summaryrefslogtreecommitdiffstats
path: root/src/core/Transform.cpp
blob: d32de8dec32526d99f42c76c1943d20a7b455120 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
#include "Transform.hpp"

#include "Basis.hpp"

#include "AABB.hpp"
#include "Plane.hpp"

#include "Quat.hpp"

namespace godot {

Transform Transform::inverse_xform(const Transform &t) const {

	Vector3 v = t.origin - origin;
	return Transform(basis.transpose_xform(t.basis),
			basis.xform(v));
}

void Transform::set(real_t xx, real_t xy, real_t xz, real_t yx, real_t yy, real_t yz, real_t zx, real_t zy, real_t zz, real_t tx, real_t ty, real_t tz) {

	basis.elements[0][0] = xx;
	basis.elements[0][1] = xy;
	basis.elements[0][2] = xz;
	basis.elements[1][0] = yx;
	basis.elements[1][1] = yy;
	basis.elements[1][2] = yz;
	basis.elements[2][0] = zx;
	basis.elements[2][1] = zy;
	basis.elements[2][2] = zz;
	origin.x = tx;
	origin.y = ty;
	origin.z = tz;
}

Vector3 Transform::xform(const Vector3 &p_vector) const {

	return Vector3(
			basis.elements[0].dot(p_vector) + origin.x,
			basis.elements[1].dot(p_vector) + origin.y,
			basis.elements[2].dot(p_vector) + origin.z);
}
Vector3 Transform::xform_inv(const Vector3 &p_vector) const {

	Vector3 v = p_vector - origin;

	return Vector3(
			(basis.elements[0][0] * v.x) + (basis.elements[1][0] * v.y) + (basis.elements[2][0] * v.z),
			(basis.elements[0][1] * v.x) + (basis.elements[1][1] * v.y) + (basis.elements[2][1] * v.z),
			(basis.elements[0][2] * v.x) + (basis.elements[1][2] * v.y) + (basis.elements[2][2] * v.z));
}

Plane Transform::xform(const Plane &p_plane) const {

	Vector3 point = p_plane.normal * p_plane.d;
	Vector3 point_dir = point + p_plane.normal;
	point = xform(point);
	point_dir = xform(point_dir);

	Vector3 normal = point_dir - point;
	normal.normalize();
	real_t d = normal.dot(point);

	return Plane(normal, d);
}
Plane Transform::xform_inv(const Plane &p_plane) const {

	Vector3 point = p_plane.normal * p_plane.d;
	Vector3 point_dir = point + p_plane.normal;
	point = xform_inv(point);
	point_dir = xform_inv(point_dir);

	Vector3 normal = point_dir - point;
	normal.normalize();
	real_t d = normal.dot(point);

	return Plane(normal, d);
}

AABB Transform::xform(const AABB &p_aabb) const {
	/* define vertices */
	Vector3 x = basis.get_axis(0) * p_aabb.size.x;
	Vector3 y = basis.get_axis(1) * p_aabb.size.y;
	Vector3 z = basis.get_axis(2) * p_aabb.size.z;
	Vector3 pos = xform(p_aabb.position);
	//could be even further optimized
	AABB new_aabb;
	new_aabb.position = pos;
	new_aabb.expand_to(pos + x);
	new_aabb.expand_to(pos + y);
	new_aabb.expand_to(pos + z);
	new_aabb.expand_to(pos + x + y);
	new_aabb.expand_to(pos + x + z);
	new_aabb.expand_to(pos + y + z);
	new_aabb.expand_to(pos + x + y + z);
	return new_aabb;
}
AABB Transform::xform_inv(const AABB &p_aabb) const {

	/* define vertices */
	Vector3 vertices[8] = {
		Vector3(p_aabb.position.x + p_aabb.size.x, p_aabb.position.y + p_aabb.size.y, p_aabb.position.z + p_aabb.size.z),
		Vector3(p_aabb.position.x + p_aabb.size.x, p_aabb.position.y + p_aabb.size.y, p_aabb.position.z),
		Vector3(p_aabb.position.x + p_aabb.size.x, p_aabb.position.y, p_aabb.position.z + p_aabb.size.z),
		Vector3(p_aabb.position.x + p_aabb.size.x, p_aabb.position.y, p_aabb.position.z),
		Vector3(p_aabb.position.x, p_aabb.position.y + p_aabb.size.y, p_aabb.position.z + p_aabb.size.z),
		Vector3(p_aabb.position.x, p_aabb.position.y + p_aabb.size.y, p_aabb.position.z),
		Vector3(p_aabb.position.x, p_aabb.position.y, p_aabb.position.z + p_aabb.size.z),
		Vector3(p_aabb.position.x, p_aabb.position.y, p_aabb.position.z)
	};

	AABB ret;

	ret.position = xform_inv(vertices[0]);

	for (int i = 1; i < 8; i++) {

		ret.expand_to(xform_inv(vertices[i]));
	}

	return ret;
}

void Transform::affine_invert() {

	basis.invert();
	origin = basis.xform(-origin);
}

Transform Transform::affine_inverse() const {

	Transform ret = *this;
	ret.affine_invert();
	return ret;
}

void Transform::invert() {

	basis.transpose();
	origin = basis.xform(-origin);
}

Transform Transform::inverse() const {
	// FIXME: this function assumes the basis is a rotation matrix, with no scaling.
	// Transform::affine_inverse can handle matrices with scaling, so GDScript should eventually use that.
	Transform ret = *this;
	ret.invert();
	return ret;
}

void Transform::rotate(const Vector3 &p_axis, real_t p_phi) {

	*this = rotated(p_axis, p_phi);
}

Transform Transform::rotated(const Vector3 &p_axis, real_t p_phi) const {

	return Transform(Basis(p_axis, p_phi), Vector3()) * (*this);
}

void Transform::rotate_basis(const Vector3 &p_axis, real_t p_phi) {

	basis.rotate(p_axis, p_phi);
}

Transform Transform::looking_at(const Vector3 &p_target, const Vector3 &p_up) const {

	Transform t = *this;
	t.set_look_at(origin, p_target, p_up);
	return t;
}

void Transform::set_look_at(const Vector3 &p_eye, const Vector3 &p_target, const Vector3 &p_up) {

	// Reference: MESA source code
	Vector3 v_x, v_y, v_z;

	/* Make rotation matrix */

	/* Z vector */
	v_z = p_eye - p_target;

	v_z.normalize();

	v_y = p_up;

	v_x = v_y.cross(v_z);

	/* Recompute Y = Z cross X */
	v_y = v_z.cross(v_x);

	v_x.normalize();
	v_y.normalize();

	basis.set_axis(0, v_x);
	basis.set_axis(1, v_y);
	basis.set_axis(2, v_z);
	origin = p_eye;
}

Transform Transform::interpolate_with(const Transform &p_transform, real_t p_c) const {

	/* not sure if very "efficient" but good enough? */

	Vector3 src_scale = basis.get_scale();
	Quat src_rot = basis;
	Vector3 src_loc = origin;

	Vector3 dst_scale = p_transform.basis.get_scale();
	Quat dst_rot = p_transform.basis;
	Vector3 dst_loc = p_transform.origin;

	Transform dst;
	dst.basis = src_rot.slerp(dst_rot, p_c);
	dst.basis.scale(src_scale.linear_interpolate(dst_scale, p_c));
	dst.origin = src_loc.linear_interpolate(dst_loc, p_c);

	return dst;
}

void Transform::scale(const Vector3 &p_scale) {

	basis.scale(p_scale);
	origin *= p_scale;
}

Transform Transform::scaled(const Vector3 &p_scale) const {

	Transform t = *this;
	t.scale(p_scale);
	return t;
}

void Transform::scale_basis(const Vector3 &p_scale) {

	basis.scale(p_scale);
}

void Transform::translate(real_t p_tx, real_t p_ty, real_t p_tz) {
	translate(Vector3(p_tx, p_ty, p_tz));
}
void Transform::translate(const Vector3 &p_translation) {

	for (int i = 0; i < 3; i++) {
		origin[i] += basis.elements[i].dot(p_translation);
	}
}

Transform Transform::translated(const Vector3 &p_translation) const {

	Transform t = *this;
	t.translate(p_translation);
	return t;
}

void Transform::orthonormalize() {

	basis.orthonormalize();
}

Transform Transform::orthonormalized() const {

	Transform _copy = *this;
	_copy.orthonormalize();
	return _copy;
}

bool Transform::operator==(const Transform &p_transform) const {

	return (basis == p_transform.basis && origin == p_transform.origin);
}
bool Transform::operator!=(const Transform &p_transform) const {

	return (basis != p_transform.basis || origin != p_transform.origin);
}

void Transform::operator*=(const Transform &p_transform) {

	origin = xform(p_transform.origin);
	basis *= p_transform.basis;
}

Transform Transform::operator*(const Transform &p_transform) const {

	Transform t = *this;
	t *= p_transform;
	return t;
}

Transform::operator String() const {

	return basis.operator String() + " - " + origin.operator String();
}

Transform::Transform(const Basis &p_basis, const Vector3 &p_origin) {

	basis = p_basis;
	origin = p_origin;
}

} // namespace godot