summaryrefslogtreecommitdiffstats
path: root/include/godot_cpp/core/Basis.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'include/godot_cpp/core/Basis.cpp')
-rw-r--r--include/godot_cpp/core/Basis.cpp680
1 files changed, 680 insertions, 0 deletions
diff --git a/include/godot_cpp/core/Basis.cpp b/include/godot_cpp/core/Basis.cpp
new file mode 100644
index 0000000..06a1937
--- /dev/null
+++ b/include/godot_cpp/core/Basis.cpp
@@ -0,0 +1,680 @@
+#include "Basis.h"
+
+
+#include "Defs.h"
+
+#include "Vector3.h"
+
+#include "Quat.h"
+
+#include <algorithm>
+
+
+namespace godot {
+
+
+Basis::Basis(const Vector3& row0, const Vector3& row1, const Vector3& row2)
+{
+ elements[0]=row0;
+ elements[1]=row1;
+ elements[2]=row2;
+}
+
+Basis::Basis(real_t xx, real_t xy, real_t xz, real_t yx, real_t yy, real_t yz, real_t zx, real_t zy, real_t zz) {
+
+ set(xx, xy, xz, yx, yy, yz, zx, zy, zz);
+}
+
+Basis::Basis() {
+
+ elements[0][0]=1;
+ elements[0][1]=0;
+ elements[0][2]=0;
+ elements[1][0]=0;
+ elements[1][1]=1;
+ elements[1][2]=0;
+ elements[2][0]=0;
+ elements[2][1]=0;
+ elements[2][2]=1;
+}
+
+
+
+
+
+const Vector3& Basis::operator[](int axis) const {
+
+ return elements[axis];
+}
+Vector3&Basis:: operator[](int axis) {
+
+ return elements[axis];
+}
+
+#define cofac(row1,col1, row2, col2)\
+(elements[row1][col1] * elements[row2][col2] - elements[row1][col2] * elements[row2][col1])
+
+void Basis::invert()
+{
+ real_t co[3]={
+ cofac(1, 1, 2, 2), cofac(1, 2, 2, 0), cofac(1, 0, 2, 1)
+ };
+ real_t det = elements[0][0] * co[0]+
+ elements[0][1] * co[1]+
+ elements[0][2] * co[2];
+
+ if ( det != 0 ) {
+ // WTF
+ __builtin_trap(); // WTF WTF WTF
+
+ // I shouldn't do this
+ // @Todo @Fixme @Todo @Todo
+ }
+ real_t s = 1.0/det;
+
+ set( co[0]*s, cofac(0, 2, 2, 1) * s, cofac(0, 1, 1, 2) * s,
+ co[1]*s, cofac(0, 0, 2, 2) * s, cofac(0, 2, 1, 0) * s,
+ co[2]*s, cofac(0, 1, 2, 0) * s, cofac(0, 0, 1, 1) * s );
+}
+#undef cofac
+
+bool Basis::isequal_approx(const Basis& a, const Basis& b) const {
+
+ for (int i=0;i<3;i++) {
+ for (int j=0;j<3;j++) {
+ if ((::fabs(a.elements[i][j]-b.elements[i][j]) < CMP_EPSILON) == false)
+ return false;
+ }
+ }
+
+ return true;
+}
+
+
+bool Basis::is_orthogonal() const
+{
+ Basis id;
+ Basis m = (*this)*transposed();
+
+ return isequal_approx(id,m);
+}
+
+bool Basis::is_rotation() const
+{
+ return ::fabs(determinant()-1) < CMP_EPSILON && is_orthogonal();
+}
+
+void Basis::transpose()
+{
+ std::swap(elements[0][1],elements[1][0]);
+ std::swap(elements[0][2],elements[2][0]);
+ std::swap(elements[1][2],elements[2][1]);
+}
+
+Basis Basis::inverse() const
+{
+ Basis b = *this;
+ b.invert();
+ return b;
+}
+
+Basis Basis::transposed() const
+{
+ Basis b = *this;
+ b.transpose();
+ return b;
+}
+
+real_t Basis::determinant() const
+{
+ return elements[0][0]*(elements[1][1]*elements[2][2] - elements[2][1]*elements[1][2]) -
+ elements[1][0]*(elements[0][1]*elements[2][2] - elements[2][1]*elements[0][2]) +
+ elements[2][0]*(elements[0][1]*elements[1][2] - elements[1][1]*elements[0][2]);
+}
+
+Vector3 Basis::get_axis(int p_axis) const {
+ // get actual basis axis (elements is transposed for performance)
+ return Vector3( elements[0][p_axis], elements[1][p_axis], elements[2][p_axis] );
+}
+void Basis::set_axis(int p_axis, const Vector3& p_value) {
+ // get actual basis axis (elements is transposed for performance)
+ elements[0][p_axis]=p_value.x;
+ elements[1][p_axis]=p_value.y;
+ elements[2][p_axis]=p_value.z;
+}
+
+void Basis::rotate(const Vector3& p_axis, real_t p_phi)
+{
+ *this = rotated(p_axis, p_phi);
+}
+
+Basis Basis::rotated(const Vector3& p_axis, real_t p_phi) const
+{
+ return Basis(p_axis, p_phi) * (*this);
+}
+
+void Basis::scale( const Vector3& p_scale )
+{
+ elements[0][0]*=p_scale.x;
+ elements[0][1]*=p_scale.x;
+ elements[0][2]*=p_scale.x;
+ elements[1][0]*=p_scale.y;
+ elements[1][1]*=p_scale.y;
+ elements[1][2]*=p_scale.y;
+ elements[2][0]*=p_scale.z;
+ elements[2][1]*=p_scale.z;
+ elements[2][2]*=p_scale.z;
+}
+
+Basis Basis::scaled( const Vector3& p_scale ) const
+{
+ Basis b = *this;
+ b.scale(p_scale);
+ return b;
+}
+
+Vector3 Basis::get_scale() const
+{
+ // We are assuming M = R.S, and performing a polar decomposition to extract R and S.
+ // FIXME: We eventually need a proper polar decomposition.
+ // As a cheap workaround until then, to ensure that R is a proper rotation matrix with determinant +1
+ // (such that it can be represented by a Quat or Euler angles), we absorb the sign flip into the scaling matrix.
+ // As such, it works in conjuction with get_rotation().
+ real_t det_sign = determinant() > 0 ? 1 : -1;
+ return det_sign*Vector3(
+ Vector3(elements[0][0],elements[1][0],elements[2][0]).length(),
+ Vector3(elements[0][1],elements[1][1],elements[2][1]).length(),
+ Vector3(elements[0][2],elements[1][2],elements[2][2]).length()
+ );
+}
+
+Vector3 Basis::get_euler() const
+{
+ // Euler angles in XYZ convention.
+ // See https://en.wikipedia.org/wiki/Euler_angles#Rotation_matrix
+ //
+ // rot = cy*cz -cy*sz sy
+ // cz*sx*sy+cx*sz cx*cz-sx*sy*sz -cy*sx
+ // -cx*cz*sy+sx*sz cz*sx+cx*sy*sz cx*cy
+
+ Vector3 euler;
+
+ if (is_rotation() == false)
+ return euler;
+
+ euler.y = ::asin(elements[0][2]);
+ if ( euler.y < Math_PI*0.5) {
+ if ( euler.y > -Math_PI*0.5) {
+ euler.x = ::atan2(-elements[1][2],elements[2][2]);
+ euler.z = ::atan2(-elements[0][1],elements[0][0]);
+
+ } else {
+ real_t r = ::atan2(elements[1][0],elements[1][1]);
+ euler.z = 0.0;
+ euler.x = euler.z - r;
+
+ }
+ } else {
+ real_t r = ::atan2(elements[0][1],elements[1][1]);
+ euler.z = 0;
+ euler.x = r - euler.z;
+ }
+
+ return euler;
+}
+
+void Basis::set_euler(const Vector3& p_euler)
+{
+ real_t c, s;
+
+ c = ::cos(p_euler.x);
+ s = ::sin(p_euler.x);
+ Basis xmat(1.0,0.0,0.0,0.0,c,-s,0.0,s,c);
+
+ c = ::cos(p_euler.y);
+ s = ::sin(p_euler.y);
+ Basis ymat(c,0.0,s,0.0,1.0,0.0,-s,0.0,c);
+
+ c = ::cos(p_euler.z);
+ s = ::sin(p_euler.z);
+ Basis zmat(c,-s,0.0,s,c,0.0,0.0,0.0,1.0);
+
+ //optimizer will optimize away all this anyway
+ *this = xmat*(ymat*zmat);
+}
+
+// transposed dot products
+real_t Basis::tdotx(const Vector3& v) const {
+ return elements[0][0] * v[0] + elements[1][0] * v[1] + elements[2][0] * v[2];
+}
+real_t Basis::tdoty(const Vector3& v) const {
+ return elements[0][1] * v[0] + elements[1][1] * v[1] + elements[2][1] * v[2];
+}
+real_t Basis::tdotz(const Vector3& v) const {
+ return elements[0][2] * v[0] + elements[1][2] * v[1] + elements[2][2] * v[2];
+}
+
+bool Basis::operator==(const Basis& p_matrix) const
+{
+ for (int i=0;i<3;i++) {
+ for (int j=0;j<3;j++) {
+ if (elements[i][j] != p_matrix.elements[i][j])
+ return false;
+ }
+ }
+
+ return true;
+}
+
+bool Basis::operator!=(const Basis& p_matrix) const
+{
+ return (!(*this==p_matrix));
+}
+
+Vector3 Basis::xform(const Vector3& p_vector) const {
+
+ return Vector3(
+ elements[0].dot(p_vector),
+ elements[1].dot(p_vector),
+ elements[2].dot(p_vector)
+ );
+}
+
+Vector3 Basis::xform_inv(const Vector3& p_vector) const {
+
+ return Vector3(
+ (elements[0][0]*p_vector.x ) + ( elements[1][0]*p_vector.y ) + ( elements[2][0]*p_vector.z ),
+ (elements[0][1]*p_vector.x ) + ( elements[1][1]*p_vector.y ) + ( elements[2][1]*p_vector.z ),
+ (elements[0][2]*p_vector.x ) + ( elements[1][2]*p_vector.y ) + ( elements[2][2]*p_vector.z )
+ );
+}
+void Basis::operator*=(const Basis& p_matrix)
+{
+ set(
+ p_matrix.tdotx(elements[0]), p_matrix.tdoty(elements[0]), p_matrix.tdotz(elements[0]),
+ p_matrix.tdotx(elements[1]), p_matrix.tdoty(elements[1]), p_matrix.tdotz(elements[1]),
+ p_matrix.tdotx(elements[2]), p_matrix.tdoty(elements[2]), p_matrix.tdotz(elements[2]));
+
+}
+
+Basis Basis::operator*(const Basis& p_matrix) const
+{
+ return Basis(
+ p_matrix.tdotx(elements[0]), p_matrix.tdoty(elements[0]), p_matrix.tdotz(elements[0]),
+ p_matrix.tdotx(elements[1]), p_matrix.tdoty(elements[1]), p_matrix.tdotz(elements[1]),
+ p_matrix.tdotx(elements[2]), p_matrix.tdoty(elements[2]), p_matrix.tdotz(elements[2]) );
+
+}
+
+
+void Basis::operator+=(const Basis& p_matrix) {
+
+ elements[0] += p_matrix.elements[0];
+ elements[1] += p_matrix.elements[1];
+ elements[2] += p_matrix.elements[2];
+}
+
+Basis Basis::operator+(const Basis& p_matrix) const {
+
+ Basis ret(*this);
+ ret += p_matrix;
+ return ret;
+}
+
+void Basis::operator-=(const Basis& p_matrix) {
+
+ elements[0] -= p_matrix.elements[0];
+ elements[1] -= p_matrix.elements[1];
+ elements[2] -= p_matrix.elements[2];
+}
+
+Basis Basis::operator-(const Basis& p_matrix) const {
+
+ Basis ret(*this);
+ ret -= p_matrix;
+ return ret;
+}
+
+void Basis::operator*=(real_t p_val) {
+
+ elements[0]*=p_val;
+ elements[1]*=p_val;
+ elements[2]*=p_val;
+}
+
+Basis Basis::operator*(real_t p_val) const {
+
+ Basis ret(*this);
+ ret *= p_val;
+ return ret;
+}
+
+
+Basis::operator String() const
+{
+ String s;
+ // @Todo
+ return s;
+}
+
+/* create / set */
+
+
+void Basis::set(real_t xx, real_t xy, real_t xz, real_t yx, real_t yy, real_t yz, real_t zx, real_t zy, real_t zz) {
+
+ elements[0][0]=xx;
+ elements[0][1]=xy;
+ elements[0][2]=xz;
+ elements[1][0]=yx;
+ elements[1][1]=yy;
+ elements[1][2]=yz;
+ elements[2][0]=zx;
+ elements[2][1]=zy;
+ elements[2][2]=zz;
+}
+Vector3 Basis::get_column(int i) const {
+
+ return Vector3(elements[0][i],elements[1][i],elements[2][i]);
+}
+
+Vector3 Basis::get_row(int i) const {
+
+ return Vector3(elements[i][0],elements[i][1],elements[i][2]);
+}
+Vector3 Basis::get_main_diagonal() const {
+ return Vector3(elements[0][0],elements[1][1],elements[2][2]);
+}
+
+void Basis::set_row(int i, const Vector3& p_row) {
+ elements[i][0]=p_row.x;
+ elements[i][1]=p_row.y;
+ elements[i][2]=p_row.z;
+}
+
+Basis Basis::transpose_xform(const Basis& m) const
+{
+ return Basis(
+ elements[0].x * m[0].x + elements[1].x * m[1].x + elements[2].x * m[2].x,
+ elements[0].x * m[0].y + elements[1].x * m[1].y + elements[2].x * m[2].y,
+ elements[0].x * m[0].z + elements[1].x * m[1].z + elements[2].x * m[2].z,
+ elements[0].y * m[0].x + elements[1].y * m[1].x + elements[2].y * m[2].x,
+ elements[0].y * m[0].y + elements[1].y * m[1].y + elements[2].y * m[2].y,
+ elements[0].y * m[0].z + elements[1].y * m[1].z + elements[2].y * m[2].z,
+ elements[0].z * m[0].x + elements[1].z * m[1].x + elements[2].z * m[2].x,
+ elements[0].z * m[0].y + elements[1].z * m[1].y + elements[2].z * m[2].y,
+ elements[0].z * m[0].z + elements[1].z * m[1].z + elements[2].z * m[2].z);
+}
+
+void Basis::orthonormalize()
+{
+ if (determinant() != 0) {
+ // not this crap again
+ __builtin_trap(); // WTF WTF WTF
+ // somebody please complain some day
+ // so I can fix this
+
+ // need propert error reporting here.
+ }
+
+ // Gram-Schmidt Process
+
+ Vector3 x=get_axis(0);
+ Vector3 y=get_axis(1);
+ Vector3 z=get_axis(2);
+
+ x.normalize();
+ y = (y-x*(x.dot(y)));
+ y.normalize();
+ z = (z-x*(x.dot(z))-y*(y.dot(z)));
+ z.normalize();
+
+ set_axis(0,x);
+ set_axis(1,y);
+ set_axis(2,z);
+}
+
+Basis Basis::orthonormalized() const
+{
+ Basis b = *this;
+ b.orthonormalize();
+ return b;
+}
+
+bool Basis::is_symmetric() const
+{
+ if (::fabs(elements[0][1] - elements[1][0]) > CMP_EPSILON)
+ return false;
+ if (::fabs(elements[0][2] - elements[2][0]) > CMP_EPSILON)
+ return false;
+ if (::fabs(elements[1][2] - elements[2][1]) > CMP_EPSILON)
+ return false;
+
+ return true;
+}
+
+Basis Basis::diagonalize()
+{
+ // I love copy paste
+
+ if (!is_symmetric())
+ return Basis();
+
+ const int ite_max = 1024;
+
+ real_t off_matrix_norm_2 = elements[0][1] * elements[0][1] + elements[0][2] * elements[0][2] + elements[1][2] * elements[1][2];
+
+ int ite = 0;
+ Basis acc_rot;
+ while (off_matrix_norm_2 > CMP_EPSILON2 && ite++ < ite_max ) {
+ real_t el01_2 = elements[0][1] * elements[0][1];
+ real_t el02_2 = elements[0][2] * elements[0][2];
+ real_t el12_2 = elements[1][2] * elements[1][2];
+ // Find the pivot element
+ int i, j;
+ if (el01_2 > el02_2) {
+ if (el12_2 > el01_2) {
+ i = 1;
+ j = 2;
+ } else {
+ i = 0;
+ j = 1;
+ }
+ } else {
+ if (el12_2 > el02_2) {
+ i = 1;
+ j = 2;
+ } else {
+ i = 0;
+ j = 2;
+ }
+ }
+
+ // Compute the rotation angle
+ real_t angle;
+ if (::fabs(elements[j][j] - elements[i][i]) < CMP_EPSILON) {
+ angle = Math_PI / 4;
+ } else {
+ angle = 0.5 * ::atan(2 * elements[i][j] / (elements[j][j] - elements[i][i]));
+ }
+
+ // Compute the rotation matrix
+ Basis rot;
+ rot.elements[i][i] = rot.elements[j][j] = ::cos(angle);
+ rot.elements[i][j] = - (rot.elements[j][i] = ::sin(angle));
+
+ // Update the off matrix norm
+ off_matrix_norm_2 -= elements[i][j] * elements[i][j];
+
+ // Apply the rotation
+ *this = rot * *this * rot.transposed();
+ acc_rot = rot * acc_rot;
+ }
+
+ return acc_rot;
+}
+
+
+static const Basis _ortho_bases[24]={
+ Basis(1, 0, 0, 0, 1, 0, 0, 0, 1),
+ Basis(0, -1, 0, 1, 0, 0, 0, 0, 1),
+ Basis(-1, 0, 0, 0, -1, 0, 0, 0, 1),
+ Basis(0, 1, 0, -1, 0, 0, 0, 0, 1),
+ Basis(1, 0, 0, 0, 0, -1, 0, 1, 0),
+ Basis(0, 0, 1, 1, 0, 0, 0, 1, 0),
+ Basis(-1, 0, 0, 0, 0, 1, 0, 1, 0),
+ Basis(0, 0, -1, -1, 0, 0, 0, 1, 0),
+ Basis(1, 0, 0, 0, -1, 0, 0, 0, -1),
+ Basis(0, 1, 0, 1, 0, 0, 0, 0, -1),
+ Basis(-1, 0, 0, 0, 1, 0, 0, 0, -1),
+ Basis(0, -1, 0, -1, 0, 0, 0, 0, -1),
+ Basis(1, 0, 0, 0, 0, 1, 0, -1, 0),
+ Basis(0, 0, -1, 1, 0, 0, 0, -1, 0),
+ Basis(-1, 0, 0, 0, 0, -1, 0, -1, 0),
+ Basis(0, 0, 1, -1, 0, 0, 0, -1, 0),
+ Basis(0, 0, 1, 0, 1, 0, -1, 0, 0),
+ Basis(0, -1, 0, 0, 0, 1, -1, 0, 0),
+ Basis(0, 0, -1, 0, -1, 0, -1, 0, 0),
+ Basis(0, 1, 0, 0, 0, -1, -1, 0, 0),
+ Basis(0, 0, 1, 0, -1, 0, 1, 0, 0),
+ Basis(0, 1, 0, 0, 0, 1, 1, 0, 0),
+ Basis(0, 0, -1, 0, 1, 0, 1, 0, 0),
+ Basis(0, -1, 0, 0, 0, -1, 1, 0, 0)
+};
+
+
+int Basis::get_orthogonal_index() const
+{
+ //could be sped up if i come up with a way
+ Basis orth=*this;
+ for(int i=0;i<3;i++) {
+ for(int j=0;j<3;j++) {
+
+ real_t v = orth[i][j];
+ if (v>0.5)
+ v=1.0;
+ else if (v<-0.5)
+ v=-1.0;
+ else
+ v=0;
+
+ orth[i][j]=v;
+ }
+ }
+
+ for(int i=0;i<24;i++) {
+
+ if (_ortho_bases[i]==orth)
+ return i;
+
+
+ }
+
+ return 0;
+}
+
+
+void Basis::set_orthogonal_index(int p_index){
+
+ //there only exist 24 orthogonal bases in r3
+ if (p_index >= 24) {
+ __builtin_trap(); // kiiiiill me
+ // I don't want to do shady stuff like that
+ // @Todo WTF WTF
+ }
+
+
+ *this=_ortho_bases[p_index];
+
+}
+
+
+
+Basis::Basis(const Vector3& p_euler) {
+
+ set_euler( p_euler );
+
+}
+
+}
+
+#include "Quat.h"
+
+namespace godot {
+
+Basis::Basis(const Quat& p_quat) {
+
+ real_t d = p_quat.length_squared();
+ real_t s = 2.0 / d;
+ real_t xs = p_quat.x * s, ys = p_quat.y * s, zs = p_quat.z * s;
+ real_t wx = p_quat.w * xs, wy = p_quat.w * ys, wz = p_quat.w * zs;
+ real_t xx = p_quat.x * xs, xy = p_quat.x * ys, xz = p_quat.x * zs;
+ real_t yy = p_quat.y * ys, yz = p_quat.y * zs, zz = p_quat.z * zs;
+ set( 1.0 - (yy + zz), xy - wz, xz + wy,
+ xy + wz, 1.0 - (xx + zz), yz - wx,
+ xz - wy, yz + wx, 1.0 - (xx + yy)) ;
+
+}
+
+Basis::Basis(const Vector3& p_axis, real_t p_phi) {
+ // Rotation matrix from axis and angle, see https://en.wikipedia.org/wiki/Rotation_matrix#Rotation_matrix_from_axis_and_angle
+
+ Vector3 axis_sq(p_axis.x*p_axis.x,p_axis.y*p_axis.y,p_axis.z*p_axis.z);
+
+ real_t cosine= ::cos(p_phi);
+ real_t sine= ::sin(p_phi);
+
+ elements[0][0] = axis_sq.x + cosine * ( 1.0 - axis_sq.x );
+ elements[0][1] = p_axis.x * p_axis.y * ( 1.0 - cosine ) - p_axis.z * sine;
+ elements[0][2] = p_axis.z * p_axis.x * ( 1.0 - cosine ) + p_axis.y * sine;
+
+ elements[1][0] = p_axis.x * p_axis.y * ( 1.0 - cosine ) + p_axis.z * sine;
+ elements[1][1] = axis_sq.y + cosine * ( 1.0 - axis_sq.y );
+ elements[1][2] = p_axis.y * p_axis.z * ( 1.0 - cosine ) - p_axis.x * sine;
+
+ elements[2][0] = p_axis.z * p_axis.x * ( 1.0 - cosine ) - p_axis.y * sine;
+ elements[2][1] = p_axis.y * p_axis.z * ( 1.0 - cosine ) + p_axis.x * sine;
+ elements[2][2] = axis_sq.z + cosine * ( 1.0 - axis_sq.z );
+
+}
+
+Basis::operator Quat() const {
+ ERR_FAIL_COND_V(is_rotation() == false, Quat());
+
+ real_t trace = elements[0][0] + elements[1][1] + elements[2][2];
+ real_t temp[4];
+
+ if (trace > 0.0)
+ {
+ real_t s = ::sqrt(trace + 1.0);
+ temp[3]=(s * 0.5);
+ s = 0.5 / s;
+
+ temp[0]=((elements[2][1] - elements[1][2]) * s);
+ temp[1]=((elements[0][2] - elements[2][0]) * s);
+ temp[2]=((elements[1][0] - elements[0][1]) * s);
+ }
+ else
+ {
+ int i = elements[0][0] < elements[1][1] ?
+ (elements[1][1] < elements[2][2] ? 2 : 1) :
+ (elements[0][0] < elements[2][2] ? 2 : 0);
+ int j = (i + 1) % 3;
+ int k = (i + 2) % 3;
+
+ real_t s = ::sqrt(elements[i][i] - elements[j][j] - elements[k][k] + 1.0);
+ temp[i] = s * 0.5;
+ s = 0.5 / s;
+
+ temp[3] = (elements[k][j] - elements[j][k]) * s;
+ temp[j] = (elements[j][i] + elements[i][j]) * s;
+ temp[k] = (elements[k][i] + elements[i][k]) * s;
+ }
+
+ return Quat(temp[0],temp[1],temp[2],temp[3]);
+
+}
+
+
+
+
+}