1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
|
#ifndef VECTOR3_H
#define VECTOR3_H
typedef float real_t;
#include "String.h"
#include <cmath>
typedef float real_t; // @Todo move this to a global Godot.h
namespace godot {
struct Vector3 {
enum Axis {
AXIS_X,
AXIS_Y,
AXIS_Z,
};
union {
struct {
real_t x;
real_t y;
real_t z;
};
real_t coord[3];
};
Vector3(real_t x, real_t y, real_t z)
{
this->x = x;
this->y = y;
this->z = z;
}
Vector3()
{
this->x = 0;
this->y = 0;
this->z = 0;
}
Vector3(const Vector3& b)
{
this->x = b.x;
this->y = b.y;
this->z = b.z;
}
const real_t& operator[](int p_axis) const
{
return coord[p_axis];
}
real_t& operator[](int p_axis)
{
return coord[p_axis];
}
Vector3& operator+=(const Vector3& p_v)
{
x += p_v.x;
y += p_v.y;
z += p_v.z;
return *this;
}
Vector3 operator+(const Vector3& p_v) const
{
Vector3 v = *this;
v += p_v;
return v;
}
Vector3& operator-=(const Vector3& p_v)
{
x -= p_v.x;
y -= p_v.y;
z -= p_v.z;
return *this;
}
Vector3 operator-(const Vector3& p_v) const
{
Vector3 v = *this;
v -= p_v;
return v;
}
Vector3& operator*=(const Vector3& p_v)
{
x *= p_v.x;
y *= p_v.y;
z *= p_v.z;
return *this;
}
Vector3 operator*(const Vector3& p_v) const
{
Vector3 v = *this;
v *= p_v;
return v;
}
Vector3& operator/=(const Vector3& p_v)
{
x /= p_v.x;
y /= p_v.y;
z /= p_v.z;
return *this;
}
Vector3 operator/(const Vector3& p_v) const
{
Vector3 v = *this;
v /= p_v;
return v;
}
Vector3& operator*=(real_t p_scalar)
{
*this *= Vector3(p_scalar, p_scalar, p_scalar);
return *this;
}
Vector3 operator*(real_t p_scalar) const
{
Vector3 v = *this;
v *= p_scalar;
return v;
}
Vector3& operator/=(real_t p_scalar)
{
*this /= Vector3(p_scalar, p_scalar, p_scalar);
return *this;
}
Vector3 operator/(real_t p_scalar) const
{
Vector3 v = *this;
v /= p_scalar;
return v;
}
Vector3 operator-() const
{
return Vector3(-x, -y, -z);
}
bool operator==(const Vector3& p_v) const
{
return (x==p_v.x && y==p_v.y && z==p_v.z);
}
bool operator!=(const Vector3& p_v) const
{
return (x!=p_v.x || y!=p_v.y || z!=p_v.z);
}
bool operator<(const Vector3& p_v) const
{
if (x==p_v.x) {
if (y==p_v.y)
return z<p_v.z;
else
return y<p_v.y;
} else {
return x<p_v.x;
}
}
bool operator<=(const Vector3& p_v) const
{
if (x==p_v.x) {
if (y==p_v.y)
return z<=p_v.z;
else
return y<p_v.y;
} else {
return x<p_v.x;
}
}
Vector3 abs() const
{
return Vector3(::fabs(x), ::fabs(y), ::fabs(z));
}
Vector3 ceil() const
{
return Vector3(::ceil(x), ::ceil(y), ::ceil(z));
}
Vector3 cross(const Vector3& b) const
{
Vector3 ret (
(y * b.z) - (z * b.y),
(z * b.x) - (x * b.z),
(x * b.y) - (y * b.x)
);
return ret;
}
Vector3 linear_interpolate(const Vector3& p_b,real_t p_t) const
{
return Vector3(
x+(p_t * (p_b.x-x)),
y+(p_t * (p_b.y-y)),
z+(p_t * (p_b.z-z))
);
}
Vector3 cubic_interpolate(const Vector3& b, const Vector3& pre_a, const Vector3& post_b, const real_t t) const
{
Vector3 p0=pre_a;
Vector3 p1=*this;
Vector3 p2=b;
Vector3 p3=post_b;
real_t t2 = t * t;
real_t t3 = t2 * t;
Vector3 out;
out = ( ( p1 * 2.0) +
( -p0 + p2 ) * t +
( p0 * 2.0 - p1 * 5.0 + p2 * 4 - p3 ) * t2 +
( -p0 + p1 * 3.0 - p2 * 3.0 + p3 ) * t3 ) * 0.5;
return out;
}
real_t length() const
{
real_t x2=x*x;
real_t y2=y*y;
real_t z2=z*z;
return ::sqrt(x2+y2+z2);
}
real_t length_squared() const
{
real_t x2=x*x;
real_t y2=y*y;
real_t z2=z*z;
return x2+y2+z2;
}
real_t distance_squared_to(const Vector3& b) const
{
return (b-*this).length();
}
real_t distance_to(const Vector3& b) const
{
return (b-*this).length_squared();
}
real_t dot(const Vector3& b) const
{
return x*b.x + y*b.y + z*b.z;
}
Vector3 floor() const
{
return Vector3(::floor(x), ::floor(y), ::floor(z));
}
Vector3 inverse() const
{
return Vector3( 1.0/x, 1.0/y, 1.0/z );
}
int max_axis() const
{
return x < y ? (y < z ? 2 : 1) : (x < z ? 2 : 0);
}
int min_axis() const
{
return x < y ? (x < z ? 0 : 2) : (y < z ? 1 : 2);
}
void normalize()
{
real_t l=length();
if (l==0) {
x=y=z=0;
} else {
x/=l;
y/=l;
z/=l;
}
}
Vector3 normalized() const
{
Vector3 v = *this;
v.normalize();
return v;
}
Vector3 reflect(const Vector3& by) const
{
return by - *this * this->dot(by) * 2.0;
}
Vector3 rotated(const Vector3& axis, const real_t phi) const
{
Vector3 v = *this;
v.rotate(axis, phi);
return v;
}
void rotate(const Vector3& p_axis,real_t p_phi)
{
// this is ugly, but I don't want to deal with C++ header inclusion order issues
// this is what is happening here
// *this=Basis(p_axis,p_phi).xform(*this);
Vector3 elements[3];
Vector3 axis_sq(p_axis.x*p_axis.x,p_axis.y*p_axis.y,p_axis.z*p_axis.z);
real_t cosine= ::cos(p_phi);
real_t sine= ::sin(p_phi);
elements[0][0] = axis_sq.x + cosine * ( 1.0 - axis_sq.x );
elements[0][1] = p_axis.x * p_axis.y * ( 1.0 - cosine ) - p_axis.z * sine;
elements[0][2] = p_axis.z * p_axis.x * ( 1.0 - cosine ) + p_axis.y * sine;
elements[1][0] = p_axis.x * p_axis.y * ( 1.0 - cosine ) + p_axis.z * sine;
elements[1][1] = axis_sq.y + cosine * ( 1.0 - axis_sq.y );
elements[1][2] = p_axis.y * p_axis.z * ( 1.0 - cosine ) - p_axis.x * sine;
elements[2][0] = p_axis.z * p_axis.x * ( 1.0 - cosine ) - p_axis.y * sine;
elements[2][1] = p_axis.y * p_axis.z * ( 1.0 - cosine ) + p_axis.x * sine;
elements[2][2] = axis_sq.z + cosine * ( 1.0 - axis_sq.z );
*this = Vector3(
elements[0].dot(*this),
elements[1].dot(*this),
elements[2].dot(*this)
);
}
Vector3 slide(const Vector3& by) const
{
return by - *this * this->dot(by);
}
// this is ugly as well, but hey, I'm a simple man
#define _ugly_stepify(val, step) (step != 0 ? ::floor(val / step + 0.5) * step : val)
void snap(real_t p_val)
{
x = _ugly_stepify(x,p_val);
y = _ugly_stepify(y,p_val);
z = _ugly_stepify(z,p_val);
}
#undef _ugly_stepify
Vector3 snapped(const float by)
{
Vector3 v = *this;
v.snap(by);
return v;
}
operator String() const
{
return String(); // @Todo
}
};
Vector3 operator*(real_t p_scalar, const Vector3& p_vec)
{
return p_vec * p_scalar;
}
Vector3 vec3_cross(const Vector3& p_a, const Vector3& p_b) {
return p_a.cross(p_b);
}
}
#endif // VECTOR3_H
|