diff options
author | Dario <dariosamo@gmail.com> | 2023-09-18 10:05:20 -0300 |
---|---|---|
committer | Dario <dariosamo@gmail.com> | 2023-09-25 14:53:45 -0300 |
commit | ab65effed015df76b0858df27127f62b3aa94e0e (patch) | |
tree | cab7bbbdd2b63235b809560e47c3ac3784fa892b /thirdparty/oidn/mkl-dnn/src/cpu/ref_softmax.cpp | |
parent | 1b2b726502eabaae4a15d544d92735cc2efe35b5 (diff) | |
download | redot-engine-ab65effed015df76b0858df27127f62b3aa94e0e.tar.gz |
Remove denoise module and thirdparty OIDN.
This is replaced by a much lighter weight and faster JNLM denoiser. OIDN is still much more accurate, and may be provided as an optional backend in the future, but the JNLM denoiser seems good enough for most use cases and removing OIDN reduces the build system complexity, binary size, and build times very significantly.
Diffstat (limited to 'thirdparty/oidn/mkl-dnn/src/cpu/ref_softmax.cpp')
-rw-r--r-- | thirdparty/oidn/mkl-dnn/src/cpu/ref_softmax.cpp | 264 |
1 files changed, 0 insertions, 264 deletions
diff --git a/thirdparty/oidn/mkl-dnn/src/cpu/ref_softmax.cpp b/thirdparty/oidn/mkl-dnn/src/cpu/ref_softmax.cpp deleted file mode 100644 index 36d5237f56..0000000000 --- a/thirdparty/oidn/mkl-dnn/src/cpu/ref_softmax.cpp +++ /dev/null @@ -1,264 +0,0 @@ -/******************************************************************************* -* Copyright 2016-2018 Intel Corporation -* -* Licensed under the Apache License, Version 2.0 (the "License"); -* you may not use this file except in compliance with the License. -* You may obtain a copy of the License at -* -* http://www.apache.org/licenses/LICENSE-2.0 -* -* Unless required by applicable law or agreed to in writing, software -* distributed under the License is distributed on an "AS IS" BASIS, -* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -* See the License for the specific language governing permissions and -* limitations under the License. -*******************************************************************************/ - -#include <assert.h> -#include <float.h> -#include <math.h> - -#include "c_types_map.hpp" -#include "mkldnn_thread.hpp" -#include "type_helpers.hpp" - -#include "ref_softmax.hpp" -#include "gemm/os_blas.hpp" - -#ifdef USE_MKL -#include "mkl_vml_functions.h" -#endif - -namespace mkldnn { -namespace impl { -namespace cpu { - -template <impl::data_type_t data_type> -void ref_softmax_fwd_t<data_type>::execute_forward_dense( - const exec_ctx_t &ctx) const { - auto src = CTX_IN_MEM(const data_t *, MKLDNN_ARG_SRC); - auto dst = CTX_OUT_MEM(data_t *, MKLDNN_ARG_DST); - - parallel_nd(outer_size_, [&](int ou) { - const data_t *src_data = src + ou * channels_; - data_t *dst_data = dst + ou * channels_; - data_t scalar = 0; - - _max(channels_, src_data, &scalar); - _sub(channels_, scalar, src_data, dst_data); - _exp(channels_, dst_data, dst_data); - _sum(channels_, dst_data, &scalar); - _scal(channels_, data_t(1)/scalar, dst_data); - }); -} - -template <impl::data_type_t data_type> -void ref_softmax_fwd_t<data_type>::execute_forward_generic( - const exec_ctx_t &ctx) const { - auto src = CTX_IN_MEM(const data_t *, MKLDNN_ARG_SRC); - auto dst = CTX_OUT_MEM(data_t *, MKLDNN_ARG_DST); - - data_t space_max_val = 0, space_denom_val = 0; - data_t *space_max = &space_max_val, *space_denom = &space_denom_val; - if (inner_size_ > 1) { - using namespace memory_tracking::names; - space_max = scratchpad(ctx).template get<data_t>(key_softmax_reduction); - space_denom = space_max + inner_size_; - } - - const memory_desc_wrapper data_d(pd()->src_md()); - const size_t dim = channels_ * inner_size_; - - for (int ou = 0; ou < outer_size_; ou++) { - utils::array_set(space_max, -FLT_MAX, inner_size_); - utils::array_set(space_denom, 0, inner_size_); - - for (int c = 0; c < channels_; c++) { - for(int in = 0; in < inner_size_; in++) { - size_t off = data_d.off_l(ou * dim + c * inner_size_ + in); - space_max[in] = nstl::max(space_max[in], src[off]); - } - } - - for (int c = 0; c < channels_; c++) { - for(int in = 0; in < inner_size_; in++) { - size_t off = data_d.off_l(ou * dim + c * inner_size_ + in); - space_denom[in] += dst[off] = exp(src[off] - space_max[in]); - } - } - - for (int c = 0; c < channels_; c++) { - for (int in = 0; in < inner_size_; in++) { - size_t off = data_d.off_l(ou * dim + c * inner_size_ + in); - dst[off] /= space_denom[in]; - } - } - } -} - -template <impl::data_type_t data_type> -void ref_softmax_fwd_t<data_type>::_max(int n, const data_t *x, - data_t *max_data) const { -// Intel(R) C++ Compiler generates the maxps + shuffle pattern -// for the max search which works faster -#if !defined(__INTEL_COMPILER) - // The code below makes a compiler to generate maxps instruction - // rather than maxss, which is generated for the 'else' code path - auto max_wrapper = [](data_t a, data_t b) { return nstl::max(a, b); }; - auto min_wrapper = [](int a, int b) { return nstl::min(a, b); }; - - constexpr int unroll_factor = 32; - data_t max_values[unroll_factor]; - - if (n < unroll_factor) { - data_t max_val = x[0]; - for (int i = 1; i < n; i++) { - max_val = max_wrapper(max_val, x[i]); - } - max_data[0] = max_val; - return; - } - for (int i = 0; i < unroll_factor; i++) { - max_values[i] = x[i]; - } - for (int i = unroll_factor; i < n; i += unroll_factor) { - int offset = min_wrapper(i, n - unroll_factor); - for (int j = 0; j < unroll_factor; j++) { - max_values[j] = max_wrapper(max_values[j], x[offset + j]); - } - } - data_t max_val = max_values[0]; - for (int i = 1; i < unroll_factor; i++) { - max_val = max_wrapper(max_val, max_values[i]); - } - max_data[0] = max_val; -#else - max_data[0] = x[0]; - for (int c = 1; c < n; ++c) - max_data[0] = nstl::max(max_data[0], x[c]); -#endif -} - -template <impl::data_type_t data_type> -void ref_softmax_fwd_t<data_type>::_sub(int n, data_t alpha, const data_t *x, - data_t *y) const { - constexpr int unroll_factor = 32; - int tail = n % unroll_factor; - for (int i = 0; i < n - tail; i += unroll_factor) { - PRAGMA_OMP_SIMD() - for (int j = 0; j < unroll_factor; j++) { - y[i + j] = x[i + j] - alpha; - } - } - PRAGMA_OMP_SIMD() - for (int i = n - tail; i < n; i++) { - y[i] = x[i] - alpha; - } -} - -template <impl::data_type_t data_type> -void ref_softmax_fwd_t<data_type>::_exp(int n, const data_t *a, - data_t *r) const { -#ifdef USE_MKL - if (data_type == data_type::f32) { - vsExp(n, a, r); - return; - } -#endif - parallel_nd(n, [&](int c) { r[c] = expf(a[c]); }); -} - -template <impl::data_type_t data_type> -void ref_softmax_fwd_t<data_type>::_sum(int n, const data_t *x, - data_t *sum_data) const { -#ifdef USE_CBLAS - // Here we are summing x's eg. e^z , which are positives - // so we can use BLAS ASUM - if (data_type == data_type::f32) { - sum_data[0] = cblas_sasum(n, x, 1); - return; - } -#endif - data_t tsum = static_cast<data_t>(0); - PRAGMA_OMP_SIMD(reduction(+ : tsum)) - for (int c = 0; c < n; ++c) - tsum += x[c]; - sum_data[0] = tsum; -} - -template <impl::data_type_t data_type> -void ref_softmax_fwd_t<data_type>::_scal(int n, data_t alpha, data_t *x) const { -#ifdef USE_CBLAS - if (data_type == data_type::f32) { - cblas_sscal(n, alpha, x, 1); - return; - } -#endif - parallel_nd(n, [&](int c) { x[c] *= alpha; }); -} - -template struct ref_softmax_fwd_t<data_type::f32>; - - -// NC/NCHW softmax for along final axe (1 for NC, 3 for NCHW) -template <impl::data_type_t data_type> -void ref_softmax_bwd_t<data_type>::execute_backward_dense( - const exec_ctx_t &ctx) const { - auto dst = CTX_IN_MEM(const data_t *, MKLDNN_ARG_DST); - auto diff_dst = CTX_IN_MEM(const data_t *, MKLDNN_ARG_DIFF_DST); - auto diff_src = CTX_OUT_MEM(data_t *, MKLDNN_ARG_DIFF_SRC); - - parallel_nd(outer_size_, [&](int ou) { - data_t sbr = 0; - size_t off = channels_*ou; - for (int c = 0; c < channels_; c++) { - size_t loff = off + c; - data_t ldata = dst[loff]; - sbr += diff_dst[loff]*ldata; - diff_src[loff] = ldata; - } - - for(int c=0; c < channels_ ; ++c) { - size_t loff = off + c; - diff_src[loff] *= (diff_dst[loff] - sbr); - } - }); -} - -template <impl::data_type_t data_type> -void ref_softmax_bwd_t<data_type>::execute_backward_generic( - const exec_ctx_t &ctx) const { - auto dst = CTX_IN_MEM(const data_t *, MKLDNN_ARG_DST); - auto diff_dst = CTX_IN_MEM(const data_t *, MKLDNN_ARG_DIFF_DST); - auto diff_src = CTX_OUT_MEM(data_t *, MKLDNN_ARG_DIFF_SRC); - - const memory_desc_wrapper diff_d(pd()->diff_src_md()); - const memory_desc_wrapper data_d(pd()->dst_md()); - - const size_t dim = channels_ * inner_size_; - - parallel_nd(outer_size_, [&](int ou) { - for (int in = 0; in < inner_size_; in++) { - data_t sbr = 0; - for (int c = 0; c < channels_; c++) { - size_t off_diff = diff_d.off_l(ou * dim + c * inner_size_ + in); - size_t off_data = diff_d.off_l(ou * dim + c * inner_size_ + in); - sbr += diff_dst[off_diff] * dst[off_data]; - } - - for(int c=0; c < channels_ ; ++c) { - size_t off_diff = diff_d.off_l(ou * dim + c * inner_size_ + in); - size_t off_data = data_d.off_l(ou * dim + c * inner_size_ + in); - diff_src[off_diff] = dst[off_data] * (diff_dst[off_diff] - sbr); - } - } - }); -} - -template struct ref_softmax_bwd_t<data_type::f32>; - -} -} -} - -// vim: et ts=4 sw=4 cindent cino^=l0,\:0,N-s |