diff options
Diffstat (limited to 'include/godot_cpp/core/Quat.cpp')
-rw-r--r-- | include/godot_cpp/core/Quat.cpp | 277 |
1 files changed, 277 insertions, 0 deletions
diff --git a/include/godot_cpp/core/Quat.cpp b/include/godot_cpp/core/Quat.cpp new file mode 100644 index 0000000..11ec5a6 --- /dev/null +++ b/include/godot_cpp/core/Quat.cpp @@ -0,0 +1,277 @@ +#include "Quat.h" + + +#include <cmath> + +#include "Defs.h" + +#include "Vector3.h" + +#include "Basis.h" + +namespace godot { + +real_t Quat::length() const +{ + return ::sqrt(length_squared()); +} + +void Quat::normalize() +{ + *this /= length(); +} + +Quat Quat::normalized() const +{ + return *this / length(); +} + +Quat Quat::inverse() const +{ + return Quat( -x, -y, -z, w ); +} + +void Quat::set_euler(const Vector3& p_euler) +{ + real_t half_a1 = p_euler.x * 0.5; + real_t half_a2 = p_euler.y * 0.5; + real_t half_a3 = p_euler.z * 0.5; + + // R = X(a1).Y(a2).Z(a3) convention for Euler angles. + // Conversion to quaternion as listed in https://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/19770024290.pdf (page A-2) + // a3 is the angle of the first rotation, following the notation in this reference. + + real_t cos_a1 = ::cos(half_a1); + real_t sin_a1 = ::sin(half_a1); + real_t cos_a2 = ::cos(half_a2); + real_t sin_a2 = ::sin(half_a2); + real_t cos_a3 = ::cos(half_a3); + real_t sin_a3 = ::sin(half_a3); + + set(sin_a1*cos_a2*cos_a3 + sin_a2*sin_a3*cos_a1, + -sin_a1*sin_a3*cos_a2 + sin_a2*cos_a1*cos_a3, + sin_a1*sin_a2*cos_a3 + sin_a3*cos_a1*cos_a2, + -sin_a1*sin_a2*sin_a3 + cos_a1*cos_a2*cos_a3); +} + +Quat Quat::slerp(const Quat& q, const real_t& t) const { + + Quat to1; + real_t omega, cosom, sinom, scale0, scale1; + + + // calc cosine + cosom = dot(q); + + // adjust signs (if necessary) + if ( cosom <0.0 ) { + cosom = -cosom; + to1.x = - q.x; + to1.y = - q.y; + to1.z = - q.z; + to1.w = - q.w; + } else { + to1.x = q.x; + to1.y = q.y; + to1.z = q.z; + to1.w = q.w; + } + + + // calculate coefficients + + if ( (1.0 - cosom) > CMP_EPSILON ) { + // standard case (slerp) + omega = ::acos(cosom); + sinom = ::sin(omega); + scale0 = ::sin((1.0 - t) * omega) / sinom; + scale1 = ::sin(t * omega) / sinom; + } else { + // "from" and "to" quaternions are very close + // ... so we can do a linear interpolation + scale0 = 1.0 - t; + scale1 = t; + } + // calculate final values + return Quat( + scale0 * x + scale1 * to1.x, + scale0 * y + scale1 * to1.y, + scale0 * z + scale1 * to1.z, + scale0 * w + scale1 * to1.w + ); +} + +Quat Quat::slerpni(const Quat& q, const real_t& t) const { + + const Quat &from = *this; + + real_t dot = from.dot(q); + + if (::fabs(dot) > 0.9999) return from; + + real_t theta = ::acos(dot), + sinT = 1.0 / ::sin(theta), + newFactor = ::sin(t * theta) * sinT, + invFactor = ::sin((1.0 - t) * theta) * sinT; + + return Quat(invFactor * from.x + newFactor * q.x, + invFactor * from.y + newFactor * q.y, + invFactor * from.z + newFactor * q.z, + invFactor * from.w + newFactor * q.w); +} + +Quat Quat::cubic_slerp(const Quat& q, const Quat& prep, const Quat& postq,const real_t& t) const +{ + //the only way to do slerp :| + real_t t2 = (1.0-t)*t*2; + Quat sp = this->slerp(q,t); + Quat sq = prep.slerpni(postq,t); + return sp.slerpni(sq,t2); +} + +void Quat::get_axis_and_angle(Vector3& r_axis, real_t &r_angle) const { + r_angle = 2 * ::acos(w); + r_axis.x = x / ::sqrt(1-w*w); + r_axis.y = y / ::sqrt(1-w*w); + r_axis.z = z / ::sqrt(1-w*w); +} + + + +Quat Quat::operator*(const Vector3& v) const +{ + return Quat( w * v.x + y * v.z - z * v.y, + w * v.y + z * v.x - x * v.z, + w * v.z + x * v.y - y * v.x, + -x * v.x - y * v.y - z * v.z); +} + +Vector3 Quat::xform(const Vector3& v) const { + + Quat q = *this * v; + q *= this->inverse(); + return Vector3(q.x,q.y,q.z); +} + + +Quat::operator String() const +{ + return String(); // @Todo +} + + +Quat::Quat(const Vector3& axis, const real_t& angle) +{ + real_t d = axis.length(); + if (d==0) + set(0,0,0,0); + else { + real_t sin_angle = ::sin(angle * 0.5); + real_t cos_angle = ::cos(angle * 0.5); + real_t s = sin_angle / d; + set(axis.x * s, axis.y * s, axis.z * s, + cos_angle); + } +} + +Quat::Quat(const Vector3& v0, const Vector3& v1) // shortest arc +{ + Vector3 c = v0.cross(v1); + real_t d = v0.dot(v1); + + if (d < -1.0 + CMP_EPSILON) { + x=0; + y=1; + z=0; + w=0; + } else { + + real_t s = ::sqrt((1.0 + d) * 2.0); + real_t rs = 1.0 / s; + + x=c.x*rs; + y=c.y*rs; + z=c.z*rs; + w=s * 0.5; + } +} + + +real_t Quat::dot(const Quat& q) const { + return x * q.x+y * q.y+z * q.z+w * q.w; +} + +real_t Quat::length_squared() const { + return dot(*this); +} + +void Quat::operator+=(const Quat& q) { + x += q.x; y += q.y; z += q.z; w += q.w; +} + +void Quat::operator-=(const Quat& q) { + x -= q.x; y -= q.y; z -= q.z; w -= q.w; +} + +void Quat::operator*=(const Quat& q) { + x *= q.x; y *= q.y; z *= q.z; w *= q.w; +} + + +void Quat::operator*=(const real_t& s) { + x *= s; y *= s; z *= s; w *= s; +} + + +void Quat::operator/=(const real_t& s) { + + *this *= 1.0 / s; +} + +Quat Quat::operator+(const Quat& q2) const { + const Quat& q1 = *this; + return Quat( q1.x+q2.x, q1.y+q2.y, q1.z+q2.z, q1.w+q2.w ); +} + +Quat Quat::operator-(const Quat& q2) const { + const Quat& q1 = *this; + return Quat( q1.x-q2.x, q1.y-q2.y, q1.z-q2.z, q1.w-q2.w); +} + +Quat Quat::operator*(const Quat& q2) const { + Quat q1 = *this; + q1 *= q2; + return q1; +} + + +Quat Quat::operator-() const { + const Quat& q2 = *this; + return Quat( -q2.x, -q2.y, -q2.z, -q2.w); +} + +Quat Quat::operator*(const real_t& s) const { + return Quat(x * s, y * s, z * s, w * s); +} + +Quat Quat::operator/(const real_t& s) const { + return *this * (1.0 / s); +} + + +bool Quat::operator==(const Quat& p_quat) const { + return x==p_quat.x && y==p_quat.y && z==p_quat.z && w==p_quat.w; +} + +bool Quat::operator!=(const Quat& p_quat) const { + return x!=p_quat.x || y!=p_quat.y || z!=p_quat.z || w!=p_quat.w; +} + + +Vector3 Quat::get_euler() const +{ + Basis m(*this); + return m.get_euler(); +} + +} |