diff options
Diffstat (limited to 'include/godot_cpp/core/Quat.h')
-rw-r--r-- | include/godot_cpp/core/Quat.h | 280 |
1 files changed, 20 insertions, 260 deletions
diff --git a/include/godot_cpp/core/Quat.h b/include/godot_cpp/core/Quat.h index b2c452d..8021039 100644 --- a/include/godot_cpp/core/Quat.h +++ b/include/godot_cpp/core/Quat.h @@ -9,165 +9,44 @@ namespace godot { -#define CMP_EPSILON 0.00001 - -typedef float real_t; - class Quat{ public: real_t x,y,z,w; - real_t length_squared() const; // down below - real_t length() const - { - return ::sqrt(length_squared()); - } - - void normalize() - { - *this /= length(); - } - - Quat normalized() const - { - return *this / length(); - } - - Quat inverse() const - { - return Quat( -x, -y, -z, w ); - } + real_t length_squared() const; + real_t length() const; - real_t dot(const Quat& q) const; // down below - void set_euler(const Vector3& p_euler) - { - real_t half_a1 = p_euler.x * 0.5; - real_t half_a2 = p_euler.y * 0.5; - real_t half_a3 = p_euler.z * 0.5; - - // R = X(a1).Y(a2).Z(a3) convention for Euler angles. - // Conversion to quaternion as listed in https://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/19770024290.pdf (page A-2) - // a3 is the angle of the first rotation, following the notation in this reference. - - real_t cos_a1 = ::cos(half_a1); - real_t sin_a1 = ::sin(half_a1); - real_t cos_a2 = ::cos(half_a2); - real_t sin_a2 = ::sin(half_a2); - real_t cos_a3 = ::cos(half_a3); - real_t sin_a3 = ::sin(half_a3); - - set(sin_a1*cos_a2*cos_a3 + sin_a2*sin_a3*cos_a1, - -sin_a1*sin_a3*cos_a2 + sin_a2*cos_a1*cos_a3, - sin_a1*sin_a2*cos_a3 + sin_a3*cos_a1*cos_a2, - -sin_a1*sin_a2*sin_a3 + cos_a1*cos_a2*cos_a3); - } + void normalize(); - Vector3 get_euler() const; // down below - - Quat slerp(const Quat& q, const real_t& t) const { - - Quat to1; - real_t omega, cosom, sinom, scale0, scale1; - - - // calc cosine - cosom = dot(q); - - // adjust signs (if necessary) - if ( cosom <0.0 ) { - cosom = -cosom; - to1.x = - q.x; - to1.y = - q.y; - to1.z = - q.z; - to1.w = - q.w; - } else { - to1.x = q.x; - to1.y = q.y; - to1.z = q.z; - to1.w = q.w; - } - - - // calculate coefficients - - if ( (1.0 - cosom) > CMP_EPSILON ) { - // standard case (slerp) - omega = ::acos(cosom); - sinom = ::sin(omega); - scale0 = ::sin((1.0 - t) * omega) / sinom; - scale1 = ::sin(t * omega) / sinom; - } else { - // "from" and "to" quaternions are very close - // ... so we can do a linear interpolation - scale0 = 1.0 - t; - scale1 = t; - } - // calculate final values - return Quat( - scale0 * x + scale1 * to1.x, - scale0 * y + scale1 * to1.y, - scale0 * z + scale1 * to1.z, - scale0 * w + scale1 * to1.w - ); - } + Quat normalized() const; - Quat slerpni(const Quat& q, const real_t& t) const { + Quat inverse() const; - const Quat &from = *this; + void set_euler(const Vector3& p_euler); - real_t dot = from.dot(q); + real_t dot(const Quat& q) const; - if (::fabs(dot) > 0.9999) return from; + Vector3 get_euler() const; - real_t theta = ::acos(dot), - sinT = 1.0 / ::sin(theta), - newFactor = ::sin(t * theta) * sinT, - invFactor = ::sin((1.0 - t) * theta) * sinT; + Quat slerp(const Quat& q, const real_t& t) const; - return Quat(invFactor * from.x + newFactor * q.x, - invFactor * from.y + newFactor * q.y, - invFactor * from.z + newFactor * q.z, - invFactor * from.w + newFactor * q.w); - } + Quat slerpni(const Quat& q, const real_t& t) const; - Quat cubic_slerp(const Quat& q, const Quat& prep, const Quat& postq,const real_t& t) const - { - //the only way to do slerp :| - real_t t2 = (1.0-t)*t*2; - Quat sp = this->slerp(q,t); - Quat sq = prep.slerpni(postq,t); - return sp.slerpni(sq,t2); - } + Quat cubic_slerp(const Quat& q, const Quat& prep, const Quat& postq,const real_t& t) const; - void get_axis_and_angle(Vector3& r_axis, real_t &r_angle) const { - r_angle = 2 * ::acos(w); - r_axis.x = x / ::sqrt(1-w*w); - r_axis.y = y / ::sqrt(1-w*w); - r_axis.z = z / ::sqrt(1-w*w); - } + void get_axis_and_angle(Vector3& r_axis, real_t &r_angle) const; - void operator*=(const Quat& q); // down below - Quat operator*(const Quat& q) const; // down below + void operator*=(const Quat& q); + Quat operator*(const Quat& q) const; - Quat operator*(const Vector3& v) const - { - return Quat( w * v.x + y * v.z - z * v.y, - w * v.y + z * v.x - x * v.z, - w * v.z + x * v.y - y * v.x, - -x * v.x - y * v.y - z * v.z); - } + Quat operator*(const Vector3& v) const; - Vector3 xform(const Vector3& v) const { + Vector3 xform(const Vector3& v) const; - Quat q = *this * v; - q *= this->inverse(); - return Vector3(q.x,q.y,q.z); - } - // everything's down void operator+=(const Quat& q); void operator-=(const Quat& q); void operator*=(const real_t& s); @@ -182,10 +61,7 @@ public: bool operator==(const Quat& p_quat) const; bool operator!=(const Quat& p_quat) const; - operator String() const - { - return String(); // @Todo - } + operator String() const; inline void set( real_t p_x, real_t p_y, real_t p_z, real_t p_w) { x=p_x; y=p_y; z=p_z; w=p_w; @@ -193,131 +69,15 @@ public: inline Quat(real_t p_x, real_t p_y, real_t p_z, real_t p_w) { x=p_x; y=p_y; z=p_z; w=p_w; } - Quat(const Vector3& axis, const real_t& angle) - { - real_t d = axis.length(); - if (d==0) - set(0,0,0,0); - else { - real_t sin_angle = ::sin(angle * 0.5); - real_t cos_angle = ::cos(angle * 0.5); - real_t s = sin_angle / d; - set(axis.x * s, axis.y * s, axis.z * s, - cos_angle); - } - } - - Quat(const Vector3& v0, const Vector3& v1) // shortest arc - { - Vector3 c = v0.cross(v1); - real_t d = v0.dot(v1); - - if (d < -1.0 + CMP_EPSILON) { - x=0; - y=1; - z=0; - w=0; - } else { - - real_t s = ::sqrt((1.0 + d) * 2.0); - real_t rs = 1.0 / s; - - x=c.x*rs; - y=c.y*rs; - z=c.z*rs; - w=s * 0.5; - } - } + Quat(const Vector3& axis, const real_t& angle); - Quat() {x=y=z=0; w=1; } + Quat(const Vector3& v0, const Vector3& v1) ; + inline Quat() {x=y=z=0; w=1; } }; -real_t Quat::dot(const Quat& q) const { - return x * q.x+y * q.y+z * q.z+w * q.w; -} - -real_t Quat::length_squared() const { - return dot(*this); -} - -void Quat::operator+=(const Quat& q) { - x += q.x; y += q.y; z += q.z; w += q.w; -} - -void Quat::operator-=(const Quat& q) { - x -= q.x; y -= q.y; z -= q.z; w -= q.w; -} - -void Quat::operator*=(const Quat& q) { - x *= q.x; y *= q.y; z *= q.z; w *= q.w; -} - - -void Quat::operator*=(const real_t& s) { - x *= s; y *= s; z *= s; w *= s; -} - - -void Quat::operator/=(const real_t& s) { - - *this *= 1.0 / s; -} - -Quat Quat::operator+(const Quat& q2) const { - const Quat& q1 = *this; - return Quat( q1.x+q2.x, q1.y+q2.y, q1.z+q2.z, q1.w+q2.w ); -} - -Quat Quat::operator-(const Quat& q2) const { - const Quat& q1 = *this; - return Quat( q1.x-q2.x, q1.y-q2.y, q1.z-q2.z, q1.w-q2.w); -} - -Quat Quat::operator*(const Quat& q2) const { - Quat q1 = *this; - q1 *= q2; - return q1; -} - - -Quat Quat::operator-() const { - const Quat& q2 = *this; - return Quat( -q2.x, -q2.y, -q2.z, -q2.w); -} - -Quat Quat::operator*(const real_t& s) const { - return Quat(x * s, y * s, z * s, w * s); -} - -Quat Quat::operator/(const real_t& s) const { - return *this * (1.0 / s); -} - - -bool Quat::operator==(const Quat& p_quat) const { - return x==p_quat.x && y==p_quat.y && z==p_quat.z && w==p_quat.w; -} - -bool Quat::operator!=(const Quat& p_quat) const { - return x!=p_quat.x || y!=p_quat.y || z!=p_quat.z || w!=p_quat.w; -} - - -} - -#include "Basis.h" - -namespace godot { - -Vector3 Quat::get_euler() const -{ - Basis m(*this); - return m.get_euler(); -} - } #endif // QUAT_H |