/* * Copyright (c) 2020 - 2024 the ThorVG project. All rights reserved. * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to deal * in the Software without restriction, including without limitation the rights * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell * copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * The above copyright notice and this permission notice shall be included in all * copies or substantial portions of the Software. * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE * SOFTWARE. */ #include #include "tvgMath.h" #include "tvgSwCommon.h" #include "tvgTaskScheduler.h" #include "tvgSwRenderer.h" /************************************************************************/ /* Internal Class Implementation */ /************************************************************************/ static int32_t initEngineCnt = false; static int32_t rendererCnt = 0; static SwMpool* globalMpool = nullptr; static uint32_t threadsCnt = 0; struct SwTask : Task { SwSurface* surface = nullptr; SwMpool* mpool = nullptr; SwBBox bbox = {{0, 0}, {0, 0}}; //Whole Rendering Region Matrix transform; Array clips; RenderUpdateFlag flags = RenderUpdateFlag::None; uint8_t opacity; bool pushed = false; //Pushed into task list? bool disposed = false; //Disposed task? RenderRegion bounds() { //Can we skip the synchronization? done(); RenderRegion region; //Range over? region.x = bbox.min.x > 0 ? bbox.min.x : 0; region.y = bbox.min.y > 0 ? bbox.min.y : 0; region.w = bbox.max.x - region.x; region.h = bbox.max.y - region.y; if (region.w < 0) region.w = 0; if (region.h < 0) region.h = 0; return region; } virtual void dispose() = 0; virtual bool clip(SwRleData* target) = 0; virtual SwRleData* rle() = 0; virtual ~SwTask() {} }; struct SwShapeTask : SwTask { SwShape shape; const RenderShape* rshape = nullptr; bool clipper = false; /* We assume that if the stroke width is greater than 2, the shape's outline beneath the stroke could be adequately covered by the stroke drawing. Therefore, antialiasing is disabled under this condition. Additionally, the stroke style should not be dashed. */ bool antialiasing(float strokeWidth) { return strokeWidth < 2.0f || rshape->stroke->dashCnt > 0 || rshape->stroke->strokeFirst || rshape->strokeTrim() || rshape->stroke->color[3] < 255;; } float validStrokeWidth() { if (!rshape->stroke) return 0.0f; auto width = rshape->stroke->width; if (mathZero(width)) return 0.0f; if (!rshape->stroke->fill && (MULTIPLY(rshape->stroke->color[3], opacity) == 0)) return 0.0f; if (mathZero(rshape->stroke->trim.begin - rshape->stroke->trim.end)) return 0.0f; return (width * sqrt(transform.e11 * transform.e11 + transform.e12 * transform.e12)); } bool clip(SwRleData* target) override { if (shape.fastTrack) rleClipRect(target, &bbox); else if (shape.rle) rleClipPath(target, shape.rle); else return false; return true; } SwRleData* rle() override { if (!shape.rle && shape.fastTrack) { shape.rle = rleRender(&shape.bbox); } return shape.rle; } void run(unsigned tid) override { if (opacity == 0 && !clipper) return; //Invisible auto strokeWidth = validStrokeWidth(); bool visibleFill = false; auto clipRegion = bbox; //This checks also for the case, if the invisible shape turned to visible by alpha. auto prepareShape = false; if (!shapePrepared(&shape) && (flags & RenderUpdateFlag::Color)) prepareShape = true; //Shape if (flags & (RenderUpdateFlag::Path | RenderUpdateFlag::Transform) || prepareShape) { uint8_t alpha = 0; rshape->fillColor(nullptr, nullptr, nullptr, &alpha); alpha = MULTIPLY(alpha, opacity); visibleFill = (alpha > 0 || rshape->fill); if (visibleFill || clipper) { shapeReset(&shape); if (!shapePrepare(&shape, rshape, transform, clipRegion, bbox, mpool, tid, clips.count > 0 ? true : false)) { visibleFill = false; } } } //Fill if (flags & (RenderUpdateFlag::Path |RenderUpdateFlag::Gradient | RenderUpdateFlag::Transform | RenderUpdateFlag::Color)) { if (visibleFill || clipper) { if (!shapeGenRle(&shape, rshape, antialiasing(strokeWidth))) goto err; } if (auto fill = rshape->fill) { auto ctable = (flags & RenderUpdateFlag::Gradient) ? true : false; if (ctable) shapeResetFill(&shape); if (!shapeGenFillColors(&shape, fill, transform, surface, opacity, ctable)) goto err; } else { shapeDelFill(&shape); } } //Stroke if (flags & (RenderUpdateFlag::Path | RenderUpdateFlag::Stroke | RenderUpdateFlag::Transform)) { if (strokeWidth > 0.0f) { shapeResetStroke(&shape, rshape, transform); if (!shapeGenStrokeRle(&shape, rshape, transform, clipRegion, bbox, mpool, tid)) goto err; if (auto fill = rshape->strokeFill()) { auto ctable = (flags & RenderUpdateFlag::GradientStroke) ? true : false; if (ctable) shapeResetStrokeFill(&shape); if (!shapeGenStrokeFillColors(&shape, fill, transform, surface, opacity, ctable)) goto err; } else { shapeDelStrokeFill(&shape); } } else { shapeDelStroke(&shape); } } //Clear current task memorypool here if the clippers would use the same memory pool shapeDelOutline(&shape, mpool, tid); //Clip Path for (auto clip = clips.begin(); clip < clips.end(); ++clip) { auto clipper = static_cast(*clip); //Clip shape rle if (shape.rle && !clipper->clip(shape.rle)) goto err; //Clip stroke rle if (shape.strokeRle && !clipper->clip(shape.strokeRle)) goto err; } return; err: shapeReset(&shape); shapeDelOutline(&shape, mpool, tid); } void dispose() override { shapeFree(&shape); } }; struct SwImageTask : SwTask { SwImage image; Surface* source; //Image source bool clip(SwRleData* target) override { TVGERR("SW_ENGINE", "Image is used as ClipPath?"); return true; } SwRleData* rle() override { TVGERR("SW_ENGINE", "Image is used as Scene ClipPath?"); return nullptr; } void run(unsigned tid) override { auto clipRegion = bbox; //Convert colorspace if it's not aligned. rasterConvertCS(source, surface->cs); rasterPremultiply(source); image.data = source->data; image.w = source->w; image.h = source->h; image.stride = source->stride; image.channelSize = source->channelSize; //Invisible shape turned to visible by alpha. if ((flags & (RenderUpdateFlag::Image | RenderUpdateFlag::Transform | RenderUpdateFlag::Color)) && (opacity > 0)) { imageReset(&image); if (!image.data || image.w == 0 || image.h == 0) goto end; if (!imagePrepare(&image, transform, clipRegion, bbox, mpool, tid)) goto end; if (clips.count > 0) { if (!imageGenRle(&image, bbox, false)) goto end; if (image.rle) { //Clear current task memorypool here if the clippers would use the same memory pool imageDelOutline(&image, mpool, tid); for (auto clip = clips.begin(); clip < clips.end(); ++clip) { auto clipper = static_cast(*clip); if (!clipper->clip(image.rle)) goto err; } return; } } } goto end; err: rleReset(image.rle); end: imageDelOutline(&image, mpool, tid); } void dispose() override { imageFree(&image); } }; static void _termEngine() { if (rendererCnt > 0) return; mpoolTerm(globalMpool); globalMpool = nullptr; } static void _renderFill(SwShapeTask* task, SwSurface* surface, uint8_t opacity) { uint8_t r, g, b, a; if (auto fill = task->rshape->fill) { rasterGradientShape(surface, &task->shape, fill, opacity); } else { task->rshape->fillColor(&r, &g, &b, &a); a = MULTIPLY(opacity, a); if (a > 0) rasterShape(surface, &task->shape, r, g, b, a); } } static void _renderStroke(SwShapeTask* task, SwSurface* surface, uint8_t opacity) { uint8_t r, g, b, a; if (auto strokeFill = task->rshape->strokeFill()) { rasterGradientStroke(surface, &task->shape, strokeFill, opacity); } else { if (task->rshape->strokeColor(&r, &g, &b, &a)) { a = MULTIPLY(opacity, a); if (a > 0) rasterStroke(surface, &task->shape, r, g, b, a); } } } /************************************************************************/ /* External Class Implementation */ /************************************************************************/ SwRenderer::~SwRenderer() { clearCompositors(); delete(surface); if (!sharedMpool) mpoolTerm(mpool); --rendererCnt; if (rendererCnt == 0 && initEngineCnt == 0) _termEngine(); } bool SwRenderer::clear() { for (auto task = tasks.begin(); task < tasks.end(); ++task) { if ((*task)->disposed) { delete(*task); } else { (*task)->done(); (*task)->pushed = false; } } tasks.clear(); if (!sharedMpool) mpoolClear(mpool); if (surface) { vport.x = vport.y = 0; vport.w = surface->w; vport.h = surface->h; } return true; } bool SwRenderer::sync() { return true; } RenderRegion SwRenderer::viewport() { return vport; } bool SwRenderer::viewport(const RenderRegion& vp) { vport = vp; return true; } bool SwRenderer::target(pixel_t* data, uint32_t stride, uint32_t w, uint32_t h, ColorSpace cs) { if (!data || stride == 0 || w == 0 || h == 0 || w > stride) return false; clearCompositors(); if (!surface) surface = new SwSurface; surface->data = data; surface->stride = stride; surface->w = w; surface->h = h; surface->cs = cs; surface->channelSize = CHANNEL_SIZE(cs); surface->premultiplied = true; return rasterCompositor(surface); } bool SwRenderer::preRender() { return rasterClear(surface, 0, 0, surface->w, surface->h); } void SwRenderer::clearCompositors() { //Free Composite Caches for (auto comp = compositors.begin(); comp < compositors.end(); ++comp) { free((*comp)->compositor->image.data); delete((*comp)->compositor); delete(*comp); } compositors.reset(); } bool SwRenderer::postRender() { //Unmultiply alpha if needed if (surface->cs == ColorSpace::ABGR8888S || surface->cs == ColorSpace::ARGB8888S) { rasterUnpremultiply(surface); } for (auto task = tasks.begin(); task < tasks.end(); ++task) { if ((*task)->disposed) delete(*task); else (*task)->pushed = false; } tasks.clear(); return true; } bool SwRenderer::renderImage(RenderData data) { auto task = static_cast(data); task->done(); if (task->opacity == 0) return true; return rasterImage(surface, &task->image, task->transform, task->bbox, task->opacity); } bool SwRenderer::renderShape(RenderData data) { auto task = static_cast(data); if (!task) return false; task->done(); if (task->opacity == 0) return true; //Main raster stage if (task->rshape->stroke && task->rshape->stroke->strokeFirst) { _renderStroke(task, surface, task->opacity); _renderFill(task, surface, task->opacity); } else { _renderFill(task, surface, task->opacity); _renderStroke(task, surface, task->opacity); } return true; } bool SwRenderer::blend(BlendMethod method) { if (surface->blendMethod == method) return true; surface->blendMethod = method; switch (method) { case BlendMethod::Add: surface->blender = opBlendAdd; break; case BlendMethod::Screen: surface->blender = opBlendScreen; break; case BlendMethod::Multiply: surface->blender = opBlendMultiply; break; case BlendMethod::Overlay: surface->blender = opBlendOverlay; break; case BlendMethod::Difference: surface->blender = opBlendDifference; break; case BlendMethod::Exclusion: surface->blender = opBlendExclusion; break; case BlendMethod::SrcOver: surface->blender = opBlendSrcOver; break; case BlendMethod::Darken: surface->blender = opBlendDarken; break; case BlendMethod::Lighten: surface->blender = opBlendLighten; break; case BlendMethod::ColorDodge: surface->blender = opBlendColorDodge; break; case BlendMethod::ColorBurn: surface->blender = opBlendColorBurn; break; case BlendMethod::HardLight: surface->blender = opBlendHardLight; break; case BlendMethod::SoftLight: surface->blender = opBlendSoftLight; break; default: surface->blender = nullptr; break; } return false; } RenderRegion SwRenderer::region(RenderData data) { return static_cast(data)->bounds(); } bool SwRenderer::beginComposite(Compositor* cmp, CompositeMethod method, uint8_t opacity) { if (!cmp) return false; auto p = static_cast(cmp); p->method = method; p->opacity = opacity; //Current Context? if (p->method != CompositeMethod::None) { surface = p->recoverSfc; surface->compositor = p; } return true; } bool SwRenderer::mempool(bool shared) { if (shared == sharedMpool) return true; if (shared) { if (!sharedMpool) { if (!mpoolTerm(mpool)) return false; mpool = globalMpool; } } else { if (sharedMpool) mpool = mpoolInit(threadsCnt); } sharedMpool = shared; if (mpool) return true; return false; } const Surface* SwRenderer::mainSurface() { return surface; } Compositor* SwRenderer::target(const RenderRegion& region, ColorSpace cs) { auto x = region.x; auto y = region.y; auto w = region.w; auto h = region.h; auto sw = static_cast(surface->w); auto sh = static_cast(surface->h); //Out of boundary if (x >= sw || y >= sh || x + w < 0 || y + h < 0) return nullptr; SwSurface* cmp = nullptr; auto reqChannelSize = CHANNEL_SIZE(cs); //Use cached data for (auto p = compositors.begin(); p < compositors.end(); ++p) { if ((*p)->compositor->valid && (*p)->compositor->image.channelSize == reqChannelSize) { cmp = *p; break; } } //New Composition if (!cmp) { //Inherits attributes from main surface cmp = new SwSurface(surface); cmp->compositor = new SwCompositor; //TODO: We can optimize compositor surface size from (surface->stride x surface->h) to Parameter(w x h) cmp->compositor->image.data = (pixel_t*)malloc(reqChannelSize * surface->stride * surface->h); cmp->channelSize = cmp->compositor->image.channelSize = reqChannelSize; compositors.push(cmp); } //Boundary Check if (x + w > sw) w = (sw - x); if (y + h > sh) h = (sh - y); cmp->compositor->recoverSfc = surface; cmp->compositor->recoverCmp = surface->compositor; cmp->compositor->valid = false; cmp->compositor->bbox.min.x = x; cmp->compositor->bbox.min.y = y; cmp->compositor->bbox.max.x = x + w; cmp->compositor->bbox.max.y = y + h; cmp->compositor->image.stride = surface->stride; cmp->compositor->image.w = surface->w; cmp->compositor->image.h = surface->h; cmp->compositor->image.direct = true; cmp->data = cmp->compositor->image.data; cmp->w = cmp->compositor->image.w; cmp->h = cmp->compositor->image.h; /* TODO: Currently, only blending might work. Blending and composition must be handled together. */ auto color = (surface->blender && !surface->compositor) ? 0x00ffffff : 0x00000000; rasterClear(cmp, x, y, w, h, color); //Switch render target surface = cmp; return cmp->compositor; } bool SwRenderer::endComposite(Compositor* cmp) { if (!cmp) return false; auto p = static_cast(cmp); p->valid = true; //Recover Context surface = p->recoverSfc; surface->compositor = p->recoverCmp; //Default is alpha blending if (p->method == CompositeMethod::None) { Matrix m = {1, 0, 0, 0, 1, 0, 0, 0, 1}; return rasterImage(surface, &p->image, m, p->bbox, p->opacity); } return true; } ColorSpace SwRenderer::colorSpace() { if (surface) return surface->cs; else return ColorSpace::Unsupported; } void SwRenderer::dispose(RenderData data) { auto task = static_cast(data); if (!task) return; task->done(); task->dispose(); if (task->pushed) task->disposed = true; else delete(task); } void* SwRenderer::prepareCommon(SwTask* task, const Matrix& transform, const Array& clips, uint8_t opacity, RenderUpdateFlag flags) { if (!surface) return task; if (flags == RenderUpdateFlag::None) return task; //TODO: Failed threading them. It would be better if it's possible. //See: https://github.com/thorvg/thorvg/issues/1409 //Guarantee composition targets get ready. for (auto clip = clips.begin(); clip < clips.end(); ++clip) { static_cast(*clip)->done(); } task->clips = clips; task->transform = transform; //zero size? if (task->transform.e11 == 0.0f && task->transform.e12 == 0.0f) return task; //zero width if (task->transform.e21 == 0.0f && task->transform.e22 == 0.0f) return task; //zero height task->opacity = opacity; task->surface = surface; task->mpool = mpool; task->flags = flags; task->bbox.min.x = mathMax(static_cast(0), static_cast(vport.x)); task->bbox.min.y = mathMax(static_cast(0), static_cast(vport.y)); task->bbox.max.x = mathMin(static_cast(surface->w), static_cast(vport.x + vport.w)); task->bbox.max.y = mathMin(static_cast(surface->h), static_cast(vport.y + vport.h)); if (!task->pushed) { task->pushed = true; tasks.push(task); } TaskScheduler::request(task); return task; } RenderData SwRenderer::prepare(Surface* surface, RenderData data, const Matrix& transform, Array& clips, uint8_t opacity, RenderUpdateFlag flags) { //prepare task auto task = static_cast(data); if (!task) task = new SwImageTask; else task->done(); task->source = surface; return prepareCommon(task, transform, clips, opacity, flags); } RenderData SwRenderer::prepare(const RenderShape& rshape, RenderData data, const Matrix& transform, Array& clips, uint8_t opacity, RenderUpdateFlag flags, bool clipper) { //prepare task auto task = static_cast(data); if (!task) task = new SwShapeTask; else task->done(); task->rshape = &rshape; task->clipper = clipper; return prepareCommon(task, transform, clips, opacity, flags); } SwRenderer::SwRenderer():mpool(globalMpool) { } bool SwRenderer::init(uint32_t threads) { if ((initEngineCnt++) > 0) return true; threadsCnt = threads; //Share the memory pool among the renderer globalMpool = mpoolInit(threads); if (!globalMpool) { --initEngineCnt; return false; } return true; } int32_t SwRenderer::init() { return initEngineCnt; } bool SwRenderer::term() { if ((--initEngineCnt) > 0) return true; initEngineCnt = 0; _termEngine(); return true; } SwRenderer* SwRenderer::gen() { ++rendererCnt; return new SwRenderer(); }