summaryrefslogtreecommitdiffstats
path: root/include/core/Basis.hpp
blob: 0fd697edb5d4ae342a54b93a592ccb145b8fc5ef (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
#ifndef BASIS_H
#define BASIS_H

#include <gdnative/basis.h>

#include "Defs.hpp"

#include "Vector3.hpp"

namespace godot {

class Quat;

class Basis {
private:
	static const Basis IDENTITY;
	static const Basis FLIP_X;
	static const Basis FLIP_Y;
	static const Basis FLIP_Z;

	// This helper template is for mimicking the behavior difference between the engine
	// and script interfaces that logically script sees matrices as column major, while
	// the engine stores them in row major to efficiently take advantage of SIMD
	// instructions in case of matrix-vector multiplications.
	// With this helper template native scripts see the data as if it was column major
	// without actually transposing the basis matrix at the script-engine boundary.
	template <int column>
	class ColumnVector3 {
	private:
		template <int column1, int component>
		class ColumnVectorComponent {
		private:
			Vector3 elements[3];

		protected:
			inline ColumnVectorComponent<column1, component> &operator=(const ColumnVectorComponent<column1, component> &p_value) {
				return *this = real_t(p_value);
			}

			inline ColumnVectorComponent(const ColumnVectorComponent<column1, component> &p_value) {
				*this = real_t(p_value);
			}

			inline ColumnVectorComponent<column1, component> &operator=(const real_t &p_value) {
				elements[component][column1] = p_value;
				return *this;
			}

			inline operator real_t() const {
				return elements[component][column1];
			}
		};

	public:
		enum Axis {
			AXIS_X,
			AXIS_Y,
			AXIS_Z,
		};

		union {
			ColumnVectorComponent<column, 0> x;
			ColumnVectorComponent<column, 1> y;
			ColumnVectorComponent<column, 2> z;

			Vector3 elements[3]; // Not for direct access, use [] operator instead
		};

		inline ColumnVector3<column> &operator=(const ColumnVector3<column> &p_value) {
			return *this = Vector3(p_value);
		}

		inline ColumnVector3(const ColumnVector3<column> &p_value) {
			*this = Vector3(p_value);
		}

		inline ColumnVector3<column> &operator=(const Vector3 &p_value) {
			elements[0][column] = p_value.x;
			elements[1][column] = p_value.y;
			elements[2][column] = p_value.z;
			return *this;
		}

		inline operator Vector3() const {
			return Vector3(elements[0][column], elements[1][column], elements[2][column]);
		}

		// Unfortunately, we also need to replicate the other interfaces of Vector3 in
		// order for being able to directly operate on these "meta-Vector3" objects without
		// an explicit cast or an intermediate assignment to a real Vector3 object.

		inline const real_t &operator[](int p_axis) const {
			return elements[p_axis][column];
		}

		inline real_t &operator[](int p_axis) {
			return elements[p_axis][column];
		}

		inline ColumnVector3<column> &operator+=(const Vector3 &p_v) {
			return *this = *this + p_v;
		}

		inline Vector3 operator+(const Vector3 &p_v) const {
			return Vector3(*this) + p_v;
		}

		inline ColumnVector3<column> &operator-=(const Vector3 &p_v) {
			return *this = *this - p_v;
		}

		inline Vector3 operator-(const Vector3 &p_v) const {
			return Vector3(*this) - p_v;
		}

		inline ColumnVector3<column> &operator*=(const Vector3 &p_v) {
			return *this = *this * p_v;
		}

		inline Vector3 operator*(const Vector3 &p_v) const {
			return Vector3(*this) * p_v;
		}

		inline ColumnVector3<column> &operator/=(const Vector3 &p_v) {
			return *this = *this / p_v;
		}

		inline Vector3 operator/(const Vector3 &p_v) const {
			return Vector3(*this) / p_v;
		}

		inline ColumnVector3<column> &operator*=(real_t p_scalar) {
			return *this = *this * p_scalar;
		}

		inline Vector3 operator*(real_t p_scalar) const {
			return Vector3(*this) * p_scalar;
		}

		inline ColumnVector3<column> &operator/=(real_t p_scalar) {
			return *this = *this / p_scalar;
		}

		inline Vector3 operator/(real_t p_scalar) const {
			return Vector3(*this) / p_scalar;
		}

		inline Vector3 operator-() const {
			return -Vector3(*this);
		}

		inline bool operator==(const Vector3 &p_v) const {
			return Vector3(*this) == p_v;
		}

		inline bool operator!=(const Vector3 &p_v) const {
			return Vector3(*this) != p_v;
		}

		inline bool operator<(const Vector3 &p_v) const {
			return Vector3(*this) < p_v;
		}

		inline bool operator<=(const Vector3 &p_v) const {
			return Vector3(*this) <= p_v;
		}

		inline Vector3 abs() const {
			return Vector3(*this).abs();
		}

		inline Vector3 ceil() const {
			return Vector3(*this).ceil();
		}

		inline Vector3 cross(const Vector3 &b) const {
			return Vector3(*this).cross(b);
		}

		inline Vector3 linear_interpolate(const Vector3 &p_b, real_t p_t) const {
			return Vector3(*this).linear_interpolate(p_b, p_t);
		}

		inline Vector3 cubic_interpolate(const Vector3 &b, const Vector3 &pre_a, const Vector3 &post_b, const real_t t) const {
			return Vector3(*this).cubic_interpolate(b, pre_a, post_b, t);
		}

		inline Vector3 bounce(const Vector3 &p_normal) const {
			return Vector3(*this).bounce(p_normal);
		}

		inline real_t length() const {
			return Vector3(*this).length();
		}

		inline real_t length_squared() const {
			return Vector3(*this).length_squared();
		}

		inline real_t distance_squared_to(const Vector3 &b) const {
			return Vector3(*this).distance_squared_to(b);
		}

		inline real_t distance_to(const Vector3 &b) const {
			return Vector3(*this).distance_to(b);
		}

		inline real_t dot(const Vector3 &b) const {
			return Vector3(*this).dot(b);
		}

		inline real_t angle_to(const Vector3 &b) const {
			return Vector3(*this).angle_to(b);
		}

		inline Vector3 floor() const {
			return Vector3(*this).floor();
		}

		inline Vector3 inverse() const {
			return Vector3(*this).inverse();
		}

		inline bool is_normalized() const {
			return Vector3(*this).is_normalized();
		}

		inline Basis outer(const Vector3 &b) const {
			return Vector3(*this).outer(b);
		}

		inline int max_axis() const {
			return Vector3(*this).max_axis();
		}

		inline int min_axis() const {
			return Vector3(*this).min_axis();
		}

		inline void normalize() {
			Vector3 v = *this;
			v.normalize();
			*this = v;
		}

		inline Vector3 normalized() const {
			return Vector3(*this).normalized();
		}

		inline Vector3 reflect(const Vector3 &by) const {
			return Vector3(*this).reflect(by);
		}

		inline Vector3 rotated(const Vector3 &axis, const real_t phi) const {
			return Vector3(*this).rotated(axis, phi);
		}

		inline void rotate(const Vector3 &p_axis, real_t p_phi) {
			Vector3 v = *this;
			v.rotate(p_axis, p_phi);
			*this = v;
		}

		inline Vector3 slide(const Vector3 &by) const {
			return Vector3(*this).slide(by);
		}

		inline void snap(real_t p_val) {
			Vector3 v = *this;
			v.snap(p_val);
			*this = v;
		}

		inline Vector3 snapped(const float by) {
			return Vector3(*this).snapped(by);
		}

		inline operator String() const {
			return String(Vector3(*this));
		}
	};

public:
	union {
		ColumnVector3<0> x;
		ColumnVector3<1> y;
		ColumnVector3<2> z;

		Vector3 elements[3]; // Not for direct access, use [] operator instead
	};

	inline Basis(const Basis &p_basis) {
		elements[0] = p_basis.elements[0];
		elements[1] = p_basis.elements[1];
		elements[2] = p_basis.elements[2];
	}

	inline Basis &operator=(const Basis &p_basis) {
		elements[0] = p_basis.elements[0];
		elements[1] = p_basis.elements[1];
		elements[2] = p_basis.elements[2];
		return *this;
	}

	Basis(const Quat &p_quat); // euler
	Basis(const Vector3 &p_euler); // euler
	Basis(const Vector3 &p_axis, real_t p_phi);

	Basis(const Vector3 &row0, const Vector3 &row1, const Vector3 &row2);

	Basis(real_t xx, real_t xy, real_t xz, real_t yx, real_t yy, real_t yz, real_t zx, real_t zy, real_t zz);

	Basis();

	const Vector3 operator[](int axis) const {
		return get_axis(axis);
	}

	ColumnVector3<0> &operator[](int axis) {
		// We need to do a little pointer magic to get this to work, because the
		// ColumnVector3 template takes the axis as a template parameter.
		// Don't touch this unless you're sure what you're doing!
		return (reinterpret_cast<Basis *>(reinterpret_cast<real_t *>(this) + axis))->x;
	}

	void invert();

	bool isequal_approx(const Basis &a, const Basis &b) const;

	bool is_orthogonal() const;

	bool is_rotation() const;

	void transpose();

	Basis inverse() const;

	Basis transposed() const;

	real_t determinant() const;

	Vector3 get_axis(int p_axis) const;

	void set_axis(int p_axis, const Vector3 &p_value);

	void rotate(const Vector3 &p_axis, real_t p_phi);

	Basis rotated(const Vector3 &p_axis, real_t p_phi) const;

	void scale(const Vector3 &p_scale);

	Basis scaled(const Vector3 &p_scale) const;

	Vector3 get_scale() const;

	Basis slerp(Basis b, float t) const;

	Vector3 get_euler_xyz() const;
	void set_euler_xyz(const Vector3 &p_euler);
	Vector3 get_euler_yxz() const;
	void set_euler_yxz(const Vector3 &p_euler);

	inline Vector3 get_euler() const { return get_euler_yxz(); }
	inline void set_euler(const Vector3 &p_euler) { set_euler_yxz(p_euler); }

	// transposed dot products
	real_t tdotx(const Vector3 &v) const;
	real_t tdoty(const Vector3 &v) const;
	real_t tdotz(const Vector3 &v) const;

	bool operator==(const Basis &p_matrix) const;

	bool operator!=(const Basis &p_matrix) const;

	Vector3 xform(const Vector3 &p_vector) const;

	Vector3 xform_inv(const Vector3 &p_vector) const;
	void operator*=(const Basis &p_matrix);

	Basis operator*(const Basis &p_matrix) const;

	void operator+=(const Basis &p_matrix);

	Basis operator+(const Basis &p_matrix) const;

	void operator-=(const Basis &p_matrix);

	Basis operator-(const Basis &p_matrix) const;

	void operator*=(real_t p_val);

	Basis operator*(real_t p_val) const;

	int get_orthogonal_index() const; // down below

	void set_orthogonal_index(int p_index); // down below

	operator String() const;

	void get_axis_and_angle(Vector3 &r_axis, real_t &r_angle) const;

	/* create / set */

	void set(real_t xx, real_t xy, real_t xz, real_t yx, real_t yy, real_t yz, real_t zx, real_t zy, real_t zz);

	Vector3 get_column(int i) const;

	Vector3 get_row(int i) const;
	Vector3 get_main_diagonal() const;

	void set_row(int i, const Vector3 &p_row);

	Basis transpose_xform(const Basis &m) const;

	void orthonormalize();

	Basis orthonormalized() const;

	bool is_symmetric() const;

	Basis diagonalize();

	operator Quat() const;
};

} // namespace godot

#endif // BASIS_H