst = &dbuffer[span->y * surface->stride + span->x]; fillMethod()(fill, dst, span->y, span->x, span->len, cmp, maskOp, span->coverage); } return true; } template static bool _rasterGradientMaskedRle(SwSurface* surface, const SwRleData* rle, const SwFill* fill) { auto method = surface->compositor->method; TVGLOG("SW_ENGINE", "Masked(%d) Rle Linear Gradient", (int)method); auto maskOp = _getMaskOp(method); if (_direct(method)) return _rasterDirectGradientMaskedRle(surface, rle, fill, maskOp); else return _rasterCompositeGradientMaskedRle(surface, rle, fill, maskOp); return false; } template static bool _rasterGradientMattedRle(SwSurface* surface, const SwRleData* rle, const SwFill* fill) { TVGLOG("SW_ENGINE", "Matted(%d) Rle Linear Gradient", (int)surface->compositor->method); auto span = rle->spans; auto csize = surface->compositor->image.channelSize; auto cbuffer = surface->compositor->image.buf8; auto alpha = surface->alpha(surface->compositor->method); for (uint32_t i = 0; i < rle->size; ++i, ++span) { auto dst = &surface->buf32[span->y * surface->stride + span->x]; auto cmp = &cbuffer[(span->y * surface->compositor->image.stride + span->x) * csize]; fillMethod()(fill, dst, span->y, span->x, span->len, cmp, alpha, csize, span->coverage); } return true; } template static bool _rasterBlendingGradientRle(SwSurface* surface, const SwRleData* rle, const SwFill* fill) { auto span = rle->spans; for (uint32_t i = 0; i < rle->size; ++i, ++span) { auto dst = &surface->buf32[span->y * surface->stride + span->x]; fillMethod()(fill, dst, span->y, span->x, span->len, opBlendPreNormal, surface->blender, span->coverage); } return true; } template static bool _rasterTranslucentGradientRle(SwSurface* surface, const SwRleData* rle, const SwFill* fill) { auto span = rle->spans; //32 bits if (surface->channelSize == sizeof(uint32_t)) { for (uint32_t i = 0; i < rle->size; ++i, ++span) { auto dst = &surface->buf32[span->y * surface->stride + span->x]; if (span->coverage == 255) fillMethod()(fill, dst, span->y, span->x, span->len, opBlendPreNormal, 255); else fillMethod()(fill, dst, span->y, span->x, span->len, opBlendNormal, span->coverage); } //8 bits } else if (surface->channelSize == sizeof(uint8_t)) { for (uint32_t i = 0; i < rle->size; ++i, ++span) { auto dst = &surface->buf8[span->y * surface->stride + span->x]; fillMethod()(fill, dst, span->y, span->x, span->len, _opMaskAdd, 255); } } return true; } template static bool _rasterSolidGradientRle(SwSurface* surface, const SwRleData* rle, const SwFill* fill) { auto span = rle->spans; //32 bits if (surface->channelSize == sizeof(uint32_t)) { for (uint32_t i = 0; i < rle->size; ++i, ++span) { auto dst = &surface->buf32[span->y * surface->stride + span->x]; if (span->coverage == 255) fillMethod()(fill, dst, span->y, span->x, span->len, opBlendSrcOver, 255); else fillMethod()(fill, dst, span->y, span->x, span->len, opBlendInterp, span->coverage); } //8 bits } else if (surface->channelSize == sizeof(uint8_t)) { for (uint32_t i = 0; i < rle->size; ++i, ++span) { auto dst = &surface->buf8[span->y * surface->stride + span->x]; if (span->coverage == 255) fillMethod()(fill, dst, span->y, span->x, span->len, _opMaskNone, 255); else fillMethod()(fill, dst, span->y, span->x, span->len, _opMaskAdd, span->coverage); } } return true; } static bool _rasterLinearGradientRle(SwSurface* surface, const SwRleData* rle, const SwFill* fill) { if (!rle) return false; if (_compositing(surface)) { if (_matting(surface)) return _rasterGradientMattedRle(surface, rle, fill); else return _rasterGradientMaskedRle(surface, rle, fill); } else if (_blending(surface)) { return _rasterBlendingGradientRle(surface, rle, fill); } else { if (fill->translucent) return _rasterTranslucentGradientRle(surface, rle, fill); else return _rasterSolidGradientRle(surface, rle, fill); } return false; } static bool _rasterRadialGradientRle(SwSurface* surface, const SwRleData* rle, const SwFill* fill) { if (!rle) return false; if (_compositing(surface)) { if (_matting(surface)) return _rasterGradientMattedRle(surface, rle, fill); else return _rasterGradientMaskedRle(surface, rle, fill); } else if (_blending(surface)) { _rasterBlendingGradientRle(surface, rle, fill); } else { if (fill->translucent) _rasterTranslucentGradientRle(surface, rle, fill); else return _rasterSolidGradientRle(surface, rle, fill); } return false; } /************************************************************************/ /* External Class Implementation */ /************************************************************************/ void rasterGrayscale8(uint8_t *dst, uint8_t val, uint32_t offset, int32_t len) { #if defined(THORVG_AVX_VECTOR_SUPPORT) avxRasterGrayscale8(dst, val, offset, len); #elif defined(THORVG_NEON_VECTOR_SUPPORT) neonRasterGrayscale8(dst, val, offset, len); #else cRasterPixels(dst, val, offset, len); #endif } void rasterPixel32(uint32_t *dst, uint32_t val, uint32_t offset, int32_t len) { #if defined(THORVG_AVX_VECTOR_SUPPORT) avxRasterPixel32(dst, val, offset, len); #elif defined(THORVG_NEON_VECTOR_SUPPORT) neonRasterPixel32(dst, val, offset, len); #else cRasterPixels(dst, val, offset, len); #endif } bool rasterCompositor(SwSurface* surface) { //See CompositeMethod, Alpha:3, InvAlpha:4, Luma:5, InvLuma:6 surface->alphas[0] = _alpha; surface->alphas[1] = _ialpha; if (surface->cs == ColorSpace::ABGR8888 || surface->cs == ColorSpace::ABGR8888S) { surface->join = _abgrJoin; surface->alphas[2] = _abgrLuma; surface->alphas[3] = _abgrInvLuma; } else if (surface->cs == ColorSpace::ARGB8888 || surface->cs == ColorSpace::ARGB8888S) { surface->join = _argbJoin; surface->alphas[2] = _argbLuma; surface->alphas[3] = _argbInvLuma; } else { TVGERR("SW_ENGINE", "Unsupported Colorspace(%d) is expected!", surface->cs); return false; } return true; } bool rasterClear(SwSurface* surface, uint32_t x, uint32_t y, uint32_t w, uint32_t h, pixel_t val) { if (!surface || !surface->buf32 || surface->stride == 0 || surface->w == 0 || surface->h == 0) return false; //32 bits if (surface->channelSize == sizeof(uint32_t)) { //full clear if (w == surface->stride) { rasterPixel32(surface->buf32, val, surface->stride * y, w * h); //partial clear } else { for (uint32_t i = 0; i < h; i++) { rasterPixel32(surface->buf32, val, (surface->stride * y + x) + (surface->stride * i), w); } } //8 bits } else if (surface->channelSize == sizeof(uint8_t)) { //full clear if (w == surface->stride) { rasterGrayscale8(surface->buf8, 0x00, surface->stride * y, w * h); //partial clear } else { for (uint32_t i = 0; i < h; i++) { rasterGrayscale8(surface->buf8, 0x00, (surface->stride * y + x) + (surface->stride * i), w); } } } return true; } void rasterUnpremultiply(Surface* surface) { if (surface->channelSize != sizeof(uint32_t)) return; TVGLOG("SW_ENGINE", "Unpremultiply [Size: %d x %d]", surface->w, surface->h); //OPTIMIZE_ME: +SIMD for (uint32_t y = 0; y < surface->h; y++) { auto buffer = surface->buf32 + surface->stride * y; for (uint32_t x = 0; x < surface->w; ++x) { uint8_t a = buffer[x] >> 24; if (a == 255) { continue; } else if (a == 0) { buffer[x] = 0x00ffffff; } else { uint16_t r = ((buffer[x] >> 8) & 0xff00) / a; uint16_t g = ((buffer[x]) & 0xff00) / a; uint16_t b = ((buffer[x] << 8) & 0xff00) / a; if (r > 0xff) r = 0xff; if (g > 0xff) g = 0xff; if (b > 0xff) b = 0xff; buffer[x] = (a << 24) | (r << 16) | (g << 8) | (b); } } } surface->premultiplied = false; } void rasterPremultiply(Surface* surface) { ScopedLock lock(surface->key); if (surface->premultiplied || (surface->channelSize != sizeof(uint32_t))) return; surface->premultiplied = true; TVGLOG("SW_ENGINE", "Premultiply [Size: %d x %d]", surface->w, surface->h); //OPTIMIZE_ME: +SIMD auto buffer = surface->buf32; for (uint32_t y = 0; y < surface->h; ++y, buffer += surface->stride) { auto dst = buffer; for (uint32_t x = 0; x < surface->w; ++x, ++dst) { auto c = *dst; auto a = (c >> 24); *dst = (c & 0xff000000) + ((((c >> 8) & 0xff) * a) & 0xff00) + ((((c & 0x00ff00ff) * a) >> 8) & 0x00ff00ff); } } } bool rasterGradientShape(SwSurface* surface, SwShape* shape, const Fill* fdata, uint8_t opacity) { if (!shape->fill) return false; if (auto color = fillFetchSolid(shape->fill, fdata)) { auto a = MULTIPLY(color->a, opacity); return a > 0 ? rasterShape(surface, shape, color->r, color->g, color->b, a) : true; } auto id = fdata->identifier(); if (shape->fastTrack) { if (id == TVG_CLASS_ID_LINEAR) return _rasterLinearGradientRect(surface, shape->bbox, shape->fill); else if (id == TVG_CLASS_ID_RADIAL)return _rasterRadialGradientRect(surface, shape->bbox, shape->fill); } else { if (id == TVG_CLASS_ID_LINEAR) return _rasterLinearGradientRle(surface, shape->rle, shape->fill); else if (id == TVG_CLASS_ID_RADIAL) return _rasterRadialGradientRle(surface, shape->rle, shape->fill); } return false; } bool rasterGradientStroke(SwSurface* surface, SwShape* shape, const Fill* fdata, uint8_t opacity) { if (!shape->stroke || !shape->stroke->fill || !shape->strokeRle) return false; if (auto color = fillFetchSolid(shape->stroke->fill, fdata)) { auto a = MULTIPLY(color->a, opacity); return a > 0 ? rasterStroke(surface, shape, color->r, color->g, color->b, a) : true; } auto id = fdata->identifier(); if (id == TVG_CLASS_ID_LINEAR) return _rasterLinearGradientRle(surface, shape->strokeRle, shape->stroke->fill); else if (id == TVG_CLASS_ID_RADIAL) return _rasterRadialGradientRle(surface, shape->strokeRle, shape->stroke->fill); return false; } bool rasterShape(SwSurface* surface, SwShape* shape, uint8_t r, uint8_t g, uint8_t b, uint8_t a) { if (a < 255) { r = MULTIPLY(r, a); g = MULTIPLY(g, a); b = MULTIPLY(b, a); } if (shape->fastTrack) return _rasterRect(surface, shape->bbox, r, g, b, a); else return _rasterRle(surface, shape->rle, r, g, b, a); } bool rasterStroke(SwSurface* surface, SwShape* shape, uint8_t r, uint8_t g, uint8_t b, uint8_t a) { if (a < 255) { r = MULTIPLY(r, a); g = MULTIPLY(g, a); b = MULTIPLY(b, a); } return _rasterRle(surface, shape->strokeRle, r, g, b, a); } bool rasterImage(SwSurface* surface, SwImage* image, const Matrix& transform, const SwBBox& bbox, uint8_t opacity) { //Outside of the viewport, skip the rendering if (bbox.max.x < 0 || bbox.max.y < 0 || bbox.min.x >= static_cast(surface->w) || bbox.min.y >= static_cast(surface->h)) return true; return _rasterImage(surface, image, transform, bbox, opacity); } bool rasterConvertCS(Surface* surface, ColorSpace to) { ScopedLock lock(surface->key); if (surface->cs == to) return true; //TOOD: Support SIMD accelerations auto from = surface->cs; if (((from == ColorSpace::ABGR8888) || (from == ColorSpace::ABGR8888S)) && ((to == ColorSpace::ARGB8888) || (to == ColorSpace::ARGB8888S))) { surface->cs = to; return cRasterABGRtoARGB(surface); } if (((from == ColorSpace::ARGB8888) || (from == ColorSpace::ARGB8888S)) && ((to == ColorSpace::ABGR8888) || (to == ColorSpace::ABGR8888S))) { surface->cs = to; return cRasterARGBtoABGR(surface); } return false; }