summaryrefslogtreecommitdiffstats
path: root/thirdparty/mbedtls/library/bignum_core.h
diff options
context:
space:
mode:
authorLyuma <xn.lyuma@gmail.com>2023-09-24 20:04:06 -0700
committerFabio Alessandrelli <fabio.alessandrelli@gmail.com>2024-04-10 21:19:22 +0200
commit40fa684c181d3138d8f86c70e5933fb0b3dcbac8 (patch)
tree4d104dfb95341e96ac2d98f9a9e3a85c5b7e55ca /thirdparty/mbedtls/library/bignum_core.h
parent6c579280630715ff7da8310d405ef34194847294 (diff)
downloadredot-engine-40fa684c181d3138d8f86c70e5933fb0b3dcbac8.tar.gz
mbedTLS: Update to new LTS v3.6.0
Keep module compatibility with mbedtls 2.x (old LTS branch). A patch has been added to allow compiling after removing all the `psa_*` files from the library folder (will look into upstreaming it). Note: mbedTLS 3.6 finally enabled TLSv1.3 by default, but it requires some module changes, and to enable PSA crypto (new "standard" API specification), so it might be best done in a separate commit/PR.
Diffstat (limited to 'thirdparty/mbedtls/library/bignum_core.h')
-rw-r--r--thirdparty/mbedtls/library/bignum_core.h763
1 files changed, 763 insertions, 0 deletions
diff --git a/thirdparty/mbedtls/library/bignum_core.h b/thirdparty/mbedtls/library/bignum_core.h
new file mode 100644
index 0000000000..92c8d47db5
--- /dev/null
+++ b/thirdparty/mbedtls/library/bignum_core.h
@@ -0,0 +1,763 @@
+/**
+ * Core bignum functions
+ *
+ * This interface should only be used by the legacy bignum module (bignum.h)
+ * and the modular bignum modules (bignum_mod.c, bignum_mod_raw.c). All other
+ * modules should use the high-level modular bignum interface (bignum_mod.h)
+ * or the legacy bignum interface (bignum.h).
+ *
+ * This module is about processing non-negative integers with a fixed upper
+ * bound that's of the form 2^n-1 where n is a multiple of #biL.
+ * These can be thought of integers written in base 2^#biL with a fixed
+ * number of digits. Digits in this base are called *limbs*.
+ * Many operations treat these numbers as the principal representation of
+ * a number modulo 2^n or a smaller bound.
+ *
+ * The functions in this module obey the following conventions unless
+ * explicitly indicated otherwise:
+ *
+ * - **Overflow**: some functions indicate overflow from the range
+ * [0, 2^n-1] by returning carry parameters, while others operate
+ * modulo and so cannot overflow. This should be clear from the function
+ * documentation.
+ * - **Bignum parameters**: Bignums are passed as pointers to an array of
+ * limbs. A limb has the type #mbedtls_mpi_uint. Unless otherwise specified:
+ * - Bignum parameters called \p A, \p B, ... are inputs, and are
+ * not modified by the function.
+ * - For operations modulo some number, the modulus is called \p N
+ * and is input-only.
+ * - Bignum parameters called \p X, \p Y are outputs or input-output.
+ * The initial content of output-only parameters is ignored.
+ * - Some functions use different names that reflect traditional
+ * naming of operands of certain operations (e.g.
+ * divisor/dividend/quotient/remainder).
+ * - \p T is a temporary storage area. The initial content of such
+ * parameter is ignored and the final content is unspecified.
+ * - **Bignum sizes**: bignum sizes are always expressed in limbs.
+ * Most functions work on bignums of a given size and take a single
+ * \p limbs parameter that applies to all parameters that are limb arrays.
+ * All bignum sizes must be at least 1 and must be significantly less than
+ * #SIZE_MAX. The behavior if a size is 0 is undefined. The behavior if the
+ * total size of all parameters overflows #SIZE_MAX is undefined.
+ * - **Parameter ordering**: for bignum parameters, outputs come before inputs.
+ * Temporaries come last.
+ * - **Aliasing**: in general, output bignums may be aliased to one or more
+ * inputs. As an exception, parameters that are documented as a modulus value
+ * may not be aliased to an output. Outputs may not be aliased to one another.
+ * Temporaries may not be aliased to any other parameter.
+ * - **Overlap**: apart from aliasing of limb array pointers (where two
+ * arguments are equal pointers), overlap is not supported and may result
+ * in undefined behavior.
+ * - **Error handling**: This is a low-level module. Functions generally do not
+ * try to protect against invalid arguments such as nonsensical sizes or
+ * null pointers. Note that some functions that operate on bignums of
+ * different sizes have constraints about their size, and violating those
+ * constraints may lead to buffer overflows.
+ * - **Modular representatives**: functions that operate modulo \p N expect
+ * all modular inputs to be in the range [0, \p N - 1] and guarantee outputs
+ * in the range [0, \p N - 1]. If an input is out of range, outputs are
+ * fully unspecified, though bignum values out of range should not cause
+ * buffer overflows (beware that this is not extensively tested).
+ */
+
+/*
+ * Copyright The Mbed TLS Contributors
+ * SPDX-License-Identifier: Apache-2.0 OR GPL-2.0-or-later
+ */
+
+#ifndef MBEDTLS_BIGNUM_CORE_H
+#define MBEDTLS_BIGNUM_CORE_H
+
+#include "common.h"
+
+#if defined(MBEDTLS_BIGNUM_C)
+#include "mbedtls/bignum.h"
+#endif
+
+#include "constant_time_internal.h"
+
+#define ciL (sizeof(mbedtls_mpi_uint)) /** chars in limb */
+#define biL (ciL << 3) /** bits in limb */
+#define biH (ciL << 2) /** half limb size */
+
+/*
+ * Convert between bits/chars and number of limbs
+ * Divide first in order to avoid potential overflows
+ */
+#define BITS_TO_LIMBS(i) ((i) / biL + ((i) % biL != 0))
+#define CHARS_TO_LIMBS(i) ((i) / ciL + ((i) % ciL != 0))
+/* Get a specific byte, without range checks. */
+#define GET_BYTE(X, i) \
+ (((X)[(i) / ciL] >> (((i) % ciL) * 8)) & 0xff)
+
+/** Count leading zero bits in a given integer.
+ *
+ * \warning The result is undefined if \p a == 0
+ *
+ * \param a Integer to count leading zero bits.
+ *
+ * \return The number of leading zero bits in \p a, if \p a != 0.
+ * If \p a == 0, the result is undefined.
+ */
+size_t mbedtls_mpi_core_clz(mbedtls_mpi_uint a);
+
+/** Return the minimum number of bits required to represent the value held
+ * in the MPI.
+ *
+ * \note This function returns 0 if all the limbs of \p A are 0.
+ *
+ * \param[in] A The address of the MPI.
+ * \param A_limbs The number of limbs of \p A.
+ *
+ * \return The number of bits in \p A.
+ */
+size_t mbedtls_mpi_core_bitlen(const mbedtls_mpi_uint *A, size_t A_limbs);
+
+/** Convert a big-endian byte array aligned to the size of mbedtls_mpi_uint
+ * into the storage form used by mbedtls_mpi.
+ *
+ * \param[in,out] A The address of the MPI.
+ * \param A_limbs The number of limbs of \p A.
+ */
+void mbedtls_mpi_core_bigendian_to_host(mbedtls_mpi_uint *A,
+ size_t A_limbs);
+
+/** \brief Compare a machine integer with an MPI.
+ *
+ * This function operates in constant time with respect
+ * to the values of \p min and \p A.
+ *
+ * \param min A machine integer.
+ * \param[in] A An MPI.
+ * \param A_limbs The number of limbs of \p A.
+ * This must be at least 1.
+ *
+ * \return MBEDTLS_CT_TRUE if \p min is less than or equal to \p A, otherwise MBEDTLS_CT_FALSE.
+ */
+mbedtls_ct_condition_t mbedtls_mpi_core_uint_le_mpi(mbedtls_mpi_uint min,
+ const mbedtls_mpi_uint *A,
+ size_t A_limbs);
+
+/**
+ * \brief Check if one unsigned MPI is less than another in constant
+ * time.
+ *
+ * \param A The left-hand MPI. This must point to an array of limbs
+ * with the same allocated length as \p B.
+ * \param B The right-hand MPI. This must point to an array of limbs
+ * with the same allocated length as \p A.
+ * \param limbs The number of limbs in \p A and \p B.
+ * This must not be 0.
+ *
+ * \return MBEDTLS_CT_TRUE if \p A is less than \p B.
+ * MBEDTLS_CT_FALSE if \p A is greater than or equal to \p B.
+ */
+mbedtls_ct_condition_t mbedtls_mpi_core_lt_ct(const mbedtls_mpi_uint *A,
+ const mbedtls_mpi_uint *B,
+ size_t limbs);
+
+/**
+ * \brief Perform a safe conditional copy of an MPI which doesn't reveal
+ * whether assignment was done or not.
+ *
+ * \param[out] X The address of the destination MPI.
+ * This must be initialized. Must have enough limbs to
+ * store the full value of \p A.
+ * \param[in] A The address of the source MPI. This must be initialized.
+ * \param limbs The number of limbs of \p A.
+ * \param assign The condition deciding whether to perform the
+ * assignment or not. Callers will need to use
+ * the constant time interface (e.g. `mbedtls_ct_bool()`)
+ * to construct this argument.
+ *
+ * \note This function avoids leaking any information about whether
+ * the assignment was done or not.
+ */
+void mbedtls_mpi_core_cond_assign(mbedtls_mpi_uint *X,
+ const mbedtls_mpi_uint *A,
+ size_t limbs,
+ mbedtls_ct_condition_t assign);
+
+/**
+ * \brief Perform a safe conditional swap of two MPIs which doesn't reveal
+ * whether the swap was done or not.
+ *
+ * \param[in,out] X The address of the first MPI.
+ * This must be initialized.
+ * \param[in,out] Y The address of the second MPI.
+ * This must be initialized.
+ * \param limbs The number of limbs of \p X and \p Y.
+ * \param swap The condition deciding whether to perform
+ * the swap or not.
+ *
+ * \note This function avoids leaking any information about whether
+ * the swap was done or not.
+ */
+void mbedtls_mpi_core_cond_swap(mbedtls_mpi_uint *X,
+ mbedtls_mpi_uint *Y,
+ size_t limbs,
+ mbedtls_ct_condition_t swap);
+
+/** Import X from unsigned binary data, little-endian.
+ *
+ * The MPI needs to have enough limbs to store the full value (including any
+ * most significant zero bytes in the input).
+ *
+ * \param[out] X The address of the MPI.
+ * \param X_limbs The number of limbs of \p X.
+ * \param[in] input The input buffer to import from.
+ * \param input_length The length bytes of \p input.
+ *
+ * \return \c 0 if successful.
+ * \return #MBEDTLS_ERR_MPI_BUFFER_TOO_SMALL if \p X isn't
+ * large enough to hold the value in \p input.
+ */
+int mbedtls_mpi_core_read_le(mbedtls_mpi_uint *X,
+ size_t X_limbs,
+ const unsigned char *input,
+ size_t input_length);
+
+/** Import X from unsigned binary data, big-endian.
+ *
+ * The MPI needs to have enough limbs to store the full value (including any
+ * most significant zero bytes in the input).
+ *
+ * \param[out] X The address of the MPI.
+ * May only be #NULL if \p X_limbs is 0 and \p input_length
+ * is 0.
+ * \param X_limbs The number of limbs of \p X.
+ * \param[in] input The input buffer to import from.
+ * May only be #NULL if \p input_length is 0.
+ * \param input_length The length in bytes of \p input.
+ *
+ * \return \c 0 if successful.
+ * \return #MBEDTLS_ERR_MPI_BUFFER_TOO_SMALL if \p X isn't
+ * large enough to hold the value in \p input.
+ */
+int mbedtls_mpi_core_read_be(mbedtls_mpi_uint *X,
+ size_t X_limbs,
+ const unsigned char *input,
+ size_t input_length);
+
+/** Export A into unsigned binary data, little-endian.
+ *
+ * \note If \p output is shorter than \p A the export is still successful if the
+ * value held in \p A fits in the buffer (that is, if enough of the most
+ * significant bytes of \p A are 0).
+ *
+ * \param[in] A The address of the MPI.
+ * \param A_limbs The number of limbs of \p A.
+ * \param[out] output The output buffer to export to.
+ * \param output_length The length in bytes of \p output.
+ *
+ * \return \c 0 if successful.
+ * \return #MBEDTLS_ERR_MPI_BUFFER_TOO_SMALL if \p output isn't
+ * large enough to hold the value of \p A.
+ */
+int mbedtls_mpi_core_write_le(const mbedtls_mpi_uint *A,
+ size_t A_limbs,
+ unsigned char *output,
+ size_t output_length);
+
+/** Export A into unsigned binary data, big-endian.
+ *
+ * \note If \p output is shorter than \p A the export is still successful if the
+ * value held in \p A fits in the buffer (that is, if enough of the most
+ * significant bytes of \p A are 0).
+ *
+ * \param[in] A The address of the MPI.
+ * \param A_limbs The number of limbs of \p A.
+ * \param[out] output The output buffer to export to.
+ * \param output_length The length in bytes of \p output.
+ *
+ * \return \c 0 if successful.
+ * \return #MBEDTLS_ERR_MPI_BUFFER_TOO_SMALL if \p output isn't
+ * large enough to hold the value of \p A.
+ */
+int mbedtls_mpi_core_write_be(const mbedtls_mpi_uint *A,
+ size_t A_limbs,
+ unsigned char *output,
+ size_t output_length);
+
+/** \brief Shift an MPI in-place right by a number of bits.
+ *
+ * Shifting by more bits than there are bit positions
+ * in \p X is valid and results in setting \p X to 0.
+ *
+ * This function's execution time depends on the value
+ * of \p count (and of course \p limbs).
+ *
+ * \param[in,out] X The number to shift.
+ * \param limbs The number of limbs of \p X. This must be at least 1.
+ * \param count The number of bits to shift by.
+ */
+void mbedtls_mpi_core_shift_r(mbedtls_mpi_uint *X, size_t limbs,
+ size_t count);
+
+/**
+ * \brief Shift an MPI in-place left by a number of bits.
+ *
+ * Shifting by more bits than there are bit positions
+ * in \p X will produce an unspecified result.
+ *
+ * This function's execution time depends on the value
+ * of \p count (and of course \p limbs).
+ * \param[in,out] X The number to shift.
+ * \param limbs The number of limbs of \p X. This must be at least 1.
+ * \param count The number of bits to shift by.
+ */
+void mbedtls_mpi_core_shift_l(mbedtls_mpi_uint *X, size_t limbs,
+ size_t count);
+
+/**
+ * \brief Add two fixed-size large unsigned integers, returning the carry.
+ *
+ * Calculates `A + B` where `A` and `B` have the same size.
+ *
+ * This function operates modulo `2^(biL*limbs)` and returns the carry
+ * (1 if there was a wraparound, and 0 otherwise).
+ *
+ * \p X may be aliased to \p A or \p B.
+ *
+ * \param[out] X The result of the addition.
+ * \param[in] A Little-endian presentation of the left operand.
+ * \param[in] B Little-endian presentation of the right operand.
+ * \param limbs Number of limbs of \p X, \p A and \p B.
+ *
+ * \return 1 if `A + B >= 2^(biL*limbs)`, 0 otherwise.
+ */
+mbedtls_mpi_uint mbedtls_mpi_core_add(mbedtls_mpi_uint *X,
+ const mbedtls_mpi_uint *A,
+ const mbedtls_mpi_uint *B,
+ size_t limbs);
+
+/**
+ * \brief Conditional addition of two fixed-size large unsigned integers,
+ * returning the carry.
+ *
+ * Functionally equivalent to
+ *
+ * ```
+ * if( cond )
+ * X += A;
+ * return carry;
+ * ```
+ *
+ * This function operates modulo `2^(biL*limbs)`.
+ *
+ * \param[in,out] X The pointer to the (little-endian) array
+ * representing the bignum to accumulate onto.
+ * \param[in] A The pointer to the (little-endian) array
+ * representing the bignum to conditionally add
+ * to \p X. This may be aliased to \p X but may not
+ * overlap otherwise.
+ * \param limbs Number of limbs of \p X and \p A.
+ * \param cond Condition bit dictating whether addition should
+ * happen or not. This must be \c 0 or \c 1.
+ *
+ * \warning If \p cond is neither 0 nor 1, the result of this function
+ * is unspecified, and the resulting value in \p X might be
+ * neither its original value nor \p X + \p A.
+ *
+ * \return 1 if `X + cond * A >= 2^(biL*limbs)`, 0 otherwise.
+ */
+mbedtls_mpi_uint mbedtls_mpi_core_add_if(mbedtls_mpi_uint *X,
+ const mbedtls_mpi_uint *A,
+ size_t limbs,
+ unsigned cond);
+
+/**
+ * \brief Subtract two fixed-size large unsigned integers, returning the borrow.
+ *
+ * Calculate `A - B` where \p A and \p B have the same size.
+ * This function operates modulo `2^(biL*limbs)` and returns the carry
+ * (1 if there was a wraparound, i.e. if `A < B`, and 0 otherwise).
+ *
+ * \p X may be aliased to \p A or \p B, or even both, but may not overlap
+ * either otherwise.
+ *
+ * \param[out] X The result of the subtraction.
+ * \param[in] A Little-endian presentation of left operand.
+ * \param[in] B Little-endian presentation of right operand.
+ * \param limbs Number of limbs of \p X, \p A and \p B.
+ *
+ * \return 1 if `A < B`.
+ * 0 if `A >= B`.
+ */
+mbedtls_mpi_uint mbedtls_mpi_core_sub(mbedtls_mpi_uint *X,
+ const mbedtls_mpi_uint *A,
+ const mbedtls_mpi_uint *B,
+ size_t limbs);
+
+/**
+ * \brief Perform a fixed-size multiply accumulate operation: X += b * A
+ *
+ * \p X may be aliased to \p A (when \p X_limbs == \p A_limbs), but may not
+ * otherwise overlap.
+ *
+ * This function operates modulo `2^(biL*X_limbs)`.
+ *
+ * \param[in,out] X The pointer to the (little-endian) array
+ * representing the bignum to accumulate onto.
+ * \param X_limbs The number of limbs of \p X. This must be
+ * at least \p A_limbs.
+ * \param[in] A The pointer to the (little-endian) array
+ * representing the bignum to multiply with.
+ * This may be aliased to \p X but may not overlap
+ * otherwise.
+ * \param A_limbs The number of limbs of \p A.
+ * \param b X scalar to multiply with.
+ *
+ * \return The carry at the end of the operation.
+ */
+mbedtls_mpi_uint mbedtls_mpi_core_mla(mbedtls_mpi_uint *X, size_t X_limbs,
+ const mbedtls_mpi_uint *A, size_t A_limbs,
+ mbedtls_mpi_uint b);
+
+/**
+ * \brief Perform a known-size multiplication
+ *
+ * \p X may not be aliased to any of the inputs for this function.
+ * \p A may be aliased to \p B.
+ *
+ * \param[out] X The pointer to the (little-endian) array to receive
+ * the product of \p A_limbs and \p B_limbs.
+ * This must be of length \p A_limbs + \p B_limbs.
+ * \param[in] A The pointer to the (little-endian) array
+ * representing the first factor.
+ * \param A_limbs The number of limbs in \p A.
+ * \param[in] B The pointer to the (little-endian) array
+ * representing the second factor.
+ * \param B_limbs The number of limbs in \p B.
+ */
+void mbedtls_mpi_core_mul(mbedtls_mpi_uint *X,
+ const mbedtls_mpi_uint *A, size_t A_limbs,
+ const mbedtls_mpi_uint *B, size_t B_limbs);
+
+/**
+ * \brief Calculate initialisation value for fast Montgomery modular
+ * multiplication
+ *
+ * \param[in] N Little-endian presentation of the modulus. This must have
+ * at least one limb.
+ *
+ * \return The initialisation value for fast Montgomery modular multiplication
+ */
+mbedtls_mpi_uint mbedtls_mpi_core_montmul_init(const mbedtls_mpi_uint *N);
+
+/**
+ * \brief Montgomery multiplication: X = A * B * R^-1 mod N (HAC 14.36)
+ *
+ * \p A and \p B must be in canonical form. That is, < \p N.
+ *
+ * \p X may be aliased to \p A or \p N, or even \p B (if \p AN_limbs ==
+ * \p B_limbs) but may not overlap any parameters otherwise.
+ *
+ * \p A and \p B may alias each other, if \p AN_limbs == \p B_limbs. They may
+ * not alias \p N (since they must be in canonical form, they cannot == \p N).
+ *
+ * \param[out] X The destination MPI, as a little-endian array of
+ * length \p AN_limbs.
+ * On successful completion, X contains the result of
+ * the multiplication `A * B * R^-1` mod N where
+ * `R = 2^(biL*AN_limbs)`.
+ * \param[in] A Little-endian presentation of first operand.
+ * Must have the same number of limbs as \p N.
+ * \param[in] B Little-endian presentation of second operand.
+ * \param[in] B_limbs The number of limbs in \p B.
+ * Must be <= \p AN_limbs.
+ * \param[in] N Little-endian presentation of the modulus.
+ * This must be odd, and have exactly the same number
+ * of limbs as \p A.
+ * It may alias \p X, but must not alias or otherwise
+ * overlap any of the other parameters.
+ * \param[in] AN_limbs The number of limbs in \p X, \p A and \p N.
+ * \param mm The Montgomery constant for \p N: -N^-1 mod 2^biL.
+ * This can be calculated by `mbedtls_mpi_core_montmul_init()`.
+ * \param[in,out] T Temporary storage of size at least 2*AN_limbs+1 limbs.
+ * Its initial content is unused and
+ * its final content is indeterminate.
+ * It must not alias or otherwise overlap any of the
+ * other parameters.
+ */
+void mbedtls_mpi_core_montmul(mbedtls_mpi_uint *X,
+ const mbedtls_mpi_uint *A,
+ const mbedtls_mpi_uint *B, size_t B_limbs,
+ const mbedtls_mpi_uint *N, size_t AN_limbs,
+ mbedtls_mpi_uint mm, mbedtls_mpi_uint *T);
+
+/**
+ * \brief Calculate the square of the Montgomery constant. (Needed
+ * for conversion and operations in Montgomery form.)
+ *
+ * \param[out] X A pointer to the result of the calculation of
+ * the square of the Montgomery constant:
+ * 2^{2*n*biL} mod N.
+ * \param[in] N Little-endian presentation of the modulus, which must be odd.
+ *
+ * \return 0 if successful.
+ * \return #MBEDTLS_ERR_MPI_ALLOC_FAILED if there is not enough space
+ * to store the value of Montgomery constant squared.
+ * \return #MBEDTLS_ERR_MPI_DIVISION_BY_ZERO if \p N modulus is zero.
+ * \return #MBEDTLS_ERR_MPI_NEGATIVE_VALUE if \p N modulus is negative.
+ */
+int mbedtls_mpi_core_get_mont_r2_unsafe(mbedtls_mpi *X,
+ const mbedtls_mpi *N);
+
+#if defined(MBEDTLS_TEST_HOOKS)
+/**
+ * Copy an MPI from a table without leaking the index.
+ *
+ * \param dest The destination buffer. This must point to a writable
+ * buffer of at least \p limbs limbs.
+ * \param table The address of the table. This must point to a readable
+ * array of \p count elements of \p limbs limbs each.
+ * \param limbs The number of limbs in each table entry.
+ * \param count The number of entries in \p table.
+ * \param index The (secret) table index to look up. This must be in the
+ * range `0 .. count-1`.
+ */
+void mbedtls_mpi_core_ct_uint_table_lookup(mbedtls_mpi_uint *dest,
+ const mbedtls_mpi_uint *table,
+ size_t limbs,
+ size_t count,
+ size_t index);
+#endif /* MBEDTLS_TEST_HOOKS */
+
+/**
+ * \brief Fill an integer with a number of random bytes.
+ *
+ * \param X The destination MPI.
+ * \param X_limbs The number of limbs of \p X.
+ * \param bytes The number of random bytes to generate.
+ * \param f_rng The RNG function to use. This must not be \c NULL.
+ * \param p_rng The RNG parameter to be passed to \p f_rng. This may be
+ * \c NULL if \p f_rng doesn't need a context argument.
+ *
+ * \return \c 0 if successful.
+ * \return #MBEDTLS_ERR_MPI_BAD_INPUT_DATA if \p X does not have
+ * enough room for \p bytes bytes.
+ * \return A negative error code on RNG failure.
+ *
+ * \note The bytes obtained from the RNG are interpreted
+ * as a big-endian representation of an MPI; this can
+ * be relevant in applications like deterministic ECDSA.
+ */
+int mbedtls_mpi_core_fill_random(mbedtls_mpi_uint *X, size_t X_limbs,
+ size_t bytes,
+ int (*f_rng)(void *, unsigned char *, size_t),
+ void *p_rng);
+
+/** Generate a random number uniformly in a range.
+ *
+ * This function generates a random number between \p min inclusive and
+ * \p N exclusive.
+ *
+ * The procedure complies with RFC 6979 §3.3 (deterministic ECDSA)
+ * when the RNG is a suitably parametrized instance of HMAC_DRBG
+ * and \p min is \c 1.
+ *
+ * \note There are `N - min` possible outputs. The lower bound
+ * \p min can be reached, but the upper bound \p N cannot.
+ *
+ * \param X The destination MPI, with \p limbs limbs.
+ * It must not be aliased with \p N or otherwise overlap it.
+ * \param min The minimum value to return.
+ * \param N The upper bound of the range, exclusive, with \p limbs limbs.
+ * In other words, this is one plus the maximum value to return.
+ * \p N must be strictly larger than \p min.
+ * \param limbs The number of limbs of \p N and \p X.
+ * This must not be 0.
+ * \param f_rng The RNG function to use. This must not be \c NULL.
+ * \param p_rng The RNG parameter to be passed to \p f_rng.
+ *
+ * \return \c 0 if successful.
+ * \return #MBEDTLS_ERR_MPI_NOT_ACCEPTABLE if the implementation was
+ * unable to find a suitable value within a limited number
+ * of attempts. This has a negligible probability if \p N
+ * is significantly larger than \p min, which is the case
+ * for all usual cryptographic applications.
+ */
+int mbedtls_mpi_core_random(mbedtls_mpi_uint *X,
+ mbedtls_mpi_uint min,
+ const mbedtls_mpi_uint *N,
+ size_t limbs,
+ int (*f_rng)(void *, unsigned char *, size_t),
+ void *p_rng);
+
+/**
+ * \brief Returns the number of limbs of working memory required for
+ * a call to `mbedtls_mpi_core_exp_mod()`.
+ *
+ * \note This will always be at least
+ * `mbedtls_mpi_core_montmul_working_limbs(AN_limbs)`,
+ * i.e. sufficient for a call to `mbedtls_mpi_core_montmul()`.
+ *
+ * \param AN_limbs The number of limbs in the input `A` and the modulus `N`
+ * (they must be the same size) that will be given to
+ * `mbedtls_mpi_core_exp_mod()`.
+ * \param E_limbs The number of limbs in the exponent `E` that will be given
+ * to `mbedtls_mpi_core_exp_mod()`.
+ *
+ * \return The number of limbs of working memory required by
+ * `mbedtls_mpi_core_exp_mod()`.
+ */
+size_t mbedtls_mpi_core_exp_mod_working_limbs(size_t AN_limbs, size_t E_limbs);
+
+/**
+ * \brief Perform a modular exponentiation with secret exponent:
+ * X = A^E mod N, where \p A is already in Montgomery form.
+ *
+ * \p X may be aliased to \p A, but not to \p RR or \p E, even if \p E_limbs ==
+ * \p AN_limbs.
+ *
+ * \param[out] X The destination MPI, as a little endian array of length
+ * \p AN_limbs.
+ * \param[in] A The base MPI, as a little endian array of length \p AN_limbs.
+ * Must be in Montgomery form.
+ * \param[in] N The modulus, as a little endian array of length \p AN_limbs.
+ * \param AN_limbs The number of limbs in \p X, \p A, \p N, \p RR.
+ * \param[in] E The exponent, as a little endian array of length \p E_limbs.
+ * \param E_limbs The number of limbs in \p E.
+ * \param[in] RR The precomputed residue of 2^{2*biL} modulo N, as a little
+ * endian array of length \p AN_limbs.
+ * \param[in,out] T Temporary storage of at least the number of limbs returned
+ * by `mbedtls_mpi_core_exp_mod_working_limbs()`.
+ * Its initial content is unused and its final content is
+ * indeterminate.
+ * It must not alias or otherwise overlap any of the other
+ * parameters.
+ * It is up to the caller to zeroize \p T when it is no
+ * longer needed, and before freeing it if it was dynamically
+ * allocated.
+ */
+void mbedtls_mpi_core_exp_mod(mbedtls_mpi_uint *X,
+ const mbedtls_mpi_uint *A,
+ const mbedtls_mpi_uint *N, size_t AN_limbs,
+ const mbedtls_mpi_uint *E, size_t E_limbs,
+ const mbedtls_mpi_uint *RR,
+ mbedtls_mpi_uint *T);
+
+/**
+ * \brief Subtract unsigned integer from known-size large unsigned integers.
+ * Return the borrow.
+ *
+ * \param[out] X The result of the subtraction.
+ * \param[in] A The left operand.
+ * \param b The unsigned scalar to subtract.
+ * \param limbs Number of limbs of \p X and \p A.
+ *
+ * \return 1 if `A < b`.
+ * 0 if `A >= b`.
+ */
+mbedtls_mpi_uint mbedtls_mpi_core_sub_int(mbedtls_mpi_uint *X,
+ const mbedtls_mpi_uint *A,
+ mbedtls_mpi_uint b,
+ size_t limbs);
+
+/**
+ * \brief Determine if a given MPI has the value \c 0 in constant time with
+ * respect to the value (but not with respect to the number of limbs).
+ *
+ * \param[in] A The MPI to test.
+ * \param limbs Number of limbs in \p A.
+ *
+ * \return MBEDTLS_CT_FALSE if `A == 0`
+ * MBEDTLS_CT_TRUE if `A != 0`.
+ */
+mbedtls_ct_condition_t mbedtls_mpi_core_check_zero_ct(const mbedtls_mpi_uint *A,
+ size_t limbs);
+
+/**
+ * \brief Returns the number of limbs of working memory required for
+ * a call to `mbedtls_mpi_core_montmul()`.
+ *
+ * \param AN_limbs The number of limbs in the input `A` and the modulus `N`
+ * (they must be the same size) that will be given to
+ * `mbedtls_mpi_core_montmul()` or one of the other functions
+ * that specifies this as the amount of working memory needed.
+ *
+ * \return The number of limbs of working memory required by
+ * `mbedtls_mpi_core_montmul()` (or other similar function).
+ */
+static inline size_t mbedtls_mpi_core_montmul_working_limbs(size_t AN_limbs)
+{
+ return 2 * AN_limbs + 1;
+}
+
+/** Convert an MPI into Montgomery form.
+ *
+ * \p X may be aliased to \p A, but may not otherwise overlap it.
+ *
+ * \p X may not alias \p N (it is in canonical form, so must be strictly less
+ * than \p N). Nor may it alias or overlap \p rr (this is unlikely to be
+ * required in practice.)
+ *
+ * This function is a thin wrapper around `mbedtls_mpi_core_montmul()` that is
+ * an alternative to calling `mbedtls_mpi_mod_raw_to_mont_rep()` when we
+ * don't want to allocate memory.
+ *
+ * \param[out] X The result of the conversion.
+ * Must have the same number of limbs as \p A.
+ * \param[in] A The MPI to convert into Montgomery form.
+ * Must have the same number of limbs as the modulus.
+ * \param[in] N The address of the modulus, which gives the size of
+ * the base `R` = 2^(biL*N->limbs).
+ * \param[in] AN_limbs The number of limbs in \p X, \p A, \p N and \p rr.
+ * \param mm The Montgomery constant for \p N: -N^-1 mod 2^biL.
+ * This can be determined by calling
+ * `mbedtls_mpi_core_montmul_init()`.
+ * \param[in] rr The residue for `2^{2*n*biL} mod N`.
+ * \param[in,out] T Temporary storage of size at least
+ * `mbedtls_mpi_core_montmul_working_limbs(AN_limbs)`
+ * limbs.
+ * Its initial content is unused and
+ * its final content is indeterminate.
+ * It must not alias or otherwise overlap any of the
+ * other parameters.
+ */
+void mbedtls_mpi_core_to_mont_rep(mbedtls_mpi_uint *X,
+ const mbedtls_mpi_uint *A,
+ const mbedtls_mpi_uint *N,
+ size_t AN_limbs,
+ mbedtls_mpi_uint mm,
+ const mbedtls_mpi_uint *rr,
+ mbedtls_mpi_uint *T);
+
+/** Convert an MPI from Montgomery form.
+ *
+ * \p X may be aliased to \p A, but may not otherwise overlap it.
+ *
+ * \p X may not alias \p N (it is in canonical form, so must be strictly less
+ * than \p N).
+ *
+ * This function is a thin wrapper around `mbedtls_mpi_core_montmul()` that is
+ * an alternative to calling `mbedtls_mpi_mod_raw_from_mont_rep()` when we
+ * don't want to allocate memory.
+ *
+ * \param[out] X The result of the conversion.
+ * Must have the same number of limbs as \p A.
+ * \param[in] A The MPI to convert from Montgomery form.
+ * Must have the same number of limbs as the modulus.
+ * \param[in] N The address of the modulus, which gives the size of
+ * the base `R` = 2^(biL*N->limbs).
+ * \param[in] AN_limbs The number of limbs in \p X, \p A and \p N.
+ * \param mm The Montgomery constant for \p N: -N^-1 mod 2^biL.
+ * This can be determined by calling
+ * `mbedtls_mpi_core_montmul_init()`.
+ * \param[in,out] T Temporary storage of size at least
+ * `mbedtls_mpi_core_montmul_working_limbs(AN_limbs)`
+ * limbs.
+ * Its initial content is unused and
+ * its final content is indeterminate.
+ * It must not alias or otherwise overlap any of the
+ * other parameters.
+ */
+void mbedtls_mpi_core_from_mont_rep(mbedtls_mpi_uint *X,
+ const mbedtls_mpi_uint *A,
+ const mbedtls_mpi_uint *N,
+ size_t AN_limbs,
+ mbedtls_mpi_uint mm,
+ mbedtls_mpi_uint *T);
+
+#endif /* MBEDTLS_BIGNUM_CORE_H */