summaryrefslogtreecommitdiffstats
path: root/include/godot_cpp/core/Quat.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'include/godot_cpp/core/Quat.cpp')
-rw-r--r--include/godot_cpp/core/Quat.cpp277
1 files changed, 277 insertions, 0 deletions
diff --git a/include/godot_cpp/core/Quat.cpp b/include/godot_cpp/core/Quat.cpp
new file mode 100644
index 0000000..11ec5a6
--- /dev/null
+++ b/include/godot_cpp/core/Quat.cpp
@@ -0,0 +1,277 @@
+#include "Quat.h"
+
+
+#include <cmath>
+
+#include "Defs.h"
+
+#include "Vector3.h"
+
+#include "Basis.h"
+
+namespace godot {
+
+real_t Quat::length() const
+{
+ return ::sqrt(length_squared());
+}
+
+void Quat::normalize()
+{
+ *this /= length();
+}
+
+Quat Quat::normalized() const
+{
+ return *this / length();
+}
+
+Quat Quat::inverse() const
+{
+ return Quat( -x, -y, -z, w );
+}
+
+void Quat::set_euler(const Vector3& p_euler)
+{
+ real_t half_a1 = p_euler.x * 0.5;
+ real_t half_a2 = p_euler.y * 0.5;
+ real_t half_a3 = p_euler.z * 0.5;
+
+ // R = X(a1).Y(a2).Z(a3) convention for Euler angles.
+ // Conversion to quaternion as listed in https://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/19770024290.pdf (page A-2)
+ // a3 is the angle of the first rotation, following the notation in this reference.
+
+ real_t cos_a1 = ::cos(half_a1);
+ real_t sin_a1 = ::sin(half_a1);
+ real_t cos_a2 = ::cos(half_a2);
+ real_t sin_a2 = ::sin(half_a2);
+ real_t cos_a3 = ::cos(half_a3);
+ real_t sin_a3 = ::sin(half_a3);
+
+ set(sin_a1*cos_a2*cos_a3 + sin_a2*sin_a3*cos_a1,
+ -sin_a1*sin_a3*cos_a2 + sin_a2*cos_a1*cos_a3,
+ sin_a1*sin_a2*cos_a3 + sin_a3*cos_a1*cos_a2,
+ -sin_a1*sin_a2*sin_a3 + cos_a1*cos_a2*cos_a3);
+}
+
+Quat Quat::slerp(const Quat& q, const real_t& t) const {
+
+ Quat to1;
+ real_t omega, cosom, sinom, scale0, scale1;
+
+
+ // calc cosine
+ cosom = dot(q);
+
+ // adjust signs (if necessary)
+ if ( cosom <0.0 ) {
+ cosom = -cosom;
+ to1.x = - q.x;
+ to1.y = - q.y;
+ to1.z = - q.z;
+ to1.w = - q.w;
+ } else {
+ to1.x = q.x;
+ to1.y = q.y;
+ to1.z = q.z;
+ to1.w = q.w;
+ }
+
+
+ // calculate coefficients
+
+ if ( (1.0 - cosom) > CMP_EPSILON ) {
+ // standard case (slerp)
+ omega = ::acos(cosom);
+ sinom = ::sin(omega);
+ scale0 = ::sin((1.0 - t) * omega) / sinom;
+ scale1 = ::sin(t * omega) / sinom;
+ } else {
+ // "from" and "to" quaternions are very close
+ // ... so we can do a linear interpolation
+ scale0 = 1.0 - t;
+ scale1 = t;
+ }
+ // calculate final values
+ return Quat(
+ scale0 * x + scale1 * to1.x,
+ scale0 * y + scale1 * to1.y,
+ scale0 * z + scale1 * to1.z,
+ scale0 * w + scale1 * to1.w
+ );
+}
+
+Quat Quat::slerpni(const Quat& q, const real_t& t) const {
+
+ const Quat &from = *this;
+
+ real_t dot = from.dot(q);
+
+ if (::fabs(dot) > 0.9999) return from;
+
+ real_t theta = ::acos(dot),
+ sinT = 1.0 / ::sin(theta),
+ newFactor = ::sin(t * theta) * sinT,
+ invFactor = ::sin((1.0 - t) * theta) * sinT;
+
+ return Quat(invFactor * from.x + newFactor * q.x,
+ invFactor * from.y + newFactor * q.y,
+ invFactor * from.z + newFactor * q.z,
+ invFactor * from.w + newFactor * q.w);
+}
+
+Quat Quat::cubic_slerp(const Quat& q, const Quat& prep, const Quat& postq,const real_t& t) const
+{
+ //the only way to do slerp :|
+ real_t t2 = (1.0-t)*t*2;
+ Quat sp = this->slerp(q,t);
+ Quat sq = prep.slerpni(postq,t);
+ return sp.slerpni(sq,t2);
+}
+
+void Quat::get_axis_and_angle(Vector3& r_axis, real_t &r_angle) const {
+ r_angle = 2 * ::acos(w);
+ r_axis.x = x / ::sqrt(1-w*w);
+ r_axis.y = y / ::sqrt(1-w*w);
+ r_axis.z = z / ::sqrt(1-w*w);
+}
+
+
+
+Quat Quat::operator*(const Vector3& v) const
+{
+ return Quat( w * v.x + y * v.z - z * v.y,
+ w * v.y + z * v.x - x * v.z,
+ w * v.z + x * v.y - y * v.x,
+ -x * v.x - y * v.y - z * v.z);
+}
+
+Vector3 Quat::xform(const Vector3& v) const {
+
+ Quat q = *this * v;
+ q *= this->inverse();
+ return Vector3(q.x,q.y,q.z);
+}
+
+
+Quat::operator String() const
+{
+ return String(); // @Todo
+}
+
+
+Quat::Quat(const Vector3& axis, const real_t& angle)
+{
+ real_t d = axis.length();
+ if (d==0)
+ set(0,0,0,0);
+ else {
+ real_t sin_angle = ::sin(angle * 0.5);
+ real_t cos_angle = ::cos(angle * 0.5);
+ real_t s = sin_angle / d;
+ set(axis.x * s, axis.y * s, axis.z * s,
+ cos_angle);
+ }
+}
+
+Quat::Quat(const Vector3& v0, const Vector3& v1) // shortest arc
+{
+ Vector3 c = v0.cross(v1);
+ real_t d = v0.dot(v1);
+
+ if (d < -1.0 + CMP_EPSILON) {
+ x=0;
+ y=1;
+ z=0;
+ w=0;
+ } else {
+
+ real_t s = ::sqrt((1.0 + d) * 2.0);
+ real_t rs = 1.0 / s;
+
+ x=c.x*rs;
+ y=c.y*rs;
+ z=c.z*rs;
+ w=s * 0.5;
+ }
+}
+
+
+real_t Quat::dot(const Quat& q) const {
+ return x * q.x+y * q.y+z * q.z+w * q.w;
+}
+
+real_t Quat::length_squared() const {
+ return dot(*this);
+}
+
+void Quat::operator+=(const Quat& q) {
+ x += q.x; y += q.y; z += q.z; w += q.w;
+}
+
+void Quat::operator-=(const Quat& q) {
+ x -= q.x; y -= q.y; z -= q.z; w -= q.w;
+}
+
+void Quat::operator*=(const Quat& q) {
+ x *= q.x; y *= q.y; z *= q.z; w *= q.w;
+}
+
+
+void Quat::operator*=(const real_t& s) {
+ x *= s; y *= s; z *= s; w *= s;
+}
+
+
+void Quat::operator/=(const real_t& s) {
+
+ *this *= 1.0 / s;
+}
+
+Quat Quat::operator+(const Quat& q2) const {
+ const Quat& q1 = *this;
+ return Quat( q1.x+q2.x, q1.y+q2.y, q1.z+q2.z, q1.w+q2.w );
+}
+
+Quat Quat::operator-(const Quat& q2) const {
+ const Quat& q1 = *this;
+ return Quat( q1.x-q2.x, q1.y-q2.y, q1.z-q2.z, q1.w-q2.w);
+}
+
+Quat Quat::operator*(const Quat& q2) const {
+ Quat q1 = *this;
+ q1 *= q2;
+ return q1;
+}
+
+
+Quat Quat::operator-() const {
+ const Quat& q2 = *this;
+ return Quat( -q2.x, -q2.y, -q2.z, -q2.w);
+}
+
+Quat Quat::operator*(const real_t& s) const {
+ return Quat(x * s, y * s, z * s, w * s);
+}
+
+Quat Quat::operator/(const real_t& s) const {
+ return *this * (1.0 / s);
+}
+
+
+bool Quat::operator==(const Quat& p_quat) const {
+ return x==p_quat.x && y==p_quat.y && z==p_quat.z && w==p_quat.w;
+}
+
+bool Quat::operator!=(const Quat& p_quat) const {
+ return x!=p_quat.x || y!=p_quat.y || z!=p_quat.z || w!=p_quat.w;
+}
+
+
+Vector3 Quat::get_euler() const
+{
+ Basis m(*this);
+ return m.get_euler();
+}
+
+}