summaryrefslogtreecommitdiffstats
path: root/include/core/Math.hpp
blob: a971bb8eba708aeef59e1c1608efebd166f2f964 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
#ifndef GODOT_MATH_H
#define GODOT_MATH_H

#include "Defs.hpp"
#include <cmath>

namespace godot {
namespace Math {

// Functions reproduced as in Godot's source code `math_funcs.h`.
// Some are overloads to automatically support changing real_t into either double or float in the way Godot does.

inline double fmod(double p_x, double p_y) {
	return ::fmod(p_x, p_y);
}
inline float fmod(float p_x, float p_y) {
	return ::fmodf(p_x, p_y);
}

inline double floor(double p_x) {
	return ::floor(p_x);
}
inline float floor(float p_x) {
	return ::floorf(p_x);
}

inline double exp(double p_x) {
	return ::exp(p_x);
}
inline float exp(float p_x) {
	return ::expf(p_x);
}

inline double sin(double p_x) {
	return ::sin(p_x);
}
inline float sin(float p_x) {
	return ::sinf(p_x);
}

inline double cos(double p_x) {
	return ::cos(p_x);
}
inline float cos(float p_x) {
	return ::cosf(p_x);
}

inline double tan(double p_x) {
	return ::tan(p_x);
}
inline float tan(float p_x) {
	return ::tanf(p_x);
}

inline double atan2(double p_y, double p_x) {
	return ::atan2(p_y, p_x);
}
inline float atan2(float p_y, float p_x) {
	return ::atan2f(p_y, p_x);
}

inline double sqrt(double p_x) {
	return ::sqrt(p_x);
}
inline float sqrt(float p_x) {
	return ::sqrtf(p_x);
}

inline float lerp(float minv, float maxv, float t) {
	return minv + t * (maxv - minv);
}
inline double lerp(double minv, double maxv, double t) {
	return minv + t * (maxv - minv);
}

inline double lerp_angle(double p_from, double p_to, double p_weight) {
	double difference = fmod(p_to - p_from, Math_TAU);
	double distance = fmod(2.0 * difference, Math_TAU) - difference;
	return p_from + distance * p_weight;
}
inline float lerp_angle(float p_from, float p_to, float p_weight) {
	float difference = fmod(p_to - p_from, (float)Math_TAU);
	float distance = fmod(2.0f * difference, (float)Math_TAU) - difference;
	return p_from + distance * p_weight;
}

template <typename T>
inline T clamp(T x, T minv, T maxv) {
	if (x < minv) {
		return minv;
	}
	if (x > maxv) {
		return maxv;
	}
	return x;
}

template <typename T>
inline T min(T a, T b) {
	return a < b ? a : b;
}

template <typename T>
inline T max(T a, T b) {
	return a > b ? a : b;
}

template <typename T>
inline T sign(T x) {
	return static_cast<T>(x < 0 ? -1 : 1);
}

inline double deg2rad(double p_y) {
	return p_y * Math_PI / 180.0;
}
inline float deg2rad(float p_y) {
	return p_y * static_cast<float>(Math_PI) / 180.f;
}

inline double rad2deg(double p_y) {
	return p_y * 180.0 / Math_PI;
}
inline float rad2deg(float p_y) {
	return p_y * 180.f / static_cast<float>(Math_PI);
}

inline double inverse_lerp(double p_from, double p_to, double p_value) {
	return (p_value - p_from) / (p_to - p_from);
}
inline float inverse_lerp(float p_from, float p_to, float p_value) {
	return (p_value - p_from) / (p_to - p_from);
}

inline double range_lerp(double p_value, double p_istart, double p_istop, double p_ostart, double p_ostop) {
	return Math::lerp(p_ostart, p_ostop, Math::inverse_lerp(p_istart, p_istop, p_value));
}
inline float range_lerp(float p_value, float p_istart, float p_istop, float p_ostart, float p_ostop) {
	return Math::lerp(p_ostart, p_ostop, Math::inverse_lerp(p_istart, p_istop, p_value));
}

inline bool is_equal_approx(real_t a, real_t b) {
	// Check for exact equality first, required to handle "infinity" values.
	if (a == b) {
		return true;
	}
	// Then check for approximate equality.
	real_t tolerance = CMP_EPSILON * std::abs(a);
	if (tolerance < CMP_EPSILON) {
		tolerance = CMP_EPSILON;
	}
	return std::abs(a - b) < tolerance;
}

inline bool is_equal_approx(real_t a, real_t b, real_t tolerance) {
	// Check for exact equality first, required to handle "infinity" values.
	if (a == b) {
		return true;
	}
	// Then check for approximate equality.
	return std::abs(a - b) < tolerance;
}

inline bool is_zero_approx(real_t s) {
	return std::abs(s) < CMP_EPSILON;
}

inline double smoothstep(double p_from, double p_to, double p_weight) {
	if (is_equal_approx(static_cast<real_t>(p_from), static_cast<real_t>(p_to))) {
		return p_from;
	}
	double x = clamp((p_weight - p_from) / (p_to - p_from), 0.0, 1.0);
	return x * x * (3.0 - 2.0 * x);
}
inline float smoothstep(float p_from, float p_to, float p_weight) {
	if (is_equal_approx(p_from, p_to)) {
		return p_from;
	}
	float x = clamp((p_weight - p_from) / (p_to - p_from), 0.0f, 1.0f);
	return x * x * (3.0f - 2.0f * x);
}

inline double move_toward(double p_from, double p_to, double p_delta) {
	return std::abs(p_to - p_from) <= p_delta ? p_to : p_from + sign(p_to - p_from) * p_delta;
}

inline float move_toward(float p_from, float p_to, float p_delta) {
	return std::abs(p_to - p_from) <= p_delta ? p_to : p_from + sign(p_to - p_from) * p_delta;
}

inline double linear2db(double p_linear) {
	return log(p_linear) * 8.6858896380650365530225783783321;
}
inline float linear2db(float p_linear) {
	return log(p_linear) * 8.6858896380650365530225783783321f;
}

inline double db2linear(double p_db) {
	return exp(p_db * 0.11512925464970228420089957273422);
}
inline float db2linear(float p_db) {
	return exp(p_db * 0.11512925464970228420089957273422f);
}

inline double round(double p_val) {
	return (p_val >= 0) ? floor(p_val + 0.5) : -floor(-p_val + 0.5);
}
inline float round(float p_val) {
	return (p_val >= 0) ? floor(p_val + 0.5f) : -floor(-p_val + 0.5f);
}

inline int64_t wrapi(int64_t value, int64_t min, int64_t max) {
	int64_t range = max - min;
	return range == 0 ? min : min + ((((value - min) % range) + range) % range);
}

inline float wrapf(real_t value, real_t min, real_t max) {
	const real_t range = max - min;
	return is_zero_approx(range) ? min : value - (range * floor((value - min) / range));
}

inline float stepify(float p_value, float p_step) {
	if (p_step != 0) {
		p_value = floor(p_value / p_step + 0.5f) * p_step;
	}
	return p_value;
}
inline double stepify(double p_value, double p_step) {
	if (p_step != 0) {
		p_value = floor(p_value / p_step + 0.5) * p_step;
	}
	return p_value;
}

inline unsigned int next_power_of_2(unsigned int x) {

	if (x == 0)
		return 0;

	--x;
	x |= x >> 1;
	x |= x >> 2;
	x |= x >> 4;
	x |= x >> 8;
	x |= x >> 16;

	return ++x;
}

} // namespace Math
} // namespace godot

#endif // GODOT_MATH_H