diff options
Diffstat (limited to 'src/variant/quaternion.cpp')
-rw-r--r-- | src/variant/quaternion.cpp | 68 |
1 files changed, 28 insertions, 40 deletions
diff --git a/src/variant/quaternion.cpp b/src/variant/quaternion.cpp index c010850..3dd7af5 100644 --- a/src/variant/quaternion.cpp +++ b/src/variant/quaternion.cpp @@ -37,28 +37,15 @@ namespace godot { real_t Quaternion::angle_to(const Quaternion &p_to) const { real_t d = dot(p_to); - return Math::acos(CLAMP(d * d * 2 - 1, -1, 1)); + // acos does clamping. + return Math::acos(d * d * 2 - 1); } -// get_euler_xyz returns a vector containing the Euler angles in the format -// (ax,ay,az), where ax is the angle of rotation around x axis, -// and similar for other axes. -// This implementation uses XYZ convention (Z is the first rotation). -Vector3 Quaternion::get_euler_xyz() const { - Basis m(*this); - return m.get_euler(EULER_ORDER_XYZ); -} - -// get_euler_yxz returns a vector containing the Euler angles in the format -// (ax,ay,az), where ax is the angle of rotation around x axis, -// and similar for other axes. -// This implementation uses YXZ convention (Z is the first rotation). -Vector3 Quaternion::get_euler_yxz() const { +Vector3 Quaternion::get_euler(EulerOrder p_order) const { #ifdef MATH_CHECKS - ERR_FAIL_COND_V_MSG(!is_normalized(), Vector3(0, 0, 0), "The quaternion must be normalized."); + ERR_FAIL_COND_V_MSG(!is_normalized(), Vector3(0, 0, 0), "The quaternion " + operator String() + " must be normalized."); #endif - Basis m(*this); - return m.get_euler(EULER_ORDER_YXZ); + return Basis(*this).get_euler(p_order); } void Quaternion::operator*=(const Quaternion &p_q) { @@ -103,7 +90,7 @@ bool Quaternion::is_normalized() const { Quaternion Quaternion::inverse() const { #ifdef MATH_CHECKS - ERR_FAIL_COND_V_MSG(!is_normalized(), Quaternion(), "The quaternion must be normalized."); + ERR_FAIL_COND_V_MSG(!is_normalized(), Quaternion(), "The quaternion " + operator String() + " must be normalized."); #endif return Quaternion(-x, -y, -z, w); } @@ -125,10 +112,10 @@ Quaternion Quaternion::exp() const { return Quaternion(src_v, theta); } -Quaternion Quaternion::slerp(const Quaternion &p_to, const real_t &p_weight) const { +Quaternion Quaternion::slerp(const Quaternion &p_to, real_t p_weight) const { #ifdef MATH_CHECKS - ERR_FAIL_COND_V_MSG(!is_normalized(), Quaternion(), "The start quaternion must be normalized."); - ERR_FAIL_COND_V_MSG(!p_to.is_normalized(), Quaternion(), "The end quaternion must be normalized."); + ERR_FAIL_COND_V_MSG(!is_normalized(), Quaternion(), "The start quaternion " + operator String() + " must be normalized."); + ERR_FAIL_COND_V_MSG(!p_to.is_normalized(), Quaternion(), "The end quaternion " + p_to.operator String() + " must be normalized."); #endif Quaternion to1; real_t omega, cosom, sinom, scale0, scale1; @@ -166,10 +153,10 @@ Quaternion Quaternion::slerp(const Quaternion &p_to, const real_t &p_weight) con scale0 * w + scale1 * to1.w); } -Quaternion Quaternion::slerpni(const Quaternion &p_to, const real_t &p_weight) const { +Quaternion Quaternion::slerpni(const Quaternion &p_to, real_t p_weight) const { #ifdef MATH_CHECKS - ERR_FAIL_COND_V_MSG(!is_normalized(), Quaternion(), "The start quaternion must be normalized."); - ERR_FAIL_COND_V_MSG(!p_to.is_normalized(), Quaternion(), "The end quaternion must be normalized."); + ERR_FAIL_COND_V_MSG(!is_normalized(), Quaternion(), "The start quaternion " + operator String() + " must be normalized."); + ERR_FAIL_COND_V_MSG(!p_to.is_normalized(), Quaternion(), "The end quaternion " + p_to.operator String() + " must be normalized."); #endif const Quaternion &from = *this; @@ -190,10 +177,10 @@ Quaternion Quaternion::slerpni(const Quaternion &p_to, const real_t &p_weight) c invFactor * from.w + newFactor * p_to.w); } -Quaternion Quaternion::spherical_cubic_interpolate(const Quaternion &p_b, const Quaternion &p_pre_a, const Quaternion &p_post_b, const real_t &p_weight) const { +Quaternion Quaternion::spherical_cubic_interpolate(const Quaternion &p_b, const Quaternion &p_pre_a, const Quaternion &p_post_b, real_t p_weight) const { #ifdef MATH_CHECKS - ERR_FAIL_COND_V_MSG(!is_normalized(), Quaternion(), "The start quaternion must be normalized."); - ERR_FAIL_COND_V_MSG(!p_b.is_normalized(), Quaternion(), "The end quaternion must be normalized."); + ERR_FAIL_COND_V_MSG(!is_normalized(), Quaternion(), "The start quaternion " + operator String() + " must be normalized."); + ERR_FAIL_COND_V_MSG(!p_b.is_normalized(), Quaternion(), "The end quaternion " + p_b.operator String() + " must be normalized."); #endif Quaternion from_q = *this; Quaternion pre_q = p_pre_a; @@ -236,15 +223,15 @@ Quaternion Quaternion::spherical_cubic_interpolate(const Quaternion &p_b, const ln.z = Math::cubic_interpolate(ln_from.z, ln_to.z, ln_pre.z, ln_post.z, p_weight); Quaternion q2 = to_q * ln.exp(); - // To cancel error made by Expmap ambiguity, do blends. + // To cancel error made by Expmap ambiguity, do blending. return q1.slerp(q2, p_weight); } -Quaternion Quaternion::spherical_cubic_interpolate_in_time(const Quaternion &p_b, const Quaternion &p_pre_a, const Quaternion &p_post_b, const real_t &p_weight, - const real_t &p_b_t, const real_t &p_pre_a_t, const real_t &p_post_b_t) const { +Quaternion Quaternion::spherical_cubic_interpolate_in_time(const Quaternion &p_b, const Quaternion &p_pre_a, const Quaternion &p_post_b, real_t p_weight, + real_t p_b_t, real_t p_pre_a_t, real_t p_post_b_t) const { #ifdef MATH_CHECKS - ERR_FAIL_COND_V_MSG(!is_normalized(), Quaternion(), "The start quaternion must be normalized."); - ERR_FAIL_COND_V_MSG(!p_b.is_normalized(), Quaternion(), "The end quaternion must be normalized."); + ERR_FAIL_COND_V_MSG(!is_normalized(), Quaternion(), "The start quaternion " + operator String() + " must be normalized."); + ERR_FAIL_COND_V_MSG(!p_b.is_normalized(), Quaternion(), "The end quaternion " + p_b.operator String() + " must be normalized."); #endif Quaternion from_q = *this; Quaternion pre_q = p_pre_a; @@ -287,7 +274,7 @@ Quaternion Quaternion::spherical_cubic_interpolate_in_time(const Quaternion &p_b ln.z = Math::cubic_interpolate_in_time(ln_from.z, ln_to.z, ln_pre.z, ln_post.z, p_weight, p_b_t, p_pre_a_t, p_post_b_t); Quaternion q2 = to_q * ln.exp(); - // To cancel error made by Expmap ambiguity, do blends. + // To cancel error made by Expmap ambiguity, do blending. return q1.slerp(q2, p_weight); } @@ -309,7 +296,7 @@ real_t Quaternion::get_angle() const { Quaternion::Quaternion(const Vector3 &p_axis, real_t p_angle) { #ifdef MATH_CHECKS - ERR_FAIL_COND_MSG(!p_axis.is_normalized(), "The axis Vector3 must be normalized."); + ERR_FAIL_COND_MSG(!p_axis.is_normalized(), "The axis Vector3 " + p_axis.operator String() + " must be normalized."); #endif real_t d = p_axis.length(); if (d == 0) { @@ -332,7 +319,7 @@ Quaternion::Quaternion(const Vector3 &p_axis, real_t p_angle) { // (ax, ay, az), where ax is the angle of rotation around x axis, // and similar for other axes. // This implementation uses YXZ convention (Z is the first rotation). -Quaternion::Quaternion(const Vector3 &p_euler) { +Quaternion Quaternion::from_euler(const Vector3 &p_euler) { real_t half_a1 = p_euler.y * 0.5f; real_t half_a2 = p_euler.x * 0.5f; real_t half_a3 = p_euler.z * 0.5f; @@ -348,10 +335,11 @@ Quaternion::Quaternion(const Vector3 &p_euler) { real_t cos_a3 = Math::cos(half_a3); real_t sin_a3 = Math::sin(half_a3); - x = sin_a1 * cos_a2 * sin_a3 + cos_a1 * sin_a2 * cos_a3; - y = sin_a1 * cos_a2 * cos_a3 - cos_a1 * sin_a2 * sin_a3; - z = -sin_a1 * sin_a2 * cos_a3 + cos_a1 * cos_a2 * sin_a3; - w = sin_a1 * sin_a2 * sin_a3 + cos_a1 * cos_a2 * cos_a3; + return Quaternion( + sin_a1 * cos_a2 * sin_a3 + cos_a1 * sin_a2 * cos_a3, + sin_a1 * cos_a2 * cos_a3 - cos_a1 * sin_a2 * sin_a3, + -sin_a1 * sin_a2 * cos_a3 + cos_a1 * cos_a2 * sin_a3, + sin_a1 * sin_a2 * sin_a3 + cos_a1 * cos_a2 * cos_a3); } } // namespace godot |