1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
|
#include <godot_cpp/core/error_macros.hpp>
#include <godot_cpp/variant/vector2.hpp>
#include <godot_cpp/variant/string.hpp>
namespace godot {
Vector2::operator String() const {
return String::num(x, 5) + ", " + String::num(y, 5);
}
real_t Vector2::angle() const {
return Math::atan2(y, x);
}
real_t Vector2::length() const {
return Math::sqrt(x * x + y * y);
}
real_t Vector2::length_squared() const {
return x * x + y * y;
}
void Vector2::normalize() {
real_t l = x * x + y * y;
if (l != 0) {
l = Math::sqrt(l);
x /= l;
y /= l;
}
}
Vector2 Vector2::normalized() const {
Vector2 v = *this;
v.normalize();
return v;
}
bool Vector2::is_normalized() const {
// use length_squared() instead of length() to avoid sqrt(), makes it more stringent.
return Math::is_equal_approx(length_squared(), 1.0, UNIT_EPSILON);
}
real_t Vector2::distance_to(const Vector2 &p_vector2) const {
return Math::sqrt((x - p_vector2.x) * (x - p_vector2.x) + (y - p_vector2.y) * (y - p_vector2.y));
}
real_t Vector2::distance_squared_to(const Vector2 &p_vector2) const {
return (x - p_vector2.x) * (x - p_vector2.x) + (y - p_vector2.y) * (y - p_vector2.y);
}
real_t Vector2::angle_to(const Vector2 &p_vector2) const {
return Math::atan2(cross(p_vector2), dot(p_vector2));
}
real_t Vector2::angle_to_point(const Vector2 &p_vector2) const {
return Math::atan2(y - p_vector2.y, x - p_vector2.x);
}
real_t Vector2::dot(const Vector2 &p_other) const {
return x * p_other.x + y * p_other.y;
}
real_t Vector2::cross(const Vector2 &p_other) const {
return x * p_other.y - y * p_other.x;
}
Vector2 Vector2::sign() const {
return Vector2(Math::sign(x), Math::sign(y));
}
Vector2 Vector2::floor() const {
return Vector2(Math::floor(x), Math::floor(y));
}
Vector2 Vector2::ceil() const {
return Vector2(Math::ceil(x), Math::ceil(y));
}
Vector2 Vector2::round() const {
return Vector2(Math::round(x), Math::round(y));
}
Vector2 Vector2::rotated(real_t p_by) const {
real_t sine = Math::sin(p_by);
real_t cosi = Math::cos(p_by);
return Vector2(
x * cosi - y * sine,
x * sine + y * cosi);
}
Vector2 Vector2::posmod(const real_t p_mod) const {
return Vector2(Math::fposmod(x, p_mod), Math::fposmod(y, p_mod));
}
Vector2 Vector2::posmodv(const Vector2 &p_modv) const {
return Vector2(Math::fposmod(x, p_modv.x), Math::fposmod(y, p_modv.y));
}
Vector2 Vector2::project(const Vector2 &p_to) const {
return p_to * (dot(p_to) / p_to.length_squared());
}
Vector2 Vector2::snapped(const Vector2 &p_step) const {
return Vector2(
Math::snapped(x, p_step.x),
Math::snapped(y, p_step.y));
}
Vector2 Vector2::clamped(real_t p_len) const {
real_t l = length();
Vector2 v = *this;
if (l > 0 && p_len < l) {
v /= l;
v *= p_len;
}
return v;
}
Vector2 Vector2::cubic_interpolate(const Vector2 &p_b, const Vector2 &p_pre_a, const Vector2 &p_post_b, real_t p_weight) const {
Vector2 p0 = p_pre_a;
Vector2 p1 = *this;
Vector2 p2 = p_b;
Vector2 p3 = p_post_b;
real_t t = p_weight;
real_t t2 = t * t;
real_t t3 = t2 * t;
Vector2 out;
out = 0.5 * ((p1 * 2.0) +
(-p0 + p2) * t +
(2.0 * p0 - 5.0 * p1 + 4 * p2 - p3) * t2 +
(-p0 + 3.0 * p1 - 3.0 * p2 + p3) * t3);
return out;
}
Vector2 Vector2::move_toward(const Vector2 &p_to, const real_t p_delta) const {
Vector2 v = *this;
Vector2 vd = p_to - v;
real_t len = vd.length();
return len <= p_delta || len < CMP_EPSILON ? p_to : v + vd / len * p_delta;
}
// slide returns the component of the vector along the given plane, specified by its normal vector.
Vector2 Vector2::slide(const Vector2 &p_normal) const {
#ifdef MATH_CHECKS
ERR_FAIL_COND_V(!p_normal.is_normalized(), Vector2());
#endif
return *this - p_normal * this->dot(p_normal);
}
Vector2 Vector2::bounce(const Vector2 &p_normal) const {
return -reflect(p_normal);
}
Vector2 Vector2::reflect(const Vector2 &p_normal) const {
#ifdef MATH_CHECKS
ERR_FAIL_COND_V(!p_normal.is_normalized(), Vector2());
#endif
return 2.0 * p_normal * this->dot(p_normal) - *this;
}
bool Vector2::is_equal_approx(const Vector2 &p_v) const {
return Math::is_equal_approx(x, p_v.x) && Math::is_equal_approx(y, p_v.y);
}
} // namespace godot
|