summaryrefslogtreecommitdiffstats
diff options
context:
space:
mode:
-rw-r--r--SConstruct2
-rw-r--r--include/core/Basis.hpp297
-rw-r--r--include/core/Vector2.hpp184
-rw-r--r--include/core/Vector3.hpp263
-rw-r--r--src/core/Basis.cpp9
-rw-r--r--src/core/Vector2.cpp152
-rw-r--r--src/core/Vector3.cpp217
7 files changed, 637 insertions, 487 deletions
diff --git a/SConstruct b/SConstruct
index b9b47c3..df937ba 100644
--- a/SConstruct
+++ b/SConstruct
@@ -98,7 +98,7 @@ elif env['platform'] == 'windows':
# MSVC
env.Append(LINKFLAGS=['/WX'])
if env['target'] == 'debug':
- env.Append(CCFLAGS=['/EHsc', '/D_DEBUG', '/MDd'])
+ env.Append(CCFLAGS=['/Z7', '/Od', '/EHsc', '/D_DEBUG', '/MDd'])
elif env['target'] == 'release':
env.Append(CCFLAGS=['/O2', '/EHsc', '/DNDEBUG', '/MD'])
else:
diff --git a/include/core/Basis.hpp b/include/core/Basis.hpp
index 3ea9c5d..b559b00 100644
--- a/include/core/Basis.hpp
+++ b/include/core/Basis.hpp
@@ -1,6 +1,8 @@
#ifndef BASIS_H
#define BASIS_H
+#include <gdnative/basis.h>
+
#include "Defs.hpp"
#include "Vector3.hpp"
@@ -10,12 +12,291 @@ namespace godot {
class Quat;
class Basis {
+private:
+ // This helper template is for mimicking the behavior difference between the engine
+ // and script interfaces that logically script sees matrices as column major, while
+ // the engine stores them in row major to efficiently take advantage of SIMD
+ // instructions in case of matrix-vector multiplications.
+ // With this helper template native scripts see the data as if it was column major
+ // without actually transposing the basis matrix at the script-engine boundary.
+ template <int column>
+ class ColumnVector3 {
+ private:
+ template <int column, int component>
+ class ColumnVectorComponent {
+ private:
+ Vector3 elements[3];
+
+ protected:
+ inline ColumnVectorComponent<column, component> &operator=(const ColumnVectorComponent<column, component> &p_value) {
+ return *this = real_t(p_value);
+ }
+
+ inline ColumnVectorComponent(const ColumnVectorComponent<column, component> &p_value) {
+ *this = real_t(p_value);
+ }
+
+ inline ColumnVectorComponent<column, component> &operator=(const real_t &p_value) {
+ element[component][column] = p_value;
+ return *this;
+ }
+
+ inline operator real_t() const {
+ return element[component][column];
+ }
+ };
+
+ public:
+ enum Axis {
+ AXIS_X,
+ AXIS_Y,
+ AXIS_Z,
+ };
+
+ union {
+ ColumnVectorComponent<column, 0> x;
+ ColumnVectorComponent<column, 1> y;
+ ColumnVectorComponent<column, 2> z;
+
+ Vector3 elements[3]; // Not for direct access, use [] operator instead
+ };
+
+ inline ColumnVector3<column> &operator=(const ColumnVector3<column> &p_value) {
+ return *this = Vector3(p_value);
+ }
+
+ inline ColumnVector3(const ColumnVector3<column> &p_value) {
+ *this = Vector3(p_value);
+ }
+
+ inline ColumnVector3<column> &operator=(const Vector3 &p_value) {
+ elements[0][column] = p_value.x;
+ elements[1][column] = p_value.y;
+ elements[2][column] = p_value.z;
+ return *this;
+ }
+
+ inline operator Vector3() const {
+ return Vector3(elements[0][column], elements[1][column], elements[2][column]);
+ }
+
+ // Unfortunately, we also need to replicate the other interfaces of Vector3 in
+ // order for being able to directly operate on these "meta-Vector3" objects without
+ // an explicit cast or an intermediate assignment to a real Vector3 object.
+
+ inline const real_t &operator[](int p_axis) const {
+ return elements[p_axis][column];
+ }
+
+ inline real_t &operator[](int p_axis) {
+ return elements[p_axis][column];
+ }
+
+ inline ColumnVector3<column> &operator+=(const Vector3 &p_v) {
+ return *this = *this + p_v;
+ }
+
+ inline Vector3 operator+(const Vector3 &p_v) const {
+ return Vector3(*this) + p_v;
+ }
+
+ inline ColumnVector3<column> &operator-=(const Vector3 &p_v) {
+ return *this = *this - p_v;
+ }
+
+ inline Vector3 operator-(const Vector3 &p_v) const {
+ return Vector3(*this) - p_v;
+ }
+
+ inline ColumnVector3<column> &operator*=(const Vector3 &p_v) {
+ return *this = *this * p_v;
+ }
+
+ inline Vector3 operator*(const Vector3 &p_v) const {
+ return Vector3(*this) * p_v;
+ }
+
+ inline ColumnVector3<column> &operator/=(const Vector3 &p_v) {
+ return *this = *this / p_v;
+ }
+
+ inline Vector3 operator/(const Vector3 &p_v) const {
+ return Vector3(*this) / p_v;
+ }
+
+ inline ColumnVector3<column> &operator*=(real_t p_scalar) {
+ return *this = *this * p_scalar;
+ }
+
+ inline Vector3 operator*(real_t p_scalar) const {
+ return Vector3(*this) * p_scalar;
+ }
+
+ inline ColumnVector3<column> &operator/=(real_t p_scalar) {
+ return *this = *this / p_scalar;
+ }
+
+ inline Vector3 operator/(real_t p_scalar) const {
+ return Vector3(*this) / p_scalar;
+ }
+
+ inline Vector3 operator-() const {
+ return -Vector3(*this);
+ }
+
+ inline bool operator==(const Vector3 &p_v) const {
+ return Vector3(*this) == p_v;
+ }
+
+ inline bool operator!=(const Vector3 &p_v) const {
+ return Vector3(*this) != p_v;
+ }
+
+ inline bool operator<(const Vector3 &p_v) const {
+ return Vector3(*this) < p_v;
+ }
+
+ inline bool operator<=(const Vector3 &p_v) const {
+ return Vector3(*this) <= p_v;
+ }
+
+ inline Vector3 abs() const {
+ return Vector3(*this).abs();
+ }
+
+ inline Vector3 ceil() const {
+ return Vector3(*this).ceil();
+ }
+
+ inline Vector3 cross(const Vector3 &b) const {
+ return Vector3(*this).cross(b);
+ }
+
+ inline Vector3 linear_interpolate(const Vector3 &p_b, real_t p_t) const {
+ return Vector3(*this).linear_interpolate(p_b, p_t);
+ }
+
+ inline Vector3 cubic_interpolate(const Vector3 &b, const Vector3 &pre_a, const Vector3 &post_b, const real_t t) const {
+ return Vector3(*this).cubic_interpolate(b, pre_a, post_b, t);
+ }
+
+ inline Vector3 bounce(const Vector3 &p_normal) const {
+ return Vector3(*this).bounce(p_normal);
+ }
+
+ inline real_t length() const {
+ return Vector3(*this).length();
+ }
+
+ inline real_t length_squared() const {
+ return Vector3(*this).length_squared();
+ }
+
+ inline real_t distance_squared_to(const Vector3 &b) const {
+ return Vector3(*this).distance_squared_to(b);
+ }
+
+ inline real_t distance_to(const Vector3 &b) const {
+ return Vector3(*this).distance_to(b);
+ }
+
+ inline real_t dot(const Vector3 &b) const {
+ return Vector3(*this).dot(b);
+ }
+
+ inline real_t angle_to(const Vector3 &b) const {
+ return Vector3(*this).angle_to(b);
+ }
+
+ inline Vector3 floor() const {
+ return Vector3(*this).floor();
+ }
+
+ inline Vector3 inverse() const {
+ return Vector3(*this).inverse();
+ }
+
+ inline bool is_normalized() const {
+ return Vector3(*this).is_normalized();
+ }
+
+ inline Basis outer(const Vector3 &b) const {
+ return Vector3(*this).outer(b);
+ }
+
+ inline int max_axis() const {
+ return Vector3(*this).max_axis();
+ }
+
+ inline int min_axis() const {
+ return Vector3(*this).min_axis();
+ }
+
+ inline void normalize() {
+ Vector3 v = *this;
+ v.normalize();
+ *this = v;
+ }
+
+ inline Vector3 normalized() const {
+ return Vector3(*this).normalized();
+ }
+
+ inline Vector3 reflect(const Vector3 &by) const {
+ return Vector3(*this).reflect(by);
+ }
+
+ inline Vector3 rotated(const Vector3 &axis, const real_t phi) const {
+ return Vector3(*this).rotated(axis, phi);
+ }
+
+ inline void rotate(const Vector3 &p_axis, real_t p_phi) {
+ Vector3 v = *this;
+ v.rotate(p_axis, p_phi);
+ *this = v;
+ }
+
+ inline Vector3 slide(const Vector3 &by) const {
+ return Vector3(*this).slide(by);
+ }
+
+ inline void snap(real_t p_val) {
+ Vector3 v = *this;
+ v.snap(p_val);
+ *this = v;
+ }
+
+ inline Vector3 snapped(const float by) {
+ return Vector3(*this).snapped(by);
+ }
+
+ inline operator String() const {
+ return String(Vector3(*this))
+ }
+ };
+
public:
union {
- Vector3 elements[3];
- Vector3 x, y, z;
+ ColumnVector3<0> x;
+ ColumnVector3<1> y;
+ ColumnVector3<2> z;
+
+ Vector3 elements[3]; // Not for direct access, use [] operator instead
};
+ inline Basis(const Basis &p_basis) {
+ elements[0] = p_basis.elements[0];
+ elements[1] = p_basis.elements[1];
+ elements[2] = p_basis.elements[2];
+ }
+
+ inline Basis &operator=(const Basis &p_basis) {
+ elements[0] = p_basis.elements[0];
+ elements[1] = p_basis.elements[1];
+ elements[2] = p_basis.elements[2];
+ return *this;
+ }
+
Basis(const Quat &p_quat); // euler
Basis(const Vector3 &p_euler); // euler
Basis(const Vector3 &p_axis, real_t p_phi);
@@ -26,8 +307,16 @@ public:
Basis();
- const Vector3 &operator[](int axis) const;
- Vector3 &operator[](int axis);
+ const Vector3 &operator[](int axis) const {
+ return get_axis(axis);
+ }
+
+ ColumnVector3<0> &operator[](int axis) {
+ // We need to do a little pointer magic to get this to work, because the
+ // ColumnVector3 template takes the axis as a template parameter.
+ // Don't touch this unless you're sure what you're doing!
+ return (reinterpret_cast<Basis *>(reinterpret_cast<real_t *>(this) + axis))->x;
+ }
void invert();
diff --git a/include/core/Vector2.hpp b/include/core/Vector2.hpp
index 190217d..26e9b63 100644
--- a/include/core/Vector2.hpp
+++ b/include/core/Vector2.hpp
@@ -5,6 +5,8 @@
#include "Defs.hpp"
+#include <cmath>
+
namespace godot {
class String;
@@ -20,36 +22,75 @@ struct Vector2 {
real_t height;
};
+ inline Vector2(real_t p_x, real_t p_y) {
+ x = p_x;
+ y = p_y;
+ }
+
+ inline Vector2() {
+ x = 0;
+ y = 0;
+ }
+
inline real_t &operator[](int p_idx) {
return p_idx ? y : x;
}
+
inline const real_t &operator[](int p_idx) const {
return p_idx ? y : x;
}
- Vector2 operator+(const Vector2 &p_v) const;
+ inline Vector2 operator+(const Vector2 &p_v) const {
+ return Vector2(x + p_v.x, y + p_v.y);
+ }
- void operator+=(const Vector2 &p_v);
+ inline void operator+=(const Vector2 &p_v) {
+ x += p_v.x;
+ y += p_v.y;
+ }
- Vector2 operator-(const Vector2 &p_v) const;
+ inline Vector2 operator-(const Vector2 &p_v) const {
+ return Vector2(x - p_v.x, y - p_v.y);
+ }
- void operator-=(const Vector2 &p_v);
+ inline void operator-=(const Vector2 &p_v) {
+ x -= p_v.x;
+ y -= p_v.y;
+ }
- Vector2 operator*(const Vector2 &p_v1) const;
+ inline Vector2 operator*(const Vector2 &p_v1) const {
+ return Vector2(x * p_v1.x, y * p_v1.y);
+ }
- Vector2 operator*(const real_t &rvalue) const;
+ inline Vector2 operator*(const real_t &rvalue) const {
+ return Vector2(x * rvalue, y * rvalue);
+ }
- void operator*=(const real_t &rvalue);
+ inline void operator*=(const real_t &rvalue) {
+ x *= rvalue;
+ y *= rvalue;
+ }
- inline void operator*=(const Vector2 &rvalue) { *this = *this * rvalue; }
+ inline void operator*=(const Vector2 &rvalue) {
+ *this = *this * rvalue;
+ }
- Vector2 operator/(const Vector2 &p_v1) const;
+ inline Vector2 operator/(const Vector2 &p_v1) const {
+ return Vector2(x / p_v1.x, y / p_v1.y);
+ }
- Vector2 operator/(const real_t &rvalue) const;
+ inline Vector2 operator/(const real_t &rvalue) const {
+ return Vector2(x / rvalue, y / rvalue);
+ }
- void operator/=(const real_t &rvalue);
+ inline void operator/=(const real_t &rvalue) {
+ x /= rvalue;
+ y /= rvalue;
+ }
- Vector2 operator-() const;
+ inline Vector2 operator-() const {
+ return Vector2(-x, -y);
+ }
bool operator==(const Vector2 &p_vec2) const;
@@ -58,23 +99,56 @@ struct Vector2 {
inline bool operator<(const Vector2 &p_vec2) const { return (x == p_vec2.x) ? (y < p_vec2.y) : (x < p_vec2.x); }
inline bool operator<=(const Vector2 &p_vec2) const { return (x == p_vec2.x) ? (y <= p_vec2.y) : (x <= p_vec2.x); }
- void normalize();
+ inline void normalize() {
+ real_t l = x * x + y * y;
+ if (l != 0) {
+ l = sqrt(l);
+ x /= l;
+ y /= l;
+ }
+ }
- Vector2 normalized() const;
+ inline Vector2 normalized() const {
+ Vector2 v = *this;
+ v.normalize();
+ return v;
+ }
- real_t length() const;
- real_t length_squared() const;
+ inline real_t length() const {
+ return sqrt(x * x + y * y);
+ }
- real_t distance_to(const Vector2 &p_vector2) const;
- real_t distance_squared_to(const Vector2 &p_vector2) const;
+ inline real_t length_squared() const {
+ return x * x + y * y;
+ }
- real_t angle_to(const Vector2 &p_vector2) const;
- real_t angle_to_point(const Vector2 &p_vector2) const;
+ inline real_t distance_to(const Vector2 &p_vector2) const {
+ return sqrt((x - p_vector2.x) * (x - p_vector2.x) + (y - p_vector2.y) * (y - p_vector2.y));
+ }
- real_t dot(const Vector2 &p_other) const;
+ inline real_t distance_squared_to(const Vector2 &p_vector2) const {
+ return (x - p_vector2.x) * (x - p_vector2.x) + (y - p_vector2.y) * (y - p_vector2.y);
+ }
- real_t cross(const Vector2 &p_other) const;
- Vector2 cross(real_t p_other) const;
+ inline real_t angle_to(const Vector2 &p_vector2) const {
+ return atan2(cross(p_vector2), dot(p_vector2));
+ }
+
+ inline real_t angle_to_point(const Vector2 &p_vector2) const {
+ return atan2(y - p_vector2.y, x - p_vector2.x);
+ }
+
+ inline real_t dot(const Vector2 &p_other) const {
+ return x * p_other.x + y * p_other.y;
+ }
+
+ inline real_t cross(const Vector2 &p_other) const {
+ return x * p_other.y - y * p_other.x;
+ }
+
+ inline Vector2 cross(real_t p_other) const {
+ return Vector2(p_other * y, -p_other * x);
+ }
Vector2 project(const Vector2 &p_vec) const;
@@ -82,39 +156,63 @@ struct Vector2 {
Vector2 clamped(real_t p_len) const;
- static Vector2 linear_interpolate(const Vector2 &p_a, const Vector2 &p_b, real_t p_t);
+ static inline Vector2 linear_interpolate(const Vector2 &p_a, const Vector2 &p_b, real_t p_t) {
+ Vector2 res = p_a;
+ res.x += (p_t * (p_b.x - p_a.x));
+ res.y += (p_t * (p_b.y - p_a.y));
+ return res;
+ }
+
+ inline Vector2 linear_interpolate(const Vector2 &p_b, real_t p_t) const {
+ Vector2 res = *this;
+ res.x += (p_t * (p_b.x - x));
+ res.y += (p_t * (p_b.y - y));
+ return res;
+ }
- Vector2 linear_interpolate(const Vector2 &p_b, real_t p_t) const;
Vector2 cubic_interpolate(const Vector2 &p_b, const Vector2 &p_pre_a, const Vector2 &p_post_b, real_t p_t) const;
- Vector2 slide(const Vector2 &p_vec) const;
+ inline Vector2 slide(const Vector2 &p_vec) const {
+ return p_vec - *this * this->dot(p_vec);
+ }
+
+ inline Vector2 reflect(const Vector2 &p_vec) const {
+ return p_vec - *this * this->dot(p_vec) * 2.0;
+ }
+
+ inline real_t angle() const {
+ return atan2(y, x);
+ }
- Vector2 reflect(const Vector2 &p_vec) const;
+ inline void set_rotation(real_t p_radians) {
+ x = cosf(p_radians);
+ y = sinf(p_radians);
+ }
- real_t angle() const;
+ inline Vector2 abs() const {
+ return Vector2(fabs(x), fabs(y));
+ }
- void set_rotation(real_t p_radians);
+ inline Vector2 rotated(real_t p_by) const {
+ Vector2 v;
+ v.set_rotation(angle() + p_by);
+ v *= length();
+ return v;
+ }
- Vector2 abs() const;
- Vector2 rotated(real_t p_by) const;
+ inline Vector2 tangent() const {
+ return Vector2(y, -x);
+ }
- Vector2 tangent() const;
+ inline Vector2 floor() const {
+ return Vector2(::floor(x), ::floor(y));
+ }
- Vector2 floor() const;
+ inline Vector2 snapped(const Vector2 &p_by) const;
- Vector2 snapped(const Vector2 &p_by) const;
inline real_t aspect() const { return width / height; }
operator String() const;
-
- inline Vector2(real_t p_x, real_t p_y) {
- x = p_x;
- y = p_y;
- }
- inline Vector2() {
- x = 0;
- y = 0;
- }
};
inline Vector2 operator*(real_t p_scalar, const Vector2 &p_vec) {
diff --git a/include/core/Vector3.hpp b/include/core/Vector3.hpp
index df1d60c..2d78f21 100644
--- a/include/core/Vector3.hpp
+++ b/include/core/Vector3.hpp
@@ -1,10 +1,14 @@
#ifndef VECTOR3_H
#define VECTOR3_H
+#include <gdnative/vector3.h>
+
#include "Defs.hpp"
#include "String.hpp"
+#include <cmath>
+
namespace godot {
class Basis;
@@ -24,80 +28,192 @@ struct Vector3 {
real_t z;
};
- real_t coord[3];
+ real_t coord[3]; // Not for direct access, use [] operator instead
};
- Vector3(real_t x, real_t y, real_t z);
-
- Vector3();
-
- const real_t &operator[](int p_axis) const;
-
- real_t &operator[](int p_axis);
-
- Vector3 &operator+=(const Vector3 &p_v);
-
- Vector3 operator+(const Vector3 &p_v) const;
-
- Vector3 &operator-=(const Vector3 &p_v);
-
- Vector3 operator-(const Vector3 &p_v) const;
-
- Vector3 &operator*=(const Vector3 &p_v);
-
- Vector3 operator*(const Vector3 &p_v) const;
-
- Vector3 &operator/=(const Vector3 &p_v);
-
- Vector3 operator/(const Vector3 &p_v) const;
-
- Vector3 &operator*=(real_t p_scalar);
-
- Vector3 operator*(real_t p_scalar) const;
-
- Vector3 &operator/=(real_t p_scalar);
-
- Vector3 operator/(real_t p_scalar) const;
-
- Vector3 operator-() const;
-
- bool operator==(const Vector3 &p_v) const;
-
- bool operator!=(const Vector3 &p_v) const;
+ inline Vector3(real_t x, real_t y, real_t z) {
+ this->x = x;
+ this->y = y;
+ this->z = z;
+ }
+
+ inline Vector3() {
+ this->x = 0;
+ this->y = 0;
+ this->z = 0;
+ }
+
+ inline const real_t &operator[](int p_axis) const {
+ return coord[p_axis];
+ }
+
+ inline real_t &operator[](int p_axis) {
+ return coord[p_axis];
+ }
+
+ inline Vector3 &operator+=(const Vector3 &p_v) {
+ x += p_v.x;
+ y += p_v.y;
+ z += p_v.z;
+ return *this;
+ }
+
+ inline Vector3 operator+(const Vector3 &p_v) const {
+ Vector3 v = *this;
+ v += p_v;
+ return v;
+ }
+
+ inline Vector3 &operator-=(const Vector3 &p_v) {
+ x -= p_v.x;
+ y -= p_v.y;
+ z -= p_v.z;
+ return *this;
+ }
+
+ inline Vector3 operator-(const Vector3 &p_v) const {
+ Vector3 v = *this;
+ v -= p_v;
+ return v;
+ }
+
+ inline Vector3 &operator*=(const Vector3 &p_v) {
+ x *= p_v.x;
+ y *= p_v.y;
+ z *= p_v.z;
+ return *this;
+ }
+
+ inline Vector3 operator*(const Vector3 &p_v) const {
+ Vector3 v = *this;
+ v *= p_v;
+ return v;
+ }
+
+ inline Vector3 &operator/=(const Vector3 &p_v) {
+ x /= p_v.x;
+ y /= p_v.y;
+ z /= p_v.z;
+ return *this;
+ }
+
+ inline Vector3 operator/(const Vector3 &p_v) const {
+ Vector3 v = *this;
+ v /= p_v;
+ return v;
+ }
+
+ inline Vector3 &operator*=(real_t p_scalar) {
+ *this *= Vector3(p_scalar, p_scalar, p_scalar);
+ return *this;
+ }
+
+ inline Vector3 operator*(real_t p_scalar) const {
+ Vector3 v = *this;
+ v *= p_scalar;
+ return v;
+ }
+
+ inline Vector3 &operator/=(real_t p_scalar) {
+ *this /= Vector3(p_scalar, p_scalar, p_scalar);
+ return *this;
+ }
+
+ inline Vector3 operator/(real_t p_scalar) const {
+ Vector3 v = *this;
+ v /= p_scalar;
+ return v;
+ }
+
+ inline Vector3 operator-() const {
+ return Vector3(-x, -y, -z);
+ }
+
+ inline bool operator==(const Vector3 &p_v) const {
+ return (x == p_v.x && y == p_v.y && z == p_v.z);
+ }
+
+ inline bool operator!=(const Vector3 &p_v) const {
+ return (x != p_v.x || y != p_v.y || z != p_v.z);
+ }
bool operator<(const Vector3 &p_v) const;
bool operator<=(const Vector3 &p_v) const;
- Vector3 abs() const;
+ inline Vector3 abs() const {
+ return Vector3(::fabs(x), ::fabs(y), ::fabs(z));
+ }
- Vector3 ceil() const;
+ inline Vector3 ceil() const {
+ return Vector3(::ceil(x), ::ceil(y), ::ceil(z));
+ }
- Vector3 cross(const Vector3 &b) const;
+ inline Vector3 cross(const Vector3 &b) const {
+ Vector3 ret(
+ (y * b.z) - (z * b.y),
+ (z * b.x) - (x * b.z),
+ (x * b.y) - (y * b.x));
- Vector3 linear_interpolate(const Vector3 &p_b, real_t p_t) const;
+ return ret;
+ }
+
+ inline Vector3 linear_interpolate(const Vector3 &p_b, real_t p_t) const {
+ return Vector3(
+ x + (p_t * (p_b.x - x)),
+ y + (p_t * (p_b.y - y)),
+ z + (p_t * (p_b.z - z)));
+ }
Vector3 cubic_interpolate(const Vector3 &b, const Vector3 &pre_a, const Vector3 &post_b, const real_t t) const;
- Vector3 bounce(const Vector3 &p_normal) const;
+ Vector3 bounce(const Vector3 &p_normal) const {
+ return -reflect(p_normal);
+ }
+
+ inline real_t length() const {
+ real_t x2 = x * x;
+ real_t y2 = y * y;
+ real_t z2 = z * z;
+
+ return ::sqrt(x2 + y2 + z2);
+ }
- real_t length() const;
+ inline real_t length_squared() const {
+ real_t x2 = x * x;
+ real_t y2 = y * y;
+ real_t z2 = z * z;
- real_t length_squared() const;
+ return x2 + y2 + z2;
+ }
- real_t distance_squared_to(const Vector3 &b) const;
+ inline real_t distance_squared_to(const Vector3 &b) const {
+ return (b - *this).length_squared();
+ }
- real_t distance_to(const Vector3 &b) const;
+ inline real_t distance_to(const Vector3 &b) const {
+ return (b - *this).length();
+ }
- real_t dot(const Vector3 &b) const;
+ inline real_t dot(const Vector3 &b) const {
+ return x * b.x + y * b.y + z * b.z;
+ }
- real_t angle_to(const Vector3 &b) const;
+ inline real_t angle_to(const Vector3 &b) const {
+ return std::atan2(cross(b).length(), dot(b));
+ }
- Vector3 floor() const;
+ inline Vector3 floor() const {
+ return Vector3(::floor(x), ::floor(y), ::floor(z));
+ }
- Vector3 inverse() const;
+ inline Vector3 inverse() const {
+ return Vector3(1.f / x, 1.f / y, 1.f / z);
+ }
- bool is_normalized() const;
+ inline bool is_normalized() const {
+ return std::abs(length_squared() - 1.f) < 0.00001f;
+ }
Basis outer(const Vector3 &b) const;
@@ -105,21 +221,46 @@ struct Vector3 {
int min_axis() const;
- void normalize();
-
- Vector3 normalized() const;
-
- Vector3 reflect(const Vector3 &by) const;
-
- Vector3 rotated(const Vector3 &axis, const real_t phi) const;
+ inline void normalize() {
+ real_t l = length();
+ if (l == 0) {
+ x = y = z = 0;
+ } else {
+ x /= l;
+ y /= l;
+ z /= l;
+ }
+ }
+
+ inline Vector3 normalized() const {
+ Vector3 v = *this;
+ v.normalize();
+ return v;
+ }
+
+ inline Vector3 reflect(const Vector3 &by) const {
+ return by - *this * this->dot(by) * 2.f;
+ }
+
+ inline Vector3 rotated(const Vector3 &axis, const real_t phi) const {
+ Vector3 v = *this;
+ v.rotate(axis, phi);
+ return v;
+ }
void rotate(const Vector3 &p_axis, real_t p_phi);
- Vector3 slide(const Vector3 &by) const;
+ inline Vector3 slide(const Vector3 &by) const {
+ return by - *this * this->dot(by);
+ }
void snap(real_t p_val);
- Vector3 snapped(const float by);
+ inline Vector3 snapped(const float by) {
+ Vector3 v = *this;
+ v.snap(by);
+ return v;
+ }
operator String() const;
};
diff --git a/src/core/Basis.cpp b/src/core/Basis.cpp
index 73d9cd5..466f309 100644
--- a/src/core/Basis.cpp
+++ b/src/core/Basis.cpp
@@ -31,15 +31,6 @@ Basis::Basis() {
elements[2][2] = 1;
}
-const Vector3 &Basis::operator[](int axis) const {
-
- return elements[axis];
-}
-Vector3 &Basis::operator[](int axis) {
-
- return elements[axis];
-}
-
#define cofac(row1, col1, row2, col2) \
(elements[row1][col1] * elements[row2][col2] - elements[row1][col2] * elements[row2][col1])
diff --git a/src/core/Vector2.cpp b/src/core/Vector2.cpp
index 66f6bdd..2da6f47 100644
--- a/src/core/Vector2.cpp
+++ b/src/core/Vector2.cpp
@@ -1,61 +1,11 @@
#include "Vector2.hpp"
-#include <cmath>
-
#include <gdnative/vector2.h>
#include "String.hpp"
namespace godot {
-Vector2 Vector2::operator+(const Vector2 &p_v) const {
- return Vector2(x + p_v.x, y + p_v.y);
-}
-
-void Vector2::operator+=(const Vector2 &p_v) {
- x += p_v.x;
- y += p_v.y;
-}
-
-Vector2 Vector2::operator-(const Vector2 &p_v) const {
- return Vector2(x - p_v.x, y - p_v.y);
-}
-
-void Vector2::operator-=(const Vector2 &p_v) {
- x -= p_v.x;
- y -= p_v.y;
-}
-
-Vector2 Vector2::operator*(const Vector2 &p_v1) const {
- return Vector2(x * p_v1.x, y * p_v1.y);
-}
-
-Vector2 Vector2::operator*(const real_t &rvalue) const {
- return Vector2(x * rvalue, y * rvalue);
-}
-
-void Vector2::operator*=(const real_t &rvalue) {
- x *= rvalue;
- y *= rvalue;
-}
-
-Vector2 Vector2::operator/(const Vector2 &p_v1) const {
- return Vector2(x / p_v1.x, y / p_v1.y);
-}
-
-Vector2 Vector2::operator/(const real_t &rvalue) const {
- return Vector2(x / rvalue, y / rvalue);
-}
-
-void Vector2::operator/=(const real_t &rvalue) {
- x /= rvalue;
- y /= rvalue;
-}
-
-Vector2 Vector2::operator-() const {
- return Vector2(-x, -y);
-}
-
bool Vector2::operator==(const Vector2 &p_vec2) const {
return x == p_vec2.x && y == p_vec2.y;
}
@@ -64,56 +14,6 @@ bool Vector2::operator!=(const Vector2 &p_vec2) const {
return x != p_vec2.x || y != p_vec2.y;
}
-void Vector2::normalize() {
- real_t l = x * x + y * y;
- if (l != 0) {
- l = sqrt(l);
- x /= l;
- y /= l;
- }
-}
-
-Vector2 Vector2::normalized() const {
- Vector2 v = *this;
- v.normalize();
- return v;
-}
-
-real_t Vector2::length() const {
- return sqrt(x * x + y * y);
-}
-real_t Vector2::length_squared() const {
- return x * x + y * y;
-}
-
-real_t Vector2::distance_to(const Vector2 &p_vector2) const {
- return sqrt((x - p_vector2.x) * (x - p_vector2.x) + (y - p_vector2.y) * (y - p_vector2.y));
-}
-
-real_t Vector2::distance_squared_to(const Vector2 &p_vector2) const {
- return (x - p_vector2.x) * (x - p_vector2.x) + (y - p_vector2.y) * (y - p_vector2.y);
-}
-
-real_t Vector2::angle_to(const Vector2 &p_vector2) const {
- return atan2(cross(p_vector2), dot(p_vector2));
-}
-
-real_t Vector2::angle_to_point(const Vector2 &p_vector2) const {
- return atan2(y - p_vector2.y, x - p_vector2.x);
-}
-
-real_t Vector2::dot(const Vector2 &p_other) const {
- return x * p_other.x + y * p_other.y;
-}
-
-real_t Vector2::cross(const Vector2 &p_other) const {
- return x * p_other.y - y * p_other.x;
-}
-
-Vector2 Vector2::cross(real_t p_other) const {
- return Vector2(p_other * y, -p_other * x);
-}
-
Vector2 Vector2::project(const Vector2 &p_vec) const {
Vector2 v1 = p_vec;
Vector2 v2 = *this;
@@ -134,19 +34,6 @@ Vector2 Vector2::clamped(real_t p_len) const {
return v;
}
-Vector2 Vector2::linear_interpolate(const Vector2 &p_a, const Vector2 &p_b, real_t p_t) {
- Vector2 res = p_a;
- res.x += (p_t * (p_b.x - p_a.x));
- res.y += (p_t * (p_b.y - p_a.y));
- return res;
-}
-
-Vector2 Vector2::linear_interpolate(const Vector2 &p_b, real_t p_t) const {
- Vector2 res = *this;
- res.x += (p_t * (p_b.x - x));
- res.y += (p_t * (p_b.y - y));
- return res;
-}
Vector2 Vector2::cubic_interpolate(const Vector2 &p_b, const Vector2 &p_pre_a, const Vector2 &p_post_b, real_t p_t) const {
Vector2 p0 = p_pre_a;
Vector2 p1 = *this;
@@ -167,45 +54,6 @@ Vector2 Vector2::cubic_interpolate(const Vector2 &p_b, const Vector2 &p_pre_a, c
return out;
}
-Vector2 Vector2::slide(const Vector2 &p_vec) const {
- return p_vec - *this * this->dot(p_vec);
-}
-
-Vector2 Vector2::reflect(const Vector2 &p_vec) const {
- return p_vec - *this * this->dot(p_vec) * 2.0;
-}
-
-real_t Vector2::angle() const {
- return atan2(y, x);
-}
-
-void Vector2::set_rotation(real_t p_radians) {
-
- x = cosf(p_radians);
- y = sinf(p_radians);
-}
-
-Vector2 Vector2::abs() const {
-
- return Vector2(fabs(x), fabs(y));
-}
-
-Vector2 Vector2::rotated(real_t p_by) const {
- Vector2 v;
- v.set_rotation(angle() + p_by);
- v *= length();
- return v;
-}
-
-Vector2 Vector2::tangent() const {
-
- return Vector2(y, -x);
-}
-
-Vector2 Vector2::floor() const {
- return Vector2(::floor(x), ::floor(y));
-}
-
Vector2 Vector2::snapped(const Vector2 &p_by) const {
return Vector2(
p_by.x != 0 ? ::floor(x / p_by.x + 0.5) * p_by.x : x,
diff --git a/src/core/Vector3.cpp b/src/core/Vector3.cpp
index a15fb78..cf95792 100644
--- a/src/core/Vector3.cpp
+++ b/src/core/Vector3.cpp
@@ -4,118 +4,10 @@
#include <stdlib.h>
-#include <cmath>
-
#include "Basis.hpp"
namespace godot {
-Vector3::Vector3(real_t x, real_t y, real_t z) {
- this->x = x;
- this->y = y;
- this->z = z;
-}
-
-Vector3::Vector3() {
- this->x = 0;
- this->y = 0;
- this->z = 0;
-}
-
-const real_t &Vector3::operator[](int p_axis) const {
- return coord[p_axis];
-}
-
-real_t &Vector3::operator[](int p_axis) {
- return coord[p_axis];
-}
-
-Vector3 &Vector3::operator+=(const Vector3 &p_v) {
- x += p_v.x;
- y += p_v.y;
- z += p_v.z;
- return *this;
-}
-
-Vector3 Vector3::operator+(const Vector3 &p_v) const {
- Vector3 v = *this;
- v += p_v;
- return v;
-}
-
-Vector3 &Vector3::operator-=(const Vector3 &p_v) {
- x -= p_v.x;
- y -= p_v.y;
- z -= p_v.z;
- return *this;
-}
-
-Vector3 Vector3::operator-(const Vector3 &p_v) const {
- Vector3 v = *this;
- v -= p_v;
- return v;
-}
-
-Vector3 &Vector3::operator*=(const Vector3 &p_v) {
- x *= p_v.x;
- y *= p_v.y;
- z *= p_v.z;
- return *this;
-}
-
-Vector3 Vector3::operator*(const Vector3 &p_v) const {
- Vector3 v = *this;
- v *= p_v;
- return v;
-}
-
-Vector3 &Vector3::operator/=(const Vector3 &p_v) {
- x /= p_v.x;
- y /= p_v.y;
- z /= p_v.z;
- return *this;
-}
-
-Vector3 Vector3::operator/(const Vector3 &p_v) const {
- Vector3 v = *this;
- v /= p_v;
- return v;
-}
-
-Vector3 &Vector3::operator*=(real_t p_scalar) {
- *this *= Vector3(p_scalar, p_scalar, p_scalar);
- return *this;
-}
-
-Vector3 Vector3::operator*(real_t p_scalar) const {
- Vector3 v = *this;
- v *= p_scalar;
- return v;
-}
-
-Vector3 &Vector3::operator/=(real_t p_scalar) {
- *this /= Vector3(p_scalar, p_scalar, p_scalar);
- return *this;
-}
-
-Vector3 Vector3::operator/(real_t p_scalar) const {
- Vector3 v = *this;
- v /= p_scalar;
- return v;
-}
-
-Vector3 Vector3::operator-() const {
- return Vector3(-x, -y, -z);
-}
-
-bool Vector3::operator==(const Vector3 &p_v) const {
- return (x == p_v.x && y == p_v.y && z == p_v.z);
-}
-
-bool Vector3::operator!=(const Vector3 &p_v) const {
- return (x != p_v.x || y != p_v.y || z != p_v.z);
-}
-
bool Vector3::operator<(const Vector3 &p_v) const {
if (x == p_v.x) {
if (y == p_v.y)
@@ -138,30 +30,6 @@ bool Vector3::operator<=(const Vector3 &p_v) const {
}
}
-Vector3 Vector3::abs() const {
- return Vector3(::fabs(x), ::fabs(y), ::fabs(z));
-}
-
-Vector3 Vector3::ceil() const {
- return Vector3(::ceil(x), ::ceil(y), ::ceil(z));
-}
-
-Vector3 Vector3::cross(const Vector3 &b) const {
- Vector3 ret(
- (y * b.z) - (z * b.y),
- (z * b.x) - (x * b.z),
- (x * b.y) - (y * b.x));
-
- return ret;
-}
-
-Vector3 Vector3::linear_interpolate(const Vector3 &p_b, real_t p_t) const {
- return Vector3(
- x + (p_t * (p_b.x - x)),
- y + (p_t * (p_b.y - y)),
- z + (p_t * (p_b.z - z)));
-}
-
Vector3 Vector3::cubic_interpolate(const Vector3 &b, const Vector3 &pre_a, const Vector3 &post_b, const real_t t) const {
Vector3 p0 = pre_a;
Vector3 p1 = *this;
@@ -180,54 +48,6 @@ Vector3 Vector3::cubic_interpolate(const Vector3 &b, const Vector3 &pre_a, const
return out;
}
-Vector3 Vector3::bounce(const Vector3 &p_normal) const {
- return -reflect(p_normal);
-}
-
-real_t Vector3::length() const {
- real_t x2 = x * x;
- real_t y2 = y * y;
- real_t z2 = z * z;
-
- return ::sqrt(x2 + y2 + z2);
-}
-
-real_t Vector3::length_squared() const {
- real_t x2 = x * x;
- real_t y2 = y * y;
- real_t z2 = z * z;
-
- return x2 + y2 + z2;
-}
-
-real_t Vector3::distance_squared_to(const Vector3 &b) const {
- return (b - *this).length_squared();
-}
-
-real_t Vector3::distance_to(const Vector3 &b) const {
- return (b - *this).length();
-}
-
-real_t Vector3::dot(const Vector3 &b) const {
- return x * b.x + y * b.y + z * b.z;
-}
-
-real_t Vector3::angle_to(const Vector3 &b) const {
- return std::atan2(cross(b).length(), dot(b));
-}
-
-Vector3 Vector3::floor() const {
- return Vector3(::floor(x), ::floor(y), ::floor(z));
-}
-
-Vector3 Vector3::inverse() const {
- return Vector3(1.0 / x, 1.0 / y, 1.0 / z);
-}
-
-bool Vector3::is_normalized() const {
- return std::abs(length_squared() - 1.0) < 0.00001;
-}
-
Basis Vector3::outer(const Vector3 &b) const {
Vector3 row0(x * b.x, x * b.y, x * b.z);
Vector3 row1(y * b.x, y * b.y, y * b.z);
@@ -243,41 +63,10 @@ int Vector3::min_axis() const {
return x < y ? (x < z ? 0 : 2) : (y < z ? 1 : 2);
}
-void Vector3::normalize() {
- real_t l = length();
- if (l == 0) {
- x = y = z = 0;
- } else {
- x /= l;
- y /= l;
- z /= l;
- }
-}
-
-Vector3 Vector3::normalized() const {
- Vector3 v = *this;
- v.normalize();
- return v;
-}
-
-Vector3 Vector3::reflect(const Vector3 &by) const {
- return by - *this * this->dot(by) * 2.0;
-}
-
-Vector3 Vector3::rotated(const Vector3 &axis, const real_t phi) const {
- Vector3 v = *this;
- v.rotate(axis, phi);
- return v;
-}
-
void Vector3::rotate(const Vector3 &p_axis, real_t p_phi) {
*this = Basis(p_axis, p_phi).xform(*this);
}
-Vector3 Vector3::slide(const Vector3 &by) const {
- return by - *this * this->dot(by);
-}
-
// this is ugly as well, but hey, I'm a simple man
#define _ugly_stepify(val, step) (step != 0 ? ::floor(val / step + 0.5) * step : val)
@@ -289,12 +78,6 @@ void Vector3::snap(real_t p_val) {
#undef _ugly_stepify
-Vector3 Vector3::snapped(const float by) {
- Vector3 v = *this;
- v.snap(by);
- return v;
-}
-
Vector3::operator String() const {
return String::num(x) + ", " + String::num(y) + ", " + String::num(z);
}