summaryrefslogtreecommitdiffstats
path: root/include/godot_cpp/core/Quat.h
diff options
context:
space:
mode:
Diffstat (limited to 'include/godot_cpp/core/Quat.h')
-rw-r--r--include/godot_cpp/core/Quat.h280
1 files changed, 20 insertions, 260 deletions
diff --git a/include/godot_cpp/core/Quat.h b/include/godot_cpp/core/Quat.h
index b2c452d..8021039 100644
--- a/include/godot_cpp/core/Quat.h
+++ b/include/godot_cpp/core/Quat.h
@@ -9,165 +9,44 @@
namespace godot {
-#define CMP_EPSILON 0.00001
-
-typedef float real_t;
-
class Quat{
public:
real_t x,y,z,w;
- real_t length_squared() const; // down below
- real_t length() const
- {
- return ::sqrt(length_squared());
- }
-
- void normalize()
- {
- *this /= length();
- }
-
- Quat normalized() const
- {
- return *this / length();
- }
-
- Quat inverse() const
- {
- return Quat( -x, -y, -z, w );
- }
+ real_t length_squared() const;
+ real_t length() const;
- real_t dot(const Quat& q) const; // down below
- void set_euler(const Vector3& p_euler)
- {
- real_t half_a1 = p_euler.x * 0.5;
- real_t half_a2 = p_euler.y * 0.5;
- real_t half_a3 = p_euler.z * 0.5;
-
- // R = X(a1).Y(a2).Z(a3) convention for Euler angles.
- // Conversion to quaternion as listed in https://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/19770024290.pdf (page A-2)
- // a3 is the angle of the first rotation, following the notation in this reference.
-
- real_t cos_a1 = ::cos(half_a1);
- real_t sin_a1 = ::sin(half_a1);
- real_t cos_a2 = ::cos(half_a2);
- real_t sin_a2 = ::sin(half_a2);
- real_t cos_a3 = ::cos(half_a3);
- real_t sin_a3 = ::sin(half_a3);
-
- set(sin_a1*cos_a2*cos_a3 + sin_a2*sin_a3*cos_a1,
- -sin_a1*sin_a3*cos_a2 + sin_a2*cos_a1*cos_a3,
- sin_a1*sin_a2*cos_a3 + sin_a3*cos_a1*cos_a2,
- -sin_a1*sin_a2*sin_a3 + cos_a1*cos_a2*cos_a3);
- }
+ void normalize();
- Vector3 get_euler() const; // down below
-
- Quat slerp(const Quat& q, const real_t& t) const {
-
- Quat to1;
- real_t omega, cosom, sinom, scale0, scale1;
-
-
- // calc cosine
- cosom = dot(q);
-
- // adjust signs (if necessary)
- if ( cosom <0.0 ) {
- cosom = -cosom;
- to1.x = - q.x;
- to1.y = - q.y;
- to1.z = - q.z;
- to1.w = - q.w;
- } else {
- to1.x = q.x;
- to1.y = q.y;
- to1.z = q.z;
- to1.w = q.w;
- }
-
-
- // calculate coefficients
-
- if ( (1.0 - cosom) > CMP_EPSILON ) {
- // standard case (slerp)
- omega = ::acos(cosom);
- sinom = ::sin(omega);
- scale0 = ::sin((1.0 - t) * omega) / sinom;
- scale1 = ::sin(t * omega) / sinom;
- } else {
- // "from" and "to" quaternions are very close
- // ... so we can do a linear interpolation
- scale0 = 1.0 - t;
- scale1 = t;
- }
- // calculate final values
- return Quat(
- scale0 * x + scale1 * to1.x,
- scale0 * y + scale1 * to1.y,
- scale0 * z + scale1 * to1.z,
- scale0 * w + scale1 * to1.w
- );
- }
+ Quat normalized() const;
- Quat slerpni(const Quat& q, const real_t& t) const {
+ Quat inverse() const;
- const Quat &from = *this;
+ void set_euler(const Vector3& p_euler);
- real_t dot = from.dot(q);
+ real_t dot(const Quat& q) const;
- if (::fabs(dot) > 0.9999) return from;
+ Vector3 get_euler() const;
- real_t theta = ::acos(dot),
- sinT = 1.0 / ::sin(theta),
- newFactor = ::sin(t * theta) * sinT,
- invFactor = ::sin((1.0 - t) * theta) * sinT;
+ Quat slerp(const Quat& q, const real_t& t) const;
- return Quat(invFactor * from.x + newFactor * q.x,
- invFactor * from.y + newFactor * q.y,
- invFactor * from.z + newFactor * q.z,
- invFactor * from.w + newFactor * q.w);
- }
+ Quat slerpni(const Quat& q, const real_t& t) const;
- Quat cubic_slerp(const Quat& q, const Quat& prep, const Quat& postq,const real_t& t) const
- {
- //the only way to do slerp :|
- real_t t2 = (1.0-t)*t*2;
- Quat sp = this->slerp(q,t);
- Quat sq = prep.slerpni(postq,t);
- return sp.slerpni(sq,t2);
- }
+ Quat cubic_slerp(const Quat& q, const Quat& prep, const Quat& postq,const real_t& t) const;
- void get_axis_and_angle(Vector3& r_axis, real_t &r_angle) const {
- r_angle = 2 * ::acos(w);
- r_axis.x = x / ::sqrt(1-w*w);
- r_axis.y = y / ::sqrt(1-w*w);
- r_axis.z = z / ::sqrt(1-w*w);
- }
+ void get_axis_and_angle(Vector3& r_axis, real_t &r_angle) const;
- void operator*=(const Quat& q); // down below
- Quat operator*(const Quat& q) const; // down below
+ void operator*=(const Quat& q);
+ Quat operator*(const Quat& q) const;
- Quat operator*(const Vector3& v) const
- {
- return Quat( w * v.x + y * v.z - z * v.y,
- w * v.y + z * v.x - x * v.z,
- w * v.z + x * v.y - y * v.x,
- -x * v.x - y * v.y - z * v.z);
- }
+ Quat operator*(const Vector3& v) const;
- Vector3 xform(const Vector3& v) const {
+ Vector3 xform(const Vector3& v) const;
- Quat q = *this * v;
- q *= this->inverse();
- return Vector3(q.x,q.y,q.z);
- }
- // everything's down
void operator+=(const Quat& q);
void operator-=(const Quat& q);
void operator*=(const real_t& s);
@@ -182,10 +61,7 @@ public:
bool operator==(const Quat& p_quat) const;
bool operator!=(const Quat& p_quat) const;
- operator String() const
- {
- return String(); // @Todo
- }
+ operator String() const;
inline void set( real_t p_x, real_t p_y, real_t p_z, real_t p_w) {
x=p_x; y=p_y; z=p_z; w=p_w;
@@ -193,131 +69,15 @@ public:
inline Quat(real_t p_x, real_t p_y, real_t p_z, real_t p_w) {
x=p_x; y=p_y; z=p_z; w=p_w;
}
- Quat(const Vector3& axis, const real_t& angle)
- {
- real_t d = axis.length();
- if (d==0)
- set(0,0,0,0);
- else {
- real_t sin_angle = ::sin(angle * 0.5);
- real_t cos_angle = ::cos(angle * 0.5);
- real_t s = sin_angle / d;
- set(axis.x * s, axis.y * s, axis.z * s,
- cos_angle);
- }
- }
-
- Quat(const Vector3& v0, const Vector3& v1) // shortest arc
- {
- Vector3 c = v0.cross(v1);
- real_t d = v0.dot(v1);
-
- if (d < -1.0 + CMP_EPSILON) {
- x=0;
- y=1;
- z=0;
- w=0;
- } else {
-
- real_t s = ::sqrt((1.0 + d) * 2.0);
- real_t rs = 1.0 / s;
-
- x=c.x*rs;
- y=c.y*rs;
- z=c.z*rs;
- w=s * 0.5;
- }
- }
+ Quat(const Vector3& axis, const real_t& angle);
- Quat() {x=y=z=0; w=1; }
+ Quat(const Vector3& v0, const Vector3& v1) ;
+ inline Quat() {x=y=z=0; w=1; }
};
-real_t Quat::dot(const Quat& q) const {
- return x * q.x+y * q.y+z * q.z+w * q.w;
-}
-
-real_t Quat::length_squared() const {
- return dot(*this);
-}
-
-void Quat::operator+=(const Quat& q) {
- x += q.x; y += q.y; z += q.z; w += q.w;
-}
-
-void Quat::operator-=(const Quat& q) {
- x -= q.x; y -= q.y; z -= q.z; w -= q.w;
-}
-
-void Quat::operator*=(const Quat& q) {
- x *= q.x; y *= q.y; z *= q.z; w *= q.w;
-}
-
-
-void Quat::operator*=(const real_t& s) {
- x *= s; y *= s; z *= s; w *= s;
-}
-
-
-void Quat::operator/=(const real_t& s) {
-
- *this *= 1.0 / s;
-}
-
-Quat Quat::operator+(const Quat& q2) const {
- const Quat& q1 = *this;
- return Quat( q1.x+q2.x, q1.y+q2.y, q1.z+q2.z, q1.w+q2.w );
-}
-
-Quat Quat::operator-(const Quat& q2) const {
- const Quat& q1 = *this;
- return Quat( q1.x-q2.x, q1.y-q2.y, q1.z-q2.z, q1.w-q2.w);
-}
-
-Quat Quat::operator*(const Quat& q2) const {
- Quat q1 = *this;
- q1 *= q2;
- return q1;
-}
-
-
-Quat Quat::operator-() const {
- const Quat& q2 = *this;
- return Quat( -q2.x, -q2.y, -q2.z, -q2.w);
-}
-
-Quat Quat::operator*(const real_t& s) const {
- return Quat(x * s, y * s, z * s, w * s);
-}
-
-Quat Quat::operator/(const real_t& s) const {
- return *this * (1.0 / s);
-}
-
-
-bool Quat::operator==(const Quat& p_quat) const {
- return x==p_quat.x && y==p_quat.y && z==p_quat.z && w==p_quat.w;
-}
-
-bool Quat::operator!=(const Quat& p_quat) const {
- return x!=p_quat.x || y!=p_quat.y || z!=p_quat.z || w!=p_quat.w;
-}
-
-
-}
-
-#include "Basis.h"
-
-namespace godot {
-
-Vector3 Quat::get_euler() const
-{
- Basis m(*this);
- return m.get_euler();
-}
-
}
#endif // QUAT_H