summaryrefslogtreecommitdiffstats
path: root/include/core/Vector3.hpp
blob: cbd4f75e33706bbf1d1ddbc70a68714c40182fe7 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
#ifndef VECTOR3_H
#define VECTOR3_H

#include <gdnative/vector3.h>

#include "Defs.hpp"

#include "String.hpp"

#include <Math.hpp>

namespace godot {

class Basis;

struct Vector3 {

	enum Axis {
		AXIS_X,
		AXIS_Y,
		AXIS_Z,
		AXIS_COUNT
	};

	static const Vector3 ZERO;
	static const Vector3 ONE;
	static const Vector3 INF;

	// Coordinate system of the 3D engine
	static const Vector3 LEFT;
	static const Vector3 RIGHT;
	static const Vector3 UP;
	static const Vector3 DOWN;
	static const Vector3 FORWARD;
	static const Vector3 BACK;

	union {
		struct {
			real_t x;
			real_t y;
			real_t z;
		};

		real_t coord[3]; // Not for direct access, use [] operator instead
	};

	inline Vector3(real_t x, real_t y, real_t z) {
		this->x = x;
		this->y = y;
		this->z = z;
	}

	inline Vector3() {
		this->x = 0;
		this->y = 0;
		this->z = 0;
	}

	inline const real_t &operator[](int p_axis) const {
		return coord[p_axis];
	}

	inline real_t &operator[](int p_axis) {
		return coord[p_axis];
	}

	inline Vector3 &operator+=(const Vector3 &p_v) {
		x += p_v.x;
		y += p_v.y;
		z += p_v.z;
		return *this;
	}

	inline Vector3 operator+(const Vector3 &p_v) const {
		Vector3 v = *this;
		v += p_v;
		return v;
	}

	inline Vector3 &operator-=(const Vector3 &p_v) {
		x -= p_v.x;
		y -= p_v.y;
		z -= p_v.z;
		return *this;
	}

	inline Vector3 operator-(const Vector3 &p_v) const {
		Vector3 v = *this;
		v -= p_v;
		return v;
	}

	inline Vector3 &operator*=(const Vector3 &p_v) {
		x *= p_v.x;
		y *= p_v.y;
		z *= p_v.z;
		return *this;
	}

	inline Vector3 operator*(const Vector3 &p_v) const {
		Vector3 v = *this;
		v *= p_v;
		return v;
	}

	inline Vector3 &operator/=(const Vector3 &p_v) {
		x /= p_v.x;
		y /= p_v.y;
		z /= p_v.z;
		return *this;
	}

	inline Vector3 operator/(const Vector3 &p_v) const {
		Vector3 v = *this;
		v /= p_v;
		return v;
	}

	inline Vector3 &operator*=(real_t p_scalar) {
		*this *= Vector3(p_scalar, p_scalar, p_scalar);
		return *this;
	}

	inline Vector3 operator*(real_t p_scalar) const {
		Vector3 v = *this;
		v *= p_scalar;
		return v;
	}

	inline Vector3 &operator/=(real_t p_scalar) {
		*this /= Vector3(p_scalar, p_scalar, p_scalar);
		return *this;
	}

	inline Vector3 operator/(real_t p_scalar) const {
		Vector3 v = *this;
		v /= p_scalar;
		return v;
	}

	inline Vector3 operator-() const {
		return Vector3(-x, -y, -z);
	}

	inline bool operator==(const Vector3 &p_v) const {
		return (x == p_v.x && y == p_v.y && z == p_v.z);
	}

	inline bool operator!=(const Vector3 &p_v) const {
		return (x != p_v.x || y != p_v.y || z != p_v.z);
	}

	bool operator<(const Vector3 &p_v) const;

	bool operator<=(const Vector3 &p_v) const;

	inline Vector3 abs() const {
		return Vector3(::fabs(x), ::fabs(y), ::fabs(z));
	}

	inline Vector3 ceil() const {
		return Vector3(::ceil(x), ::ceil(y), ::ceil(z));
	}

	inline Vector3 cross(const Vector3 &b) const {
		Vector3 ret(
				(y * b.z) - (z * b.y),
				(z * b.x) - (x * b.z),
				(x * b.y) - (y * b.x));

		return ret;
	}

	inline Vector3 linear_interpolate(const Vector3 &p_b, real_t p_t) const {
		return Vector3(
				x + (p_t * (p_b.x - x)),
				y + (p_t * (p_b.y - y)),
				z + (p_t * (p_b.z - z)));
	}

	inline Vector3 slerp(const Vector3 &p_b, real_t p_t) const {
		real_t theta = angle_to(p_b);
		return rotated(cross(p_b).normalized(), theta * p_t);
	}

	Vector3 cubic_interpolate(const Vector3 &b, const Vector3 &pre_a, const Vector3 &post_b, const real_t t) const;

	Vector3 move_toward(const Vector3 &p_to, const real_t p_delta) const {
		Vector3 v = *this;
		Vector3 vd = p_to - v;
		real_t len = vd.length();
		return len <= p_delta || len < CMP_EPSILON ? p_to : v + vd / len * p_delta;
	}

	Vector3 bounce(const Vector3 &p_normal) const {
		return -reflect(p_normal);
	}

	inline real_t length() const {
		real_t x2 = x * x;
		real_t y2 = y * y;
		real_t z2 = z * z;

		return ::sqrt(x2 + y2 + z2);
	}

	inline real_t length_squared() const {
		real_t x2 = x * x;
		real_t y2 = y * y;
		real_t z2 = z * z;

		return x2 + y2 + z2;
	}

	inline real_t distance_squared_to(const Vector3 &b) const {
		return (b - *this).length_squared();
	}

	inline real_t distance_to(const Vector3 &b) const {
		return (b - *this).length();
	}

	inline real_t dot(const Vector3 &b) const {
		return x * b.x + y * b.y + z * b.z;
	}

	inline Vector3 project(const Vector3 &p_b) const {
		return p_b * (dot(p_b) / p_b.length_squared());
	}

	inline real_t angle_to(const Vector3 &b) const {
		return std::atan2(cross(b).length(), dot(b));
	}

	inline Vector3 direction_to(const Vector3 &p_b) const {
		Vector3 ret(p_b.x - x, p_b.y - y, p_b.z - z);
		ret.normalize();
		return ret;
	}

	inline Vector3 floor() const {
		return Vector3(::floor(x), ::floor(y), ::floor(z));
	}

	inline Vector3 inverse() const {
		return Vector3(1.f / x, 1.f / y, 1.f / z);
	}

	inline bool is_normalized() const {
		return std::abs(length_squared() - 1.f) < 0.00001f;
	}

	Basis outer(const Vector3 &b) const;

	int max_axis() const;

	int min_axis() const;

	inline void normalize() {
		real_t l = length();
		if (l == 0) {
			x = y = z = 0;
		} else {
			x /= l;
			y /= l;
			z /= l;
		}
	}

	inline Vector3 normalized() const {
		Vector3 v = *this;
		v.normalize();
		return v;
	}

	inline Vector3 reflect(const Vector3 &p_normal) const {
		return -(*this - p_normal * this->dot(p_normal) * 2.0);
	}

	inline Vector3 rotated(const Vector3 &axis, const real_t phi) const {
		Vector3 v = *this;
		v.rotate(axis, phi);
		return v;
	}

	void rotate(const Vector3 &p_axis, real_t p_phi);

	inline Vector3 slide(const Vector3 &by) const {
		return *this - by * this->dot(by);
	}

	void snap(real_t p_val);

	inline Vector3 snapped(const float by) {
		Vector3 v = *this;
		v.snap(by);
		return v;
	}

	operator String() const;
};

inline Vector3 operator*(real_t p_scalar, const Vector3 &p_vec) {
	return p_vec * p_scalar;
}

inline Vector3 vec3_cross(const Vector3 &p_a, const Vector3 &p_b) {

	return p_a.cross(p_b);
}

} // namespace godot

#endif // VECTOR3_H