1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
|
#ifndef BASIS_H
#define BASIS_H
#include "Defs.h"
#include "Vector3.h"
#include <algorithm>
typedef float real_t; // @Todo move this to a global Godot.h
namespace godot {
class Quat;
class Basis {
public:
Vector3 elements[3];
Basis(const Quat& p_quat); // euler
Basis(const Vector3& p_euler); // euler
Basis(const Vector3& p_axis, real_t p_phi);
Basis(const Vector3& row0, const Vector3& row1, const Vector3& row2)
{
elements[0]=row0;
elements[1]=row1;
elements[2]=row2;
}
Basis(real_t xx, real_t xy, real_t xz, real_t yx, real_t yy, real_t yz, real_t zx, real_t zy, real_t zz) {
set(xx, xy, xz, yx, yy, yz, zx, zy, zz);
}
Basis() {
elements[0][0]=1;
elements[0][1]=0;
elements[0][2]=0;
elements[1][0]=0;
elements[1][1]=1;
elements[1][2]=0;
elements[2][0]=0;
elements[2][1]=0;
elements[2][2]=1;
}
const Vector3& operator[](int axis) const {
return elements[axis];
}
Vector3& operator[](int axis) {
return elements[axis];
}
#define cofac(row1,col1, row2, col2)\
(elements[row1][col1] * elements[row2][col2] - elements[row1][col2] * elements[row2][col1])
void invert()
{
real_t co[3]={
cofac(1, 1, 2, 2), cofac(1, 2, 2, 0), cofac(1, 0, 2, 1)
};
real_t det = elements[0][0] * co[0]+
elements[0][1] * co[1]+
elements[0][2] * co[2];
if ( det != 0 ) {
// WTF
__builtin_trap(); // WTF WTF WTF
// I shouldn't do this
// @Todo @Fixme @Todo @Todo
}
real_t s = 1.0/det;
set( co[0]*s, cofac(0, 2, 2, 1) * s, cofac(0, 1, 1, 2) * s,
co[1]*s, cofac(0, 0, 2, 2) * s, cofac(0, 2, 1, 0) * s,
co[2]*s, cofac(0, 1, 2, 0) * s, cofac(0, 0, 1, 1) * s );
}
#undef cofac
bool isequal_approx(const Basis& a, const Basis& b) const {
for (int i=0;i<3;i++) {
for (int j=0;j<3;j++) {
if ((::fabs(a.elements[i][j]-b.elements[i][j]) < CMP_EPSILON) == false)
return false;
}
}
return true;
}
bool is_orthogonal() const
{
Basis id;
Basis m = (*this)*transposed();
return isequal_approx(id,m);
}
bool is_rotation() const
{
return ::fabs(determinant()-1) < CMP_EPSILON && is_orthogonal();
}
void transpose()
{
std::swap(elements[0][1],elements[1][0]);
std::swap(elements[0][2],elements[2][0]);
std::swap(elements[1][2],elements[2][1]);
}
Basis inverse() const
{
Basis b = *this;
b.invert();
return b;
}
Basis transposed() const
{
Basis b = *this;
b.transpose();
return b;
}
real_t determinant() const
{
return elements[0][0]*(elements[1][1]*elements[2][2] - elements[2][1]*elements[1][2]) -
elements[1][0]*(elements[0][1]*elements[2][2] - elements[2][1]*elements[0][2]) +
elements[2][0]*(elements[0][1]*elements[1][2] - elements[1][1]*elements[0][2]);
}
Vector3 get_axis(int p_axis) const {
// get actual basis axis (elements is transposed for performance)
return Vector3( elements[0][p_axis], elements[1][p_axis], elements[2][p_axis] );
}
void set_axis(int p_axis, const Vector3& p_value) {
// get actual basis axis (elements is transposed for performance)
elements[0][p_axis]=p_value.x;
elements[1][p_axis]=p_value.y;
elements[2][p_axis]=p_value.z;
}
void rotate(const Vector3& p_axis, real_t p_phi)
{
*this = rotated(p_axis, p_phi);
}
Basis rotated(const Vector3& p_axis, real_t p_phi) const
{
return Basis(p_axis, p_phi) * (*this);
}
void scale( const Vector3& p_scale )
{
elements[0][0]*=p_scale.x;
elements[0][1]*=p_scale.x;
elements[0][2]*=p_scale.x;
elements[1][0]*=p_scale.y;
elements[1][1]*=p_scale.y;
elements[1][2]*=p_scale.y;
elements[2][0]*=p_scale.z;
elements[2][1]*=p_scale.z;
elements[2][2]*=p_scale.z;
}
Basis scaled( const Vector3& p_scale ) const
{
Basis b = *this;
b.scale(p_scale);
return b;
}
Vector3 get_scale() const
{
// We are assuming M = R.S, and performing a polar decomposition to extract R and S.
// FIXME: We eventually need a proper polar decomposition.
// As a cheap workaround until then, to ensure that R is a proper rotation matrix with determinant +1
// (such that it can be represented by a Quat or Euler angles), we absorb the sign flip into the scaling matrix.
// As such, it works in conjuction with get_rotation().
real_t det_sign = determinant() > 0 ? 1 : -1;
return det_sign*Vector3(
Vector3(elements[0][0],elements[1][0],elements[2][0]).length(),
Vector3(elements[0][1],elements[1][1],elements[2][1]).length(),
Vector3(elements[0][2],elements[1][2],elements[2][2]).length()
);
}
Vector3 get_euler() const
{
// Euler angles in XYZ convention.
// See https://en.wikipedia.org/wiki/Euler_angles#Rotation_matrix
//
// rot = cy*cz -cy*sz sy
// cz*sx*sy+cx*sz cx*cz-sx*sy*sz -cy*sx
// -cx*cz*sy+sx*sz cz*sx+cx*sy*sz cx*cy
Vector3 euler;
if (is_rotation() == false)
return euler;
euler.y = ::asin(elements[0][2]);
if ( euler.y < Math_PI*0.5) {
if ( euler.y > -Math_PI*0.5) {
euler.x = ::atan2(-elements[1][2],elements[2][2]);
euler.z = ::atan2(-elements[0][1],elements[0][0]);
} else {
real_t r = ::atan2(elements[1][0],elements[1][1]);
euler.z = 0.0;
euler.x = euler.z - r;
}
} else {
real_t r = ::atan2(elements[0][1],elements[1][1]);
euler.z = 0;
euler.x = r - euler.z;
}
return euler;
}
void set_euler(const Vector3& p_euler)
{
real_t c, s;
c = ::cos(p_euler.x);
s = ::sin(p_euler.x);
Basis xmat(1.0,0.0,0.0,0.0,c,-s,0.0,s,c);
c = ::cos(p_euler.y);
s = ::sin(p_euler.y);
Basis ymat(c,0.0,s,0.0,1.0,0.0,-s,0.0,c);
c = ::cos(p_euler.z);
s = ::sin(p_euler.z);
Basis zmat(c,-s,0.0,s,c,0.0,0.0,0.0,1.0);
//optimizer will optimize away all this anyway
*this = xmat*(ymat*zmat);
}
// transposed dot products
real_t tdotx(const Vector3& v) const {
return elements[0][0] * v[0] + elements[1][0] * v[1] + elements[2][0] * v[2];
}
real_t tdoty(const Vector3& v) const {
return elements[0][1] * v[0] + elements[1][1] * v[1] + elements[2][1] * v[2];
}
real_t tdotz(const Vector3& v) const {
return elements[0][2] * v[0] + elements[1][2] * v[1] + elements[2][2] * v[2];
}
bool operator==(const Basis& p_matrix) const
{
for (int i=0;i<3;i++) {
for (int j=0;j<3;j++) {
if (elements[i][j] != p_matrix.elements[i][j])
return false;
}
}
return true;
}
bool operator!=(const Basis& p_matrix) const
{
return (!(*this==p_matrix));
}
Vector3 xform(const Vector3& p_vector) const {
return Vector3(
elements[0].dot(p_vector),
elements[1].dot(p_vector),
elements[2].dot(p_vector)
);
}
Vector3 xform_inv(const Vector3& p_vector) const {
return Vector3(
(elements[0][0]*p_vector.x ) + ( elements[1][0]*p_vector.y ) + ( elements[2][0]*p_vector.z ),
(elements[0][1]*p_vector.x ) + ( elements[1][1]*p_vector.y ) + ( elements[2][1]*p_vector.z ),
(elements[0][2]*p_vector.x ) + ( elements[1][2]*p_vector.y ) + ( elements[2][2]*p_vector.z )
);
}
void operator*=(const Basis& p_matrix)
{
set(
p_matrix.tdotx(elements[0]), p_matrix.tdoty(elements[0]), p_matrix.tdotz(elements[0]),
p_matrix.tdotx(elements[1]), p_matrix.tdoty(elements[1]), p_matrix.tdotz(elements[1]),
p_matrix.tdotx(elements[2]), p_matrix.tdoty(elements[2]), p_matrix.tdotz(elements[2]));
}
Basis operator*(const Basis& p_matrix) const
{
return Basis(
p_matrix.tdotx(elements[0]), p_matrix.tdoty(elements[0]), p_matrix.tdotz(elements[0]),
p_matrix.tdotx(elements[1]), p_matrix.tdoty(elements[1]), p_matrix.tdotz(elements[1]),
p_matrix.tdotx(elements[2]), p_matrix.tdoty(elements[2]), p_matrix.tdotz(elements[2]) );
}
void operator+=(const Basis& p_matrix) {
elements[0] += p_matrix.elements[0];
elements[1] += p_matrix.elements[1];
elements[2] += p_matrix.elements[2];
}
Basis operator+(const Basis& p_matrix) const {
Basis ret(*this);
ret += p_matrix;
return ret;
}
void operator-=(const Basis& p_matrix) {
elements[0] -= p_matrix.elements[0];
elements[1] -= p_matrix.elements[1];
elements[2] -= p_matrix.elements[2];
}
Basis operator-(const Basis& p_matrix) const {
Basis ret(*this);
ret -= p_matrix;
return ret;
}
void operator*=(real_t p_val) {
elements[0]*=p_val;
elements[1]*=p_val;
elements[2]*=p_val;
}
Basis operator*(real_t p_val) const {
Basis ret(*this);
ret *= p_val;
return ret;
}
int get_orthogonal_index() const; // down below
void set_orthogonal_index(int p_index); // down below
operator String() const
{
String s;
// @Todo
return s;
}
void get_axis_and_angle(Vector3 &r_axis,real_t& r_angle) const;
/* create / set */
void set(real_t xx, real_t xy, real_t xz, real_t yx, real_t yy, real_t yz, real_t zx, real_t zy, real_t zz) {
elements[0][0]=xx;
elements[0][1]=xy;
elements[0][2]=xz;
elements[1][0]=yx;
elements[1][1]=yy;
elements[1][2]=yz;
elements[2][0]=zx;
elements[2][1]=zy;
elements[2][2]=zz;
}
Vector3 get_column(int i) const {
return Vector3(elements[0][i],elements[1][i],elements[2][i]);
}
Vector3 get_row(int i) const {
return Vector3(elements[i][0],elements[i][1],elements[i][2]);
}
Vector3 get_main_diagonal() const {
return Vector3(elements[0][0],elements[1][1],elements[2][2]);
}
void set_row(int i, const Vector3& p_row) {
elements[i][0]=p_row.x;
elements[i][1]=p_row.y;
elements[i][2]=p_row.z;
}
Basis transpose_xform(const Basis& m) const
{
return Basis(
elements[0].x * m[0].x + elements[1].x * m[1].x + elements[2].x * m[2].x,
elements[0].x * m[0].y + elements[1].x * m[1].y + elements[2].x * m[2].y,
elements[0].x * m[0].z + elements[1].x * m[1].z + elements[2].x * m[2].z,
elements[0].y * m[0].x + elements[1].y * m[1].x + elements[2].y * m[2].x,
elements[0].y * m[0].y + elements[1].y * m[1].y + elements[2].y * m[2].y,
elements[0].y * m[0].z + elements[1].y * m[1].z + elements[2].y * m[2].z,
elements[0].z * m[0].x + elements[1].z * m[1].x + elements[2].z * m[2].x,
elements[0].z * m[0].y + elements[1].z * m[1].y + elements[2].z * m[2].y,
elements[0].z * m[0].z + elements[1].z * m[1].z + elements[2].z * m[2].z);
}
void orthonormalize()
{
if (determinant() != 0) {
// not this crap again
__builtin_trap(); // WTF WTF WTF
// somebody please complain some day
// so I can fix this
// need propert error reporting here.
}
// Gram-Schmidt Process
Vector3 x=get_axis(0);
Vector3 y=get_axis(1);
Vector3 z=get_axis(2);
x.normalize();
y = (y-x*(x.dot(y)));
y.normalize();
z = (z-x*(x.dot(z))-y*(y.dot(z)));
z.normalize();
set_axis(0,x);
set_axis(1,y);
set_axis(2,z);
}
Basis orthonormalized() const
{
Basis b = *this;
b.orthonormalize();
return b;
}
bool is_symmetric() const
{
if (::fabs(elements[0][1] - elements[1][0]) > CMP_EPSILON)
return false;
if (::fabs(elements[0][2] - elements[2][0]) > CMP_EPSILON)
return false;
if (::fabs(elements[1][2] - elements[2][1]) > CMP_EPSILON)
return false;
return true;
}
Basis diagonalize()
{
// I love copy paste
if (!is_symmetric())
return Basis();
const int ite_max = 1024;
real_t off_matrix_norm_2 = elements[0][1] * elements[0][1] + elements[0][2] * elements[0][2] + elements[1][2] * elements[1][2];
int ite = 0;
Basis acc_rot;
while (off_matrix_norm_2 > CMP_EPSILON2 && ite++ < ite_max ) {
real_t el01_2 = elements[0][1] * elements[0][1];
real_t el02_2 = elements[0][2] * elements[0][2];
real_t el12_2 = elements[1][2] * elements[1][2];
// Find the pivot element
int i, j;
if (el01_2 > el02_2) {
if (el12_2 > el01_2) {
i = 1;
j = 2;
} else {
i = 0;
j = 1;
}
} else {
if (el12_2 > el02_2) {
i = 1;
j = 2;
} else {
i = 0;
j = 2;
}
}
// Compute the rotation angle
real_t angle;
if (::fabs(elements[j][j] - elements[i][i]) < CMP_EPSILON) {
angle = Math_PI / 4;
} else {
angle = 0.5 * ::atan(2 * elements[i][j] / (elements[j][j] - elements[i][i]));
}
// Compute the rotation matrix
Basis rot;
rot.elements[i][i] = rot.elements[j][j] = ::cos(angle);
rot.elements[i][j] = - (rot.elements[j][i] = ::sin(angle));
// Update the off matrix norm
off_matrix_norm_2 -= elements[i][j] * elements[i][j];
// Apply the rotation
*this = rot * *this * rot.transposed();
acc_rot = rot * acc_rot;
}
return acc_rot;
}
operator Quat() const;
};
static const Basis _ortho_bases[24]={
Basis(1, 0, 0, 0, 1, 0, 0, 0, 1),
Basis(0, -1, 0, 1, 0, 0, 0, 0, 1),
Basis(-1, 0, 0, 0, -1, 0, 0, 0, 1),
Basis(0, 1, 0, -1, 0, 0, 0, 0, 1),
Basis(1, 0, 0, 0, 0, -1, 0, 1, 0),
Basis(0, 0, 1, 1, 0, 0, 0, 1, 0),
Basis(-1, 0, 0, 0, 0, 1, 0, 1, 0),
Basis(0, 0, -1, -1, 0, 0, 0, 1, 0),
Basis(1, 0, 0, 0, -1, 0, 0, 0, -1),
Basis(0, 1, 0, 1, 0, 0, 0, 0, -1),
Basis(-1, 0, 0, 0, 1, 0, 0, 0, -1),
Basis(0, -1, 0, -1, 0, 0, 0, 0, -1),
Basis(1, 0, 0, 0, 0, 1, 0, -1, 0),
Basis(0, 0, -1, 1, 0, 0, 0, -1, 0),
Basis(-1, 0, 0, 0, 0, -1, 0, -1, 0),
Basis(0, 0, 1, -1, 0, 0, 0, -1, 0),
Basis(0, 0, 1, 0, 1, 0, -1, 0, 0),
Basis(0, -1, 0, 0, 0, 1, -1, 0, 0),
Basis(0, 0, -1, 0, -1, 0, -1, 0, 0),
Basis(0, 1, 0, 0, 0, -1, -1, 0, 0),
Basis(0, 0, 1, 0, -1, 0, 1, 0, 0),
Basis(0, 1, 0, 0, 0, 1, 1, 0, 0),
Basis(0, 0, -1, 0, 1, 0, 1, 0, 0),
Basis(0, -1, 0, 0, 0, -1, 1, 0, 0)
};
int Basis::get_orthogonal_index() const
{
//could be sped up if i come up with a way
Basis orth=*this;
for(int i=0;i<3;i++) {
for(int j=0;j<3;j++) {
real_t v = orth[i][j];
if (v>0.5)
v=1.0;
else if (v<-0.5)
v=-1.0;
else
v=0;
orth[i][j]=v;
}
}
for(int i=0;i<24;i++) {
if (_ortho_bases[i]==orth)
return i;
}
return 0;
}
void Basis::set_orthogonal_index(int p_index){
//there only exist 24 orthogonal bases in r3
if (p_index >= 24) {
__builtin_trap(); // kiiiiill me
// I don't want to do shady stuff like that
// @Todo WTF WTF
}
*this=_ortho_bases[p_index];
}
Basis::Basis(const Vector3& p_euler) {
set_euler( p_euler );
}
}
#include "Quat.h"
namespace godot {
Basis::Basis(const Quat& p_quat) {
real_t d = p_quat.length_squared();
real_t s = 2.0 / d;
real_t xs = p_quat.x * s, ys = p_quat.y * s, zs = p_quat.z * s;
real_t wx = p_quat.w * xs, wy = p_quat.w * ys, wz = p_quat.w * zs;
real_t xx = p_quat.x * xs, xy = p_quat.x * ys, xz = p_quat.x * zs;
real_t yy = p_quat.y * ys, yz = p_quat.y * zs, zz = p_quat.z * zs;
set( 1.0 - (yy + zz), xy - wz, xz + wy,
xy + wz, 1.0 - (xx + zz), yz - wx,
xz - wy, yz + wx, 1.0 - (xx + yy)) ;
}
Basis::Basis(const Vector3& p_axis, real_t p_phi) {
// Rotation matrix from axis and angle, see https://en.wikipedia.org/wiki/Rotation_matrix#Rotation_matrix_from_axis_and_angle
Vector3 axis_sq(p_axis.x*p_axis.x,p_axis.y*p_axis.y,p_axis.z*p_axis.z);
real_t cosine= ::cos(p_phi);
real_t sine= ::sin(p_phi);
elements[0][0] = axis_sq.x + cosine * ( 1.0 - axis_sq.x );
elements[0][1] = p_axis.x * p_axis.y * ( 1.0 - cosine ) - p_axis.z * sine;
elements[0][2] = p_axis.z * p_axis.x * ( 1.0 - cosine ) + p_axis.y * sine;
elements[1][0] = p_axis.x * p_axis.y * ( 1.0 - cosine ) + p_axis.z * sine;
elements[1][1] = axis_sq.y + cosine * ( 1.0 - axis_sq.y );
elements[1][2] = p_axis.y * p_axis.z * ( 1.0 - cosine ) - p_axis.x * sine;
elements[2][0] = p_axis.z * p_axis.x * ( 1.0 - cosine ) - p_axis.y * sine;
elements[2][1] = p_axis.y * p_axis.z * ( 1.0 - cosine ) + p_axis.x * sine;
elements[2][2] = axis_sq.z + cosine * ( 1.0 - axis_sq.z );
}
Basis::operator Quat() const {
ERR_FAIL_COND_V(is_rotation() == false, Quat());
real_t trace = elements[0][0] + elements[1][1] + elements[2][2];
real_t temp[4];
if (trace > 0.0)
{
real_t s = ::sqrt(trace + 1.0);
temp[3]=(s * 0.5);
s = 0.5 / s;
temp[0]=((elements[2][1] - elements[1][2]) * s);
temp[1]=((elements[0][2] - elements[2][0]) * s);
temp[2]=((elements[1][0] - elements[0][1]) * s);
}
else
{
int i = elements[0][0] < elements[1][1] ?
(elements[1][1] < elements[2][2] ? 2 : 1) :
(elements[0][0] < elements[2][2] ? 2 : 0);
int j = (i + 1) % 3;
int k = (i + 2) % 3;
real_t s = ::sqrt(elements[i][i] - elements[j][j] - elements[k][k] + 1.0);
temp[i] = s * 0.5;
s = 0.5 / s;
temp[3] = (elements[k][j] - elements[j][k]) * s;
temp[j] = (elements[j][i] + elements[i][j]) * s;
temp[k] = (elements[k][i] + elements[i][k]) * s;
}
return Quat(temp[0],temp[1],temp[2],temp[3]);
}
}
#endif // BASIS_H
|