summaryrefslogtreecommitdiffstats
path: root/include/godot_cpp/variant/quaternion.hpp
diff options
context:
space:
mode:
Diffstat (limited to 'include/godot_cpp/variant/quaternion.hpp')
-rw-r--r--include/godot_cpp/variant/quaternion.hpp101
1 files changed, 50 insertions, 51 deletions
diff --git a/include/godot_cpp/variant/quaternion.hpp b/include/godot_cpp/variant/quaternion.hpp
index b17afc5..815b116 100644
--- a/include/godot_cpp/variant/quaternion.hpp
+++ b/include/godot_cpp/variant/quaternion.hpp
@@ -28,8 +28,8 @@
/* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */
/*************************************************************************/
-#ifndef GODOT_QUAT_HPP
-#define GODOT_QUAT_HPP
+#ifndef GODOT_QUATERNION_HPP
+#define GODOT_QUATERNION_HPP
#include <godot_cpp/core/math.hpp>
#include <godot_cpp/variant/vector3.hpp>
@@ -52,20 +52,23 @@ public:
real_t components[4] = { 0, 0, 0, 1.0 };
};
- inline real_t &operator[](int idx) {
+ _FORCE_INLINE_ real_t &operator[](int idx) {
return components[idx];
}
- inline const real_t &operator[](int idx) const {
+ _FORCE_INLINE_ const real_t &operator[](int idx) const {
return components[idx];
}
- inline real_t length_squared() const;
- bool is_equal_approx(const Quaternion &p_quat) const;
+ _FORCE_INLINE_ real_t length_squared() const;
+ bool is_equal_approx(const Quaternion &p_quaternion) const;
real_t length() const;
void normalize();
Quaternion normalized() const;
bool is_normalized() const;
Quaternion inverse() const;
- inline real_t dot(const Quaternion &p_q) const;
+ Quaternion log() const;
+ Quaternion exp() const;
+ _FORCE_INLINE_ real_t dot(const Quaternion &p_q) const;
+ real_t angle_to(const Quaternion &p_to) const;
Vector3 get_euler_xyz() const;
Vector3 get_euler_yxz() const;
@@ -73,9 +76,13 @@ public:
Quaternion slerp(const Quaternion &p_to, const real_t &p_weight) const;
Quaternion slerpni(const Quaternion &p_to, const real_t &p_weight) const;
- Quaternion cubic_slerp(const Quaternion &p_b, const Quaternion &p_pre_a, const Quaternion &p_post_b, const real_t &p_weight) const;
+ Quaternion spherical_cubic_interpolate(const Quaternion &p_b, const Quaternion &p_pre_a, const Quaternion &p_post_b, const real_t &p_weight) const;
+ Quaternion spherical_cubic_interpolate_in_time(const Quaternion &p_b, const Quaternion &p_pre_a, const Quaternion &p_post_b, const real_t &p_weight, const real_t &p_b_t, const real_t &p_pre_a_t, const real_t &p_post_b_t) const;
- inline void get_axis_angle(Vector3 &r_axis, real_t &r_angle) const {
+ Vector3 get_axis() const;
+ real_t get_angle() const;
+
+ _FORCE_INLINE_ void get_axis_angle(Vector3 &r_axis, real_t &r_angle) const {
r_angle = 2 * Math::acos(w);
real_t r = ((real_t)1) / Math::sqrt(1 - w * w);
r_axis.x = x * r;
@@ -86,44 +93,37 @@ public:
void operator*=(const Quaternion &p_q);
Quaternion operator*(const Quaternion &p_q) const;
- Quaternion operator*(const Vector3 &v) const {
- return Quaternion(w * v.x + y * v.z - z * v.y,
- w * v.y + z * v.x - x * v.z,
- w * v.z + x * v.y - y * v.x,
- -x * v.x - y * v.y - z * v.z);
- }
-
- inline Vector3 xform(const Vector3 &v) const {
+ _FORCE_INLINE_ Vector3 xform(const Vector3 &v) const {
#ifdef MATH_CHECKS
- ERR_FAIL_COND_V(!is_normalized(), v);
+ ERR_FAIL_COND_V_MSG(!is_normalized(), v, "The quaternion must be normalized.");
#endif
Vector3 u(x, y, z);
Vector3 uv = u.cross(v);
return v + ((uv * w) + u.cross(uv)) * ((real_t)2);
}
- inline Vector3 xform_inv(const Vector3 &v) const {
+ _FORCE_INLINE_ Vector3 xform_inv(const Vector3 &v) const {
return inverse().xform(v);
}
- inline void operator+=(const Quaternion &p_q);
- inline void operator-=(const Quaternion &p_q);
- inline void operator*=(const real_t &s);
- inline void operator/=(const real_t &s);
- inline Quaternion operator+(const Quaternion &q2) const;
- inline Quaternion operator-(const Quaternion &q2) const;
- inline Quaternion operator-() const;
- inline Quaternion operator*(const real_t &s) const;
- inline Quaternion operator/(const real_t &s) const;
+ _FORCE_INLINE_ void operator+=(const Quaternion &p_q);
+ _FORCE_INLINE_ void operator-=(const Quaternion &p_q);
+ _FORCE_INLINE_ void operator*=(const real_t &s);
+ _FORCE_INLINE_ void operator/=(const real_t &s);
+ _FORCE_INLINE_ Quaternion operator+(const Quaternion &q2) const;
+ _FORCE_INLINE_ Quaternion operator-(const Quaternion &q2) const;
+ _FORCE_INLINE_ Quaternion operator-() const;
+ _FORCE_INLINE_ Quaternion operator*(const real_t &s) const;
+ _FORCE_INLINE_ Quaternion operator/(const real_t &s) const;
- inline bool operator==(const Quaternion &p_quat) const;
- inline bool operator!=(const Quaternion &p_quat) const;
+ _FORCE_INLINE_ bool operator==(const Quaternion &p_quaternion) const;
+ _FORCE_INLINE_ bool operator!=(const Quaternion &p_quaternion) const;
operator String() const;
- inline Quaternion() {}
+ _FORCE_INLINE_ Quaternion() {}
- inline Quaternion(real_t p_x, real_t p_y, real_t p_z, real_t p_w) :
+ _FORCE_INLINE_ Quaternion(real_t p_x, real_t p_y, real_t p_z, real_t p_w) :
x(p_x),
y(p_y),
z(p_z),
@@ -141,12 +141,11 @@ public:
w(p_q.w) {
}
- Quaternion &operator=(const Quaternion &p_q) {
+ void operator=(const Quaternion &p_q) {
x = p_q.x;
y = p_q.y;
z = p_q.z;
w = p_q.w;
- return *this;
}
Quaternion(const Vector3 &v0, const Vector3 &v1) // shortest arc
@@ -154,19 +153,19 @@ public:
Vector3 c = v0.cross(v1);
real_t d = v0.dot(v1);
- if (d < (real_t)-1.0 + CMP_EPSILON) {
- x = (real_t)0.0;
- y = (real_t)1.0;
- z = (real_t)0.0;
- w = (real_t)0.0;
+ if (d < -1.0f + (real_t)CMP_EPSILON) {
+ x = 0;
+ y = 1;
+ z = 0;
+ w = 0;
} else {
- real_t s = Math::sqrt(((real_t)1.0 + d) * (real_t)2.0);
- real_t rs = (real_t)1.0 / s;
+ real_t s = Math::sqrt((1.0f + d) * 2.0f);
+ real_t rs = 1.0f / s;
x = c.x * rs;
y = c.y * rs;
z = c.z * rs;
- w = s * (real_t)0.5;
+ w = s * 0.5f;
}
}
};
@@ -201,7 +200,7 @@ void Quaternion::operator*=(const real_t &s) {
}
void Quaternion::operator/=(const real_t &s) {
- *this *= (real_t)1.0 / s;
+ *this *= 1.0f / s;
}
Quaternion Quaternion::operator+(const Quaternion &q2) const {
@@ -224,21 +223,21 @@ Quaternion Quaternion::operator*(const real_t &s) const {
}
Quaternion Quaternion::operator/(const real_t &s) const {
- return *this * ((real_t)1.0 / s);
+ return *this * (1.0f / s);
}
-bool Quaternion::operator==(const Quaternion &p_quat) const {
- return x == p_quat.x && y == p_quat.y && z == p_quat.z && w == p_quat.w;
+bool Quaternion::operator==(const Quaternion &p_quaternion) const {
+ return x == p_quaternion.x && y == p_quaternion.y && z == p_quaternion.z && w == p_quaternion.w;
}
-bool Quaternion::operator!=(const Quaternion &p_quat) const {
- return x != p_quat.x || y != p_quat.y || z != p_quat.z || w != p_quat.w;
+bool Quaternion::operator!=(const Quaternion &p_quaternion) const {
+ return x != p_quaternion.x || y != p_quaternion.y || z != p_quaternion.z || w != p_quaternion.w;
}
-inline Quaternion operator*(const real_t &p_real, const Quaternion &p_quat) {
- return p_quat * p_real;
+_FORCE_INLINE_ Quaternion operator*(const real_t &p_real, const Quaternion &p_quaternion) {
+ return p_quaternion * p_real;
}
} // namespace godot
-#endif // GODOT_QUAT_HPP
+#endif // GODOT_QUATERNION_HPP