summaryrefslogtreecommitdiffstats
diff options
context:
space:
mode:
authorAaron Franke <arnfranke@yahoo.com>2023-10-12 19:38:43 -0500
committerAaron Franke <arnfranke@yahoo.com>2023-12-06 13:12:05 -0600
commit7ee273723d815e1e211107244dcbc8735ca189a1 (patch)
tree1b3898a705bda4db60e5eba6bce4e0bc14e0e454
parent2f73a059cefadcd944b6874f2557ec82e46a562d (diff)
downloadredot-engine-7ee273723d815e1e211107244dcbc8735ca189a1.tar.gz
Fix Basis is_orthogonal and is_rotation methods, add is_orthonormal
-rw-r--r--core/math/basis.cpp23
-rw-r--r--core/math/basis.h1
-rw-r--r--tests/core/math/test_basis.h94
3 files changed, 114 insertions, 4 deletions
diff --git a/core/math/basis.cpp b/core/math/basis.cpp
index 9796ac59c2..cd8c87b158 100644
--- a/core/math/basis.cpp
+++ b/core/math/basis.cpp
@@ -89,13 +89,26 @@ Basis Basis::orthogonalized() const {
return c;
}
+// Returns true if the basis vectors are orthogonal (perpendicular), so it has no skew or shear, and can be decomposed into rotation and scale.
+// See https://en.wikipedia.org/wiki/Orthogonal_basis
bool Basis::is_orthogonal() const {
- Basis identity;
- Basis m = (*this) * transposed();
+ const Vector3 x = get_column(0);
+ const Vector3 y = get_column(1);
+ const Vector3 z = get_column(2);
+ return Math::is_zero_approx(x.dot(y)) && Math::is_zero_approx(x.dot(z)) && Math::is_zero_approx(y.dot(z));
+}
- return m.is_equal_approx(identity);
+// Returns true if the basis vectors are orthonormal (orthogonal and normalized), so it has no scale, skew, or shear.
+// See https://en.wikipedia.org/wiki/Orthonormal_basis
+bool Basis::is_orthonormal() const {
+ const Vector3 x = get_column(0);
+ const Vector3 y = get_column(1);
+ const Vector3 z = get_column(2);
+ return Math::is_equal_approx(x.length_squared(), 1) && Math::is_equal_approx(y.length_squared(), 1) && Math::is_equal_approx(z.length_squared(), 1) && Math::is_zero_approx(x.dot(y)) && Math::is_zero_approx(x.dot(z)) && Math::is_zero_approx(y.dot(z));
}
+// Returns true if the basis is conformal (orthogonal, uniform scale, preserves angles and distance ratios).
+// See https://en.wikipedia.org/wiki/Conformal_linear_transformation
bool Basis::is_conformal() const {
const Vector3 x = get_column(0);
const Vector3 y = get_column(1);
@@ -104,6 +117,7 @@ bool Basis::is_conformal() const {
return Math::is_equal_approx(x_len_sq, y.length_squared()) && Math::is_equal_approx(x_len_sq, z.length_squared()) && Math::is_zero_approx(x.dot(y)) && Math::is_zero_approx(x.dot(z)) && Math::is_zero_approx(y.dot(z));
}
+// Returns true if the basis only has diagonal elements, so it may only have scale or flip, but no rotation, skew, or shear.
bool Basis::is_diagonal() const {
return (
Math::is_zero_approx(rows[0][1]) && Math::is_zero_approx(rows[0][2]) &&
@@ -111,8 +125,9 @@ bool Basis::is_diagonal() const {
Math::is_zero_approx(rows[2][0]) && Math::is_zero_approx(rows[2][1]));
}
+// Returns true if the basis is a pure rotation matrix, so it has no scale, skew, shear, or flip.
bool Basis::is_rotation() const {
- return Math::is_equal_approx(determinant(), 1, (real_t)UNIT_EPSILON) && is_orthogonal();
+ return is_conformal() && Math::is_equal_approx(determinant(), 1, (real_t)UNIT_EPSILON);
}
#ifdef MATH_CHECKS
diff --git a/core/math/basis.h b/core/math/basis.h
index adacd1c216..b4d971464e 100644
--- a/core/math/basis.h
+++ b/core/math/basis.h
@@ -138,6 +138,7 @@ struct _NO_DISCARD_ Basis {
_FORCE_INLINE_ Basis operator*(const real_t p_val) const;
bool is_orthogonal() const;
+ bool is_orthonormal() const;
bool is_conformal() const;
bool is_diagonal() const;
bool is_rotation() const;
diff --git a/tests/core/math/test_basis.h b/tests/core/math/test_basis.h
index fcac9a6231..a9bc2e9b99 100644
--- a/tests/core/math/test_basis.h
+++ b/tests/core/math/test_basis.h
@@ -324,6 +324,100 @@ TEST_CASE("[Basis] Is conformal checks") {
CHECK_FALSE_MESSAGE(
Basis(Vector3(Math_SQRT12, Math_SQRT12, 0), Vector3(0, 1, 0), Vector3(0, 0, 1)).is_conformal(),
"Basis with the X axis skewed 45 degrees should not be conformal.");
+
+ CHECK_MESSAGE(
+ Basis(0, 0, 0, 0, 0, 0, 0, 0, 0).is_conformal(),
+ "Edge case: Basis with all zeroes should return true for is_conformal (because a 0 scale is uniform).");
+}
+
+TEST_CASE("[Basis] Is orthogonal checks") {
+ CHECK_MESSAGE(
+ Basis().is_orthogonal(),
+ "Identity Basis should be orthogonal.");
+
+ CHECK_MESSAGE(
+ Basis::from_euler(Vector3(1.2, 3.4, 5.6)).is_orthogonal(),
+ "Basis with only rotation should be orthogonal.");
+
+ CHECK_MESSAGE(
+ Basis::from_scale(Vector3(-1, -1, -1)).is_orthogonal(),
+ "Basis with only a flip should be orthogonal.");
+
+ CHECK_MESSAGE(
+ Basis::from_scale(Vector3(1.2, 3.4, 5.6)).is_orthogonal(),
+ "Basis with only scale should be orthogonal.");
+
+ CHECK_MESSAGE(
+ Basis(Vector3(3, 4, 0), Vector3(4, -3, 0), Vector3(0, 0, 5)).is_orthogonal(),
+ "Basis with a flip, rotation, and uniform scale should be orthogonal.");
+
+ CHECK_FALSE_MESSAGE(
+ Basis(Vector3(Math_SQRT12, Math_SQRT12, 0), Vector3(0, 1, 0), Vector3(0, 0, 1)).is_orthogonal(),
+ "Basis with the X axis skewed 45 degrees should not be orthogonal.");
+
+ CHECK_MESSAGE(
+ Basis(0, 0, 0, 0, 0, 0, 0, 0, 0).is_orthogonal(),
+ "Edge case: Basis with all zeroes should return true for is_orthogonal, since zero vectors are orthogonal to all vectors.");
+}
+
+TEST_CASE("[Basis] Is orthonormal checks") {
+ CHECK_MESSAGE(
+ Basis().is_orthonormal(),
+ "Identity Basis should be orthonormal.");
+
+ CHECK_MESSAGE(
+ Basis::from_euler(Vector3(1.2, 3.4, 5.6)).is_orthonormal(),
+ "Basis with only rotation should be orthonormal.");
+
+ CHECK_MESSAGE(
+ Basis::from_scale(Vector3(-1, -1, -1)).is_orthonormal(),
+ "Basis with only a flip should be orthonormal.");
+
+ CHECK_FALSE_MESSAGE(
+ Basis::from_scale(Vector3(1.2, 3.4, 5.6)).is_orthonormal(),
+ "Basis with only scale should not be orthonormal.");
+
+ CHECK_FALSE_MESSAGE(
+ Basis(Vector3(3, 4, 0), Vector3(4, -3, 0), Vector3(0, 0, 5)).is_orthonormal(),
+ "Basis with a flip, rotation, and uniform scale should not be orthonormal.");
+
+ CHECK_FALSE_MESSAGE(
+ Basis(Vector3(Math_SQRT12, Math_SQRT12, 0), Vector3(0, 1, 0), Vector3(0, 0, 1)).is_orthonormal(),
+ "Basis with the X axis skewed 45 degrees should not be orthonormal.");
+
+ CHECK_FALSE_MESSAGE(
+ Basis(0, 0, 0, 0, 0, 0, 0, 0, 0).is_orthonormal(),
+ "Edge case: Basis with all zeroes should return false for is_orthonormal, since the vectors do not have a length of 1.");
+}
+
+TEST_CASE("[Basis] Is rotation checks") {
+ CHECK_MESSAGE(
+ Basis().is_rotation(),
+ "Identity Basis should be a rotation (a rotation of zero).");
+
+ CHECK_MESSAGE(
+ Basis::from_euler(Vector3(1.2, 3.4, 5.6)).is_rotation(),
+ "Basis with only rotation should be a rotation.");
+
+ CHECK_FALSE_MESSAGE(
+ Basis::from_scale(Vector3(-1, -1, -1)).is_rotation(),
+ "Basis with only a flip should not be a rotation.");
+
+ CHECK_FALSE_MESSAGE(
+ Basis::from_scale(Vector3(1.2, 3.4, 5.6)).is_rotation(),
+ "Basis with only scale should not be a rotation.");
+
+ CHECK_FALSE_MESSAGE(
+ Basis(Vector3(2, 0, 0), Vector3(0, 0.5, 0), Vector3(0, 0, 1)).is_rotation(),
+ "Basis with a squeeze should not be a rotation.");
+
+ CHECK_FALSE_MESSAGE(
+ Basis(Vector3(Math_SQRT12, Math_SQRT12, 0), Vector3(0, 1, 0), Vector3(0, 0, 1)).is_rotation(),
+ "Basis with the X axis skewed 45 degrees should not be a rotation.");
+
+ CHECK_FALSE_MESSAGE(
+ Basis(0, 0, 0, 0, 0, 0, 0, 0, 0).is_rotation(),
+ "Edge case: Basis with all zeroes should return false for is_rotation, because it is not just a rotation (has a scale of 0).");
}
} // namespace TestBasis