diff options
Diffstat (limited to 'include/godot_cpp/variant/quaternion.hpp')
-rw-r--r-- | include/godot_cpp/variant/quaternion.hpp | 101 |
1 files changed, 50 insertions, 51 deletions
diff --git a/include/godot_cpp/variant/quaternion.hpp b/include/godot_cpp/variant/quaternion.hpp index b17afc5..815b116 100644 --- a/include/godot_cpp/variant/quaternion.hpp +++ b/include/godot_cpp/variant/quaternion.hpp @@ -28,8 +28,8 @@ /* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */ /*************************************************************************/ -#ifndef GODOT_QUAT_HPP -#define GODOT_QUAT_HPP +#ifndef GODOT_QUATERNION_HPP +#define GODOT_QUATERNION_HPP #include <godot_cpp/core/math.hpp> #include <godot_cpp/variant/vector3.hpp> @@ -52,20 +52,23 @@ public: real_t components[4] = { 0, 0, 0, 1.0 }; }; - inline real_t &operator[](int idx) { + _FORCE_INLINE_ real_t &operator[](int idx) { return components[idx]; } - inline const real_t &operator[](int idx) const { + _FORCE_INLINE_ const real_t &operator[](int idx) const { return components[idx]; } - inline real_t length_squared() const; - bool is_equal_approx(const Quaternion &p_quat) const; + _FORCE_INLINE_ real_t length_squared() const; + bool is_equal_approx(const Quaternion &p_quaternion) const; real_t length() const; void normalize(); Quaternion normalized() const; bool is_normalized() const; Quaternion inverse() const; - inline real_t dot(const Quaternion &p_q) const; + Quaternion log() const; + Quaternion exp() const; + _FORCE_INLINE_ real_t dot(const Quaternion &p_q) const; + real_t angle_to(const Quaternion &p_to) const; Vector3 get_euler_xyz() const; Vector3 get_euler_yxz() const; @@ -73,9 +76,13 @@ public: Quaternion slerp(const Quaternion &p_to, const real_t &p_weight) const; Quaternion slerpni(const Quaternion &p_to, const real_t &p_weight) const; - Quaternion cubic_slerp(const Quaternion &p_b, const Quaternion &p_pre_a, const Quaternion &p_post_b, const real_t &p_weight) const; + Quaternion spherical_cubic_interpolate(const Quaternion &p_b, const Quaternion &p_pre_a, const Quaternion &p_post_b, const real_t &p_weight) const; + Quaternion spherical_cubic_interpolate_in_time(const Quaternion &p_b, const Quaternion &p_pre_a, const Quaternion &p_post_b, const real_t &p_weight, const real_t &p_b_t, const real_t &p_pre_a_t, const real_t &p_post_b_t) const; - inline void get_axis_angle(Vector3 &r_axis, real_t &r_angle) const { + Vector3 get_axis() const; + real_t get_angle() const; + + _FORCE_INLINE_ void get_axis_angle(Vector3 &r_axis, real_t &r_angle) const { r_angle = 2 * Math::acos(w); real_t r = ((real_t)1) / Math::sqrt(1 - w * w); r_axis.x = x * r; @@ -86,44 +93,37 @@ public: void operator*=(const Quaternion &p_q); Quaternion operator*(const Quaternion &p_q) const; - Quaternion operator*(const Vector3 &v) const { - return Quaternion(w * v.x + y * v.z - z * v.y, - w * v.y + z * v.x - x * v.z, - w * v.z + x * v.y - y * v.x, - -x * v.x - y * v.y - z * v.z); - } - - inline Vector3 xform(const Vector3 &v) const { + _FORCE_INLINE_ Vector3 xform(const Vector3 &v) const { #ifdef MATH_CHECKS - ERR_FAIL_COND_V(!is_normalized(), v); + ERR_FAIL_COND_V_MSG(!is_normalized(), v, "The quaternion must be normalized."); #endif Vector3 u(x, y, z); Vector3 uv = u.cross(v); return v + ((uv * w) + u.cross(uv)) * ((real_t)2); } - inline Vector3 xform_inv(const Vector3 &v) const { + _FORCE_INLINE_ Vector3 xform_inv(const Vector3 &v) const { return inverse().xform(v); } - inline void operator+=(const Quaternion &p_q); - inline void operator-=(const Quaternion &p_q); - inline void operator*=(const real_t &s); - inline void operator/=(const real_t &s); - inline Quaternion operator+(const Quaternion &q2) const; - inline Quaternion operator-(const Quaternion &q2) const; - inline Quaternion operator-() const; - inline Quaternion operator*(const real_t &s) const; - inline Quaternion operator/(const real_t &s) const; + _FORCE_INLINE_ void operator+=(const Quaternion &p_q); + _FORCE_INLINE_ void operator-=(const Quaternion &p_q); + _FORCE_INLINE_ void operator*=(const real_t &s); + _FORCE_INLINE_ void operator/=(const real_t &s); + _FORCE_INLINE_ Quaternion operator+(const Quaternion &q2) const; + _FORCE_INLINE_ Quaternion operator-(const Quaternion &q2) const; + _FORCE_INLINE_ Quaternion operator-() const; + _FORCE_INLINE_ Quaternion operator*(const real_t &s) const; + _FORCE_INLINE_ Quaternion operator/(const real_t &s) const; - inline bool operator==(const Quaternion &p_quat) const; - inline bool operator!=(const Quaternion &p_quat) const; + _FORCE_INLINE_ bool operator==(const Quaternion &p_quaternion) const; + _FORCE_INLINE_ bool operator!=(const Quaternion &p_quaternion) const; operator String() const; - inline Quaternion() {} + _FORCE_INLINE_ Quaternion() {} - inline Quaternion(real_t p_x, real_t p_y, real_t p_z, real_t p_w) : + _FORCE_INLINE_ Quaternion(real_t p_x, real_t p_y, real_t p_z, real_t p_w) : x(p_x), y(p_y), z(p_z), @@ -141,12 +141,11 @@ public: w(p_q.w) { } - Quaternion &operator=(const Quaternion &p_q) { + void operator=(const Quaternion &p_q) { x = p_q.x; y = p_q.y; z = p_q.z; w = p_q.w; - return *this; } Quaternion(const Vector3 &v0, const Vector3 &v1) // shortest arc @@ -154,19 +153,19 @@ public: Vector3 c = v0.cross(v1); real_t d = v0.dot(v1); - if (d < (real_t)-1.0 + CMP_EPSILON) { - x = (real_t)0.0; - y = (real_t)1.0; - z = (real_t)0.0; - w = (real_t)0.0; + if (d < -1.0f + (real_t)CMP_EPSILON) { + x = 0; + y = 1; + z = 0; + w = 0; } else { - real_t s = Math::sqrt(((real_t)1.0 + d) * (real_t)2.0); - real_t rs = (real_t)1.0 / s; + real_t s = Math::sqrt((1.0f + d) * 2.0f); + real_t rs = 1.0f / s; x = c.x * rs; y = c.y * rs; z = c.z * rs; - w = s * (real_t)0.5; + w = s * 0.5f; } } }; @@ -201,7 +200,7 @@ void Quaternion::operator*=(const real_t &s) { } void Quaternion::operator/=(const real_t &s) { - *this *= (real_t)1.0 / s; + *this *= 1.0f / s; } Quaternion Quaternion::operator+(const Quaternion &q2) const { @@ -224,21 +223,21 @@ Quaternion Quaternion::operator*(const real_t &s) const { } Quaternion Quaternion::operator/(const real_t &s) const { - return *this * ((real_t)1.0 / s); + return *this * (1.0f / s); } -bool Quaternion::operator==(const Quaternion &p_quat) const { - return x == p_quat.x && y == p_quat.y && z == p_quat.z && w == p_quat.w; +bool Quaternion::operator==(const Quaternion &p_quaternion) const { + return x == p_quaternion.x && y == p_quaternion.y && z == p_quaternion.z && w == p_quaternion.w; } -bool Quaternion::operator!=(const Quaternion &p_quat) const { - return x != p_quat.x || y != p_quat.y || z != p_quat.z || w != p_quat.w; +bool Quaternion::operator!=(const Quaternion &p_quaternion) const { + return x != p_quaternion.x || y != p_quaternion.y || z != p_quaternion.z || w != p_quaternion.w; } -inline Quaternion operator*(const real_t &p_real, const Quaternion &p_quat) { - return p_quat * p_real; +_FORCE_INLINE_ Quaternion operator*(const real_t &p_real, const Quaternion &p_quaternion) { + return p_quaternion * p_real; } } // namespace godot -#endif // GODOT_QUAT_HPP +#endif // GODOT_QUATERNION_HPP |