summaryrefslogtreecommitdiffstats
path: root/scene/resources/3d/primitive_meshes.cpp
diff options
context:
space:
mode:
authorAaron Franke <arnfranke@yahoo.com>2021-08-13 11:42:45 -0500
committerAaron Franke <arnfranke@yahoo.com>2024-02-26 05:23:04 -0600
commitc399424db9ee39e94cd21569ee87567de10586e2 (patch)
tree591fac0386894290d6b161d18d70dd39233bad02 /scene/resources/3d/primitive_meshes.cpp
parent1cb531ddb6fedb5bed432eeaa17793a9e07f61ac (diff)
downloadredot-engine-c399424db9ee39e94cd21569ee87567de10586e2.tar.gz
Move 3D-only resources to their own folder
Diffstat (limited to 'scene/resources/3d/primitive_meshes.cpp')
-rw-r--r--scene/resources/3d/primitive_meshes.cpp3655
1 files changed, 3655 insertions, 0 deletions
diff --git a/scene/resources/3d/primitive_meshes.cpp b/scene/resources/3d/primitive_meshes.cpp
new file mode 100644
index 0000000000..b8b4854109
--- /dev/null
+++ b/scene/resources/3d/primitive_meshes.cpp
@@ -0,0 +1,3655 @@
+/**************************************************************************/
+/* primitive_meshes.cpp */
+/**************************************************************************/
+/* This file is part of: */
+/* GODOT ENGINE */
+/* https://godotengine.org */
+/**************************************************************************/
+/* Copyright (c) 2014-present Godot Engine contributors (see AUTHORS.md). */
+/* Copyright (c) 2007-2014 Juan Linietsky, Ariel Manzur. */
+/* */
+/* Permission is hereby granted, free of charge, to any person obtaining */
+/* a copy of this software and associated documentation files (the */
+/* "Software"), to deal in the Software without restriction, including */
+/* without limitation the rights to use, copy, modify, merge, publish, */
+/* distribute, sublicense, and/or sell copies of the Software, and to */
+/* permit persons to whom the Software is furnished to do so, subject to */
+/* the following conditions: */
+/* */
+/* The above copyright notice and this permission notice shall be */
+/* included in all copies or substantial portions of the Software. */
+/* */
+/* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, */
+/* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF */
+/* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. */
+/* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY */
+/* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, */
+/* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE */
+/* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */
+/**************************************************************************/
+
+#include "primitive_meshes.h"
+
+#include "core/config/project_settings.h"
+#include "scene/resources/theme.h"
+#include "scene/theme/theme_db.h"
+#include "servers/rendering_server.h"
+#include "thirdparty/misc/polypartition.h"
+
+#define PADDING_REF_SIZE 1024.0
+
+/**
+ PrimitiveMesh
+*/
+void PrimitiveMesh::_update() const {
+ Array arr;
+ if (GDVIRTUAL_CALL(_create_mesh_array, arr)) {
+ ERR_FAIL_COND_MSG(arr.size() != RS::ARRAY_MAX, "_create_mesh_array must return an array of Mesh.ARRAY_MAX elements.");
+ } else {
+ arr.resize(RS::ARRAY_MAX);
+ _create_mesh_array(arr);
+ }
+
+ Vector<Vector3> points = arr[RS::ARRAY_VERTEX];
+
+ ERR_FAIL_COND_MSG(points.is_empty(), "_create_mesh_array must return at least a vertex array.");
+
+ aabb = AABB();
+
+ int pc = points.size();
+ ERR_FAIL_COND(pc == 0);
+ {
+ const Vector3 *r = points.ptr();
+ for (int i = 0; i < pc; i++) {
+ if (i == 0) {
+ aabb.position = r[i];
+ } else {
+ aabb.expand_to(r[i]);
+ }
+ }
+ }
+
+ Vector<int> indices = arr[RS::ARRAY_INDEX];
+
+ if (flip_faces) {
+ Vector<Vector3> normals = arr[RS::ARRAY_NORMAL];
+
+ if (normals.size() && indices.size()) {
+ {
+ int nc = normals.size();
+ Vector3 *w = normals.ptrw();
+ for (int i = 0; i < nc; i++) {
+ w[i] = -w[i];
+ }
+ }
+
+ {
+ int ic = indices.size();
+ int *w = indices.ptrw();
+ for (int i = 0; i < ic; i += 3) {
+ SWAP(w[i + 0], w[i + 1]);
+ }
+ }
+ arr[RS::ARRAY_NORMAL] = normals;
+ arr[RS::ARRAY_INDEX] = indices;
+ }
+ }
+
+ if (add_uv2) {
+ // _create_mesh_array should populate our UV2, this is a fallback in case it doesn't.
+ // As we don't know anything about the geometry we only pad the right and bottom edge
+ // of our texture.
+ Vector<Vector2> uv = arr[RS::ARRAY_TEX_UV];
+ Vector<Vector2> uv2 = arr[RS::ARRAY_TEX_UV2];
+
+ if (uv.size() > 0 && uv2.size() == 0) {
+ Vector2 uv2_scale = get_uv2_scale();
+ uv2.resize(uv.size());
+
+ Vector2 *uv2w = uv2.ptrw();
+ for (int i = 0; i < uv.size(); i++) {
+ uv2w[i] = uv[i] * uv2_scale;
+ }
+ }
+
+ arr[RS::ARRAY_TEX_UV2] = uv2;
+ }
+
+ array_len = pc;
+ index_array_len = indices.size();
+ // in with the new
+ RenderingServer::get_singleton()->mesh_clear(mesh);
+ RenderingServer::get_singleton()->mesh_add_surface_from_arrays(mesh, (RenderingServer::PrimitiveType)primitive_type, arr);
+ RenderingServer::get_singleton()->mesh_surface_set_material(mesh, 0, material.is_null() ? RID() : material->get_rid());
+
+ pending_request = false;
+
+ clear_cache();
+
+ const_cast<PrimitiveMesh *>(this)->emit_changed();
+}
+
+void PrimitiveMesh::_request_update() {
+ if (pending_request) {
+ return;
+ }
+ _update();
+}
+
+int PrimitiveMesh::get_surface_count() const {
+ if (pending_request) {
+ _update();
+ }
+ return 1;
+}
+
+int PrimitiveMesh::surface_get_array_len(int p_idx) const {
+ ERR_FAIL_INDEX_V(p_idx, 1, -1);
+ if (pending_request) {
+ _update();
+ }
+
+ return array_len;
+}
+
+int PrimitiveMesh::surface_get_array_index_len(int p_idx) const {
+ ERR_FAIL_INDEX_V(p_idx, 1, -1);
+ if (pending_request) {
+ _update();
+ }
+
+ return index_array_len;
+}
+
+Array PrimitiveMesh::surface_get_arrays(int p_surface) const {
+ ERR_FAIL_INDEX_V(p_surface, 1, Array());
+ if (pending_request) {
+ _update();
+ }
+
+ return RenderingServer::get_singleton()->mesh_surface_get_arrays(mesh, 0);
+}
+
+Dictionary PrimitiveMesh::surface_get_lods(int p_surface) const {
+ return Dictionary(); //not really supported
+}
+
+TypedArray<Array> PrimitiveMesh::surface_get_blend_shape_arrays(int p_surface) const {
+ return TypedArray<Array>(); //not really supported
+}
+
+BitField<Mesh::ArrayFormat> PrimitiveMesh::surface_get_format(int p_idx) const {
+ ERR_FAIL_INDEX_V(p_idx, 1, 0);
+
+ uint64_t mesh_format = RS::ARRAY_FORMAT_VERTEX | RS::ARRAY_FORMAT_NORMAL | RS::ARRAY_FORMAT_TANGENT | RS::ARRAY_FORMAT_TEX_UV | RS::ARRAY_FORMAT_INDEX;
+ if (add_uv2) {
+ mesh_format |= RS::ARRAY_FORMAT_TEX_UV2;
+ }
+
+ return mesh_format;
+}
+
+Mesh::PrimitiveType PrimitiveMesh::surface_get_primitive_type(int p_idx) const {
+ return primitive_type;
+}
+
+void PrimitiveMesh::surface_set_material(int p_idx, const Ref<Material> &p_material) {
+ ERR_FAIL_INDEX(p_idx, 1);
+
+ set_material(p_material);
+}
+
+Ref<Material> PrimitiveMesh::surface_get_material(int p_idx) const {
+ ERR_FAIL_INDEX_V(p_idx, 1, nullptr);
+
+ return material;
+}
+
+int PrimitiveMesh::get_blend_shape_count() const {
+ return 0;
+}
+
+StringName PrimitiveMesh::get_blend_shape_name(int p_index) const {
+ return StringName();
+}
+
+void PrimitiveMesh::set_blend_shape_name(int p_index, const StringName &p_name) {
+}
+
+AABB PrimitiveMesh::get_aabb() const {
+ if (pending_request) {
+ _update();
+ }
+
+ return aabb;
+}
+
+RID PrimitiveMesh::get_rid() const {
+ if (pending_request) {
+ _update();
+ }
+ return mesh;
+}
+
+void PrimitiveMesh::_bind_methods() {
+ ClassDB::bind_method(D_METHOD("set_material", "material"), &PrimitiveMesh::set_material);
+ ClassDB::bind_method(D_METHOD("get_material"), &PrimitiveMesh::get_material);
+
+ ClassDB::bind_method(D_METHOD("get_mesh_arrays"), &PrimitiveMesh::get_mesh_arrays);
+
+ ClassDB::bind_method(D_METHOD("set_custom_aabb", "aabb"), &PrimitiveMesh::set_custom_aabb);
+ ClassDB::bind_method(D_METHOD("get_custom_aabb"), &PrimitiveMesh::get_custom_aabb);
+
+ ClassDB::bind_method(D_METHOD("set_flip_faces", "flip_faces"), &PrimitiveMesh::set_flip_faces);
+ ClassDB::bind_method(D_METHOD("get_flip_faces"), &PrimitiveMesh::get_flip_faces);
+
+ ClassDB::bind_method(D_METHOD("set_add_uv2", "add_uv2"), &PrimitiveMesh::set_add_uv2);
+ ClassDB::bind_method(D_METHOD("get_add_uv2"), &PrimitiveMesh::get_add_uv2);
+
+ ClassDB::bind_method(D_METHOD("set_uv2_padding", "uv2_padding"), &PrimitiveMesh::set_uv2_padding);
+ ClassDB::bind_method(D_METHOD("get_uv2_padding"), &PrimitiveMesh::get_uv2_padding);
+
+ ADD_PROPERTY(PropertyInfo(Variant::OBJECT, "material", PROPERTY_HINT_RESOURCE_TYPE, "BaseMaterial3D,ShaderMaterial"), "set_material", "get_material");
+ ADD_PROPERTY(PropertyInfo(Variant::AABB, "custom_aabb", PROPERTY_HINT_NONE, "suffix:m"), "set_custom_aabb", "get_custom_aabb");
+ ADD_PROPERTY(PropertyInfo(Variant::BOOL, "flip_faces"), "set_flip_faces", "get_flip_faces");
+ ADD_PROPERTY(PropertyInfo(Variant::BOOL, "add_uv2"), "set_add_uv2", "get_add_uv2");
+ ADD_PROPERTY(PropertyInfo(Variant::FLOAT, "uv2_padding", PROPERTY_HINT_RANGE, "0,10,0.01,or_greater"), "set_uv2_padding", "get_uv2_padding");
+
+ GDVIRTUAL_BIND(_create_mesh_array);
+}
+
+void PrimitiveMesh::set_material(const Ref<Material> &p_material) {
+ material = p_material;
+ if (!pending_request) {
+ // just apply it, else it'll happen when _update is called.
+ RenderingServer::get_singleton()->mesh_surface_set_material(mesh, 0, material.is_null() ? RID() : material->get_rid());
+ notify_property_list_changed();
+ emit_changed();
+ }
+}
+
+Ref<Material> PrimitiveMesh::get_material() const {
+ return material;
+}
+
+Array PrimitiveMesh::get_mesh_arrays() const {
+ return surface_get_arrays(0);
+}
+
+void PrimitiveMesh::set_custom_aabb(const AABB &p_custom) {
+ custom_aabb = p_custom;
+ RS::get_singleton()->mesh_set_custom_aabb(mesh, custom_aabb);
+ emit_changed();
+}
+
+AABB PrimitiveMesh::get_custom_aabb() const {
+ return custom_aabb;
+}
+
+void PrimitiveMesh::set_flip_faces(bool p_enable) {
+ flip_faces = p_enable;
+ _request_update();
+}
+
+bool PrimitiveMesh::get_flip_faces() const {
+ return flip_faces;
+}
+
+void PrimitiveMesh::set_add_uv2(bool p_enable) {
+ add_uv2 = p_enable;
+ _update_lightmap_size();
+ _request_update();
+}
+
+void PrimitiveMesh::set_uv2_padding(float p_padding) {
+ uv2_padding = p_padding;
+ _update_lightmap_size();
+ _request_update();
+}
+
+Vector2 PrimitiveMesh::get_uv2_scale(Vector2 p_margin_scale) const {
+ Vector2 uv2_scale;
+ Vector2 lightmap_size = get_lightmap_size_hint();
+
+ // Calculate it as a margin, if no lightmap size hint is given we assume "PADDING_REF_SIZE" as our texture size.
+ uv2_scale.x = p_margin_scale.x * uv2_padding / (lightmap_size.x == 0.0 ? PADDING_REF_SIZE : lightmap_size.x);
+ uv2_scale.y = p_margin_scale.y * uv2_padding / (lightmap_size.y == 0.0 ? PADDING_REF_SIZE : lightmap_size.y);
+
+ // Inverse it to turn our margin into a scale
+ uv2_scale = Vector2(1.0, 1.0) - uv2_scale;
+
+ return uv2_scale;
+}
+
+float PrimitiveMesh::get_lightmap_texel_size() const {
+ float texel_size = GLOBAL_GET("rendering/lightmapping/primitive_meshes/texel_size");
+
+ if (texel_size <= 0.0) {
+ texel_size = 0.2;
+ }
+
+ return texel_size;
+}
+
+PrimitiveMesh::PrimitiveMesh() {
+ mesh = RenderingServer::get_singleton()->mesh_create();
+}
+
+PrimitiveMesh::~PrimitiveMesh() {
+ ERR_FAIL_NULL(RenderingServer::get_singleton());
+ RenderingServer::get_singleton()->free(mesh);
+}
+
+/**
+ CapsuleMesh
+*/
+
+void CapsuleMesh::_update_lightmap_size() {
+ if (get_add_uv2()) {
+ // size must have changed, update lightmap size hint
+ Size2i _lightmap_size_hint;
+ float texel_size = get_lightmap_texel_size();
+ float padding = get_uv2_padding();
+
+ float radial_length = radius * Math_PI * 0.5; // circumference of 90 degree bend
+ float vertical_length = radial_length * 2 + (height - 2.0 * radius); // total vertical length
+
+ _lightmap_size_hint.x = MAX(1.0, 4.0 * radial_length / texel_size) + padding;
+ _lightmap_size_hint.y = MAX(1.0, vertical_length / texel_size) + padding;
+
+ set_lightmap_size_hint(_lightmap_size_hint);
+ }
+}
+
+void CapsuleMesh::_create_mesh_array(Array &p_arr) const {
+ bool _add_uv2 = get_add_uv2();
+ float texel_size = get_lightmap_texel_size();
+ float _uv2_padding = get_uv2_padding() * texel_size;
+
+ create_mesh_array(p_arr, radius, height, radial_segments, rings, _add_uv2, _uv2_padding);
+}
+
+void CapsuleMesh::create_mesh_array(Array &p_arr, const float radius, const float height, const int radial_segments, const int rings, bool p_add_uv2, const float p_uv2_padding) {
+ int i, j, prevrow, thisrow, point;
+ float x, y, z, u, v, w;
+ float onethird = 1.0 / 3.0;
+ float twothirds = 2.0 / 3.0;
+
+ // Only used if we calculate UV2
+ float radial_width = 2.0 * radius * Math_PI;
+ float radial_h = radial_width / (radial_width + p_uv2_padding);
+ float radial_length = radius * Math_PI * 0.5; // circumference of 90 degree bend
+ float vertical_length = radial_length * 2 + (height - 2.0 * radius) + p_uv2_padding; // total vertical length
+ float radial_v = radial_length / vertical_length; // v size of top and bottom section
+ float height_v = (height - 2.0 * radius) / vertical_length; // v size of height section
+
+ // note, this has been aligned with our collision shape but I've left the descriptions as top/middle/bottom
+
+ Vector<Vector3> points;
+ Vector<Vector3> normals;
+ Vector<float> tangents;
+ Vector<Vector2> uvs;
+ Vector<Vector2> uv2s;
+ Vector<int> indices;
+ point = 0;
+
+#define ADD_TANGENT(m_x, m_y, m_z, m_d) \
+ tangents.push_back(m_x); \
+ tangents.push_back(m_y); \
+ tangents.push_back(m_z); \
+ tangents.push_back(m_d);
+
+ /* top hemisphere */
+ thisrow = 0;
+ prevrow = 0;
+ for (j = 0; j <= (rings + 1); j++) {
+ v = j;
+
+ v /= (rings + 1);
+ w = sin(0.5 * Math_PI * v);
+ y = radius * cos(0.5 * Math_PI * v);
+
+ for (i = 0; i <= radial_segments; i++) {
+ u = i;
+ u /= radial_segments;
+
+ x = -sin(u * Math_TAU);
+ z = cos(u * Math_TAU);
+
+ Vector3 p = Vector3(x * radius * w, y, -z * radius * w);
+ points.push_back(p + Vector3(0.0, 0.5 * height - radius, 0.0));
+ normals.push_back(p.normalized());
+ ADD_TANGENT(-z, 0.0, -x, 1.0)
+ uvs.push_back(Vector2(u, v * onethird));
+ if (p_add_uv2) {
+ uv2s.push_back(Vector2(u * radial_h, v * radial_v));
+ }
+ point++;
+
+ if (i > 0 && j > 0) {
+ indices.push_back(prevrow + i - 1);
+ indices.push_back(prevrow + i);
+ indices.push_back(thisrow + i - 1);
+
+ indices.push_back(prevrow + i);
+ indices.push_back(thisrow + i);
+ indices.push_back(thisrow + i - 1);
+ }
+ }
+
+ prevrow = thisrow;
+ thisrow = point;
+ }
+
+ /* cylinder */
+ thisrow = point;
+ prevrow = 0;
+ for (j = 0; j <= (rings + 1); j++) {
+ v = j;
+ v /= (rings + 1);
+
+ y = (height - 2.0 * radius) * v;
+ y = (0.5 * height - radius) - y;
+
+ for (i = 0; i <= radial_segments; i++) {
+ u = i;
+ u /= radial_segments;
+
+ x = -sin(u * Math_TAU);
+ z = cos(u * Math_TAU);
+
+ Vector3 p = Vector3(x * radius, y, -z * radius);
+ points.push_back(p);
+ normals.push_back(Vector3(x, 0.0, -z));
+ ADD_TANGENT(-z, 0.0, -x, 1.0)
+ uvs.push_back(Vector2(u, onethird + (v * onethird)));
+ if (p_add_uv2) {
+ uv2s.push_back(Vector2(u * radial_h, radial_v + (v * height_v)));
+ }
+ point++;
+
+ if (i > 0 && j > 0) {
+ indices.push_back(prevrow + i - 1);
+ indices.push_back(prevrow + i);
+ indices.push_back(thisrow + i - 1);
+
+ indices.push_back(prevrow + i);
+ indices.push_back(thisrow + i);
+ indices.push_back(thisrow + i - 1);
+ }
+ }
+
+ prevrow = thisrow;
+ thisrow = point;
+ }
+
+ /* bottom hemisphere */
+ thisrow = point;
+ prevrow = 0;
+ for (j = 0; j <= (rings + 1); j++) {
+ v = j;
+
+ v /= (rings + 1);
+ v += 1.0;
+ w = sin(0.5 * Math_PI * v);
+ y = radius * cos(0.5 * Math_PI * v);
+
+ for (i = 0; i <= radial_segments; i++) {
+ u = i;
+ u /= radial_segments;
+
+ x = -sin(u * Math_TAU);
+ z = cos(u * Math_TAU);
+
+ Vector3 p = Vector3(x * radius * w, y, -z * radius * w);
+ points.push_back(p + Vector3(0.0, -0.5 * height + radius, 0.0));
+ normals.push_back(p.normalized());
+ ADD_TANGENT(-z, 0.0, -x, 1.0)
+ uvs.push_back(Vector2(u, twothirds + ((v - 1.0) * onethird)));
+ if (p_add_uv2) {
+ uv2s.push_back(Vector2(u * radial_h, radial_v + height_v + ((v - 1.0) * radial_v)));
+ }
+ point++;
+
+ if (i > 0 && j > 0) {
+ indices.push_back(prevrow + i - 1);
+ indices.push_back(prevrow + i);
+ indices.push_back(thisrow + i - 1);
+
+ indices.push_back(prevrow + i);
+ indices.push_back(thisrow + i);
+ indices.push_back(thisrow + i - 1);
+ }
+ }
+
+ prevrow = thisrow;
+ thisrow = point;
+ }
+
+ p_arr[RS::ARRAY_VERTEX] = points;
+ p_arr[RS::ARRAY_NORMAL] = normals;
+ p_arr[RS::ARRAY_TANGENT] = tangents;
+ p_arr[RS::ARRAY_TEX_UV] = uvs;
+ if (p_add_uv2) {
+ p_arr[RS::ARRAY_TEX_UV2] = uv2s;
+ }
+ p_arr[RS::ARRAY_INDEX] = indices;
+}
+
+void CapsuleMesh::_bind_methods() {
+ ClassDB::bind_method(D_METHOD("set_radius", "radius"), &CapsuleMesh::set_radius);
+ ClassDB::bind_method(D_METHOD("get_radius"), &CapsuleMesh::get_radius);
+ ClassDB::bind_method(D_METHOD("set_height", "height"), &CapsuleMesh::set_height);
+ ClassDB::bind_method(D_METHOD("get_height"), &CapsuleMesh::get_height);
+
+ ClassDB::bind_method(D_METHOD("set_radial_segments", "segments"), &CapsuleMesh::set_radial_segments);
+ ClassDB::bind_method(D_METHOD("get_radial_segments"), &CapsuleMesh::get_radial_segments);
+ ClassDB::bind_method(D_METHOD("set_rings", "rings"), &CapsuleMesh::set_rings);
+ ClassDB::bind_method(D_METHOD("get_rings"), &CapsuleMesh::get_rings);
+
+ ADD_PROPERTY(PropertyInfo(Variant::FLOAT, "radius", PROPERTY_HINT_RANGE, "0.001,100.0,0.001,or_greater,suffix:m"), "set_radius", "get_radius");
+ ADD_PROPERTY(PropertyInfo(Variant::FLOAT, "height", PROPERTY_HINT_RANGE, "0.001,100.0,0.001,or_greater,suffix:m"), "set_height", "get_height");
+ ADD_PROPERTY(PropertyInfo(Variant::INT, "radial_segments", PROPERTY_HINT_RANGE, "1,100,1,or_greater"), "set_radial_segments", "get_radial_segments");
+ ADD_PROPERTY(PropertyInfo(Variant::INT, "rings", PROPERTY_HINT_RANGE, "0,100,1,or_greater"), "set_rings", "get_rings");
+
+ ADD_LINKED_PROPERTY("radius", "height");
+ ADD_LINKED_PROPERTY("height", "radius");
+}
+
+void CapsuleMesh::set_radius(const float p_radius) {
+ radius = p_radius;
+ if (radius > height * 0.5) {
+ height = radius * 2.0;
+ }
+ _update_lightmap_size();
+ _request_update();
+}
+
+float CapsuleMesh::get_radius() const {
+ return radius;
+}
+
+void CapsuleMesh::set_height(const float p_height) {
+ height = p_height;
+ if (radius > height * 0.5) {
+ radius = height * 0.5;
+ }
+ _update_lightmap_size();
+ _request_update();
+}
+
+float CapsuleMesh::get_height() const {
+ return height;
+}
+
+void CapsuleMesh::set_radial_segments(const int p_segments) {
+ radial_segments = p_segments > 4 ? p_segments : 4;
+ _request_update();
+}
+
+int CapsuleMesh::get_radial_segments() const {
+ return radial_segments;
+}
+
+void CapsuleMesh::set_rings(const int p_rings) {
+ ERR_FAIL_COND(p_rings < 0);
+ rings = p_rings;
+ _request_update();
+}
+
+int CapsuleMesh::get_rings() const {
+ return rings;
+}
+
+CapsuleMesh::CapsuleMesh() {}
+
+/**
+ BoxMesh
+*/
+
+void BoxMesh::_update_lightmap_size() {
+ if (get_add_uv2()) {
+ // size must have changed, update lightmap size hint
+ Size2i _lightmap_size_hint;
+ float texel_size = get_lightmap_texel_size();
+ float padding = get_uv2_padding();
+
+ float width = (size.x + size.z) / texel_size;
+ float length = (size.y + size.y + MAX(size.x, size.z)) / texel_size;
+
+ _lightmap_size_hint.x = MAX(1.0, width) + 2.0 * padding;
+ _lightmap_size_hint.y = MAX(1.0, length) + 3.0 * padding;
+
+ set_lightmap_size_hint(_lightmap_size_hint);
+ }
+}
+
+void BoxMesh::_create_mesh_array(Array &p_arr) const {
+ // Note about padding, with our box each face of the box faces a different direction so we want a seam
+ // around every face. We thus add our padding to the right and bottom of each face.
+ // With 3 faces along the width and 2 along the height of the texture we need to adjust our scale
+ // accordingly.
+ bool _add_uv2 = get_add_uv2();
+ float texel_size = get_lightmap_texel_size();
+ float _uv2_padding = get_uv2_padding() * texel_size;
+
+ BoxMesh::create_mesh_array(p_arr, size, subdivide_w, subdivide_h, subdivide_d, _add_uv2, _uv2_padding);
+}
+
+void BoxMesh::create_mesh_array(Array &p_arr, Vector3 size, int subdivide_w, int subdivide_h, int subdivide_d, bool p_add_uv2, const float p_uv2_padding) {
+ int i, j, prevrow, thisrow, point;
+ float x, y, z;
+ float onethird = 1.0 / 3.0;
+ float twothirds = 2.0 / 3.0;
+
+ // Only used if we calculate UV2
+ // TODO this could be improved by changing the order depending on which side is the longest (basically the below works best if size.y is the longest)
+ float total_h = (size.x + size.z + (2.0 * p_uv2_padding));
+ float padding_h = p_uv2_padding / total_h;
+ float width_h = size.x / total_h;
+ float depth_h = size.z / total_h;
+ float total_v = (size.y + size.y + MAX(size.x, size.z) + (3.0 * p_uv2_padding));
+ float padding_v = p_uv2_padding / total_v;
+ float width_v = size.x / total_v;
+ float height_v = size.y / total_v;
+ float depth_v = size.z / total_v;
+
+ Vector3 start_pos = size * -0.5;
+
+ // set our bounding box
+
+ Vector<Vector3> points;
+ Vector<Vector3> normals;
+ Vector<float> tangents;
+ Vector<Vector2> uvs;
+ Vector<Vector2> uv2s;
+ Vector<int> indices;
+ point = 0;
+
+#define ADD_TANGENT(m_x, m_y, m_z, m_d) \
+ tangents.push_back(m_x); \
+ tangents.push_back(m_y); \
+ tangents.push_back(m_z); \
+ tangents.push_back(m_d);
+
+ // front + back
+ y = start_pos.y;
+ thisrow = point;
+ prevrow = 0;
+ for (j = 0; j <= subdivide_h + 1; j++) {
+ float v = j;
+ float v2 = v / (subdivide_w + 1.0);
+ v /= (2.0 * (subdivide_h + 1.0));
+
+ x = start_pos.x;
+ for (i = 0; i <= subdivide_w + 1; i++) {
+ float u = i;
+ float u2 = u / (subdivide_w + 1.0);
+ u /= (3.0 * (subdivide_w + 1.0));
+
+ // front
+ points.push_back(Vector3(x, -y, -start_pos.z)); // double negative on the Z!
+ normals.push_back(Vector3(0.0, 0.0, 1.0));
+ ADD_TANGENT(1.0, 0.0, 0.0, 1.0);
+ uvs.push_back(Vector2(u, v));
+ if (p_add_uv2) {
+ uv2s.push_back(Vector2(u2 * width_h, v2 * height_v));
+ }
+ point++;
+
+ // back
+ points.push_back(Vector3(-x, -y, start_pos.z));
+ normals.push_back(Vector3(0.0, 0.0, -1.0));
+ ADD_TANGENT(-1.0, 0.0, 0.0, 1.0);
+ uvs.push_back(Vector2(twothirds + u, v));
+ if (p_add_uv2) {
+ uv2s.push_back(Vector2(u2 * width_h, height_v + padding_v + (v2 * height_v)));
+ }
+ point++;
+
+ if (i > 0 && j > 0) {
+ int i2 = i * 2;
+
+ // front
+ indices.push_back(prevrow + i2 - 2);
+ indices.push_back(prevrow + i2);
+ indices.push_back(thisrow + i2 - 2);
+ indices.push_back(prevrow + i2);
+ indices.push_back(thisrow + i2);
+ indices.push_back(thisrow + i2 - 2);
+
+ // back
+ indices.push_back(prevrow + i2 - 1);
+ indices.push_back(prevrow + i2 + 1);
+ indices.push_back(thisrow + i2 - 1);
+ indices.push_back(prevrow + i2 + 1);
+ indices.push_back(thisrow + i2 + 1);
+ indices.push_back(thisrow + i2 - 1);
+ }
+
+ x += size.x / (subdivide_w + 1.0);
+ }
+
+ y += size.y / (subdivide_h + 1.0);
+ prevrow = thisrow;
+ thisrow = point;
+ }
+
+ // left + right
+ y = start_pos.y;
+ thisrow = point;
+ prevrow = 0;
+ for (j = 0; j <= (subdivide_h + 1); j++) {
+ float v = j;
+ float v2 = v / (subdivide_h + 1.0);
+ v /= (2.0 * (subdivide_h + 1.0));
+
+ z = start_pos.z;
+ for (i = 0; i <= (subdivide_d + 1); i++) {
+ float u = i;
+ float u2 = u / (subdivide_d + 1.0);
+ u /= (3.0 * (subdivide_d + 1.0));
+
+ // right
+ points.push_back(Vector3(-start_pos.x, -y, -z));
+ normals.push_back(Vector3(1.0, 0.0, 0.0));
+ ADD_TANGENT(0.0, 0.0, -1.0, 1.0);
+ uvs.push_back(Vector2(onethird + u, v));
+ if (p_add_uv2) {
+ uv2s.push_back(Vector2(width_h + padding_h + (u2 * depth_h), v2 * height_v));
+ }
+ point++;
+
+ // left
+ points.push_back(Vector3(start_pos.x, -y, z));
+ normals.push_back(Vector3(-1.0, 0.0, 0.0));
+ ADD_TANGENT(0.0, 0.0, 1.0, 1.0);
+ uvs.push_back(Vector2(u, 0.5 + v));
+ if (p_add_uv2) {
+ uv2s.push_back(Vector2(width_h + padding_h + (u2 * depth_h), height_v + padding_v + (v2 * height_v)));
+ }
+ point++;
+
+ if (i > 0 && j > 0) {
+ int i2 = i * 2;
+
+ // right
+ indices.push_back(prevrow + i2 - 2);
+ indices.push_back(prevrow + i2);
+ indices.push_back(thisrow + i2 - 2);
+ indices.push_back(prevrow + i2);
+ indices.push_back(thisrow + i2);
+ indices.push_back(thisrow + i2 - 2);
+
+ // left
+ indices.push_back(prevrow + i2 - 1);
+ indices.push_back(prevrow + i2 + 1);
+ indices.push_back(thisrow + i2 - 1);
+ indices.push_back(prevrow + i2 + 1);
+ indices.push_back(thisrow + i2 + 1);
+ indices.push_back(thisrow + i2 - 1);
+ }
+
+ z += size.z / (subdivide_d + 1.0);
+ }
+
+ y += size.y / (subdivide_h + 1.0);
+ prevrow = thisrow;
+ thisrow = point;
+ }
+
+ // top + bottom
+ z = start_pos.z;
+ thisrow = point;
+ prevrow = 0;
+ for (j = 0; j <= (subdivide_d + 1); j++) {
+ float v = j;
+ float v2 = v / (subdivide_d + 1.0);
+ v /= (2.0 * (subdivide_d + 1.0));
+
+ x = start_pos.x;
+ for (i = 0; i <= (subdivide_w + 1); i++) {
+ float u = i;
+ float u2 = u / (subdivide_w + 1.0);
+ u /= (3.0 * (subdivide_w + 1.0));
+
+ // top
+ points.push_back(Vector3(-x, -start_pos.y, -z));
+ normals.push_back(Vector3(0.0, 1.0, 0.0));
+ ADD_TANGENT(-1.0, 0.0, 0.0, 1.0);
+ uvs.push_back(Vector2(onethird + u, 0.5 + v));
+ if (p_add_uv2) {
+ uv2s.push_back(Vector2(u2 * width_h, ((height_v + padding_v) * 2.0) + (v2 * depth_v)));
+ }
+ point++;
+
+ // bottom
+ points.push_back(Vector3(x, start_pos.y, -z));
+ normals.push_back(Vector3(0.0, -1.0, 0.0));
+ ADD_TANGENT(1.0, 0.0, 0.0, 1.0);
+ uvs.push_back(Vector2(twothirds + u, 0.5 + v));
+ if (p_add_uv2) {
+ uv2s.push_back(Vector2(width_h + padding_h + (u2 * depth_h), ((height_v + padding_v) * 2.0) + (v2 * width_v)));
+ }
+ point++;
+
+ if (i > 0 && j > 0) {
+ int i2 = i * 2;
+
+ // top
+ indices.push_back(prevrow + i2 - 2);
+ indices.push_back(prevrow + i2);
+ indices.push_back(thisrow + i2 - 2);
+ indices.push_back(prevrow + i2);
+ indices.push_back(thisrow + i2);
+ indices.push_back(thisrow + i2 - 2);
+
+ // bottom
+ indices.push_back(prevrow + i2 - 1);
+ indices.push_back(prevrow + i2 + 1);
+ indices.push_back(thisrow + i2 - 1);
+ indices.push_back(prevrow + i2 + 1);
+ indices.push_back(thisrow + i2 + 1);
+ indices.push_back(thisrow + i2 - 1);
+ }
+
+ x += size.x / (subdivide_w + 1.0);
+ }
+
+ z += size.z / (subdivide_d + 1.0);
+ prevrow = thisrow;
+ thisrow = point;
+ }
+
+ p_arr[RS::ARRAY_VERTEX] = points;
+ p_arr[RS::ARRAY_NORMAL] = normals;
+ p_arr[RS::ARRAY_TANGENT] = tangents;
+ p_arr[RS::ARRAY_TEX_UV] = uvs;
+ if (p_add_uv2) {
+ p_arr[RS::ARRAY_TEX_UV2] = uv2s;
+ }
+ p_arr[RS::ARRAY_INDEX] = indices;
+}
+
+void BoxMesh::_bind_methods() {
+ ClassDB::bind_method(D_METHOD("set_size", "size"), &BoxMesh::set_size);
+ ClassDB::bind_method(D_METHOD("get_size"), &BoxMesh::get_size);
+
+ ClassDB::bind_method(D_METHOD("set_subdivide_width", "subdivide"), &BoxMesh::set_subdivide_width);
+ ClassDB::bind_method(D_METHOD("get_subdivide_width"), &BoxMesh::get_subdivide_width);
+ ClassDB::bind_method(D_METHOD("set_subdivide_height", "divisions"), &BoxMesh::set_subdivide_height);
+ ClassDB::bind_method(D_METHOD("get_subdivide_height"), &BoxMesh::get_subdivide_height);
+ ClassDB::bind_method(D_METHOD("set_subdivide_depth", "divisions"), &BoxMesh::set_subdivide_depth);
+ ClassDB::bind_method(D_METHOD("get_subdivide_depth"), &BoxMesh::get_subdivide_depth);
+
+ ADD_PROPERTY(PropertyInfo(Variant::VECTOR3, "size", PROPERTY_HINT_NONE, "suffix:m"), "set_size", "get_size");
+ ADD_PROPERTY(PropertyInfo(Variant::INT, "subdivide_width", PROPERTY_HINT_RANGE, "0,100,1,or_greater"), "set_subdivide_width", "get_subdivide_width");
+ ADD_PROPERTY(PropertyInfo(Variant::INT, "subdivide_height", PROPERTY_HINT_RANGE, "0,100,1,or_greater"), "set_subdivide_height", "get_subdivide_height");
+ ADD_PROPERTY(PropertyInfo(Variant::INT, "subdivide_depth", PROPERTY_HINT_RANGE, "0,100,1,or_greater"), "set_subdivide_depth", "get_subdivide_depth");
+}
+
+void BoxMesh::set_size(const Vector3 &p_size) {
+ size = p_size;
+ _update_lightmap_size();
+ _request_update();
+}
+
+Vector3 BoxMesh::get_size() const {
+ return size;
+}
+
+void BoxMesh::set_subdivide_width(const int p_divisions) {
+ subdivide_w = p_divisions > 0 ? p_divisions : 0;
+ _request_update();
+}
+
+int BoxMesh::get_subdivide_width() const {
+ return subdivide_w;
+}
+
+void BoxMesh::set_subdivide_height(const int p_divisions) {
+ subdivide_h = p_divisions > 0 ? p_divisions : 0;
+ _request_update();
+}
+
+int BoxMesh::get_subdivide_height() const {
+ return subdivide_h;
+}
+
+void BoxMesh::set_subdivide_depth(const int p_divisions) {
+ subdivide_d = p_divisions > 0 ? p_divisions : 0;
+ _request_update();
+}
+
+int BoxMesh::get_subdivide_depth() const {
+ return subdivide_d;
+}
+
+BoxMesh::BoxMesh() {}
+
+/**
+ CylinderMesh
+*/
+
+void CylinderMesh::_update_lightmap_size() {
+ if (get_add_uv2()) {
+ // size must have changed, update lightmap size hint
+ Size2i _lightmap_size_hint;
+ float texel_size = get_lightmap_texel_size();
+ float padding = get_uv2_padding();
+
+ float top_circumference = top_radius * Math_PI * 2.0;
+ float bottom_circumference = bottom_radius * Math_PI * 2.0;
+
+ float _width = MAX(top_circumference, bottom_circumference) / texel_size + padding;
+ _width = MAX(_width, (((top_radius + bottom_radius) / texel_size) + padding) * 2.0); // this is extremely unlikely to be larger, will only happen if padding is larger then our diameter.
+ _lightmap_size_hint.x = MAX(1.0, _width);
+
+ float _height = ((height + (MAX(top_radius, bottom_radius) * 2.0)) / texel_size) + (2.0 * padding);
+
+ _lightmap_size_hint.y = MAX(1.0, _height);
+
+ set_lightmap_size_hint(_lightmap_size_hint);
+ }
+}
+
+void CylinderMesh::_create_mesh_array(Array &p_arr) const {
+ bool _add_uv2 = get_add_uv2();
+ float texel_size = get_lightmap_texel_size();
+ float _uv2_padding = get_uv2_padding() * texel_size;
+
+ create_mesh_array(p_arr, top_radius, bottom_radius, height, radial_segments, rings, cap_top, cap_bottom, _add_uv2, _uv2_padding);
+}
+
+void CylinderMesh::create_mesh_array(Array &p_arr, float top_radius, float bottom_radius, float height, int radial_segments, int rings, bool cap_top, bool cap_bottom, bool p_add_uv2, const float p_uv2_padding) {
+ int i, j, prevrow, thisrow, point;
+ float x, y, z, u, v, radius, radius_h;
+
+ // Only used if we calculate UV2
+ float top_circumference = top_radius * Math_PI * 2.0;
+ float bottom_circumference = bottom_radius * Math_PI * 2.0;
+ float vertical_length = height + MAX(2.0 * top_radius, 2.0 * bottom_radius) + (2.0 * p_uv2_padding);
+ float height_v = height / vertical_length;
+ float padding_v = p_uv2_padding / vertical_length;
+
+ float horizonal_length = MAX(MAX(2.0 * (top_radius + bottom_radius + p_uv2_padding), top_circumference + p_uv2_padding), bottom_circumference + p_uv2_padding);
+ float center_h = 0.5 * (horizonal_length - p_uv2_padding) / horizonal_length;
+ float top_h = top_circumference / horizonal_length;
+ float bottom_h = bottom_circumference / horizonal_length;
+ float padding_h = p_uv2_padding / horizonal_length;
+
+ Vector<Vector3> points;
+ Vector<Vector3> normals;
+ Vector<float> tangents;
+ Vector<Vector2> uvs;
+ Vector<Vector2> uv2s;
+ Vector<int> indices;
+ point = 0;
+
+#define ADD_TANGENT(m_x, m_y, m_z, m_d) \
+ tangents.push_back(m_x); \
+ tangents.push_back(m_y); \
+ tangents.push_back(m_z); \
+ tangents.push_back(m_d);
+
+ thisrow = 0;
+ prevrow = 0;
+ const real_t side_normal_y = (bottom_radius - top_radius) / height;
+ for (j = 0; j <= (rings + 1); j++) {
+ v = j;
+ v /= (rings + 1);
+
+ radius = top_radius + ((bottom_radius - top_radius) * v);
+ radius_h = top_h + ((bottom_h - top_h) * v);
+
+ y = height * v;
+ y = (height * 0.5) - y;
+
+ for (i = 0; i <= radial_segments; i++) {
+ u = i;
+ u /= radial_segments;
+
+ x = sin(u * Math_TAU);
+ z = cos(u * Math_TAU);
+
+ Vector3 p = Vector3(x * radius, y, z * radius);
+ points.push_back(p);
+ normals.push_back(Vector3(x, side_normal_y, z).normalized());
+ ADD_TANGENT(z, 0.0, -x, 1.0)
+ uvs.push_back(Vector2(u, v * 0.5));
+ if (p_add_uv2) {
+ uv2s.push_back(Vector2(center_h + (u - 0.5) * radius_h, v * height_v));
+ }
+ point++;
+
+ if (i > 0 && j > 0) {
+ indices.push_back(prevrow + i - 1);
+ indices.push_back(prevrow + i);
+ indices.push_back(thisrow + i - 1);
+
+ indices.push_back(prevrow + i);
+ indices.push_back(thisrow + i);
+ indices.push_back(thisrow + i - 1);
+ }
+ }
+
+ prevrow = thisrow;
+ thisrow = point;
+ }
+
+ // Adjust for bottom section, only used if we calculate UV2s.
+ top_h = top_radius / horizonal_length;
+ float top_v = top_radius / vertical_length;
+ bottom_h = bottom_radius / horizonal_length;
+ float bottom_v = bottom_radius / vertical_length;
+
+ // Add top.
+ if (cap_top && top_radius > 0.0) {
+ y = height * 0.5;
+
+ thisrow = point;
+ points.push_back(Vector3(0.0, y, 0.0));
+ normals.push_back(Vector3(0.0, 1.0, 0.0));
+ ADD_TANGENT(1.0, 0.0, 0.0, 1.0)
+ uvs.push_back(Vector2(0.25, 0.75));
+ if (p_add_uv2) {
+ uv2s.push_back(Vector2(top_h, height_v + padding_v + MAX(top_v, bottom_v)));
+ }
+ point++;
+
+ for (i = 0; i <= radial_segments; i++) {
+ float r = i;
+ r /= radial_segments;
+
+ x = sin(r * Math_TAU);
+ z = cos(r * Math_TAU);
+
+ u = ((x + 1.0) * 0.25);
+ v = 0.5 + ((z + 1.0) * 0.25);
+
+ Vector3 p = Vector3(x * top_radius, y, z * top_radius);
+ points.push_back(p);
+ normals.push_back(Vector3(0.0, 1.0, 0.0));
+ ADD_TANGENT(1.0, 0.0, 0.0, 1.0)
+ uvs.push_back(Vector2(u, v));
+ if (p_add_uv2) {
+ uv2s.push_back(Vector2(top_h + (x * top_h), height_v + padding_v + MAX(top_v, bottom_v) + (z * top_v)));
+ }
+ point++;
+
+ if (i > 0) {
+ indices.push_back(thisrow);
+ indices.push_back(point - 1);
+ indices.push_back(point - 2);
+ }
+ }
+ }
+
+ // Add bottom.
+ if (cap_bottom && bottom_radius > 0.0) {
+ y = height * -0.5;
+
+ thisrow = point;
+ points.push_back(Vector3(0.0, y, 0.0));
+ normals.push_back(Vector3(0.0, -1.0, 0.0));
+ ADD_TANGENT(1.0, 0.0, 0.0, 1.0)
+ uvs.push_back(Vector2(0.75, 0.75));
+ if (p_add_uv2) {
+ uv2s.push_back(Vector2(top_h + top_h + padding_h + bottom_h, height_v + padding_v + MAX(top_v, bottom_v)));
+ }
+ point++;
+
+ for (i = 0; i <= radial_segments; i++) {
+ float r = i;
+ r /= radial_segments;
+
+ x = sin(r * Math_TAU);
+ z = cos(r * Math_TAU);
+
+ u = 0.5 + ((x + 1.0) * 0.25);
+ v = 1.0 - ((z + 1.0) * 0.25);
+
+ Vector3 p = Vector3(x * bottom_radius, y, z * bottom_radius);
+ points.push_back(p);
+ normals.push_back(Vector3(0.0, -1.0, 0.0));
+ ADD_TANGENT(1.0, 0.0, 0.0, 1.0)
+ uvs.push_back(Vector2(u, v));
+ if (p_add_uv2) {
+ uv2s.push_back(Vector2(top_h + top_h + padding_h + bottom_h + (x * bottom_h), height_v + padding_v + MAX(top_v, bottom_v) - (z * bottom_v)));
+ }
+ point++;
+
+ if (i > 0) {
+ indices.push_back(thisrow);
+ indices.push_back(point - 2);
+ indices.push_back(point - 1);
+ }
+ }
+ }
+
+ p_arr[RS::ARRAY_VERTEX] = points;
+ p_arr[RS::ARRAY_NORMAL] = normals;
+ p_arr[RS::ARRAY_TANGENT] = tangents;
+ p_arr[RS::ARRAY_TEX_UV] = uvs;
+ if (p_add_uv2) {
+ p_arr[RS::ARRAY_TEX_UV2] = uv2s;
+ }
+ p_arr[RS::ARRAY_INDEX] = indices;
+}
+
+void CylinderMesh::_bind_methods() {
+ ClassDB::bind_method(D_METHOD("set_top_radius", "radius"), &CylinderMesh::set_top_radius);
+ ClassDB::bind_method(D_METHOD("get_top_radius"), &CylinderMesh::get_top_radius);
+ ClassDB::bind_method(D_METHOD("set_bottom_radius", "radius"), &CylinderMesh::set_bottom_radius);
+ ClassDB::bind_method(D_METHOD("get_bottom_radius"), &CylinderMesh::get_bottom_radius);
+ ClassDB::bind_method(D_METHOD("set_height", "height"), &CylinderMesh::set_height);
+ ClassDB::bind_method(D_METHOD("get_height"), &CylinderMesh::get_height);
+
+ ClassDB::bind_method(D_METHOD("set_radial_segments", "segments"), &CylinderMesh::set_radial_segments);
+ ClassDB::bind_method(D_METHOD("get_radial_segments"), &CylinderMesh::get_radial_segments);
+ ClassDB::bind_method(D_METHOD("set_rings", "rings"), &CylinderMesh::set_rings);
+ ClassDB::bind_method(D_METHOD("get_rings"), &CylinderMesh::get_rings);
+
+ ClassDB::bind_method(D_METHOD("set_cap_top", "cap_top"), &CylinderMesh::set_cap_top);
+ ClassDB::bind_method(D_METHOD("is_cap_top"), &CylinderMesh::is_cap_top);
+
+ ClassDB::bind_method(D_METHOD("set_cap_bottom", "cap_bottom"), &CylinderMesh::set_cap_bottom);
+ ClassDB::bind_method(D_METHOD("is_cap_bottom"), &CylinderMesh::is_cap_bottom);
+
+ ADD_PROPERTY(PropertyInfo(Variant::FLOAT, "top_radius", PROPERTY_HINT_RANGE, "0,100,0.001,or_greater,suffix:m"), "set_top_radius", "get_top_radius");
+ ADD_PROPERTY(PropertyInfo(Variant::FLOAT, "bottom_radius", PROPERTY_HINT_RANGE, "0,100,0.001,or_greater,suffix:m"), "set_bottom_radius", "get_bottom_radius");
+ ADD_PROPERTY(PropertyInfo(Variant::FLOAT, "height", PROPERTY_HINT_RANGE, "0.001,100,0.001,or_greater,suffix:m"), "set_height", "get_height");
+ ADD_PROPERTY(PropertyInfo(Variant::INT, "radial_segments", PROPERTY_HINT_RANGE, "1,100,1,or_greater"), "set_radial_segments", "get_radial_segments");
+ ADD_PROPERTY(PropertyInfo(Variant::INT, "rings", PROPERTY_HINT_RANGE, "0,100,1,or_greater"), "set_rings", "get_rings");
+ ADD_PROPERTY(PropertyInfo(Variant::BOOL, "cap_top"), "set_cap_top", "is_cap_top");
+ ADD_PROPERTY(PropertyInfo(Variant::BOOL, "cap_bottom"), "set_cap_bottom", "is_cap_bottom");
+}
+
+void CylinderMesh::set_top_radius(const float p_radius) {
+ top_radius = p_radius;
+ _update_lightmap_size();
+ _request_update();
+}
+
+float CylinderMesh::get_top_radius() const {
+ return top_radius;
+}
+
+void CylinderMesh::set_bottom_radius(const float p_radius) {
+ bottom_radius = p_radius;
+ _update_lightmap_size();
+ _request_update();
+}
+
+float CylinderMesh::get_bottom_radius() const {
+ return bottom_radius;
+}
+
+void CylinderMesh::set_height(const float p_height) {
+ height = p_height;
+ _update_lightmap_size();
+ _request_update();
+}
+
+float CylinderMesh::get_height() const {
+ return height;
+}
+
+void CylinderMesh::set_radial_segments(const int p_segments) {
+ radial_segments = p_segments > 4 ? p_segments : 4;
+ _request_update();
+}
+
+int CylinderMesh::get_radial_segments() const {
+ return radial_segments;
+}
+
+void CylinderMesh::set_rings(const int p_rings) {
+ ERR_FAIL_COND(p_rings < 0);
+ rings = p_rings;
+ _request_update();
+}
+
+int CylinderMesh::get_rings() const {
+ return rings;
+}
+
+void CylinderMesh::set_cap_top(bool p_cap_top) {
+ cap_top = p_cap_top;
+ _request_update();
+}
+
+bool CylinderMesh::is_cap_top() const {
+ return cap_top;
+}
+
+void CylinderMesh::set_cap_bottom(bool p_cap_bottom) {
+ cap_bottom = p_cap_bottom;
+ _request_update();
+}
+
+bool CylinderMesh::is_cap_bottom() const {
+ return cap_bottom;
+}
+
+CylinderMesh::CylinderMesh() {}
+
+/**
+ PlaneMesh
+*/
+
+void PlaneMesh::_update_lightmap_size() {
+ if (get_add_uv2()) {
+ // size must have changed, update lightmap size hint
+ Size2i _lightmap_size_hint;
+ float texel_size = get_lightmap_texel_size();
+ float padding = get_uv2_padding();
+
+ _lightmap_size_hint.x = MAX(1.0, (size.x / texel_size) + padding);
+ _lightmap_size_hint.y = MAX(1.0, (size.y / texel_size) + padding);
+
+ set_lightmap_size_hint(_lightmap_size_hint);
+ }
+}
+
+void PlaneMesh::_create_mesh_array(Array &p_arr) const {
+ int i, j, prevrow, thisrow, point;
+ float x, z;
+
+ // Plane mesh can use default UV2 calculation as implemented in Primitive Mesh
+
+ Size2 start_pos = size * -0.5;
+
+ Vector3 normal = Vector3(0.0, 1.0, 0.0);
+ if (orientation == FACE_X) {
+ normal = Vector3(1.0, 0.0, 0.0);
+ } else if (orientation == FACE_Z) {
+ normal = Vector3(0.0, 0.0, 1.0);
+ }
+
+ Vector<Vector3> points;
+ Vector<Vector3> normals;
+ Vector<float> tangents;
+ Vector<Vector2> uvs;
+ Vector<int> indices;
+ point = 0;
+
+#define ADD_TANGENT(m_x, m_y, m_z, m_d) \
+ tangents.push_back(m_x); \
+ tangents.push_back(m_y); \
+ tangents.push_back(m_z); \
+ tangents.push_back(m_d);
+
+ /* top + bottom */
+ z = start_pos.y;
+ thisrow = point;
+ prevrow = 0;
+ for (j = 0; j <= (subdivide_d + 1); j++) {
+ x = start_pos.x;
+ for (i = 0; i <= (subdivide_w + 1); i++) {
+ float u = i;
+ float v = j;
+ u /= (subdivide_w + 1.0);
+ v /= (subdivide_d + 1.0);
+
+ if (orientation == FACE_X) {
+ points.push_back(Vector3(0.0, z, x) + center_offset);
+ } else if (orientation == FACE_Y) {
+ points.push_back(Vector3(-x, 0.0, -z) + center_offset);
+ } else if (orientation == FACE_Z) {
+ points.push_back(Vector3(-x, z, 0.0) + center_offset);
+ }
+ normals.push_back(normal);
+ if (orientation == FACE_X) {
+ ADD_TANGENT(0.0, 0.0, -1.0, 1.0);
+ } else {
+ ADD_TANGENT(1.0, 0.0, 0.0, 1.0);
+ }
+ uvs.push_back(Vector2(1.0 - u, 1.0 - v)); /* 1.0 - uv to match orientation with Quad */
+ point++;
+
+ if (i > 0 && j > 0) {
+ indices.push_back(prevrow + i - 1);
+ indices.push_back(prevrow + i);
+ indices.push_back(thisrow + i - 1);
+ indices.push_back(prevrow + i);
+ indices.push_back(thisrow + i);
+ indices.push_back(thisrow + i - 1);
+ }
+
+ x += size.x / (subdivide_w + 1.0);
+ }
+
+ z += size.y / (subdivide_d + 1.0);
+ prevrow = thisrow;
+ thisrow = point;
+ }
+
+ p_arr[RS::ARRAY_VERTEX] = points;
+ p_arr[RS::ARRAY_NORMAL] = normals;
+ p_arr[RS::ARRAY_TANGENT] = tangents;
+ p_arr[RS::ARRAY_TEX_UV] = uvs;
+ p_arr[RS::ARRAY_INDEX] = indices;
+}
+
+void PlaneMesh::_bind_methods() {
+ ClassDB::bind_method(D_METHOD("set_size", "size"), &PlaneMesh::set_size);
+ ClassDB::bind_method(D_METHOD("get_size"), &PlaneMesh::get_size);
+
+ ClassDB::bind_method(D_METHOD("set_subdivide_width", "subdivide"), &PlaneMesh::set_subdivide_width);
+ ClassDB::bind_method(D_METHOD("get_subdivide_width"), &PlaneMesh::get_subdivide_width);
+ ClassDB::bind_method(D_METHOD("set_subdivide_depth", "subdivide"), &PlaneMesh::set_subdivide_depth);
+ ClassDB::bind_method(D_METHOD("get_subdivide_depth"), &PlaneMesh::get_subdivide_depth);
+
+ ClassDB::bind_method(D_METHOD("set_center_offset", "offset"), &PlaneMesh::set_center_offset);
+ ClassDB::bind_method(D_METHOD("get_center_offset"), &PlaneMesh::get_center_offset);
+
+ ClassDB::bind_method(D_METHOD("set_orientation", "orientation"), &PlaneMesh::set_orientation);
+ ClassDB::bind_method(D_METHOD("get_orientation"), &PlaneMesh::get_orientation);
+
+ ADD_PROPERTY(PropertyInfo(Variant::VECTOR2, "size", PROPERTY_HINT_NONE, "suffix:m"), "set_size", "get_size");
+ ADD_PROPERTY(PropertyInfo(Variant::INT, "subdivide_width", PROPERTY_HINT_RANGE, "0,100,1,or_greater"), "set_subdivide_width", "get_subdivide_width");
+ ADD_PROPERTY(PropertyInfo(Variant::INT, "subdivide_depth", PROPERTY_HINT_RANGE, "0,100,1,or_greater"), "set_subdivide_depth", "get_subdivide_depth");
+ ADD_PROPERTY(PropertyInfo(Variant::VECTOR3, "center_offset", PROPERTY_HINT_NONE, "suffix:m"), "set_center_offset", "get_center_offset");
+ ADD_PROPERTY(PropertyInfo(Variant::INT, "orientation", PROPERTY_HINT_ENUM, "Face X,Face Y,Face Z"), "set_orientation", "get_orientation");
+
+ BIND_ENUM_CONSTANT(FACE_X)
+ BIND_ENUM_CONSTANT(FACE_Y)
+ BIND_ENUM_CONSTANT(FACE_Z)
+}
+
+void PlaneMesh::set_size(const Size2 &p_size) {
+ size = p_size;
+ _update_lightmap_size();
+ _request_update();
+}
+
+Size2 PlaneMesh::get_size() const {
+ return size;
+}
+
+void PlaneMesh::set_subdivide_width(const int p_divisions) {
+ subdivide_w = p_divisions > 0 ? p_divisions : 0;
+ _request_update();
+}
+
+int PlaneMesh::get_subdivide_width() const {
+ return subdivide_w;
+}
+
+void PlaneMesh::set_subdivide_depth(const int p_divisions) {
+ subdivide_d = p_divisions > 0 ? p_divisions : 0;
+ _request_update();
+}
+
+int PlaneMesh::get_subdivide_depth() const {
+ return subdivide_d;
+}
+
+void PlaneMesh::set_center_offset(const Vector3 p_offset) {
+ center_offset = p_offset;
+ _request_update();
+}
+
+Vector3 PlaneMesh::get_center_offset() const {
+ return center_offset;
+}
+
+void PlaneMesh::set_orientation(const Orientation p_orientation) {
+ orientation = p_orientation;
+ _request_update();
+}
+
+PlaneMesh::Orientation PlaneMesh::get_orientation() const {
+ return orientation;
+}
+
+PlaneMesh::PlaneMesh() {}
+
+/**
+ PrismMesh
+*/
+
+void PrismMesh::_update_lightmap_size() {
+ if (get_add_uv2()) {
+ // size must have changed, update lightmap size hint
+ Size2i _lightmap_size_hint;
+ float texel_size = get_lightmap_texel_size();
+ float padding = get_uv2_padding();
+
+ // left_to_right does not effect the surface area of the prism so we ignore that.
+ // TODO we could combine the two triangles and save some space but we need to re-align the uv1 and adjust the tangent.
+
+ float width = (size.x + size.z) / texel_size;
+ float length = (size.y + size.y + size.z) / texel_size;
+
+ _lightmap_size_hint.x = MAX(1.0, width) + 2.0 * padding;
+ _lightmap_size_hint.y = MAX(1.0, length) + 3.0 * padding;
+
+ set_lightmap_size_hint(_lightmap_size_hint);
+ }
+}
+
+void PrismMesh::_create_mesh_array(Array &p_arr) const {
+ int i, j, prevrow, thisrow, point;
+ float x, y, z;
+ float onethird = 1.0 / 3.0;
+ float twothirds = 2.0 / 3.0;
+
+ // Only used if we calculate UV2
+ bool _add_uv2 = get_add_uv2();
+ float texel_size = get_lightmap_texel_size();
+ float _uv2_padding = get_uv2_padding() * texel_size;
+
+ float horizontal_total = size.x + size.z + 2.0 * _uv2_padding;
+ float width_h = size.x / horizontal_total;
+ float depth_h = size.z / horizontal_total;
+ float padding_h = _uv2_padding / horizontal_total;
+
+ float vertical_total = (size.y + size.y + size.z) + (3.0 * _uv2_padding);
+ float height_v = size.y / vertical_total;
+ float depth_v = size.z / vertical_total;
+ float padding_v = _uv2_padding / vertical_total;
+
+ // and start building
+
+ Vector3 start_pos = size * -0.5;
+
+ // set our bounding box
+
+ Vector<Vector3> points;
+ Vector<Vector3> normals;
+ Vector<float> tangents;
+ Vector<Vector2> uvs;
+ Vector<Vector2> uv2s;
+ Vector<int> indices;
+ point = 0;
+
+#define ADD_TANGENT(m_x, m_y, m_z, m_d) \
+ tangents.push_back(m_x); \
+ tangents.push_back(m_y); \
+ tangents.push_back(m_z); \
+ tangents.push_back(m_d);
+
+ /* front + back */
+ y = start_pos.y;
+ thisrow = point;
+ prevrow = 0;
+ for (j = 0; j <= (subdivide_h + 1); j++) {
+ float scale = j / (subdivide_h + 1.0);
+ float scaled_size_x = size.x * scale;
+ float start_x = start_pos.x + (1.0 - scale) * size.x * left_to_right;
+ float offset_front = (1.0 - scale) * onethird * left_to_right;
+ float offset_back = (1.0 - scale) * onethird * (1.0 - left_to_right);
+
+ float v = j;
+ float v2 = scale;
+ v /= 2.0 * (subdivide_h + 1.0);
+
+ x = 0.0;
+ for (i = 0; i <= (subdivide_w + 1); i++) {
+ float u = i;
+ float u2 = i / (subdivide_w + 1.0);
+ u /= (3.0 * (subdivide_w + 1.0));
+
+ u *= scale;
+
+ /* front */
+ points.push_back(Vector3(start_x + x, -y, -start_pos.z)); // double negative on the Z!
+ normals.push_back(Vector3(0.0, 0.0, 1.0));
+ ADD_TANGENT(1.0, 0.0, 0.0, 1.0);
+ uvs.push_back(Vector2(offset_front + u, v));
+ if (_add_uv2) {
+ uv2s.push_back(Vector2(u2 * scale * width_h, v2 * height_v));
+ }
+ point++;
+
+ /* back */
+ points.push_back(Vector3(start_x + scaled_size_x - x, -y, start_pos.z));
+ normals.push_back(Vector3(0.0, 0.0, -1.0));
+ ADD_TANGENT(-1.0, 0.0, 0.0, 1.0);
+ uvs.push_back(Vector2(twothirds + offset_back + u, v));
+ if (_add_uv2) {
+ uv2s.push_back(Vector2(u2 * scale * width_h, height_v + padding_v + v2 * height_v));
+ }
+ point++;
+
+ if (i > 0 && j == 1) {
+ int i2 = i * 2;
+
+ /* front */
+ indices.push_back(prevrow + i2);
+ indices.push_back(thisrow + i2);
+ indices.push_back(thisrow + i2 - 2);
+
+ /* back */
+ indices.push_back(prevrow + i2 + 1);
+ indices.push_back(thisrow + i2 + 1);
+ indices.push_back(thisrow + i2 - 1);
+ } else if (i > 0 && j > 0) {
+ int i2 = i * 2;
+
+ /* front */
+ indices.push_back(prevrow + i2 - 2);
+ indices.push_back(prevrow + i2);
+ indices.push_back(thisrow + i2 - 2);
+ indices.push_back(prevrow + i2);
+ indices.push_back(thisrow + i2);
+ indices.push_back(thisrow + i2 - 2);
+
+ /* back */
+ indices.push_back(prevrow + i2 - 1);
+ indices.push_back(prevrow + i2 + 1);
+ indices.push_back(thisrow + i2 - 1);
+ indices.push_back(prevrow + i2 + 1);
+ indices.push_back(thisrow + i2 + 1);
+ indices.push_back(thisrow + i2 - 1);
+ }
+
+ x += scale * size.x / (subdivide_w + 1.0);
+ }
+
+ y += size.y / (subdivide_h + 1.0);
+ prevrow = thisrow;
+ thisrow = point;
+ }
+
+ /* left + right */
+ Vector3 normal_left, normal_right;
+
+ normal_left = Vector3(-size.y, size.x * left_to_right, 0.0);
+ normal_right = Vector3(size.y, size.x * (1.0 - left_to_right), 0.0);
+ normal_left.normalize();
+ normal_right.normalize();
+
+ y = start_pos.y;
+ thisrow = point;
+ prevrow = 0;
+ for (j = 0; j <= (subdivide_h + 1); j++) {
+ float left, right;
+ float scale = j / (subdivide_h + 1.0);
+
+ left = start_pos.x + (size.x * (1.0 - scale) * left_to_right);
+ right = left + (size.x * scale);
+
+ float v = j;
+ float v2 = scale;
+ v /= 2.0 * (subdivide_h + 1.0);
+
+ z = start_pos.z;
+ for (i = 0; i <= (subdivide_d + 1); i++) {
+ float u = i;
+ float u2 = u / (subdivide_d + 1.0);
+ u /= (3.0 * (subdivide_d + 1.0));
+
+ /* right */
+ points.push_back(Vector3(right, -y, -z));
+ normals.push_back(normal_right);
+ ADD_TANGENT(0.0, 0.0, -1.0, 1.0);
+ uvs.push_back(Vector2(onethird + u, v));
+ if (_add_uv2) {
+ uv2s.push_back(Vector2(width_h + padding_h + u2 * depth_h, v2 * height_v));
+ }
+ point++;
+
+ /* left */
+ points.push_back(Vector3(left, -y, z));
+ normals.push_back(normal_left);
+ ADD_TANGENT(0.0, 0.0, 1.0, 1.0);
+ uvs.push_back(Vector2(u, 0.5 + v));
+ if (_add_uv2) {
+ uv2s.push_back(Vector2(width_h + padding_h + u2 * depth_h, height_v + padding_v + v2 * height_v));
+ }
+ point++;
+
+ if (i > 0 && j > 0) {
+ int i2 = i * 2;
+
+ /* right */
+ indices.push_back(prevrow + i2 - 2);
+ indices.push_back(prevrow + i2);
+ indices.push_back(thisrow + i2 - 2);
+ indices.push_back(prevrow + i2);
+ indices.push_back(thisrow + i2);
+ indices.push_back(thisrow + i2 - 2);
+
+ /* left */
+ indices.push_back(prevrow + i2 - 1);
+ indices.push_back(prevrow + i2 + 1);
+ indices.push_back(thisrow + i2 - 1);
+ indices.push_back(prevrow + i2 + 1);
+ indices.push_back(thisrow + i2 + 1);
+ indices.push_back(thisrow + i2 - 1);
+ }
+
+ z += size.z / (subdivide_d + 1.0);
+ }
+
+ y += size.y / (subdivide_h + 1.0);
+ prevrow = thisrow;
+ thisrow = point;
+ }
+
+ /* bottom */
+ z = start_pos.z;
+ thisrow = point;
+ prevrow = 0;
+ for (j = 0; j <= (subdivide_d + 1); j++) {
+ float v = j;
+ float v2 = v / (subdivide_d + 1.0);
+ v /= (2.0 * (subdivide_d + 1.0));
+
+ x = start_pos.x;
+ for (i = 0; i <= (subdivide_w + 1); i++) {
+ float u = i;
+ float u2 = u / (subdivide_w + 1.0);
+ u /= (3.0 * (subdivide_w + 1.0));
+
+ /* bottom */
+ points.push_back(Vector3(x, start_pos.y, -z));
+ normals.push_back(Vector3(0.0, -1.0, 0.0));
+ ADD_TANGENT(1.0, 0.0, 0.0, 1.0);
+ uvs.push_back(Vector2(twothirds + u, 0.5 + v));
+ if (_add_uv2) {
+ uv2s.push_back(Vector2(u2 * width_h, 2.0 * (height_v + padding_v) + v2 * depth_v));
+ }
+ point++;
+
+ if (i > 0 && j > 0) {
+ /* bottom */
+ indices.push_back(prevrow + i - 1);
+ indices.push_back(prevrow + i);
+ indices.push_back(thisrow + i - 1);
+ indices.push_back(prevrow + i);
+ indices.push_back(thisrow + i);
+ indices.push_back(thisrow + i - 1);
+ }
+
+ x += size.x / (subdivide_w + 1.0);
+ }
+
+ z += size.z / (subdivide_d + 1.0);
+ prevrow = thisrow;
+ thisrow = point;
+ }
+
+ p_arr[RS::ARRAY_VERTEX] = points;
+ p_arr[RS::ARRAY_NORMAL] = normals;
+ p_arr[RS::ARRAY_TANGENT] = tangents;
+ p_arr[RS::ARRAY_TEX_UV] = uvs;
+ if (_add_uv2) {
+ p_arr[RS::ARRAY_TEX_UV2] = uv2s;
+ }
+ p_arr[RS::ARRAY_INDEX] = indices;
+}
+
+void PrismMesh::_bind_methods() {
+ ClassDB::bind_method(D_METHOD("set_left_to_right", "left_to_right"), &PrismMesh::set_left_to_right);
+ ClassDB::bind_method(D_METHOD("get_left_to_right"), &PrismMesh::get_left_to_right);
+
+ ClassDB::bind_method(D_METHOD("set_size", "size"), &PrismMesh::set_size);
+ ClassDB::bind_method(D_METHOD("get_size"), &PrismMesh::get_size);
+
+ ClassDB::bind_method(D_METHOD("set_subdivide_width", "segments"), &PrismMesh::set_subdivide_width);
+ ClassDB::bind_method(D_METHOD("get_subdivide_width"), &PrismMesh::get_subdivide_width);
+ ClassDB::bind_method(D_METHOD("set_subdivide_height", "segments"), &PrismMesh::set_subdivide_height);
+ ClassDB::bind_method(D_METHOD("get_subdivide_height"), &PrismMesh::get_subdivide_height);
+ ClassDB::bind_method(D_METHOD("set_subdivide_depth", "segments"), &PrismMesh::set_subdivide_depth);
+ ClassDB::bind_method(D_METHOD("get_subdivide_depth"), &PrismMesh::get_subdivide_depth);
+
+ ADD_PROPERTY(PropertyInfo(Variant::FLOAT, "left_to_right", PROPERTY_HINT_RANGE, "-2.0,2.0,0.1"), "set_left_to_right", "get_left_to_right");
+ ADD_PROPERTY(PropertyInfo(Variant::VECTOR3, "size", PROPERTY_HINT_NONE, "suffix:m"), "set_size", "get_size");
+ ADD_PROPERTY(PropertyInfo(Variant::INT, "subdivide_width", PROPERTY_HINT_RANGE, "0,100,1,or_greater"), "set_subdivide_width", "get_subdivide_width");
+ ADD_PROPERTY(PropertyInfo(Variant::INT, "subdivide_height", PROPERTY_HINT_RANGE, "0,100,1,or_greater"), "set_subdivide_height", "get_subdivide_height");
+ ADD_PROPERTY(PropertyInfo(Variant::INT, "subdivide_depth", PROPERTY_HINT_RANGE, "0,100,1,or_greater"), "set_subdivide_depth", "get_subdivide_depth");
+}
+
+void PrismMesh::set_left_to_right(const float p_left_to_right) {
+ left_to_right = p_left_to_right;
+ _request_update();
+}
+
+float PrismMesh::get_left_to_right() const {
+ return left_to_right;
+}
+
+void PrismMesh::set_size(const Vector3 &p_size) {
+ size = p_size;
+ _update_lightmap_size();
+ _request_update();
+}
+
+Vector3 PrismMesh::get_size() const {
+ return size;
+}
+
+void PrismMesh::set_subdivide_width(const int p_divisions) {
+ subdivide_w = p_divisions > 0 ? p_divisions : 0;
+ _request_update();
+}
+
+int PrismMesh::get_subdivide_width() const {
+ return subdivide_w;
+}
+
+void PrismMesh::set_subdivide_height(const int p_divisions) {
+ subdivide_h = p_divisions > 0 ? p_divisions : 0;
+ _request_update();
+}
+
+int PrismMesh::get_subdivide_height() const {
+ return subdivide_h;
+}
+
+void PrismMesh::set_subdivide_depth(const int p_divisions) {
+ subdivide_d = p_divisions > 0 ? p_divisions : 0;
+ _request_update();
+}
+
+int PrismMesh::get_subdivide_depth() const {
+ return subdivide_d;
+}
+
+PrismMesh::PrismMesh() {}
+
+/**
+ SphereMesh
+*/
+
+void SphereMesh::_update_lightmap_size() {
+ if (get_add_uv2()) {
+ // size must have changed, update lightmap size hint
+ Size2i _lightmap_size_hint;
+ float texel_size = get_lightmap_texel_size();
+ float padding = get_uv2_padding();
+
+ float _width = radius * Math_TAU;
+ _lightmap_size_hint.x = MAX(1.0, (_width / texel_size) + padding);
+ float _height = (is_hemisphere ? 1.0 : 0.5) * height * Math_PI; // note, with hemisphere height is our radius, while with a full sphere it is the diameter..
+ _lightmap_size_hint.y = MAX(1.0, (_height / texel_size) + padding);
+
+ set_lightmap_size_hint(_lightmap_size_hint);
+ }
+}
+
+void SphereMesh::_create_mesh_array(Array &p_arr) const {
+ bool _add_uv2 = get_add_uv2();
+ float texel_size = get_lightmap_texel_size();
+ float _uv2_padding = get_uv2_padding() * texel_size;
+
+ create_mesh_array(p_arr, radius, height, radial_segments, rings, is_hemisphere, _add_uv2, _uv2_padding);
+}
+
+void SphereMesh::create_mesh_array(Array &p_arr, float radius, float height, int radial_segments, int rings, bool is_hemisphere, bool p_add_uv2, const float p_uv2_padding) {
+ int i, j, prevrow, thisrow, point;
+ float x, y, z;
+
+ float scale = height * (is_hemisphere ? 1.0 : 0.5);
+
+ // Only used if we calculate UV2
+ float circumference = radius * Math_TAU;
+ float horizontal_length = circumference + p_uv2_padding;
+ float center_h = 0.5 * circumference / horizontal_length;
+
+ float height_v = scale * Math_PI / ((scale * Math_PI) + p_uv2_padding);
+
+ // set our bounding box
+
+ Vector<Vector3> points;
+ Vector<Vector3> normals;
+ Vector<float> tangents;
+ Vector<Vector2> uvs;
+ Vector<Vector2> uv2s;
+ Vector<int> indices;
+ point = 0;
+
+#define ADD_TANGENT(m_x, m_y, m_z, m_d) \
+ tangents.push_back(m_x); \
+ tangents.push_back(m_y); \
+ tangents.push_back(m_z); \
+ tangents.push_back(m_d);
+
+ thisrow = 0;
+ prevrow = 0;
+ for (j = 0; j <= (rings + 1); j++) {
+ float v = j;
+ float w;
+
+ v /= (rings + 1);
+ w = sin(Math_PI * v);
+ y = scale * cos(Math_PI * v);
+
+ for (i = 0; i <= radial_segments; i++) {
+ float u = i;
+ u /= radial_segments;
+
+ x = sin(u * Math_TAU);
+ z = cos(u * Math_TAU);
+
+ if (is_hemisphere && y < 0.0) {
+ points.push_back(Vector3(x * radius * w, 0.0, z * radius * w));
+ normals.push_back(Vector3(0.0, -1.0, 0.0));
+ } else {
+ Vector3 p = Vector3(x * radius * w, y, z * radius * w);
+ points.push_back(p);
+ Vector3 normal = Vector3(x * w * scale, radius * (y / scale), z * w * scale);
+ normals.push_back(normal.normalized());
+ }
+ ADD_TANGENT(z, 0.0, -x, 1.0)
+ uvs.push_back(Vector2(u, v));
+ if (p_add_uv2) {
+ float w_h = w * 2.0 * center_h;
+ uv2s.push_back(Vector2(center_h + ((u - 0.5) * w_h), v * height_v));
+ }
+ point++;
+
+ if (i > 0 && j > 0) {
+ indices.push_back(prevrow + i - 1);
+ indices.push_back(prevrow + i);
+ indices.push_back(thisrow + i - 1);
+
+ indices.push_back(prevrow + i);
+ indices.push_back(thisrow + i);
+ indices.push_back(thisrow + i - 1);
+ }
+ }
+
+ prevrow = thisrow;
+ thisrow = point;
+ }
+
+ p_arr[RS::ARRAY_VERTEX] = points;
+ p_arr[RS::ARRAY_NORMAL] = normals;
+ p_arr[RS::ARRAY_TANGENT] = tangents;
+ p_arr[RS::ARRAY_TEX_UV] = uvs;
+ if (p_add_uv2) {
+ p_arr[RS::ARRAY_TEX_UV2] = uv2s;
+ }
+ p_arr[RS::ARRAY_INDEX] = indices;
+}
+
+void SphereMesh::_bind_methods() {
+ ClassDB::bind_method(D_METHOD("set_radius", "radius"), &SphereMesh::set_radius);
+ ClassDB::bind_method(D_METHOD("get_radius"), &SphereMesh::get_radius);
+ ClassDB::bind_method(D_METHOD("set_height", "height"), &SphereMesh::set_height);
+ ClassDB::bind_method(D_METHOD("get_height"), &SphereMesh::get_height);
+
+ ClassDB::bind_method(D_METHOD("set_radial_segments", "radial_segments"), &SphereMesh::set_radial_segments);
+ ClassDB::bind_method(D_METHOD("get_radial_segments"), &SphereMesh::get_radial_segments);
+ ClassDB::bind_method(D_METHOD("set_rings", "rings"), &SphereMesh::set_rings);
+ ClassDB::bind_method(D_METHOD("get_rings"), &SphereMesh::get_rings);
+
+ ClassDB::bind_method(D_METHOD("set_is_hemisphere", "is_hemisphere"), &SphereMesh::set_is_hemisphere);
+ ClassDB::bind_method(D_METHOD("get_is_hemisphere"), &SphereMesh::get_is_hemisphere);
+
+ ADD_PROPERTY(PropertyInfo(Variant::FLOAT, "radius", PROPERTY_HINT_RANGE, "0.001,100.0,0.001,or_greater,suffix:m"), "set_radius", "get_radius");
+ ADD_PROPERTY(PropertyInfo(Variant::FLOAT, "height", PROPERTY_HINT_RANGE, "0.001,100.0,0.001,or_greater,suffix:m"), "set_height", "get_height");
+ ADD_PROPERTY(PropertyInfo(Variant::INT, "radial_segments", PROPERTY_HINT_RANGE, "1,100,1,or_greater"), "set_radial_segments", "get_radial_segments");
+ ADD_PROPERTY(PropertyInfo(Variant::INT, "rings", PROPERTY_HINT_RANGE, "1,100,1,or_greater"), "set_rings", "get_rings");
+ ADD_PROPERTY(PropertyInfo(Variant::BOOL, "is_hemisphere"), "set_is_hemisphere", "get_is_hemisphere");
+}
+
+void SphereMesh::set_radius(const float p_radius) {
+ radius = p_radius;
+ _update_lightmap_size();
+ _request_update();
+}
+
+float SphereMesh::get_radius() const {
+ return radius;
+}
+
+void SphereMesh::set_height(const float p_height) {
+ height = p_height;
+ _update_lightmap_size();
+ _request_update();
+}
+
+float SphereMesh::get_height() const {
+ return height;
+}
+
+void SphereMesh::set_radial_segments(const int p_radial_segments) {
+ radial_segments = p_radial_segments > 4 ? p_radial_segments : 4;
+ _request_update();
+}
+
+int SphereMesh::get_radial_segments() const {
+ return radial_segments;
+}
+
+void SphereMesh::set_rings(const int p_rings) {
+ ERR_FAIL_COND(p_rings < 1);
+ rings = p_rings;
+ _request_update();
+}
+
+int SphereMesh::get_rings() const {
+ return rings;
+}
+
+void SphereMesh::set_is_hemisphere(const bool p_is_hemisphere) {
+ is_hemisphere = p_is_hemisphere;
+ _update_lightmap_size();
+ _request_update();
+}
+
+bool SphereMesh::get_is_hemisphere() const {
+ return is_hemisphere;
+}
+
+SphereMesh::SphereMesh() {}
+
+/**
+ TorusMesh
+*/
+
+void TorusMesh::_update_lightmap_size() {
+ if (get_add_uv2()) {
+ // size must have changed, update lightmap size hint
+ Size2i _lightmap_size_hint;
+ float texel_size = get_lightmap_texel_size();
+ float padding = get_uv2_padding();
+
+ float min_radius = inner_radius;
+ float max_radius = outer_radius;
+
+ if (min_radius > max_radius) {
+ SWAP(min_radius, max_radius);
+ }
+
+ float radius = (max_radius - min_radius) * 0.5;
+
+ float _width = max_radius * Math_TAU;
+ _lightmap_size_hint.x = MAX(1.0, (_width / texel_size) + padding);
+ float _height = radius * Math_TAU;
+ _lightmap_size_hint.y = MAX(1.0, (_height / texel_size) + padding);
+
+ set_lightmap_size_hint(_lightmap_size_hint);
+ }
+}
+
+void TorusMesh::_create_mesh_array(Array &p_arr) const {
+ // set our bounding box
+
+ Vector<Vector3> points;
+ Vector<Vector3> normals;
+ Vector<float> tangents;
+ Vector<Vector2> uvs;
+ Vector<Vector2> uv2s;
+ Vector<int> indices;
+
+#define ADD_TANGENT(m_x, m_y, m_z, m_d) \
+ tangents.push_back(m_x); \
+ tangents.push_back(m_y); \
+ tangents.push_back(m_z); \
+ tangents.push_back(m_d);
+
+ ERR_FAIL_COND_MSG(inner_radius == outer_radius, "Inner radius and outer radius cannot be the same.");
+
+ float min_radius = inner_radius;
+ float max_radius = outer_radius;
+
+ if (min_radius > max_radius) {
+ SWAP(min_radius, max_radius);
+ }
+
+ float radius = (max_radius - min_radius) * 0.5;
+
+ // Only used if we calculate UV2
+ bool _add_uv2 = get_add_uv2();
+ float texel_size = get_lightmap_texel_size();
+ float _uv2_padding = get_uv2_padding() * texel_size;
+
+ float horizontal_total = max_radius * Math_TAU + _uv2_padding;
+ float max_h = max_radius * Math_TAU / horizontal_total;
+ float delta_h = (max_radius - min_radius) * Math_TAU / horizontal_total;
+
+ float height_v = radius * Math_TAU / (radius * Math_TAU + _uv2_padding);
+
+ for (int i = 0; i <= rings; i++) {
+ int prevrow = (i - 1) * (ring_segments + 1);
+ int thisrow = i * (ring_segments + 1);
+ float inci = float(i) / rings;
+ float angi = inci * Math_TAU;
+
+ Vector2 normali = Vector2(-Math::sin(angi), -Math::cos(angi));
+
+ for (int j = 0; j <= ring_segments; j++) {
+ float incj = float(j) / ring_segments;
+ float angj = incj * Math_TAU;
+
+ Vector2 normalj = Vector2(-Math::cos(angj), Math::sin(angj));
+ Vector2 normalk = normalj * radius + Vector2(min_radius + radius, 0);
+
+ float offset_h = 0.5 * (1.0 - normalj.x) * delta_h;
+ float adj_h = max_h - offset_h;
+ offset_h *= 0.5;
+
+ points.push_back(Vector3(normali.x * normalk.x, normalk.y, normali.y * normalk.x));
+ normals.push_back(Vector3(normali.x * normalj.x, normalj.y, normali.y * normalj.x));
+ ADD_TANGENT(-Math::cos(angi), 0.0, Math::sin(angi), 1.0);
+ uvs.push_back(Vector2(inci, incj));
+ if (_add_uv2) {
+ uv2s.push_back(Vector2(offset_h + inci * adj_h, incj * height_v));
+ }
+
+ if (i > 0 && j > 0) {
+ indices.push_back(thisrow + j - 1);
+ indices.push_back(prevrow + j);
+ indices.push_back(prevrow + j - 1);
+
+ indices.push_back(thisrow + j - 1);
+ indices.push_back(thisrow + j);
+ indices.push_back(prevrow + j);
+ }
+ }
+ }
+
+ p_arr[RS::ARRAY_VERTEX] = points;
+ p_arr[RS::ARRAY_NORMAL] = normals;
+ p_arr[RS::ARRAY_TANGENT] = tangents;
+ p_arr[RS::ARRAY_TEX_UV] = uvs;
+ if (_add_uv2) {
+ p_arr[RS::ARRAY_TEX_UV2] = uv2s;
+ }
+ p_arr[RS::ARRAY_INDEX] = indices;
+}
+
+void TorusMesh::_bind_methods() {
+ ClassDB::bind_method(D_METHOD("set_inner_radius", "radius"), &TorusMesh::set_inner_radius);
+ ClassDB::bind_method(D_METHOD("get_inner_radius"), &TorusMesh::get_inner_radius);
+
+ ClassDB::bind_method(D_METHOD("set_outer_radius", "radius"), &TorusMesh::set_outer_radius);
+ ClassDB::bind_method(D_METHOD("get_outer_radius"), &TorusMesh::get_outer_radius);
+
+ ClassDB::bind_method(D_METHOD("set_rings", "rings"), &TorusMesh::set_rings);
+ ClassDB::bind_method(D_METHOD("get_rings"), &TorusMesh::get_rings);
+
+ ClassDB::bind_method(D_METHOD("set_ring_segments", "rings"), &TorusMesh::set_ring_segments);
+ ClassDB::bind_method(D_METHOD("get_ring_segments"), &TorusMesh::get_ring_segments);
+
+ ADD_PROPERTY(PropertyInfo(Variant::FLOAT, "inner_radius", PROPERTY_HINT_RANGE, "0.001,1000.0,0.001,or_greater,exp"), "set_inner_radius", "get_inner_radius");
+ ADD_PROPERTY(PropertyInfo(Variant::FLOAT, "outer_radius", PROPERTY_HINT_RANGE, "0.001,1000.0,0.001,or_greater,exp"), "set_outer_radius", "get_outer_radius");
+ ADD_PROPERTY(PropertyInfo(Variant::INT, "rings", PROPERTY_HINT_RANGE, "3,128,1,or_greater"), "set_rings", "get_rings");
+ ADD_PROPERTY(PropertyInfo(Variant::INT, "ring_segments", PROPERTY_HINT_RANGE, "3,64,1,or_greater"), "set_ring_segments", "get_ring_segments");
+}
+
+void TorusMesh::set_inner_radius(const float p_inner_radius) {
+ inner_radius = p_inner_radius;
+ _request_update();
+}
+
+float TorusMesh::get_inner_radius() const {
+ return inner_radius;
+}
+
+void TorusMesh::set_outer_radius(const float p_outer_radius) {
+ outer_radius = p_outer_radius;
+ _request_update();
+}
+
+float TorusMesh::get_outer_radius() const {
+ return outer_radius;
+}
+
+void TorusMesh::set_rings(const int p_rings) {
+ ERR_FAIL_COND(p_rings < 3);
+ rings = p_rings;
+ _request_update();
+}
+
+int TorusMesh::get_rings() const {
+ return rings;
+}
+
+void TorusMesh::set_ring_segments(const int p_ring_segments) {
+ ERR_FAIL_COND(p_ring_segments < 3);
+ ring_segments = p_ring_segments;
+ _request_update();
+}
+
+int TorusMesh::get_ring_segments() const {
+ return ring_segments;
+}
+
+TorusMesh::TorusMesh() {}
+
+/**
+ PointMesh
+*/
+
+void PointMesh::_create_mesh_array(Array &p_arr) const {
+ Vector<Vector3> faces;
+ faces.resize(1);
+ faces.set(0, Vector3(0.0, 0.0, 0.0));
+
+ p_arr[RS::ARRAY_VERTEX] = faces;
+}
+
+PointMesh::PointMesh() {
+ primitive_type = PRIMITIVE_POINTS;
+}
+// TUBE TRAIL
+
+void TubeTrailMesh::set_radius(const float p_radius) {
+ radius = p_radius;
+ _request_update();
+}
+float TubeTrailMesh::get_radius() const {
+ return radius;
+}
+
+void TubeTrailMesh::set_radial_steps(const int p_radial_steps) {
+ ERR_FAIL_COND(p_radial_steps < 3 || p_radial_steps > 128);
+ radial_steps = p_radial_steps;
+ _request_update();
+}
+int TubeTrailMesh::get_radial_steps() const {
+ return radial_steps;
+}
+
+void TubeTrailMesh::set_sections(const int p_sections) {
+ ERR_FAIL_COND(p_sections < 2 || p_sections > 128);
+ sections = p_sections;
+ _request_update();
+}
+int TubeTrailMesh::get_sections() const {
+ return sections;
+}
+
+void TubeTrailMesh::set_section_length(float p_section_length) {
+ section_length = p_section_length;
+ _request_update();
+}
+float TubeTrailMesh::get_section_length() const {
+ return section_length;
+}
+
+void TubeTrailMesh::set_section_rings(const int p_section_rings) {
+ ERR_FAIL_COND(p_section_rings < 1 || p_section_rings > 1024);
+ section_rings = p_section_rings;
+ _request_update();
+}
+int TubeTrailMesh::get_section_rings() const {
+ return section_rings;
+}
+
+void TubeTrailMesh::set_cap_top(bool p_cap_top) {
+ cap_top = p_cap_top;
+ _request_update();
+}
+
+bool TubeTrailMesh::is_cap_top() const {
+ return cap_top;
+}
+
+void TubeTrailMesh::set_cap_bottom(bool p_cap_bottom) {
+ cap_bottom = p_cap_bottom;
+ _request_update();
+}
+
+bool TubeTrailMesh::is_cap_bottom() const {
+ return cap_bottom;
+}
+
+void TubeTrailMesh::set_curve(const Ref<Curve> &p_curve) {
+ if (curve == p_curve) {
+ return;
+ }
+ if (curve.is_valid()) {
+ curve->disconnect_changed(callable_mp(this, &TubeTrailMesh::_curve_changed));
+ }
+ curve = p_curve;
+ if (curve.is_valid()) {
+ curve->connect_changed(callable_mp(this, &TubeTrailMesh::_curve_changed));
+ }
+ _request_update();
+}
+Ref<Curve> TubeTrailMesh::get_curve() const {
+ return curve;
+}
+
+void TubeTrailMesh::_curve_changed() {
+ _request_update();
+}
+int TubeTrailMesh::get_builtin_bind_pose_count() const {
+ return sections + 1;
+}
+
+Transform3D TubeTrailMesh::get_builtin_bind_pose(int p_index) const {
+ float depth = section_length * sections;
+
+ Transform3D xform;
+ xform.origin.y = depth / 2.0 - section_length * float(p_index);
+ xform.origin.y = -xform.origin.y; //bind is an inverse transform, so negate y
+
+ return xform;
+}
+
+void TubeTrailMesh::_create_mesh_array(Array &p_arr) const {
+ // Seeing use case for TubeTrailMesh, no need to do anything more then default UV2 calculation
+
+ PackedVector3Array points;
+ PackedVector3Array normals;
+ PackedFloat32Array tangents;
+ PackedVector2Array uvs;
+ PackedInt32Array bone_indices;
+ PackedFloat32Array bone_weights;
+ PackedInt32Array indices;
+
+ int point = 0;
+
+#define ADD_TANGENT(m_x, m_y, m_z, m_d) \
+ tangents.push_back(m_x); \
+ tangents.push_back(m_y); \
+ tangents.push_back(m_z); \
+ tangents.push_back(m_d);
+
+ int thisrow = 0;
+ int prevrow = 0;
+
+ int total_rings = section_rings * sections;
+ float depth = section_length * sections;
+
+ for (int j = 0; j <= total_rings; j++) {
+ float v = j;
+ v /= total_rings;
+
+ float y = depth * v;
+ y = (depth * 0.5) - y;
+
+ int bone = j / section_rings;
+ float blend = 1.0 - float(j % section_rings) / float(section_rings);
+
+ for (int i = 0; i <= radial_steps; i++) {
+ float u = i;
+ u /= radial_steps;
+
+ float r = radius;
+ if (curve.is_valid() && curve->get_point_count() > 0) {
+ r *= curve->sample_baked(v);
+ }
+ float x = sin(u * Math_TAU);
+ float z = cos(u * Math_TAU);
+
+ Vector3 p = Vector3(x * r, y, z * r);
+ points.push_back(p);
+ normals.push_back(Vector3(x, 0, z));
+ ADD_TANGENT(z, 0.0, -x, 1.0)
+ uvs.push_back(Vector2(u, v * 0.5));
+ point++;
+ {
+ bone_indices.push_back(bone);
+ bone_indices.push_back(MIN(sections, bone + 1));
+ bone_indices.push_back(0);
+ bone_indices.push_back(0);
+
+ bone_weights.push_back(blend);
+ bone_weights.push_back(1.0 - blend);
+ bone_weights.push_back(0);
+ bone_weights.push_back(0);
+ }
+
+ if (i > 0 && j > 0) {
+ indices.push_back(prevrow + i - 1);
+ indices.push_back(prevrow + i);
+ indices.push_back(thisrow + i - 1);
+
+ indices.push_back(prevrow + i);
+ indices.push_back(thisrow + i);
+ indices.push_back(thisrow + i - 1);
+ }
+ }
+
+ prevrow = thisrow;
+ thisrow = point;
+ }
+
+ if (cap_top) {
+ // add top
+ float scale_pos = 1.0;
+ if (curve.is_valid() && curve->get_point_count() > 0) {
+ scale_pos = curve->sample_baked(0);
+ }
+
+ if (scale_pos > CMP_EPSILON) {
+ float y = depth * 0.5;
+
+ thisrow = point;
+ points.push_back(Vector3(0.0, y, 0));
+ normals.push_back(Vector3(0.0, 1.0, 0.0));
+ ADD_TANGENT(1.0, 0.0, 0.0, 1.0)
+ uvs.push_back(Vector2(0.25, 0.75));
+ point++;
+
+ bone_indices.push_back(0);
+ bone_indices.push_back(0);
+ bone_indices.push_back(0);
+ bone_indices.push_back(0);
+
+ bone_weights.push_back(1.0);
+ bone_weights.push_back(0);
+ bone_weights.push_back(0);
+ bone_weights.push_back(0);
+
+ float rm = radius * scale_pos;
+
+ for (int i = 0; i <= radial_steps; i++) {
+ float r = i;
+ r /= radial_steps;
+
+ float x = sin(r * Math_TAU);
+ float z = cos(r * Math_TAU);
+
+ float u = ((x + 1.0) * 0.25);
+ float v = 0.5 + ((z + 1.0) * 0.25);
+
+ Vector3 p = Vector3(x * rm, y, z * rm);
+ points.push_back(p);
+ normals.push_back(Vector3(0.0, 1.0, 0.0));
+ ADD_TANGENT(1.0, 0.0, 0.0, 1.0)
+ uvs.push_back(Vector2(u, v));
+ point++;
+
+ bone_indices.push_back(0);
+ bone_indices.push_back(0);
+ bone_indices.push_back(0);
+ bone_indices.push_back(0);
+
+ bone_weights.push_back(1.0);
+ bone_weights.push_back(0);
+ bone_weights.push_back(0);
+ bone_weights.push_back(0);
+
+ if (i > 0) {
+ indices.push_back(thisrow);
+ indices.push_back(point - 1);
+ indices.push_back(point - 2);
+ }
+ }
+ }
+ }
+
+ if (cap_bottom) {
+ float scale_neg = 1.0;
+ if (curve.is_valid() && curve->get_point_count() > 0) {
+ scale_neg = curve->sample_baked(1.0);
+ }
+
+ if (scale_neg > CMP_EPSILON) {
+ // add bottom
+ float y = depth * -0.5;
+
+ thisrow = point;
+ points.push_back(Vector3(0.0, y, 0.0));
+ normals.push_back(Vector3(0.0, -1.0, 0.0));
+ ADD_TANGENT(1.0, 0.0, 0.0, 1.0)
+ uvs.push_back(Vector2(0.75, 0.75));
+ point++;
+
+ bone_indices.push_back(sections);
+ bone_indices.push_back(0);
+ bone_indices.push_back(0);
+ bone_indices.push_back(0);
+
+ bone_weights.push_back(1.0);
+ bone_weights.push_back(0);
+ bone_weights.push_back(0);
+ bone_weights.push_back(0);
+
+ float rm = radius * scale_neg;
+
+ for (int i = 0; i <= radial_steps; i++) {
+ float r = i;
+ r /= radial_steps;
+
+ float x = sin(r * Math_TAU);
+ float z = cos(r * Math_TAU);
+
+ float u = 0.5 + ((x + 1.0) * 0.25);
+ float v = 1.0 - ((z + 1.0) * 0.25);
+
+ Vector3 p = Vector3(x * rm, y, z * rm);
+ points.push_back(p);
+ normals.push_back(Vector3(0.0, -1.0, 0.0));
+ ADD_TANGENT(1.0, 0.0, 0.0, 1.0)
+ uvs.push_back(Vector2(u, v));
+ point++;
+
+ bone_indices.push_back(sections);
+ bone_indices.push_back(0);
+ bone_indices.push_back(0);
+ bone_indices.push_back(0);
+
+ bone_weights.push_back(1.0);
+ bone_weights.push_back(0);
+ bone_weights.push_back(0);
+ bone_weights.push_back(0);
+
+ if (i > 0) {
+ indices.push_back(thisrow);
+ indices.push_back(point - 2);
+ indices.push_back(point - 1);
+ }
+ }
+ }
+ }
+
+ p_arr[RS::ARRAY_VERTEX] = points;
+ p_arr[RS::ARRAY_NORMAL] = normals;
+ p_arr[RS::ARRAY_TANGENT] = tangents;
+ p_arr[RS::ARRAY_TEX_UV] = uvs;
+ p_arr[RS::ARRAY_BONES] = bone_indices;
+ p_arr[RS::ARRAY_WEIGHTS] = bone_weights;
+ p_arr[RS::ARRAY_INDEX] = indices;
+}
+
+void TubeTrailMesh::_bind_methods() {
+ ClassDB::bind_method(D_METHOD("set_radius", "radius"), &TubeTrailMesh::set_radius);
+ ClassDB::bind_method(D_METHOD("get_radius"), &TubeTrailMesh::get_radius);
+
+ ClassDB::bind_method(D_METHOD("set_radial_steps", "radial_steps"), &TubeTrailMesh::set_radial_steps);
+ ClassDB::bind_method(D_METHOD("get_radial_steps"), &TubeTrailMesh::get_radial_steps);
+
+ ClassDB::bind_method(D_METHOD("set_sections", "sections"), &TubeTrailMesh::set_sections);
+ ClassDB::bind_method(D_METHOD("get_sections"), &TubeTrailMesh::get_sections);
+
+ ClassDB::bind_method(D_METHOD("set_section_length", "section_length"), &TubeTrailMesh::set_section_length);
+ ClassDB::bind_method(D_METHOD("get_section_length"), &TubeTrailMesh::get_section_length);
+
+ ClassDB::bind_method(D_METHOD("set_section_rings", "section_rings"), &TubeTrailMesh::set_section_rings);
+ ClassDB::bind_method(D_METHOD("get_section_rings"), &TubeTrailMesh::get_section_rings);
+
+ ClassDB::bind_method(D_METHOD("set_cap_top", "cap_top"), &TubeTrailMesh::set_cap_top);
+ ClassDB::bind_method(D_METHOD("is_cap_top"), &TubeTrailMesh::is_cap_top);
+
+ ClassDB::bind_method(D_METHOD("set_cap_bottom", "cap_bottom"), &TubeTrailMesh::set_cap_bottom);
+ ClassDB::bind_method(D_METHOD("is_cap_bottom"), &TubeTrailMesh::is_cap_bottom);
+
+ ClassDB::bind_method(D_METHOD("set_curve", "curve"), &TubeTrailMesh::set_curve);
+ ClassDB::bind_method(D_METHOD("get_curve"), &TubeTrailMesh::get_curve);
+
+ ADD_PROPERTY(PropertyInfo(Variant::FLOAT, "radius", PROPERTY_HINT_RANGE, "0.001,100.0,0.001,or_greater,suffix:m"), "set_radius", "get_radius");
+
+ ADD_PROPERTY(PropertyInfo(Variant::INT, "radial_steps", PROPERTY_HINT_RANGE, "3,128,1"), "set_radial_steps", "get_radial_steps");
+ ADD_PROPERTY(PropertyInfo(Variant::INT, "sections", PROPERTY_HINT_RANGE, "2,128,1"), "set_sections", "get_sections");
+
+ ADD_PROPERTY(PropertyInfo(Variant::FLOAT, "section_length", PROPERTY_HINT_RANGE, "0.001,1024.0,0.001,or_greater,suffix:m"), "set_section_length", "get_section_length");
+
+ ADD_PROPERTY(PropertyInfo(Variant::INT, "section_rings", PROPERTY_HINT_RANGE, "1,128,1"), "set_section_rings", "get_section_rings");
+
+ ADD_PROPERTY(PropertyInfo(Variant::BOOL, "cap_top"), "set_cap_top", "is_cap_top");
+ ADD_PROPERTY(PropertyInfo(Variant::BOOL, "cap_bottom"), "set_cap_bottom", "is_cap_bottom");
+
+ ADD_PROPERTY(PropertyInfo(Variant::OBJECT, "curve", PROPERTY_HINT_RESOURCE_TYPE, "Curve"), "set_curve", "get_curve");
+}
+
+TubeTrailMesh::TubeTrailMesh() {
+}
+
+// RIBBON TRAIL
+
+void RibbonTrailMesh::set_shape(Shape p_shape) {
+ shape = p_shape;
+ _request_update();
+}
+RibbonTrailMesh::Shape RibbonTrailMesh::get_shape() const {
+ return shape;
+}
+
+void RibbonTrailMesh::set_size(const float p_size) {
+ size = p_size;
+ _request_update();
+}
+float RibbonTrailMesh::get_size() const {
+ return size;
+}
+
+void RibbonTrailMesh::set_sections(const int p_sections) {
+ ERR_FAIL_COND(p_sections < 2 || p_sections > 128);
+ sections = p_sections;
+ _request_update();
+}
+int RibbonTrailMesh::get_sections() const {
+ return sections;
+}
+
+void RibbonTrailMesh::set_section_length(float p_section_length) {
+ section_length = p_section_length;
+ _request_update();
+}
+float RibbonTrailMesh::get_section_length() const {
+ return section_length;
+}
+
+void RibbonTrailMesh::set_section_segments(const int p_section_segments) {
+ ERR_FAIL_COND(p_section_segments < 1 || p_section_segments > 1024);
+ section_segments = p_section_segments;
+ _request_update();
+}
+int RibbonTrailMesh::get_section_segments() const {
+ return section_segments;
+}
+
+void RibbonTrailMesh::set_curve(const Ref<Curve> &p_curve) {
+ if (curve == p_curve) {
+ return;
+ }
+ if (curve.is_valid()) {
+ curve->disconnect_changed(callable_mp(this, &RibbonTrailMesh::_curve_changed));
+ }
+ curve = p_curve;
+ if (curve.is_valid()) {
+ curve->connect_changed(callable_mp(this, &RibbonTrailMesh::_curve_changed));
+ }
+ _request_update();
+}
+Ref<Curve> RibbonTrailMesh::get_curve() const {
+ return curve;
+}
+
+void RibbonTrailMesh::_curve_changed() {
+ _request_update();
+}
+int RibbonTrailMesh::get_builtin_bind_pose_count() const {
+ return sections + 1;
+}
+
+Transform3D RibbonTrailMesh::get_builtin_bind_pose(int p_index) const {
+ float depth = section_length * sections;
+
+ Transform3D xform;
+ xform.origin.y = depth / 2.0 - section_length * float(p_index);
+ xform.origin.y = -xform.origin.y; //bind is an inverse transform, so negate y
+
+ return xform;
+}
+
+void RibbonTrailMesh::_create_mesh_array(Array &p_arr) const {
+ // Seeing use case of ribbon trail mesh, no need to implement special UV2 calculation
+
+ PackedVector3Array points;
+ PackedVector3Array normals;
+ PackedFloat32Array tangents;
+ PackedVector2Array uvs;
+ PackedInt32Array bone_indices;
+ PackedFloat32Array bone_weights;
+ PackedInt32Array indices;
+
+#define ADD_TANGENT(m_x, m_y, m_z, m_d) \
+ tangents.push_back(m_x); \
+ tangents.push_back(m_y); \
+ tangents.push_back(m_z); \
+ tangents.push_back(m_d);
+
+ int total_segments = section_segments * sections;
+ float depth = section_length * sections;
+
+ for (int j = 0; j <= total_segments; j++) {
+ float v = j;
+ v /= total_segments;
+
+ float y = depth * v;
+ y = (depth * 0.5) - y;
+
+ int bone = j / section_segments;
+ float blend = 1.0 - float(j % section_segments) / float(section_segments);
+
+ float s = size;
+
+ if (curve.is_valid() && curve->get_point_count() > 0) {
+ s *= curve->sample_baked(v);
+ }
+
+ points.push_back(Vector3(-s * 0.5, y, 0));
+ points.push_back(Vector3(+s * 0.5, y, 0));
+ if (shape == SHAPE_CROSS) {
+ points.push_back(Vector3(0, y, -s * 0.5));
+ points.push_back(Vector3(0, y, +s * 0.5));
+ }
+
+ normals.push_back(Vector3(0, 0, 1));
+ normals.push_back(Vector3(0, 0, 1));
+ if (shape == SHAPE_CROSS) {
+ normals.push_back(Vector3(1, 0, 0));
+ normals.push_back(Vector3(1, 0, 0));
+ }
+
+ uvs.push_back(Vector2(0, v));
+ uvs.push_back(Vector2(1, v));
+ if (shape == SHAPE_CROSS) {
+ uvs.push_back(Vector2(0, v));
+ uvs.push_back(Vector2(1, v));
+ }
+
+ ADD_TANGENT(0.0, 1.0, 0.0, 1.0)
+ ADD_TANGENT(0.0, 1.0, 0.0, 1.0)
+ if (shape == SHAPE_CROSS) {
+ ADD_TANGENT(0.0, 1.0, 0.0, 1.0)
+ ADD_TANGENT(0.0, 1.0, 0.0, 1.0)
+ }
+
+ for (int i = 0; i < (shape == SHAPE_CROSS ? 4 : 2); i++) {
+ bone_indices.push_back(bone);
+ bone_indices.push_back(MIN(sections, bone + 1));
+ bone_indices.push_back(0);
+ bone_indices.push_back(0);
+
+ bone_weights.push_back(blend);
+ bone_weights.push_back(1.0 - blend);
+ bone_weights.push_back(0);
+ bone_weights.push_back(0);
+ }
+
+ if (j > 0) {
+ if (shape == SHAPE_CROSS) {
+ int base = j * 4 - 4;
+ indices.push_back(base + 0);
+ indices.push_back(base + 1);
+ indices.push_back(base + 4);
+
+ indices.push_back(base + 1);
+ indices.push_back(base + 5);
+ indices.push_back(base + 4);
+
+ indices.push_back(base + 2);
+ indices.push_back(base + 3);
+ indices.push_back(base + 6);
+
+ indices.push_back(base + 3);
+ indices.push_back(base + 7);
+ indices.push_back(base + 6);
+ } else {
+ int base = j * 2 - 2;
+ indices.push_back(base + 0);
+ indices.push_back(base + 1);
+ indices.push_back(base + 2);
+
+ indices.push_back(base + 1);
+ indices.push_back(base + 3);
+ indices.push_back(base + 2);
+ }
+ }
+ }
+
+ p_arr[RS::ARRAY_VERTEX] = points;
+ p_arr[RS::ARRAY_NORMAL] = normals;
+ p_arr[RS::ARRAY_TANGENT] = tangents;
+ p_arr[RS::ARRAY_TEX_UV] = uvs;
+ p_arr[RS::ARRAY_BONES] = bone_indices;
+ p_arr[RS::ARRAY_WEIGHTS] = bone_weights;
+ p_arr[RS::ARRAY_INDEX] = indices;
+}
+
+void RibbonTrailMesh::_bind_methods() {
+ ClassDB::bind_method(D_METHOD("set_size", "size"), &RibbonTrailMesh::set_size);
+ ClassDB::bind_method(D_METHOD("get_size"), &RibbonTrailMesh::get_size);
+
+ ClassDB::bind_method(D_METHOD("set_sections", "sections"), &RibbonTrailMesh::set_sections);
+ ClassDB::bind_method(D_METHOD("get_sections"), &RibbonTrailMesh::get_sections);
+
+ ClassDB::bind_method(D_METHOD("set_section_length", "section_length"), &RibbonTrailMesh::set_section_length);
+ ClassDB::bind_method(D_METHOD("get_section_length"), &RibbonTrailMesh::get_section_length);
+
+ ClassDB::bind_method(D_METHOD("set_section_segments", "section_segments"), &RibbonTrailMesh::set_section_segments);
+ ClassDB::bind_method(D_METHOD("get_section_segments"), &RibbonTrailMesh::get_section_segments);
+
+ ClassDB::bind_method(D_METHOD("set_curve", "curve"), &RibbonTrailMesh::set_curve);
+ ClassDB::bind_method(D_METHOD("get_curve"), &RibbonTrailMesh::get_curve);
+
+ ClassDB::bind_method(D_METHOD("set_shape", "shape"), &RibbonTrailMesh::set_shape);
+ ClassDB::bind_method(D_METHOD("get_shape"), &RibbonTrailMesh::get_shape);
+
+ ADD_PROPERTY(PropertyInfo(Variant::INT, "shape", PROPERTY_HINT_ENUM, "Flat,Cross"), "set_shape", "get_shape");
+ ADD_PROPERTY(PropertyInfo(Variant::FLOAT, "size", PROPERTY_HINT_RANGE, "0.001,100.0,0.001,or_greater,suffix:m"), "set_size", "get_size");
+ ADD_PROPERTY(PropertyInfo(Variant::INT, "sections", PROPERTY_HINT_RANGE, "2,128,1"), "set_sections", "get_sections");
+ ADD_PROPERTY(PropertyInfo(Variant::FLOAT, "section_length", PROPERTY_HINT_RANGE, "0.001,1024.0,0.001,or_greater,suffix:m"), "set_section_length", "get_section_length");
+ ADD_PROPERTY(PropertyInfo(Variant::INT, "section_segments", PROPERTY_HINT_RANGE, "1,128,1"), "set_section_segments", "get_section_segments");
+ ADD_PROPERTY(PropertyInfo(Variant::OBJECT, "curve", PROPERTY_HINT_RESOURCE_TYPE, "Curve"), "set_curve", "get_curve");
+
+ BIND_ENUM_CONSTANT(SHAPE_FLAT)
+ BIND_ENUM_CONSTANT(SHAPE_CROSS)
+}
+
+RibbonTrailMesh::RibbonTrailMesh() {
+}
+
+/*************************************************************************/
+/* TextMesh */
+/*************************************************************************/
+
+void TextMesh::_generate_glyph_mesh_data(const GlyphMeshKey &p_key, const Glyph &p_gl) const {
+ if (cache.has(p_key)) {
+ return;
+ }
+
+ GlyphMeshData &gl_data = cache[p_key];
+
+ Dictionary d = TS->font_get_glyph_contours(p_gl.font_rid, p_gl.font_size, p_gl.index);
+
+ PackedVector3Array points = d["points"];
+ PackedInt32Array contours = d["contours"];
+ bool orientation = d["orientation"];
+
+ if (points.size() < 3 || contours.size() < 1) {
+ return; // No full contours, only glyph control points (or nothing), ignore.
+ }
+
+ // Approximate Bezier curves as polygons.
+ // See https://freetype.org/freetype2/docs/glyphs/glyphs-6.html, for more info.
+ for (int i = 0; i < contours.size(); i++) {
+ int32_t start = (i == 0) ? 0 : (contours[i - 1] + 1);
+ int32_t end = contours[i];
+ Vector<ContourPoint> polygon;
+
+ for (int32_t j = start; j <= end; j++) {
+ if (points[j].z == TextServer::CONTOUR_CURVE_TAG_ON) {
+ // Point on the curve.
+ Vector2 p = Vector2(points[j].x, points[j].y) * pixel_size;
+ polygon.push_back(ContourPoint(p, true));
+ } else if (points[j].z == TextServer::CONTOUR_CURVE_TAG_OFF_CONIC) {
+ // Conic Bezier arc.
+ int32_t next = (j == end) ? start : (j + 1);
+ int32_t prev = (j == start) ? end : (j - 1);
+ Vector2 p0;
+ Vector2 p1 = Vector2(points[j].x, points[j].y);
+ Vector2 p2;
+
+ // For successive conic OFF points add a virtual ON point in the middle.
+ if (points[prev].z == TextServer::CONTOUR_CURVE_TAG_OFF_CONIC) {
+ p0 = (Vector2(points[prev].x, points[prev].y) + Vector2(points[j].x, points[j].y)) / 2.0;
+ } else if (points[prev].z == TextServer::CONTOUR_CURVE_TAG_ON) {
+ p0 = Vector2(points[prev].x, points[prev].y);
+ } else {
+ ERR_FAIL_MSG(vformat("Invalid conic arc point sequence at %d:%d", i, j));
+ }
+ if (points[next].z == TextServer::CONTOUR_CURVE_TAG_OFF_CONIC) {
+ p2 = (Vector2(points[j].x, points[j].y) + Vector2(points[next].x, points[next].y)) / 2.0;
+ } else if (points[next].z == TextServer::CONTOUR_CURVE_TAG_ON) {
+ p2 = Vector2(points[next].x, points[next].y);
+ } else {
+ ERR_FAIL_MSG(vformat("Invalid conic arc point sequence at %d:%d", i, j));
+ }
+
+ real_t step = CLAMP(curve_step / (p0 - p2).length(), 0.01, 0.5);
+ real_t t = step;
+ while (t < 1.0) {
+ real_t omt = (1.0 - t);
+ real_t omt2 = omt * omt;
+ real_t t2 = t * t;
+
+ Vector2 point = p1 + omt2 * (p0 - p1) + t2 * (p2 - p1);
+ Vector2 p = point * pixel_size;
+ polygon.push_back(ContourPoint(p, false));
+ t += step;
+ }
+ } else if (points[j].z == TextServer::CONTOUR_CURVE_TAG_OFF_CUBIC) {
+ // Cubic Bezier arc.
+ int32_t cur = j;
+ int32_t next1 = (j == end) ? start : (j + 1);
+ int32_t next2 = (next1 == end) ? start : (next1 + 1);
+ int32_t prev = (j == start) ? end : (j - 1);
+
+ // There must be exactly two OFF points and two ON points for each cubic arc.
+ if (points[prev].z != TextServer::CONTOUR_CURVE_TAG_ON) {
+ cur = (cur == 0) ? end : cur - 1;
+ next1 = (next1 == 0) ? end : next1 - 1;
+ next2 = (next2 == 0) ? end : next2 - 1;
+ prev = (prev == 0) ? end : prev - 1;
+ } else {
+ j++;
+ }
+ ERR_FAIL_COND_MSG(points[prev].z != TextServer::CONTOUR_CURVE_TAG_ON, vformat("Invalid cubic arc point sequence at %d:%d", i, prev));
+ ERR_FAIL_COND_MSG(points[cur].z != TextServer::CONTOUR_CURVE_TAG_OFF_CUBIC, vformat("Invalid cubic arc point sequence at %d:%d", i, cur));
+ ERR_FAIL_COND_MSG(points[next1].z != TextServer::CONTOUR_CURVE_TAG_OFF_CUBIC, vformat("Invalid cubic arc point sequence at %d:%d", i, next1));
+ ERR_FAIL_COND_MSG(points[next2].z != TextServer::CONTOUR_CURVE_TAG_ON, vformat("Invalid cubic arc point sequence at %d:%d", i, next2));
+
+ Vector2 p0 = Vector2(points[prev].x, points[prev].y);
+ Vector2 p1 = Vector2(points[cur].x, points[cur].y);
+ Vector2 p2 = Vector2(points[next1].x, points[next1].y);
+ Vector2 p3 = Vector2(points[next2].x, points[next2].y);
+
+ real_t step = CLAMP(curve_step / (p0 - p3).length(), 0.01, 0.5);
+ real_t t = step;
+ while (t < 1.0) {
+ Vector2 point = p0.bezier_interpolate(p1, p2, p3, t);
+ Vector2 p = point * pixel_size;
+ polygon.push_back(ContourPoint(p, false));
+ t += step;
+ }
+ } else {
+ ERR_FAIL_MSG(vformat("Unknown point tag at %d:%d", i, j));
+ }
+ }
+
+ if (polygon.size() < 3) {
+ continue; // Skip glyph control points.
+ }
+
+ if (!orientation) {
+ polygon.reverse();
+ }
+
+ gl_data.contours.push_back(polygon);
+ }
+
+ // Calculate bounds.
+ List<TPPLPoly> in_poly;
+ for (int i = 0; i < gl_data.contours.size(); i++) {
+ TPPLPoly inp;
+ inp.Init(gl_data.contours[i].size());
+ real_t length = 0.0;
+ for (int j = 0; j < gl_data.contours[i].size(); j++) {
+ int next = (j + 1 == gl_data.contours[i].size()) ? 0 : (j + 1);
+
+ gl_data.min_p.x = MIN(gl_data.min_p.x, gl_data.contours[i][j].point.x);
+ gl_data.min_p.y = MIN(gl_data.min_p.y, gl_data.contours[i][j].point.y);
+ gl_data.max_p.x = MAX(gl_data.max_p.x, gl_data.contours[i][j].point.x);
+ gl_data.max_p.y = MAX(gl_data.max_p.y, gl_data.contours[i][j].point.y);
+ length += (gl_data.contours[i][next].point - gl_data.contours[i][j].point).length();
+
+ inp.GetPoint(j) = gl_data.contours[i][j].point;
+ }
+ TPPLOrientation poly_orient = inp.GetOrientation();
+ if (poly_orient == TPPL_ORIENTATION_CW) {
+ inp.SetHole(true);
+ }
+ in_poly.push_back(inp);
+ gl_data.contours_info.push_back(ContourInfo(length, poly_orient == TPPL_ORIENTATION_CCW));
+ }
+
+ TPPLPartition tpart;
+
+ //Decompose and triangulate.
+ List<TPPLPoly> out_poly;
+ if (tpart.ConvexPartition_HM(&in_poly, &out_poly) == 0) {
+ ERR_FAIL_MSG("Convex decomposing failed. Make sure the font doesn't contain self-intersecting lines, as these are not supported in TextMesh.");
+ }
+ List<TPPLPoly> out_tris;
+ for (List<TPPLPoly>::Element *I = out_poly.front(); I; I = I->next()) {
+ if (tpart.Triangulate_OPT(&(I->get()), &out_tris) == 0) {
+ ERR_FAIL_MSG("Triangulation failed. Make sure the font doesn't contain self-intersecting lines, as these are not supported in TextMesh.");
+ }
+ }
+
+ for (List<TPPLPoly>::Element *I = out_tris.front(); I; I = I->next()) {
+ TPPLPoly &tp = I->get();
+ ERR_FAIL_COND(tp.GetNumPoints() != 3); // Triangles only.
+
+ for (int i = 0; i < 3; i++) {
+ gl_data.triangles.push_back(Vector2(tp.GetPoint(i).x, tp.GetPoint(i).y));
+ }
+ }
+}
+
+void TextMesh::_create_mesh_array(Array &p_arr) const {
+ Ref<Font> font = _get_font_or_default();
+ ERR_FAIL_COND(font.is_null());
+
+ if (dirty_cache) {
+ cache.clear();
+ dirty_cache = false;
+ }
+
+ // When a shaped text is invalidated by an external source, we want to reshape it.
+ if (!TS->shaped_text_is_ready(text_rid)) {
+ dirty_text = true;
+ }
+
+ for (const RID &line_rid : lines_rid) {
+ if (!TS->shaped_text_is_ready(line_rid)) {
+ dirty_lines = true;
+ break;
+ }
+ }
+
+ // Update text buffer.
+ if (dirty_text) {
+ TS->shaped_text_clear(text_rid);
+ TS->shaped_text_set_direction(text_rid, text_direction);
+
+ String txt = (uppercase) ? TS->string_to_upper(xl_text, language) : xl_text;
+ TS->shaped_text_add_string(text_rid, txt, font->get_rids(), font_size, font->get_opentype_features(), language);
+
+ TypedArray<Vector3i> stt;
+ if (st_parser == TextServer::STRUCTURED_TEXT_CUSTOM) {
+ GDVIRTUAL_CALL(_structured_text_parser, st_args, txt, stt);
+ } else {
+ stt = TS->parse_structured_text(st_parser, st_args, txt);
+ }
+ TS->shaped_text_set_bidi_override(text_rid, stt);
+
+ dirty_text = false;
+ dirty_font = false;
+ dirty_lines = true;
+ } else if (dirty_font) {
+ int spans = TS->shaped_get_span_count(text_rid);
+ for (int i = 0; i < spans; i++) {
+ TS->shaped_set_span_update_font(text_rid, i, font->get_rids(), font_size, font->get_opentype_features());
+ }
+
+ dirty_font = false;
+ dirty_lines = true;
+ }
+
+ if (dirty_lines) {
+ for (int i = 0; i < lines_rid.size(); i++) {
+ TS->free_rid(lines_rid[i]);
+ }
+ lines_rid.clear();
+
+ BitField<TextServer::LineBreakFlag> autowrap_flags = TextServer::BREAK_MANDATORY;
+ switch (autowrap_mode) {
+ case TextServer::AUTOWRAP_WORD_SMART:
+ autowrap_flags = TextServer::BREAK_WORD_BOUND | TextServer::BREAK_ADAPTIVE | TextServer::BREAK_MANDATORY;
+ break;
+ case TextServer::AUTOWRAP_WORD:
+ autowrap_flags = TextServer::BREAK_WORD_BOUND | TextServer::BREAK_MANDATORY;
+ break;
+ case TextServer::AUTOWRAP_ARBITRARY:
+ autowrap_flags = TextServer::BREAK_GRAPHEME_BOUND | TextServer::BREAK_MANDATORY;
+ break;
+ case TextServer::AUTOWRAP_OFF:
+ break;
+ }
+ PackedInt32Array line_breaks = TS->shaped_text_get_line_breaks(text_rid, width, 0, autowrap_flags);
+
+ float max_line_w = 0.0;
+ for (int i = 0; i < line_breaks.size(); i = i + 2) {
+ RID line = TS->shaped_text_substr(text_rid, line_breaks[i], line_breaks[i + 1] - line_breaks[i]);
+ max_line_w = MAX(max_line_w, TS->shaped_text_get_width(line));
+ lines_rid.push_back(line);
+ }
+
+ if (horizontal_alignment == HORIZONTAL_ALIGNMENT_FILL) {
+ int jst_to_line = lines_rid.size();
+ if (lines_rid.size() == 1 && jst_flags.has_flag(TextServer::JUSTIFICATION_DO_NOT_SKIP_SINGLE_LINE)) {
+ jst_to_line = lines_rid.size();
+ } else {
+ if (jst_flags.has_flag(TextServer::JUSTIFICATION_SKIP_LAST_LINE)) {
+ jst_to_line = lines_rid.size() - 1;
+ }
+ if (jst_flags.has_flag(TextServer::JUSTIFICATION_SKIP_LAST_LINE_WITH_VISIBLE_CHARS)) {
+ for (int i = lines_rid.size() - 1; i >= 0; i--) {
+ if (TS->shaped_text_has_visible_chars(lines_rid[i])) {
+ jst_to_line = i;
+ break;
+ }
+ }
+ }
+ }
+ for (int i = 0; i < jst_to_line; i++) {
+ TS->shaped_text_fit_to_width(lines_rid[i], (width > 0) ? width : max_line_w, jst_flags);
+ }
+ }
+ dirty_lines = false;
+ }
+
+ float total_h = 0.0;
+ for (int i = 0; i < lines_rid.size(); i++) {
+ total_h += (TS->shaped_text_get_size(lines_rid[i]).y + line_spacing) * pixel_size;
+ }
+
+ float vbegin = 0.0;
+ switch (vertical_alignment) {
+ case VERTICAL_ALIGNMENT_FILL:
+ case VERTICAL_ALIGNMENT_TOP: {
+ // Nothing.
+ } break;
+ case VERTICAL_ALIGNMENT_CENTER: {
+ vbegin = (total_h - line_spacing * pixel_size) / 2.0;
+ } break;
+ case VERTICAL_ALIGNMENT_BOTTOM: {
+ vbegin = (total_h - line_spacing * pixel_size);
+ } break;
+ }
+
+ Vector<Vector3> vertices;
+ Vector<Vector3> normals;
+ Vector<float> tangents;
+ Vector<Vector2> uvs;
+ Vector<int32_t> indices;
+
+ Vector2 min_p = Vector2(INFINITY, INFINITY);
+ Vector2 max_p = Vector2(-INFINITY, -INFINITY);
+
+ int32_t p_size = 0;
+ int32_t i_size = 0;
+
+ Vector2 offset = Vector2(0, vbegin + lbl_offset.y * pixel_size);
+ for (int i = 0; i < lines_rid.size(); i++) {
+ const Glyph *glyphs = TS->shaped_text_get_glyphs(lines_rid[i]);
+ int gl_size = TS->shaped_text_get_glyph_count(lines_rid[i]);
+ float line_width = TS->shaped_text_get_width(lines_rid[i]) * pixel_size;
+
+ switch (horizontal_alignment) {
+ case HORIZONTAL_ALIGNMENT_LEFT:
+ offset.x = 0.0;
+ break;
+ case HORIZONTAL_ALIGNMENT_FILL:
+ case HORIZONTAL_ALIGNMENT_CENTER: {
+ offset.x = -line_width / 2.0;
+ } break;
+ case HORIZONTAL_ALIGNMENT_RIGHT: {
+ offset.x = -line_width;
+ } break;
+ }
+ offset.x += lbl_offset.x * pixel_size;
+ offset.y -= TS->shaped_text_get_ascent(lines_rid[i]) * pixel_size;
+
+ bool has_depth = !Math::is_zero_approx(depth);
+
+ for (int j = 0; j < gl_size; j++) {
+ if (glyphs[j].index == 0) {
+ offset.x += glyphs[j].advance * pixel_size * glyphs[j].repeat;
+ continue;
+ }
+ if (glyphs[j].font_rid != RID()) {
+ GlyphMeshKey key = GlyphMeshKey(glyphs[j].font_rid.get_id(), glyphs[j].index);
+ _generate_glyph_mesh_data(key, glyphs[j]);
+ GlyphMeshData &gl_data = cache[key];
+ const Vector2 gl_of = Vector2(glyphs[j].x_off, glyphs[j].y_off) * pixel_size;
+
+ p_size += glyphs[j].repeat * gl_data.triangles.size() * ((has_depth) ? 2 : 1);
+ i_size += glyphs[j].repeat * gl_data.triangles.size() * ((has_depth) ? 2 : 1);
+
+ if (has_depth) {
+ for (int k = 0; k < gl_data.contours.size(); k++) {
+ p_size += glyphs[j].repeat * gl_data.contours[k].size() * 4;
+ i_size += glyphs[j].repeat * gl_data.contours[k].size() * 6;
+ }
+ }
+
+ for (int r = 0; r < glyphs[j].repeat; r++) {
+ min_p.x = MIN(gl_data.min_p.x + offset.x + gl_of.x, min_p.x);
+ min_p.y = MIN(gl_data.min_p.y - offset.y + gl_of.y, min_p.y);
+ max_p.x = MAX(gl_data.max_p.x + offset.x + gl_of.x, max_p.x);
+ max_p.y = MAX(gl_data.max_p.y - offset.y + gl_of.y, max_p.y);
+
+ offset.x += glyphs[j].advance * pixel_size;
+ }
+ } else {
+ p_size += glyphs[j].repeat * 4;
+ i_size += glyphs[j].repeat * 6;
+
+ offset.x += glyphs[j].advance * pixel_size * glyphs[j].repeat;
+ }
+ }
+ offset.y -= (TS->shaped_text_get_descent(lines_rid[i]) + line_spacing) * pixel_size;
+ }
+
+ vertices.resize(p_size);
+ normals.resize(p_size);
+ uvs.resize(p_size);
+ tangents.resize(p_size * 4);
+ indices.resize(i_size);
+
+ Vector3 *vertices_ptr = vertices.ptrw();
+ Vector3 *normals_ptr = normals.ptrw();
+ float *tangents_ptr = tangents.ptrw();
+ Vector2 *uvs_ptr = uvs.ptrw();
+ int32_t *indices_ptr = indices.ptrw();
+
+ // Generate mesh.
+ int32_t p_idx = 0;
+ int32_t i_idx = 0;
+
+ offset = Vector2(0, vbegin + lbl_offset.y * pixel_size);
+ for (int i = 0; i < lines_rid.size(); i++) {
+ const Glyph *glyphs = TS->shaped_text_get_glyphs(lines_rid[i]);
+ int gl_size = TS->shaped_text_get_glyph_count(lines_rid[i]);
+ float line_width = TS->shaped_text_get_width(lines_rid[i]) * pixel_size;
+
+ switch (horizontal_alignment) {
+ case HORIZONTAL_ALIGNMENT_LEFT:
+ offset.x = 0.0;
+ break;
+ case HORIZONTAL_ALIGNMENT_FILL:
+ case HORIZONTAL_ALIGNMENT_CENTER: {
+ offset.x = -line_width / 2.0;
+ } break;
+ case HORIZONTAL_ALIGNMENT_RIGHT: {
+ offset.x = -line_width;
+ } break;
+ }
+ offset.x += lbl_offset.x * pixel_size;
+ offset.y -= TS->shaped_text_get_ascent(lines_rid[i]) * pixel_size;
+
+ bool has_depth = !Math::is_zero_approx(depth);
+
+ // Generate glyph data, precalculate size of the arrays and mesh bounds for UV.
+ for (int j = 0; j < gl_size; j++) {
+ if (glyphs[j].index == 0) {
+ offset.x += glyphs[j].advance * pixel_size * glyphs[j].repeat;
+ continue;
+ }
+ if (glyphs[j].font_rid != RID()) {
+ GlyphMeshKey key = GlyphMeshKey(glyphs[j].font_rid.get_id(), glyphs[j].index);
+ _generate_glyph_mesh_data(key, glyphs[j]);
+ const GlyphMeshData &gl_data = cache[key];
+
+ int64_t ts = gl_data.triangles.size();
+ const Vector2 *ts_ptr = gl_data.triangles.ptr();
+ const Vector2 gl_of = Vector2(glyphs[j].x_off, glyphs[j].y_off) * pixel_size;
+
+ for (int r = 0; r < glyphs[j].repeat; r++) {
+ for (int k = 0; k < ts; k += 3) {
+ // Add front face.
+ for (int l = 0; l < 3; l++) {
+ Vector3 point = Vector3(ts_ptr[k + l].x + offset.x + gl_of.x, -ts_ptr[k + l].y + offset.y - gl_of.y, depth / 2.0);
+ vertices_ptr[p_idx] = point;
+ normals_ptr[p_idx] = Vector3(0.0, 0.0, 1.0);
+ if (has_depth) {
+ uvs_ptr[p_idx] = Vector2(Math::remap(point.x, min_p.x, max_p.x, real_t(0.0), real_t(1.0)), Math::remap(point.y, -max_p.y, -min_p.y, real_t(0.4), real_t(0.0)));
+ } else {
+ uvs_ptr[p_idx] = Vector2(Math::remap(point.x, min_p.x, max_p.x, real_t(0.0), real_t(1.0)), Math::remap(point.y, -max_p.y, -min_p.y, real_t(1.0), real_t(0.0)));
+ }
+ tangents_ptr[p_idx * 4 + 0] = 1.0;
+ tangents_ptr[p_idx * 4 + 1] = 0.0;
+ tangents_ptr[p_idx * 4 + 2] = 0.0;
+ tangents_ptr[p_idx * 4 + 3] = 1.0;
+ indices_ptr[i_idx++] = p_idx;
+ p_idx++;
+ }
+ if (has_depth) {
+ // Add back face.
+ for (int l = 2; l >= 0; l--) {
+ Vector3 point = Vector3(ts_ptr[k + l].x + offset.x + gl_of.x, -ts_ptr[k + l].y + offset.y - gl_of.y, -depth / 2.0);
+ vertices_ptr[p_idx] = point;
+ normals_ptr[p_idx] = Vector3(0.0, 0.0, -1.0);
+ uvs_ptr[p_idx] = Vector2(Math::remap(point.x, min_p.x, max_p.x, real_t(0.0), real_t(1.0)), Math::remap(point.y, -max_p.y, -min_p.y, real_t(0.8), real_t(0.4)));
+ tangents_ptr[p_idx * 4 + 0] = -1.0;
+ tangents_ptr[p_idx * 4 + 1] = 0.0;
+ tangents_ptr[p_idx * 4 + 2] = 0.0;
+ tangents_ptr[p_idx * 4 + 3] = 1.0;
+ indices_ptr[i_idx++] = p_idx;
+ p_idx++;
+ }
+ }
+ }
+ // Add sides.
+ if (has_depth) {
+ for (int k = 0; k < gl_data.contours.size(); k++) {
+ int64_t ps = gl_data.contours[k].size();
+ const ContourPoint *ps_ptr = gl_data.contours[k].ptr();
+ const ContourInfo &ps_info = gl_data.contours_info[k];
+ real_t length = 0.0;
+ for (int l = 0; l < ps; l++) {
+ int prev = (l == 0) ? (ps - 1) : (l - 1);
+ int next = (l + 1 == ps) ? 0 : (l + 1);
+ Vector2 d1;
+ Vector2 d2 = (ps_ptr[next].point - ps_ptr[l].point).normalized();
+ if (ps_ptr[l].sharp) {
+ d1 = d2;
+ } else {
+ d1 = (ps_ptr[l].point - ps_ptr[prev].point).normalized();
+ }
+ real_t seg_len = (ps_ptr[next].point - ps_ptr[l].point).length();
+
+ Vector3 quad_faces[4] = {
+ Vector3(ps_ptr[l].point.x + offset.x + gl_of.x, -ps_ptr[l].point.y + offset.y - gl_of.y, -depth / 2.0),
+ Vector3(ps_ptr[next].point.x + offset.x + gl_of.x, -ps_ptr[next].point.y + offset.y - gl_of.y, -depth / 2.0),
+ Vector3(ps_ptr[l].point.x + offset.x + gl_of.x, -ps_ptr[l].point.y + offset.y - gl_of.y, depth / 2.0),
+ Vector3(ps_ptr[next].point.x + offset.x + gl_of.x, -ps_ptr[next].point.y + offset.y - gl_of.y, depth / 2.0),
+ };
+ for (int m = 0; m < 4; m++) {
+ const Vector2 &d = ((m % 2) == 0) ? d1 : d2;
+ real_t u_pos = ((m % 2) == 0) ? length : length + seg_len;
+ vertices_ptr[p_idx + m] = quad_faces[m];
+ normals_ptr[p_idx + m] = Vector3(d.y, d.x, 0.0);
+ if (m < 2) {
+ uvs_ptr[p_idx + m] = Vector2(Math::remap(u_pos, 0, ps_info.length, real_t(0.0), real_t(1.0)), (ps_info.ccw) ? 0.8 : 0.9);
+ } else {
+ uvs_ptr[p_idx + m] = Vector2(Math::remap(u_pos, 0, ps_info.length, real_t(0.0), real_t(1.0)), (ps_info.ccw) ? 0.9 : 1.0);
+ }
+ tangents_ptr[(p_idx + m) * 4 + 0] = d.x;
+ tangents_ptr[(p_idx + m) * 4 + 1] = -d.y;
+ tangents_ptr[(p_idx + m) * 4 + 2] = 0.0;
+ tangents_ptr[(p_idx + m) * 4 + 3] = 1.0;
+ }
+
+ indices_ptr[i_idx++] = p_idx;
+ indices_ptr[i_idx++] = p_idx + 1;
+ indices_ptr[i_idx++] = p_idx + 2;
+
+ indices_ptr[i_idx++] = p_idx + 1;
+ indices_ptr[i_idx++] = p_idx + 3;
+ indices_ptr[i_idx++] = p_idx + 2;
+
+ length += seg_len;
+ p_idx += 4;
+ }
+ }
+ }
+ offset.x += glyphs[j].advance * pixel_size;
+ }
+ } else {
+ // Add fallback quad for missing glyphs.
+ for (int r = 0; r < glyphs[j].repeat; r++) {
+ Size2 sz = TS->get_hex_code_box_size(glyphs[j].font_size, glyphs[j].index) * pixel_size;
+ Vector3 quad_faces[4] = {
+ Vector3(offset.x, offset.y, 0.0),
+ Vector3(offset.x, sz.y + offset.y, 0.0),
+ Vector3(sz.x + offset.x, sz.y + offset.y, 0.0),
+ Vector3(sz.x + offset.x, offset.y, 0.0),
+ };
+ for (int k = 0; k < 4; k++) {
+ vertices_ptr[p_idx + k] = quad_faces[k];
+ normals_ptr[p_idx + k] = Vector3(0.0, 0.0, 1.0);
+ if (has_depth) {
+ uvs_ptr[p_idx + k] = Vector2(Math::remap(quad_faces[k].x, min_p.x, max_p.x, real_t(0.0), real_t(1.0)), Math::remap(quad_faces[k].y, -max_p.y, -min_p.y, real_t(0.4), real_t(0.0)));
+ } else {
+ uvs_ptr[p_idx + k] = Vector2(Math::remap(quad_faces[k].x, min_p.x, max_p.x, real_t(0.0), real_t(1.0)), Math::remap(quad_faces[k].y, -max_p.y, -min_p.y, real_t(1.0), real_t(0.0)));
+ }
+ tangents_ptr[(p_idx + k) * 4 + 0] = 1.0;
+ tangents_ptr[(p_idx + k) * 4 + 1] = 0.0;
+ tangents_ptr[(p_idx + k) * 4 + 2] = 0.0;
+ tangents_ptr[(p_idx + k) * 4 + 3] = 1.0;
+ }
+
+ indices_ptr[i_idx++] = p_idx;
+ indices_ptr[i_idx++] = p_idx + 1;
+ indices_ptr[i_idx++] = p_idx + 2;
+
+ indices_ptr[i_idx++] = p_idx + 0;
+ indices_ptr[i_idx++] = p_idx + 2;
+ indices_ptr[i_idx++] = p_idx + 3;
+ p_idx += 4;
+
+ offset.x += glyphs[j].advance * pixel_size;
+ }
+ }
+ }
+ offset.y -= (TS->shaped_text_get_descent(lines_rid[i]) + line_spacing) * pixel_size;
+ }
+
+ if (indices.is_empty()) {
+ // If empty, add single triangle to suppress errors.
+ vertices.push_back(Vector3());
+ normals.push_back(Vector3());
+ uvs.push_back(Vector2());
+ tangents.push_back(1.0);
+ tangents.push_back(0.0);
+ tangents.push_back(0.0);
+ tangents.push_back(1.0);
+ indices.push_back(0);
+ indices.push_back(0);
+ indices.push_back(0);
+ }
+
+ p_arr[RS::ARRAY_VERTEX] = vertices;
+ p_arr[RS::ARRAY_NORMAL] = normals;
+ p_arr[RS::ARRAY_TANGENT] = tangents;
+ p_arr[RS::ARRAY_TEX_UV] = uvs;
+ p_arr[RS::ARRAY_INDEX] = indices;
+}
+
+void TextMesh::_bind_methods() {
+ ClassDB::bind_method(D_METHOD("set_horizontal_alignment", "alignment"), &TextMesh::set_horizontal_alignment);
+ ClassDB::bind_method(D_METHOD("get_horizontal_alignment"), &TextMesh::get_horizontal_alignment);
+
+ ClassDB::bind_method(D_METHOD("set_vertical_alignment", "alignment"), &TextMesh::set_vertical_alignment);
+ ClassDB::bind_method(D_METHOD("get_vertical_alignment"), &TextMesh::get_vertical_alignment);
+
+ ClassDB::bind_method(D_METHOD("set_text", "text"), &TextMesh::set_text);
+ ClassDB::bind_method(D_METHOD("get_text"), &TextMesh::get_text);
+
+ ClassDB::bind_method(D_METHOD("set_font", "font"), &TextMesh::set_font);
+ ClassDB::bind_method(D_METHOD("get_font"), &TextMesh::get_font);
+
+ ClassDB::bind_method(D_METHOD("set_font_size", "font_size"), &TextMesh::set_font_size);
+ ClassDB::bind_method(D_METHOD("get_font_size"), &TextMesh::get_font_size);
+
+ ClassDB::bind_method(D_METHOD("set_line_spacing", "line_spacing"), &TextMesh::set_line_spacing);
+ ClassDB::bind_method(D_METHOD("get_line_spacing"), &TextMesh::get_line_spacing);
+
+ ClassDB::bind_method(D_METHOD("set_autowrap_mode", "autowrap_mode"), &TextMesh::set_autowrap_mode);
+ ClassDB::bind_method(D_METHOD("get_autowrap_mode"), &TextMesh::get_autowrap_mode);
+
+ ClassDB::bind_method(D_METHOD("set_justification_flags", "justification_flags"), &TextMesh::set_justification_flags);
+ ClassDB::bind_method(D_METHOD("get_justification_flags"), &TextMesh::get_justification_flags);
+
+ ClassDB::bind_method(D_METHOD("set_depth", "depth"), &TextMesh::set_depth);
+ ClassDB::bind_method(D_METHOD("get_depth"), &TextMesh::get_depth);
+
+ ClassDB::bind_method(D_METHOD("set_width", "width"), &TextMesh::set_width);
+ ClassDB::bind_method(D_METHOD("get_width"), &TextMesh::get_width);
+
+ ClassDB::bind_method(D_METHOD("set_pixel_size", "pixel_size"), &TextMesh::set_pixel_size);
+ ClassDB::bind_method(D_METHOD("get_pixel_size"), &TextMesh::get_pixel_size);
+
+ ClassDB::bind_method(D_METHOD("set_offset", "offset"), &TextMesh::set_offset);
+ ClassDB::bind_method(D_METHOD("get_offset"), &TextMesh::get_offset);
+
+ ClassDB::bind_method(D_METHOD("set_curve_step", "curve_step"), &TextMesh::set_curve_step);
+ ClassDB::bind_method(D_METHOD("get_curve_step"), &TextMesh::get_curve_step);
+
+ ClassDB::bind_method(D_METHOD("set_text_direction", "direction"), &TextMesh::set_text_direction);
+ ClassDB::bind_method(D_METHOD("get_text_direction"), &TextMesh::get_text_direction);
+
+ ClassDB::bind_method(D_METHOD("set_language", "language"), &TextMesh::set_language);
+ ClassDB::bind_method(D_METHOD("get_language"), &TextMesh::get_language);
+
+ ClassDB::bind_method(D_METHOD("set_structured_text_bidi_override", "parser"), &TextMesh::set_structured_text_bidi_override);
+ ClassDB::bind_method(D_METHOD("get_structured_text_bidi_override"), &TextMesh::get_structured_text_bidi_override);
+
+ ClassDB::bind_method(D_METHOD("set_structured_text_bidi_override_options", "args"), &TextMesh::set_structured_text_bidi_override_options);
+ ClassDB::bind_method(D_METHOD("get_structured_text_bidi_override_options"), &TextMesh::get_structured_text_bidi_override_options);
+
+ ClassDB::bind_method(D_METHOD("set_uppercase", "enable"), &TextMesh::set_uppercase);
+ ClassDB::bind_method(D_METHOD("is_uppercase"), &TextMesh::is_uppercase);
+
+ ClassDB::bind_method(D_METHOD("_request_update"), &TextMesh::_request_update);
+
+ ADD_GROUP("Text", "");
+ ADD_PROPERTY(PropertyInfo(Variant::STRING, "text", PROPERTY_HINT_MULTILINE_TEXT, ""), "set_text", "get_text");
+ ADD_PROPERTY(PropertyInfo(Variant::OBJECT, "font", PROPERTY_HINT_RESOURCE_TYPE, "Font"), "set_font", "get_font");
+ ADD_PROPERTY(PropertyInfo(Variant::INT, "font_size", PROPERTY_HINT_RANGE, "1,256,1,or_greater,suffix:px"), "set_font_size", "get_font_size");
+ ADD_PROPERTY(PropertyInfo(Variant::INT, "horizontal_alignment", PROPERTY_HINT_ENUM, "Left,Center,Right,Fill"), "set_horizontal_alignment", "get_horizontal_alignment");
+ ADD_PROPERTY(PropertyInfo(Variant::INT, "vertical_alignment", PROPERTY_HINT_ENUM, "Top,Center,Bottom"), "set_vertical_alignment", "get_vertical_alignment");
+ ADD_PROPERTY(PropertyInfo(Variant::BOOL, "uppercase"), "set_uppercase", "is_uppercase");
+ ADD_PROPERTY(PropertyInfo(Variant::FLOAT, "line_spacing", PROPERTY_HINT_NONE, "suffix:px"), "set_line_spacing", "get_line_spacing");
+ ADD_PROPERTY(PropertyInfo(Variant::INT, "autowrap_mode", PROPERTY_HINT_ENUM, "Off,Arbitrary,Word,Word (Smart)"), "set_autowrap_mode", "get_autowrap_mode");
+ ADD_PROPERTY(PropertyInfo(Variant::INT, "justification_flags", PROPERTY_HINT_FLAGS, "Kashida Justification:1,Word Justification:2,Justify Only After Last Tab:8,Skip Last Line:32,Skip Last Line With Visible Characters:64,Do Not Skip Single Line:128"), "set_justification_flags", "get_justification_flags");
+
+ ADD_GROUP("Mesh", "");
+ ADD_PROPERTY(PropertyInfo(Variant::FLOAT, "pixel_size", PROPERTY_HINT_RANGE, "0.0001,128,0.0001,suffix:m"), "set_pixel_size", "get_pixel_size");
+ ADD_PROPERTY(PropertyInfo(Variant::FLOAT, "curve_step", PROPERTY_HINT_RANGE, "0.1,10,0.1,suffix:px"), "set_curve_step", "get_curve_step");
+ ADD_PROPERTY(PropertyInfo(Variant::FLOAT, "depth", PROPERTY_HINT_RANGE, "0.0,100.0,0.001,or_greater,suffix:m"), "set_depth", "get_depth");
+ ADD_PROPERTY(PropertyInfo(Variant::FLOAT, "width", PROPERTY_HINT_NONE, "suffix:px"), "set_width", "get_width");
+ ADD_PROPERTY(PropertyInfo(Variant::VECTOR2, "offset", PROPERTY_HINT_NONE, "suffix:px"), "set_offset", "get_offset");
+
+ ADD_GROUP("BiDi", "");
+ ADD_PROPERTY(PropertyInfo(Variant::INT, "text_direction", PROPERTY_HINT_ENUM, "Auto,Left-to-Right,Right-to-Left"), "set_text_direction", "get_text_direction");
+ ADD_PROPERTY(PropertyInfo(Variant::STRING, "language", PROPERTY_HINT_LOCALE_ID, ""), "set_language", "get_language");
+ ADD_PROPERTY(PropertyInfo(Variant::INT, "structured_text_bidi_override", PROPERTY_HINT_ENUM, "Default,URI,File,Email,List,None,Custom"), "set_structured_text_bidi_override", "get_structured_text_bidi_override");
+ ADD_PROPERTY(PropertyInfo(Variant::ARRAY, "structured_text_bidi_override_options"), "set_structured_text_bidi_override_options", "get_structured_text_bidi_override_options");
+}
+
+void TextMesh::_notification(int p_what) {
+ switch (p_what) {
+ case MainLoop::NOTIFICATION_TRANSLATION_CHANGED: {
+ String new_text = tr(text);
+ if (new_text == xl_text) {
+ return; // Nothing new.
+ }
+ xl_text = new_text;
+ dirty_text = true;
+ _request_update();
+ } break;
+ }
+}
+
+TextMesh::TextMesh() {
+ primitive_type = PRIMITIVE_TRIANGLES;
+ text_rid = TS->create_shaped_text();
+}
+
+TextMesh::~TextMesh() {
+ for (int i = 0; i < lines_rid.size(); i++) {
+ TS->free_rid(lines_rid[i]);
+ }
+ lines_rid.clear();
+
+ TS->free_rid(text_rid);
+}
+
+void TextMesh::set_horizontal_alignment(HorizontalAlignment p_alignment) {
+ ERR_FAIL_INDEX((int)p_alignment, 4);
+ if (horizontal_alignment != p_alignment) {
+ if (horizontal_alignment == HORIZONTAL_ALIGNMENT_FILL || p_alignment == HORIZONTAL_ALIGNMENT_FILL) {
+ dirty_lines = true;
+ }
+ horizontal_alignment = p_alignment;
+ _request_update();
+ }
+}
+
+HorizontalAlignment TextMesh::get_horizontal_alignment() const {
+ return horizontal_alignment;
+}
+
+void TextMesh::set_vertical_alignment(VerticalAlignment p_alignment) {
+ ERR_FAIL_INDEX((int)p_alignment, 4);
+ if (vertical_alignment != p_alignment) {
+ vertical_alignment = p_alignment;
+ _request_update();
+ }
+}
+
+VerticalAlignment TextMesh::get_vertical_alignment() const {
+ return vertical_alignment;
+}
+
+void TextMesh::set_text(const String &p_string) {
+ if (text != p_string) {
+ text = p_string;
+ xl_text = tr(text);
+ dirty_text = true;
+ _request_update();
+ }
+}
+
+String TextMesh::get_text() const {
+ return text;
+}
+
+void TextMesh::_font_changed() {
+ dirty_font = true;
+ dirty_cache = true;
+ call_deferred(SNAME("_request_update"));
+}
+
+void TextMesh::set_font(const Ref<Font> &p_font) {
+ if (font_override != p_font) {
+ const Callable font_changed = callable_mp(this, &TextMesh::_font_changed);
+
+ if (font_override.is_valid()) {
+ font_override->disconnect_changed(font_changed);
+ }
+ font_override = p_font;
+ dirty_font = true;
+ dirty_cache = true;
+ if (font_override.is_valid()) {
+ font_override->connect_changed(font_changed);
+ }
+ _request_update();
+ }
+}
+
+Ref<Font> TextMesh::get_font() const {
+ return font_override;
+}
+
+Ref<Font> TextMesh::_get_font_or_default() const {
+ if (font_override.is_valid()) {
+ return font_override;
+ }
+
+ StringName theme_name = "font";
+ List<StringName> theme_types;
+ ThemeDB::get_singleton()->get_native_type_dependencies(get_class_name(), &theme_types);
+
+ ThemeContext *global_context = ThemeDB::get_singleton()->get_default_theme_context();
+ for (const Ref<Theme> &theme : global_context->get_themes()) {
+ if (theme.is_null()) {
+ continue;
+ }
+
+ for (const StringName &E : theme_types) {
+ if (theme->has_font(theme_name, E)) {
+ return theme->get_font(theme_name, E);
+ }
+ }
+ }
+
+ return global_context->get_fallback_theme()->get_font(theme_name, StringName());
+}
+
+void TextMesh::set_font_size(int p_size) {
+ if (font_size != p_size) {
+ font_size = CLAMP(p_size, 1, 127);
+ dirty_font = true;
+ dirty_cache = true;
+ _request_update();
+ }
+}
+
+int TextMesh::get_font_size() const {
+ return font_size;
+}
+
+void TextMesh::set_line_spacing(float p_line_spacing) {
+ if (line_spacing != p_line_spacing) {
+ line_spacing = p_line_spacing;
+ _request_update();
+ }
+}
+
+float TextMesh::get_line_spacing() const {
+ return line_spacing;
+}
+
+void TextMesh::set_autowrap_mode(TextServer::AutowrapMode p_mode) {
+ if (autowrap_mode != p_mode) {
+ autowrap_mode = p_mode;
+ dirty_lines = true;
+ _request_update();
+ }
+}
+
+TextServer::AutowrapMode TextMesh::get_autowrap_mode() const {
+ return autowrap_mode;
+}
+
+void TextMesh::set_justification_flags(BitField<TextServer::JustificationFlag> p_flags) {
+ if (jst_flags != p_flags) {
+ jst_flags = p_flags;
+ dirty_lines = true;
+ _request_update();
+ }
+}
+
+BitField<TextServer::JustificationFlag> TextMesh::get_justification_flags() const {
+ return jst_flags;
+}
+
+void TextMesh::set_depth(real_t p_depth) {
+ if (depth != p_depth) {
+ depth = MAX(p_depth, 0.0);
+ _request_update();
+ }
+}
+
+real_t TextMesh::get_depth() const {
+ return depth;
+}
+
+void TextMesh::set_width(real_t p_width) {
+ if (width != p_width) {
+ width = p_width;
+ dirty_lines = true;
+ _request_update();
+ }
+}
+
+real_t TextMesh::get_width() const {
+ return width;
+}
+
+void TextMesh::set_pixel_size(real_t p_amount) {
+ if (pixel_size != p_amount) {
+ pixel_size = CLAMP(p_amount, 0.0001, 128.0);
+ dirty_cache = true;
+ _request_update();
+ }
+}
+
+real_t TextMesh::get_pixel_size() const {
+ return pixel_size;
+}
+
+void TextMesh::set_offset(const Point2 &p_offset) {
+ if (lbl_offset != p_offset) {
+ lbl_offset = p_offset;
+ _request_update();
+ }
+}
+
+Point2 TextMesh::get_offset() const {
+ return lbl_offset;
+}
+
+void TextMesh::set_curve_step(real_t p_step) {
+ if (curve_step != p_step) {
+ curve_step = CLAMP(p_step, 0.1, 10.0);
+ dirty_cache = true;
+ _request_update();
+ }
+}
+
+real_t TextMesh::get_curve_step() const {
+ return curve_step;
+}
+
+void TextMesh::set_text_direction(TextServer::Direction p_text_direction) {
+ ERR_FAIL_COND((int)p_text_direction < -1 || (int)p_text_direction > 3);
+ if (text_direction != p_text_direction) {
+ text_direction = p_text_direction;
+ dirty_text = true;
+ _request_update();
+ }
+}
+
+TextServer::Direction TextMesh::get_text_direction() const {
+ return text_direction;
+}
+
+void TextMesh::set_language(const String &p_language) {
+ if (language != p_language) {
+ language = p_language;
+ dirty_text = true;
+ _request_update();
+ }
+}
+
+String TextMesh::get_language() const {
+ return language;
+}
+
+void TextMesh::set_structured_text_bidi_override(TextServer::StructuredTextParser p_parser) {
+ if (st_parser != p_parser) {
+ st_parser = p_parser;
+ dirty_text = true;
+ _request_update();
+ }
+}
+
+TextServer::StructuredTextParser TextMesh::get_structured_text_bidi_override() const {
+ return st_parser;
+}
+
+void TextMesh::set_structured_text_bidi_override_options(Array p_args) {
+ if (st_args != p_args) {
+ st_args = p_args;
+ dirty_text = true;
+ _request_update();
+ }
+}
+
+Array TextMesh::get_structured_text_bidi_override_options() const {
+ return st_args;
+}
+
+void TextMesh::set_uppercase(bool p_uppercase) {
+ if (uppercase != p_uppercase) {
+ uppercase = p_uppercase;
+ dirty_text = true;
+ _request_update();
+ }
+}
+
+bool TextMesh::is_uppercase() const {
+ return uppercase;
+}