summaryrefslogtreecommitdiffstats
path: root/include/godot_cpp/variant/vector3.hpp
diff options
context:
space:
mode:
Diffstat (limited to 'include/godot_cpp/variant/vector3.hpp')
-rw-r--r--include/godot_cpp/variant/vector3.hpp32
1 files changed, 24 insertions, 8 deletions
diff --git a/include/godot_cpp/variant/vector3.hpp b/include/godot_cpp/variant/vector3.hpp
index 0c666cf..4c9213d 100644
--- a/include/godot_cpp/variant/vector3.hpp
+++ b/include/godot_cpp/variant/vector3.hpp
@@ -47,6 +47,8 @@ class Vector3 {
friend class Variant;
public:
+ static const int AXIS_COUNT = 3;
+
enum Axis {
AXIS_X,
AXIS_Y,
@@ -73,13 +75,6 @@ public:
return coord[p_axis];
}
- void set_axis(const int p_axis, const real_t p_value);
- real_t get_axis(const int p_axis) const;
-
- _FORCE_INLINE_ void set_all(const real_t p_value) {
- x = y = z = p_value;
- }
-
_FORCE_INLINE_ Vector3::Axis min_axis_index() const {
return x < y ? (x < z ? Vector3::AXIS_X : Vector3::AXIS_Z) : (y < z ? Vector3::AXIS_Y : Vector3::AXIS_Z);
}
@@ -110,12 +105,15 @@ public:
_FORCE_INLINE_ Vector3 lerp(const Vector3 &p_to, const real_t p_weight) const;
_FORCE_INLINE_ Vector3 slerp(const Vector3 &p_to, const real_t p_weight) const;
_FORCE_INLINE_ Vector3 cubic_interpolate(const Vector3 &p_b, const Vector3 &p_pre_a, const Vector3 &p_post_b, const real_t p_weight) const;
+ _FORCE_INLINE_ Vector3 cubic_interpolate_in_time(const Vector3 &p_b, const Vector3 &p_pre_a, const Vector3 &p_post_b, const real_t p_weight, const real_t &p_b_t, const real_t &p_pre_a_t, const real_t &p_post_b_t) const;
_FORCE_INLINE_ Vector3 bezier_interpolate(const Vector3 &p_control_1, const Vector3 &p_control_2, const Vector3 &p_end, const real_t p_t) const;
Vector3 move_toward(const Vector3 &p_to, const real_t p_delta) const;
Vector2 octahedron_encode() const;
static Vector3 octahedron_decode(const Vector2 &p_oct);
+ Vector2 octahedron_tangent_encode(const float sign) const;
+ static Vector3 octahedron_tangent_decode(const Vector2 &p_oct, float *sign);
_FORCE_INLINE_ Vector3 cross(const Vector3 &p_with) const;
_FORCE_INLINE_ real_t dot(const Vector3 &p_with) const;
@@ -144,6 +142,7 @@ public:
_FORCE_INLINE_ Vector3 reflect(const Vector3 &p_normal) const;
bool is_equal_approx(const Vector3 &p_v) const;
+ bool is_zero_approx() const;
/* Operators */
@@ -222,16 +221,25 @@ Vector3 Vector3::lerp(const Vector3 &p_to, const real_t p_weight) const {
}
Vector3 Vector3::slerp(const Vector3 &p_to, const real_t p_weight) const {
+ // This method seems more complicated than it really is, since we write out
+ // the internals of some methods for efficiency (mainly, checking length).
real_t start_length_sq = length_squared();
real_t end_length_sq = p_to.length_squared();
if (unlikely(start_length_sq == 0.0f || end_length_sq == 0.0f)) {
// Zero length vectors have no angle, so the best we can do is either lerp or throw an error.
return lerp(p_to, p_weight);
}
+ Vector3 axis = cross(p_to);
+ real_t axis_length_sq = axis.length_squared();
+ if (unlikely(axis_length_sq == 0.0f)) {
+ // Colinear vectors have no rotation axis or angle between them, so the best we can do is lerp.
+ return lerp(p_to, p_weight);
+ }
+ axis /= Math::sqrt(axis_length_sq);
real_t start_length = Math::sqrt(start_length_sq);
real_t result_length = Math::lerp(start_length, Math::sqrt(end_length_sq), p_weight);
real_t angle = angle_to(p_to);
- return rotated(cross(p_to).normalized(), angle * p_weight) * (result_length / start_length);
+ return rotated(axis, angle * p_weight) * (result_length / start_length);
}
Vector3 Vector3::cubic_interpolate(const Vector3 &p_b, const Vector3 &p_pre_a, const Vector3 &p_post_b, const real_t p_weight) const {
@@ -242,6 +250,14 @@ Vector3 Vector3::cubic_interpolate(const Vector3 &p_b, const Vector3 &p_pre_a, c
return res;
}
+Vector3 Vector3::cubic_interpolate_in_time(const Vector3 &p_b, const Vector3 &p_pre_a, const Vector3 &p_post_b, const real_t p_weight, const real_t &p_b_t, const real_t &p_pre_a_t, const real_t &p_post_b_t) const {
+ Vector3 res = *this;
+ res.x = Math::cubic_interpolate_in_time(res.x, p_b.x, p_pre_a.x, p_post_b.x, p_weight, p_b_t, p_pre_a_t, p_post_b_t);
+ res.y = Math::cubic_interpolate_in_time(res.y, p_b.y, p_pre_a.y, p_post_b.y, p_weight, p_b_t, p_pre_a_t, p_post_b_t);
+ res.z = Math::cubic_interpolate_in_time(res.z, p_b.z, p_pre_a.z, p_post_b.z, p_weight, p_b_t, p_pre_a_t, p_post_b_t);
+ return res;
+}
+
Vector3 Vector3::bezier_interpolate(const Vector3 &p_control_1, const Vector3 &p_control_2, const Vector3 &p_end, const real_t p_t) const {
Vector3 res = *this;